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Abstract. We introduce the notion of stationary actions in the context of C�-algebras. We develop
the basics of the theory, and provide applications to several ergodic-theoretical and operator-algeb-
raic rigidity problems.
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1. Introduction

Stationary actions provide a framework that includes all measure preserving actions, as
well as their opposite systems, boundary actions. This framework is general enough to not
suffer from an existential problem as in the case of invariant measures for nonamenable
groups, and yet enjoy having enough meaningful structural properties.

In the setup of unique stationary dynamical systems, random walk theory forms con-
nection between topological and measurable dynamics. Study of these systems, specially
in the noncommutative setting, is one of the main objectives of this work. In the case
of nonamenable group actions, unique stationarity is sometimes a more suitable replace-
ment for the notion of unique ergodicity, even in the presence of invariant measures, as
our results in this paper show.

We introduce the notion of stationary C �-dynamical systems, in order to develop new
tools in the study of operator algebras associated to nonamenable groups. This includes
traceless C �- and von Neumann algebras, for which many of powerful techniques from
the finite-type theories are not applicable.

Let � 2 Prob.�/ be a probability measure on a countable discrete group � , A be a
unital C �-algebra, and let � Õ A by �-automorphisms.
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Definition. A state � on A is said to be �-stationary if
P
g2� �.g/g� D � .

We are particularly interested in inner actions. The underlying philosophy here is to
view a C �-algebra not only as a single structure, but rather as a noncommutative dynam-
ical system via the action of its unitary group by inner automorphisms. Nontriviality of
this action is an exclusive feature of noncommutative C �-algebras. From this point of
view, a trace is a noncommutative invariant probability measure, and admitting a unique
trace is the noncommutative counterpart of unique ergodicity. Thus, stationary states are
generalizations of traces, which, in contrast, always exist. We will see that despite this
level of generality, they still reveal many meaningful structural properties, and in fact,
provide a context in which techniques from measurable ergodic theory, in particular ran-
dom walks, can be applied to study C �-algebras associated to discrete groups. This is not
entirely in line with the conventional expectation that topological dynamics interact with
C �-algebra theory, and measurable actions with von-Neumann-algebra theory. Indeed,
we introduce new techniques to use measurable boundaries in certain C �-algebraic rigid-
ity problems, and we also obtain von Neumann algebraic relative superrigidity results by
using topological boundaries.

Another new perspective that this theory provides is an appropriate notion of minim-
ality for noncommutative actions. The current conventional notion of minimality of an
action � Õ A of a group � on a C �-algebra A is that A does not contain any nontrivial
closed proper �-invariant ideals. Although this definition allows generalizations to the
noncommutative setting of some results on commutative minimal actions, it fails to be an
appropriate counterpart of minimality in many cases. For instance, with this definition,
the trivial action of any group on any simple C �-algebra is minimal, and consequently
a “factor” of a minimal action may not be minimal. Alternatively, for an action � Õ X

on a compact space X , one observes that the action is minimal if and only if every �-
stationary probability � on X has full support, for any generating probability � on � . The
similar property for an action � Õ A appears to be a more natural notion of minimality.
For instance, the trivial action on a nontrivial C �-algebra is never minimal in this sense,
and “factors” of minimal actions are minimal. In a recent work [3] which was completed
after the first version of this work was published, Amrutam and the second-named author
used this perspective and the results of this paper to prove simplicity of all intermediate
C �-subalgebras of crossed products of minimal C �-simple actions.

Topological and measurable boundary actions were introduced by Furstenberg in his
seminal work [25,26] in the context of rigidity of Lie groups. These notions have recently
turned out to be particularly relevant in questions of uniqueness of the canonical trace.
The latter is closely related to several rigidity problems in ergodic theory and operator
algebras [16, 20, 41, 49].

For instance, the problem of classifying the groups with the unique trace property,
which had been open for almost 40 years, was finally settled by Breuillard, Kennedy,
Ozawa, and the second named author in [16], where a characterization of this property
was proven in terms of existence of faithful topological boundary actions. The original
proof in [16] used the notion of injective envelopes, but a simpler proof was provided soon
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after by Haagerup [30, Theorem 3.3]. In fact, Haagerup’s proof has been very inspiring
for our work, as it clearly shows why boundary actions are effective in this type of prob-
lems. A very closely related problem is the classification of C �-simple groups. A group
� is called C �-simple if C �

�
.�/, the reduced C �-algebra of � , is simple, meaning that

it has no nontrivial proper closed ideals. Similarly, after numerous partial results from
many works over the span of four decades the first characterization of C �-simplicity
was proven by Kennedy and the second named author [41] in terms of existence of
free topological boundary actions. Therefore, in particular, the above results combined
imply C �-simplicity is stronger than the unique trace property. Finally, Le Boudec [44]
proved the existence of groups with faithful topological boundary actions, but no free such
actions, hence completely settled the question of whether C �-simplicity and the unique
trace property are equivalent.

As an application of our theory, we prove a new characterization of C �-simplicity in
terms of unique stationarity of the canonical trace.

Theorem (Theorem 5.2). A countable discrete group � is C �-simple if and only if there
is � 2 Prob.�/ such that the canonical trace is the unique �-stationary state on C �

�
.�/.

In particular, this result shows that C �-simplicity is also a uniqueness property of the
canonical trace. This is indeed quite natural with our point of view that C �

�
.�/ is rather

a �-C �-algebra via the inner action: every ideal is invariant, and therefore simplicity is
a noncommutative minimality problem. Now considering the commutative picture, since
stationary measures always exist, existence of a unique stationary probability with full
support implies minimality.

Also, our above characterization of C �-simplicity provides an intrinsic dynamical
explanation for the difference between the unique trace property and C �-simplicity: while
the former corresponds to unique ergodicity, the latter corresponds to unique stationarity.
We may even give a manifestation of this in the commutative setting: every group �
admits an action on a compact metric space such that the difference between unique
ergodicity and unique stationarity of the action translates into the difference between the
unique trace property and C �-simplicity, as follows.

Let Suba.�/ denote the set of all amenable subgroups of � , which is a compact space
on which � acts by conjugations. Bader, Duchesne and Lecureux [7] proved that � has
the unique trace property if and only if � Õ Suba.�/ is uniquely ergodic. Here we prove:

Theorem (Corollary 5.7). A countable discrete group � is C �-simple if and only if there
is � 2 Prob.�/ such that the action � Õ Suba.�/ is uniquely �-stationary.

We would like to highlight the interesting, and somehow curious fact that C �-simpli-
city, a purely C �-algebraic property, would single out certain random walks (or measures)
on � that reveal its C �-simplicity. Moreover, it turns out that these measures possess
significant ergodic-theoretical properties, connecting C �-simplicity to random walks on
groups. Thus, it suggests considering C �-simplicity of � as rather a property of the meas-
ure(s) � 2 Prob.�/ in the above theorems.
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Definition. We say that � 2 Prob.�/ is a C �-simple measure if the canonical trace �0 is
the unique �-stationary state on C �

�
.�/.

For instance, we prove:

Theorem (Theorem 5.4). Suppose � 2 Prob.�/ is C �-simple. Then any measurable �-
stationary action with almost surely amenable stabilizers is essentially free.

In particular, the action of � on the Poisson boundary of � is essentially free.

Hence, we are naturally led to the problem of finding C �-simple measures. Our proof
of the existence of C �-simple measures on C �-simple groups does not reveal concrete
measures. In fact, part of our construction of the C �-simple measure follows a similar
construction in Kaimanovich–Vershik’s proof of Furstenberg’s conjecture on the existence
of measures on amenable groups with trivial Poisson boundary. The following result, on
the other hand, allows verifying C �-simplicity of many concrete measures.

Theorem (Theorem 4.12). Let � 2 Prob.�/ and suppose � admits an essentially free
�-boundary which has a compact model that is uniquely �-stationary. Then � is a C �-
simple measure.

This result also highlights another advantage of our approach in using measurable
boundaries in the above problems. In contrast to the topological case, measurable bound-
aries have been studied extensively, and there are several powerful methods due to the
fundamental work of Kaimanovich [38], for realizing these boundaries. These methods
have resulted in many deep realization results (e.g. [18, 33, 38, 39, 45]). In fact, in many
examples, a concrete unique stationary model of a boundary is provided, and under some
regularity assumptions on the measure the corresponding stationary measure is the Pois-
son measure.

To further highlight the contrast to the topological case, we remark that in the case
of nonamenable discrete groups, the Furstenberg boundary is always a nonmetrizable
extremally disconnected space, not concretely identifiable in any known example. We
take advantage of the concreteness of the topological models of measurable boundaries
in order to verify their essential freeness. For example, we prove a 0-1 law (Theorem 6.2)
for a class of stationary actions that include algebraic actions, which provides an essential
freeness/triviality dichotomy for such actions. Using that we prove:

Theorem (Theorem 6.5). Let � be a finitely generated linear group with trivial amenable
radical. Then every generating measure on � is C �-simple.

We obtain this result by proving the existence of essentially free mean-proximal
actions for linear groups. A crucial step in the proof is an extension result for mean-
proximal actions that we prove jointly with Uri Bader (see Appendix A).

Furthermore, we conclude C �-simplicity of the measures in the following contexts.
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Theorem (Example 6.6, Theorems 6.7 and 6.8). Every generating measure on a mapping
class group or a hyperbolic group � with trivial amenable radical isC �-simple. The same
conclusion holds for finitely supported measures on Out.Fn/.

In the last section, we study unique stationarity and unique trace property relative to
subgroups, and prove several ergodic-theoretical relative rigidity results.

Theorem (Theorem 7.5). Let � 2 Prob.�/ and suppose � admits an essentially free �-
boundary which has a compact model that is uniquely �-stationary. Then a �-stationary
action is essentially free if its restriction to some co-amenable subgroup ƒ � � is essen-
tially free.

All our results mentioned up to this point are obtained by applying the techniques
developed here to use measurable boundaries to deduce C �-algebraic rigidity properties.
In contrast, a von-Neumann-algebraic relative superrigidity result below is proven in the
last section by using topological boundary actions.

Theorem (Theorems 7.8 and 7.10). Let � be a countable discrete group that admits
a faithful topological boundary, and let ƒ � � be an icc co-amenable subgroup. Sup-
pose � W � ! U.H / is a unitary representation such that �.�/00 is a finite von Neu-
mann algebra. If the restriction �jƒ extends to a von Neumann algebra isomorphism
�.ƒ/00 ŠL.ƒ/, then � extends to a von Neumann algebra isomorphism �.�/00 ŠL.�/.

Recall that by Furman [24] a group � admits a faithful topological boundary if and
only if it has a trivial amenable radical (that is, it has no nontrivial amenable normal
subgroups). As a corollary we obtain the following relative version of the result of Stuck–
Zimmer.

Theorem (Theorems 7.9 and 7.10). Let � be a countable discrete group with trivial
amenable radical, and letƒ� � be a co-amenable subgroup. Then a probability measure
preserving action � Õ .X;m/ is essentially free if its restrictionƒÕ .X;m/ is essentially
free.

In terms of Invariant Random Subgroups (IRS), the above is equivalent to the state-
ment that every IRS of � intersects ƒ nontrivially with positive probability. In particular,
every nontrivial normal subgroup N G � intersects ƒ nontrivially.

The above results are relative versions of the well studied operator-algebraic super-
rigidity, originated by Connes’ conjecture [37]. The first major result in this direction was
obtained by Bekka [9] and then was generalized by Peterson [49] (see also [20, 50]).

Very recently Boutonnet and Houdayer [13] have strengthened Peterson’s work based
on the concept of stationary states developed in the present paper. This breakthrough result
is another manifestation of the importance of stationarity in the noncommutative setup.
Indeed, it provides the strongest known result in this context (an SRS rigidity for higher
rank lattices) and answers a question of Glasner and Weiss [27].

In addition to this introduction, this paper has six other sections. In Section 2 we
briefly review the requisite background material. In Section 3 we recall the definitions



Y. Hartman, M. Kalantar 1788

of measurable and topological boundaries, and prove that a unique stationary measurable
boundary is a topological boundary. In Section 4 we introduce stationary C �-dynamical
systems, prove basic properties, and provide a number of examples. In particular, we show
how unique stationarity implies C �-simplicity. In Section 5 we prove our new character-
ization of C �-simplicity in terms of unique stationarity of the canonical trace. We then
prove various properties of C �-simple measures, and obtain another characterization of
C �-simplicity in terms of unique stationarity of Suba. Section 6 is concerned with the
question of freeness of unique stationary actions, and verifying that certain measures are
C �-simple. In Section 7, we apply our techniques to prove several superrigidity results
relative to co-amenable subgroups.

The paper also contains an appendix, which includes our joint result with Uri Bader, an
extension theorem for mean-proximal actions that we need in the proof of C �-simplicity
of generating measures on finitely generated linear groups.

2. Preliminaries

Throughout the paper, � is a countable discrete group, and � Õ X denotes an action of �
by homeomorphisms on a compact (Hausdorff) space X . The action � Õ X is minimal
if X has no nonempty proper closed �-invariant subset. We denote by Prob.X/ the set of
all Borel probability measures onX . For � 2 Prob.X/ we denote by P� its corresponding
Poisson map, i.e. the unital positive �-equivariant map P� W C.X/! `1.�/ defined by

P�.f /.g/ D

Z
X

f .gx/ d�.x/; g 2 �; f 2 C.X/: (1)

We also consider measurable actions, i.e. actions � Õ .Y; �/ of � on probability
spaces .Y; �/ by measurable automorphisms. A measurable action � Õ .Y; �/ is a nonsin-
gular action (or � is a nonsingular measure) if g� and � are in the same measure class for
every g 2 � . The Poisson map associated to a nonsingular measure is defined similarly
to (1). Throughout the paper, unless otherwise stated, all measurable actions are assumed
to be nonsingular.

A compact �-space X is said to be a compact model of a measurable �-space .Y; �/
if there exists a Borel measure � 2 Prob.X/ such that .Y; �/ and .X; �/ are measurably
isomorphic as �-spaces. It is a well-known fact that every measurable action on a standard
Borel space has a compact model which is metrizable.

For a Hilbert space H we denote by B.H / the set of all bounded operators on H .
A subalgebra A � B.H / is a C �-algebra if it is closed in the operator norm and under
taking adjoint. In this case, A is unital if it contains the identity operator on H .

If X is a compact space, then C.X/ with the sup-norm and the complex conjugate as
the involution is a C �-algebra, and conversely, by Gelfand’s representation theorem, any
unital commutative C �-algebra is of this form. Hence unital C �-algebras are viewed as
algebras of continuous functions on “noncommutative compact spaces”.
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An element a in a C �-algebra A is said to be positive, written a � 0, if a D b�b for
some b 2 A. We denote by 1A the unit element in A.

A linear map � WA!B between C �-algebras is positive if it sends positive elements
to positive elements, and it is unital if �.1A/ D 1B . A linear � is a �-homomorphism if
it is multiplicative and �.a�/ D �.a/� for all a 2 A, and it is a �-isomorphism if it is
moreover bijective. We denote by Aut.A/ the group of all �-automorphisms on A.

The noncommutative counterpart of probability measures are states on C �-algebras.
A state on A is a positive linear functional � W A! C with �.1A/ D 1. We denote by
�.A/ the (convex, weak� compact) space of all states on A. A state � is faithful if �.a/> 0
for any nonzero positive element a. A state � 2 �.A/ is a trace if �.ab/ D �.ba/ for all
a; b 2 A. Obviously every state on a commutative C �-algebra is a trace, but on the other
hand there are C �-algebras that do not admit any trace.

Let us recall the GNS construction associated to a state � 2 �.A/. Define the sesqui-
linear form ha; bi� WD �.b�a/ on A, let L2.A; �/ be the induced Hilbert space, and for
every b 2 A denote bybb its corresponding element in L2.A; �/. Then the GNS repres-
entation �� W A! B.L2.A; �// is defined by ��.a/.bb/ Dcab for a; b 2 A.

A C �-algebra is said to be simple if it does not contain any nontrivial proper closed
two-sided ideal.

A von Neumann algebra is a C �-algebra M that is also a dual Banach space. In
this case the predual M� is unique. A bounded linear functional on M is called nor-
mal if it belongs to M�. Since B.H / itself is a dual Banach space (the predual being
the space of trace-class operators), it follows that a unital C �-subalgebra A � B.H / is
a von Neumann algebra if and only if it is closed in the weak* topology of B.H /, or
equivalently closed in the weak or strong operator topologies. By von Neumann’s bicom-
mutant theorem a self-adjoint unital subalgebra M � B.H / is a von Neumann algebra
if and only if M 00 DM , where M 0 D ¹x 2 B.H / W xy D yx for all y 2M º is the com-
mutant of M in B.H /, and M 00 D .M 0/0.

If .X; �/ is a probability space, then L1.X; �/ is a von Neumann algebra, and every
commutative von Neumann algebra is of this form. Hence, von Neumann algebras are
viewed as algebras of essentially bounded measurable functions on “noncommutative
probability spaces”.

The GNS representation associated to normal states on a von Neumann algebra is
defined similarly to the C �-algebra case.

2.1. Random walks and stationary dynamical systems

The theory of random walks on groups and their associated boundaries was introduced by
Furstenberg [25,26], and later studied extensively by various people. This theory provides
a framework to apply probabilistic ideas and methods in the study of analytic properties
of groups. Let us briefly recall the notion of random walks on discrete groups. We refer
the reader to [8, 23, 26] for more details.

Let � 2 Prob.�/ be generating, i.e. � is the semigroup generated by Supp.�/ D
¹g W �.g/ > 0º. The random walk on � with law � (or just the .�; �/-random walk)
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is the time-independent Markov chain with state space � , initial distribution ıe (the
Dirac probability measure supported at the neutral element e 2 �), and transition prob-
abilities p.g; h/ D �.g�1h/ for g; h 2 � . Thus, the probability of walking on the path
e; g1; g1g2; : : : ; g1g2 � � �gk on the first k C 1 steps is �.g1/�.g2/ � � ��.gk/.

The space of paths of the random walk is the probability space .�; P�/, where
� D �N and P� is the Markovian measure, that is, the unique probability on � defined
by

P�.¹! 2 � W !1 D g1; !2 D !1g2; : : : ; !k D !k�1gkº/

D �.g1/�.g2/ � � ��.gk/

for g1; g2; : : : ; gk 2 � and k 2 N.
For a fixed g 2 � it follows that P�.¹! 2 � W !n D gº/, the probability of the ran-

dom walk being in position g at the n-th step, is equal to �n.g/, where �n is the n-th
convolution power of �.

Alternatively, P� can be described as the push-forward of the Bernoulli measure
� � � � � � � under the transformation �N ! �N[¹0º, .gk/ 7! .!k/, where !0 D e and
!k D g1 � � �gk for k 2N. In probabilistic terms, gk is the increment and !k is the position
of the random walk at time k.

Suppose � Õ X is a continuous action on a compact space, and let � 2 Prob.�/.
A Borel probability measure � on X is called �-stationary if

� D
X
g2�

�.g/g�:

In this case we say .X; �/ is a .�; �/-space, and we write .�; �/ Õ .X; �/.
The basic feature of stationary measures is their existence. Unlike invariant measures,

on any compact �-space X there exists at least one �-stationary measure. While the
existence holds for arbitrary compact space, significant part of the theory is developed in
the context of metrizable compact spaces. The following is the fundamental result in this
context that builds the connection between stationary systems and the theory of random
walks.

Theorem 2.1 (Furstenberg). Let � be a �-stationary measure on a metrizable compact
�-space X . Then for P�-almost every path ! 2� the limit �! WD weak*-limn!n� exists.
Moreover,

� D

Z
�

�! dP�.!/:

The measures �! are called the conditional measures.
We will recall and prove other basic facts about stationary dynamical systems in the

more general setting of actions on C �-algebras in later sections.
Stationary actions are also defined in measurable setting. A nonsingular action

� Õ .Y; �/ is �-stationary if
P
g2� �.g/g� D �. Note that if X is a compact �-space,

and � 2 Prob.�/ is generating, then any �-stationary � 2 Prob.X/ is nonsingular.
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2.2. C �-dynamical systems

We briefly recall the notion of group actions on C �-algebras and establish the notation
and terminology that we will be using. We refer the reader to [19] for more details.

A unital C �-algebra A is called a �-C �-algebra if there is an action ˛ W � Õ A of �
on A by �-automorphisms, that is, ˛ is a group homomorphism � ! Aut.A/. A class of
examples of �-C �-algebras that are of main interest to our work is obtained as follows.
Let � W � !U.H�/ be a unitary representation on the Hilbert space H� (where U.H�/

is the group of unitary operators on H� ). Then � acts on B.H�/ by inner automorph-
isms, Adg.x/ WD �.g/x�.g�1/, g 2 � , x 2 B.H�/, as it also does on any C �-algebra
A � B.H�/ that is invariant under this action. In fact, every �-C �-algebra is formed in
the above fashion for some unitary representation of � .

In particular, for any unitary representation � W � ! U.H�/, the group � acts on

the C �-algebra C �� .�/ WD span¹�.g/ W g 2 �º
k�k
� B.H�/ by inner automorphisms.

Throughout the paper � Õ C �� .�/ denotes this action unless otherwise stated.
An important example is the left regular representation � W � ! U.`2.�// defined

by .�g�/.h/ D �.g�1h/, h 2 � and � 2 `2.�/. In this case C �
�
.�/ is called the reduced

C �-algebra of � .
The full C �-algebra C �.�/ of � is the universal C �-algebra generated by � in the

sense that for any unitary representation � W � ! U.H�/ there is a canonical surjective
�-homomorphism C �.�/! C �� .�/. We consider � as a subset of C �.�/ in the natural
way.

Similarly to compact spaces and probability measures (“the commutative case”), any
action � Õ A induces an adjoint action � Õ �.A/. We denote by ��.A/ the simplex of
all �-invariant states, that is, states � such that g� D � for all g 2 � . It is obvious that
��.A/ is compact in the weak� topology.

In the case of � acting on C �� .�/ by inner automorphisms, ��.C
�
� .�// coincides

with the set of all traces on C �� .�/. In particular, in the case of the reduced C �-algebra,
��.C

�
�
.�// is never empty as it contains the canonical trace �0 (or ��0 if we need to clarify

its association to �), namely the extension of the linear functional
P
cg�g 7! ce .

Similarly to the C �-algebra case, a source of examples of �-von Neumann algeb-
ras for us is the theory of unitary representations of groups. Let � W � ! U.H�/ be a
unitary representation on the Hilbert space H� . Then � acts on VN�.�/ by inner auto-

morphisms, where VN�.�/ WD ¹�.g/ W g 2 �º00 D span ¹�.g/ W g 2 �º
weak�

�B.H�/ is
the von Neumann algebra generated by the representation � . In the case of the left regular

representation, VN�.�/DC �� .�/
weak�

is called the group von Neumann algebra of � and
is denoted by L.�/. The canonical trace �0 extends to a normal trace on L.�/.

2.3. Crossed product C �-algebras

The bridge between the theories of operator algebras and (topological or measure-the-
oretical) dynamics is made by the crossed product construction. Loosely speaking, the
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crossed product C �-algebra associated to an action � Õ A is a C �-algebra that contains,
and is generated by, copies of A and � such that the action � Õ A in this bigger algebra
is by inner automorphisms.

We recall the more precise definition below and refer the reader to [19] for more
details.

Let � Õ A, and consider the Hilbert space `2.�;H /D ¹� W � !H j
P
g2� k�.g/k

2

< 1º. For g 2 � and a 2 A define the operators Q�.g/; �.a/ 2 B.`2.�; H // by
. Q�.g/�/.h/ D �.g�1h/ and .�.a/�/.h/ D .h�1a/�.h/. Then the C �-subalgebra of
B.`2.�;H // generated by Q�.�/ and �.A/ is called the reduced crossed product of the
action � Õ A, and is denoted by � Ër A. It can also be seen that C �.¹Q�.g/ W g 2 �º/ is
canonically isomorphic to C �

�
.�/.

The following simple lemma, which generalizes [4, Lemma 2], and in fact follows
from its proof, is key in allowing passage between classical and noncommutative settings.
We present a more elementary proof which was provided to us by Hanfeng Li. We thank
him for this, as well as for pointing out to us the crucial fact that [4, Lemma 2] is also
valid for actions on operator systems.

Lemma 2.2. Let � W � ! U.H�/ be a unitary representation. Suppose � is a state
on B.H�/ and g 2 � . If there is a 2 B.H�/ with 0 � a � 1 such that �.a/ D 1 and
�.�.g�1/a�.g// D 0, then �.�.g// D 0.

Proof. Since 0 � �.g�1/a�.g/ � 1 and �.�.g�1/a�.g//D 0 we get �.�.g�1/a2�.g//
D 0. Similarly, �..1 � a/2/ D 0, and the Cauchy–Schwarz inequality implies that
j�..1 � a/�.g//j � �..1 � a/2/�.1/ D 0. So we have

j�.a�.g//j D j�.�.g/�.g�1/a�.g//j D j�.�.g�1/a�.g/�.g�1//j

� �.�.g�1/a2�.g// D 0:

Hence �.�.g// D �.a�.g//C �..1 � a/�.g// D 0.

2.4. Positive definite functions, invariant and stationary random subgroups

A function � W � ! C is called a positive definite function (pdf) if for any n 2 N and
g1; : : : ; gn 2 � the matrix Œ�.gig�1j /�ni;jD1 is positive.

If � is a unitary representation of � on a Hilbert space H� , then for any state �
on C �� .�/ the function �.g/ D �.�.g// is a pdf on � . Conversely, if � is a pdf on � then
there is a unitary representation � (e.g. the GNS representation associated to � [19]), and
a vector � 2 H� such that �.g/ D h�.g/�; �iH� . This yields a canonical identification
between the weak� compact convex space �.C �.�// of all states on the full C �-algebra
of � , and the space P� of all pdf � W � ! C normalized by �.e/ D 1, endowed with
the pointwise convergence topology. In this correspondence, � is a trace if and only if �
is a character, i.e. a normalized conjugation invariant pdf (i.e. �.h�1gh/ D �.g/ for all
g; h 2 �).
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Let Sub.�/ be the space of all subgroups of � with the topology inherited from 2�

(known also as the Chabauty topology). It is a compact space, on which � acts by con-
jugation g:ƒ D g�1ƒg. A �-invariant Borel probability measure � is called an invariant
random subgroup (IRS) [1, 2]. If � is only �-stationary for some � 2 Prob.�/, we say
that � is a �-stationary random subgroup (�-SRS).

We denote by Suba.�/ the closed, �-invariant subset of Sub.�/ of all amenable sub-
groups.

Lemma 2.3. Let � be Borel probability measure on Sub.�/. Then the function ��.g/ D
�.¹ƒ W g 2 ƒº/ is positive definite. If moreover � is supported on Suba.�/, then there is a
state � on the reduced C �-algebra C �

�
.�/ such that ��.g/ D �.�g/ for every g 2 � .

Proof. Given a subgroup ƒ 2 Sub.�/, let 1ƒ denote its characteristic function. It is not
hard to see that 1ƒ 2 P� . The map Sub.�/ 3 ƒ 7! 1ƒ 2 P� is clearly continuous. Let
N� 2 Prob.P�/ be the push-forward of �. Then �� is the barycenter of N�.

If ƒ � � is an amenable subgroup, then the quasi-regular representation � on
`2.�nƒ/ is weakly contained in the regular representation of � , which implies 1ƒ cor-
responds to a state on C �

�
.�/. Hence if � is supported on amenable subgroups then the

barycenter of N� corresponds to a state � on C �
�
.�/.

3. Topological, measurable, and uniquely stationary boundaries

In this section we recall the notions of topological and measurable boundary actions of
discrete groups. We comment on advantages of each setting over the other, and prove that
a uniquely stationary measurable boundary (USB) is also a topological boundary. Thus,
in the framework of such systems we may apply both topological and measure-theoretical
techniques.

3.1. Topological vs. measurable boundaries

For more details on boundary actions we refer the reader to [23, 26, 29].

Definition 3.1 (Topological boundary actions). A continuous action � ÕX on a compact
space X is a topological boundary action if for every � 2 Prob.X/ and x 2 X there is a
net gi of elements of � such that gi� ! ıx in the weak� topology, where ıx is the Dirac
measure at x.

It can be shown that an action � Õ X is a topological boundary action if and only if
for every � 2 Prob.X/ the Poisson map P� is isometric [6].

Proposition 3.2 ([26]). There is a unique .up to �-equivariant homeomorphism/ max-
imal �-boundary @F� in the sense that every �-boundaryX is a continuous �-equivariant
image of @F� .

The maximal boundary @F� is called the Furstenberg boundary of � .
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Definition 3.3 (Measurable boundary actions). Let � 2 Prob.�/, and suppose � is a
�-stationary measure on a metrizable �-space X . The action .�; �/ Õ .X; �/ is a
�-boundary action if for almost every path ! D .!k/ 2 � of the .�; �/-random walk,
the sequence !k� converges to a Dirac measure ıx! .

In this case the map bnd W .�; P�/ ! .X; �/ defined by bnd.!/ D x! is called a
boundary map.

A measurable nonsingular action � Õ .Y; �/ is called a �-boundary action if it is �-
stationary and admits a compact metrizable model .X; �/ which is a �-boundary action
in the above sense.

Proposition 3.4 ([26]). There is a unique .up to �-equivariant measurable isomorphism/
maximal�-boundary .…�;�1/ in the sense that every�-boundary .X;�/ is a measurable
�-equivariant image of .…�; �1/.

The maximal �-boundary .…�; �1/ is called the Poisson boundary of the pair .�;�/
(also known sometimes as the Furstenberg–Poisson boundary).

One should note that since the Poisson boundary is defined up to measurable iso-
morphism, it should be considered as a measurable �-space.

Alternatively, boundaries can be characterized in terms of their function algebras. This
is key in allowing the use of algebraic tools in the study of boundary actions.

The operator-algebraic description of topological boundaries requires some notions
from the theory of injective envelopes as developed by Hamana [31]. Since we will not
use this in our work here, we only recall the main result regarding this characterization,
and refer the reader to [16, 41] for more details.

Theorem 3.5 ([41, Theorem 3.11]). Let � be a discrete group. Then C.@F�/ is the smal-
lest injective object in the category of unital �-C �-algebras.

TheL1-algebras of measurable boundaries are precisely invariant von Neumann sub-
algebras of the algebra of bounded harmonic functions.

Recall for � 2 Prob.�/ a function f 2 `1.�/ is said to be �-harmonic if

f .g/ D
X
h2�

�.h/f .gh/ for all g 2 �: (2)

We denote by H1.�; �/ � `1.�/ the space of all bounded �-harmonic functions.
Observe that H1.�; �/ is invariant under the action of � by left translations.

The space H1.�; �/ is not a subalgebra of `1.�/ in general, but the formula

f1 � f2.g/ WD lim
n!1

X
h2�

f1.h/f2.h
�1g/�n.h/ (3)

defines a multiplication on H1.�; �/ and turns it into a commutative von Neumann
algebra.

Proposition 3.6 (Furstenberg). The Poisson map P�1 defines a von Neumann algebra
isomorphism L1.…�; �1/ Š H

1.�; �/.
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In particular, a measurable nonsingular action � Õ .Y;�/ is a�-boundary if and only
if the Poisson map P� W L

1.X; �/! H1.�; �/ is a von Neumann algebra embedding.

Abstractly, we know where to find examples of boundary actions. Measurable bound-
aries appear whenever one has a stationary action, and topological boundaries arise
whenever one has an affine action on a compact convex space.

Proposition 3.7 (Furstenberg). Suppose .X; �/ is a .�;�/-space. Then the weak� closure
of the set ¹�! W ! 2 �º of conditional measures, with the push-forward of P� under the
map ! 7! �! , is a �-boundary. Moreover, every �-boundary arises in this way.

Proposition 3.8 ([29, Theorem III.2.3]). Suppose � ÕK is an affine action, and suppose
K has no proper �-invariant compact convex subspace. Then the closure of the extreme
points of K is a topological boundary. Moreover, every topological boundary of � arises
in this way.

The main advantage of measurable boundaries over their topological counterparts is
that they are much easier to concretely identify. In fact, there have been extensive work
in the past few decades which has led to concrete realization of the Poisson boundary
for many of the groups that arise naturally as symmetries of geometric objects. We dis-
cuss some examples below. In contrast, the Furstenberg boundary @F� of a nonamenable
countable group � is an extremally disconnected nonmetrizable space, and not concretely
realizable in any known case.

3.2. USB systems

The study of these systems was initiated by Furstenberg [26], who called them�-proximal
actions. They were further studied in [28, 46].

Definition 3.9. Let � 2 Prob.�/. We say that a �-boundary .X; �/ is a (�-)USB if it has
a compact model .K; N�/ such that N� is the unique �-stationary Borel probability measure
on K. If .X; �/ is the (�-)Poisson boundary, we say that .X; �/ is a (�-)Poisson-USB.

The following is a standard technique that allows us to assume that the topological
model of a USB is metrizable. This will be important for us as we will make heavy use of
the existence of conditional measures.

Lemma 3.10. Every USB .X; �/ has a compact metrizable model .K; N�/ such that N� is
the unique �-stationary Borel probability measure on K.

Proof. Let .K 0; �/ be a compact model of .X;�/ as in Definition 3.9. As abstract probabil-
ity spaces, �-boundaries are always standard. Therefore, using the fact that � is countable
we can choose a countable, �-invariant set of elements in C.K 0/ that includes a non-zero
constant function, and is weak� dense in L1.K 0; �/. Take K to be the spectrum of the
(sup-)norm closure of the algebra generated by this set, which is compact and metrizable.
Then K is a continuous �-equivariant image of K 0. Let N� be the push-forward of � to K.
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It follows (see Corollary 4.3) that N� is the unique �-stationary probability on K, and so
.K; N�/ is the desired compact metrizable model.

Many natural examples of Poisson boundaries are in fact USB, namely, the Pois-
son boundary is being realized as a unique stationary measure on a compact space. The
main tool for realizing the Poisson boundary on a compact space is the strip criterion
of Kaimanovich [38], which proves in many cases that the Poisson measure is actually
unique. To name some examples (by no means a complete list!), we mention linear
groups acting on flag varieties [18, 38, 45], hyperbolic groups acting on the Gromov
boundary [38], nonelementary subgroups of mapping class groups acting on the Thur-
ston boundary [39], and nonelementary subgroups of Out.Fn/ acting on the boundary of
the outer space [33]. We discuss properties of these actions further in Section 6.

Theorem 3.11. Let � 2 Prob.�/, and suppose .X; �/ is a �-USB. Then for any compact
model of .X; �/, the restriction of the action to the support of the unique �-stationary is
a topological boundary action.

Proof. To simplify notations, we assume X is already a compact model, that is, X is a
compact �-space and � 2 Prob.X/ is the unique �-stationary measure such that .X; �/
is a �-boundary. Note that by unique stationarity of �, its support is the unique minimal
component of X . Thus, by passing to Supp.�/ if necessary, we also assume � Õ X is
minimal.

Assume first that X is metrizable. We show Prob.X/ does not contain any proper
nonempty compact convex �-invariant subsets. Then the theorem follows from Proposi-
tion 3.8. Suppose C � Prob.X/ is a nonempty closed convex �-invariant set. Let � 2 C .
By �-invariance and closedness of C we have 1

n

Pn�1
kD0 �

k � � 2 C for all n 2 N. Note
any weak� cluster point of this sequence is �-stationary, hence by uniqueness assumption
� 2 C . As X is metrizable, and by the closedness of C we conclude that the conditional
measures �! are in C for P�-a.e. path ! 2 �. Since .X; �/ is a �-boundary, �! are
point measures for P�-a.e. !. In particular, there is some x 2 X such that ıx 2 C . By
�-invariance of C we get ıgx 2 C for every g 2 � , and therefore minimality of X and
closedness of C yield ¹ıx W x 2 Xº � C . Now the convexity of C implies Prob.X/ D
conv ¹ıx W x 2 Xº � C .

Now for the general case (not necessarily metrizable), let � 2 Prob.X/ and f 2C.X/.
Let A � C.X/ be the �-invariant C �-subalgebra generated by f . Then A D C.Y / for
a metrizable �-factor of X . Moreover, the push-forward of � on Y is the unique �-
stationary measure on Y (see Corollary 4.3 below), and thus by the above � Õ Y is a
topological boundary action. Therefore, we have kP�.f /k D kf k. This shows that the
Poisson map P� is isometric. Hence, we conclude X is a topological �-boundary.

Perhaps the most significant application of topological boundaries so far has been
in the problems of unique trace property and C �-simplicity: the existence of a faithful
topological boundary is equivalent to the unique trace property and the existence of a free
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boundary is equivalent to C �-simplicity. A subtlety in applying these characterizations is
that in general one has to pass to the maximal boundary, i.e. the Furstenberg boundary,
which is too “large” to concretely realize and work with.

But we will see, for example, that in order to determine the C �-simplicity and the
unique trace property of a group, it is enough to work with its USB actions (provided that
the group admits such), rather than abstract topological boundaries.

Recall that any group � admits a maximal normal amenable subgroup, called the
amenable radical of � . We denote this subgroup by Rad.�/.

Proposition 3.12. Suppose � Õ .X; �/ is a �-USB for some � 2 Prob.�/. Then Rad.�/
� ker.� Õ .X; �//, and equality holds if .X; �/ is the �-Poisson USB.

Proof. The first assertion can be proven by a straightforward modification of the proof
of [24, Proposition 7]. Alternatively, by Theorem 3.11 the action � Õ Supp.�/ is a topo-
logical boundary action, hence by the conclusion of [24, Proposition 7], Rad.�/ acts
trivially on Supp.�/, and so Rad.�/ � ker.� Õ .X; �//.

For the second part of the statement, if .X; �/ is the Poisson boundary, then the action
� Õ .X; �/ is Zimmer-amenable [53] and in particular the stabilizers Stab�.x/ are amen-
able for �-a.e. x 2 X . It follows that ker.� Õ .X; �// is a normal amenable group, and
so ker.� Õ .X; �// � Rad.�/.

4. Stationary C �-dynamical systems

Similarly to classical ergodic theory, invariant states may not exist for actions of non-
amenable groups on C �-algebras. For instance, in the case of inner action by subgroups of
the unitary group of a given C �-algebra, which is only nontrivial in the noncommutative
setting, the invariant ergodic theory is only available in the tracial case. Hence, one has
to appeal to other models of dynamical systems in infinite-type cases. In this section we
begin studying the concept of stationary dynamical systems in the context of C �-algebras.

Let � Õ A and let � 2 Prob.�/. The �-convolution map on A is defined by

� � a WD
X
g2�

�.g/g�1a:

Its adjoint induces a �-convolution operator on the space of states �.A/ given by

� � � D
X
g2�

�.g/g�:

Definition 4.1. Let A be a �-C �-algebra. A state � 2 �.A/ is said to be �-stationary if
� � � D � . In this case we say the pair .A; �/ is a .�; �/-C �-algebra.

We denote the collection of all �-stationary states on A by ��.A/. We say that A is
uniquely stationary if there exists � 2 Prob.�/ such that ��.A/ has only one element.



Y. Hartman, M. Kalantar 1798

4.1. Basic facts

In this section we review noncommutative versions of a few basic facts about stationary
actions. First, note that invariant states are �-stationary for every � 2 Prob.�/. Next, we
observe that in contrast to the invariant case, stationary states always exist, and moreover
they can always be extended. The corresponding statement of the latter in the commutative
setting is that any stationary measure on a factor can be “pulled back” (not necessarily in
a unique way) to a stationary measure on the extension.

Proposition 4.2. Suppose A is a �-C �-algebra and B �A is a �-invariant subalgebra.
Then every �-stationary � 2 ��.B/ can be extended to a �-stationary state � 2 ��.A/.

In particular, for any �-C �-algebra A and any � 2 Prob.�/, the set ��.A/ is
nonempty.

Proof. Let E D ¹� 2 �.A/ W �jB D �º. Then E is a compact convex subset of �.A/

and the convolution map by � is an affine contraction on E. Hence by the Tikhonov (or
Kakutani) fixed point theorem there is � 2 E such that � � � D � .

Corollary 4.3. Let A be a �-C �-algebra, and let B � A be a �-invariant C �-subal-
gebra. Suppose � 2 Prob.�/ and � 2 �.A/ is unique �-stationary. Then � jB 2 �.B/ is
unique �-stationary for the action � Õ B.

Let A be a �-C �-algebra. The Poisson map P� W A! `1.�/ associated to a state �
on A is defined by

P� .a/.g/ D hg
�1a; �i:

Poisson maps are unital, positive and �-equivariant. We observe the converse.

Lemma 4.4. Suppose ' WA! `1.�/ is a unital positive �-equivariant map. Then there
is � 2 �.A/ such that ' D P� .

Proof. Suppose ' is as above. Define the linear functional � on A by ha; �i D '.a/.e/
for all a 2A. Since ' is positive and unital, it follows that � is a state on A, and moreover

P� .a/.g/ D hg
�1a; �i D '.g�1a/.e/ D g�1.'.a//.e/ D '.a/.g/

for all g 2 � and a 2 A.

Lemma 4.5. Suppose A is a �-C �-algebra, and let � 2 Prob.�/. Then a state � 2 �.A/

is �-stationary if and only if P� .a/ 2 H
1.�; �/ for every a 2 A.

Proof. Suppose � is �-stationary. Then for every a 2 A and g 2 � we haveX
h2�

�.h/P� .a/.gh/ D
X
h2�

�.h/hh�1g�1a; �i D
D
g�1a;

X
h2�

�.h/h�
E

D hg�1a; �i D P� .a/.g/;

which shows P� .a/ 2 H
1.�; �/.
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Conversely, suppose P� .a/ 2 H
1.�; �/ for all a 2 A. ThenD

a;
X
h2�

�.h/h�
E
D

X
h2�

�.h/P� .a/.h/ D P� .a/.e/ D ha; �i

for all a 2 A, which implies
P
h2� �.h/h� D � .

The following fundamental result, which is the noncommutative version of The-
orem 2.1, follows from a more general result in the setting of affine pointed .�;�/-spaces
in the sense of [8, Theorem 2.16]. We include a proof for the convenience of the reader.

Theorem 4.6. Suppose .A; �/ is a separable .�; �/-C �-algebra. Then the weak� limits
�! WD limn !n� exists for P�-a.e. path ! 2 �. Moreover, we have

� D

Z
�

�! dP�.!/ (4)

in the weak� sense. We call the states �! conditional states.

Proof. The function f a.g/ WD ha; g�i is �-harmonic for every a 2 A by Lemma 4.5.
Therefore, by the martingale convergence theorem, the limit Nf a.!/ WD limn ha; !n�i

exists for P�-a.e. ! 2 �. Furthermore,
R
�
Nf a.!/ dP�.!/D �.a/ (cf. [8, Theorem 2.8]).

Now let D be a countable dense subset of A. By the above, there is a set �0 of
full measure such that Nf a.!/ exists for every a 2 D and ! 2 �0. By density of D ,
it follows that Nf a.!/ exists for every a 2 A and ! 2 �0. Hence the conditional states
�!.a/ WD limn !n�.a/D Nf

a.!/, a 2A, exist for every ! D .!n/ 2�0, and furthermore
(4) holds.

4.2. Unique stationary actions

In classical dynamics, unique ergodicity (i.e. existence of a unique invariant measure on a
compact space) is equivalent to uniform convergence of averages of continuous functions
in Birkhoff’s ergodic theorem. For general nonamenable groups, instead, the appropriate
notion is unique stationarity. Glasner–Weiss [28] proved that a .G; �/-space .X; �/ is
uniquely stationary if and only if for every f 2 C.X/ the averages 1

n

Pn�1
kD0 �

k � f of
convolutions converge uniformly to

R
fd�.

Proposition 4.7. An action .�; �/ Õ .A; �/ is uniquely stationary if and only if 1n n�1X
kD0

�k � a � �.a/1A

 n!1
����! 0 (5)

for all a 2 A.

Proof. Let �n D 1
n

Pn�1
kD0 �

k . Suppose (5) holds for all a 2 A, and let � 2 ��.A/. Then

ha; �i D ha; �n � �i D h�n � a; �i ! ha; �ih1A; �i D ha; �i

for all a 2 A. Hence � D � .



Y. Hartman, M. Kalantar 1800

Conversely, suppose � is the unique �-stationary state on A. Observe that for every
a 2 A we have k�n � .� � a � a/k ! 0. Thus, if we let V0 D span ¹� � a � a W a 2 Aº,
then k�n � bk ! 0 for all b 2 V0. Also by stationarity, � vanishes on V0. Consequently,
for t 2 C and b 2 V0 we get

k�n � .t1A � b/ � ht1A � b; �i1Ak D kt1A � �n � b � ht1A; �i1Ak D k�n � bk ! 0;

which shows that (5) holds for every a 2 V D C ˚ V0. Next, we show V D A, which
completes the proof of the theorem. For this, let � 2A� with �jV D 0. Since � vanishes on
V0 we see that � is �-stationary. It follows from uniqueness of the Jordan decomposition
�D �C � �� that both the positive part �C and the negative part �� of � are �-stationary,
hence are multiples of � by unique stationarity. In particular, � is a multiple of � , and since
�.1/D 0we have �D 0. Thus, it follows from the Hahn–Banach theorem that V DA.

4.3. Inner actions: stationary states as generalizations of traces

An exclusive feature of noncommutative C �-algebras is nontriviality of the inner action
by their unitary groups. This allows one to consider a C �-algebra A as rather a C �-
dynamical system. In this point of view, traces on A are nothing but invariant states, which
may or may not exist in general. Thus, stationary states are generalizations of traces that
do always exist, and in fact may be more appropriate objects to consider when the groups
involved are nonamenable.

In this section, we prove some basic properties of stationary states in this setup, and
see that they satisfy some useful properties of traces.

Lemma 4.8. Suppose � is a unitary representation of � , and consider the action
� Õ C �� .�/ by inner automorphisms. Let � 2 Prob.�/ be generating, and suppose �
is a �-stationary state on C �� .�/. Then the left kernel I� D ¹a 2 C �� .�/ W �.a

�a/ D 0º

of � is a two-sided closed ideal of C �� .�/.

Proof. The inequality a�b�ba � kb�bka�a for operators on Hilbert spaces implies the
well-known fact that the left kernel of any state is a left ideal. It is also obviously closed.
We show I� is also �-invariant. Let a 2 I� . ThenX

g2�

�.g/�
�
.�.g�1/a�.g//�.�.g�1/a�.g//

�
D

X
g2�

�.g/�.�.g�1/a�a�.g//

D �.a�a/ D 0;

which implies �..�.g�1/a�.g//�.�.g�1/a�.g/// D 0 for every g 2 Supp.�/. This
implies �.g�1/I��.g/� I� for every g 2 Supp.�/. Since � is generating the same is true
for every g 2 � . Thus, for every finite linear combination b D

Pn
iD1 ti�.gi / 2 C

�
� .�/,

ti 2 C, and every a 2 I� , there are a1; : : : ; an 2 I� such that

ab D

nX
iD1

tia�.gi / D

nX
iD1

ti�.gi /ai ;

and the latter sum is in I� since it is a left ideal. This shows I� is also a right ideal.
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Since every ideal of a C �-algebra is invariant with respect to the inner action by the
unitary group, the problem of simplicity of a C �-algebra translates into a minimality
problem for a noncommutative dynamical system. Hence connection to stationarity is
expected.

Proposition 4.9. Let � be a unitary representation of � . The C �-algebra C �� .�/ is
simple if and only if there is a generating � 2 Prob.�/ such that every �-stationary state
on C �� .�/ is faithful.

Proof. If C �� .�/ is simple and � 2 Prob.�/ is generating, then by Lemma 4.8 every
�-stationary state is faithful.

Conversely, suppose for some generating � 2 Prob.�/, all �-stationary states are
faithful. Assume for the sake of contradiction that C �� .�/ has a nontrivial proper ideal I .
Since every ideal is invariant under the inner action of � , the action � Õ C �� .�/ induces
an action � Õ C �� .�/=I . By Proposition 4.2 there exists a �-stationary state � on
C �� .�/=I . Composing � with the canonical quotient map C �� .�/! C �� .�/=I we obtain
a �-stationary state on C �� .�/ that vanishes on I , which contradicts the assumption.

We note that the condition of� being generating is only needed for one direction of the
above. In fact, if A is a unital C �-algebra, and there is a countably supported probability
measure � on the unitary group U.A/ such that every �-stationary state on A is faithful,
then A is simple.

An important special case is the reduced C �-algebra.

Corollary 4.10. If � Õ C �
�
.�/ is uniquely stationary then � is C �-simple.

Proof. The canonical trace �0 is �-invariant, and hence �-stationary for any �. Recall
also that �0 is faithful. The corollary now follows from Proposition 4.9.

In Section 5 we will prove the converse of this, which provides a new characterization
of C �-simplicity. But at this point some concrete examples are in order. In particular, we
demonstrate how in general unique stationarity can be deduced.

Here and throughout the paper, F2 denotes the free group on two generators a and b,
and @F2 denotes its Gromov boundary, which is a compact space naturally identified with
the set of all infinite reduced words in the generators. We have the natural action F2 Õ @F2
by concatenation with the subsequent cancellation of pairs of consecutive inverses.

Example 4.11. Let � 2 Prob.F2/ be the uniform measure on the set ¹a; a�1; b; b�1º of
generators. We show the canonical trace �0 is the unique �-stationary state on C �

�
.F2/.

One can see that the “uniform measure” on @F2, given by �.Œw�/ D 1
4�3n�1

where w is a
finite word of length n and Œw� is the set of all infinite reduced words that start with w, is
the unique �-stationary probability on @F2. Moreover, .@F2; �/ is a �-boundary.

Now, let � be a �-stationary state on C �
�
.F2/. By Proposition 4.2 we can extend �

to a �-stationary state Q� on F2 Ër C.@F2/, where F2 Õ F2 Ër C.@F2/ is also by inner
automorphisms. Then Q� jC.@F2/ is stationary and by uniqueness, this restriction is �. Hence
Q�! jC.@F2/ D ıbnd.!/ for a.e. ! 2�, where bnd W .�;P�/! .@F2; �/ is the boundary map.
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It is obvious that the action F2 Õ .@F2; �/ is essentially free. Hence, it follows from
Lemma 2.2 that for every nontrivial g 2 F2, �!.�g/D 0 for P�-a.e. !. Thus, �! D �0 for
P�-a.e. path ! 2 �. Thus, applying Theorem 4.6 we get

� D

Z
�

�! dP�.!/ D �0;

which shows �0 is the unique �-stationary state on C �
�
.F2/.

We note that in the above reasoning there is nothing particularly special about the
uniform measure. The above conclusion holds for any generating measure on F2. In fact,
there is nothing particularly special about the free group here, the conclusion holds for
any measure � on any groups � that admits an essentially free �-USB.

Theorem 4.12. Suppose � is a countable discrete group, and let � 2 Prob.�/. If �
admits an essentially free �-USB, then the canonical trace �0 on C �

�
.�/ is uniquely �-

stationary.

Proof. Repeat the argument given in Example 4.11 above on a metrizable model of the
USB (such a model exists by Lemma 3.10).

In particular, any such group � is C �-simple. Of course if .X; �/ is an essentially
free USB, by Theorem 3.11 the action � Õ Supp.�/ is a topologically free topological
boundary, hence � is C �-simple by the results of [16]. However, for those groups with
essentially free USB actions, the above theorem, besides giving a much simpler proof
of C �-simplicity, reveals more than just C �-simplicity of � , namely, a probability � 2
Prob.�/ with respect to which the canonical trace is uniquely stationary. In Section 5 we
will prove that the existence of such � is equivalent to C �-simplicity of � , and we deduce
various properties of boundaries and random subgroups associated to such measures.

Next we give an example of a faithful uniquely stationary state on a purely infinite
C �-algebra.

Example 4.13. Let A D F2 Ër C.@F2/, and let � 2 Prob.F2/ be generating. As usual,
let �0 denote the canonical trace on C �

�
.F2/. Also, let � 2 Prob.@F2/ be the unique

�-stationary probability on @F2. Now suppose � 2 ��.A/. Then � jC.@F2/ D �, and
by Example 4.11 above, � jC�

�
.F2/ D �0. Hence, we have �! jC.@F2/ D ıbnd.!/ and

�! jC�
�
.F2/ D �0 for a.e. path ! 2 �. So for a linear combination

P
g2F2

fg�g where
fg 2 C.@F2/ is nonzero for at most finitely many g 2 � , using the fact that ıbnd.!/ is
multiplicative on C.@F2/, we see thatDX
g2F2

fg�g ; �!

E
D

X
g2F2

fg.bnd.!//h�g ; �!i D
X
g2F2

fg.bnd.!//�0.�g/ D fe.bnd.!//

for a.e. path ! 2 �. Thus, from (4) it follows thatDX
g2F2

fg�g ; �
E
D

Z
�

DX
g2F2

fg�g ; �!

E
dP�.!/ D

Z
�

fe.bnd.!// dP�.!/ D

Z
@F2

fe d�:
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Since the set of all finite linear combinations
P
g2F2

fg�g is dense in A, this formula
uniquely determines � . Note also � D � ı E, where E W A ! C.@F2/ is the canonical
conditional expectation

P
g2F2

fg�g 7! fe (see e.g. [19]). Since both E and � D � jC.@F2/
are faithful, so is � . In particular, this also implies the well-known fact that F2 Ër C.@F2/
is simple (see e.g. [4]).

Similarly, normal stationary states with respect to the inner action by the unitary group
of a von Neumann algebra can provide a suitable replacement for normal traces in the case
of nonfinite von Neumann algebras.

Proposition 4.14. Let M be a von Neumann algebra and � a group of unitaries in M .
Suppose for the action � Õ M by inner automorphisms, M admits a faithful unique
normal �-stationary state � for some � 2 Prob.�/. Then M is a factor.

Proof. Suppose that M is not a factor, and let p 2 M be a nontrivial central projection.
Let � 2 Prob.�/ and suppose that � 2 M� is a faithful normal �-stationary state. Set
�1 WD

1
�.p/

�.�p/. Then �1 2 M� is a normal state and using the fact that every central
element is fixed by � , we getX

g2�

�.g/�1.g
�1a/ D

1

�.p/

X
g2�

�.g/�..g�1a/p/ D
1

�.p/

X
g2�

�.g/�.g�1.ap//

D
1

�.p/
�.ap/ D �1.a/

for all a 2M , which shows �1 is �-stationary. Similarly, �2 WD 1
�.1�p/

�.�.1�p// is a nor-
mal �-stationary state, and obviously � D �.p/�1C �.1� p/�2. But since �1.1� p/D 0,
we have � ¤ �1, hence � is not the unique normal �-stationary state on M .

Example 4.15. We follow the notations of Example 4.13. The von Neumann algebra
crossed product M D F2 ËL1.@F2; �/ is a type III factor. The set of all linear combina-
tions

P
g2F2

fg�g , where fg 2L1.@F2; �/ is nonzero for at most finitely many g 2 F2, is
weak� dense inM . The map

P
g2F2

fg�g 7! fe extends to a faithful normal conditional
expectation E W M ! L1.@F2; �/. Thus

P
g2F2

fg�g 7!
R
@F2

fe d� defines a faithful
normal state � on M . Note that the reduced C �-crossed product A D F2 Ër C.@F2/ is
an F2-invariant weak� dense C �-subalgebra. From Example 4.13 we know � jA is �-
stationary, where � 2 Prob.F2/ is any generating probability. Since � is normal and A is
weak� dense in M , it follows � is a �-stationary state on M . Moreover, if � 0 is another
normal �-stationary state on M , then its restriction � 0jA is again �-stationary, hence
equal to � jA by the unique stationarity property established in Example 4.13. Since both
� and � 0 are normal and A is weak� dense in M , it follows that � 0 D � , which implies
unique stationarity of � .

Example 4.16 (Noncommutative USB). Noncommutative Poisson boundaries were
defined by Izumi [35]. This concept has found many important applications in vari-
ous operator-algebraic contexts. Let us briefly recall the definition. Suppose M is a
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von Neumann algebra, and ˆ W M ! M is a Markov operator, i.e. a unital completely
positive normal map. Then the fixed point space Fix.ˆ/D ¹x 2M Wˆ.x/D xº is a unital
self-adjoint weak� closed subspace of M , and there is a positive contractive idempotent
E W M ! Fix.ˆ/. Endowed with the Choi–Effros product, x ı y WD E.xy/, the space
Fix.ˆ/ becomes a von Neumann algebra, called the Poisson boundary of ˆ, and denoted
by H1.M;ˆ/.

A class of examples of Markov operators are obtained from canonical extensions
of convolution operators, as follows. Let � 2 Prob.�/, and define ˆ� W B.`2.�// !
B.`2.�// by ˆ�.x/ D

P
g2� �.g/�gx�g�1 , where � W � ! U.`2.�// is the right reg-

ular representation. Then ˆ� is a Markov map on B.`2.�//, and Izumi proved [36] that
the Poisson boundaryH1.B.`2.�//;ˆ�/ is canonically isomorphic to the von Neumann
crossed product � ËH1.�; �/.

Now, for instance, continuing to follow the notations of Example 4.13, M D
F2 Ë L1.@F2; �/ is identified with the Poisson boundary of the Markov map ˆ� where
� is the uniform measure on the set of generators. Note also that M is the von Neumann
algebra generated by the reduced crossed product A D F2 Ër C.@F2/ in the GNS rep-
resentation of the unique stationary state � 2 �.A/. Thus, the C �-dynamical system
� Õ .A; �/ gives an example of a noncommutative Poisson USB.

Example 4.17. Suppose � WC �
�
.F2/!B.H�/ is an irreducible representation. Consider

the inner action � Õ B.H�/ by unitaries �.�g/, g 2 � . Let � 2 Prob.F2/ be generat-
ing, in particular Supp.�/00 D B.H�/. We show in this case B.H�/ does not admit any
normal �-stationary state. Note first that simplicity of C �

�
.F2/ implies � is injective. Sup-

pose � 2 B.H�/� is a �-stationary state. Then � j�.C�
�
.F2// is �-stationary, hence equals

the canonical trace �0 by Example 4.11. Since � is normal, and tracial on a weak� dense
subalgebra, it follows that � is a normal trace on B.H�/, which implies H� is finite-
dimensional. But that cannot be the case since � W C �

�
.F2/! B.H�/ is injective.

5. A new characterization of C �-simplicity

In this section we prove a new characterization of C �-simplicity of a group � in terms of
unique stationarity of the action � Õ C �

�
.�/.

The following more general statement makes the connection between these properties
more explicit.

Theorem 5.1. Let A be a separable unital �-C �-algebra with a �-invariant state � .
Then the following are equivalent:

(i) The triple .�;A; �/ satisfies the Powers property: for every x 2 A and " > 0, there
exists �0 2 Prob.�/ such that k�0 � x � �.x/1k < ".

(ii) There exists � 2 Prob.�/ such that � is the unique �-stationary state on A.

Proof. The implication (ii))(i) follows from Proposition 4.7.
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The proof of (i))(ii) follows a similar construction to one in Kaimanovich–Vershik’s
proof [40, Theorem 4.3] of Furstenberg’s conjecture.

Assume (i) holds. Choose an increasing sequence ¹nkº of positive integers such that
.
Pk
iD1

1

2i
/nk < 1

2k
for all k 2 N. Let ¹aiºi2N be a dense subset of the unit ball of A.

Using the above, for every l 2 N choose �l inductively so that

k�l � �kr � � � � � �k1 � as � �.as/1Ak <
1

2l

for all 1 � s; k1; : : : ; kr < l , and r < nl . Let � D
P1
lD1

1

2l
�l 2 `

1.�/. Given any a in
the unit ball of A and " > 0, let j 2 N be such that ka � aj k < " and 1=2j < ". Then

k�nj � a � �.a/1Ak �
�nj � a � �nj � ajC k�nj � aj � �.aj /1Ak

C k�.aj /1A � �.a/1Ak

< 2"C k�nj � aj � �.aj /1Ak:

We expand and split the term k�nj � aj � �.aj /1Ak as follows: X
maxki�j

1

2
knj : : : 2k1

�knj � � � � ��k1 � aj C
X

maxki>j

1

2
knj : : : 2k1

�knj � � � � ��k1 � aj

�

� X
maxki�j

1

2
knj : : : 2k1

�
�.aj /1A �

� X
maxki>j

1

2
knj : : : 2k1

�
�.aj /1A


�

 X
maxki�j

1

2
knj : : : 2k1

.�knj � � � � � �k1 � aj � �.aj /1A/


C

 X
maxki>j

1

2
knj : : : 2k1

.�knj � � � � � �k1 � aj � �.aj /1A/


� 2kaj k

X
maxki�j

1

2
knj : : : 2k1

C

X
maxki>j

1

2
knj : : : 2k1

k�knj �� � ���k1 �aj ��.aj /1Ak

D 2kaj k

� jX
iD1

1

2i

�nj
C

X
maxki>j

1

2
knj : : : 2k1

k�knj � � � � � �k1 � aj � �.aj /1Ak

� 2"C
X

maxki>j

1

2
knj : : : 2k1

k�knj � � � � � �k1 � aj � �.aj /1Ak:

Now consider one of the terms �knj � � � � � �k1 � aj in the last sum above and let kj be
the first index such that kj > j . Then we have

k�knj � � � � � �k1 � aj � �.aj /1Ak � k�kj � � � � � �k1 � aj � �.aj /1Ak < ";

where the last inequality follows from the construction of ¹�lº. This impliesX
maxki>j

1

2
knj : : : 2k1

k�knj � � � � � �k1 � aj � �.aj /1Ak < ":
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Hence we get k�nj � a � �.a/1Ak < 5". Since k�k D 1, this yields

k�n � a � �.a/1Ak D k�
n�nj � �nj � a � �.a/1Ak � k�

nj � a � �.a/1Ak < 5"

for all n > nj . Hence

k�n � a � �.a/1Ak
n!1
����! 0

for all a 2 A, which by Proposition 4.7 implies that � is the unique �-stationary state
on A.

Now, combining Theorem 5.1 with Haagerup’s characterization of C �-simplicity
in [30, Theorem 4.5], we get the following.

Theorem 5.2. A countable discrete group � is C �-simple if and only if there exists
� 2 Prob.�/ such that the canonical trace �0 is the unique �-stationary state on C �

�
.�/

with respect to the �-action by inner automorphisms.

Proof. Assume � is C �-simple. Let f D
P
g2� f .g/ıg be a function on � with finite

support, and fix "0 > 0. We denote by �.f / D
P
g2� f .g/�g the left regular represent-

ation of f . By [30, Theorem 4.5] there are h1; : : : ; hn 2 � such that1n nX
kD1

�h�1
k
ghk

 < "0
for all g 2 Suppf n ¹eº. We then have1n nX

kD1

�h�1
k
�.f /�hk � �0.�.f //1C�� .�/

 D X
g2�

1

n

nX
kD1

f .g/�h�1
k
ghk
� �0.�.f //�e


�

X
g¤e

 1n nX
kD1

f .g/�h�1
k
ghk

C 1

n
k
�
f .e/ � �0.�.f //

�
�ek

D

X
g¤e

jf .g/j

 1n nX
kD1

�h�1
k
ghk


� kf k1

X
g2Suppf n¹eº

 1n nX
kD1

�h�1
k
ghk

 < kf k1#¹Suppf º"0:

Now, let finitely supported functions f1; : : : ; fj on � , and " > 0 be given. Let F DSj
iD1 Supp fi , and c D maxi kfik1. Then, setting "0 D "=.c#F / in the above calcula-

tions, there are h1; : : : ; hn 2 � such that for �0 D 1
n

Pn
kD1 ıh 2 Prob.�/ we have

k�0 � �.fi / � �0.�.fi //1C�
�
.�/k < "

for all i D 1; : : : ; j . Since the set ¹�.f / W f has finite supportº is norm-dense in C �
�
.�/,

for any given a1; : : : ; aj 2 C �� .�/ and " > 0, we may find �0 2 Prob.�/ such that

k�0 � ai � �0.ai /1C�
�
.�/k < "
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for all i D 1; : : : ; j . Hence, by Theorem 5.1, there is � 2 Prob.�/ such that �0 is the
unique �-stationary state on C �

�
.�/.

The converse follows from Corollary 4.10.

5.1. C �-simple measures

In this section we prove several properties of the measures � that “capture” C �-simplicity
in the sense of Theorem 5.2. We see that these measures possess significant ergodic-
theoretical properties. Thus, in some sense, one should consider C �-simplicity of � as a
property of the measure(s) � 2 Prob.�/ in Theorem 5.2.

Definition 5.3. We say that a measure � 2 Prob.�/ is C �-simple if the canonical trace
�0 is the unique �-stationary state on C �

�
.�/.

Theorem 5.4. Suppose � 2 Prob.�/ is C �-simple. Then any measurable �-stationary
action with almost surely amenable stabilizers is essentially free.

In particular, any Zimmer-amenable �-stationary action .e.g. the Poisson boundary
action � Õ .…�; �1// is essentially free.

Proof. Suppose � 2 Prob.�/ is C �-simple, and let � Õ .X; �/ be a measurable �-
stationary action such that Stab�.x/ is amenable for �-almost every x 2 X .

Consider the map ‰ W X ! Sub.�/ defined by ‰.x/ D Stab�.x/. Then � D ‰�� is
an amenable �-SRS of � . Therefore by Lemma 2.3 there is a state � on C �

�
.�/ such that

�.�g/D �.¹ƒ W g 2 ƒº/ for all g 2 � . Since �.¹ƒ W g 2 ƒº/D �.¹x W g 2 Stab�.x/º/D
�.Fix.g//, and since � is �-stationary, it follows thatX

g2�

�.g/�.�g�1�h�g/ D
X
g2�

�.g/�.Fix.g�1hg// D
X
g2�

�.g/�.g�1Fix.h//

D

X
g2�

�.g/g�.Fix.h// D �.Fix.h// D �.�h/;

which shows � is �-stationary. Hence, � D �0, which yields �.Fix.g// D 0 for all non-
trivial g 2 � , i.e. � Õ .X; �/ is essentially free.

Essential freeness of the abstract Poisson boundary has some ergodic-theoretical con-
sequences, for example it implies genericity of stationary measures (see [14]).

The following corollary is a weaker conclusion of Theorem 5.4 at the topological
level.

Corollary 5.5 (see also [16, Proposition 7.6 & Remark 7.7]). Suppose � is C �-simple.
Then any minimal action � Õ X on a compact space with amenable stabilizers is topo-
logically free, that is, the set ¹x 2 X W Stab�.x/ is trivialº is dense in X .

Proof. Since by Proposition 4.2 every compact �-space admits a stationary measure, it
follows from Theorem 5.4 that there is some x 2 X which has trivial stabilizer, and so
does every point in its orbit. Now the assertion follows from minimality.
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Also, Theorems 5.4 and 4.12 imply the following measurable version of the main
result of [41].

Corollary 5.6. If � is C �-simple then � admits an essentially free measurable boundary
action, and, conversely, � is C �-simple if it admits an essentially free �-USB for some
� 2 Prob.�/.

In [7] Bader, Duchesne and Lecureux proved that every amenable IRS of a group � is
supported on its amenable radical Rad.�/. Consequently, Rad.�/ is trivial if and only if
ı¹eº is the unique invariant probability measure on Suba.�/; or that � has the unique trace
property if and only if � Õ Suba.�/ is uniquely ergodic. Thus, the following is a more
concrete evidence that the difference between the unique trace property andC �-simplicity
is indeed the difference between unique ergodicity and unique stationarity.

Corollary 5.7. If � is a C �-simple measure on � then .�; �/ Õ .Suba.�/; ı¹eº/ is
uniquely �-stationary.

Conversely, if � is not C �-simple then .�; �/ Õ .Suba.�/; ı¹eº/ is never uniquely
stationary.

Proof. Suppose that � is C �-simple, and let � be an amenable �-SRS of � . As shown
in the proof of Theorem 5.4, the function g 7! �.¹ƒ W g 2 ƒº/ extends to a �-stationary
state C �

�
.�/. Thus, by unique stationarity of the canonical trace, we get

�.¹ƒ W g 2 ƒº/ D 0

for every nontrivial g 2 � . Hence

�.Sub.�/n¹eº/ D �
�[
g¤e

¹ƒ W g 2 ƒº
�
�

X
g¤e

�.¹ƒ W g 2 ƒº/ D 0;

which implies � D ı¹eº.
Conversely, if � is not C �-simple, then by [42, Theorem 1.1], � has a nontrivial

amenable URS (that is, a minimal subset of Suba.�/ which is not the fixed point ¹eº).
But any URS supports a �-stationary probability for any � 2 Prob.�/. Hence ı¹eº is not
unique stationary on Suba.�/ for any � 2 Prob.�/.

Remark 5.8. Note that since for any � 2 Prob.�/ every URS supports a �-SRS, it fol-
lows from the above corollary that every amenable URS of a C �-simple group � is trivial.
This is one direction of one of the main results of [42]. In the proof above, we are using
the other direction of that result.

It is natural to ask whether a generalization of the result of Bader–Duchesne–Lecureux
about amenable IRS, which was mentioned above, holds for stationary random subgroups.
It is evident that the argument presented in [7, Theorem 1.4] cannot be extended to the
stationary case, and in fact any nonC �-simple group � with trivial amenable radical has
a nontrivial amenable SRS. But rephrasing the above corollary, it implies � is C �-simple
if and only if there is � 2 Prob.�/ such that every amenable �-SRS of � is trivial.
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6. Freeness of USB: identifying C �-simple measures

Our proof of the existence of C �-simple measures (Theorem 5.2) is not completely con-
structive. But, in light of the results of Section 5.1, it is natural to ask for concrete
examples ofC �-simple measures. In this section we present several approaches to proving
that a given measure is C �-simple.

6.1. Noetherian actions

For a probability space .X; �/ we denote by MALG.�/ its measure algebra, that is, the
Boolean algebra of equivalence classes of measurable sets modulo �-null sets. It is a
partially ordered set with respect to inclusion, and if � acts on .X; �/ then it clearly acts
on MALG.�/.

Definition 6.1. Let � Õ .X; �/ be a measurable action. We say that a collection F �

MALG.�/ is a �-Noetherian lower semilattice (NLS) if F is �-invariant, closed under
intersections, and any descending chain Y1 � Y2 � � � � in F stabilizes.

The main result of this section is the following theorem, which is a generalization of
the well-known fact that (noninvariant) ergodic stationary actions are atomless, and also
of [39, Lemma 2.2.2]. We are grateful to Uri Bader for suggesting this direction.

Theorem 6.2 (0-1 law for Noetherian actions). Let � Õ X , and let � 2 Prob.�/ be
generating. Suppose � 2 Prob.X/ is an ergodic �-stationary measure such that .X; �/
has no nontrivial finite factor. If F is a �-NLS collection in MALG.�/, then �.Y / 2 ¹0; 1º
for any Y 2 F .

Proof. We prove the theorem by Noetherian induction with respect to inclusion.
Let Y 2 F and assume �.Z/ 2 ¹0; 1º for anyZ < Y , and for the sake of contradiction

suppose 0 < �.Y / < 1. Then �.Z/ D 0 for any Z < Y , and in particular, for any g 2 � ,
either gY D Y or �.Y \ gY / D 0. By nonsingularity of � it moreover follows that for
any g;h 2 � either gY D hY or �.gY \ hY /D 0. Therefore, by ergodicity, we have 1D
�.
S
g gY /D

P
Œg� �.gY /, where Œg� is the equivalence class of all h such that hY D gY .

In particular, the set of numbers ¹�.gY /º � Œ0; 1� has a maximum. Observe that these
numbers are the values of a bounded harmonic function (the Poisson map of 1Y ). But a
bounded harmonic function with a maximum must be constant. Hence there are finitely
many g1; : : : ; gn 2 � such thatX D

Fn
iD1 giY , and �.giY /D 1=n for every i D 1; : : : ; n.

Since �.Y / < 1 we must have n > 1. But this means .X; �/ has a nontrivial finite factor,
which contradicts the assumptions.

It is well known that �-boundaries do not admit nontrivial invariant factors and hence
we get the following.

Corollary 6.3. Let .X; �/ be a �-boundary and assume there is a �-NLS F �MALG.�/
such that Fix.g/ 2 F for all g 2 � . Then every g 2 � acts on X either trivially or essen-
tially freely. In particular, if � Õ .X; �/ is faithful, it is essentially free.
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Example 6.4 (Algebraic actions). Let k be a local field, and let G.k/ Õ V.k/ be an
algebraic action of a k-algebraic group on a k-variety. Let � � G.k/ be a countable
subgroup, and let F denote the family of all subvarieties of V.k/. Then F is a �-NLS.
Let � 2 Prob.�/ be generating, and suppose � 2 Prob.V.k// is such that .V.k/; �/ is a
�-boundary. Then by Theorem 6.2 every subvariety has trivial �-measure. Furthermore,
since the action is algebraic, Fix.g/ 2 F for all g 2 � and so by Corollary 6.3 every
faithful �-boundary algebraic action is essentially free.

Recall that a �-spaceX is said to be mean-proximal ifX is a�-USB for all generating
� 2 Prob.�/. We say that a mean-proximal space X is essentially free if for every gener-
ating � 2 Prob.�/ the action � Õ .X; ��/ is essentially free, where �� 2 Prob.X/ is the
unique �-stationary measure. In the following, to conclude C �-simplicity of the measures
in question, we construct a mean-proximal space and verify the essential freeness using
the 0-1 law above.

In the proof of the following theorem, we need at a certain step to extend an essentially
free mean-proximal action of a finite index normal subgroup. We prove, jointly with Uri
Bader, the required extension results for mean-proximal actions in Appendix A.

Theorem 6.5. Let � be a finitely generated linear group with trivial amenable radical.
Then any generating measure on � is C �-simple.

Proof. Let H denote the Zariski closure of � and denote by H0 GH the connected com-
ponent of the identity. Since Rad.�/ D ¹eº we may assume that H0 is also semisimple.
Now let �0 D � \H0. Then �0 G � and Œ� W �0� <1. By Theorem A.4 in Appendix A,
it is enough to find an essentially free metrizable �0-mean-proximal space. To construct
such a space, we show that for any given g ¤ e 2 �0, there exists a metrizable �0-mean-
proximal space Xg on which g acts essentially freely. Then the product of all Xg is the
desired essentially free �0-mean-proximal space, by Lemma A.1.

Fix some g¤ e 2�0. Observe that Rad.�0/D¹eº and hence we can find an element h
in the normal closure of g with an eigenvalue ˛ which is not a root of unity. Let R1 be the
finitely generated ring generated by the entries of the matrices of �0, and let R2 be the
finitely generated ring generated by the polynomials that define H0. So R D hR1; R2; ˛i
is a finitely generated ring and I D ¹˛zºz2Z � R is infinite. By a result of Breuillard and
Gelander [15, Lemma 2.1] (see also [52, Lemma 4.1]) we can find an embedding R � k,
where k is a local field, such that I � k is unbounded. Consider �0 as a subgroup of
GLn.k/. Then hz 2 �0 has an eigenvalue whose absolute value is greater than 1 for some
z 2 Z. In particular, �0 is not relatively compact in H0.k/. Thus, �0 is Zariski dense in
the k-group H0, which is connected and semisimple. Hence, by the results of Margulis
[46, Lemmas IV.4.4 and IV.4.5], there exists an irreducible representation � W H0.k/!

GLm.k/ such that �.hz/ is proximal for some z 2Z. Thus we may apply another result of
Margulis [46, Theorem IV.3.7] to conclude that the projective space P .km/ is �0-mean-
proximal, and as �.hz/ is proximal, it acts nontrivially. Since hz is in the normal closure
of g, it follows that g acts nontrivially on P .km/. Now if � 2 Prob.�0/ is generating, and
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� 2 Prob.P .km// is the unique �-stationary measure, then by the 0-1 law (Theorem 6.2)
and Example 6.4, g acts �-essentially freely on P .km/.

6.2. Groups with countably many amenable subgroups

As mentioned before, there are many results on concrete realization of the Poisson bound-
ary on a natural USB. Taking advantage of this, in the following we use some of the main
results in this context to provide further examples of C �-simple measures.

In [14] it is shown that if a group has only countably many amenable subgroups, then
the action on the (abstract) Poisson boundary is essentially free for any generating �.
Thus any generating measure � on such a group, for which there exists a �-Poisson USB,
is a C �-simple measure.

A good source of examples of groups with countably many amenable subgroups is
the class of groups satisfying a “finitely generated” version of the Tits alternative. By
that we mean any subgroup that does not contain a free subgroup, is a finitely generated
amenable group. Examples of such groups are mapping class groups [12, 34, 47] and
Out.Fn/ [10, 11].

Example 6.6. Let � be hyperbolic group and let ƒ � � be a nonelementary subgroup
with trivial amenable radical. Then the Gromov boundary of � is an essentially free
�-USB for any generating measure � on ƒ [38]. Hence, any generating measure on ƒ is
C �-simple.

Theorem 6.7. Let � be a mapping class group.

(1) If Rad.�/ D ¹eº then any generating � 2 Prob.�/ is C �-simple.

(2) Let ƒ � � be a nonelementary subgroup with Rad.ƒ/ D ¹eº. Then any generating
measure on ƒ with finite entropy and finite logarithmic moment is C �-simple.

Proof. (1) By the results of [39], the Thurston boundary is mean-proximal and the unique
stationary measure (for any generating �) is supported on the minimal projective foli-
ations (in fact, on the uniquely ergodic ones). By [43, Theorem 1.4], any quasi-invariant
probability which is supported on the minimal projective foliations is Zimmer-amenable.
Since stationary measures are quasi-invariant, we conclude that the stabilizer of a.e. point
is amenable. Since there are only countably many amenable subgroups, the Thurston
boundary is indeed an essentially free mean-proximal space.

(2) In [39] it is proved that under these assumptions, the Thurston boundary is a
Poisson USB of ƒ. In particular, the stabilizers are a.e. amenable and hence, as above,
the Thurston boundary is an essentially free USB.

Note that in (1) we do not know that the �-boundaries are Poisson boundaries, hence
we need other tools to verify the amenability of the stabilizers.

Theorem 6.8. Let �DOut.Fn/ and letƒ�� be a nonelementary subgroup with Rad.ƒ/
D ¹eº. Then any generating, finitely supported measure on ƒ is C �-simple.
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Proof. By [33] the boundary of the outer space is a Poisson USB for any finitely supported
measure on ƒ. Hence the result follows similarly to part (2) in Theorem 6.7.

In particular, all nonelementary subgroups of a mapping class group or of Out.Fn/ are
C �-simple (a strengthening of the results of [17]).

We conclude this discussion by pointing out that if � 2 Prob.�/ admits a Poisson �-
USB, then any �-boundary which is not the Poisson boundary, is not Zimmer-amenable
by [48, Theorem 9.2]. Hence there is no abstract guarantee that the stabilizers would be
amenable. This, in a way, highlights the importance of the tools presented in Section 6.1
to conclude essential freeness of measurable boundary actions.

7. Operator-algebraic superrigidity relative to subgroups

In this section we study unique stationarity and unique trace property of groups � relative
to their subgroups ƒ � � , and consequently derive several superrigidity results for �
relative to ƒ.

7.1. Unique stationarity relative to subgroups

Recall that we have canonical inclusions C �
�
.ƒ/ � C �

�
.�/ and C �.ƒ/ � C �.�/. We

denote by ��0 the canonical trace on both reduced and full C �-algebras of � .

Definition 7.1. We say a pair .�; ƒ/ where ƒ is a subgroup of � is �-stationary rigid
if the canonical trace ��0 is the unique �-stationary state on C �.�/ that restricts to the
canonical trace �ƒ0 on C �.ƒ/.

Stationary rigidity of .�;ƒ/ entails strong rigidity properties for � relative to ƒ.

Theorem 7.2. Suppose .�;ƒ/ is a �-stationary rigid pair. Then a measurable �-station-
ary action � Õ .X; �/ is essentially free if its restriction to ƒ is essentially free.

Proof. By Lemma 2.3 the function �.g/ D �.Fix.g// is a pdf on � , hence extends to
a state � on C �.�/. Moreover, as shown in the proof of Theorem 5.4 the state � is �-
stationary. Since the restriction ƒ Õ .X; �/ is essentially free, we have �.Fix.h// D 0

for all nontrivial h 2 ƒ, which means �jƒ D ıe , and equivalently � jC�.ƒ/ D �ƒ0 . Hence,
� D ��0 by �-stationary rigidity of the pair .�;ƒ/, which implies � D ıe , i.e. � Õ .X; �/

is essentially free.

Theorem 7.3. Suppose .�; ƒ/ is a �-stationary rigid pair. Then any nontrivial �-SRS
of � intersect nontrivially with ƒ with positive probability.

Proof. Suppose � is a �-SRS of � . Then as explained in the proof of Theorem 7.2, the
pdf g 7! �.¹ƒ0 W g 2 ƒ0º/ extends to a �-stationary state � on C �.�/. If ƒ0 \ƒ D ¹eº
for �-a.e. ƒ0 2 Sub.�/, then �.¹ƒ0 W h 2 ƒ0º/ D 0 for every nontrivial h 2 ƒ, hence
� jC�.ƒ/ D �

ƒ
0 . Since the pair .�; ƒ/ is �-stationary rigid it follows that � D ��0 , which
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implies �.¹ƒ0 W g 2 ƒ0º/ D 0 for all nontrivial g 2 � . As shown in the proof of Corol-
lary 5.7, this implies � D ı¹eº.

We may state a von-Neumann-algebraic relative superrigidity for a given stationary
rigid pair .�; ƒ/ in the setting of unitary representations of � whose von Neumann
algebras admit normal faithful stationary states. But since at this point we do not have
a characterization of those von Neumann algebras, the significance of such rigidity result
for applications is not clear, although by Example 4.15 the class of von Neumann algeb-
ras admitting normal faithful stationary states is strictly larger than the class of finite von
Neumann algebras.

But using the fact that stationary states on C �-algebras always exist, we obtain the
following C �-algebraic/representation-theoretical relative rigidity.

Proposition 7.4. Suppose .�; N/ is a �-stationary rigid pair, where N G � is a normal
subgroup. Let � W � ! U.H�/ be a unitary representation. If �N is weakly contained in
the restriction of � to N, then �� is weakly contained in � .

Proof. Suppose �N is weakly contained in the restriction of � to N, i.e. there is a canon-
ical surjective �-homomorphism C �� .N/! C �

�
.N/. In particular, the canonical trace �N

0

is continuous on C �� .N/. Since N is normal, C �� .N/ is an invariant subalgebra of C �� .�/
for the inner action by � . Thus, by Proposition 4.2 we can extend �N

0 to a �-stationary
� 2 �.C �� .�//. Considering � as a state on C �.�/, it is still �-stationary, and thus the
assumption of �-stationary rigidity implies � D ��0 . Hence the canonical trace ��0 is
continuous on C �� .�/, which implies there is a canonical surjective �-homomorphism
C �� .�/! C �

�
.�/, and equivalently �� is weakly contained in � .

The following is the main result of this section: we prove that any group that admits
an essentially free USB is stationary rigid relative to its co-amenable subgroups. Recall
that a subgroupƒ � � is co-amenable if every affine action of � with aƒ-fixed point has
a fixed point.

Theorem 7.5. Let � 2 Prob.�/. If � admits an essentially free �-USB, then .�;ƒ/ is a
�-stationary rigid pair for every co-amenable subgroup ƒ � � .

Proof. Suppose � is a �-stationary state on C �.�/ such that � jC�.ƒ/ D �ƒ0 . Let
�� W C

�.�/ ! B.L2.C �.�/; �// be the GNS representation of � . Then the Hil-
bert subspace L2.C �.ƒ/; �/ is canonically isomorphic to L2.C �.ƒ/; �ƒ0 / D `2.ƒ/.
Moreover, L2.C �.ƒ/; �/ is invariant under �� .h/ for every h 2 ƒ, and �� jƒ W ƒ !
B.L2.C �.ƒ/; �// is unitarily equivalent to the left regular representation ofƒ. Thus, the
map �� .h/ 7! �h, h 2 ƒ, extends to a surjective �-homomorphism C ��� .ƒ/! C �

�
.ƒ/.

But, since the canonical trace �ƒ0 coincides with � on C ��� .ƒ/, and the latter is faithful, it
follows that the canonical surjective �-homomorphism above is also injective. Hence, by
Arveson’s Extension Theorem [5, Theorem 1.2.3], we may extend the map �h 7! �� .h/,
h 2 ƒ, to a unital (completely) positive map B.`2.ƒ//! B.L2.C �.�/; �//, which is
then automatically ƒ-equivariant with respect to inner actions on both sides.
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Suppose .X; �/ is an essentially free �-USB. Considering X as a ƒ-space via the
restriction actions, we have a unital positive ƒ-equivariant map C.X/! `1.ƒ/. Com-
posing with the above map, we obtain a unital positive ƒ-equivariant map C.X/ !
B.L2.C �.�/; �//.

Let E D ¹ˆ W C.X/! B.L2.C �.�/; �// jˆ is positive and unitalº, and define a �-
action on E by .g � ˆ/.f / WD g.ˆ.g�1f //. Then E endowed with the point-weak�

topology (i.e. ˆi ! ˆ iff ˆi .f / ! ˆ.f / weak� for every f 2 C.X/) is a compact
convex �-space.

Observe that ˆ 2 E is a ƒ-fixed point if and only if it is ƒ-equivariant. So, by the
above, E contains a ƒ-fixed point. Since ƒ is a co-amenable subgroup, E also contains a
�-fixed point, which is a �-equivariant positive unital map � WC.X/!B.L2.C �.�/; �//.

Using Proposition 4.2 we extend � to a �-stationary state Q� on B.L2.C �.�/; �//.
Then Q� ı � gives a �-stationary probability on C.X/, and therefore by the uniqueness
assumption we have Q� j�.C.X// D � ı �. Hence Q�! ı � D . Q� ı �/! D ıbnd.!/ for a.e. path
! 2 �, where bnd W .�;P�/! .X; �/ is the boundary map.

Let g 2 � be nontrivial. Since the action � Õ .X; �/ is essentially free, g bnd.!/ ¤
bnd.!/ for a.e. path ! 2�. Consequently, for a.e. ! 2� there is f! 2C.X/, 0� f! � 1,
with Q�!.�.f!// D f!.bnd.!// D 1 and Q�!.�� .g�1/�.f!/�� .g// D f .g bnd.!// D 0.
Hence, Lemma 2.2 implies �!.�� .g//D Q�!.�� .g//D 0 for a.e. path ! 2�. Thus, apply-
ing Theorem 4.6 we get

�.�� .g// D

Z
�

�!.�� .g// dP�.!/ D 0:

Hence � D ��0 .

Applying the results of Section 6.2 we get the following.

Corollary 7.6. Let � be a hyperbolic group, a mapping class group, or a finitely gener-
ated linear group, and assume that Rad.�/ D ¹eº. Then for any co-amenable subgroup
ƒ � � the pair .�;ƒ/ is �-stationary rigid for any generating �.

7.2. Unique trace property relative to subgroups

In this section we consider a relative unique ergodicity for the canonical trace. This should
be considered as a relative character rigidity property.

Definition 7.7. We say a pair .�;ƒ/ of a group � and a subgroupƒ is tracial rigid if the
canonical trace ��0 on C �.�/ is the unique tracial extension of the canonical trace �ƒ0 on
C �.ƒ/.

Recall that a von Neumann algebra is finite if it has a normal faithful trace.

Theorem 7.8. Suppose .�; ƒ/ is a tracial rigid pair, and ƒ is an icc group. Suppose
� W �!U.H�/ is a unitary representation such thatM D �.�/00 is a finite von Neumann
algebra. If the restriction �jƒ extends to an isomorphism L.ƒ/ Š �.ƒ/00 then � extends
to an isomorphism L.�/ ŠM .
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Proof. Since ƒ is icc, �.ƒ/00 Š L.ƒ/ is a factor, and in particular admits a unique trace,
which is the canonical trace �ƒ0 . Now suppose � is a normal trace on M . Then its restric-
tion to C �� .�/ is the canonical trace by tracial rigidity of the pair .�;ƒ/. Since C �� .�/ is
weak� dense in M , it follows that � D ��0 is the unique trace on M , thus also faithful.

Now let �� WM ! B.L2.M; �// denote the GNS map. Then the map ıg 7! �� .�.g//

extends to a unitary U� from `2.�/ onto L2.M; �/, and we have

U �� �.g/U�ıh D U
�
� �.g/�� .�.h// D U

�
� �� .�.gh// D ıgh D �gıh

for all g; h 2 � . Hence Ad.U� / W L.�/!M is the desired isomorphism.

Theorem 7.9. Suppose .�; ƒ/ is a tracial rigid pair. Then a probability measure pre-
serving the action � Õ .X;m/ is essentially free if its restrictionƒÕ .X;m/ is essentially
free.

Equivalently, any nontrivial IRS of � intersects ƒ nontrivially, with positive probab-
ility. In particular, every nontrivial normal subgroup N G � intersects ƒ nontrivially.

Proof. For g 2 � denote Fix.g/D ¹x 2 X W gx D xº. Then the function g 7! m.Fix.g//
is positive definite on � by Lemma 2.3, hence extends to a trace � on C �.�/. Moreover,
by invariance of m we get

m.Fix.hgh�1// D m.hFix.g// D m.Fix.g//

for all g; h 2 � , which implies � is a trace. If the restriction ƒ Õ .X; m/ is essentially
free, thenm.Fix.h//D 0 for every nontrivial h 2ƒ, and equivalently � jC�.ƒ/D �ƒ0 . Thus
by the assumption of tracial rigidity of the pair .�; ƒ/ we get � D ��0 , hence the action
� Õ .X;m/ is essentially free.

For the IRS formulation, it is well known that any given IRS is the push-forward
of some measure preserving action via the stabilizer map x 7! Stab�.x/ (see for
example [2]).

By working with topological boundaries instead of unique stationary measurable
boundaries we are able to generalize Theorem 7.5 to the case of tracial pairs.

Theorem 7.10. Suppose ƒ � � is co-amenable. Then every tracial extension of the
canonical trace �ƒ0 to C �.�/ is supported on Rad.�/.

In particular, if � has trivial amenable radical, then the pair .�;ƒ/ is tracial rigid.

Proof. Suppose � is a trace on C �.�/ such that � jC�.ƒ/ D �ƒ0 . Denote by �� W C �.�/!
B.L2.C �.�/; �// the GNS representation of � .

Let g … Rad.�/. Then it follows from [24] that � admits a topological boundary
action � Õ X on which g acts nontrivially. Now, an argument similar to the proof of
Theorem 7.5 yields a �-equivariant unital positive map � W C.X/! B.L2.C �.�/; �//.
Extend the trace � 2 �.�� .C

�.�/// to a state � on B.L2.C �.�/; �//. Let x 2 X be such
that gx ¤ x, and choose f 2 C.X/, 0� f � 1, with f .x/D 1 and f .gx/D 0. Consider
the restriction �j�.C.X// as a probability on X . Since � Õ X is a boundary action, there
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is a net .gi / � � such that gi�j�.C.X//! ıx . By passing to a subnet if necessary, we may
assume gi� converges weak� to a state � on B.L2.C �.�/; �//. Then �j�.C.X// D ıx , and
therefore �.�.f // D f .x/ D 1 and �.�.g�1/�.f /�.g// D �.�.g�1f // D f .gx/ D 0.
Hence Lemma 2.2 yields �.�.g// D �.�.g// D 0. This shows � D ��0 .

Corollary 7.11. Let � be a group with trivial amenable radical. Suppose ƒ � � is
co-amenable, and suppose ƒ is a character rigid group. Then a probability measure pre-
serving action of � on the standard Lebesgue space is essentially free if its restriction
to ƒ is ergodic.

Proof. Any ergodic measure preserving action of a character rigid group is essentially
free. Thus, the assertion follows immediately from Theorems 7.9 and 7.10.

Uri Bader, Yair Hartman, and Mehrdad Kalantar
Appendix A. Extending mean-proximal actions

In this appendix we prove an extension theorem for mean-proximal actions that is needed
in our proof of C �-simplicity of generating measures on linear groups (Theorem 6.5). Our
results below can be proven in more general forms, but we state them as we need them in
this work.

Throughout this section, � is a countable discrete group. By a �-space we mean a
compact space X on which � acts by homeomorphisms. A �-space X is said to be �-
mean-proximal if for every generating � 2 Prob.�/, there exists a unique �-stationary
measure �� 2 Prob.X/ such that .X; ��/ is a .�; �/-boundary (see Definition 3.3).

Lemma A.1. Let ¹Xj º be a countable collection of metrizable �-mean-proximal spaces.
Then

Q
j Xj equipped with the diagonal action is a �-mean-proximal space.

Proof. Fix a generating � 2 Prob.�/, and let .�;P�/ denote the path space of the .�;�/-
random walk (see Section 2.1). For each j 0, let �j 0 W

Q
j Xj ! Xj 0 be the corresponding

projection map. Let � be a�-stationary probability on
Q
j Xj , and for each j denote by �j

the push-forward of � under �j . Then �j 2 Prob.Xj / is�-stationary, hence by the unique-
ness assumption, it is also a .�; �/-boundary. Since the collection ¹Xj º is countable, we
can find �0 � � with P�.�0/ D 1 such that for every ! 2 �0, the conditional measures
.�j /! are Dirac measures for all j (see Furstenberg’s Theorem 2.1 for the definition).
Since the projections �j are equivariant, we observe that .�!/j D .�j /! for all j and
! 2 �0. Thus, it follows that �! is a Dirac measure for all ! 2 �0 (note that the product
space is also metrizable). This implies .

Q
j Xj ; �/ is a .�; �/-boundary. The uniqueness

of � follows from the fact that every stationary measure is completely determined by its
conditional measures (Theorem 2.1), and that the conditional measures �! project onto
the Dirac measures .�j /! .

Theorem A.2. Let � be a finitely generated group, and let X be a metrizable �-mean-
proximal space. Then there exists a metrizable �-mean-proximal space Y such that X is
a factor of Y , and the action � Õ Y extends to an action Aut.�/ Õ Y .
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Proof. For ˛ 2 Aut.�/ let X˛ be a copy of X equipped with the action g � x D ˛�1.g/x.
Obviously X˛ is a metrizable �-mean-proximal for every ˛ 2 Aut.�/. Since � is finitely
generated, Aut.�/ is countable, hence Lemma A.1 shows that Z D

Q
˛ X˛ equipped

with the diagonal action of � is mean-proximal. In particular, Z contains a unique min-
imal component Y , which is also �-mean-proximal, and hence a topological boundary by
Theorem 3.11.

On the other hand, the group Aut.�/ also acts naturally onZ by permuting the indices,
namely .ˇ � z/˛0 D zˇ�1˛0 for ˇ; ˛0 2 Aut.�/ and z D .z˛/˛2Aut.�/ 2 Z. One observes
the relation g � ˇ � z D ˇ � ˇ�1.g/ � z for g 2 � , ˇ 2 Aut.�/, and z 2 Z. Thus, if Z0 � Z
is �-invariant, then so is ˇ.Z0/ for all ˇ 2 Aut.�/. In particular, ˇ.Y / D Y for every
ˇ 2 Aut.�/ by uniqueness. Hence the restriction to Y defines an action Aut.�/ Õ Y .

Now fix g 2 � , and let ˇg 2 Aut.�/ be the inner automorphism ˇg.h/ D ghg�1.
Considering g and ˇg as homeomorphisms on Z via the above actions of � and Aut.�/,
straightforward calculations show the composition g�1ˇg W Z ! Z is equivariant with
respect to the diagonal action of � .

In particular, g�1ˇg.Y /D Y by uniqueness. But since � Õ Y is a topological bound-
ary action, it follows that g�1ˇg is the identity map on Y , which implies the restriction
of the action Aut.�/ Õ Y to � � Aut.�/ (via inner automorphisms) coincided with the
diagonal action of � when restricted to Y , and this completes the proof.

We will use the notion of recurrent subgroups in order to relate boundary actions of
a group to its finite index subgroups. We recall the definition, and refer the reader to [26]
for more details.

Let � 2 Prob.�/ be generating. A subgroupƒ � � is said to be �-recurrent if almost
every path of the .�; �/-random walk passes through ƒ (infinitely many times, automat-
ically). In this case, there exists a hitting measure � 2 Prob.ƒ/ such that the restriction
map `1.�/! `1.ƒ/ yields an isometric isomorphism between the algebras of bounded
harmonic functions H1.�; �/ and H1.ƒ; �/.

Lemma A.3. Let X be a metrizable �-space and let ƒ � � be �-recurrent for a gener-
ating � 2 Prob.�/. Then any �-stationary measure � 2 Prob.X/ is � -stationary, where
� 2 Prob.ƒ/ is the �-hitting measure. Moreover, if � 2 Prob.X/ is a .ƒ; �/-boundary
then it is also a .�; �/-boundary.

In particular, if .X; �/ is a � -USB, then it is also a �-USB.

Proof. For a proof of the first assertion see [32, Corollary 2.14]. The second part follows
directly from the definitions.

We say a �-mean-proximal space X is essentially free if for any generating measure
� 2 Prob.�/, the action � Õ .X; ��/ is essentially free.

Theorem A.4. Let � be a finitely generated group with trivial amenable radical, and let
ƒ be a normal subgroup of � of finite index. If ƒ admits an essentially free metrizable
mean-proximal action, then so does � .



Y. Hartman, M. Kalantar 1818

Proof. Let X be an essentially free metrizable ƒ-mean-proximal space, and let Y be the
�-space given by Theorem A.2 (considering � �Aut.ƒ/). Since Y is aƒ-extension ofX ,
it is ƒ-essentially free.

Since ƒ has finite index in � , it is �-recurrent for any generating � 2 Prob.�/, thus
Lemma A.3 implies that Y is also �-mean-proximal. To see that Y is also �-essentially
free, let � 2 Prob.�/ be generating, and let � 2 Prob.ƒ/ be the corresponding hitting
measure. Denote by � D �� D �� 2 Prob.Y / the unique stationary measure.

Since ƒ Õ .X; �/ is essentially free, the stabilizers Stab�.x/ are finite subgroups
of � for �-almost every x. Thus, the push-forward � of � under the stabilizer map x 7!
Stab�.x/ is a stationary measure on the compact space Sub.�/ (of all subgroups of � ,
endowed with the conjugate action of �) that is supported on finite subgroups. Note that
� has only countably many finite subgroups, hence � is invariant (see e.g. the discussion
in Section 6.2), i.e. an IRS. But by [7] every amenable IRS is supported on the amen-
able radical of � , which is trivial by assumption. Hence Stab�.x/ is trivial for �-almost
every x, and this finishes the proof.

Remark A.5. The assumption of metrizability was not necessary in Lemmas A.1
and A.3, and was only needed in Theorem A.2 to ensure metrizability of the space Y . In
all conclusions, the general case can be reduced to the metrizable case by either passing
to a metrizable model, or considering metrizable factors and taking an inverse limit. Since
we only use the results of this appendix in situations where all spaces under consideration
are metrizable, we did not take those extra steps and just tailored the statements to our par-
ticular purposes here. But, the fact that we can deduce these results for arbitrary products
and inverse limits leads to a deeper point: there is a theory of mean-proximal actions par-
allel to those of proximal and strongly proximal actions. One can prove the existence of
a universal action, and canonical extension results. We intend to devote a followup paper
to a conceptual study of a class of topological dynamical systems that include all these
examples.

Acknowledgements. We are grateful to Nir Avni and Uri Bader for many fruitful discussions and
helpful suggestions during the course of completion of this project. We would also like to thank
Paweł Kasprzak, Matthew Kennedy, Hanfeng Li, Howard Masur, Dan Ursu, and Phillip Wesolek
for helpful comments. We thank the anonymous referee for the careful reading of our paper, for
suggesting a more general statement for Theorem 5.1 compared to the previous version, and for
their other helpful comments and suggestions.

Funding. Most of this work was carried out while YH was at Northwestern University. YH was
partially supported by the ISF (grant No. 1175/18).

MK was partially supported by the NSF Grant DMS-1700259.

References

[1] Abert, M., Bergeron, N., Biringer, I., Gelander, T., Nikolov, N., Raimbault, J., Samet, I.: On
the growth of L2-invariants for sequences of lattices in Lie groups. Ann. of Math. (2) 185,
711–790 (2017) Zbl 1379.22006 MR 3664810

https://zbmath.org/?q=an:1379.22006
https://mathscinet.ams.org/mathscinet-getitem?mr=3664810


Stationary C�-dynamical systems 1819

[2] Abért, M., Glasner, Y., Virág, B.: Kesten’s theorem for invariant random subgroups. Duke
Math. J. 163, 465–488 (2014) Zbl 1344.20061 MR 3165420

[3] Amrutam, T., Kalantar, M.: On simplicity of intermediate C�-algebras. Ergodic Theory
Dynam. Systems 40, 3181–3187 (2020) Zbl 1465.46066 MR 4170599

[4] Archbold, R. J., Spielberg, J. S.: Topologically free actions and ideals in discrete C�-
dynamical systems. Proc. Edinburgh Math. Soc. (2) 37, 119–124 (1994) Zbl 0799.46076
MR 1258035

[5] Arveson, W. B.: Subalgebras of C�-algebras. Acta Math. 123, 141–224 (1969)
Zbl 0194.15701 MR 253059

[6] Azencott, R.: Espaces de Poisson des groupes localement compacts. Lecture Notes in Math.
148, Springer, Berlin (1970) Zbl 0239.60008 MR 0501376

[7] Bader, U., Duchesne, B., Lécureux, J.: Amenable invariant random subgroups. Israel J. Math.
213, 399–422 (2016) Zbl 1356.22006 MR 3509477

[8] Bader, U., Shalom, Y.: Factor and normal subgroup theorems for lattices in products of groups.
Invent. Math. 163, 415–454 (2006) Zbl 1085.22005 MR 2207022

[9] Bekka, B.: Operator-algebraic superridigity for SLn.Z/, n � 3. Invent. Math. 169, 401–425
(2007) MR 2318561

[10] Bestvina, M., Feighn, M., Handel, M.: The Tits alternative for Out.Fn/. I. Dynamics of
exponentially-growing automorphisms. Ann. of Math. (2) 151, 517–623 (2000)
Zbl 0984.20025 MR 1765705

[11] Bestvina, M., Feighn, M., Handel, M.: The Tits alternative for Out.Fn/. II. A Kolchin type
theorem. Ann. of Math. (2) 161, 1–59 (2005) Zbl 1139.20026 MR 2150382

[12] Birman, J. S., Lubotzky, A., McCarthy, J.: Abelian and solvable subgroups of the mapping
class groups. Duke Math. J. 50, 1107–1120 (1983) Zbl 0551.57004 MR 726319

[13] Boutonnet, R., Houdayer, C.: Stationary characters on lattices of semisimple Lie groups. Publ.
Math. Inst. Hautes Études Sci. 133, 1–46 (2021) Zbl 07395792 MR 4292738

[14] Bowen, L., Hartman, Y., Tamuz, O.: Generic stationary measures and actions. Trans. Amer.
Math. Soc. 369, 4889–4929 (2017) Zbl 1372.37058 MR 3632554

[15] Breuillard, E., Gelander, T.: A topological Tits alternative. Ann. of Math. (2) 166, 427–474
(2007) Zbl 1149.20039 MR 2373146

[16] Breuillard, E., Kalantar, M., Kennedy, M., Ozawa, N.: C�-simplicity and the unique trace
property for discrete groups. Publ. Math. Inst. Hautes Études Sci. 126, 35–71 (2017)
Zbl 1391.46071 MR 3735864

[17] Bridson, M. R., de la Harpe, P.: Mapping class groups and outer automorphism groups of free
groups are C�-simple. J. Funct. Anal. 212, 195–205 (2004) Zbl 1064.46052 MR 2065242

[18] Brofferio, S., Schapira, B.: Poisson boundary of GLd .Q/. Israel J. Math. 185, 125–140 (2011)
Zbl 1260.60155 MR 2837130

[19] Brown, N. P., Ozawa, N.: C�-algebras and Finite-Dimensional Approximations. Grad. Stud.
Math. 88, Amer. Math. Soc., Providence, RI (2008) Zbl 1160.46001 MR 2391387

[20] Creutz, D., Peterson, J.: Character rigidity for lattices and commensurators. arXiv:1311.4513
(2013)

[21] de la Harpe, P.: On simplicity of reduced C�-algebras of groups. Bull. London Math. Soc. 39,
1–26 (2007) Zbl 1123.22004 MR 2303514

[22] Dudko, A., Grigorchuk, R.: On diagonal actions of branch groups and the corresponding char-
acters. J. Funct. Anal. 274, 3033–3055 (2018) Zbl 06856658 MR 3782986

[23] Furman, A.: Random walks on groups and random transformations. In: Handbook of Dynam-
ical Systems, Vol. 1A, North-Holland, Amsterdam, 931–1014 (2002) Zbl 1053.60045
MR 1928529

[24] Furman, A.: On minimal strongly proximal actions of locally compact groups. Israel J. Math.
136, 173–187 (2003) Zbl 1037.22013 MR 1998109

https://zbmath.org/?q=an:1344.20061
https://mathscinet.ams.org/mathscinet-getitem?mr=3165420
https://zbmath.org/?q=an:1465.46066
https://mathscinet.ams.org/mathscinet-getitem?mr=4170599
https://zbmath.org/?q=an:0799.46076
https://mathscinet.ams.org/mathscinet-getitem?mr=1258035
https://zbmath.org/?q=an:0194.15701
https://mathscinet.ams.org/mathscinet-getitem?mr=253059
https://zbmath.org/?q=an:0239.60008
https://mathscinet.ams.org/mathscinet-getitem?mr=0501376
https://zbmath.org/?q=an:1356.22006
https://mathscinet.ams.org/mathscinet-getitem?mr=3509477
https://zbmath.org/?q=an:1085.22005
https://mathscinet.ams.org/mathscinet-getitem?mr=2207022
https://mathscinet.ams.org/mathscinet-getitem?mr=2318561
https://zbmath.org/?q=an:0984.20025
https://mathscinet.ams.org/mathscinet-getitem?mr=1765705
https://zbmath.org/?q=an:1139.20026
https://mathscinet.ams.org/mathscinet-getitem?mr=2150382
https://zbmath.org/?q=an:0551.57004
https://mathscinet.ams.org/mathscinet-getitem?mr=726319
https://zbmath.org/?q=an:07395792
https://mathscinet.ams.org/mathscinet-getitem?mr=4292738
https://zbmath.org/?q=an:1372.37058
https://mathscinet.ams.org/mathscinet-getitem?mr=3632554
https://zbmath.org/?q=an:1149.20039
https://mathscinet.ams.org/mathscinet-getitem?mr=2373146
https://zbmath.org/?q=an:1391.46071
https://mathscinet.ams.org/mathscinet-getitem?mr=3735864
https://zbmath.org/?q=an:1064.46052
https://mathscinet.ams.org/mathscinet-getitem?mr=2065242
https://zbmath.org/?q=an:1260.60155
https://mathscinet.ams.org/mathscinet-getitem?mr=2837130
https://zbmath.org/?q=an:1160.46001
https://mathscinet.ams.org/mathscinet-getitem?mr=2391387
https://arxiv.org/abs/1311.4513
https://zbmath.org/?q=an:1123.22004
https://mathscinet.ams.org/mathscinet-getitem?mr=2303514
https://zbmath.org/?q=an:06856658
https://mathscinet.ams.org/mathscinet-getitem?mr=3782986
https://zbmath.org/?q=an:1053.60045
https://mathscinet.ams.org/mathscinet-getitem?mr=1928529
https://zbmath.org/?q=an:1037.22013
https://mathscinet.ams.org/mathscinet-getitem?mr=1998109


Y. Hartman, M. Kalantar 1820

[25] Furstenberg, H.: A Poisson formula for semi-simple Lie groups. Ann. of Math. (2) 77, 335–
386 (1963) Zbl 0192.12704 MR 146298

[26] Furstenberg, H.: Boundary theory and stochastic processes on homogeneous spaces. In: Har-
monic Analysis on Homogeneous Spaces (Williamstown, MA, 1972), Proc. Sympos. Pure
Math. 26, Amer. Math. Soc., Providence, RI, 193–229 (1973) Zbl 0180.22011 MR 0352328

[27] Glasner, E., Weiss, B.: Uniformly recurrent subgroups. In: Recent Trends in Ergodic The-
ory and Dynamical Systems, Contemp. Math. 631, Amer. Math. Soc., Providence, RI, 63–75
(2015) Zbl 1332.37014 MR 3330338

[28] Glasner, E., Weiss, B.: Weak mixing properties for non-singular actions. Ergodic Theory
Dynam. Systems 36, 2203–2217 (2016) Zbl 1375.37012 MR 3568977

[29] Glasner, S.: Proximal Flows. Lecture Notes in Math. 517, Springer, Berlin (1976)
Zbl 0322.54017 MR 0474243

[30] Haagerup, U.: A new look at C�-simplicity and the unique trace property of a group. In:
Operator Algebras and Applications—the Abel Symposium 2015, Abel Symp. 12, Springer,
167–176 (2017) Zbl 1376.46046 MR 3837596

[31] Hamana, M.: Injective envelopes of C�-dynamical systems. Tohoku Math. J. (2) 37, 463–487
(1985) Zbl 0585.46053 MR 814075

[32] Hartman, Y., Lima, Y., Tamuz, O.: An Abramov formula for stationary spaces of discrete
groups. Ergodic Theory Dynam. Systems 34, 837–853 (2014) Zbl 1304.37009
MR 3199796

[33] Horbez, C.: The Poisson boundary of Out.FN /. Duke Math. J. 165, 341–369 (2016)
Zbl 1401.20043 MR 3457676

[34] Ivanov, N. V.: Algebraic properties of the Teichmüller modular group. Dokl. Akad. Nauk
SSSR 275, 786–789 (1984) (in Russian) Zbl 0586.20026 MR 745513

[35] Izumi, M.: Non-commutative Poisson boundaries and compact quantum group actions. Adv.
Math. 169, 1–57 (2002) Zbl 1037.46056 MR 1916370

[36] Izumi, M.: Non-commutative Poisson boundaries. In: Discrete Geometric Analysis, Contemp.
Math. 347, Amer. Math. Soc., Providence, RI, 69–81 (2004) Zbl 1072.46043 MR 2077031

[37] Jones, V. F. R.: Ten problems. In: Mathematics: Frontiers and Perspectives, Amer. Math. Soc.,
Providence, RI, 79–91 (2000) Zbl 0969.57001 MR 1754769

[38] Kaimanovich, V. A.: The Poisson formula for groups with hyperbolic properties. Ann. of
Math. (2) 152, 659–692 (2000) Zbl 0984.60088 MR 1815698

[39] Kaimanovich, V. A., Masur, H.: The Poisson boundary of the mapping class group. Invent.
Math. 125, 221–264 (1996) Zbl 0864.57014 MR 1395719

[40] Kaı̆manovich, V. A., Vershik, A. M.: Random walks on discrete groups: boundary and entropy.
Ann. Probab. 11, 457–490 (1983) Zbl 0641.60009 MR 704539

[41] Kalantar, M., Kennedy, M.: Boundaries of reduced C�-algebras of discrete groups. J. Reine
Angew. Math. 727, 247–267 (2017) Zbl 1371.46044 MR 3652252

[42] Kennedy, M.: An intrinsic characterization of C�-simplicity. Ann. Sci. École Norm. Sup. (4)
53, 1105–1119 (2020) Zbl 07346518 MR 4174855

[43] Kida, Y.: The mapping class group from the viewpoint of measure equivalence theory. Mem.
Amer. Math. Soc. 196, no. 916, viii+190 pp. (2008) Zbl 1277.37008 MR 2458794

[44] Le Boudec, A.: C�-simplicity and the amenable radical. Invent. Math. 209, 159–174 (2017)
Zbl 1383.46043 MR 3660307

[45] Ledrappier, F., Ledrappier, F.: Poisson boundaries of discrete groups of matrices. Israel J.
Math. 50, 319–336 (1985) Zbl 0574.60012 MR 800190

[46] Margulis, G. A.: Discrete Subgroups of Semisimple Lie Groups. Ergeb. Math. Grenzgeb. (3)
17, Springer, Berlin (1991) Zbl 0732.22008 MR 1090825

[47] McCarthy, J.: A “Tits-alternative” for subgroups of surface mapping class groups. Trans.
Amer. Math. Soc. 291, 583–612 (1985) Zbl 0579.57006 MR 800253

https://zbmath.org/?q=an:0192.12704
https://mathscinet.ams.org/mathscinet-getitem?mr=146298
https://zbmath.org/?q=an:0180.22011
https://mathscinet.ams.org/mathscinet-getitem?mr=0352328
https://zbmath.org/?q=an:1332.37014
https://mathscinet.ams.org/mathscinet-getitem?mr=3330338
https://zbmath.org/?q=an:1375.37012
https://mathscinet.ams.org/mathscinet-getitem?mr=3568977
https://zbmath.org/?q=an:0322.54017
https://mathscinet.ams.org/mathscinet-getitem?mr=0474243
https://zbmath.org/?q=an:1376.46046
https://mathscinet.ams.org/mathscinet-getitem?mr=3837596
https://zbmath.org/?q=an:0585.46053
https://mathscinet.ams.org/mathscinet-getitem?mr=814075
https://zbmath.org/?q=an:1304.37009
https://mathscinet.ams.org/mathscinet-getitem?mr=3199796
https://zbmath.org/?q=an:1401.20043
https://mathscinet.ams.org/mathscinet-getitem?mr=3457676
https://zbmath.org/?q=an:0586.20026
https://mathscinet.ams.org/mathscinet-getitem?mr=745513
https://zbmath.org/?q=an:1037.46056
https://mathscinet.ams.org/mathscinet-getitem?mr=1916370
https://zbmath.org/?q=an:1072.46043
https://mathscinet.ams.org/mathscinet-getitem?mr=2077031
https://zbmath.org/?q=an:0969.57001
https://mathscinet.ams.org/mathscinet-getitem?mr=1754769
https://zbmath.org/?q=an:0984.60088
https://mathscinet.ams.org/mathscinet-getitem?mr=1815698
https://zbmath.org/?q=an:0864.57014
https://mathscinet.ams.org/mathscinet-getitem?mr=1395719
https://zbmath.org/?q=an:0641.60009
https://mathscinet.ams.org/mathscinet-getitem?mr=704539
https://zbmath.org/?q=an:1371.46044
https://mathscinet.ams.org/mathscinet-getitem?mr=3652252
https://zbmath.org/?q=an:07346518
https://mathscinet.ams.org/mathscinet-getitem?mr=4174855
https://zbmath.org/?q=an:1277.37008
https://mathscinet.ams.org/mathscinet-getitem?mr=2458794
https://zbmath.org/?q=an:1383.46043
https://mathscinet.ams.org/mathscinet-getitem?mr=3660307
https://zbmath.org/?q=an:0574.60012
https://mathscinet.ams.org/mathscinet-getitem?mr=800190
https://zbmath.org/?q=an:0732.22008
https://mathscinet.ams.org/mathscinet-getitem?mr=1090825
https://zbmath.org/?q=an:0579.57006
https://mathscinet.ams.org/mathscinet-getitem?mr=800253


Stationary C�-dynamical systems 1821

[48] Nevo, A., Sageev, M.: The Poisson boundary of CAT.0/ cube complex groups. Groups Geom.
Dynam. 7, 653–695 (2013) Zbl 1346.20084 MR 3095714

[49] Peterson, J.: Character rigidity for lattices in higher-rank groups. Preprint (2015)
[50] Peterson, J., Thom, A.: Character rigidity for special linear groups. J. Reine Angew. Math.

716, 207–228 (2016) Zbl 1347.20051 MR 3518376
[51] Sageev, M., Wise, D. T.: The Tits alternative for CAT.0/ cubical complexes. Bull. London

Math. Soc. 37, 706–710 (2005) Zbl 1081.20051 MR 2164832
[52] Tits, J.: Free subgroups in linear groups. J. Algebra 20, 250–270 (1972) Zbl 0236.20032

MR 286898
[53] Zimmer, R. J.: Amenable ergodic group actions and an application to Poisson boundaries of

random walks. J. Funct. Anal. 27, 350–372 (1978) Zbl 0391.28011 MR 0473096

https://zbmath.org/?q=an:1346.20084
https://mathscinet.ams.org/mathscinet-getitem?mr=3095714
https://zbmath.org/?q=an:1347.20051
https://mathscinet.ams.org/mathscinet-getitem?mr=3518376
https://zbmath.org/?q=an:1081.20051
https://mathscinet.ams.org/mathscinet-getitem?mr=2164832
https://zbmath.org/?q=an:0236.20032
https://mathscinet.ams.org/mathscinet-getitem?mr=286898
https://zbmath.org/?q=an:0391.28011
https://mathscinet.ams.org/mathscinet-getitem?mr=0473096

	1. Introduction
	2. Preliminaries
	2.1. Random walks and stationary dynamical systems
	2.2. C*-dynamical systems
	2.3. Crossed product C*-algebras
	2.4. Positive definite functions, invariant and stationary random subgroups

	3. Topological, measurable, and uniquely stationary boundaries
	3.1. Topological vs. measurable boundaries
	3.2. USB systems

	4. Stationary C*-dynamical systems
	4.1. Basic facts
	4.2. Unique stationary actions
	4.3. Inner actions: stationary states as generalizations of traces

	5. A new characterization of C*-simplicity
	5.1. C*-simple measures

	6. Freeness of USB: identifying C*-simple measures
	6.1. Noetherian actions
	6.2. Groups with countably many amenable subgroups

	7. Operator-algebraic superrigidity relative to subgroups
	7.1. Unique stationarity relative to subgroups
	7.2. Unique trace property relative to subgroups

	A. Extending mean-proximal actions (by Uri Bader, Yair Hartman, and Mehrdad Kalantar)
	References

