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Abstract. We build on the dynamical systems approach to deep learning, where deep residual
networks are idealized as continuous-time dynamical systems, from the approximation perspective.
In particular, we establish general sufficient conditions for universal approximation using continuous-
time deep residual networks, which can also be understood as approximation theories in Lp using
flow maps of dynamical systems. In specific cases, rates of approximation in terms of the time
horizon are also established. Overall, these results reveal that composition function approximation
through flow maps presents a new paradigm in approximation theory and contributes to building a
useful mathematical framework to investigate deep learning.
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1. Introduction and problem formulation

Despite the empirical success of deep learning, one outstanding challenge is to develop
a useful theoretical framework to understand its effectiveness by capturing the effect
of sequential function composition in deep neural networks. In some sense, this is a
distinguishing feature of deep learning that separates it from traditional machine learning
methodologies.

One candidate for such a framework is the dynamical systems approach [13, 21, 26],
which regards deep neural networks as a discretization of an ordinary differential equation.
Consequently, the latter can be regarded as the object of analysis in place of the former. An
advantage of this idealization is that a host of mathematical tools from dynamical systems,
optimal control and differential equations can then be brought to bear on various issues
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faced in deep learning, and more importantly, shed light on the role of composition in
function approximation and learning.

Since its introduction, the dynamical systems approach led to much progress in terms of
novel algorithms [38,55], architectures [5,21,32,40,46,48,52] and emerging applications [7,
17,31,57,59]. On the contrary, the present work is focused on the theoretical underpinnings
of this approach. From the optimization perspective, it has been established that learning
in this framework can be recast as a mean-field optimal control problem [14, 26], and
local and global characterizations can be derived based on generalizations of Pontryagin’s
classical maximum principle and the Hamilton–Jacobi–Bellman equation. Other theoretical
developments include continuum limits and connections to optimal transport [44, 45, 49].
Nevertheless, other fundamental questions in this approach remain largely unexplored,
especially when it comes to the function approximation properties of these continuous-time
idealizations of deep neural networks. In this paper, we establish some basic results in this
direction.

1.1. The supervised learning setting

We first describe the setting of the standard supervised learning problem we study in
this paper. We consider a set of inputs X � Rn and outputs Y � Rm that are subsets
of Euclidean spaces. In supervised learning, we seek to approximate some ground truth
or target function, which is a mapping F W X ! Y. For example, in a typical image
classification problem, each x specifies the pixel values of a d � d image (n D d2), and y
is its corresponding class label, which is a one-hot encoding corresponding to m different
classes of images, e.g. for m D 3, y D .0; 1; 0/ corresponds to a label belonging to the
second class. The ground truth F defines the label y D F.x/ associated with each image x,
and it is the goal of supervised learning to approximate F from data. Concretely, one
proceeds in two steps.

First, we specify a hypothesis space

H D ¹F� W X ! Y W � 2 ‚º; (1.1)

which is a family of approximating functions parameterized by � 2 ‚. The parameter set
‚ is some subset of a Euclidean space. For example, in classical linear basis regression
models (Y D R), we may consider a set of orthonormal basis functions ¹�i 2 L2.X/ W
i D 1; 2; : : : º forming a hypothesis space by linear combinations, i.e. H D ¹

P
i ai�i W

ai 2 R;
P
i a
2
i <1º. Of course, there are other hypothesis spaces one can consider, such

as deep neural networks that we will discuss later.
Next, we find an approximant OF 2H ofF by solving an optimization problem typically

of the form

inf
G2H

ˆ
X

`.F.x/;G.x// d�.x/; (1.2)

Here, � is a probability measure on X modelling the input distribution and ` W Y � Y! R
is a loss function that is minimized when its arguments are equal. A common choice for
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regression problems is the square loss, `.y; y0/ D ky � y0k22, in which case the solution
of (1.2) is a projection of F onto H in L2.X; �/. For classification problems, typically
one uses a surrogate loss function in place of the classification accuracy, e.g. cross entropy
loss. Due to non-square loss functions and complex model architectures, in practice
problem (1.2) is only solved approximately to give an OF as an approximation to F .
Moreover, one typically does not have an explicit form for �, but we have data samples
from it: xi , yi D F.xi / for i D 1; : : : ; N . In this case, we can set � to be the empirical
measure � D 1

N

PN
iD1 ıxi , yielding the so-called empirical risk minimization problem

inf
G2H

1

N

NX
iD1

`.F.xi /; G.xi //: (1.3)

This objective function is also called the training loss, since it is the loss function evaluated
on the model predictions versus the true labels, averaged over the training samples.

1.2. Deep residual neural networks

In deep learning, the hypothesis space H consists of functions in the forms of neural
networks of varying architectures. In this paper, we will focus on a very successful class
of deep network architectures known as residual networks (ResNet) [23]. These neural
networks build the hypothesis space by iterating the difference equation

zsC1 D zs C �f�s .zs/; z0 D x; s D 0; : : : ; S � 1: (1.4)

The number S is the total number of layers of the network, and s indexes the layers. The
number � > 0 is a step size, which is taken to be 1 in the original ResNet formulation, but
we consider the slightly more general case here. The function f�s specifies the architecture
of the network, which depends on the trainable parameters �s at each layer s. For example,
in the simplest case of a fully connected network, we have

f�s .z/ D Vs�.Wsz C bs/;

�s D .Ws; Vs; bs/; Ws 2 Rq�n; Vs 2 Rn�q; bs 2 Rq :
(1.5)

Here, � W R! R is called the activation function, and is applied elementwise to a vector
in Rn. Popular examples include the rectified linear unit (ReLU) ReLU.z/ D max.0; z/,
the sigmoid Sig.z/ D 1=.1 C e�z/ and tanh.z/. Depending on the application, more
complex f� are employed, such as those involving blocks of fully connected layers or
convolution layers. In this paper, we do not make explicit assumptions on the form of f�s
and consider the general difference equation (1.4) defining the class of residual network
architectures. We remark that it is possible to have different parameter dimensions for each
layer as is often the case in practice, but for simplicity of analysis we shall take them to
have the same dimension and belong to a common parameter set‚, by possibly embedding
in higher-dimensional Euclidean spaces.

Now, let us denote by 'S;� .�I �/ the mapping x 7! zS via (1.4). This is the flow map of
the difference equation, which depends on the parameters � D .�0; : : : ; �S�1/. To match



Q. Li, T. Lin, Z. Shen 1674

output dimension, we typically introduce another mapping g taken from a family G of
functions from Rn to Y � Rm at the end of the network (classification or regression layer,
as it is typically called). We will hereafter call it the terminal family, and it is usually
simple, e.g. some collection of affine functions. Together, they form the S-layer residual
network hypothesis space

Hresnet.S; �/ D ¹g ı 'S;� . � I �/ W g 2 G ; � 2 ‚Sº;

Hresnet D
[

S�0; �>0

Hresnet.S; �/:
(1.6)

One can see that this hypothesis space is essentially compositional in nature. First, the
functions in H involve the composition of a flow map 'S;� and the last layer g. Moreover,
the flow map 'S;� itself is a composition of maps, each of which is a step in (1.4). One
challenge in the development of a mathematical theory of deep learning is to understand
the effect of compositions on approximation and learning, due to the lack of mathematical
tools to handle function compositions.

1.3. The dynamical systems viewpoint

The results in this paper concerns a recent approach introduced in part to simplify the
complexity arising from the compositional aspects of the residual network hypothesis
space. This is the dynamical systems approach, where deep residual networks are idealized
as continuous-time dynamical systems [13, 14, 26, 40]. Instead of (1.4), we consider its
continuous-time idealization

Pz.t/ D f�.t/.z.t//; �.t/ 2 ‚; t 2 Œ0; T �; z.0/ D x: (1.7)

That is, we replace the discrete layer numbers s by a continuous variable t , which results
in a new continuous-time dynamics described by an ordinary differential equation (ODE).
The limit as � ! 0 of (1.4) with T D S� held constant gives (1.7) with the identification
t � �s. Empirical work shows that this is justified since for trained deep residual networks,
zsC1 � zs tend to be small [24,51]. Consequently, the trainable variable � is now an indexed
by a continuous variable t . We will assume that each f�.t/ is a Lipschitz continuous function
on Rn, so that (1.7) admits a unique solution.

As in discrete time, for a terminal time T > 0, z.T / can be seen as a function of its
initial condition x, and we denote it by 'T .�; �/ W Rn ! Rn. The map 'T is known as
the flow map of the dynamical system (1.7). It depends on the parameter � D ¹�.t/ 2 ‚ W
t 2 Œ0; T �º, which is now a function of time. We impose a weak regularity condition on �
with respect to t by restricting � to be essentially bounded, i.e. � 2 L1.Œ0; T �;‚/. As a
result, we can replace the hypothesis space (1.6) by

Hode.T / D ¹g ı 'T .�; �/ W g 2 G ; � 2 L1.Œ0; T �;‚/º (1.8)

with the terminal time T playing the role of depth. In words, this hypothesis space contains
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functions which are regression/classification layers g composed with flow maps of a
dynamical system in the form of an ODE. It is also convenient to consider the hypothesis
space of arbitrarily deep continuous-time networks as the union

Hode D
[
T>0

Hode.T / D
[
T>0

¹g ı 'T .�; �/ W g 2 G ; � 2 L1.Œ0; T �;‚/º: (1.9)

The key advantage of this viewpoint is that a variety of tools from continuous time analysis
can now be applied. This was pursued, for example, in [26, 27] for learning algorithms
and in [5, 6, 40] on network stability. In this paper, we are concerned with the problem of
approximation, which is one of the most basic mathematical questions we can ask given a
hypothesis space. Let us outline the problem below.

1.4. The problem of approximation

The problem of approximation essentially asks how big Hode is. In other words, what kind
of functions can we approximate using functions in Hode? Before we present our results,
let us first distinguish the concept of approximation and that of representation.

� We say that a function F can be represented by Hode if F 2 Hode.

� In contrast, we say that F can be approximated by Hode if for any " > 0, there exists
an yF 2 Hode that is close to F up to error ". Equivalently, F lies in the closure of Hode

under some topology.

Therefore, representation and approximation are mathematically distinct notions. The
fact that some class of mappings cannot be represented by Hode does not prevent it from
being approximated by Hode to arbitrary accuracy. For example, it is well-known that flow
maps must be orientation-preserving (OP), which is a very small set of functions in the
Baire category sense [37]. At the same time, it is also known that OP diffeomorphisms
are dense in Lp in dimensions larger than 1 [4]. However, what we need here is more
than density of flow maps in general: the approximation set should have good structure to
facilitate computation. In this paper, we investigate the density of flow maps with structural
constraints.

We will work mostly in continuous time. Nevertheless, it makes sense to ask what the
results in continuous time imply for discrete dynamics. After all, the latter is what we can
actually implement in practice as machine learning algorithms. Observe that in the reverse
direction, zsC1 D zs C �f�s .zs/ can be seen as a forward Euler discretization of (1.7). It is
well-known that for a finite time horizon T and a fixed compact domain, Euler discretization
has global truncation error of O.T=S/ in supremum norm (see e.g. [25, Ch. 5]). In
other words, any function in Hode can be uniformly approximated by those in Hresnet.
Consequently, density of Hode implies the density of flow maps of the corresponding
discrete deep residual neural network. In this sense, we can see that approximation results
in continuous time have immediate consequences for their discrete counterparts.
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2. Main results and implications

In this section, we summarize our main results on the approximation properties of Hode

and discuss their significance with respect to related results in the literature in the direction
of approximation theory through the viewpoint of function composition, approximation
properties of deep neural networks, and controllability problems in dynamical systems. We
begin by fixing some notation.

2.1. Notation

Throughout this paper, we adopt the following notation:

� Let K be a Lebesgue measurable subset of Rn. We denote by C.K/ the space of real-
valued continuous functions onK, with norm kf kC.K/ D supx2K jf .x/j. Similarly, for
p 2 Œ1;1/, Lp.K/ denotes the space of p-integrable measurable functions on K, with
norm kf kLp.K/ D .

´
K
jf .x/jp dx/1=p . Vector-valued functions are denoted similarly.

� A function f W Rn! R is called Lipschitz if jf .x/� f .x0/j � Ljx � x0j for all x; x0 2
Rn. The smallest constant L for which this is true is denoted by Lip.f /. Vector-valued
Lipschitz functions are defined similarly.

� Given a uniformly continuous function f W Rn ! R, we denote by !f its modulus of
continuity, i.e. !f .r/ WD supjx�x0j�r jf .x/ � f .x

0/j.

� For any collection F of functions on Rn, we denote by F its closure under the topology
of compact convergence. In other words, f 2 F if for any compact K � Rn and
any " > 0, there exists yf 2 F such that kf � yf kC.K/ � ". We will refer to this as
approximation closure.

� For any collection F of functions on Rn, we denote by CH.F / its convex hull and by
CH.F / the approximation closure of its convex hull, i.e. closure under the topology of
compact convergence.

� We call a function f W R! R (resp. strictly) increasing if x > y implies f .x/ � f .y/
(resp. f .x/ > f .y/).

2.2. Approximation results

Let us begin by slightly simplifying the form of the continuous-time hypothesis space. Let
us denote by F the set of functions that constitute the right hand side of (1.7):

F D ¹f� W R
n
! Rn W � 2 ‚º: (2.1)

Consequently, we can denote the family of flow maps generated by F as

˚.F ; T / WD ¹x 7! z.T / W Pz.t/ D ft .z.t//; ft 2 F ; z.0/ D x; t 2 Œ0; T �º: (2.2)

This allows us to write Hode compactly without explicit reference to parameterization:

Hode D Hode.F ;G / D
[
T>0

¹g ı ' W g 2 G ; ' 2 ˚.F ; T /º: (2.3)
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We will hereafter call F a control family, since its elements control the dynamics induced
by the differential equation (1.7). Unless specified otherwise, we assume F contains
only Lipschitz functions, which ensures existence and uniqueness of solutions to the
corresponding ODEs (see Proposition 3.1). Recall that G is the terminal family.

The central results in this paper establishes general sufficient conditions on F and G

that induce an universal approximation property for Hode. To state the results we will need
some definitions concerning properties of the control family. The first is the concept of
well functions, which plays a fundamental role in constructing approximation dynamics.

Definition 2.1 (Well function). We say a Lipschitz function h W Rn! R is a well function
if there exists a bounded open convex set � � Rn such that

¹x 2 Rn W h.x/ D 0º D �: (2.4)

Here the � is the closure of � in the usual topology on Rn.
Moreover, we say that a vector-valued function h W Rn! Rn

0

is a well function if each
of its components hi W Rn ! R is a well function in the sense above.

The name “well function” highlights the rough shape of this type of function: the zero
set of a well function is like the bottom of a well. Of course, the “walls” of such a well
need not point upwards and we only require that these functions are never zero outside
of �.

We also define the notion of restricted affine invariance, which is weaker than the usual
affine invariance.

Definition 2.2 (Restricted affine invariance). Let F be a set of functions from Rn to Rn.
We say that F is restricted affine invariant if f 2 F implies Df.A � Cb/ 2 F , where
b 2 Rn is any vector, and D, A are any n � n diagonal matrices such that the entries of D
are˙1 or 0, and the entries of A are smaller than or equal to 1 in absolute value.

Now, let us state our main result on universal approximation of functions by flow maps
of dynamical systems in dimension n � 2.

Theorem 2.3 (Sufficient condition for universal approximation). Let n � 2 and let F W
Rn ! Rm be continuous. Suppose that the control family F and the terminal family G

satisfy the following conditions:

(1) For any compact K � Rn, there exists a Lipschitz g 2 G such that F.K/ � g.Rn/.

(2) CH.F / contains a well function .Definition 2.1/.

(3) F is restricted affine invariant .Definition 2.2/.

Then, for any p 2 Œ1;1/, compact K � Rn and " > 0, there exists yF 2 Hode such that

kF � yF kLp.K/ � ": (2.5)

In the language of approximation theory for neural networks, Theorem 2.3 is known as
a universal approximation theorem, and Hode satisfying the conditions laid out is said to
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have the universal approximation property. Note that this implies immediately, via Euler
discretization, that the same universal approximation property holds for Hresnet.

Here, the covering condition F.K/ � g.Rn/ is in some sense necessary. If the range
of g does not cover F.K/, say it misses an open subset U � F.K/, then no flow maps
composed with it can approximate F . Note that this condition is easy to satisfy, since any
Lipschitz and surjective g suffices. For example, for m D 1 (regression problems), we may
take g.x/ D w>x for any w ¤ 0.

The requirement n � 2 is also necessary. In one dimension, the result is actually
false, due to the topological constraint induced by flow maps of dynamical systems. More
precisely, consider one-dimensional regression problems with n D m D 1. There is no
need to match output dimensions, so we may take G D ¹idº. Then one can show that each
yF 2 Hode must be continuous and strictly increasing, and furthermore its closure also

contains only increasing functions. Hence, there is no hope to approximate any function
that is strictly decreasing on an open interval. However, we can prove the next best thing
in this case: any continuous and increasing function can be approximated by a dynamical
system driven by the control family F .

Theorem 2.4 (Sufficient condition for universal approximation in 1D). Let n D m D 1
and take G D ¹idº. Then Theorem 2.3 holds under the additional assumption that F is
increasing.

Remark 2.5. In one dimension, Theorem 2.4 still holds if one replaces the Lp.K/ norm
by the C.K/ norm, and furthermore one can relax the restricted affine invariance property
to invariance with respect to onlyD D˙1 and AD 1 in Definition 2.2, i.e. we only require
symmetry and translation invariance.

Let us now give some examples of control families satisfying the requirements of
Theorems 2.3 and 2.4 in order to highlight the general applicability of these results.

Example 2.6 (ReLU Networks). Recall that the fully connected architecture (1.5) with
ReLU activation corresponds to the control family

FReLU D ¹z 7! V ReLU.W z C b/ W W 2 Rq�n; V 2 Rn�q; b 2 Rqº (2.6)

where ReLU.z/i D max.zi ; 0/ and q � n. It is clear that restricted affine invariance holds.
Moreover, one can easily construct a well function: Let � D .�1; 1/n � Rn be the open
cube. Consider the function h W Rn ! Rn whose components are all equal and are given
by

Œh.z/�i D
1

2n

nX
jD1

ŒReLU.�1 � zj /C ReLU.zj � 1/�; i D 1; : : : ; n: (2.7)

Clearly, h 2 CH.F / � CH.F / and h is a well function with respect to �. Therefore, fully
connected residual networks with ReLU activations possesses the universal approximation
property as a consequence of our results. Note that this result can be proved using other
methods with explicit architectural assumptions, e.g. [29, 34, 41–43].
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We now discuss examples of architectural variations that can be handled with our
approach. As far as we are aware, such results have not been established in the literature
using other means.

Example 2.7 (Other activations). Our results also apply to other network architectures, e.g.
with different choice of the activation function. As a demonstration, we consider another
commonly used activation function known as the sigmoid activation

Sig.z/ D
1

1C e�z
(2.8)

in place of the ReLU activation in (2.6). We call this family FSig. In this case, restricted
affine invariance is again obvious. To build a well function, define the scalar soft-threshold
function s W R! R by

s.z/ D 1
2

min.max.jzj � 1; 0/; 1/ (2.9)

and for positive integers M;N define the scalar function

sM;N .z/ D
1

2N

NX
kD1

ŒSig.M.�qk � z//C Sig.M.z � qk//�: (2.10)

where qk D 1C k=N . We first show that sM;N can approximate s on any compact subset
of R if M;N are large enough, and it is sufficient to consider the subset to be an interval
of the form Œ�K;K�. We now estimate js.z/ � sM;N .z/j directly, and by symmetry we
only need to check 0 � z � K. There are three cases:

Case 1: 0 � z < 1. Here, s.z/ D 0. Then z � qk ;�z � qk � �1=N for each k and hence
jsM;N .z/j �

1
1Cexp.M=N/ .

Case 2: ql � z < qlC1 for some l � 0. Then Sig.M.�qk � z// < 1
1Cexp.M=N/ for

all k. Also, j1 � Sig.M.z � qk//j < 1
1Cexp.M=N/ for k < l , since z � qk > 1=N , and

jSig.M.z � qk//j < 1
1Cexp.M=N/ for k > l C 1, since z � qk < �1=N . Combining these

estimates we have ˇ̌̌̌
l

2N
� sM;N .z/

ˇ̌̌̌
<

1

2N
C

1

1C exp.M=N/
; (2.11)

and since js.z/ � l
2N
j < 1

2N
, we have js.z/ � sM;N .z/j < 1

N
C

1
1Cexp.M=N/ .

Case 3: z � 2. Here, s.z/ D 1, and the estimates for Case 2 above also hold true. Thus,
j1 � sM;N .z/j <

1
N
C

1
1Cexp.M=N/ .

Combining the cases above, for any K > 0 and jzj � K we have

js.z/ � sM;N .z/j <
1

N
C

1

1C exp.M=N/
: (2.12)

By letting M D N 2 !1, we can make the right hand side arbitrarily small, as required.
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Now, define the function h W Rn ! Rn by

Œh.z/�i D
1

n

nX
jD1

s.zj /; i D 1; : : : ; n: (2.13)

It is clear that h is a well function with respect to the cube .�1; 1/n. Moreover, by
estimate (2.12), h can be uniformly approximated on any compact subset by ŒhM;N �i D
1
n

Pn
jD1 sM;N .zj /, which belongs to CH.FSig/. Thus, h 2CH.FSig/ and we conclude using

our results that continuous fully connected residual networks with sigmoid activations
also possess the universal approximation property. Other activations such as tanh can be
handled similarly. Importantly, we can see that in our framework, relatively little effort is
required to handle such variations in architecture, but for existing approaches whose proofs
rely on explicit architectural choices such as ReLU, this may be much more involved.

Example 2.8 (Residual blocks). As a further demonstration of the flexibility of our results,
we can consider another type of variation of the basic residual network, which considers a
“residual block” with more than one fully connected layer. For example, each block can be
of the form

us D �.W
.1/
s zs C b

.1/
s /;

zsC1 D zs C Vs�.W
.2/
s us C b

.2/
s /;

(2.14)

where � is some non-linear activation function applied elementwise. In fact, the original
formulation of residual networks has such a block structure, albeit with convolutional layers
and ReLU activations [23]. Now, the corresponding control family for the continuous-time
dynamics is

Fblock D ¹z 7! V�.W .2/�.W .1/z C b.1//C b.2// W

V 2 Rn�q2 ; W .1/
2 Rq1�n; b.1/ 2 Rq1 ; W .2/

2 Rq2�q1 ; b.2/ 2 Rq2º; (2.15)

where q2; q1 � n. We now show that we can deduce universal approximation of this family
from previous results. As before, restricted affine invariance holds trivially. Thus, it only
remains to show that CH.Fblock/ contains a well function.

To proceed, we may set q1 D q2 D n without loss of generality, since otherwise we
can just pad the corresponding matrices/vectors with zeros. Now, let us assume that the
“one-layer” control family

F� D ¹x 7! V�.W z C b/ W W 2 Rn�n; b 2 Rnº (2.16)

is such that CH.F� / contains a well function that is non-negative. From the previous
examples, we know that this is true for � D ReLU and for � D Sig. In addition, we assume
that the activation � satisfies a non-degeneracy condition: there exists a closed interval
I � R such that its preimage ��1.I / is also a closed interval. Note that most activations
we use in practice satisfy this condition.
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Let us define a control family F , which is a subset of Fblock, in which we setW .1/ D I

and b.1/ D 0. We also reparameterize the remaining variables as W .2/ D zW .2/ zW .1/,
b.2/ D zW .2/zb.1/ C zb.2/ to obtain the smaller control family

F D ¹z 7! V�. zW .2/Œ zW .1/�.z/C zb.1/�C zb.2// W

V 2 Rn�n; zW .1/
2 Rn�n; zb.1/ 2 Rn; zW .2/

2 Rn�n; zb.2/ 2 Rnº; (2.17)

We now show that CH.F / contains a well function. Since the activation function is
applied elementwise, we may first consider the 1D case, as in the first two examples.
Suppose that s is a scalar well function such that z 7! .s.z1/; : : : ; s.zn// 2 CH.F� / and
that s is non-negative (see Examples 2.6 and 2.7 for construction). Then we know that
z 7! .s.a�.z1/ C b/; : : : ; s.a�.zn/ C b// 2 CH.F / � CH.Fblock/ for all a; b 2 R. It
suffices to verify that s.a�.�/C b/ is a scalar well function for some a and b satisfying
suitable conditions. Take a closed interval I � R such that ��1.I / is also a closed interval.
By rescaling and translating, we can take the zero set of s to be the interval Œ�1; 1�. Then,
we choose a, b such that z 7! az C b maps I to Œ�1; 1�, from which we can deduce that
s.a�.�/C b/ is also a well function. We may now construct a well function in n dimensions
analogously to the previous examples:

Œh.z/�i D
1

n

nX
jD1

s.zj /; i D 1; : : : ; n; (2.18)

and by construction h is a well function in CH.F / � CH.Fblock/. By our results, this again
induces the universal approximation property of its corresponding Hode.

The above examples serve to illustrate the flexibility of a general sufficient condition in
deriving universal approximation results for many different architectures. It is possible that
some or even all of these results can be derived using other means (such as reproducing
other universal function classes), but such arguments are likely to be involved, and more
importantly, they have to be handled on a case-by-case basis, without a systematic approach
such as the one introduced in this paper.

We end this section with a remark on a negative example.

Remark 2.9. Observe that linear activations �.z/ D z constitute a control family which
does not contain a well function in CH.F /. We can also immediately see that it cannot
produce universal approximating flow maps, since the resulting flow maps are always
linear functions.

Let us now discuss the implications of Theorems 2.3 and 2.4 in three broad directions:
1) approximation of functions by compositions; 2) approximation theory of deep neural
networks and 3) control theory and dynamical systems.

2.3. Approximation of functions by composition

Let us first discuss our results in the context of classical approximation theory, but through
the lens of compositional function approximation. In other words, we will recast classical
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approximation methods in the form of a compositional hypothesis space (cf. (1.8))

H D ¹g ı ' W g 2 G ; ' 2 ˚º; (2.19)

which then allows us to compare the results with the setting considered in this paper.
As before, we call G the terminal family, and for convenience we will refer to ˚ as a
transformation family, to highlight the fact that it contains functions whose purpose is to
transform the domain of a function g in order to resemble a target function F .

We start with the simplest setting in classical approximation theory, namely linear
N -term approximation. Here, we consider a fixed, countable collection D of functions
from Rn to R, which we call a dictionary. The dictionary is assumed to have some structure
so that its elements are simple to represent or compute. Common examples include
polynomials, and simple periodic functions such as sines and cosines. Linear N -term
approximation takes the first N elements �1; : : : ; �N of D and forms an approximant yF
of F via their linear combinations

yF .x/ D

NX
iD1

wi�i .x/; wi 2 Rm; i D 1; : : : ; N: (2.20)

From the viewpoint of compositional function approximation, we may express the above
hypothesis space by considering the linear terminal family

G .N / D
°
x 7!

NX
iD1

wixi W wi 2 Rm; i D 1; : : : ; N
±

(2.21)

Then, we obtain the compositional representation of the hypothesis space

H .N / D ¹g ı ' W g 2 G .N /; ' D .�1; : : : ; �N /º: (2.22)

In other words, the basic N -term linear approximation can be recast as a compositional
hypothesis space consisting of a linear terminal family and a transformation family con-
taining of just one N -dimensional vector-valued function, whose coordinates are the first
N elements of the dictionary D . This is called linear approximation, because for two
target functions F1 and F2, whose best approximations (in terms of lowest approximation
error, see Section 1) are yF1 and yF2 respectively, the best approximation of �1F1 C �2F2
is �1 yF1 C �2 yF2 for any �1; �2 2 R.

Non-linear N -term approximation [11] takes this approach a step further, by lifting the
restriction that we only use the first N elements in D . Instead, we are allowed to choose,
given a target F , which N functions to pick from D . For this reason, the dictionaries D

used in non-linear approximation can be an uncountable family of functions. In this case,
the compositional family is

H .N / D ¹g ı ' W g 2 G .N /; ' 2 DN
º: (2.23)

The term “non-linear” highlights the fact that the best approximations for functions do not
remain invariant under linear combinations.
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In these classical scenarios, the compositional formulations (2.22) and (2.23) share
certain similarities. Most importantly, their transformation families have simplistic struc-
tures, and the terminal family is linear, hence also simple. Consequently, one must rely
on having a large N in order to form a good approximation. A function can be efficiently
approximated via linear approximation (i.e. requiring a small N ) if its expansion coeffi-
cients in D decay rapidly. On the other hand, efficient approximation through non-linear
approximation relies on the sparsity of this expansion. Nevertheless, in both cases the
complexity of their respective hypothesis spaces arises from a large number of linear
combinations of simple functions.

Let us now contrast our results on Hode, which is also in this compositional form
(see (1.8)). First, our results holds for more general terminal families that are not restricted
to linear ones. Second, by looking at the form of Hode and comparing with (2.22) and (2.23),
we observe that the complexity of Hode arises not due to linear combinations of functions,
since universal approximation holds despite ' having fixed output dimension. Instead, the
complexity of Hode arises from compositions, a point which we shall now expand on.

Observe that besides the overall compositional structure of a terminal family and
a transformation family, a second aspect of composition is also involved in Hode: the
transformation family ˚.F ; T / is itself generated by compositions of simple functions.
To see this, observe that any flow map 'T of an ODE up to time T can be written as

'T D '�M ı '�M�1 ı � � � ı '�2 ı '�1 ; (2.24)

where �1 C � � � C �M D T , and each '�i represents the portion of the flow map from
t D

P
s�i�1 �s to t D

P
s�i �s (we set �0D 0). By increasing the number of such partitions,

each '�i becomes closer to the identity mapping. More generally, the family of flow maps
forms a continuous group under composition, with the identity element recovered when
the time horizon of the flow map goes to 0. Therefore, each member of the transformation
family ˚.F ; T / can be decomposed into a sequence of compositional mappings, each
of which can be made arbitrarily close to the identity, as long as at the same time one
increases the number of such compositions. While this decomposition holds true for any
flow map of an ODE, the main results in this paper go a step further and show that the
universal approximation property holds even when the flow map is restricted to one that is
generated by some control family F satisfying the assumptions in Theorem 2.3.

We remark that in classical non-linear approximation, the dictionary D could also
involve compositions. A prime example of this is wavelets [9, 36, 39] where one starts with
some template function  and generates a dictionary by composing it with translations
and dilations. For example, in one dimension the wavelet dictionary has the following
compositional representation:

D D ¹ ı T W T .x/ D .x � x0/=�; x0 2 R; � > 0º: (2.25)

The main contrasting aspect in Hode is that compositional transformations are much more
complex. Instead of simple translations and dilations, the transformation family in Hode

involves complex rearrangement dynamics in the form of an ODE flow that may be adapted
to the specific target function F at hand.
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In summary, in contrast to classical approximation schemes, Hode is built from compo-
sitions of functions from a simple terminal family G and a complex transformation family
˚.F ; T /, whose members can further be decomposed into a sequence of compositions
of functions that are simple in two aspects: they are close to the identity map and they
are generated by a potentially simple control family F . Consequently, the complexity
of Hode arises almost purely from the process of composition of these simple mappings.
In other words, we trade complexity in T (compositions) for N (linear combinations),
and can achieve universal approximation even when the transformation family has fixed
output dimensions. From this viewpoint, the results in this paper highlight the power of
composition for approximating functions.

2.4. Approximation theory of deep neural networks

As discussed previously, the transformation family in Hode consisting of flow maps is highly
complex due to repeated compositions. At the same time, however, just like dictionaries
in linear and non-linear approximation, it possesses structure that allows us to carry out
approximation in practice. Concretely, recall that each flow map can be decomposed as
in (2.24), where each component '�i is not only close to the identity, but is close in such a
way that the perturbation from the identity is constrained by the control family F . Thus,
one just needs to parameterize each '�i by selecting appropriate functions from F and
then compose them together to form an approximating flow map. From this viewpoint, the
family of deep residual network architectures is a realization of this procedure, by using a
one-step forward Euler discretization to approximate each '�i . Concretely,

'�i .z/ D z C

ˆ �i

0

f .z.t// dt � z C �if .z/ (2.26)

for �i small, which corresponds to the family of deep residual architectures motivated in
Section 1. The standard convergence result for Euler discretization [25] allows one to carry
approximation results in continuous time to the discrete case. In view of this, we now
discuss our results in the context of approximation results in deep learning.

We start with the continuous-time case. Most existing theoretical work on the
continuous-time dynamical systems approach to deep learning focus on optimization
aspects in the form of mean-field optimal control [14, 30], or connections between the
continuous-time idealization to discrete time [44, 45, 49]. The present paper focuses on
the approximation aspects of continuous-time deep learning, which are less studied. One
exception is the recent work of Zhang et al. [56], who derived some results in the direction
of approximation. However, an important assumption there was that the driving force
on the right hand side of ODEs (here the control family F ) are themselves universal
approximators. Consequently, such results do not elucidate the power of composition and
flows, since each “layer” is already complex enough to approximate an arbitrary function,
and there is no need for the flow to perform any additional approximation.

In contrast, the approximation results here do not require F , or even CH.F /, to
be universal approximators. In fact, F can be a very small set of functions, and the
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approximation power of these dynamical systems is by construction due to the dynamics
of the flow. For example, the assumption that CH.F / contains a well function does
not imply that F that drives the dynamical system is complex, since the former can
be much larger than the latter. In the 1D ReLU control family that induces the fully
connected network with ReLU activations (see (1.4)), one can easily construct a well
function with respect to the interval � D .q1; q2/ by averaging two ReLU functions:
1
2
ŒReLU.q1 � x/C ReLU.x � q2/�, but the control family F D ¹vReLU.w � Cb/º is not

complex enough to approximate arbitrary functions without further linear combinations.
We have already illustrated this in Examples 2.6, 2.7 and 2.8.

We also note that in contrast to [56], the results here for n� 2 do not require embedding
the dynamical system in higher dimensions to achieve universal approximation. The nega-
tive results given in [56] (and also [12]), which motivated embedding in higher dimensions,
are basically on limitation of representation: flow maps of ODEs are orientation-preserving
(OP) homeomorphisms (see Definition 3.2) and thus can only represent such mappings.
However, these are not counter-examples for approximation. For instance, it is known
that OP diffeomorphisms (and hence OP homeomorphisms) can approximate any L1

functions on open bounded domains in dimensions greater than or equal to 2 [4].
Although the present paper focuses on the continuous-time idealization, we should

also discuss the results here in relation to the relevant work on the approximation theory
of discrete deep neural networks. In this case, one line of work to establish universal
approximation is to show that deep networks can approximate some other family of
functions known to be universal approximators themselves, such as wavelets [35]. Others
focus on certain specific architectures, such as in [3, 10, 15, 20, 29, 33, 54, 60], which
sometimes allows for explicit asymptotic approximation rates to be derived for appropriate
target function classes. Furthermore, non-asymptotic approximation rates for deep ReLU
networks are obtained in [34, 41–43]. They are based on explicit constructions using
composition, and hence are similar in flavour to the results here if we take an explicit
control family and discretize in time.

With respect to all these works, the main difference of the results presented here is that
we study sufficient conditions for approximation. In other words, we do not start with an
a priori specific architecture (e.g. the form of the function f� , or the type of activation
� in (1.4)). In particular, none of the approximation results we present here depend on
reproducing some other basis functions that are known to have the universal approximation
property. Instead, we derive conditions on the control and terminal families F ; G that
imply the universal approximation property in Hode. One advantage of this viewpoint is
that we can isolate the approximation power that arises from the act of composition from
that which arises from the specific architectural choices themselves. As an example, the
approximation result in [29] relies on approximating piecewise constant functions with
finitely many discontinuities, hence its proof depends heavily on the ReLU activation.
Furthermore, the high-dimensional results there require constructing the proximal grid
indicator function, which is not straightforward with activations other than ReLU. We
note that for the deep non-residual case, more precise approximation results including
non-asymptotic rates for the ReLU architecture can be derived [34, 41–43]. In contrast, the
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main results in this paper proceed in a more general way without assuming any precise
architectures. Therefore, these results have greater applicability to diverse architectures
(see Examples 2.6–2.8), and perhaps even novel ones that may arise in future deep learning
applications.

2.5. Control theory and dynamical systems

Lastly, the results here are also of relevance to mathematical control theory and the theory
of dynamical systems. In fact, the problem of approximating functions by flow maps is
closely related to the problem of controllability in control theory [47]. However, there is
one key difference: in the usual controllability problem on Euclidean spaces, our task is to
steer one particular input x0 to a desired output value '.x0/. However, here we want to
steer the entire set of input values x 2 K to '.x/ 2 '.K/ by the same controls. This can
be thought of as an infinite-dimensional function space version of controllability, which is
a much less explored area, and present controllability results in infinite dimensions mostly
focus on control of partial differential equations [2, 8].

In the theory of dynamical systems, it is well-known that functions represented by
flow maps are subject to some restrictions. For example, [37] gives a negative result that
the diffeomorphisms generated by C 1 vector fields are few in the Baire category sense.
Some works also give explicit criteria for mappings to be represented by flows, such
as [18] in R2, [50] in Rn, and more recently, [58] generalizes some results to the Banach
space setting. However, these results are on exact representation, not approximation,
and hence do not contradict the positive results presented in this paper. The results on
approximation properties are fewer. A relevant one is [4], showing that every Lp mapping
can be approximated by orientation-preserving diffeomorphisms constructed using polar
factorization and measure-preserving flows. The results of the current paper give an
alternative construction of a dynamical system whose flow also has such an approximation
property. Moreover, Theorem 2.3 gives some weak sufficient conditions for any controlled
dynamical system to have this property. In this sense, the results here further contribute to
the understanding of the density of flow maps in Lp .

3. Preliminaries

In this section, we state and prove where necessary some preliminary results that are used
to deduce our main results in the next section.

3.1. Background results on ordinary differential equations

Throughout this paper, we use some elementary properties and techniques in classical
analysis of ODEs. For completeness, we collect these results in this section. The proofs
of well-known results that are slightly involved are omitted. Readers familiar with basic
ODE theory may skip this section, and the unfamiliar readers are referred to [1] for
a comprehensive introduction.
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The differential equation that generates the transformation family in Hode is of the
form

Pz D ft .z/; ft 2 F ; 0 < t � T; z.0/ D z0; (3.1)

where z0; z.t/ 2 Rn. Such equations are called time-inhomogeneous, since the right
hand side changes in time. However, in subsequent proofs of approximation results, we
usually consider t 7! ft that are piecewise constant, i.e. ft D fi for all t 2 ŒTi ; TiC1�.
In this case, for each interval on which ft does not change, it is enough to consider the
time-homogeneous equation

Pz D f .z/; 0 < t � T; z.0/ D z0; (3.2)

where f W Rn ! Rn is fixed in time. An equivalent form of the ODE is the following
integral form:

z.t/ D z0 C

ˆ t

0

f .z.s// ds: (3.3)

The following classical result can be proved using fixed point arguments (see e.g. [1,
Ch. 4]).

Proposition 3.1 (Existence, uniqueness and dependence on initial condition). Let f be
Lipschitz. Then the solution to (3.2) exists and is unique. Moreover, for each t , z.t/ is a
continuous function of z0. If in addition, f is r-times continuously differentiable for r � 1,
then for each t , z.t/ is an .r � 1/-times continuously differentiable function of z0.

Recall that the flow map 'T W Rn ! Rn of (3.2) is the mapping z0 7! z.T / where
¹z.t/º satisfies (3.2). This is well-defined owing to Proposition 3.1. Thus, we hereafter
assume f is Lipschitz. Let us now discuss an important constraint that such flow maps
satisfy.

Definition 3.2 (Orientation-preserving for diffeomorphism case). We call a diffeomor-
phism ' W Rn ! Rn orientation-preserving (OP) if detJ'.x/ > 0 for all x 2 Rn, where
J' is the Jacobian of ', i.e. ŒJ'.x/�ij D

@'i
@xj
.x/.

Proposition 3.3. Suppose f is twice continuously differentiable. Then the flow map 'T
of (3.2) is an OP diffeomorphism.

The above follows from the observation that the flow map of Pz D �f .z/ is the inverse
of 'T , and that

J'T .x/ D exp
�ˆ T

0

Jf .'t .x// dt

�
(3.4)

is positive definite.
Definition 3.2 requires differentiability. If the mapping ' is only bi-Lipschitz, we can

define the Jacobian almost everywhere, and so a bi-Lipschitz mapping is OP if detJ' > 0
almost everywhere. If ' is merely continuous, a proper definition is subtle and can be given
by homological techniques [22].
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However, if we restrict our interest to low-dimensional spaces, such as on the real
line (n D 1) or the plane (n D 2), the definition of OP can be easily given without
any differentiability requirements. In this paper, we only need the n D 1 case, where a
homeomorphism is OP if and only if it is strictly increasing. The definition is a natural
extension of the diffeomorphism case. Below, we prove in the one-dimensional case
that flow maps that are not necessarily differentiable must still be orientation-preserving
homeomorphisms. This is sufficient to prove our subsequent results. Note that this result is
well-known (see [1, Ch. 1]) but we include its proof for completeness.

Proposition 3.4. Let n D 1 and 'T be the flow map of (3.2). Then 'T is increasing.

Proof. It is enough to show that if z1 and z2 are solutions of (3.2), but with different initial
values x1 < x2, then z1.t/ < z2.t/ for all t � 0. Suppose not: z1.t0/ D z2.t0/ for some t0.
Consider the following ODE:

Pw D �f .w/; w.0/ D z1.t0/: (3.5)

Then both z1.t0 � �/ and z2.t0 � �/ are solutions to the above. By uniqueness we have
z1.t0 � t / D z2.t0 � t / for all t , which implies x1 D z1.0/ D z2.0/ D x2, a contradiction.
Since both z1 and z2 are continuous in t , we have z1.t/ < z2.t/ for all t .

Next we state a version of the well-known Grönwall inequality [19].

Proposition 3.5 (Grönwall’s inequality). Let f W R! R be a scalar function such that
f .t/ � 0 and f .t/ � AC B

´ t
0
f .�/ d� . Then f .t/ � AeBt .

Finally, we prove some practical results, which follow easily from classical results but
are used in some proofs of the main body.

Proposition 3.6. Let nD 1 and z.�Ix/ be the solution of the ODE (3.2) with initial value x.
If x is in some compact set K � R, then the finite time modulus of continuity

!z.�Ix/;Œ0;T �.r/ D sup
0�t1�t2�T
jt2�t1j�r

jz.t1I x/ � z.t1I x/j (3.6)

converges to 0 as r ! 0 uniformly in x 2 K.

Proof. We denote a D minK and b D maxK , By Proposition 3.4, we know that

z.t I a/ � y.t I x/ � y.t I b/;

thus H D ¹z.t I x/ W x 2 K; t 2 Œ0; T �º � Œmint z.t I a/;maxt z.t I b/� is compact, and so
is f .H/ D ¹f .h/ W h 2 H º. Let M D maxh2H jf .h/j. We have

sup
0�t1�t2�T
jt2�t1j�r

jz.t1I x/ � z.t2I x/j � rM; (3.7)

implying the result.
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The following proposition shows that in one dimension, if we have a well function,
we can transport one point into another if they are on the same side of the well function’s
zero interval. Note that by definition, the well function cannot change sign outside of this
interval.

Proposition 3.7. Let n D 1. Suppose f .x/ < 0 for all x � x0. Then for x0 < x1 < x2,
consider the ODE

Pz D f .z/; z.0/ D x2: (3.8)

Then ultimately the ODE system will reach x1, i.e., for some T , z.T / D x1.

Before proving it, we give a simple example to illustrate this proposition. Suppose that
f .z/D�ReLU.z � x0/. Then direct computation shows z.T /D .x2 � x0/exp.�T /C x0.
In this case, T D ln..x2 � x0/=.x1 � x0// suffices. Intuitively, this proposition shows that
under the stated conditions, x0 is an attractor for the unbounded interval .x0;1/.

Proof of Proposition 3.7. Notice that f is assumed to be continuous, and it suffices to
give an estimate on z.T /. We only need to prove that for some T , z.T / < x1, and this
can be easily derived from the continuity of T 7! z.T / and from z.0/ D x2. Choose an
arbitrary zx1 2 .x0; x1/ and define m D � supx2Œzx1;x2� f .x/. We have

z.t/ D x2 C

ˆ t

0

f .z.s// ds: (3.9)

Set t D .x2 � x1/=m. If z.t/� zx (which is smaller than x1) then we are done by continuity.
Otherwise, z.t/ � �m for all t 0 2 Œ0; t �, yielding

z.t/ � x2 C

ˆ t

0

.�m/ds D x2 �m
x2 � x1

m
D x1; (3.10)

which again implies our result by continuity.

With these results on ODEs in mind, we now present the proofs of our main results.

3.2. From approximation of functions to approximation of domain transformations

Now, we show that under mild conditions, as long as we can approximate any continuous
domain transformation ' W Rn ! Rn using flow maps, we can show that Hode is an
universal approximator. Consequently, we can pass to the problem of approximating an
arbitrary ' by flow maps and establish our main results.

Proposition 3.8. Let F W Rn ! Rm be continuous and g W Rn ! Rm be continuous. Let
K � Rn be compact and suppose g.Rn/ � F.K/. Then, for any " > 0 and p 2 Œ1;1/,
there exists a continuous function ' W K ! Rn such that

kF � g ı 'kLp.K/ � ": (3.11)
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Proof. This follows from a general result on function composition proved in [28]. We
prove this in the special case here for completeness.

The set F.K/ is compact, so for any ı > 0 we can form a partition F.K/ D
SN
iD1 Bi

with diam.Bi / � ı. By assumption, g�1.Bi / is non-empty for each i , so let us pick
zi 2 g

�1.Bi /. For each i we define Ai D F �1.Bi / \ K so that ¹Aiº forms a partition
of K. By inner regularity of the Lebesgue measure, for any ı0 > 0 and for each i we
can find a compact Ki � Ai such that �.Ai nKi / � ı0 (� is the Lebesgue measure) and
the Ki ’s are disjoint. By Urysohn’s lemma, for each i there exists a continuous function
'i W K ! Œ0; 1� such that 'i D 1 on Ki and 'i D 0 on

S
j¤i Kj . Now, we form the

continuous function

'.x/ D

NX
iD1

zi'i .x/: (3.12)

Define K 0 D ¹
PN
iD1 ˛izi W ˛i 2 Œ0; 1�º, which is compact and '.K/ � K 0. Then

kF � g ı 'kLp.K/ �

NX
iD1

kF � g ı 'kLp.Ki / C

NX
iD1

kF � g ı 'kLp.AinKi /

�

NX
iD1

kF � g ı 'ikLp.Ki / C ŒkF kC.K/ C kgkC.K0/�Nı
0: (3.13)

We take ı0 small enough so that the last term is bounded by ı. Then

kF � g ı 'kLp.K/ �

NX
iD1

ı�.Ki /C ı � .1C �.K//ı: (3.14)

Taking ı D "=.1C �.K// yields the result.

We shall hereafter assume that g.Rn/ � F.K/, which as discussed earlier is easily
satisfied. Hence we have the following immediate corollary.

Corollary 3.9. Assume the conditions in Proposition 3.8 hold and g is Lipschitz. Let ˚
be a collection of continuous functions from Rn to Rn such that for any ı > 0, compact
K � Rn and continuous '1 W Rn ! Rn, there exists '2 2 ˚ with k'1 � '2kLp.K/ � ı.
Then there exists ' 2 ˚ such that kF � g ı 'kLp.K/ � ".

Proof. By Proposition 3.8, there is a '1 such that kF � g ı '1kLp.K/ � "=2. Now take
' 2 ˚ such that k'1 � 'kLp.K/ � "=.2Lip.g//. Then

kF � g ı 'kLp.K/ � kF � g ı '1kLp.K/ C kg ı '1 � g ı 'kLp.K/

�
"

2
C Lip.g/

�ˆ
K

k'1.x/ � '.x/k
pdx

�1=p
� ": (3.15)
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3.3. Properties of attainable sets and approximation closures

Owing to Corollary 3.9, for the rest of the paper we will focus on proving universal
approximation of continuous transformation functions ' from Rn to Rn by flow maps of
the dynamical system

Pz.t/ D ft .z.t//; ft 2 F ; z.0/ D x; (3.16)

after which we can deduce universal approximation properties of Hode via Corollary 3.9.
We now establish some basic properties of flow maps and closure properties. In

principle, in our hypothesis space (2.3) we allow t 7! ft .z/ to be any essentially bounded
measurable mapping for any z 2 Rn. However, it turns out that to establish approximation
results, it is enough to consider the smaller family of mappings piecewise constant in time,
i.e. ft D fj 2 F for t 2 Œtj�1; tj /. For a fixed f in the control family F , to emphasize
dependence on f we denote by 'f� the flow map of the following ODE at time � :

Pz.t/ D f .z.t//; z.0/ D x: (3.17)

That is,

'f� D z.�/ where Pz.t/ D f .z.t//; z.0/ D x; t 2 Œ0; ��: (3.18)

The attainable set of a finite time horizon T due to piecewise constant controls, denoted
as AF .T /, is defined as

AF .T /D ¹'
fk
�k
ı'fk�1�k�1

ı � � �ı'f1�1 W �1C� � �C�k D T; f1; : : : ; fk 2 F ; k � 1º; (3.19)

In other words, AF .T / contains the flow map of an ODE whose right hand side is fi
for t 2 Œti�1; ti /, j D 1; : : : ; k, with �i D ti � ti�1 and t0 D 0. It contains all the domain
transformations that can be attained by an ODE by selecting a piecewise constant driving
force from F up to a terminal time T . The union of attainable sets over all possible
terminal times, AF D

S
T>0AF .T /, is the overall attainable set. In view of Corollary 3.9,

to establish the approximation property of Hode it is sufficient to prove that any continuous
transformation ' can be approximated by mappings in AF . Note that AF .T / is a subset
of ˚.F ; T / defined in (2.2).

Now, let us prove some properties of the approximation closure (i.e. closure with
respect to the topology of compact convergence, see Section 2.1) of attainable sets. The
first result below is immediate.

Lemma 3.10. Let n D 1. If A is a family of continuous and increasing functions from R
to R, then A contains only increasing functions.

Next, we prove an important property of approximation closures of control families:
F shares the same approximation ability as CH.F / when used to drive dynamical systems.
A technicality is that the convex hull of a Lipschitz function family might not be a Lipschitz
function family in general. Hence we adopt a slightly different description.
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Proposition 3.11. Let F be a Lipschitz control family. Then, for any Lipschitz control
family zF such that F � zF � CH.F /, we have

AF D A zF
: (3.20)

Proposition 3.11 is an important result concerning the effect of continuous evolution,
which can be regarded as a continuous family of compositions: any function family driving
a dynamical system is as good as its convex hull in driving the system, which can be a
significantly larger family of functions. Similar properties of flows have been observed in
the context of variational problems [53]. This is a first hint at the power of composition in
function approximation.

To prove Proposition 3.11 we need the following lemmas.

Lemma 3.12. If AF , A zF
are attainable sets of F , zF and F � zF � F , then

AF D A zF
: (3.21)

Proof. It suffices to show that A zF
� AF , which implies AF � A zF

� AF . Note that
any Q' 2 A zF

is of the form

Q' D '
Qfk
tk
ı '

Qfk�1
tk�1

ı � � � ı '
Qf1
t1

(3.22)

where each Qfi is in zF . To prove the lemma, we have to show that for any compact
K � Rn and any " > 0, we can construct ' 2 AF such that k Q' � 'kC.K/ � ". We
prove this by induction on k � 0. First, the case k D 0 is obvious since it is just the
identity mapping. Suppose now that the statement holds for k � 1 and fix any compact K.

Write Q' D '
Qfk
tk
ı Q , where Q is a composition of k � 1 flow maps driven by zF . By

the inductive hypothesis, for any "1 (to be chosen later) there exists  2 AF such that
k � Q kC.K/ � "1. Moreover, by the assumption zF � F , for any "2 and compact K 0

there is a function fk 2 F such that kfk � QfkkC.K0/ � "2. Here, we choose K 0 D ¹x W
infy2 .K/ kx � yk � 2."1 C tk/etk Lip. Qfk/º and "2 < 1.

Now, consider two ODEs:

Qz.t/ D Q .x/C

ˆ t

0

Qfk. Qz.�// d� (3.23)

and

z.t/ D  .x/C

ˆ t

0

fk.z.�// d�: (3.24)

We have Q'.x/ D Qz.tk/ and x 7! z.tk/ belongs to AF , thus it remains to show that the
solutions of these ODEs can be made arbitrarily close. In fact, we show that

sup
0�t�tk

jz.t/ � Qz.t/j < 2."1 C tk"2/e
tk Lip. Qfk/: (3.25)

Suppose not, then set

t D inf ¹s � 0 W jz.s/ � Qz.s/j � 2."1 C tk"2/etk Lip. Qfk/º: (3.26)
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By continuity we have jz.t/� Qz.t/j � 2."1C tk"2/etk Lip. Qfk/. By assumption we also have
j Qfk.z.�// � fk.z.�//j � "2 for all � < t . By subtracting, we have

j Qz.t/ � z.t/j � "1 C

ˇ̌̌̌ˆ t

0

Qfk. Qz.�// d� �

ˆ t

0

fk.z.�// d�

ˇ̌̌̌
� "1 C

ˆ t

0

j Qfk.z.�// � fk.z.�//j d� C

ˆ t

0

j Qfk. Qz.�// � Qfk.z.�//j d�

� "1 C "2t C Lip. Qfk/
ˆ t

0

j Qz.�/ � z.�/j d�: (3.27)

By Grönwall’s inequality, we have

sup
0�t�tk

j Qz.t/ � z.t/j � ."1 C tk"2/e
tk Lip. Qfk/; (3.28)

which contradicts the choice of t . Hence (3.25) holds, and we can choose "1 and "2
arbitrarily small, which concludes the proof.

Lemma 3.13. Suppose f; g 2 F and t > 0. Then '.fCg/=2t 2 AF .

Proof. We will show that 'f
t=2N
ı '

g

t=2N
ı � � � ı '

f

t=2N
ı '

g

t=2N
can approximate '.fCg/=2t

2 AF arbitrarily well by increasing N . The mapping '.fCg/=2t is the solution of

z.t/ D x C

ˆ t

0

�
f C g

2

�
.z.�// d�

D xC

�ˆ t=2N

0

C

ˆ 3t=2N

2t=2N

C � � �C

ˆ .2N�1/t=2N

.2N�2/t=2N

�
.f Cg/.z.�// d�

C

�ˆ 2t=2N

t=2N

C � � �C

ˆ t

.2N�1/t=2Nt

���
f Cg

2

�
.z.�//�

�
f Cg

2

��
z

�
��

t

2N

���
d�

D xC

�ˆ t=2N

0

C

ˆ 3t=2N

2t=2N

C � � �C

ˆ .2N�1/t=2N

.2N�2/t=2N

�
f .z.�// d�

C

�ˆ 2t=2N

t=2N

C � � �C

ˆ t

.2N�1/t=2Nt

�
g.z.�// d�

C

�ˆ 2t=2N

t=2N

C � � �C

ˆ t

.2N�1/t=2Nt

���
f Cg

2

�
.z.�//�

�
f Cg

2

��
z

�
��

t

2N

���
C

�
g

�
z

�
� �

t

2N

��
� g.z.�//

�
d�: (3.29)

Thus if

w.t/ D x C

�ˆ t=2N

0

C

ˆ 3t=2N

2t=2N

C � � � C

ˆ .2N�1/t=2N

.2N�2/t=2N

�
f .w.�// d�

C

�ˆ 2t=2N

t=2N

C � � � C

ˆ t

.2N�1/t=2Nt

�
g.w.�// d�; (3.30)
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then

jz.t/ � w.t/j �

ˆ t

0

max.Lip.f /;Lip.g//jz.�/ � w.�/j d�

C
t

2
!z;Œ0;t�

�
t

2N

��
Lip

�
f C g

2

�
C Lip.g/

�
: (3.31)

Recall that ! is the modulus of continuity defined in Proposition 3.6. Again, by Grönwall’s
inequality we have

jz.t/ � w.t/j �
t

2
!z;Œ0;t�

�
t

2N

��
Lip

�
f C g

2

�
C Lip.g/

�
emax.Lip.f /;Lip.g//: (3.32)

For any selected compact set K, !z;Œ0;t�. t2n / ! 0 by Proposition 3.6, thus we obtain
'
.fCg/=2
t 2 AF .

Now, we are ready to prove Proposition 3.11.

Proof of Proposition 3.11. Using the same technique as in the proof of Lemma 3.13, we
can show that for f1; : : : ; fm 2 F , we have 'ht 2 AF , where h D

P
i qifi for some

rational numbers qi . Let AF 0 be the attainable set with control family F 0 D ¹
Pm
iD1 qifi W

qi 2 Q;
P
i qi D 1; fi 2 F ; m 2 Nº. Then AF 0 D AF . Since F 0 D F , we arrive at the

desired result using Lemma 3.12.

4. Proof of main results

In this section, we prove the main results (Theorems 2.3 and 2.4). We start with the
one-dimensional case to gain some insights on how a result can be established in general,
and in particular, elucidate the role of well functions (Definition 2.1) in constructing
rearrangement dynamics. This serves to motivate the extension of the results to higher
dimensions.

4.1. Approximation results in one dimension and the proof of Theorem 2.4

We take n D 1 in this subsection. Proposition 3.4, together with the fact that compositions
of continuous increasing functions are again continuous and increasing, implies that any
function from AF must be continuous and increasing. This poses a restriction on the
approximation power of AF as the following result shows:

Proposition 4.1. Let n D 1 and F be a Lipschitz control family, whose attainable set
is AF . Then AF contains only increasing functions.

Proof. Proposition 3.4 implies any function in AF is continuous and increasing, since both
properties are closed under composition. The proposition then follows from Lemma 3.10.
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It follows from Proposition 4.1 that any continuous function ' that is strictly decreasing
over an interval Œc; d � cannot be approximated by AF . Nevertheless, it makes sense to ask
for the next best property: Can AF approximate any continuous increasing function?

To investigate this problem, we first select an appropriate control family, which corre-
sponds to deep neural networks with ReLU activations, and see if it can indeed approximate
any such function. We will remove this explicit architectural assumption later. The ReLU
control family in n D 1 is given by

F D ¹vReLU.w � Cb/ W v;w; b 2 Rº: (4.1)

Notice that the ReLU control family (4.1) satisfies the restricted affine invariance condition
of Definition 2.2.

We now show that in one dimension, flow maps of ODEs driven by the ReLU control
family can in fact approximate any continuous increasing function.

Proposition 4.2. Let ' W R! R be continuous and increasing and F be the 1D ReLU
control family (4.1). Then, for any " > 0 and compact K � R, there existsb' 2 AF such
that k' �b'kC.K/ � ". In other words, ' 2 AF .

Proof. We need the following lemma, from which we can deduce the desired result.

Lemma 4.3. LetM � 1. Given x1 < � � � < xM and y1 < � � � < yM , there exists a function
 2 AF such that  .xi / D yi .

We postpone the proof of Lemma 4.3 and first show how to deduce Proposition 4.2
from it. By replacing K with a larger set, we can always assume that K is a closed interval.
Consider a partition � of K with nodes x1 < � � � < xM . By Lemma 4.3, we can find
 2 AF such that  .xi / D '.xi / for all i D 1; : : : ;M . Therefore

 .x/ � '.x/ �  .xiC1/ � '.xi / � '.xiC1/ � '.xi / � !'.j�j/ (4.2)

whenever x 2 Œxi ; xiC1�. Here j�j WD max1�i�M jxi � xi�1j. We deduce that  .x/ �
'.x/ � �!'.j�j/ for the same reason. Hence k' �  kC.K/ � !'.j�j/. Since ' is con-
tinuous, letting j�j ! 0 and using Proposition 3.6 gives the desired result.

Now it remains to prove Lemma 4.3 constructively. To do this, first observe that the
definition of well function (Definition 2.1) when specialized to one dimension is a function
hQ such that hQ.x/ D 0 if and only if x 2 Q D Œq1; q2� for some q2 > q1. This can be
constructed by the ReLU family (cf. Example 2.6) by

hQ D
1
2
ŒReLU.q1 � x/C ReLU.x � q2/�: (4.3)

Obviously, hQ 2 CH.F / � CH.F /, so that the condition that the latter contains a well
function is trivially satisfied.

Proof of Lemma 4.3. By Proposition 3.11, we denote zF D F [ ¹hQ W Q � Kº. We will
show that zF can produce the desired approximation property. We construct by induction a
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mapping 'k which maps xi to yi for i D 1; : : : ; k. First we handle the base case k D 1.
Take hQ to be the well function with respect to Q D Œq1; q2�. Since F is translation
invariant, we can suppose that both x1 and y1 are greater than q2. Since hQ does not
change sign in Œq2;1/, by Proposition 3.7 we know that either 'hQt or '�hQt can map x1
to y1 for some t . Thus the base case is proved since F is symmetric.

Suppose we have 'k ; now we will construct 'kC1 based on 'k . Applying 'k , we may
assume that xi D yi ; i D 1; : : : ; k. Again we assume hQ is a well function with zero
interval Q D Œq1; q2� .q2 < min.x1; y1// and hQ0 is a well function with Q0 D Œq0; q1�.
We further assume that hQ0.x/ < 0 on Œq1;1/, hQ.x/ < 0 on Œq2;1/, otherwise we can
use �hQ or �hQ0 instead.

Let t1 D inf ¹t W '
hQ0

t .xk/ < q2º and t2 D sup ¹t W '
hQ0

t .xkC1/ > q2; '
hQ0

t .ykC1/ >

q2º. Clearly t1 < t2. Choosing any t 0 2 .t1; t2/, and  D '
˙hQ
t mapping '

hQ0

t 0 .xkC1/ to

'
hQ0

t 0 .ykC1/, we construct

'kC1 D '
�hQ0

t 0 ı  ı '
hQ0

t 0 ı 'k (4.4)

as desired. By induction, we have completed the proof of Lemma 4.3.

Sufficient conditions for approximation of continuous and increasing functions and the
proof of Theorem 2.4. We showed previously that all continuous increasing functions can
be approximated by ReLU-driven dynamical systems. In this section, we shall do away
with an explicit architecture, which leads to the proof of Theorem 2.4. The key observation
from the proof of Lemma 4.3 is that all we really need is to have a well function contained
in CH.F / that we can translate and change signs, which is achieved by the restricted
affine invariance assumption. On the other hand, whether or not F itself is a ReLU control
family, or any other specific family, is irrelevant. This motivates us to pose the question of
sufficiency: what assumptions on F are enough to guarantee that it is a universal control
family? Notice that instead of constructing an explicit well function in the form of the
average of two ReLU functions, we can just use an arbitrary well function as defined in
Definition 2.1 to drive the dynamics. The following result makes this precise.

Proposition 4.4. Assume the control family F is symmetric and translation invariant,
which is equivalent to restricted affine invariance withDD˙1 andAD 1 in Definition 2.2,
and that CH.F / contains a well function. Then the conclusion in Proposition 4.2 holds.

Proof. The proof is almost identical to that of Proposition 4.2 with the well function
constructed by averaging two ReLU functions replaced by a general well function contained
in CH.F /. Notice that since a well function does not change sign outside of I , by choosing
a proper sign one can always shrink a finite point arbitrarily close to the interval. This
follows from Proposition 3.7.

Proposition 4.4 combined with Corollary 3.9 implies Theorem 2.4. Clearly, Proposi-
tion 4.4 generalizes Proposition 4.2. It also follows that if CH.F / contains all continuous
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functions, it must in particular contain a well function and so AF has the desired approxi-
mation property. However, this is not necessary for universal approximation to hold.

Remark 4.5. In one dimension, the ability for a dynamical system to approximate any
continuous increasing function has the immediate consequence that if we were to embed
the dynamical system in two dimensions, then we can approximate any continuous function
' of bounded variation, as long as we are allowed a linear transformation in the end, e.g. if
g in Proposition 3.8 is linear. This is because a continuous function of bounded variation
can always be written as a difference of two continuous increasing functions. However, this
does require embedding in high dimensions. We will show later that for n � 2, embedding
is not necessary to achieve universal approximation.

4.2. Approximation rates in one dimension

All results so far are on whether a given function can be approximated by a dynamical
system with control families satisfying certain conditions. However, by the very definition
of the attainable set we only considered dynamical systems of finite, but arbitrarily large
time horizons. Just as in the development of traditional approximation theory, one may be
interested in the following: given an approximation budget, how well can we approximate
a given function? Perhaps a more pertinent question is this: what kind of functions can be
efficiently approximated by dynamical systems? There are more than one way to define
the notion of budget. Here, we will consider a natural one in continuous time: the time
horizon T .

In this part, we give some results in this direction in the simplest case: the one-
dimensional case (nD 1) and the fully connected ReLU control family. For convenience of
exposition, we assume that our target function ' is defined on Œ0; 1�. We postpone results
on general control families in higher dimensions to future work.

To properly quantify the approximation rate, we should eliminate the positive homo-
geneity of the ReLU control function, which masks the effect of the time horizon T due to
the ability to arbitrarily rescale time. Therefore, we restrict jvj; jwj � 1 in vReLU.w � Cb/
so that the time horizon becomes meaningful.

Remark 4.6. An alternative is using
´
jwj dt to measure the approximation cost in place

of T . This notation is related to the Barron space analysis [16]. It can be checked that one
can change T into

´
jwj dt in the following results. Lastly, it is also possible to measure

the complexity of the variation of w; v; b in time. Here, we do not consider such cases.

First, we show in the following lemma that if ' is piecewise linear, then it can be
represented by functions in AF .T / for some T large enough.

Before introducing the following lemma, we first define the total variation (TV) with a
slight modification. Suppose u is a function defined on Œ0; 1�, we extend u to uE such that
uE D 0 in Œ�"; 0/ [ .1; 1C "�. We define

kukTV D kuEkTVŒ�";1C"�;
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the latter norm being defined as

kf kTVŒ�";1C"� D sup
�"Dx0<���<xMD1C"

MX
iD1

jf .xi / � f .xi�1/j: (4.5)

Lemma 4.7. If ln'0 is a piecewise constant function with N pieces, then ' can be written
as

' D '
g1
t1
ı � � � ı '

gN�1
tN�1

C c: (4.6)

Here, gi 2 F , ' �� denotes the flow maps as defined in Section 3.2 and c is a constant.
Moreover, ' 2 AF .T / for T � kln'0kTV.

Proof. We first show an auxiliary result, suppose that

' D '
g1
t1
ı � � � ı '

gN�1
tN�1

C c: (4.7)

Then ln '0 can be written as the sum of N � 1 Heaviside functions. The proof is by
induction. For the N D 1 case it can be checked by direct calculation, and suppose that
' D '

g1
t1
ı '2 and we have

'0.x/ D .'
g1
t1
/0.'2.x//'

0
2.x/ (4.8)

by the chain rule. Thus

ln'0.x/ D ln .'g1t1 /
0.'2.x//C ln'02.x/ (4.9)

and the first term on the RHS is a Heaviside function, while the second term is a sum
of N � 2 Heaviside functions by the induction hypothesis. Hence the result is proved by
induction.

The proof of the original proposition is inductive by construction. Taking the derivative
of ' D 'g1t1 ı � � � ı '

gN�1
tN�1

C c; we obtain ln'0 D ln .'g1t1 /
0C � � � C ln .'gN�1tN�1

/0. Since ln'0

is a piecewise constant function, it can be written as

ln'0 D H1 C � � � CHN�1; (4.10)

where all Hi are Heaviside functions. Integrating .'gN�1tN�1
/0.x/ D HN�1.x/ we obtain

'
gN�1
tN�1

, and then integrating

.'
gN�2
tN�2

/0.x/ D HN�2.'
gN�1
tN�1

/�1.x/ (4.11)

we obtain 'gN�2tN�2
, and so on. One can easily verify that each ' �� is a flow map generated by

some ReLU activation function. This yields the first part of the proposition.
For the second part, we notice that if f D ReLU.wxC b/, then ln .'ft /

0 is a Heaviside
function with a jump at x D �b=w. Since we can find a decomposition

P
i Hi such thatP

i jwi j D kln'
0kTV, the second part of the proposition is proven.
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From the proof of the previous lemma, we know that T D kln'0kTV is optimal, sinceP
i jwi j � kln'

0kTV (k � kTV is a seminorm). In view of this lemma, we prove the following,
which gives a quantitative approximation result.

Proposition 4.8. Suppose ' W Œ0; 1�! R is a piecewise smooth, increasing function with
T0 WD kln'0kTV.Œ0;1�/ <1. Then ' 2 AF .T / for T � T0.

Proof. The proof is separated into two parts. The first part is to show that the constant
in Lemma 4.7 has negligible cost, by considering '"ReLU.�CM/

t '
�"ReLU.�/
t . This provides

a translation on Œ0; 1�: x 7! x C .e" � 1/M . By letting M !1 we can construct any
translation with negligible time cost.

The second part is that if jln '0.x/ � ln 0.x/j � ", and '.0/ D  .0/, then we have
j'.x/ �  .x/j � .e" � 1/k'0kCŒ0;1�.

Now it suffices to prove a rather simple result: given a function u D ln '0, on each
piece I 0 of u we can use a piecewise constant function vjI 0 to approximate ujI 0 (restric-
tion to I 0) so that kvkTV � kukTV and kv � uk1 � ". Thus we can find a function
' 2 AF ..1 � "/T0/ such that ln '0 D .1 � "/v. By composing with a translation, there
exists  2 AF .T0/ such that k � 'kCŒ0;1� � exp."k'kCŒ0;1� C "/. Thus we conclude
that ' 2 AF .T0/.

The preceding results show that it is possible to constrain the approximation space to
flow maps with time horizon up to some finite T0, provided that the target function ' is
such that kln'0k � T . In this sense, the total variation of the logarithm of ' is a measure
of complexity under our compositional approximation procedure.

Let us now develop the quantitative results a little further for the case where T is not
sufficiently large, i.e. T < kln'0kTV. This involves analyzing the error

ET .'/ D inf
 2AF .T /

k' �  kCŒ0;1�; (4.12)

which may be non-zero when T < kln'0kTV.

Proposition 4.9. ET .'/ is given by the following optimization problem:

inf
 
¹k' �  kCŒ0;1� W kln 0kTV � T º: (4.13)

Notice that the existence of ln 0 forces  to be a continuous increasing function, so
we may consider the above optimization problem only for the case where  is continuous
and increasing.

It is generally hard to work with optimization problems such as (4.13), since it involves
total variations of logarithms of functions. Below, we formulate its relaxed version.

Proposition 4.10. Consider the relaxed optimization problem

.u; T / D inf
v
¹ku � vkCŒ0;1� W kvkTV � T º: (4.14)

Then ET .'/ � Œexp..ln'0; T // � 1�k'0kCŒ0;1�.
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Proof. Choose v such that kvkTV � T and

kln'0 � vkCŒ0;1� � .ln'0; T /C ": (4.15)

Choose  such that ln 0 D v and  .0/ D '.0/. Then since kln  0

'0
kTV � .ln'0; T /C ",

we have
j 0='0 � 1j � exp..ln'0; T /C "/ � 1:

Hence

j'.x/ �  .x/j �

ˆ x

0

j'0.x/j

ˇ̌̌̌
1 �

 0.x/

'0.x/

ˇ̌̌̌
� k'0kCŒ0;1�Œexp..ln '0; T /"/ � 1�: (4.16)

Letting "! 0, we arrive at the result.

In general, both (4.13) and (4.14) are hard to solve. However, for some simple cases
of u, the problem (4.14) has an explicit solution. For example, if u itself is an increasing
function, then the solution of (4.14) is 1

2
.kukTV � T /. If u is increasing in Œ0; s� and

decreasing in Œs; 1�, then the solution of (4.14) is 1
4
.kukTV � T /. This gives approximation

rates for specific cases, but a general investigation of these approximation rates is postponed
to future work.

4.3. Approximation results in higher dimensions and proof of Theorem 2.3

In this section, we will generalize the universal approximation results to higher dimensions.
The interesting finding is that in higher dimensions, the fact that AF contains only OP
homeomorphisms no longer poses a restriction on approximations in the Lp sense. More-
over, the sufficient condition for universal approximation in higher dimensions is closely
related to that in one dimension, where the rearrangement dynamics are driven by well
functions. We will prove the following result, which together with Corollary 3.9 implies
Theorem 2.3.

Proposition 4.11. Let n� 2. Suppose F is restricted affine invariant and CH.F / contains
a well function. Then for any compact set K, p 2 Œ1;1/, ' 2 C.Rn/ , " > 0, there exists
a mapping Q' 2 AF such that k Q' � 'kLp.K/ � ":

We notice that for the purpose of approximation, the fact that CH.F / contains a well
function h allows us to assume without loss of generality that F contains a well function.
To see this, denote by zF the smallest restricted affine invariant set containing F [ ¹hº.
We have F � zF � CH.F /. Proposition 3.11 then says that AF D A zF

, hence we can
prove approximation results using zF in place of F .

4.3.1. Preliminaries. In order to prove Proposition 4.11, we require a few preliminary
results. The key approach is similar to the one-dimensional case: we show that we can
transform a finite number of distinct source points into a finite number of target points,
which are not necessarily distinct. More precisely, we show the following proposition,
which generalizes Lemma 4.3 given in the one-dimensional case.
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Lemma 4.12. Suppose F contains a well function. Let " > 0 and x1; : : : ; xm; y1; : : : ; ym

2 Rn be such that ¹xkº are distinct points. Then there exists  2 AF such that
j .xk/ � ykj � " for all k D 1; : : : ; m.

Lemma 4.12 follows from the combination of the following two lemmas.

Lemma 4.13. Suppose F contains a well function and x1; : : : ; xm are distinct points.
Then given any " > 0, there exists a flow map  2AF such that j .xk/� xkj � " and for
each i D 1; : : : ; n, Œ .xk/�i .the i -th coordinate of  .xk//, k D 1; : : : ; m, are m distinct
real numbers.

Lemma 4.14. Suppose F contains a well function, x1; : : : ; xm are distinct points and
satisfy the result of Lemma 4.13, that is, ¹xki º are m distinct real numbers for any i . Then
given any " > 0 for m target points y1; : : : ; ym, we have a flow map  2 AF such that
j .xk/ � ykj � ".

Now we prove these two lemmas.

Proof of Lemma 4.13. It is enough to show that if there are two points xj and xk such that
x
j
I D x

k
I for some I , then we can find a flow map � 2 AF such that � can separate xjI

and xkI and at the same time, does not cause other pairs of points without initially distinct
coordinates to overlap. Without loss of generality, we assume j D 1; k D 2; I D 1, and
we only need to show that if x11 D x

2
1 , then there exists an � 2 AF such that

(1) j�.xk/ � xkj � "1 WD 1
nm2

";

(2) Œ�.x1/�1 ¤ Œ�.x2/�1;

(3) if xk1 ¤ x
l
1, then Œ�.xk/�1 ¤ Œ�.xl /�1.

We briefly explain these requirements. Consider

X1 D ¹.k; l/ W 1 � k < l � m; x
k
1 D x

l
1º (4.17)

and

�.X1/ D ¹.k; l/ W 1 � k < l � m; Œ�.x
k/�1 D Œ�.x

l /�1º: (4.18)

(2) and (3) imply that jX1j > j�.X1/j � 0, hence jX1j is strictly decreasing after �.
Denote d D min ¹jxk1 � x

l
1j W x

k
1 ¤ x

l
1º. Since x1 and x2 are distinct points, we can

find a coordinate index I .¤ 1/ such that x1I ¤ x
2
I . Here we assume x1I < x

2
I . Suppose f

in F is a well function with zero set �1. Written in coordinate form, f is given by

f D .f1; : : : ; ; fn/; (4.19)

where fi W Rn ! R for each i . Since F is translation-invariant, we can assume �1
contains 0 without loss of generality.

Consider the dynamics

Pz1 D f1.xI C b/; Pzi D 0; i D 2; : : : ; n: (4.20)
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Notice that the boundedness and convexity of�1 guarantees that the reduced 1D dynamics
satisfies our previous discussion (it contains a 1D well function, since the intersection
of a bounded convex set with a line is an interval). In other words, we choose D D
diag.1; 0; : : : ; 0/, Aij D ıiI ıjI , b D .0; 0; : : : ; bI ; 0/T in the form Qf DDf.A � Cb/ where
bI is chosen such that x1I C bI 2 �1 but x2I C bI 62 �1. The existence of bI is implied by
the boundedness of �1. We denote by Pt the flow map of this dynamics. We next choose
a proper t such that (1)–(3) are satisfied.

Since Qf1.x1/ D 0 and Qf1.x2/ ¤ 0, we deduce that ŒPt .x1/�1 ¤ ŒPt .x2/�1 whenever
t ¤ 0. Hence (2) is satisfied with no additional condition. Notice that when jPt .xk/� xkj �
min."1; d=3/, then both (1) and (3) are satisfied. Since CH.¹xkº/ is bounded, we have
kPt � idkC.CH.¹xkº// ! 0 as t ! 0 by Proposition 3.6. Therefore there exists t0 > 0 such
that kPt � idkC.CH.¹xkº//�min."1;d=3/. Hence we conclude that �DPt0 satisfies (1)–(3).

Proof of Lemma 4.14. Without loss of generality, we can assume that for each i , yki are m
distinct real numbers, since if not, we can always add a small perturbation to the point set
¹yki W i D 1; : : : ; mº directly and this will not affect approximation. We also assume �1
contains the origin, as we did in the proof of Lemma 4.13.

The basic idea is similar to Lemma 4.13: by choosing a proper linear transformation
we can freeze some point while transporting other points. Since we need to control more
than two points, we can take multiple transformations and evolve them sequentially. We
only need to prove that for any i (without loss of generality i D 1), we can find an � 2AF

such that Œ�.xk/�1 D yk1 .
Upon relabelling, we can assume that x12 < x

2
2 < � � � < x

m
2 . Consider the dynamics

Pz1 D f1.az2 C b/; Pzi D 0; i D 2; : : : ; n: (4.21)

In other words, we choose D D diag.1; 0; : : : ; 0/, Aij D aıi2ıj2, b D .0; b2; : : : ; ; 0/T

in the form Qf D Df.A � Cb/, where a is chosen sufficiently small such that all Axk lies
in �1. We denote the flow map by Pt .b2/, where the dependence on b2 is emphasized. To
simplify our notation, we use P�t .b2/ to denote the flow map of Pz D �Df.Az C b/.

Now we wish to choose r1; : : : ; rm such that f1.Axi C rj / D 0 if and only if i < j .
Let ¹0º � .ul ; ur / � � � � D �1 \ .¹0º �R � � � � /, where .ul ; ur / is the restriction of �1
on coordinate 2. Then a choice of rk is rk D ur � axk2 C

a
2

minj .x
j
2 � x

j�1
2 /:

Now ¹�.k/º are defined recursively:

�.0/ D id;

�.k/ D Ptk .r
k/ ı �.k�1/; where tk D .yk1 � Œ�

.k�1/.xk/�1/=f1.Ax
k
C rk/:

(4.22)

We now prove that � D �.m/ ı � � � ı �.1/ satisfies our requirement. By induction (on k), we
show that Œ�.k/.xi /�1 D yi1 for i � k. The case k D 0 is vacuous. Supposing Œ�.k�1/.xi /�1
D yi1 for i � k � 1, since Œ�.k�1/.xi /�2 D xi2, we have

�.k/.xi / D Ptk .r
k/.�.k�1/.xi // D �.k�1/.xi / D yi : (4.23)

By definition we know that �.k/.xk/ D yk . Hence the induction step is proved.
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4.3.2. Proof of Proposition 4.11

Since K is compact, by extension it suffices to consider the case that K is a hyper-cube.
We can for simplicity take the unit hyper-cube K D Œ0; 1�n, as the general case is similar.
For ' 2 Lp.K/, by standard approximation theory ' can be approximated by piecewise
constant functions, i.e. there exists

O' D
X

i

'i�i (4.24)

such that k O' � 'kLp.K/ � "=2. Here i D Œi1; : : : ; in� is a multi-index, 'i 2 Rn and �i is
the indicator of the cube

�i D

�
i1

N
;
i1 C 1

N

�
� � � � �

�
in

N
;
in C 1

N

�
: (4.25)

We also denote pi D .i1=N ; : : : ; in=N/. We define a shrunken cube

�˛
i D

�
i1

N
;
i1 C ˛

N

�
� � � � �

�
in

N
;
in C ˛

N

�
; (4.26)

where 0 < ˛ � 1. We have K D
S

i �i, and we define K˛ D
S

i �˛
i . We also construct

a shrinking function in one dimension, h˛ W Œ0; 1�! Œ0; 1�, such that h˛.x/ D i=N if
i=N � x � .i C ˛/=N , and continuously increasing in Œ0; 1�. Using this, we can form an
n-dimensional shrinking map by tensor product:

H˛.x/ D .h˛.x1/; : : : ; h
˛.xn//: (4.27)

The idea of the proof of Proposition 4.11 is quite simple: we just contract each grid �i

into a point pi approximately, then use the lemma above to transform each pi into 'i. The
latter is discussed in a preliminary step; we construct an “almost” contraction mapping in
AF that approximates H˛ .

Claim. For a given tolerance "1 > 0, there exists a flow map zH 2 AF such that
k zH �H˛kC.K/ � "1.

Proof of the Claim. Since h is increasing and continuous, we wish to utilize our result
in one dimension. Concretely, we demonstrate how to restrict the n-dimensional control
family to one dimension.

Suppose F is an n-dimensional control family. Then for each f D .f1; : : : ; fn/ 2 F

we define the dynamics driven by its restriction to first coordinate by

Pz1 D f1.x1/; Pzi D 0 for i � 2; (4.28)

i.e., take D D A D diag.1; 0; : : : ; 0/. The set of such control systems is denoted by FR;1
(R means restriction and 1 means first coordinate). Clearly FR;1 is closed under composi-
tion. Moreover, AFR;1 coincides with

AR � ¹idº � ¹idº � � � � � ¹idº; (4.29)
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where R is a one-dimensional control family

R D ¹g.x/ W g.x/ D f1.x; 0; : : : ; 0/; f 2 F º: (4.30)

Since F contains a well function, so does R. By Proposition 4.4 we can find Qh 2 R such
that k Qh � h˛kC.Œ0;1�/ � "=n.

By composition we know that QH WD . Qh; : : : ; Qh/ is in AF , and k QH �H˛kC.K/ � ".

We use the above notations,  for transporting pi to 'i, and QH for the approximate
contraction mapping, satisfying the following estimates:

j .pi/ � 'ij � "1 < 1; (4.31)

k QH �H˛
kC.K/ � "2 < 1; (4.32)

where "1 and "2 are to be determined later.
Now we estimate the error k ı zH � 'kLp.K/. For any ˛ we can write

k ı zH � 'kLp.K/ � k ı zH � O'kLp.K/ C k O' � 'kLp.K/

� k ı zH � O'kLp.K˛/ C k ı zH � O'kLp.KnK˛/ C "=2

� J1 C J2 C "=2: (4.33)

Estimation of J1. We have

J1 D k ı zH �  ıH
˛
kLp.K˛/ C k ıH

˛
� O'kLp.K˛/

� ! .k QH �H
˛
kC.K//C

X
i

j .pi/ � 'ij � j�ij
1=p

� ! .k QH �H
˛
kC.K//CN

n�n=p"1 � ! ."2/CN
n�n=p"1: (4.34)

Estimation of J2. Denote by zK D Œ�1; 2�n an enlarged cube. We have

J2 � jK nK
˛
j �
�
diam. . QK//C k O'kL1.K/

�
: (4.35)

We choose  such that "1 � "=8, ˛ such that

jK nK˛j �
�
diam. . QK//C k O'kL1.K/

��1
"=4; (4.36)

and finally QH such that ! ."2/ � "=8. Then k ı zH � 'kLp.K/ � ", and we take Q' D
 ı zH 2 AF , yielding the result.

As in the 1D case, Proposition 4.11 together with Corollary 3.9 implies Theorem 2.3.

4.4. Approximation results in tensor-product type dynamical systems

Sometimes, we are interested in control families generated by tensor products. Such control
families have the advantage that they can be parameterized by scalar functions of one
variable, hence may enjoy greater flexibility in analysis and practice. In this last section, we
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give some results that apply specifically to tensor product control families. Let us denote

…F D ¹f .x/ D .g.x1/; g.x2/; : : : ; g.xn// W g 2 F º; (4.37)

where F is a one-dimensional control family.
As in higher dimensions, we may wish to consider the n-dimensional control family

F .n/, which is the smallest set containing …F that is also invariant under the transfor-
mation f .�/ 7! Df.A � Cb/, where D;A are diagonal matrices. However, all functions  
in AF are separable:  D . 1.x1/; : : : ;  n.xn//. Moreover, we can deduce from the 1D
results that  i is continuous and increasing. Clearly, this F .n/ has limited approximation
ability. Instead, we will relax the requirement that A is diagonal so that it can be any matrix,
leading to a stronger version of the restricted invariance requirement in Theorem 2.3. This
then leads to the following approximation result:

Proposition 4.15. Suppose that

(1) F .n/ contains …F ;

(2) F .n/ is invariant under f .�/ 7! Df.A � Cb/, where D is any diagonal matrix, A is
any matrix, and b is any Rd vector;

(3) AF contains all continuous increasing functions from R to R.

Then for any " > 0; p 2 .1;1�, compact set K, and ' 2 C.Rn/, there is Q' 2 AF .n/ such
that k' � Q'kLp.K/ � ".

Remark 4.16. This result is not a corollary of Proposition 4.11, even if CH.F / contains a
well function, since in this case the zero set of the tensor product of the well function may
be unbounded.

Similar to estimation of Proposition 4.11, we omit the main body of this proof but only
restate preparations about  and zH .

Estimations on zH

Lemma 4.17. Suppose F .n/ and F satisfy the conditions in Proposition 4.15. For a given
tolerance "1 > 0, there exists a flow map zH 2 AF .n/ such that k zH �H˛kC.K/ � "1.

Proof. This is straightforward from the definition of the tensor product control family and
AF contains all continuous increasing functions.

Estimations on  . Before the main estimate, we first show a useful lemma.

Lemma 4.18. If g 2 AF , then .x1; x2; : : : ; xn/ 7! .x1 C g.x2/; x2; : : : ; xn/ is in AF .n/.

Proof. We divide the construction into two parts. First, set D D diag.1; 1; 0; : : : ; 0/ and
A22DA12D 1 andAij D 0 otherwise. We first only look at the second coordinate, knowing
that for all g 2 AF , there exists a finite number S � 1 of flow maps 'ts

fs
, s D 1; : : : ; S ,

such that

g D '
tS
fS
ı � � � ı '

t1
f1
: (4.38)
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If D and A are chosen as above, we deduce that x1 � x2 is constant under all mappings of
the form

z 7! Df.Az C b/: (4.39)

If we select f1; : : : ; fS sending x2 to g.x2/, we know x1 7! x1 C g.x2/ � x2. Hence

.x1; x2; : : : ; xn/ 7! .x1 C g.x2/; x2; : : : ; xn/ (4.40)

is in AF .n/.
Also, by setting D D diag.1; 0; : : : ; 0/ and Aij D ıi2ıj2, we know that

.x1; x2; : : : ; xn/ 7! .x1; g
�1.x2/; : : : ; xn/ (4.41)

is in AF .n/. Combining the two parts yields the result.

Lemma 4.19 (Analogous to Lemma 4.13). Suppose F .n/ and F satisy the conditions in
Proposition 4.15 and x1; : : : ; xm are distinct points. Then, given any " > 0, there exists
a flow map  2 AF .n/ such that j .xk/ � xkj � " and for each i D 1; : : : ; n, Œ .xk/�i
.the i -th coordinate of  .xk//, k D 1; : : : ; m, are m distinct real numbers.

Proof. Similar to Lemma 4.13, we prove that if x11 ¤ x21 , then we can find an � that
separates them. The three requirements are the same as in Lemma 4.13.

Suppose x1I ¤ x
2
I for some I . We can find two continuous increasing functions P.�/

and Q.�/ such that

P.x1I / �Q.x
1
I / D 1;

P.x2I / �Q.x
2
I / D �1;

P.xkI / �Q.x
k
I / D 0 for the other k’s.

(4.42)

By the assumptions on F , we can find zP .�/ and zQ.�/ such that

kP.�/ � zP .�/kC.Œ0;1�/; kQ.�/ � zQ.�/kC.Œ0;1�/ � min.d; 1/=4: (4.43)

By Lemma 4.17, we know that .x1; : : : ; xn/ 7! .x1 C zP .xI / � zQ.xI /; : : : ; xn/ is
in AF .n/. It can be checked that this is our desired �.

Lemma 4.20 (Analogous to Lemma 4.14). Suppose F .n/ and F satisfy the conditions
in Proposition 4.15 and x1; : : : ; xm are distinct points. Moreover, assume xk is as in the
conclusion of Lemma 4.13, that is, ¹xki W k D 1; : : : ; mº are m distinct real numbers for
any i . Then, given any " > 0, for m target points y1; : : : ; ym, there exists a flow map
 2 AF .n/ such that j .xk/ � ykj � ".

Proof. Similar to the proof of Lemma 4.14, we use x2 to translate x1 (denoted by �).
We find two one-dimensional P.�/ and Q.�/, both continuous and increasing, such that
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xk1 C P.x
k
2 / �Q.x

k
2 / D y

k
1 . By the assumptions on F we can find zP .�/ and zQ.�/, such

that

kP.�/ � zP .�/kC.Œ0;1�/; kQ.�/ � zQ.�/kC.Œ0;1�/ � "=2: (4.44)

Since

� D .x1; : : : ; xn/ 7! .x1 C zP .x2/ � zQ.x2/; : : : ; xn/ (4.45)

is in AF .n/, and jŒ�.xk/�1 � yk1 j � ", we conclude that � satisfies our requirement.

Combining these two lemmas, we obtain the following result from which we can
deduce Proposition 4.15.

Lemma 4.21 (Analogous to Lemma 4.12). Suppose F .n/ and F satisfy the conditions in
Proposition 4.15. Let " > 0 and x1; : : : ; xm; y1; : : : ; ym 2Rn be such that ¹xkº are distinct
points. Then there exists  2 AF .n/ such that j .xk/ � ykj � " for all k D 1; : : : ; m.
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