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Abstract. We study the Riemannian quantitive isoperimetric inequality. We show that a direct
analogue of the Euclidean quantitative isoperimetric inequality is—in general—false on a closed
Riemannian manifold. In spite of this, we show that the inequality is true generically. Moreover, we
show that a modified (but sharp) version of the quantitative isoperimetric inequality holds for a real
analytic metric, using the Łojasiewicz–Simon inequality. The main novelty of our work is that in all
our results we do not require any a priori knowledge on the structure/shape of the minimizers.
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1. Introduction

The isoperimetric inequality on Rn states that P .�/ � P .B/ for any Caccioppoli set
� with j�j D jBj, with equality only for � D B (up to a set of measure zero). That is,
the isoperimetric inequality states that balls in Euclidean space have the least perimeter
for their enclosed volume. Starting with Bonnesen (cf. [40]), there has been considerable
activity concerning quantitative versions of the isoperimetric inequality, finding geometric
conditions on a set � that nearly achieves equality in the isoperimetric inequality.

Recently, a (Euclidean) quantitative isoperimetric inequality holding in all dimen-
sions has been established by Fusco, Maggi, and Pratelli [29]. They proved that if � is a
Caccioppoli set with j�j D jB1.0/j, then�

inf
BDB1.x/�Rn

j�4 Bj
�2
� C.n/.P .�/ �P .B//: (1.1)

By considering C 2 perturbations of the ball, one can see thet the exponent on the left
hand side is sharp [31]. Subsequently, Figalli, Maggi, and Pratelli [24], and Cicalese and
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Leonardi [13], gave substantially different proofs of (1.1), and were also able to explicitly
compute the constant C.n/ and prove that it is polynomial in n. See also [14, 28], and
[1, 7] for applications of such quantitative inequalities.

In this work, we consider the analogue of (1.1) on a closed (that is, compact without
boundary) Riemannian manifold. The symmetrization and optimal transport techniques
of [24, 29] are not applicable even for non-quantitative isoperimetric inequalities on a
general Riemannian manifold (see Section 1.2 below for more discussion), so we follow
the selection principle approach of [13]. The general idea of the selection principle (which
has its roots in the work of White [50]) is that by considering a “worst case scenario”
for (1.1), one can reduce to the case where @� is a small C 1;˛ graph over @B . At this
point work of Fuglede [26] applies (in Rn) to show that (1.1) holds in the worst case
scenario (and thus in all situations).

In a closed Riemannian manifold .M; g/, it is well known that isoperimetric regions
exist for all volumes V 2 .0; jM jg/. However, there are surprisingly few manifolds where
explicit isoperimetric regions are known (see [19, Appendix H] for a recent survey). As
such, methods that rely explicitly on the geometry of B �Rn cannot be directly extended
to a general manifold. Indeed, an estimate of the form (1.1) is false in a general Rieman-
nian manifold, even for sets which are small graphs over isoperimetric regions!

Indeed, we construct the following example in Section 4:

Theorem 1.1. For all n � 2 there exists a closed manifold M n with a real analytic
Riemannian metric g, a uniquely isoperimetric region � � M and sets Ek with smooth
boundary such that j�4 Ekjg ! 0 but the sets Ek do not satisfy the analogue of (1.1),
i.e.

.j�4Ekjg/
2

P g.Ek/ �P g.�/
!1:

In fact, for any 
 > 0 fixed, there exists a real analytic g, depending on 
 , such that

.j�4Ekjg/
2C


P g.Ek/ �P g.�/
!1:

Finally, we show that there is a g smooth but not real analytic onM n such that one cannot
bound P g.Ek/ �P g.E/ by any power of j�4Ekjg , i.e.,

.j�4Ekjg/
2C


P g.Ek/ �P g.�/
!1 for all 
 > 0:

As such, the natural analogue of (1.1) cannot hold in general. Nevertheless, we prove
that (1.1) holds generically in the following sense. Let � denote the the set of C 3 metrics
on a given Riemannian manifold.

Theorem 1.2. Let M n be a closed manifold with 2 � n � 7. There exists an open and
dense subset G � � with the following property. If g 2 G , then there exists an open dense
subset V � .0; jM jg/ such that for V0 2 V , there is C D C.g; V0/ > 0 such that

P g.E/ � Ig.V0/ � C˛g.E/
2 (1.2)



Quantitative isoperimetry on manifolds 1713

for any E �M with jEjg D V0. Here,

Ig.V0/ WD inf ¹P g.†/ W j†jg D V0º

is the isoperimetric profile and the manifold Fraenkel asymmetry is

˛g.E/ WD inf ¹jE 4†jg W † 2M
g
V0
º;

for M
g
V0

the set of † attaining the infimum in Ig.V0/.

A key element of the proof here is a bumpiness result in the spirit of [48,49], but with
a volume constraint.

Remark 1.3. We note that given a metric g, fixing V 2 .0; jM jg/ one can always find a
nearby g such that (1.2) holds for volume V (without needing to perturb V ): see Corol-
lary 5.4.

Moreover, for any real analytic metric g, we prove an analogue of (1.1) that holds for
all volumes.

Theorem 1.4. For 2 � n � 7, assume that .M n; g/ is a real analytic, closed Riemannian
manifold, and let 0 < V0 < jM jg . There exist constants C0 > 0; 
 � 0, depending only
on .M; g/ and V0, such that

P g.E/ � Ig.V0/ � C0˛g.E/
2C
 (1.3)

for any E �M with jEjg D V0.

As remarked above, the main difference between Theorem 1.4 and essentially all
the known quantitative inequalities is that we have no a priori knowledge of the struc-
ture/shape or any classification of the minimizers of (2.1). For this reason we expect this
method to be applicable to a variety of other problems. On the other hand, the price that
we have to pay is the exponent 
 > 0 (see Section 1.2 for a more in-depth comparison).
We remark that our result is optimal both in the analyticity assumption and in the fact that

 might be (arbitrarily) greater than 0 (see Section 4). The restriction 2 � n � 7 is due to
the fact that minimizers are smooth only in these dimensions.

1.1. Idea of the proof of Theorems 1.2 and 1.4

The key idea for Theorems 1.2 and 1.4 is that the quantitative inequality (1.3) with 
 D 0
corresponds to integrability of the minimizers, that is, roughly speaking, every null direc-
tion of the second variation can be killed by choosing a nearby minimizer. More precisely:

Definition 1.5. We say that a minimizer† of (2.1) is integrable if every Jacobi field on†
with zero average is the infinitesimal generator of a one-parameter family of minimizers.

For example, in the case of the Euclidean space, balls are known to be the unique
minimizers, and the zero-average part of the kernel of the Jacobi operator is composed
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only of infinitesimal generators of translations, that is, balls are integrable and the second
order expansion gives the inequality. Since in our case integrability is in general false (see
Section 4) we have to use a stronger tool, the following infinite-dimensional version of
the so-called Łojasiewicz inequality.

Lemma 1.6 (Quantitative inequality and Łojasiewicz inequality). For any n � 2, let
.M n; g/ be an analytic, compact Riemannian manifold and † � M a smooth isoperi-
metric region of volume j†jg D V0. There exist constants ı; 
;C0 > 0, depending only on
.M; g/ and †, such that if E �M has jE 4†jg � ı and jEjg D V0 then

P g.E/ �P g.†/ � C0˛ı.E; g/
2C
 (1.4)

where
˛ı.E; g/ WD inf ¹jE 4 Q†jg W Q† 2M

g
V0
; j Q†4†jg � ıº; (1.5)

and we recall that M
g
V0

are the isoperimetric regions of volume V0.
If † is integrable, then we can take 
 D 0. If † is strictly stable then we can replace

(1.4) with the stronger

P g.E/ �P g.†/ � C0jE 4†j
2: (1.6)

This is a local version of Theorem 1.4 valid in every dimension as long as † is
smooth, and the proof of Theorem 1.4 follows from Lemma 1.6 and a simple compactness
argument. On the other hand, the proof of Lemma 1.6 is a consequence of the so-called
selection principle, introduced in [13] for the quantitative inequality in Euclidean space,
and an infinite-dimensional version of the Łojasiewicz inequality for competitorsE which
are graphical on †, which replaces the so-called Fuglede inequality.

Theorem 1.2 follows by combining (1.6) with a bumpiness type theorem that guaran-
tees that for generic metrics and values of the enclosed volume V0, minimizers of (2.1)
are strictly stable, that is, the kernel of the second variation is empty. The only additional
difficulty with respect to the results in [48, 49] is the parameter V0, which corresponds
essentially to a Lagrange multiplier.

1.2. Technical discussion of related work

As mentioned above, there has been a lot of recent work on quantitative stability not
just for the isoperimetric inequality but also for many other geometric (e.g. Brunn–
Minkowski [23]), spectral (e.g. Faber–Krahn [6]), and functional (e.g. Sobolev [39])
inequalities. We refer to the recent survey of Fusco [27] for a more comprehensive list.
When the underlying space and the extremizers are highly symmetric these results are
often proven by symmetrization or rearrangement (see e.g. [12]). In this vein we would
also like to point out the works [11, 32], which do not use symmetrization techniques but
do exploit the richness of the symmetry group of the underlying space.

We also note that the quantitative isoperimetric inequality in the form (1.1) for regions
in space-forms does hold [4,5]. Moreover, in recent work, Cavalletti–Maggi–Mondino [8]
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prove a qualitative version of the Lévy–Gromov isoperimetric inequality (for manifolds
with lower Ricci curvature bounds). In particular, their results imply that sets nearly satur-
ating the Lévy–Gromov isoperimetric inequality are close (in L1) to metric balls, which
are close (inL1) to isoperimetric regions. We emphasize that this closeness in [8] is meas-
ured relative to how close the metric saturates the Lévy–Gromov inequality, rather than
how close the set comes to being isoperimetric.

In the anisotropic setting, optimal transport techniques have been used with great suc-
cess (see e.g. [3]). However, usually convexity of the extremizers is required (e.g. to
guarantee the necessary regularity of the transport map). Other techniques, such as the
selection principle, often require understanding the spectrum of the relevant energy lin-
earized around the extremizers (to obtain estimates like Fuglede’s [26]). In the generality
we consider here, there is very little one can say about the structure of the extremizers
(i.e. isoperimetric regions) or symmetry of the underlying space. This lack of knowledge
is our primary technical obstacle.

As alluded to above, we are able to overcome this obstacle by establishing the
Łojasiewicz–Simon type inequality (1.4). Łojasiewicz’s work [34] was first applied to
geometric analysis by Simon [43], in order to prove the regularity of solutions to certain
elliptic PDE near isolated singularities. These ideas have been further developed by a
number of different authors in a number of different settings, e.g., to understand the long
term behavior of some gradient flows [16,47] or to prove results in the same vein as [43],
but either in the parabolic setting (see e.g. [10, 15]), or in purely variational settings (see
e.g. [20]). See the introduction of [22] and the references therein for a more comprehens-
ive history. As far as we are aware, this is the first instance of a Łojasiewicz–Simon type
inequality being used to prove a quantitative stability result.

1.3. Results for stable minimal surfaces

We briefly note that the techniques used to prove Lemma 1.6 can be used to prove the
following quantitative minimality result for minimal surfaces, related to the works [18,
33, 50].

Theorem 1.7. Consider a real analytic Riemannian manifold .M n;g/. Assume that �n�1

� M is a smooth stable minimal hypersurface. Then there are ı; C > 0 and 
 � 0
.depending on �;M; g/ such that for M being the set of Q� homologous to � with the
same mass and small flat norm F.�; Q�/ < ı,1 for any current S homologous to � with
F.�; S/ < ı, we have

M.S/ �M.�/ � C
�

inf
Q�2M

F.S; Q�/
�2C


:

where M.�/ is the mass .area/ of the current.

1Here F.�; � 0/ D inf ¹M.A/CM.B/ W AC @B D � � � 0º is the flat norm (see e.g. [33, Sec-
tion 2]).
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This follows in a nearly identical manner to Lemma 1.6. We note that with appro-
priate modifications, one can prove a similar result in higher codimensions. It would be
interesting to understand an analogue of Theorem 1.7 for finite index surfaces (see [50]).

1.4. Plan of the paper

Section 2 is dedicated to fixing some notations and introducing some preliminary tools,
particularly the various Banach manifolds we will use in the rest of the paper. In Section 3
we prove the infinite-dimensional version of Łojasiewicz inequality (Lemma 1.6) and
Theorem 1.4, while Section 4 is dedicated to its optimality. Finally, in Section 5 we prove
Theorem 1.2 and the bumpy metric result needed to do that.

2. Preliminaries and notations

We start by introducing some concepts that will be used throughout the paper.

2.1. The isoperimetric problem

Recall that the distributional perimeter of E �M is defined by

P g.E/ D sup
²Z

E

divg.�/ dvolg

ˇ̌̌̌
� 2 C 1.M ITM/; k�kL1 � 1

³
:

Sometimes, when it is clear in context, we will eliminate the dependence on g from the
notation. Then, for a fixed constant 0 < V0 < jM njg , where j � jg denotes the volume on
M induced by g, we study the minimization problem

Ig.V0/ WD inf ¹P g.E/ W E 2 A
g
V0
º (2.1)

where
A
g
V0
WD ¹E �M W �E 2 BV.M/; jEjg D V0º

is the set of Caccioppoli sets with volume V0. If � 2 A
g
V0

attains Ig.V0/, we say that �
is isoperimetric. We let M

g
V0

denote the set of isoperimetric regions of volume V0.

2.2. Graphical regions

Let † � M n be such that @† is smooth, and embedded, and let �† be the normal to @†
in M n pointing outside †. Let f W @†! R. Then the graph of f is defined by

graph.f / WD ¹.x; expx.f .x/�†.x/// W x 2 @†º;

and we will sometimes use the notation graph.f / D @†C f . Moreover we associate to
each such graph a set of finite perimeter†C f in such a way that @.†C f /D @†C f D
graph.f /, with orientation chosen so that �graph.f / � �† � 0. When the set† is clear from
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context, we will often abuse notation and use f to refer to both the function and the
submanifold @†C f or the subset †C f .

If u W N n�1! †n is a smooth embedding from a compact orientable manifold N n�1

to M n, we will denote by Œu� the set of all maps of the form u ı �, where � W N ! N is
a smooth diffeomorphism; that is, the elements of Œu� are all parametrizations of the same
surface u.N /.

2.3. Banach manifolds

We will denote by

Bk;˛r .h0/ WD ¹h 2 C
k;˛.M/ W kh � h0kCk;˛ < rº:

We will abuse this notation a bit, writing

Bk;˛r .†/ WD ¹f 2 C k;˛.@†/ W kf kCk;˛ < rº;

and Br .V0/ D ¹V 2 R W jV � V0j < rº:
Given r; V0 > 0, and † a minimizer of (2.1) for a C 3 metric g0 with j†jg0 D V0, we

are interested in the following sets:

Br .†/ WD ¹f 2 B
2;˛
r .†/ W j†C f jg0 D j†jg0º; (2.2)

Br .†; g0/ WD ¹.f; g/ 2 B
2;˛
r .†/ � B3r .g0/ W j†C f jg D j†jg0º; (2.3)

Br .†; g0; V0/ WD ¹.f; g; V / 2 B
2;˛
r .†/ � B3r .g0/ � Br .V0/ W j†C f jg D V º: (2.4)

It is straightforward to see that these are Banach manifolds; we sketch the proof for
the reader’s convenience (recall that � denotes the family of C 3 metrics on M ).

Lemma 2.1. Let † be a smooth minimizer of the isoperimetric problem (2.1) for the
metric g0. There exists ı > 0, depending on †; g0, such that Bı.†/, Bı.†; g0/ and
Bı.†; g0; V0/ are separable, codimension 1 Banach submanifolds of the separable
Banach spaces C 2;˛.@†/, C 2;˛.@†/ � � and C 2;˛.@†/ � � �R respectively .modeled
on the Banach space of functions with zero average on @† with respect to the metric g0/.

Proof. We sketch only the case Br .†/, as the other two are the same. Separability fol-
lows from the separability of C 2;˛ , so we only need to show that the function F.f / WD
j†C f jg0 � j†jg0 is a submersion near 0. To do this we observe that, by a well known
computation (see for instance [49, Lemma 3.1 and Section 7])

DF.0/Œv� D

Z
@†

v d�g0 ;

where d�g0 is the volume form of @† in the metric g0. Choosing v as a constant, we
immediately see that the differential is surjective, so that there exists ı > 0 depending on†
such that Bı.†; g0/ is a Banach submanifold of C 2;˛.@†/. Since the kernel of DF.0/ is
the space of functions v 2 C 2;˛ such that

R
@†
v d�g0 D 0, the proof is complete.
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When the precise value of r is not so important, we will write B.†/ to mean Br .†/

for some fixed r , small enough as in the previous lemma, and analogously B.†; g0/ and
B.†; g0; V0/.

We will use a chart on B.†/ defined as follows. First, we fix a map„ W T0B.†/\U
! B.†/, where U is a neighborhood of 0 2 T0B.†/ by taking

„.v/ WD v C �.v/ where �.v/ 2 R is chosen so that j†C„.v/j D j†j:

We notice that by Lemma 2.1, after choosing U sufficiently small, the map D„.v/ W
T0B.†/ ! T„.v/B.†/ is invertible, with D„.0/ D Id and moreover, if ui D „.vi /,
then

ku1 � u2k
2
W 1;2 ' Ckv1 � v2k

2
W 1;2 : (2.5)

Moreover, we will denote by P„ W T0B.†/\U !R the perimeter functional written
in the coordinates defined by „, namely

P„.v/ WD P .†C„.v//; v 2 T0B.†/ \ U:

We remark that if the metric g0 is analytic, then so is the function „. We can see this in
the proof of Lemma 2.1, since the submersion, F , there is analytic.

We will denote by DP„; D
2P„ the first and second derivative of P„ as a map on

(a subset of) T0B.†/. We have the following simple lemma.

Lemma 2.2. For every v 2 U we have

DP„.v/ D DP .†C„.v// ıD„.v/ (2.6)

where DP .†C„.v// W C 2;˛.†C„.v//! R is defined by

DP .†C„.v//Œw� D
d

dt

ˇ̌̌̌
tD0

P .†C„.v/C tw/:

In particular,

DP„.0/ D 0; (2.7)

D2P„.0/Œw1; w2� D

Z
@†

w2..J† CH
2
†/w1 C j.w1// (2.8)

where J† D �4† �.jA†j2 C Ric.�; �// is the Jacobi operator of @† and j.w1/ 2 R is
the unique real number such that .J† CH 2

†/w1 C j.w1/ has zero average on @†.

2.4. Properties of isoperimetric regions

The following result concerning regularity of isoperimetric regions is well known (see
e.g. [35]).

Theorem 2.3. We can choose representatives of minimizers of (2.1) so that their bound-
aries are compact, have constant mean curvature, and are regular away from a singular
set of Hausdorff dimension at most n � 8.
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Finally, we recall the following

Lemma 2.4. Let† be an isoperimetric region in a closed Riemannian manifold .M n; g/.
There exists a number L 2 N, depending on .M; g/, such that the number of compact
connected components of @† is bounded by L.

Proof. By [37, Theorem 2.2] there is ı > 0 such that if j†jg 2 .0; ı�[ ŒjM jg � ı; jM jg/
then @† is connected (and indeed a perturbation of a coordinate sphere). Now, by
Lemma C.1 if j�jg 2 .ı; jM jg � ı/, then @� has constant mean curvature jH j � C D
C.M; g; ı/. By the boundedness of H , the monotonicity formula applied to each com-
ponent of @� implies that P g.�/ � cL for some constant c D c.M;g; ı/ > 0. However,
it is easy to see that Ig.V / � I0 D I0.M; g/ for all V , by e.g. foliating .M; g/ by the
level sets of a Morse function. This completes the proof.

This will be used in the proof of Lemma 3.4 (to prove that the kernel of an elliptic
operator over @† has finite dimension) and again in the proof of Theorem 1.2 (to conclude
that there are only countably many diffeomorphism types for minimizers † of (2.1)).

3. Proofs of Lemma 1.6 and Theorem 1.4

The proof is divided into two parts. First, using a modification of the argument in Simon’s
[43], based on the Lyapunov–Schmidt reduction and the Łojasiewicz inequality for ana-
lytic functions, we prove Lemma 1.6 for graphs close to a smooth minimizer of (2.1). This
can be interpreted as a generalization of Fuglede’s inequality to the non-integrable case.
In the second part we combine this result with a modification of the selection principle
inspired by [13] to conclude the proof of Lemma 1.6.

Throughout this section, .M;g/will be fixed, so we will not make explicit the depend-
ence on g.

3.1. Lyapunov–Schmidt reduction, integrability and strict stability

We start by recalling the following technical result whose proof is given in Appendix A.
We denote K WD ker.D2P„.0//. Notice that since @† is smooth and compact (by

Theorem 2.3) and D2P„.0/ is the quadratic form associated to an elliptic operator by
Lemma 2.2, dimK WD l <1.

We let L2
B

be the Hilbert space of L2-functions on @† that integrate to zero. We can
thus denote by K? the L2

B
orthogonal complement of K in T0B.†/.

Lemma 3.1 (Lyapunov–Schmidt reduction). Suppose .M; g/ is a C 3 manifold and †
is a smooth2 minimizer of (2.1). There exists a neighborhood U of 0 in T0B.†/ and a

2By smooth here, we mean that the singular set is empty; then @† will be as regular as g allows.
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map ‡ W K \ U ! K?, as regular as g, where the orthogonal complement is taken with
respect to the L2

B
inner product, such that

‡.0/ D 0 and r‡.0/ D 0; (3.1)

and, in addition, ´
�K?.rP„.� C ‡.�/// D 0 8� 2 K \ U;

�K.rP„.� C ‡.�/// D rP.�/ 8� 2 K \ U;
(3.2)

where P W Rl ! R is the function defined by

P.�/ D P„.� C ‡.�// for every � 2 K \ U

and we identify � with the l-vector given by its coordinates in an orthonormal basis of the
kernel K. Moreover, let L be the l-dimensional family defined by

L WD ¹� C ‡.�/ W � 2 U \Kº � T0B.†/:

Now assume that g is analytic. Then P is analytic and satisfies the so-called
Łojasiewicz inequality at 0 .see [21, Corollary 4]/: there are constants C; ı > 0 and

 � 0, depending on †, such that if j�j < ı, then

P.�/ � P.0/ � C
�

inf
¹�0W rP.�0/D0º

j� � �0j
�2C


: (3.3)

For W D Bı.†/ and M the set of critical points of P W B.†/! R we have

M \W D ¹†C � C ‡.�/C„.� C ‡.�// W � 2 U \K and rP.�/ D 0º; (3.4)

and
Q† 2M \W implies P . Q†/ D P .†/: (3.5)

Moreover, there is a constant C <1 such that, for all �; � 2 U \K,

kr‡.�/Œ��kC2;˛ � Ck�kC0;˛ : (3.6)

Finally, there exists a constant C > 0 such that, writing u D „.v/ and defining vL WD

�Kv C ‡.�Kv/ and uL WD „.vL/, the following key estimate holds:

P .†C u/ �P .†C uL/ � Cku � uLk
2
W 1;2 8u 2 Bı.†/: (3.7)

Definition 3.2 (Integrability and strict stability). We say that a minimizer † of (2.1) is
integrable if every Jacobi field u 2 K D ker.D2P„.0// is the infinitesimal generator of
a one-parameter family of critical points of P in Bı.†/; that is, for every element u 2 K
there exists a one-parameter family of diffeomorphisms, .�t /t2.�1;1/, such that �0 D Id,
d
dt
�t
ˇ̌
tD0
D u.�0/�† on @†, and

.�t /].†/ 2 Bı.†/ is a critical point of P in Bı.†/ for every t 2 .�1; 1/:
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We say that a minimizer † of (2.1) is strictly stable if there exists C > 0, depending
on †, such that

D2P„.0/Œv; v� � Ckvk
2
W 1;2.†/

for every v 2 T0Bı.†/: (3.8)

In this case we can refine the Lyapunov–Schmidt decomposition to obtain the follow-
ing lemma.

Lemma 3.3 (Lyapunov–Schmidt and integrability). Under the assumptions of Lemma 3.1
and using the notation introduced there, if ı > 0 is small enough the following holds.

(i) If g is analytic, then † is integrable if and only if the function P of Lemma 3.1 is
constant. In particular, if † is integrable, then

M \W D ¹†C � C ‡.�/C„.� C ‡.�// W � 2 U \Kº;

and moreover

P .†C u/ �P .†/ � Cku � uLk
2
W 1;2 8u 2 Bı.†/: (3.9)

(ii) If † is strictly stable and g 2 C 3, then L D ¹†º and moreover

P .†C u/ �P .†/ � Ckuk2
W 1;2 8u 2 Bı.†/: (3.10)

The proof of this fact is also contained in Appendix A.

3.2. Łojasiewicz inequality as a generalization of Fuglede’s inequality

In this subsection we prove the main estimate of the paper.

Lemma 3.4 (Łojasiewicz meets Fuglede). Let † be a smooth embedded orientable min-
imizer of (2.1) on a manifold .M; g/.

If g is analytic, then there exist constants ı.†/; C.†/; 
.†/ > 0, all depending on
†;M; g, such that

P .†C u/ �P .†/ � C.†/˛ı.†/.†C u/
2C
.†/

8u 2 Bı.†/: (3.11)

If g is analytic and† is integrable, then we can take 
 � 0 in the above estimate, that
is,

P .†C u/ �P .†/ � C.†/˛ı.†/.†C u/
2
8u 2 Bı.†/: (3.12)

If g 2 C 3 and † is strictly stable, then

P .†C u/ �P .†/ � C.†/j.†C u/4†j2 8u 2 Bı.†/: (3.13)

Proof. We start by observing that

inf
Qu2M\Bı.†/

ku � QukW 1;2 � C inf
Qu2M\Bı.†/

ku � QukL1 � C˛ı.†C u/; (3.14)
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where the first inequality is the Poincaré inequality and the second follows from the fact
that u; Q† 2 Bı.†/ implies that u has small C 1;˛ norm when reparametrized over Q†.

Now we prove (3.11). Let u 2B.†/ and let v 2 U � T0B.†/ be such that uD„.v/.
Let uL D „.vL/ where vL 2 L is as in Lemma 3.1 and write

P .†C u/ �P .†/ D P .†C u/ �P .†C uL/„ ƒ‚ …
DWI?

CP .†C uL/ �P .†/„ ƒ‚ …
DWIL

; (3.15)

For the first term we simply use (3.7), therefore to conclude we only need to estimate IL.
We distinguish three cases.

† is strictly stable. In this case uL � 0 and (3.13) follows immediately from (3.10) and
(3.14).

† is integrable. In this case we have IL D 0 by (3.5), therefore by (3.7) and (3.15), and
the fact that vL C„.vL/ DM \W for all vL 2 L, we find that

P .†C u/ �P .†/ � Cku � uLk
2
W 1;2 � C

�
inf

Nu2M\Bı.†/
ku � NukW 1;2

�2
:

Combined with (3.14), this proves (3.12).

† is not integrable. We identify vL with � 2 Rl , via vL D � C ‡� where � is the
projection of v onto the kernel of D2P„.0/. Using the definition of P and (3.3) we get

IL D P.uL/ � P.0/

� C
�

inf
¹�0W rP.�0/D0º

j� � �0j
�2C


� C
�

inf
Qu2M\Bı.†/

kvL � QvkW 1;2

�2C

� C

�
inf

Qu2M\Bı.†/
kuL � QukW 1;2

�2C

; (3.16)

where in the first inequality we used standard estimates for elements of the kernel D2P„
and (3.6), while in the last inequality we used (2.5). We combine the inequalities (3.7)
and (3.16) with the simple fact that a2C
 C b2C
 � C.
/.a C b/2C
 for all a; b > 0 to
conclude that

P .†C u/ �P .†/ � Cku � uLk
2
W 1;2 C C

�
inf

Qu2M\Bı.†/
kuL � QukW 1;2

�2C

� C

�
ku � uLkW 1;2 C inf

Qu2M\Bı.†/
kuL � QukW 1;2

�2C

� C

�
inf

Qu2M\Bı.†/
ku � QukW 1;2

�2C

;

which, together with (3.14), concludes the proof of the proposition.
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3.3. Proof of Lemma 1.6

Let †; V0 be as in Lemma 1.6. Let ı.†/; C.†/ > 0 and 
 WD 
.†/ � 0 be the constants
given by Lemma 3.4, depending on †.

Given a set E � AV0 \Wı of finite perimeter, where

Wı WD ¹F �M W �F 2 BV.M/; jF 4†j � ıº; (3.17)

we can define the associated “energy” relative to †,

Q.E;
/ WD inf
²

lim inf
k

ıP .Fk/

˛ı.Fk/2C

j ¹Fkºk�AV0 ; ˛ı.Fk/>0; jFk 4Ej!0

³
; (3.18)

where
ıP .Fk/ D P .Fk/ � I.V0/

is the isoperimetric defect.
With 
 > 0 fixed as above, assume that there is a sequence of “bad” sets Ek 2

AV0 \Wı such that

ıP .Ek/ �
1

k
˛ı.Ek/

2C
 :

The trivial bound of ˛ı.Ek/ � 2V0 implies that ıP .Ek/ ! 0. Note that, by com-
pactness in the space of functions of bounded variation and the lower semicontinuity of
perimeter, passing to a subsequence we can guarantee that Ek ! Q† 2 M \ Wı in the
sense of sets of finite perimeter, and therefore ˛ı.Ek/! 0 as well. We have just shown
that the (local) quantitative isoperimetric inequality is equivalent to the statement that

inf
Q†2M\Wı

Q. Q†; 
/ > 0: (3.19)

In order to prove (3.19) we are going to use the following version of the selection
principle of [13].

Proposition 3.5 (Selection principle). Assume that Q.†; 
/ < 1. There exists a
sequence of sets Ek �M of finite perimeter with the following properties:

(i) ˛ı.Ek/ > 0 as k !1;

(ii) Q.Ek ; 
/! inf Q†2M\Wı
Q. Q†; 
/ as k !1;

(iii) there exists a smooth †0 2M \Wı such that

inf
Q†2M\Wı

Q. Q†; 
/ D Q.†0; 
/

and functions uk 2 C 1;˛.@†0/ such that Ek WD †0 C uk and kukkC1;˛ ! 0 as
k !1.
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The proof of Proposition 3.5 is given in Appendix B and is a modification of the one
in [13] with the simplification that the ambient space is compact and the complication that
once again we do not know the shape of the minimizers nor the growth of the isoperimetric
profile V 7! I.V /. Notice that one of the reasons for this local version is the choice of ı
so that @†0 is smooth, since it is sufficiently close to †.

We are now ready to conclude the proof of Lemma 1.6. If Q.†; 
/ D 1, then it
follows from Lemma 3.4 (and the triangle inequality) that Lemma 1.6 holds. Otherwise,
we can apply Proposition 3.5: since †0 2 Wı is a minimizer of (2.1) and @† is assumed
to be smooth, choosing ı sufficiently small depending on ı.†/, "-regularity guarantees
that Ek D †C Quk for some Quk 2 Bı.†/.†/.

Then by Proposition 3.5 (ii) we have

inf
Q†2M\Wı

Q. Q†; 
/ D lim
k!1

Q.Ek ; 
/ D lim
k!1

ıP .†C Quk/

˛ı.†/.†C Quk/2C


(3.11)
� C.†/ > 0

where the second equality follows from the fact that ˛ı.Ek/ > 0 for every k (i.e., Propos-
ition 3.5 (i)). This implies (3.19) and thus concludes the proof.

3.4. Proof of Theorem 1.4

Let ı.†/; C.†/ > 0 and 
.†/ � 0 be the constants of Lemma 1.6 for each † 2 M.
Consider the covering .Bı.†/=2.†//†2M of M with respect to the L1-norm, and recall
that M is compact, so that there exists a finite subcover .Bı.†j /=2.†j //

J
jD1 of M. Set

ı0 WD min
jD1;:::;J

ı.†j /; 
0 WD max
jD1;:::;J


.†j /; C0 WD min
jD1;:::;J

C.†j /: (3.20)

We claim that there exists ˛0 > 0 such that

˛.E/ < ˛0 implies ıP .E/ � C0˛.E/
2C
0 : (3.21)

Indeed, suppose not; then there exists a sequence Ej of sets of finite perimeter such that
˛.Ej /! 0 and

ıP .Ej / < C0˛.Ej /
2C
0 :

By a standard compactness argument, up to a subsequence Ej ! N† 2M, so that there
exists N sufficiently large satisfying

jEN 4 N†j � ı0=2:

Then, by the triangle inequality and the definition of .†j /JjD1, we can assume without
loss of generality that

jEN 4†1j � ı.†1/;

and that, by our contradiction assumption and the definitions of C0; 
0,

ıP .EN / < C.†1/˛.EN /
2C
.†1/ � C.†1/˛†1.EN ; ı/

2C
.†1/:

This contradicts Lemma 1.6.
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Next suppose ˛0 � ˛.E/ � 2jM jg ; then we recall the following fact (whose proof is
a simple contradiction argument combined with the fact that M is compact):

Lemma 3.6 ([13, Lemma 3.1]). For every ˛0 > 0 there exists ı0 > 0 such that, for anyE,
if ıP .E/ < ı0, then ˛.E/ < ˛0.

Then we see that in our regime P .E/ �P .†/ � ı0, and so

ıP .E/ � ı0 �
ı0

.2jM jg/2C
0
˛.E/2C
0 : (3.22)

Choosing C1 WD min ¹C0; ı0
.2jM jg/

2C
0
º, Theorem 1.4 follows from (3.21) and (3.22).

4. Optimality of Theorem 1.4

In this section we prove Theorem 1.1, giving an example demonstrating the sharpness of
Theorems 1.2 and 1.4. Finally, we discuss the possibility of extending our results to the
case of non-compact, finite volume manifolds.

We begin by proving the following relatively standard result. See e.g. [41, 42, 45] for
more refined statements.

Lemma 4.1. There is R0 D R0.n/ such that for R � R0, if we consider the product
metric gR on S1.R/ � Sn�1.1/, then every isoperimetric region � � M with volume
j�j D 1

2
jS1.R/ � Sn�1.1/j is of the form

� D .t0; t0 C �R/ � Sn�1 for some t0 2 R.

Proof. For nD 2 this can easily be proven by passing to the universal cover R2 and using
the classification of embedded constant curvature curves. We thus consider n � 3. The
proof we give below holds for 3 � n � 7, but can be easily modified to accommodate for
a singular set in higher dimensions.

Take Rk !1 and consider a sequence of isoperimetric regions

�k � S1.Rk/ � Sn�1

with j�kj D 1
2
jS1.Rk/ � Sn�1j ! 1. By comparison with the expected minimizer, we

have
P .�k/ � 2jS

n�1
j:

Moreover, because the Ricci curvature of S1.R/ � Sn�1 is non-negative and vanishes
only in the S1.R/ directions, we see3 that the reduced boundary of �k has exactly one
component unless �k is of the form asserted in the lemma.

3This is a standard argument: if there are two boundary components, take a function in the
second variation that is 1 on one component and �� on another, where � is chosen so that the
function integrates to zero. Non-negativity of the Ricci curvature implies that jAj2 C Ric.�; �/
vanishes identically along each component.
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We now claim that the mean curvature Hk of @��k remains uniformly bounded as
k ! 1. This follows exactly as in Lemma C.1 since all of the metrics gR are locally
isometric. Thus, using the monotonicity formula, we find that each component of @��k
has (extrinsic) diameter uniformly bounded, say by T0. From this, the conclusion easily
follows, because if @��k has only one component, then @��k � Œtk ; tk C T0� � Sn�1

for some tk . This implies that either j�kj D O.1/ or j�kj � 3
4
jS1.Rk/ � Sn�1j for k

sufficiently large. This is a contradiction.

We now prove Theorem 1.1. We begin with the non-analytic case (the third assertion
in the theorem) and explain how the proof can be modified for the analytic case at the
end of the section. Consider a fixed R � R0 for R0 from the previous lemma. Consider a
sequence of smooth functions 'k W R! .1=2; 2/ such that

(1) 'k is 2�R-periodic,

(2) 'k.r/ D 1 for jr � 1j > 1=2 (r 2 Œ0; 2�R/),

(3) 'k converges in C1 to 1 as k !1,

(4) 'k.1/ D 1 � 1=k is the unique minimum of 'k , and

(5) 'k is strictly decreasing on .1=2; 1/ and strictly increasing on .1; 3=2/.

We claim that for k sufficiently large, the unique isoperimetric region of half the volume
in the warped product metric

gk D dr
2
C 'k.r/

2gSn�1

on S1.R/� Sn�1 is�k D .1;Rk/� Sn�1 (or its complement) for k large enough, where
Rk D 1C �RC o.1/ as k !1 is chosen so that j�kj D 1

2
jS1.R/ � Sn�1jgk . Indeed,

let Q�k be any isoperimetric region for gk , enclosing half the volume. By Lemma 4.1, and
"-regularity, for k sufficiently large, @ Q�k is a small graph over ¹t0; t0 C �Rº � Sn�1 for
some t0 2R. Up to replacing Q�k with its complement (reversing the roles of t0; t0C �R),
we can assume that 'k � 1 near t0 C �R. Hence, by the argument in Lemma 4.1, the
component of @ Q�k near ¹t0 C �Rº is an exact slice ¹rkº � Sn�1. It remains to consider
the other component Q†0

k
of @ Q�k . By properties (4) and (5), and because †0

k
is a small

graph over t0 � Sn�1, we see that4

j Q†0kj � .1 � 1=k/
2
jSn�1j;

with equality only when Q†0
k
D¹1º �Sn�1. Putting this together, we find P . Q�k/�P .�k/

with equality only when Q�k D �k . This proves the claim.
We fix such a sufficiently large k for the remainder of the section and write M for

.S1.Rk/ � Sn�1; gk/.

4Indeed, the map .1=4;7=4/�Sn�1!¹1º �Sn�1 is .n� 1/-area non-increasing (with respect
to gk) and is strictly .n � 1/-area decreasing on any hypersurface except ¹1º � Sn�1.
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We now consider the sets �ı WD .1C ı; �ı/ � Sn�1 where �ı is chosen so that the
volume of �ı is equal to 1

2
jM j for all ı > 0 small. Let �0 D .1; Rk/ � Sn�1. Note that

�ı D Rk C

Z 1Cı

1

'.r/n�1 dr:

Thus,

j�ı 4 �0j D 2jS
n�1
j

Z 1Cı

1

'.r/n�1 dr � cı:

On the other hand, for some Cn > 0,

P .�ı/ �P .�0/ D Cn
�
'.1C ı/n�1 � '.1/n�1

�
(recall that ' � 1 outside of a small neighborhood of 1).

Now, suppose that '.1C r/� '.1/ vanishes faster than any polynomial. Then we see
that

P .�ı/ �P .�0/ � Cj ı
j

for any j > 0. This shows that it cannot be true that

P .�ı/ �P .�0/ � C j�ı 4 �0j
2C


for any C; 
 > 0, independent of ı.
To show that for a general analytic metric, it is necessary to allow 
 > 0 (arbitrarily

large) is slightly more involved. We sketch the modifications here. Choose an analytic
warping function ' that is �R-periodic, with unique minimum '.1/ < 1 at 1 (and hence
1C �R), so that is strictly decreasing on .0; 1/ and strictly increasing on .1; 2/, and so
that ' > 1 outside of .0; 2/. Assuming '.1C x/D '.1/C x2m CO.x2mC1/ for small x
and a large positive integer m, shows that one cannot take 
 D 0 (and that 
 > 0 can be
arbitrarily large).

4.1. Manifolds with metric of finite volume

We briefly comment on the situation for .M; g/ non-compact but still with finite volume.
By [36], isoperimetric regions exist for all volumes V0 2 .0; jM jg/. However, it seems
possible that such an .M; g/ exists where some isoperimetric region has infinitely many
components (compare to Lemma 2.4). While each of these components might satisfy a
Łojasiewicz inequality, it seems plausible that the associated constants, 
 , are unbounded,
in which case one could construct a counterexample to the finite-volume analogue of
Theorem 1.2 or Theorem 1.4. It would be interesting to rigorously construct such an
example.

5. Proof of Theorem 1.2

We first quickly adapt some of the results in [49] to our setting and then prove The-
orem 1.2.
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5.1. More Banach manifolds

Given†, a minimizer of (2.1) for the metric g0 and with volume V0, we introduce canon-
ical local coordinates at .†; g0; V0/, whose existence in a neighborhood U is guaranteed
by Lemma 2.1, defined by

„ W U \ T.0;g0;V0/B.†; g0; V0/! Bı.†; g0; V0/;

where T.0;g0;V0/B.†; g0; V0/ D C
2;˛
B
.@†/ � � � R, with C 2;˛

B
.@†/ the space of func-

tions on @†with zero average with respect to the metric g0. Recall that here, and through-
out this section, � is the family of C 3 metrics on M. In particular, we write .„1;„2;„3/
2 Bı.†; g0; V0/ � C

2;˛.@†/ � � �R for the components of „. As in the previous sec-
tions, we will write

P„.v; g; V / WD P„2.v;g;V /.†C„1.v; g; V //:

Moreover, we will denote by Du, Duu the first and second derivative of P„ with respect
to its first coordinate, and by Dg the first derivative with respect to its second coordinate.
A similar computation to (2.6) shows that we can identify the space of critical points for
the isoperimetric problem near .0; g0; V0/ with

Mr .†; g0; V0/ D ¹.f; g; V / 2 T.0;g0;V0/B.†; g0; V0/ W DuP„.f; g; V / D 0º:

In the following, we will work with this identification.

Proposition 5.1. There exists 0 < ı1 < ı, depending on †; g0; V0, such that
Mı1.†; g0; V0/ is a separable, smooth Banach submanifold of T0B.†; g0; V0/ such that
the projection

… WMı1.†; g0; V0/! � �R is a Fredholm operator of index 0:

Proof. Since the statement is local we can apply [49, Theorem 1.2] with (using the nota-
tion of that paper) X D T0B.†; g0; V0/, Y D C 0;˛.@†/, � D � � V and H.u; g; V / D
ruP„.u; g; V / the gradient induced by DuP„ using the scalar product of L2

B
. Since

DuuP„.0; g0; V0/ is as in (2.8), it is a self-adjoint Fredholm map of index 0. Moreover,
for every non-zero v 2 ker.DuuP„.0; g0; V0//, let g.s/ 2 � be the one-parameter family
of metrics defined in a neighborhood of @† by

g.s/.z/ WD .1C sf .z//g0.z/;

where f .z/ D 0 for every z 2 @†. Then, following the computation in [49, Theorem 2.1]
we can find f such that

@2

@s@t

ˇ̌̌̌
tD0Ds

P„.tv; g.s/; V .s; t// ¤ 0:

Therefore condition (C) of [49, Theorem 1.2] is satisfied and Proposition 5.1 is proved.
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Finally, by a standard procedure (see [49, Theorem 2.1]), we can patch together all the
local neighborhoods M.†; g0; V0/ to obtain a Banach manifold containing all the critical
points for (2.1) for varying metrics and values of the volume, but fixed diffeomorphism
type (as we are only working with local parametrizations).

Proposition 5.2. Let N n�1 and M n be smooth compact manifolds and let � be the col-
lection of C 3 Riemannian metrics on M n. Let Œu� denote the class of C 2;˛ embeddings
u W N !M up to diffeomorphism, i.e. v 2 Œu� if and only if v D u ı � with � W N ! N

a smooth diffeomorphism. Let

M.N / WD ¹.Œu�; g; V / W u.N / is the boundary of a critical point of (2.1)

with respect to g and V º:

Then M.N / is a smooth separable Banach manifold and the map

M.N / 3 .Œu�; g; V / 7! ….Œu�; g; V / WD .g; v/ 2 � � ¹V º

is a Fredholm operator of index 0 and the kernel of D….Œu�; g; V / has dimension equal
to the nullity of the second variation of u.N / with respect to the metric g in the linear
space of functions with zero average on u.N /.

Proof. As observed in the preliminaries, given embeddings u; v of N in M such that
ku� vkC2;˛ � 1, we can find a function f 2 C 2;˛.u.N // such that v.N /D u.N /C f ,
and vice versa: if f 2 C 2;˛.@† D u.N // has small norm, then we can find v 2

C 2;˛.N;M/ with ku � vkC2;˛ � 1 such that @†C f D v.N /.
With this identification in mind we can use Proposition 5.1 to find local charts for M.

The rest of the proposition follows exactly as in [49, Theorem 2.1].

5.2. Proof of Theorem 1.2

First of all notice that for every diffeomorphism type N n�1 we can apply Sard–Smale
[44, Theorem 1.3] to M.N / and … to show that for every fixed N there is an open and
dense subset GN � � � R such that every minimizer u.N / of (2.1) with .g; v/ 2 GN
is non-degenerate, that is, strictly stable. Since by Lemma 2.4, every minimizer of (2.1)
has finitely many connected compact components and since there are countably many
diffeomorphism types for compact manifolds .Ni /i2N , we can consider the open dense
subset G WD

T
i2N GNi of � � R. Its projections QG and U on � and R respectively are

also open and dense, since the projection is an open map.
Now let g 2 QG and V 2 .0; jM jg/ \ U . Since every smooth minimizer of (2.1) is

strictly stable, there are only finitely many minimizers with volume V in the metric g.
Now the result follows using (1.6) and letting C.g/ be the minimum of the constants
in (1.6).
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5.3. Some further consequences

As an outcome of the previous theorem we also have the following result, valid in every
dimension.

Corollary 5.3. For an open and dense set of metrics and volumes, smooth minimizers
of (2.1) are strictly stable and thus satisfy (1.6) with a constant C depending only on
.M; g/ and V0. This is the generic analogue of Lemma 1.6.

Finally, if one uses Br .†; g0/ instead of Br .†; g0; V0/ and argues as in the previous
two subsections, it is easy to conclude the following.

Corollary 5.4. Let V 2R. There exists an open and dense set of metrics, G �� , such that
for every g 2 G there exists a constant C.g; V / > 0 such that if † 2 A

g
V is a minimizer

of (2.1) in .M; g/, then

ıP g.E/ � C.g; V /jE 4†j2g for every E 2 A
g
V . (5.1)

Appendix A. Proofs of Lemmas 3.1 and 3.3

In this section we prove the Lyapunov–Schmidt reduction and its version in the integ-
rable case. For notational simplicity, we write C 2;˛

B
.@†/ and C 0;˛

B
.@†/ for functions that

integrate to zero on @† with the obvious Hölder regularity, and similarly for L2
B
.@†/.

Proof of Lemma 3.1. Recall thatK WD ker.D2P„.0//� T0B.†/ and define the operator

N .�/ WD DP„.�/C �K� W C
2;˛
B
.@†/! C

0;˛
B
.@†/;

where �K ; �K? denote the projections on K; K? with respect to the inner product of
L2

B
.@†/. By Lemma 2.2, we have N .0/ D 0. Furthermore,

DN .0/Œ�� D
d

dt
N .t�/

ˇ̌̌̌
tD0

D D.DP„/.0/Œ��C �K�:

Note that
hN .t�/; wi D DP„.t�/Œw�C h�K t�; wi;

so
hDN .0/Œ��; wi D D2P„.0/Œ�; w�C h�K�; wi:

Thus,

DN .0/Œ�� D �4† � �
�
jA†j

2
C Ric.�†; �†/CH 2

†

�
� C j.�/C �K�;

where j.�/ 2 R is unique such that DN .0/Œ�� 2 C
0;˛
B
.@†/. (Recall that j.�/ appears

because we are enforcing the zero-average condition.) In particular, ker.DN .0//D ¹0º �

C
2;˛
B
.@†/. Note that jj.�/j � Ck�kC0 , so by Schauder theory, DN .0/ W C

2;˛
B
.@†/ !

C
0;˛
B
.@†/ is an isomorphism. To be more explicit, sinceDN .0/ is (formally) self-adjoint
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and injective, we know that it is surjective onto L2
B
.@†/. Schauder theory for elliptic

operators plus the estimate on the size of j.�/ gives the isomorphism between the Hölder
spaces.

We apply the inverse function theorem to N in this neighborhood, producing the map
‰ WD N �1 which is a bijection from a neighborhood W � C 0;˛

B
.@†/ of the origin to a

neighborhood U � C 2;˛
B
.@†/ of the origin. We claim that the desired map is given by

‡ WD �K? ı‰ W K \ U ! K?:

In particular, for � 2 K \ U we have ‰.�/ D � C ‡.�/. The first conclusion of (3.1) is
trivial as ‡.0/ D ‡.N .0// D �K?.‰.N .0/// D 0.

To check (3.2), we first notice that

� D N .‰.�// D DP„.‰.�//C �K‰.�/: (A.1)

Applying �K? to both sides we get

0 D �K?DP„.‰.�//

for � 2 K \ U . This proves the first line of (3.2).
To prove the second line of (3.2), we compute, for any � 2 K,

hrP.�/; �i DDP„.� C ‡.�//Œ�Cr‡.�/Œ���

DDP„.� C ‡.�//Œ��;

which implies the second claim of (3.2) (as � 2K is arbitrary). The second equality above
follows from the fact that r‡.�/Œ�� 2 K? (as the image of ‡ is in K?) and then from
the first line of (3.2).

The proof of (3.3) follows from the analyticity of P W Rl ! R and the classical
Łojasiewicz inequality (see [21, Corollary 4]).

To prove (3.4) we turn to (A.1). Let † C � be an arbitrary critical point of P

(on B.†/) in a neighborhood of zero, and write �D„.v/ for some v 2 T0B.†/. By (2.6)
we know that DP„.v/ D 0 and so we can write v D ‰.�/, and (A.1) reads � D �Kv.
This implies

v D �Kv C �K?v D � C �K?‰.�/ D � C ‡.�/;

as desired (the condition on rP follows trivially from (3.2)). The other containment
follows immediately from (3.2), (2.6) and the invertibility of D„.

To show (3.5) we recall that, by the gradient version of the Łojasiewicz inequality,
there exist 
0; C0; ı0, depending on †, such that

jP.�/ � P.0/j1�
 � C0jrP.�/j for every � 2 Bı0 ;

which yields P.�/ D P.0/ as long as � is a critical point of P , as desired.
(3.6) follows from the C 1 regularity of ‰ W C 0;˛

B
.@†/! C

2;˛
B
.@†/.
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Finally, to prove (3.7) we notice that since† is a minimizer of P in B.†/, there exists
a constant C , depending on †, such that

D2P„.0/Œ�; �� � Ck�k
2
W 1;2 8� 2 K?: (A.2)

Then we can use a simple Taylor expansion to deduce that if as above u D „.v/ and
uL D „.vL/, then with the notation v? WD v � vL D v � �Kv � ‡.�Kv/ 2 K

?, we
have

P .†C u/ �P .†C uL/ D P„.v/ �P„.vL/

D DP„.vL/Œv
?�CD2P„.vL/Œv

?; v?�C o.kv?k2
W 1;2/

D hrP„.vL/; v
?
iL2„ ƒ‚ …

(3.2)
D 0

CD2P„.vL/Œv
?; v?�C o.kv?k2

W 1;2/

D D2P„.0/Œv
?; v?� �

�
D2P„.0/Œv

?; v?� �D2P„.vL/Œv
?; v?�

�
C o.kv?k2

W 1;2/

(A.2)
� Ckv?k2

W 1;2 � Cku � uLk
2
W 1;2 ;

where the next to last inequality follows by the continuity of D2P„ at 0 by choosing the
norm of u, and so W , small enough, together with (3.2), and the last inequality follows
from (2.5).

Next we prove the integrable and strictly stable versions of the Lyapunov–Schmidt
reduction, which are a simple modification of the argument above, essentially already
contained in [2].

Proof of Lemma 3.3. The integrability condition is equivalent to

8� 2 K 9.‰s/s2.�1;1/ � C
2.†;†?/ W

8̂̂̂<̂
ˆ̂:

lim
s!0

‰s D 0;

DP„.‰s/ D 0 for s 2 .�1; 1/;
d

ds

ˇ̌̌̌
sD0

‰s D lim
s!0

‰s

s
D �:

(A.3)

Assume (A.3) holds, and recall the definition P.�/ D P„.�C ‡.�//. If P � P.0/ in
a neighborhood of zero then we are done. Otherwise we can write P.�/ D Pp.�/ C

PR.�/CP.0/, where Pp 6� 0, Pp.��/D �pPp.�=j�j/ for � > 0 and PR.�/ is the sum
of homogeneous polynomials of degrees� pC 1 (here we use the analyticity of P ). Note
that there exists some � 2 K such that rPp.�/ ¤ 0. Let ‰s be the one-parameter family
of critical points that is generated by � (as in (A.3)).

As ‰s is a critical point, Lemma 3.1 allows us to write ‰s D �s C ‡.�s/ where
�s 2 K and �s=s ! � as s # 0. Computing

0 D DP„.‰s/ D rP.�s/ D rPp.�s/CrPR.�s/ D s
p�1
rPp

�
�

j�j

�
C o.sp�1/;

we divide the above by sp�1 and let s # 0 to obtain a contradiction to rPp.�/ ¤ 0.
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In the other direction, assume that P � P.0/ in a neighborhood of 0. This implies
that rP � 0 in a (perhaps slightly smaller) neighborhood of 0. Therefore, for any � 2K,
letting ‰s D s�C ‡.s�/ and recalling (3.6) establishes (A.3).

Next, since we have proven that P is constant on L, (3.9) follows immediately from
(3.7) and the fact that uL 2 L.

Finally, if † is strictly stable, thenK D ¹0º, which immediately implies L D ¹0º and
so uL D 0, which gives (3.10).

Appendix B. Proof of Proposition 3.5

The proof of Proposition 3.5 is obtained by combining results from [13, 33, 50], and we
will recall the fundamental steps over the following subsections, leaving many stand-
ard details to the reader. The basic idea is that the Ek will be minimizers to a pen-
alized version of energy in (3.18), where the penalization guarantees that we recover
inf Q†2M\Wı

Q. Q†; 
/ in the limit.
The existence of the Ek and the fact that they satisfy properties (i) and (ii) of Pro-

position 3.5 is covered in Proposition B.2. The smooth convergence of property (iii) of
Proposition 3.5 is proven in Lemma B.6.

For simplicity of notation, in this section we will denote

˛.E/ WD ˛ı.E/; A WD AV0 ; W WD Wı :

We emphasize that we are assuming that Q.†; 
/ <1 in this section.
Before starting the proof we observe the following simple facts.

Lemma B.1 (Properties of Q.�; 
/). The energy Q.�; 
/ satisfies the following proper-
ties.

� If ˛ı.E/ > 0;E � A, then Q.E; 
/ D ıP .E/=˛.E/2C
 .

� If Ek � A and Ek
L1

��! E, then Q.E; 
/ � lim infk Q.Ek ; 
/. (This follows from the
lower semicontinuity of perimeter and a diagonal argument.)

B.1. The penalized minimization problem

By the definition of Q. Q†; 
/ and a diagonal argument, there exists ¹Wj ºj � A such thatˇ̌̌̌
Q.Wj ; 
/ � inf

Q†2M\W

Q. Q†; 
/

ˇ̌̌̌
<
1

j
; 0 < ˛.Wj / < 1; ˛.Wj /! 0: (B.1)

We want to “regularize” these Wj and so we introduce the penalized functionals

Qj .E; 
/ WD Q.E; 
/C

�
˛.E/

˛.Wj /
� 1

�2
; (B.2)

where .Wj /j is as in (B.1). The content of the following proposition is that minimizers to
Qj .�; 
/ exist and are also an approximating sequence for inf Q†2M\Wı

Q. Q†; 
/ (i.e. they
satisfy (B.1)).
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Proposition B.2 (Minimizers of Qj ). There exist sets ¹Ej ºj �A of finite perimeter such
that for each j , Qj .Ej ; 
/ � Qj .S; 
/ for all other sets S 2 A. Furthermore,

˛.Ej / > 0; ˛.Ej /! 0;
ˇ̌̌
Q.Ej ; 
/ � inf

Q†2M\W

Q. Q†; 
/
ˇ̌̌
! 0:

Finally, perhaps after passing to a subsequence,Ej
L1

��!†0 where†0 2M\W is smooth
and Q.†0; 
/ D inf Q†2M\W Q. Q†; 
/.

Proof. The existence of a minimizer follows from BV-compactness and the lower semi-
continuity of the energy Qj .�; 
/ (see Lemma B.1, second bullet point).

If ˛.Ej / D 0 for any j > 1, then Ej 2M \W and we have

inf
Q†2M\W

Q. Q†; 
/ � Q.Ej ; 
/ D Qj .Ej ; 
/ � 1 � Qj .Wj ; 
/ � 1

D Q.Wj ; 
/ � 1

� inf
Q†2C\W

Q. Q†; 
/C
1

j
� 1;

which is a contradiction as long as j > 1.
A similar argument shows that ˛.Ej /! 0. Indeed for any subsequence Ejk we have

lim
k

�
˛.Ejk /

˛.Wjk /
� 1

�2
� lim

k
Qjk .Ejk ; 
/ � lim

k
Qjk .Wjk ; 
/ D lim

k
Q.Wjk ; 
/

D inf
Q†2C\W

Q. Q†; 
/ <1:

Since ˛.Wj /! 0 it follows that ˛.Ej /! 0.
Of course, we can similarly argue that

Q.Ej ; 
/ � Qj .Ej ; 
/ � Qj .Wj ; 
/ D Q.Wj ; 
/ � inf
Q†2C\W

Q. Q†; 
/C 1 <1;

where we emphasize that we have assumed that Q.†; 
/ <1.

This implies that ıP .Ej /! 0 so Ej
L1

��! †0 for some †0 2M \W . Note that @†0
is automatically smooth by the definition of W and the assumption that @† is smooth.

We have proven that the Ej (perhaps after passing to a subsequence) satisfy the
requirements of an approximating sequence in the definition of Q.†0; 
/. Therefore,

Q.†0; 
/ � lim
j

Q.Ej ; 
/ � lim
j

Qj .Ej ; 
/

� lim
j

Qj .Wj ; 
/ D lim
j

Q.Wj ; 
/

D inf
Q†2C\W

Q. Q†; 
/:
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This implies that
lim
j

Q.Ej ; 
/ D inf
Q†2C

Q. Q†; 
/ D Q.†0; 
/;

and finally that

lim
j!1

˛.Ej /

˛.Wj /
D 1; (B.3)

completing the proof.

B.2. Almost-minimizers and smoothness for the Ej

In this subsection we will prove that theEj satisfy the hypothesis of Proposition 3.5. Note
that we only have to verify the smooth convergence property (property (iii)), as the first
two properties are guaranteed by Proposition B.2.

We will prove this smooth convergence by first showing that the Ej ’s are almost-
minimizers for perimeter with uniform constants. Then smooth convergence will follow
from regularity theory for almost-minimizers and a standard argument in the calculus of
variations (see the proof of Lemma B.6 below for more details).

Our first lemma is that Ej minimizes perimeter in the class A up to an error which is
proportional to the area of the symmetric difference between Ej and the competitor. It is
important to note that the constant of proportionality is uniform over the index.

Lemma B.3. There exist ƒ > 0 and j0 2 N such that for all F 2 A and all j � j0 we
have

P .Ej / � P .F /CƒjEj 4 F j:

Proof. Without loss of generality we can assume that P .F / � P .Ej /. We also let j0 be
large enough such that

˛.Ej / � 1=2;

j˛.Ej / � ˛.Wj /j � ˛.Wj /=2;

Q.Ej ; 
/ � inf
Q†2M\W

Q. Q†; 
/C 1:

(B.4)

Such a j0 exists by Proposition B.2 and (B.3). Next we distinguish two cases.

Case 1: ˛.Ej /
2C
 � jEj 4 F j. Since Q.Ej ; 
/ � inf Q†2M\W Q. Q†; 
/ C 1 and

˛.Ej / > 0, we get

P .Ej / � I.V0/C ˛.Ej /
2C


�
inf

Q†2M\W

Q. Q†; 
/C 1
�

� P .F /C jEj 4 F j
�

inf
Q†2M\W

Q. Q†; 
/C 1
�

� P .F /CƒjEj 4 F j; (B.5)

completing the proof in this case.
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Case 2: jEj 4 F j < ˛.Ej /2C
 . We know the inequality Qj .Ej ; 
/ � Qj .F; 
/, which
implies that

P .Ej / � P .F /C ıP .F /

�
˛.Ej /

2C


˛.F /2C

� 1

�
„ ƒ‚ …

I

C ˛.Ej /
2C


��
˛.F /

˛.Wj /
� 1

�2
�

�
˛.Ej /

˛.Wj /
� 1

�2�
„ ƒ‚ …

II

: (B.6)

We can estimate II in (B.6) as follows:

II �
�
˛.Ej /

˛.Wj /

�2
.˛.F /C ˛.Ej / � 2˛.Wj //.˛.F / � ˛.Ej //

� C j˛.F / � ˛.Ej /j � C jF 4Ej j; (B.7)

where the second inequality follows from the estimates in (B.4) and the last inequality
follows from the triangle inequality. In order to estimate I we observe that by assumption
˛.Ej / � 1=2, so

jEj 4 F j � ˛.Ej /
2C

�

1
2
˛.Ej /)

1
2
˛.Ej / � ˛.F / � 2˛.Ej /: (B.8)

It follows that

I � ıP .F /
˛.Ej /

2C
 � ˛.F /2C


˛.F /2C

� CQ.Ej ; 
/.˛.Ej /

2C

� ˛.F /2C
 /

� C
�

inf
Q†2M

Q. Q†; 
/C 1
�
.˛.Ej / � ˛.F // � C jF 4Ej j; (B.9)

where the second inequality follows from (B.8) and the fact that P .F / � P .Ej /, while
the third inequality comes from (B.4) and the estimate xr � yr � C.x � y/ for 0 � y �
x � 1.

Putting (B.9) and (B.7) together with (B.6) finishes the proof of Case 2 and thus
concludes the proof of the lemma.

The following result follows by a straightforward modification of the main result
in [30]. It is important to note that the constants are independent of the index j .

Proposition B.4. There exist C D C.M;†/ > 0, r0 D r0.M;†/ > 0, ˛ D ˛.M/ 2 .0; 1/

and a j0 2 N .which again depends on †/ such that for all j � j0, all x 2 U and all
r < r0, if �F 2 BV.M/ with �F D �Ej on M n B.x; r/, then

P .Ej IB.x; r// � P .F IB.x; r//C Crn: (B.10)

At this point, the desired estimates for Ej would follow from [46], except for the fact
that [46] only considers almost-minimizers in Euclidean space, and not for a Riemannian
metric. Although this should not be a serious issue, we describe an argument below that
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will instead reduce the problem to Almgren’s theory of .F ; ct; ı/ almost-minimizers (as
in [50]).

Note that Proposition B.4 immediately implies that Ej obeys an almost-monotonicity
formula and all tangent cones are area-minimizing (cf. [17, Proposition 2.1]).

We now recall that the area functional of a Riemannian metric can be regarded as a
parametric elliptic integrand (cf. [50, §1]) and a current T is said to be .F ; ct; ı/ almost-
minimizing if for all points x,

Fx.V / � .1C cr/Fx.V
0/

whenever r < ı, V is a piece of T inside of B.x; r/ and @V 0 D @V . Here Fx represents
the parametric elliptic functional “frozen” at x (in this situation, this just means that we
are using normal coordinates at x and measuring the area of V; V 0 with respect to the
Euclidean metric in these coordinates).

Proposition B.5. There are ı D ı.M; †/ > 0, c D c.M; †/ > 0, and j0 D j0.M; †/

such that for all j � j0, the reduced boundary @�Ej is an .F ; cr; ı/ almost-minimizer.

Proof. We begin by observing that (thanks to the almost-monotonicity formula and the
above observation about the tangent cones) there is ı > 0 independent of x and j suffi-
ciently large such that for r < ı and x 2 @�Ej , we have P.Ej IB.x; r// � Crn�1. In fact,
if d.x; @�Ej / < r=2 then the same inequality holds, after shrinking C .

Thus, if �F 2BV.M/ has �F D�Ej onM nB.x;r/ then this lower bound, combined
with Proposition B.4, yields

P .F IB.x; r// � Crn�1

after again shrinking C (still assuming that d.x; @�Ej / < r=2).
We may thus apply Proposition B.4 again to conclude that

P .Ej IB.x; r// � .1C cr/P .Ej IB.x; r//

for r < ı and c > 0 appropriately chosen. Because freezing the coefficients introduces
an O.r2/ error, this yields the asserted claim assuming that d.x; @�Ej / � r=2. Finally,
if d.x; @�Ej / � r=2, then we can apply the above argument with r replaced by 2r . This
completes the proof.

Proposition 3.5 will now follow from standard facts about the regularity of .F ; "; ı/-
minimizers. We write the formal statement here and collect the salient facts in the proof.

Lemma B.6. The Ek satisfy condition (iii) of Proposition 3.5, that is, if †0 2M \W is
as in Proposition B.2, then there are functions uk 2 C 1;˛.@†0/ such thatEk WD†0C uk
and kukkC1;˛ ! 0 as k !1.

Proof. For almost-minimizers, convergence in the BV sense implies convergence in
the Hausdorff sense. Smooth convergence then follows from "-regularity for .F ; ct; ı/
almost-minimizers, exactly as in [50, p. 207].
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Appendix C. Boundedness of mean curvature for isoperimetric regions

In this appendix we recall the uniform boundedness of the mean curvature of isoperimetric
regions whose volume is not very small (or close to jM jg/.

Lemma C.1 ([9, 38]). For 2 � n � 7, fix ı > 0 and .M n; g/, a closed Riemannian
manifold with C 3 metric. There is C D C.M; g; ı/ < 1 such that if � 2 A

g
V is an

isoperimetric region with V D j�jg 2 .ı; jM jg � ı/, then the mean curvature H of @�
satisfies jH j � C .

Proof. Fix .M; g/ and ı > 0 and assume for contradiction that there are isoperimetric
regions �j � .M; g/ with j�j jg 2 .ı; jM jg � ı/ with mean curvature Hj satisfying
�j WD jHj j ! 1.

Choosing xj 2 @�j , we can rescale by �j around xj to find isoperimetric regions Q�j
in . QMj ; Qgj /. Furthermore, . QMj ; Qgj / converges in C 3loc to Rn equipped with the flat metric.
Passing to a subsequence, Q�j converges in the local Hausdorff sense to a locally isoperi-
metric region Q� in Rn; moreover @ Q�j converges in C 2;˛loc to @ Q�. Hence, @ Q� has constant
mean curvature˙1. On the other hand, @ Q� is stable, in the sense thatZ

@ Q�

jAj2'2 dHn�1
�

Z
@ Q�

jr'j2 dHn�1

for any ' 2 C 1c .@ Q�/ with
R
@ Q�
' dHn�1 D 0. Because jH j D 1, we find jAj2 � 1=n, soZ

@ Q�

'2 dHn�1
� n

Z
@ Q�

jr'j2 dHn�1

for any ' 2 C 1c .@ Q�/ with
R
@ Q�
' dHn�1 D 0.

Suppose that @ Q� were compact for all choices of xj 2 @�j . Then �j would be close
to a union of an increasing number of regions close to coordinate spheres. Using this, we
would conclude that Pg.�j /!1, a contradiction. Therefore, we will assume that @ Q�
is non-compact.

Standard arguments (cf. [25]) imply that there is R > 0 sufficiently large such thatZ
@ Q�

'2 dHn�1
� n

Z
@ Q�

jr'j2 dHn�1

for any ' 2 C 1c .@ Q� n BR/ (i.e., @ Q� is strongly stable outside of a compact set).
Taking ' D  .n�1/=2 for  2 C 1c .@ Q� n BR/ and using Hölder’s inequality, we findZ

@ Q�

 n�1 dHn�1
� C

Z
@ Q�

jr jn�1 dHn�1:

Choose an ambient radial function  that is 0 for jxj < R, increases to 1 for jxj 2
ŒRC 1; ��, and then cuts off to 0 for jxj > 2�. We can arrange that jr j � C��1. Thus,
we find that

Hn�1.@ Q� \ .B� n BR// � C.1C �
1�nHn�1.@ Q� \ B2�//:
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Letting �!1, we deduce a contradiction if we can show that Hn�1.@ Q� nBR/D1 and
Hn�1.@ Q� \ B�/ � C�

n�1. The first fact follows from the monotonicity formula (since
jH j D 1) applied to small balls. The second follows since Q� is locally isoperimetric in
the sense that Q�0 with Q�4 Q�0 b BR and j Q� \ BRj D j Q�0 \ BRj has P .@ Q�0IBR/ �

P .@ Q�IBR/, allowing us to compare Q� to . Q� nB�/[Br.�/, where r.�/ � � is chosen to
preserve the enclosed volume. This is a contradiction, completing the proof.
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