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Abstract. Let � be the p-adic Galois representation attached to a cuspidal, regular algebraic auto-
morphic representation of GLn of unitary type. Under very mild hypotheses on �, we prove the
vanishing of the (Bloch–Kato) adjoint Selmer group of �. We obtain definitive results for the adjoint
Selmer groups associated to non-CM Hilbert modular forms and elliptic curves over totally real
fields.
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Introduction

Context. Let F be a CM number field, with maximal totally real subfield FC. Fix an
algebraic closure F of F and a complex conjugation c 2 Gal.F =FC/. We say that a
cuspidal automorphic representation � of GLn.AF / is of unitary type if it is conjugate
self-dual, i.e. if it satisfies the relation �c Š �_. If � is conjugate self-dual and moreover
regular algebraic (a condition on �1), then for any isomorphism � W Qp ! C there is an
associated p-adic Galois representation

r�;� W Gal.F =F /! GLn.Qp/;

characterized up to isomorphism by compatibility with the local Langlands correspond-
ence at each finite place of F . The conjugate self-duality of � implies the existence of an
isomorphism rc�;� Š r

_
�;� ˝ �

1�n, where � is the p-adic cyclotomic character.
This paper concerns the adjoint Bloch–Kato Selmer group of such a representation.

To define it, we note that if V denotes the space on which r�;� acts, then the conjugate self-
duality of r�;� is reflected in the existence of a perfect, symmetric, and Galois equivariant
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bilinear pairing
h�; �i W V c � V ˝ �n�1 ! Qp:

The existence of this pairing allows us to extend the adjoint action of r�;� on End.V / to
an action of Gal.F =FC/, where c 2 Gal.F =FC/ acts by the formula c �X D �X� (and
X� is the adjoint with respect to h�; �i).

We are interested in the Bloch–Kato Selmer group

H 1
f .F

C;End.V //

D ¹x 2 H 1.FC;End.V // W xv 2 H 1
f .F

C
v ;End.V // for all finite places vº

where H 1
f .F

C
v ; End.V // is ker.H 1.FCv ; End.V //! H 1.FCv ; End.V /˝Qp Bcrys// for

v jp and H 1
ur.F

C
v ;End.V // for v − p.

General conjectures predict the vanishing of this group (see the introduction of [1]
for a detailed discussion of this in the present context). We are content here to note that
this group parameterizes infinitesimal deformations of r�;� which are at the same time
conjugate self-dual and geometric, in the sense of p-adic Hodge theory.

Our results. The following is the main theorem of this paper.

Theorem A. Let F be a CM number field, and let � be a regular algebraic, cuspidal
automorphic representation of GLn.AF / of unitary type. Let p be a prime, and let � W
Qp ! C be an isomorphism. Suppose that r�;�.GF.�p1 // is enormous, in the sense of
Definition 2.23. Then H 1

f .F
C; ad r�;�/ D 0.

For some examples of enormous subgroups, see §2.5. For example, we note that our
condition is satisfied for any � such that for some finite place v of F , �v is a twist of the
Steinberg representation.

We compare Theorem A with some other results in the literature that are proved using
related techniques. Kisin [28] proved the analogue of Theorem A for the Galois represent-
ations attached to classical holomorphic modular forms under some mild conditions on
the residual representation. Allen [1] proved a result similar to Theorem A, but assuming
a stronger condition on the residual representation r�;�, requiring in particular that it be
irreducible (similar results were also obtained by Breuil–Hellmann–Schraen [12]). These
works use variants of the Taylor–Wiles method, which is a powerful tool for studying the
deformation theory of automorphic Galois representations.

Our main motivation for this work was to prove a result valid under very weak condi-
tions on the residual representation. In particular, we allow the case p D 2 and r�;� trivial,
which is rather far from the cases allowed by [1]. For example, we obtain the following
results for 2-dimensional representations over totally real fields.

Theorem B. Let F be a totally real number field, and let p be a prime.

(1) Let � be a non-CM, regular algebraic automorphic representation of GL2.AF /. Then
for any isomorphism � W Qp ! C, H 1

f .F; ad r�;�/ D 0.
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(2) Let E be a non-CM elliptic curve over F , and let rp.E/ W GF ! GL2.Qp/ denote
the associated p-adic representation. Then H 1

f .F; ad rp.E// D 0.

We emphasize that no additional conditions are required in either case in order to
conclude the vanishing of the adjoint Selmer group.

There are three main innovations that allow us to prove a result like Theorem A. The
first is a control theorem for studying the pseudodeformation theory of a representation
� W � ! GLn.Zp/ of a profinite group � . We recall that � has an associated pseudochar-
acter tr �, which can be defined following either Chenevier [15] or Lafforgue [32] (the
proof that these two notions are equivalent being due to Emerson [20]). If the residual
representation � is absolutely irreducible then it is known that deforming tr� is equivalent
to deforming �. In general any deformation of � gives rise to a deformation of tr�, but the
two notions are not equivalent.

Here we use Lafforgue’s definition of pseudocharacter to show that that if �˝Zp Qp

is absolutely irreducible, then there is a reasonably strong link between deformations and
pseudodeformations with coefficients in the ring Zp ˚ �Zp=.pN /. Informally, deforma-
tions and pseudodeformations are “the same”, up to bounded torsion which depends only
on the image �.�/. See Proposition 2.7 for a precise statement.

The second innovation is the formulation, by Wake and Wang-Erickson [54], of func-
tors of pseudodeformations satisfying deformation conditions (e.g. conditions arising
from p-adic Hodge theory). This is an indispensable tool for making an effective com-
parison between pseudodeformation rings and Hecke algebras acting on classical auto-
morphic forms.

The third innovation is related to the use of Taylor–Wiles systems in our proof. To
make use of Taylor–Wiles systems in the study of automorphic forms with integral coeffi-
cients, one needs to show that if q is a Taylor–Wiles place, then the space of automorphic
forms with unramified level at q is isomorphic to the space of automorphic forms with
Iwahori level at q, after localization with respect to a suitable eigenvalue of the Uq oper-
ator (see for example [14, Lemma 5.8]). One can argue along these lines only if the
residual representation �, unramified at q by hypothesis, has the property that �.Frobq/
has distinct eigenvalues. This is the reason for condition (2) in the statement of [28,
Introduction, Theorem] and of course excludes the case where � is trivial. Without this
“independence of q” statement, one does not have the finiteness conditions needed to
carry out the Taylor–Wiles patching argument, at least as outlined in [18].

In his thesis, Pan [39] introduced a surprising technique to circumvent this issue.
Building on Scholze’s interpretation of the Taylor–Wiles patching argument using ultrafil-
ters [45], Pan constructs a huge “pre-patched module”, and then shows that using suitable
Hecke operators it can be cut down to a size making it suitable for use in the Taylor–Wiles
argument. We have adapted his arguments to our context (in some ways more elementary,
since we work with fixed weight automorphic forms, whereas [39] works with completed
cohomology).

Applications. Results such as Theorem A have applications to the geometry of eigenvari-
eties, and this is one of the main motivations for proving them (as was already the case for
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Kisin [28]). This is because one can embed (at least locally around an irreducible point)
eigenvarieties inside deformation spaces of trianguline representations. In many cases, the
vanishing of H 1

f .F
C; ad r�;�/ can be used to prove that this embedding is in fact a local

isomorphism.
For example, the vanishing of the adjoint Selmer group is a significant part of what it

means for a p-refined Hilbert modular form to be decent, in the sense of [9], and therefore
to admit a p-adic L-function with good interpolation properties. Another application is
that one can use an understanding of the geometry of the eigenvariety to prove modularity
results for Galois representations. This possibility is already suggested in Kisin’s work
[27, (11.13)]. We will take this point of view in [38], where Theorem A is one of the
key inputs to prove the automorphy of the symmetric power liftings of level one Hecke
eigenforms (for example, Ramanujan’s modular form �).

Organization of this paper. In Section 2 we establish our control theorem relating
pseudodeformations and deformations (up to bounded torsion), and set up the Galois-
theoretic ingredients for the Taylor–Wiles method. In the short Section 3 we prove a
simple representation-theoretic result which controls the difference between spaces of
automorphic forms with hyperspecial and Iwahori level at Taylor–Wiles places. In Sec-
tion 4 we carry out our variation on the Taylor–Wiles method (inspired by Pan’s work)
and prove a special case of Theorem A. Finally, the general case of Theorem A, together
with Theorem B and some other applications, are deduced in Section 5 using base change
and potential automorphy.

1. Notation and preliminaries

If F is a field of characteristic zero, we generally fix an algebraic closure F=F and write
GF for the absolute Galois group of F with respect to this choice. If F is a number field,
then we will also fix embeddings F ! F v extending the map F ! Fv for each place v
of F ; this choice determines a homomorphism GFv ! GF . When v is a finite place, we
will write OFv � Fv for the valuation ring, $v 2 OFv for a fixed choice of uniformizer,
Frobv 2 GFv for a fixed choice of Frobenius lift, k.v/ D OFv=.$v/ for the residue field,
and qv D #k.v/ for the cardinality of the residue field. When v is a real place, we write
cv 2 GFv for complex conjugation. If S is a finite set of finite places of F then we write
FS=F for the maximal subextension of F unramified outside S andGF;S D Gal.FS=F /.

If p is a prime, then we call a coefficient field a finite extension E=Qp contained
inside our fixed algebraic closure Qp , and write O for the valuation ring of E,$ 2 O for
a fixed choice of uniformizer, and k D O=.$/ for the residue field. We write CO for the
category of complete Noetherian local O-algebras with residue field k.

If A is a ring and � W � ! GLn.A/ is a representation, we write ad � for Mn.A/ with
its adjoint �-action, and ad0 � � ad � for the AŒ��-submodule of trace zero matrices. We
will use the self-duality ad � � ad �! A, .X; Y / 7! trXY , to identify ad � with its dual
when we e.g. define dual Selmer conditions using Tate duality (see for example §2.4).
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If G is a locally profinite group and U � G is an open compact subgroup, then we
write H .G; U / for the set of compactly supported, U -biinvariant functions f W G ! Z.
It is a Z-algebra, where convolution is defined using the left-invariant Haar measure nor-
malized to give U measure 1; see [37, §2.2]. It is free as a Z-module, with basis given by
the characteristic functions ŒUgU � of double cosets.

Let K be a non-archimedean characteristic 0 local field, and let � be an algebraic-
ally closed field of characteristic 0. We write WK � GK for the Weil group of K and
IK �WK for the inertia subgroup. We use the cohomological normalization of class field
theory: it is the isomorphism ArtK W K� ! W ab

K which sends uniformizers to geometric
Frobenius elements. We use the Tate normalization of the local Langlands correspondence
for GLn: it is the bijection recTK between isomorphism classes of irreducible, admissible
�ŒGLn.K/�-modules and isomorphism classes of Frobenius-semisimple Weil–Deligne
representations over � of rank n which is normalized as in [17, §2.1].

If � W GK ! GLn.Qp/ is a continuous representation (assumed to be de Rham if p
equals the residue characteristic of K), then we write WD.�/ D .r; N / for the associated
Weil–Deligne representation, and WD.�/F-ss for its Frobenius semisimplification.

Definition 1.1. We say that a Weil–Deligne representation .r; N / is generic if there is
no non-zero morphism .r; N /! .r.1/; N /. We say that a continuous representation � is
generic if WD.�/ is generic.

We note that if WD.�/F-ss is generic, then � is generic. It follows from [1, Lemma
1.1.3] that if � is a generic irreducible admissible QpŒGLn.K/�-module and WD.�/F-ss D

recTK.�/, then � is generic.
If p equals the residue characteristic of K and V is the E-vector space on which �

acts (for some E � Qp finite over Qp with �.GK/ � GLn.E/), we have subspaces

H 1
f .K; V / � H

1
g .K; V / � H

1.K; V /

defined by

H 1
f .K; V / D ker

�
H 1.K; V /! H 1.K; V ˝Qp Bcrys/

�
;

H 1
g .K; V / D ker

�
H 1.K; V /! H 1.K; V ˝Qp BdR/

�
:

We haveH 1
f .K;End.V //DH 1

g .K;End.V // if and only if � is generic [1, Remark 1.2.9].
Similarly, if p does not equal the residue characteristic of K, we have a subspace

H 1
ur.K; V / D ker.H 1.K; V /! H 1.IK ; V //:

For notational compatibility with the p-adic case we write H 1
f .K; V / D H

1
ur.K; V / and

H 1
g .K; V / DH

1.K; V /. Then we again haveH 1
f .K;End.V // DH 1

g .K;End.V // if and
only if � is generic.

Let F be a number field, and let S be a finite set of finite places of F , containing
the p-adic places Sp . Let r W GF;S ! GLn.Qp/ be a continuous representation, with
underlying E-vector space V . We have global Selmer groups

H 1
f .F; V / � H

1
g;S .F; V / � H

1.FS=F; V /
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defined by

H 1
f .F; V / D ker

�
H 1.FS=F; V /!

Y
v2S

H 1.Fv; V /=H
1
f .Fv; V /

�
;

H 1
g;S .F; V / D ker

�
H 1.FS=F; V /!

Y
v2S

H 1.Fv; V /=H
1
g .Fv; V /

�
;

D ker
�
H 1.FS=F; V /!

Y
v2Sp

H 1.Fv; V /=H
1
g .Fv; V /

�
:

We note our convention that H 1.FS=F; �/ denotes group cohomology for the group
GF;S . The group H 1

f .F; V / does not change when S is enlarged (this is why we do
not record S in the notation).

If F is a number field and � is an automorphic representation of GLn.AF /, we say
that � is regular algebraic if �1 has the same infinitesimal character as an irreducible
algebraic representation of ResF=Q GLn. We recall (cf. [5, §2.1]) that if F is a totally
real or CM number field, then a pair .�; �/ comprising an automorphic representation �
of GLn.AF / and a Hecke character � W .FC/�n.AFC/

� ! C� is said to be polarized if
there is an isomorphism �c Š �_˝ .� ıNF=FC/ and, if F is CM, then �v.�1/D .�1/n

for each place v j1 of F . (The sign condition of [5] in the case of F totally real can be
suppressed, as a consequence of [40, Theorem 2.1].) The automorphic representations of
unitary type discussed in our introduction correspond to polarized automorphic represent-
ations .�; ın

F=FC
/, where ıF=FC is the quadratic character for F=FC.

If .�; �/ is a regular algebraic, cuspidal, polarized automorphic representation, then
for any isomorphism � WQp ! C there is an associated Galois representation (we refer to
[5, Theorem 2.1.1] for its properties)

r�;� W GF ! GLn.Qp/:

If F is CM, then r�;� extends to a homomorphism r�;� W GFC ! Gn.Qp/, with multi-
plier character � ı r�;� D �1�nr�;� (Gn is the algebraic group defined in [16, §2.1]; here the
word ‘extends’ is interpreted following the convention described at the top of [16, p. 8]).
This defines an extension of the GF -action on ad r�;� to an action of GFC . More expli-
citly, if we fix a choice c 2 GFC of complex conjugation, there is a perfect, symmetric
pairing h�; �i on Q

n

p such that

hr�;�.�/v; r�;�.�
c/wi D .�1�nr�;�.�//hv;wi

for all � 2 GF ; v; w 2 Q
n

p and c acts on ad r�;� D End.Q
n

p/ by X 7! �X�, where X� is
the adjoint with respect to h�; �i.

2. Pseudocharacters

In this paper we use Lafforgue’s notion of pseudocharacter for a reductive group in the
case of GLn (see [32, §11] or [10, §4]), and Chenevier’s notion of group determinant [15].
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In fact, these are equivalent, but both definitions are useful. We will prove a new res-
ult about the deformation theory of pseudocharacters (Proposition 2.7) using Lafforgue’s
point of view, while we follow [54] in using Chenevier’s definition to impose deformation
conditions on pseudocharacters.

2.1. Pseudocharacters vs. determinants

We begin by recalling the relevant definitions. Let � be a group and fix n � 1.

Definition 2.1. A pseudocharacter of � of dimension n over a ring A is a collection
‚ D .‚m/m�1 of algebra homomorphisms ‚m W ZŒGLmn �

GLn ! Map.�m; A/ satisfying
the following conditions:

(1) For all k; l � 1 and for each map � W ¹1; : : : ; kº ! ¹1; : : : ; lº, each f 2 ZŒGLkn�
GLn ,

and each 1; : : : ; l 2 � , we have

‚l .f
� /.1; : : : ; l / D ‚k.f /.�.1/; : : : ; �.k//;

where f � .g1; : : : ; gl / D f .g�.1/; : : : ; g�.k//.

(2) For each k � 1, for each 1; : : : ; kC1 2 � , and for each f 2 ZŒGLkn�
GLn , we have

‚kC1. Of /.1; : : : ; kC1/ D ‚k.f /.1; : : : ; kkC1/;

where Of .g1; : : : ; gkC1/ D f .g1; : : : ; gkgkC1/.

If � W � ! GLn.A/ is a representation, then we can define its associated pseudochar-
acter t D .tm/m�1 D tr � by the formula

tm.f /.1; : : : ; n/ D f .�.1/; : : : ; �.m//:

One can define the operations of twisting and duality on pseudocharacters in a way com-
patible with the usual operations on representations. For example, let i W GLn ! GLn
be the involution given by i.g/ D tg�1. If t is a pseudocharacter, then we define a
new pseudocharacter t_ by the formula t_m.f /.1; : : : ; m/D tm.f

0/.1; : : : ; m/, where
f 0 2 ZŒGLmn � is defined by

f 0.g1; : : : ; gm/ D f .i.g1/; : : : ; i.gm//:

If t D tr �, then t_ D tr �_.
Similarly, if � W � ! A� is a character, then we define the twist t ˝ � by the formula

.t ˝�/m.f /.1; : : : ; m/D f
0.1; : : : ; m/, where f 0 2AŒGLmn �

GLn is defined by the for-
mula f 0.g1; : : : ; gm/D f .�1.1/g1; : : : ; �m.m/gm/. If t D tr�, then t ˝ �D tr.�˝ �/.

Before giving the definition of group determinant, we fix some notation. Let A be a
ring and let A-alg be the category of commutative A-algebras. If M is an A-module, then
we write hM W A-alg! Sets for the functor B 7!M ˝A B .

Definition 2.2. A group determinant of � of dimension n over a ring A is a natural
transformation of functors D W hAŒ�� ! hA satisfying the following conditions on the
induced map BŒ��! B for every B 2 A-alg:
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(1) D.1/ D 1.

(2) For any x; y 2 BŒ��, D.xy/ D D.x/D.y/.

(3) For any x 2 BŒ�� and b 2 B , D.bx/ D bnD.x/.

If � W �!GLn.A/ is a representation, then we can define its associated group determ-
inant D.x/ D det.�.x// (where we extend � to a homomorphism � W BŒ��!Mn.B/ for
any A-algebra B). We omit the formulae for the dual or twist of a group determinant.

We now describe the relation between pseudocharacters and group determinants.
For each i D 0; : : : ; n, let �i 2 ZŒGLn�GLn be defined by the equation det.X � g/ DPn
iD0.�1/

i�i .g/X
n�i . If t is a pseudocharacter, we have functions (i D 0; : : : ; n)

t Œi� W � ! A

given by the formulae t Œi�./ D t1.�i /./. By [19, §3.1], for any m � 1, ZŒGLmn �
GLn is

generated as a ring by the functions �i .gi1 : : : gir / (r 2 N; 1 � i1; : : : ; ir � m), together
with det.g1 : : : gm/�1. The axioms defining a pseudocharacter show that we have

tm.�i .gi1 : : : gir //.1; : : : ; m/ D t1.�i .g//.i1 : : : ir /: (2.1)

It follows that the functions t Œi� (i D 0; : : : ; n) together determine t .
If D is a group determinant, then we define functions (i D 0; : : : ; n)

DŒi�
W � ! A

by the formula D.X � / D
Pn
iD0.�1/

iDŒi�./Xn�i (evaluation of D over the ring
AŒX�). The functions DŒi� (i D 0; : : : ; n) together determine D (by Amitsur’s formula,
cf. [15, Lemma 1.12]).

Theorem 2.3. For any group � and ring A, the pseudocharacters t of dimension n are
in canonical bijection with the group determinants D of dimension n. This bijection is
characterized by the equality t Œi� D DŒi� for each i D 0; : : : ; n.

Proof. See [20, Theorems 4.0.1 and 5.0.1], which explicitly construct a bijection between
the two classes of objects. Suppose that t , D are associated. Then for any  2 � ,
t1./ determines a ring homomorphism ZŒGLn�GLn ! A, hence a ring homomorphism
t1./ŒX� W ZŒGLn�GLn ˝Z ZŒX� ! AŒX�. We may think of det.X � g/ as an element
of ZŒGLn�GLn ˝Z ZŒX�, and the proof of [20, Theorem 4.0.1] shows that if  2 �
then D.X � / D t1./ŒX�.det.X � g//. This equality is equivalent to the equalities
DŒi�./ D t Œi�./ (i D 0; : : : ; n).

We now discuss continuity. Suppose therefore that � is a profinite group and A is a
topological ring. The definitions are as follows.

Definition 2.4. Let t D .tm/m�1 be a pseudocharacter. We say that t is continuous if for
each m � 1, tm takes values in the set Mapcts.�

m; A/ of continuous functions �m ! A.
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Definition 2.5. Let D be a group determinant. We say that D is continuous if each func-
tion DŒi� (i D 0; : : : ; n) is continuous.

It is clear from the definitions that if � W � ! GLn.A/ is a continuous representation,
then tr � is continuous as a pseudocharacter.

Proposition 2.6. Let t D .tm/m�1 and D be associated under the bijection of The-
orem 2.3. Then t is continuous if and only if D is.

Proof. In light of Theorem 2.3, it is enough to show that if t is a pseudocharacter such
that each function t Œi� (i D 0; : : : ; n) is continuous, then t is continuous. This is again a
consequence of (2.1) and [19, §3.1].

2.2. Pseudocharacters vs. representations

Now let p be a prime, let E=Qp be a finite extension, and let � be a profinite group. Let
� W �! GLn.O/ be a continuous homomorphism which is absolutely irreducible over E.
Let t D .tm/m�1 D tr � denote the pseudocharacter associated to �. We consider liftings
of � and of t to the ring A D O ˚ �E=O (with �2 D 0). Clearly if �0 W � ! GLn.A/ is a
lifting of �, in the sense that �0 mod .�/ D �, then t 0 D tr �0 is a lifting of t . We want to
show that in fact deforming � in this way is not too far from deforming t .

We write ˛k W A! A for the O-algebra homomorphism which acts as multiplication
by pk on the ideal .�/ � A. We will prove:

Proposition 2.7. There exists an integer k0 � 0, depending only on �.�/, with the fol-
lowing properties:

(1) For any lifting t 0 of t to A, there exists a homomorphism �0 W � ! GLn.A/ lifting �
such that tr �0 D ˛k0 ı t

0. If t 0 is continuous, then �0 can be chosen to be continuous.

(2) If �01; �
0
2 W � ! GLn.A/ are two liftings with tr�01 D tr�02, then ˛k0 ı �

0
1 and ˛k0 ı �

0
2

are conjugate under the action of the group 1 C �Mn�n.E=O/ � GLn.A/; and if
X 2Mn�n.E=O/ is such that 1C �X centralizes �01, then pk0X is a scalar matrix.

For any m � 1, we define Xm D .GLn;O/m, and Ym D Spec OŒGLmn �
GLn . We write

�m W Xm! Ym for the tautological morphism. We fix elements 1; : : : ; m 2 � such that
�.1/; : : : ; �.m/ generate a Zariski dense subgroup of �.�/. We may assume thatm � 2.

Let
x D .g1; : : : ; gm/ D .�.1/; : : : ; �.m// 2 Xm.O/:

If ; ı 2 � , then we define

x./ D .�.1/; : : : ; �.m/; �.// 2 XmC1.O/;

x.; ı/ D .�.1/; : : : ; �.m/; �./; �.ı// 2 XmC2.O/:

We define y D �m.x/, y./ D �mC1.x.//, and y.; ı/ D �mC2.x.; ı//. Before going
further, we recall the following lemma.



J. Newton, J. A. Thorne 1928

Lemma 2.8. Let � W X ! Y be a separated morphism of schemes of finite type over a
base S . LetG be a separated group scheme, smooth and of finite type over S , and suppose
that G acts on X in such a way that � is G-equivariant for the trivial action of G on Y .
Then:

(1) There is a canonical morphism �X=Y ! HomOS .LieG;OX / of coherent sheaves of
OX -modules.

(2) If � is a G-torsor, then this morphism is an isomorphism.

Proof. Let e W X ! G �X be the morphism x 7! .e; x/, and let � W G �X ! X �Y X

be the morphism .g; x/ 7! .x; gx/. Then � ı e is the diagonal embedding, and both e and
� ı e are closed immersions. The sheaf HomOS .LieG;OX / may be identified with the
conormal sheaf of the morphism e (see e.g. [46, II, Lemme 4.11.7]), while �X=Y may be
identified with the conormal sheaf of the morphism � ı e. The existence of the morphism
therefore follows from [51, Lemma 01R4].

Now suppose that � is a G-torsor. In this case � is an isomorphism, and the statement
is immediate.

Let gD Lie PGLn;O and g� DHom.g;O/, g�Xm D g�˝O OXm . We apply Lemma 2.8
to the morphisms �k WXk! Yk , withG D PGLn;O , to obtain complexes (not necessarily
exact) of coherent sheaves on Xk :

.?k/ W 0! ��k�Yk=O ! �Xk=O ! g�Xk ! 0:

We observe that e.g. i�x .?m/ is the complex

i�x .?m/ W 0! T �y Ym ! T �x Xm ! g� ! 0:

Here we write T �x Xm D i
�
x�Xm=O , by definition, and call it the Zariski cotangent space

of Xm at the point x.

Lemma 2.9. (1) The complex .?m/Œ1=p� onXmŒ1=p� is an exact sequence of locally free
sheaves above a Zariski open neighbourhood of the point y.

(2) The complex .?mC1/Œ1=p� onXmC1Œ1=p� is an exact sequence of locally free sheaves
above a Zariski open neighbourhood of the point y./, for any  2 � .

(3) The complex .?mC2/Œ1=p� onXmC2Œ1=p� is an exact sequence of locally free sheaves
above a Zariski open neighbourhood of the point y.; ı/, for any ; ı 2 � .

Proof. We show that �mŒ1=p� is a PGLn;E -torsor above a Zariski open neighbourhood
of y. The same proof shows the analogous statement for the points y./ and y.; ı/, and
in each case implies the statement in the lemma (since a PGLn;E -torsor is in particular
smooth). Let U denote the open subset of XmŒ1=p� corresponding to tuples .u1; : : : ; um/
which generate an absolutely irreducible subgroup of GLn. Then [43, Theorem 4.1] shows
that U is precisely the set of stable points of XmŒ1=p� (for the action of PGLn;E ). In
particular, �m.U / is an open subset of YmŒ1=p� and U D ��1m .�m.U //. Each point of U
has a trivial stabilizer for the PGLn;E action (Schur’s lemma), so it follows from [4,
Proposition 8.2] that �mjU W U ! �m.U / is a PGLn;E -torsor, as required.

https://stacks.math.columbia.edu/tag/01R4
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We can use the compactness of � to upgrade the previous lemma to the following
uniform integral statement.

Lemma 2.10. We can find an integer k1 � 0 with the following properties:

(1) The cohomology of the complex i�x .?m/ is annihilated by pk1 .

(2) For any  2 � , the cohomology of the complex i�
x./

.?mC1/ is annihilated by pk1 .

(3) For any ; ı 2 � , the cohomology of the complex i�
x.;ı/

.?mC2/ is annihilated by pk1 .

Proof. The first part of the lemma follows by Lemma 2.9. In fact, we can find numbers
k, k./, and k.; ı/ such that the requirements of each point of the lemma are satisfied
if k1 is replaced by k, k./, and k.; ı/ in each case. What we must show is that we can
find k1 which exceeds k, k./, and k.; ı/ for all ; ı 2 � .

To this end, let us suppose that k, k./, and k.; ı/ have been chosen to each take
their smallest possible values. It suffices to show that k./ and k.; ı/ are locally constant
as functions of ; ı 2 � . Since � is compact, this will imply that they are in fact bounded.
This local constancy is a consequence of the second part of Lemma 2.11 below.

Lemma 2.11. Let Z be a scheme of finite type over O. If z 2 Z.O/, we write iz W
Spec O ! Z for the corresponding morphism.

(1) Let z 2Z.O/ and let F be a coherent sheaf onZ such that F Œ1=p� is locally free on a
Zariski open neighbourhood Vz of z in ZŒ1=p�. Then there exists an open . for the p-
adic topology/ neighbourhood U of z inZ.O/ such that for any z0 2 U , i�z0F Š i

�
z F

as O-modules.

(2) Let z 2 Z.O/ and let

.?/ W 0! F1 ! F2 ! F3 ! 0

be a complex of coherent sheaves on Z, not necessarily exact, but such that on a
Zariski open neighbourhood of z 2 ZŒ1=p�,

.?Œ1=p�/ W 0! F1Œ1=p�! F2Œ1=p�! F3Œ1=p�! 0

is an exact sequence of locally free sheaves. Then there exists a p-adically open
neighbourhood U of z in Z.O/ and an integer N � 0 such that for all z0 2 U ,
pNH�.i�z0.?// D 0.

Proof. In each case we are free to replace Z by a Zariski open neighbourhood of the
closed point specializing z. We can therefore assume that Z D SpecB is affine. In the
first case we can assume that F corresponds to a finite B-module M and that there is an
exact sequence

Ba ! Bb !M ! 0:

We may assume that F Œ1=p� has constant rank b � k on Vz , so we get a continuous
map Z.O/ \ Vz.E/! Ma�b.O/ \Ma�b;k.E/, where Ma�b;k � Ma�b is the locally
closed subscheme of matrices of rank k (equivalently with vanishing .k C 1/ � .k C 1/
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minors but at least one non-zero k � k minor). Note thatZ.O/\Vz.E/ is p-adically open
inZ.O/. We are therefore reduced to showing that any matrix T 2Ma�b.O/\Ma�b;k.E/

has an open neighbourhoodU such that for T 0 2U , Ob=T 0Oa is isomorphic to Ob=TOa.
In other words, we need to show that there is an open neighbourhoodU in which the Smith
normal form of T is constant. Let m be the largest valuation of a non-zero minor of T .
Choosing U so that for any T 0 2 U , the minors of T 0 are congruent to those of T mod-
ulo $mC1, we see that the Smith normal forms of T and T 0 are indeed equal. (Note that
the assumption that the E-rank is constant is necessary; otherwise we have the example
of M D OŒx�=x at the point x D 0, where O is a limit of O=.$N /’s.)

We now turn to the second part. It suffices to show that we can find an integer
N � 0 and a p-adically open neighbourhood U of z such that for all z0 2 U , pN anni-
hilates ker.i�z0F2 ! i�z0F3/=im.i�z0F1 ! i�z0F2/. Our hypotheses imply that for z0 in a
Zariski open neighbourhood of z, this group is contained in the torsion subgroup of
i�z0F2=im.i�z0F1 ! i�z0F2/ D i�z0.F2=im.F1 ! F2//, so the result follows on applying
the first part to F2=im.F1 ! F2/.

We are now in a position to prove Proposition 2.7. Recall that we write A D

O ˚ �E=O. It is helpful to first note that if X is a scheme over O and x 2 X.O/, then the
fibre of X.A/! X.O/ above x is canonically identified with HomO.T

�
x X;E=O/.

Proof of Proposition 2.7. Let the integer k1 be as in Lemma 2.10. We will show that we
can take k0 D 6k1. Taking the Pontryagin dual of i�x .?m/ and i�

x./
.?mC1/ gives us, for

any  2 � , a commutative diagram

0 // g˝O E=O // HomO.T
�
x Xm; E=O/

// HomO.T
�
y Ym; E=O/

// 0

0 // g˝O E=O

OO

// HomO.T
�
x./

XmC1; E=O/ //

OO

HomO.T
�
y./

YmC1; E=O/ //

OO

0

The first vertical arrow is the identity, while the other two vertical arrows correspond
to forgetting the last entry in GLmC1n . Both rows have cohomology annihilated by pk1 .
Consequently, the induced map

HomO.T
�
x./XmC1; E=O/

! HomO.T
�
x Xm; E=O/ �HomO.T

�
y Ym;E=O/

HomO.T
�
y./YmC1; E=O/ (2.2)

has kernel and cokernel annihilated by p2k1 . In particular, given an element z of the target
we can define an element of the source unambiguously as follows: Choose a pre-image z0

of p2k1z. Then z00 D p2k1z0 depends only on z and has image p4k1z.
Now suppose given a pseudocharacter t 0 over A lifting t . The data of the pseudochar-

acter t 0 (more precisely, t 0m) determines an element y0 2 Hom.T �y Ym; E=O/. We fix
a choice of x0 2 HomO.T

�
x Xm; E=O/ with image equal to pk1y0. This corresponds

to a tuple of elements .g01; : : : ; g
0
m/ 2 GLn.A/m lifting the element .g1; : : : ; gm/ D
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.�.1/; : : : ; �.m//. If x00 is any other choice of element with image equal to pk1y0, then
pk1x � pk1x00 is in the image of g˝O E=O.

The pseudocharacter t 0 also determines elements

y0./ 2 Hom.T �y./YmC1; E=O/

for any  2 � , and the pair .pk1x0; p2k1y0.// lies on the right-hand side of (2.2). We
may define �0./ uniquely as follows: it is the lift of p4k1.pk1x0; p2k1y0.// associated
to the map (2.2). Then �0 W � ! GLn.A/ has associated trace function tr �0 D ˛6k1 ı t

0,
and its conjugacy class under 1C �g˝O E=O is independent of choices. We can verify
that �0 is a homomorphism (i.e. that it respects multiplication) using the fact that t 0 is a
pseudocharacter, together with a diagram with rows corresponding to elements x.ı/ and
x.; ı/.

Now suppose given two liftings �01; �
0
2 of � to A with tr �01 D tr �02 D t 0, say.

This implies that for each  2 � , the tuples .�0i .1/; : : : ; �
0
i .m/; �

0
i .// (i D 1; 2),

when identified with elements of HomO.T
�
x./

XmC1; E=O/, have equal image in
HomO.T

�
y./

YmC1; E=O/. Consequently, there is X in g ˝O E=O taking ˛k1 of the
first tuple to ˛k1 of the second. Passing to the top row of the commutative diagram, we
see that for any ;  0 2 � , we have pk1.X �X 0/D 0, henceX D pk1X is independent
of  2 � . It follows that X takes ˛2k1 ı �

0
1 to ˛2k1 ı �

0
2.

It remains to verify that if t 0 is continuous, then so is �0. It is enough to show that for
each s � 1, there exists an open subgroup N � � such that �0.N / takes values in the sub-
group 1C$ sMn.O/ of GLn.A/. Since ZŒGLmC1n �GLn is a finitely generated Z-algebra
and � is compact, there exists r � 1 such that t 0mC1 takes values in Map.�mC1;Ar /, where
Ar DO˚ �$�rO=O�A. Increasing s, we can assume that s� r , that �0.1/; : : : ;�0.m/
lie in GLn.As/, and that there exists an open subgroup N � � such that for all  2 N ,
�./ 2 1C$ sMn.O/ and t 0mC1.1; : : : ; m; / � t

0
mC1.1; : : : ; m; 1/ mod $ sAs . We

observe that for  2 N , there is a commutative square

HomO.T
�
x./

XmC1;$
�sO=O/ //

��

HomO.T
�
x Xm;$

�sO=O/�HomO.T
�
y./

YmC1;$
�sO=O/

��

HomO.T
�
x.1/

XmC1;$
�sO=O/ // HomO.T

�
x Xm;$

�sO=O/�HomO.T
�
y.1/

YmC1;$
�sO=O/

where the horizontal arrows are the ones already considered in (2.2) (suppressing the
subscripts indicating the fibre product to save space), and the vertical ones are bijec-
tions arising from the identification between HomO.T

�
x./

XmC1;$
�sO=O/ and the fibre

ofXmC1.O=$ s ˚ �$�sO=O/!XmC1.O=$
s/ above x./ mod $ s D x.1/ mod $ s .

The horizontal arrows have kernels annihilated by p2k1 . Our assumptions imply that the
elements of

HomO.T
�
x./XmC1;$

�sO=O/ and HomO.T
�
x.1/XmC1;$

�sO=O/

corresponding to the images of �0./ and �0.1/ in GLn.O=$ s ˚ �$�sO=O/ are identi-
fied under the above bijection. This is what we needed to prove.
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2.3. Pseudocharacters: Galois deformation theory

We again fix a prime p and a finite extension E=Qp with ring of integers O and residue
field k. Let CO be the category of complete Noetherian local O-algebras with residue
field k.

Let F be a number field, and let S be a finite set of finite places of F , containing the
p-adic ones. Let � W GF;S ! GLn.k/ be a continuous representation. Let D denote the
associated group determinant over k.

We write DefD;S W CO ! Sets for the functor which associates to each A 2 CO the
set of continuous group determinants D of GF;S over A such that D mod mA D D.

Proposition 2.12. The functor DefD;S is represented by an object RD;S 2 CO .

Proof. See [15, §3.3]. (This reference deals with the case O D W.k/, but the extension
to general coefficients is trivial.)

Lemma 2.13. Fix an integer q � 0. Then there exists an integer g0 D g0.S;D; q/ such
that for any set Q of finite places of F such that jQj � q, there exists a surjection
OJX1; : : : ; Xg0K! RD;S[Q.

Proof. Let L=F denote the extension cut out by �, and let MS[Q denote the maximal
pro-p extension of L unramified outside S [Q. Then there exists g1 D g1.S; �; q/ such
that the group Gal.MS[Q=F / can be topologically generated by g1 elements (because the
dimension of the space H 1.GL;S[Q; k/ can be bounded in a way depending only on q).
Moreover, any deformation of D to GF;S[Q in fact factors through Gal.MS[Q=F / (by
[15, Lemma 3.8]). The statement of the lemma follows on applying e.g. the results of
[15, §2.37].

Now fix integers a � b, and let E
Œa;b�
F;S denote the category of finite cardinality

ZpŒGF;S �-modules M such that for each place v jp of F , M is isomorphic as ZpŒGFv �-
module to a subquotient of a lattice in a semistable representation of GFv with Hodge–
Tate weights in Œa; b�. This defines a stable condition in the sense of [54, Definition 2.3.1].

We write DefŒa;b�
D;S
� DefD;S for the subfunctor which assigns to A 2 CO the set of

determinants D over A satisfying the following condition:

There exists a Cayley–Hamilton representation .OŒGF;S �;D/! .B;D0/

over A such that for each n � 1; B=mn
AB lies in E

Œa;b�
F;S ;when equipped

with its left GF;S -action: (2.3)

The notion of Cayley–Hamilton representation is defined in [54, Definition 2.1.8]. We
recall that it is an O-algebra homomorphism � W OŒGF;S � ! B , where B is a finitely
generated A-algebra and D0 W B ! A is a determinant such that D0 ı � D D and the
associated Cayley–Hamilton ideal CH.D0/ � B is zero. Note that in this situation B is
necessarily finitely generated as an A-module [54, Proposition 2.1.7].

Proposition 2.14. The functor DefŒa;b�
D;S

is represented by an object RŒa;b�
D;S
2 CO .
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Proof. See [54, Theorem 2.5.5].

Now suppose given a lift � W GF;S ! GLn.O/ of � with the following properties:

� �˝O E is absolutely irreducible.

� For each place v jp of F , �jGFv ˝O E is semistable with Hodge–Tate weights in the
interval Œa; b�.

Let D denote the associated group determinant over O. Then D determines a homo-
morphism R

Œa;b�

D;S
! O. We write q for the kernel. Let W D ad �, WE D W ˝O E,

WE=O D WE=W , Wm D ad � ˝O O=$m. We have a Selmer group H 1

E
Œa;b�
F;S

.F; Wm/

defined by local conditions: if v 62 S , we take the unramified subgroup ofH 1.Fv;Wm/, if
v 2 S � Sp we impose no condition and if v 2 Sp we take the subspace of H 1.Fv; Wm/

corresponding to self-extensions of �jGFv ˝O O=$m which are subquotients of lattices
in semistable representations with Hodge–Tate weights in the interval Œa; b�.

Proposition 2.15. There exists a canonical homomorphism

trm W H 1

E
Œa;b�
F;S

.F;Wm/! HomO.q=q
2;O=$m/: (2.4)

Moreover, there is a constant c � 1 depending only on � and not on S , Œa; b�, or m such
that for any m � 1, the kernel and cokernel of trm are both annihilated by pc .

In applications of the proposition we will enlarge S by adding Taylor–Wiles places.
This is why it is important that the constant c is independent of the set S .

Proof of Proposition 2.15. We first describe the map trm. Let Am D O ˚ �$�mO=O �

ADO˚ �E=O. If k � 0, then we write ˛k WAm!Am for the O-algebra homomorphism
that sends � to pk�. A class Œ�� 2 H 1

E
Œa;b�
F;S

.F;Wm/ corresponds to an equivalence class of
liftings

�� W GF;S ! GLn.Am/

such that �� mod .�/ D � and for each N � 1, �� mod $N 2 E
Œa;b�
F;S (this can be seen

by considering the extension of scalars along the injective ring homomorphism Am ,!

O � O=$mŒ�� and using the fact that E
Œa;b�
F;S is closed under taking ZpŒGF;S �-submod-

ules). On the other hand, we can identify HomO.q=q
2;O=$m/ with the pre-image under

the map
HomO.R

Œa;b�

D;S
; Am/! HomO.R

Œa;b�

D;S
;O/

of the classifying map of D. The map trm is the one which sends Œ�� to the classifying
map of the pseudocharacter tr �� over Am. Note that multiplication by pk on either side
of (2.4) corresponds at the level of representations (resp. determinants) to composition
with ˛k .

Next we analyze the kernel of trm. Suppose that tr�� D tr�. Let k0 be the constant of
Proposition 2.7; it depends only on �.GF;S /�GLn.O/. Then we can findX 2Mn.E=O/

such that
.1C �X/�pk0�.1 � �X/ D �;
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or equivalently such that pk0� becomes a coboundary inH 1.F;WE=O/. Since the kernel
of H 1.F; Wm/! H 1.F; WE=O/ is isomorphic to H 0.F; WE=O/˝ O=$m, it is killed
by a uniformly bounded power of p and we see that the same is true for the kernel of trm.

Now we analyze the cokernel of trm. This is more subtle. Let D0 be a determinant of
GF;S overAm corresponding to an element of the right-hand side of (2.4). By assumption,
there exists a Cayley–Hamilton representation r W AmŒGF;S �! B and a determinantD00 W
B ! Am such that D0 D D00 ı r , and the finite quotients of B lie in E

Œa;b�
F;S . We may

assume without loss of generality that r is surjective. According to the characterization of
ker.D0/ � AmŒGF;S � given by [15, Lemma 1.19], we have ker.r/ � ker.D0/.

By Proposition 2.7, there exists a homomorphism �� W GF;S ! GLn.A/ such that the
associated group determinant is ˛k0 ı D

0. It also follows from Proposition 2.7 that the
associated cohomology class Œ�� 2 H 1.F;WE=O/ is killed by multiplication by $mpk0

(as tr.�$m�/ D tr.�/). We deduce that pk0 Œ�� is contained in the image of H 1.F; Wm/

in H 1.F;WE=O/. So we may in fact assume that we have �� W GF;S ! GLn.Am/ such
that the associated group determinant is ˛2k0 ıD

0.
We must show that there is c � 0 depending only on � such that for each N � 1,

˛c ı �� mod $N defines an object of E
Œa;b�
F;S (as then pc Œ�� is a pre-image under (2.4) of

˛2k0Cc ıD
0).

Let A� D ��.AmŒGF;S �/�Mn.Am/. Let k1 � 0 be an integer such that pk1Mn.O/�

�.OŒGF;S �/ (this exists since �˝O E is absolutely irreducible, by assumption, and hence
�.EŒGF;S �/ D Mn.E/). Then Apk1� contains pk1Mn.Am/. Indeed, let Eij denote the
elementary matrix in Mn.O/ with entries 1 in the .i; j / spot and 0 elsewhere. Then
pk1Eij 2 �.OŒGF;S �/, so there is Xij 2 Mn.O=$

m/ such that pk1Eij C �Xij 2 A�

and pk1Eij C �pk1Xij 2 Apk1� . After multiplying by �, we see that pk1�Eij 2 Apk1�
for all .i; j /, hence pk1Eij 2 Apk1� .

Let D000 W Apk1� ! Am denote the determinant induced by the natural inclusion
Apk1�!Mn.Am/. If x 2 kerD000, then [15, Lemma 1.19] shows that tr.xpk1Eij /D 0 for
all i; j . (Here tr WMn.Am/! Am is the usual trace of an n � n matrix, not a pseudochar-
acter.) Hence kerD000 is contained in the intersection of Apk1� withMn.Am/Œp

k1 �, and is
therefore annihilated by the homomorphism ˛k1 WMn.Am/!Mn.Am/.

It follows that there exists a commutative diagram of Am-algebras

AmŒGF;S �
�
pk1�

//

r

��

Apk1�

��

// Mn.Am/

˛k1

��

B // AmŒGF;S �=ker.˛2k0Ck1 ıD
0/ // Mn.Am/

Indeed, the quotient map AmŒGF;S �! AmŒGF;S �=ker.˛2k0Ck1 ıD
0/ factors through B

because ker.r/� ker.D0/� ker.˛2k0Ck1 ıD
0/, and the bottom right arrow exists because

˛2k0Ck1 ıD
0 DD000 ı �pk1� . The existence of this diagram shows that the finite quotients

of Mn.Am/, with induced action of AmŒGF;S � by left multiplication via �p2k1� , satisfy

condition E
Œa;b�
F;S (since this holds for finite quotients of B). This implies that the finite
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quotients of ˛2k1 ı �� also satisfy the condition E
Œa;b�
F;S . We deduce that the cokernel of

trm is annihilated by p2k0C2k1 .

2.4. Pseudocharacters: Taylor–Wiles data

We continue our discussion of the Galois deformation theory of pseudocharacters, now
focusing on what happens when we impose conjugate self-duality conditions and allow
additional primes of ramification. We thus fix the following notation:

� p is a prime and E=Qp is a coefficient field.

� F=FC is a CM quadratic extension of a totally real field.

� S is a finite set of finite places of FC containing the p-adic ones. We assume that each
place of S splits in F , and fix for each v 2 S a choice of place zv of F lying above v.
We set Sp D ¹v W v jpº and zS D ¹zv W v 2 Sº.

� r W GFC;S ! Gn.O/ is a continuous representation such that r jGF;S ˝O E is abso-
lutely irreducible. We set � D r jGF;S W GF;S ! GLn.O/ and write D for the group
determinant of � and D for its reduction modulo $ . We set � D � ı r . The existence
of r implies that the OŒGF;S �-module structure onW D ad� extends to an OŒGFC;S �-
module structure (set W D ad r , where ad r is defined as in [16, §2.1]), and similarly
for WE , Wm, etc.

� a � b are integers such that D defines a homomorphism R
Œa;b�

D;S
! O. Thus for each

v 2 Sp , �jGFzv ˝O E is semistable with all Hodge–Tate weights in the range Œa;b�. Note
that �jGFzv is then semistable and there exists w 2 Z such that ��w has finite order. We
assume moreover that aC b D w.

Let RS denote the quotient of RŒa;b�
D;S

corresponding to pseudocharacters D0 such that
.D0/c D .D0/_ ˝ �jGF;S . Then � determines a homomorphism RS ! O, and we write
qS for its kernel.

We define Selmer conditions LS D ¹Lvº D ¹Lv;mº forWm as follows: if v 62 S , then
Lv is the unramified subgroup ofH 1.FCv ;Wm/. If v 2 S � Sp , then Lv DH

1.FCv ;Wm/.
If v 2 Sp , then Lv is the subspace of H 1.FCv ; Wm/ corresponding to self-extensions of
�jGFzv

˝O O=$m which are subquotients of lattices in semistable representations with
Hodge–Tate weights in the interval Œa; b�. We define dual Selmer conditions L? D ¹L?v º

to be given by the annihilators of Lv under local duality.
The corresponding Selmer groups are defined by

H 1
LS
.FC; Wm/ D ker

�
H 1.FC; Wm/!

Y
v

H 1.FCv ; Wm/=Lv;m

�
;

H 1

L?
S

.FC; Wm.1// D ker
�
H 1.FC; Wm.1//!

Y
v

H 1.FCv ; Wm.1//=L
?
v;m

�
:

These Selmer groups are finite length O-modules. We denote their length by
h1

LS
.FC; Wm/ and h1

L?
S

.FC; Wm.1//. Taking inverse limits with respect to the projec-

tion mapsWmC1!Wm and direct limits with respect to the injectionsWm Š$WmC1 �
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WmC1, we also define Selmer groups with characteristic 0 and divisible coefficients:

H 1
LS
.FC; WE / D

�
lim
 �
m

H 1
LS
.FC; Wm/

�
˝O E;

H 1
LS
.FC; WE=O/ D lim

�!
m

H 1
LS
.FC; Wm/:

Proposition 2.15 has the following consequence:

Proposition 2.16. For each m � 1, there is a canonical homomorphism

trm;S W H 1
L�
.FC; Wm/! HomO.qS=q

2
S ;O=$

m/: (2.5)

Moreover, there is a constant d � 0 depending only on r .and not on S , Œa; b� orm/ such
that pd annihilates the kernel and cokernel of trm;S .

Proof. The map (2.4) is Gal.F=FC/-equivariant for the action on the left-hand side
induced by the GFC;S -action on Wm and the action on the right-hand side defined as
follows: the non-trivial element c 2 Gal.F=FC/ acts on RŒa;b�

D;S
by sending a pseudochar-

acter D0 to .D0/c;_ ˝ �jGF;S , and this induces an action on the right-hand side of (2.4).
Note that this action makes sense because of our condition a C b D w. The right-hand
side of (2.5) is the c-invariants in the right-hand side of (2.4). The left-hand side of (2.5)
maps to the c-invariants in the left-hand side of (2.4) with bounded kernel and cokernel.
This is enough.

Here is a variant that will be useful when it comes to deducing our main vanishing
result.

Proposition 2.17. (1) There is an isomorphism

trE;S W H 1
LS
.FC; WE /! HomO.qS=q

2
S ; E/:

(2) The natural mapH 1
LS
.FC;WE /!H 1.FS=F

C;WE / identifiesH 1
LS
.FC;WE /with

the geometric Selmer group H 1
g;S .F

C; WE /.

(3) Suppose that for each v 2 S , �jGFzv is generic. ThenH 1
g;S .F

C;WE /DH
1
f .F

C;WE /.

Proof. The first part follows from Proposition 2.16 by taking the inverse limit over m
and inverting p. The main result of [33] implies that H 1

LS
.FC; WE / classifies (polar-

ized) semistable self-extensions of �E . A de Rham self-extension of �E is automatically
semistable [36, Corollary 1.27], so the second part follows. The third part follows from
the equality of the respective local Selmer groups in the generic case.

For m0 � m the inverse image of Lv;m0 in H 1.FCv ; Wm/ under the map

H 1.FCv ; Wm/! H 1.FCv ; Wm0/

induced by the injectionWm! Wm0 equals Lv;m. Indeed, the natural mapH 1.FCv ;Wm/

! H 1.FCv ; Wm0/ corresponds to pushing forward a GLn.Am/-valued lifting to
GLn.Am0/, which preserves semistability (cf. the argument of [42, Proposition 1.1] – here
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we are writing Am D O ˚ �$�mO=O, as in the proof of Proposition 2.15). We record a
consequence of this in the following lemma.

Lemma 2.18. The natural map H 1
LS
.FC;Wm/! H 1

LS
.FC;WE=O/Œ$

m� is surjective.

Proof. We consider the commutative diagram with exact rows:

0 // H1
LS
.FC;Wm/ //

��

H1.FS=F
C;Wm/ //

��

L
v2Sp

H1.F
C
v ;Wm/=Lv;m

��

0 // H1
LS
.FC;WE=O/Œ$

m� // H1.FS=F
C;WE=O/Œ$

m� //
L
v2Sp

lim
�!m0

H1.F
C
v ;Wm0 /=Lv;m0

The central vertical map is surjective. The right vertical map is injective (by the observa-
tion preceding this lemma). So the left vertical map is surjective.

If Q is a set of finite places of FC and N is a positive integer, we say that Q is a set
of Taylor–Wiles places of level N (relative to r , S ) if it satisfies the following conditions:

� Q \ S D ;.

� For each v 2 Q, v D wwc splits in F ; and �.Frobw/ has n distinct eigenvalues
˛w;1; : : : ; ˛w;n 2 O.

� For each v 2 Q, qv � 1 mod pN .

A Taylor–Wiles datum of level N � 1 is a tuple .Q; zQ; .˛zv;1; : : : ; ˛zv;n/zv2 zQ/, where Q

is a set of Taylor–Wiles places of level N , zQ is a set consisting of a choice, for each
v 2Q, of a place zv of F lying above v, and .˛zv;1; : : : ; ˛zv;n/ is a choice of ordering of the
eigenvalues of �.Frobzv/.

Lemma 2.19. Suppose that the following conditions are satisfied:

(1) For each v 2 S , �jGFzv is generic.

(2) For each place v j1, �.cv/ D �1.

Then there exists d � 0 with the following property: for every N � 1, every Taylor–Wiles
datum .Q; zQ; .˛zv;1; : : : ; ˛zv;n/zv2 zQ/ of level N , and every 1 � m � N , we have

h1LS[Q.F
C; Wm/ � d C h

1

L?
S[Q

.FC; Wm.1//CmnjQj C
X
v2Q

X
i¤j

ord$ .˛zv;i � ˛zv;j /:

Proof. Fix a Taylor–Wiles datum. By the usual Greenberg–Wiles formula, we have

h1LS[Q.F
C; Wm/ D h

1

L?
S[Q

.FC; Wm.1//C h
0.FC; Wm/ � h

0.FC; Wm.1//

C

X
v2S[Q

.lv;m � h
0.Fzv; Wm// �

X
v j1

l..1C cv/Wm/;

where lv;m D l.Lv;m/ and l denotes the length of an O-module. The contribution from
the infinite places is mŒFC W Q�n.n � 1/=2, up to a uniformly bounded error. The global
terms h0.FC; Wm/ and h0.FC; Wm.1// are both uniformly bounded, the first since � is
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absolutely irreducible and the second since � is absolutely irreducible and �; �.1/ have
different sets of Hodge–Tate weights.

If v 2 Q, then .lv;m � h0.Fzv; Wm// D h0.Fzv; Wm.1// D h0.Fzv; Wm/, since we are
assuming m � N , and this is bounded above by nm C

P
i¤j ord$ .˛zv;i � ˛zv;j /. If

v 2 S � Sp , then .lv;m � h0.Fzv; Wm// is uniformly bounded, by [1, Proposition 1.2.2].
Finally, suppose that v 2 Sp . Let R�;Œa;b�

v 2 CO denote the object representing the
functor of lifts of �jGFzv whose projections to Artinian quotients are subquotients of lat-
tices in semistable representations with all Hodge–Tate weights in the interval Œa; b�. The
representation �jGFzv determines a homomorphism R

�;Œa;b�
v ! O. If qv denotes its ker-

nel, then by definition we have lv;m � h0.Fzv; Wm/ D l.qv=q2v ˝O O=$m/ �mn2. We
wish to show that lv;m � h0.Fzv; Wm/ � mŒFCv W Qp�n.n � 1/=2 is bounded independ-
ently of m. This in turn will follow if we can show that qv=q

2
v ˝O E has dimension

n2 C ŒFCv W Qp�n.n � 1/=2 as E-vector space.
However, the argument of [29, Proposition 2.3.5], together with [33, Conjecture 1.0.1]

(stated as a conjecture but proved in that paper), shows that the completed local ring of
R

�;Œa;b�
v at qv represents the functor CE ! Sets of lifts of �jGFzv ˝O E whose Artinian

quotients are semistable with all Hodge–Tate weights in the interval Œa; b�. The tan-
gent space to this functor (which is equal to qv=q

2
v ˝O E) is computed in the proof

of [1, Theorem 1.2.7], which gives the desired result.

Lemma 2.20. Suppose M is a finitely generated O-module and let N � 1 and d; g � 0
be integers. Suppose we know that for all m � N we have

l.M=$m/ � gmC d:

Then there is a map Og !M=$N with cokernel of length � d .

Proof. We prove the lemma by induction on the number of generators of M . The lemma
is obvious if M is cyclic. For a general M , we can first replace M by M=$N without
changing anything. Now letM 0 DM=C where C is a cyclic submodule ofM of maximal
length and let N 0 � N be the maximal length of a cyclic submodule of M 0. It suffices to
prove that there is a map Og�1!M 0=$N 0 DM 0=$N with cokernel of length� d . For
all m � N 0 we have l.M 0=$m/ D l.M=$m/ � m � .g � 1/mC d . By induction, we
have the desired map Og�1 !M 0=$N 0 .

Corollary 2.21. Suppose that � satisfies the hypotheses of Lemma 2.19. Then there exists
d 2 N such that for all N 2 N and every Taylor–Wiles datum of level N , there is a map

OnjQj
! H 1

LS[Q
.FC; WN /

with cokernel of length

� d C h1
L?
S[Q

.FC; WN .1//C
X
v2Q

X
i¤j

ord$ .˛zv;i � ˛zv;j /:
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Proof. Using Lemmas 2.19 and 2.20, we see that it is enough to find d0; d1 2N such that
for any 1 � m � N and any Taylor–Wiles datum of level N , we have

l.H 1
LS[Q

.FC; WN /=.$
m// � h1LS[Q.F

C; Wm/C d0; (2.6)

h1
L?
S[Q

.FC; Wm.1// � h
1

L?
S[Q

.FC; WN .1//C d1: (2.7)

We treat these in turn. For the first inequality, we note that Lemma 2.18 shows that the
map

H 1
LS[Q

.FC; Wm/! H 1
LS[Q

.FC; WE=O/Œ$
m�

is surjective, with kernel a subquotient of H 0.FC; WE=O/. It follows that there is a sur-
jective homomorphism

H 1
LS[Q

.FC; WN /=.$
m/! H 1

LS[Q
.FC; WE=O/Œ$

N �=.$m/

with kernel a subquotient of H 0.FC; WE=O/. Since we have

l.H 1
LS[Q

.FC; WE=O/Œ$
N �=.$m// D l.H 1

LS[Q
.FC; WE=O/Œ$

m�/;

we see that (2.6) holds with d0 D h0.FC; WE=O/.
For the second inequality, we note that the kernel of the natural map

H 1.FS=F
C; Wm.1//! H 1.FS=F

C; WN .1// (2.8)

is contained in the kernel of the map

H 1.FS=F
C; Wm.1//! H 1.FS=F

C; WE=O.1//;

which is a subquotient ofH 0.FC;WE=O.1// (which is finite, by the same argument show-
ing boundedness of h0.FC; Wm.1// in the proof of Lemma 2.19). We see that (2.7) will
hold with d1D h0.FC;WE=O.1// provided that the map (2.8) sendsH 1

L?
S[Q

.FC;Wm.1//

into H 1

L?
S[Q

.FC; WN .1//. Recalling the definition of our local conditions, this means

we must show that if v 2 Sp , then the map H 1.FCv ; Wm.1//! H 1.FCv ; WN .1// sends
L?v;m to L?v;N . By duality, we must show that if v 2 Sp , then the map H 1.FCv ; WN /!

H 1.FCv ;Wm/ induced by the surjectionWN !Wm sends Lv;N into Lv;m. However, this
follows immediately from the definitions.

For Corollary 2.21 to be useful, we need to be able to find Taylor–Wiles data with
good properties. To do this, we first introduce a useful definition.

Lemma 2.22. Let H � GLn.O/ be a compact subgroup, and suppose the characteristic
polynomial of every element of H splits over E .this condition is always satisfied after
possibly enlargingE/. Denote the associated representation ofH by �, so we have OŒH �-
modules W D ad �, WE , WE=O as above. Then the following conditions are equivalent:
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(1) For all simple EŒH�-submodules V � W 0
E D ad0 �˝ E, we can find h 2 H with n

distinct eigenvalues and ˛ 2 E such that ˛ is an eigenvalue of h and tr eh;˛V ¤ 0
.where eh;˛ 2 WE denotes the h-equivariant projection to the ˛-eigenspace/.

(2) For all simple EŒH�-submodules V � WE , we can find h 2 H with n distinct eigen-
values and ˛ 2 E such that ˛ is an eigenvalue of h and tr eh;˛V ¤ 0.

(3) For all non-zeroEŒH�-submodules V �WE , there exists h 2H with n distinct eigen-
values such that V 6� .h � 1/WE .

(4) For all non-zero divisible OŒH �-submodules V � WE=O , there exists h 2 H with n
distinct eigenvalues such that V 6� .h � 1/WE=O .

Proof. We note that (1) and (2) are equivalent because the scalar matricesZE �WE give
a complement to W 0

E in WE , and the condition tr eh;˛ZE ¤ 0 is satisfied for any regular
semisimple element h 2 H and eigenvalue ˛ 2 E.

If h2GLn.O/ has n distinct eigenvalues, then it acts semisimply onWE . In particular,
there is a unique h-invariant direct sum decomposition WE D W h

E ˚ .h � 1/WE . If V �
WE is a h-invariant subspace, then there is a similar direct sum decomposition V D V h˚
.h� 1/V . The condition that there exists an eigenvalue ˛ 2 E of h such that tr eh;˛V ¤ 0
is equivalent to the condition that the projection of V to W h

E is non-zero, or equivalently
that V h ¤ 0. This is in turn equivalent to the condition that V 6� .h � 1/WE . This shows
that (2) and (3) are equivalent.

Now we show that (3) and (4) are equivalent. For this we note that there is a GLn.O/-
equivariant, inclusion-preserving bijection between theE-subspaces ofWE and the divis-
ible O-submodules of WE=O ; this sends V � WE to V CW=W and V 0 � WE=O to

V D ¹v 2 WE W 8n � 0;$
�nv mod W 2 V 0º:

The proof in this case is complete on noting that .h� 1/WE corresponds to .h� 1/WE=O
under this bijection.

Definition 2.23. We say that a subgroup H � GLn.O/ is enormous if for all simple
EŒH�-submodules V � WE , we can find h 2 H with n distinct eigenvalues in E and
˛ 2 E such that ˛ is an eigenvalue of h and tr eh;˛V ¤ 0.

Remark 2.24. The above is a natural analogue of the definition of enormous subgroups in
positive characteristic [26, Definition 4.10]. In contrast to the positive characteristic case,
we do not need to assume any vanishing of cohomology groups for H . The necessary
vanishing will follow from the purity of our Galois representations (see [28, Lemma 6.2],
this goes back to Serre for Tate modules of abelian varieties [48]).

Lemma 2.25. LetH � GLn.O/ be an enormous subgroup. ThenH acts absolutely irre-
ducibly on En, and in particular we have H 0.H;W 0

E / D 0.

Proof. We need to show that the E-linear span of H in WE is everything (by Burnside’s
theorem on matrix algebras). Consider

U D ¹u 2 WE W tr.hu/ D 0 8h 2 H º:
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If U is non-zero, let V be a simple EŒH�-submodule of U so we have an h 2 H with
˛ 2 E such that tr eh;˛V ¤ 0. This is a contradiction, since eh;˛ is a polynomial in h.
We conclude that U D 0 and since the trace pairing on WE is perfect the span of H is
indeed WE . (Compare with [52, Appendix, Lemma 1].)

Lemma 2.26. Let q � corankOH
1.FS=F

C; WE=O.1//, and suppose that � satisfies the
following conditions:

� For all but finitely many finite places v − S of F , the eigenvalues of �.Frobv/ are algeb-
raic numbers which have absolute value qw=2v with respect to any complex embedding.

� �.GF.�p1 // is enormous.

Then there exists d 2 N such that for any N 2 N we can find a Taylor–Wiles datum
.Q; zQ; .˛zv;1; : : : ; ˛zv;n/zv2 zQ/ of level N with jQj D q such that

(1) for all v 2 Q and i ¤ j we have ord$ .˛zv;i � ˛zv;j / � d ,

(2) h1
L?
S[Q

.FC; WN .1// � d .

Proof. If Q is a set of Taylor–Wiles places then we have an exact sequence

0! H 1

L?
S[Q

.FC; WN .1//! H 1

L?
S

.FC; WN .1//!
M
v2Q

H 1.k.v/;WN .1//:

Suppose we could find �1; : : : ; �q 2 GF.�p1 / such that

(a) for each i D 1; : : : ; q, �.�i / has n distinct eigenvalues in E;

(b) the kernel of the map

H 1.FS=F
C;WE=O.1//!

qM
iD1

H 1.yZ;WE=O.1//Š
qM
iD1

WE=O.1/=.�i � 1/WE=O.1/

(product of restriction maps associated to the homomorphisms yZ! GFC;S , the i th
such homomorphism sending 1 to �i ) is a finite length O-module.

Then consideration of the following diagram:

0 // H0.FC;WE=O.1//=$
N //

��

H1.FS=F
C;WN .1// //

��

H1.FS=F
C;WE=O.1//Œ$

N � //

��

0

0 //
Lq

iD1H
0.h�i i;WE=O.1//=$

N //
Lq

iD1H
1.h�i i;WN .1// //

Lq

iD1H
1.h�i i;WE=O.1//Œ$

N � // 0

shows that the kernel of the map

H 1.FS=F
C; WN .1//!

qM
iD1

H 1.h�i i; WN .1//

has length bounded independently ofN (note thatH 0.FC;WE=O.1// is a finite length O-
module). An application of the Chebotarev density theorem would then yield the theorem.
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To complete the proof, it therefore suffices to show that for any non-zero homomor-
phism f W E=O ! H 1.FS=F

C; WE=O.1//, we can find � 2 GF.�p1 / such that �.�/

has n distinct eigenvalues in E and Res
G
FC;S

h�i
ıf W E=O ! WE=O.1/=.� � 1/WE=O.1/

is still non-zero (as then we can argue by induction to get �1; : : : ; �q satisfying conditions
(a), (b) above).

Let F1 D F.�p1/, let L01=F
C be the extension cut out by WE .1/, and let L1 D

L01 � F1. Then H 1.L01=F
C; WE .1// D 0, by [28, Lemma 6.2]. (It is in our appeal to

this result that we make use of the purity assumption in the statement of the lemma.) The
extension L1=L01 is finite (as E.�ıF=FC/ � WE .1/), so H 1.L1=F

C; WE .1// D 0.
It follows that H 1.L1=F

C; WE=O.1// is killed by a power of p and hence the homo-
morphism

Res
G
FC;S

GL1;SL1
ıf W E=O ! H 1.FS=L1; WE=O.1//

G
FC;S

Š HomG
FC;S

.GL1;SL1 ; WE=O.1//

is still non-zero. Let M � WE=O.1/ be the O-submodule generated by the elements
f .x/.�/, x 2E=O, � 2GL1 ; it is a non-zero divisible OŒGF1 �-submodule ofWE=O.1/.
Using Lemma 2.22, we see that there exists � 2 GF1 such that �.�/ has n distinct eigen-
values in E and M 6� .� � 1/WE=O.1/. Consequently, there exist m � 0 and � 2 GL1
such that f .1=$m/.�/ 62 .� � 1/WE=O.1/.

If f .1=$m/.�/ 62 .� � 1/WE=O.1/, then we are done: Res
G
FC;S

h�i
ıf is non-zero.

Otherwise, we can assume f .1=$m/.�/ 2 .� � 1/WE=O.1/, and then Res
G
FC;S

h��i
ıf is

non-zero. This completes the proof.

Putting everything together, we obtain:

Corollary 2.27. Let q � corankOH
1.FS=F

C; WE=O.1//, and suppose that � satisfies
the following conditions:

(1) For all but finitely many finite places v − S of F , the eigenvalues of �.Frobv/ are
algebraic numbers which have absolute value qw=2v with respect to any complex
embedding.

(2) For each v 2 S , �jGFzv is generic.

(3) For each place v j1 of FC, �.cv/ D �1.

(4) �.GF.�p1 // is enormous.

Then there exists d 2 N such that for each N 2 N we can find a Taylor–Wiles datumQN
of level N with jQN j D q and a map

OJx1; : : : ; xnqK! RS[QN

such that the images of the xi are in qS[QN and

qS[QN =.q
2
S[QN

; x1; : : : ; xnq/
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is a quotient of .O=$d /g0 , where g0 D g0.S; �; q/ is as defined in the statement of
Lemma 2.13.

Proof. Combining Proposition 2.16, Corollary 2.21 and Lemma 2.26 we deduce that
there exists a constant d such that for each N we can find QN of level N and an O-
module map Onq ! qS[QN =q

2
S[QN

˝O O=$N with cokernel killed by $d (note that
the two O-modules qS[QN =q

2
S[QN

˝O O=$N and HomO.qS[QN =q
2
S[QN

;O=$N /

are abstractly isomorphic). This allows us to define a map OJx1; : : : ; xnqK! RS[QN
with the xi mapping to images of generators of Onq in qS[QN =q

2
S[QN

˝O O=$N , so
that

qS[QN =.q
2
S[QN

; x1; : : : ; xnq/˝O O=$N

is killed by $d . We need to explain how to deduce the slightly stronger result in the
statement of the corollary. We first note that qS[QN =q

2
S[QN

is a quotient of Og0 . Indeed,
it is a finitely generated O-module, and there is an isomorphism qS[QN =q

2
S[QN

˝O

O=$ Š mRS[QN
=.m2

RS[QN
; $/, so we can apply Nakayama’s lemma together with

Lemma 2.13.
We may assume that N > d . In this case M D qS[QN =.q

2
S[QN

; x1; : : : ; xnq/ is a
quotient of Og0 with the property that M=.$N / is killed by $d . This is only possible if
M is itself killed by $d , implying that M is a quotient of .O=$d /g0 .

2.5. Some examples of enormous subgroups

Let E=Qp be a coefficient field, and let H � GLn.O/ be a compact subgroup.

Lemma 2.28. Suppose that for each h 2 H , the characteristic polynomial of h has all of
its roots in E.

(1) Let H 0 � H be a closed subgroup. If H 0 is enormous, then so is H .

(2) Let G � GLn denote the Zariski closure of H . If Gı contains regular semisimple
elements and acts absolutely irreducibly on En, then H is enormous.

Proof. The first part is immediate from the definitions. For the second, we can assume
thatG D Gı. SinceG acts absolutely irreducibly,G.E/ spansWE . LetH reg �H denote
the set of regular semisimple elements. It is Zariski dense in G. Indeed, by hypothesis
Greg is a non-empty Zariski open subset of G. The Zariski closure of H is contained in
the union of the Zariski closure of H reg and G � Greg. This forces the Zariski closure of
H reg to be equal to G.

We must show that for any non-zero v 2WE , there exists h 2H reg such that trhv¤ 0.
If tr hv D 0 for all h 2 H reg, then Zariski density implies that tr gv D 0 for all g 2 G.
This contradicts the fact that the elements of G.E/ span WE .

Example 2.29. Let F be a totally real or CM number field, and let � be a regular
algebraic, cuspidal automorphic representation of GL2.AF /. Let � W Qp ! C be an iso-
morphism, and let � W GF ! GLn.O/ be a model of Symn�1 r�;� defined over O. If
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Sym2 � is cuspidal, then (after possibly enlarging E) �.GF.�p1 // is an enormous sub-
group of GLn.O/.

To see this, it is enough to note that the Zariski closure of the image of r�;� contains
SL2, and therefore that the Zariski closure of r�;�.GF.�p1 // also contains SL2 (because
passage to derived subgroup respects Zariski closure [11, Ch. I, §2.1]). We can then appeal
to Lemma 2.28.

We justify the claim that the Zariski closure of r�;�.GF / contains SL2. The identity
component of the Zariski closure of r�;�.GF / is a reductive subgroup of GL2 which con-
tains regular semisimple elements (by [47, Theorem 1]). The only possibility we need
to rule out is that r�;�.GF / normalizes a maximal torus in GL2. In this case, there is a
quadratic extension F 0=F such that r�;�jGF 0 is reducible. It is therefore enough to show
that for any quadratic extension F 0=F , r�;�jGF 0 is irreducible. We observe that if r�;�jGF 0
is reducible, then it is isomorphic to a sum �1 ˚ �2 of characters. Moreover, �1; �2 are
de Rham and almost everywhere unramified, so can be extended to compatible systems of
1-dimensional Galois representations. It follows that r�;�0 jGF 0 is reducible for any other
prime p0 and isomorphism �0 W Qp0 ! C. In particular, Sym2 r�;�0 is reducible. However,
[5, Theorem 5.5.2] implies that for a Dirichlet density 1 set of primes p0, the representa-
tion Sym2 r�;�0 is irreducible (note that for automorphic representations of GL3.AF / the
asssumption of ‘extremely regular weight’ in loc. cit. coincides with the usual notion of
regular weight).

Example 2.30. Let F be a CM field, and let � be a polarizable automorphic representa-
tion of GLn.AF / such that for some finite place v0 of F , �v0 is a twist of the Steinberg
representation. Let � W Qp ! C be an isomorphism. Then r�;�.GF.�p1 // is enormous.

Indeed, let G denote the Zariski closure of r�;�.GF /. Local-global compatibility at
the place v0 implies that Gı contains a regular unipotent element (if v0jp, we argue as in
[30, Lemma 3.2]), so in particular it acts absolutely irreducibly on En. Then [44, Propos-
ition 4] (see also [25, Classification Theorem 11.6]) shows that the derived group of Gı

is one of a finite list of possibilities, and that in any case it contains regular semisimple
elements. We can again appeal to Lemma 2.28.

3. A result about Hecke algebras

Let p be a prime, let n � 2, and let Fv=Ql be a finite extension for some l ¤ p. Let
G D GLn.Fv/, U D GLn.OFv /, and let I � U be the standard Iwahori subgroup (i.e. the
pre-image inU of the upper-triangular matrices in GLn.k.v//). LetE=Qp be a coefficient
field. For O sufficiently large (i.e. containing a square root of qv), the Iwahori Hecke
algebra HI D H .G; I /˝Z O has the Bernstein presentation

HI Š OŒX�.T /� z̋ OŒInU=I �:

The map OŒX�.T /�!HI sends a dominant cocharacter � 2 X�.T /C to the Hecke oper-
ator q�l.�/=2v ŒI�.$v/I �, where l.�/ is the usual length function on the extended affine
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Weyl group. The twisted tensor product indicates the usual tensor product of O-modules,
with the algebra structure on HI determined by the relations of [34, Proposition 3.6]. We
identify OŒX�.T /� D OŒx1; x

�1
1 ; : : : ; xn; x

�1
n � (xi is the cocharacter embedding Gm into

the i th diagonal entry of T ). The centre, Z.HI /, is identified by the Bernstein present-
ation with the algebra of symmetric polynomials OŒX�.T /�

Sn D OŒe1; e2; : : : ; en; e
�1
n �

(e1; : : : ; en are the usual elementary symmetric polynomials in x1; : : : ; xn).
Our identification of OŒX�.T /� with a polynomial algebra allows us to speak of poly-

nomials as being elements of the Hecke algebra. In particular, we can think of � DQ
1�i<j�n.xi � xj / as being an element of HI , and its square �2 as being an element of

the centre Z.HI /.
To simplify notation, let R D OŒX�.T /�

Sn , � D OŒX�.T /�. Then � is a free R-
module, a basis being given by the monomials xa D x

a1
1 : : : x

an
n for aD .a1; : : : ; an/ 2Zn

satisfying 0� ai � i � 1 for each i D 1; : : : ;n. We writeB for the set of tuples a satisfying
these conditions.

IfM is an OŒGLn.Fv/�-moduleM , thenMU is an R-submodule ofM I (and in fact,
if z 2 Z.HI / and M 2 MU , then we have the formula z � m D .ŒU �z/ �U m, where �U
denotes the action of HU D H .G; U /˝Z O on MU – see [23, §4.6]). Thus there is a
canonical (and functorial) morphism

MU
˝R � !M I ; (3.1)

given by the formula m˝ s 7! sm. Since � is free over R, MU ˝R � may be identified
with

L
a2BM

U , and the above map with .ma/a2B 7!
P

a2B xa �ma.
The aim of this short section is to prove the following result, which will be applied in

Section 4 (see Proposition 4.5).

Proposition 3.1. Let N � 1, and let M be an O=$N ŒGLn.Fv/�-module. Suppose that
qv � 1 mod $N . Then the above morphism MU ˝R � !M I has kernel and cokernel
annihilated by �nŠ.

Note that�nŠ always lies in Z.HI /. This is important for us since it means that in the
global situation, �nŠ will be in the image of the pseudodeformation ring (through which
decomposition groups act via a homomorphism to the Bernstein centre).

Before proving the proposition, we establish an auxiliary result.

Lemma 3.2. Consider the nŠ � nŠ matrix P with coefficients in ZŒx1; : : : ; xn� given by
the formula P�;a D �.xa/ .� 2 Sn, a 2 B/. Then there exists a unique matrixQD .Qa;� /

with coefficients in ZŒx1; : : : ; xn� such that PQ D QP D �nŠ.

Proof. It suffices to show existence, since then uniqueness follows by linear algebra over
Q.x1; : : : ; xn/. The square of the determinant of P is equal to the discriminant of the
ring extension ZŒe1; : : : ; en� ! ZŒx1; : : : ; xn�. Using [51, Tag 0C17], we see that the
discriminant of this ring extension equals �nŠ (the different ideal is generated by �).
Therefore the determinant of P is equal to �nŠ=2, up to sign.

The existence of the adjugate matrix implies that there is a matrixQ0 with coefficients
in ZŒx1; : : : ; xn� such that PQ0 D �nŠ=2. We then take Q D �nŠ=2Q0.
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We observe that for all a 2 B , �; � 2 Sn, we have �.Qa;� / D Qa;�� . Indeed, this
follows from the identity �.P /�.Q/ D �nŠ and the uniqueness of inverses.

Proof of Proposition 3.1. Since qv � 1 mod $N , we can identify O=$N ŒInU=I � with
O=$N ŒSn�, and H .G; I /˝Z O=$N with the group algebra of the extended affine Weyl
group X�.T / Ì Sn (because the Iwahori–Matsumoto relations are a q-deformation of
the relations defining the group algebra of the affine Weyl group). Let e D

P
�2Sn

� 2

O=$N ŒSn� �H .G; I /˝Z O=$N . Then e D ŒU �, so in particular eM I �MU . Recall-
ing that ŒI � is the unit of HI , we note that e need not be an idempotent, since e2D ŒU W I �e
(note that qv � 1 mod $N ) ŒU W I � � nŠ mod $N , and we do not rule out the case
p � n).

We have defined a map f W
L

a2B M
U ! M I by the formula .ma/a2B 7!P

a2B xa � ma. We define a map g W M I !
L

a2B M
U by the formula g.m/ D

.eQa;1m/a2B .
We now compute f ı g and g ı f . We have, for m 2M I ,

f .g.m// D
X
a2B

xaeQa;1m D
X
a2B

X
�2Sn

xa�.Qa;1/�.m/:

This in turn we can rewrite asX
�2Sn

X
a2B

P1;aQa;��.m/ D �
nŠm:

Similarly, for m D .ma/a2B 2
L

a2BM
U we have

g.f .m//a D eQa;1
X
b2B

xb �mb D
X
�2Sn

X
b2B

Qa;�P�;b�.mb/:

Note that Sn acts trivially on MU . We can therefore rewrite the above expression asX
b2B

X
�2Sn

Qa;�P�;bmb D �
nŠma:

This completes the proof.

4. Patching

In this section we prove our main technical result (Theorem 4.1).

4.1. Set-up

We suppose given the following data:

� A CM number field F with maximal totally real subfield FC. We assume that F=FC

is everywhere unramified and that ŒFC W Q� is even.
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� An integer n � 2 and a cuspidal, polarized, regular algebraic automorphic representa-
tion .�; ın

F=FC
/ of GLn.AF / (i.e. � is of unitary type).

� A prime p and an isomorphism � WQp ! C. We assume that for each place w jp of F ,
�w has an Iwahori-fixed vector.

� A finite set S of finite places of FC, containing the set Sp of p-adic places and all
places above which � is ramified. We assume that each place of S splits in F .

We recall that under these conditions we define an extension of r�;� to a homomorphism
to Gn, which then gives the action of GFC on ad r�;� (see §1).

Theorem 4.1. With set-up as above, assume moreover that r�;�.GF.�p1 // is enormous.
Then

H 1
f .F

C; ad r�;�/ D 0:

We note here that the assumptions of Lemma 2.19 hold for r�;� by [5, Theorem 2.1.1]
(which collects together results of many people).

The proof of Theorem 4.1 will use automorphic forms on definite unitary groups. To
this end, we can find the following data:

� For each place v 2 S , a choice of place zv of F lying above v. We set zS D ¹zv W v 2 Sº
and zSp D ¹zv W v 2 Spº.

� A Hermitian form h�; �i W F n � F n ! F such that the associated unitary group G
(defined onR-points byG.R/D¹g 2GLn.F ˝FC R/ W g

�gD 1º) is definite at infinity
and quasi-split at each finite place of FC.

� A reductive group scheme over OFC extending G.

� For each finite place v Dwwc of FC which splits in F , an isomorphism �w WGO
F
C
v

!

ResOFw =OFCv
GLn of group schemes over O

F
C
v

. We assume that the induced isomor-

phism �w W G.F
C
v /! GLn.Fw/ is in the same inner class as the isomorphism given by

inclusion G.FCv / � GLn.Fw/ � GLn.Fwc /, followed by projection to the first factor.

� An automorphic representation � of G.AFC/ with the following properties:

– For each finite inert place v of FC, �
G.O

F
C
v
/

v ¤ 0 and �v , �v are related by unrami-
fied base change.

– For each split place v D wwc of FC, �v Š �w ı �w .

– If v j1 is a place of FC, then the infinitesimal character of �v respects that of �v
under base change. (We recall this relation more precisely below.)

� An open compact subgroup U D
Q
v Uv of G.A1

FC
/ with the following properties:

– For each place v 2 Sp , Uv D ��1
zv
.Iwzv/, where Iwzv � GLn.OFzv / is the standard

Iwahori subgroup (defined as in §3).

– For each inert place v of FC, Uv D G.OFCv /.

– .�1/U ¤ 0.

– U is sufficiently small: for all g 2 G.A1
FC
/, gUg�1 \G.FC/ D ¹1º.
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(We can find such a G because ŒFC W Q� is even. The existence of � is deduced from
that of � using [31, §5].) We can regard �1 as an algebraic representation of the group
.ResFC=Q G/C . Let zIp � Hom.F;Qp/ denote the set of embeddings inducing places
zv 2 zSp . Then our choices determine an isomorphism

.ResFC=QG/Qp Š
Y
�2zIp

GLn:

Let � D .�� /�2zIp 2 .Z
n
C/
zIp denote the highest weight of the algebraic representation V�

of .ResFC=Q G/Qp such that V� ˝�;Qp C Š �_1. We can define a highest weight � for

.ResF=Q GLn/Qp by letting �� D �� and ��c D �w0�� for � 2 zIp (w0 is the longest
element in the Weyl group of GLn). The infinitesimal character of �1 is the same as that
of V _

�
˝�;Qp

C.

The Hodge–Tate weights of r�;� may be described as follows: if � 2 zIp , then

HT� .r�;�/ D ¹��;1 C n � 1; ��;2 C n � 2; : : : ; ��;nº:

We fix once and for all integers a � b such that for all � 2 Hom.F;Qp/, the elements of
HT� .r�;�/ are contained in Œa; b� and aC b D n � 1.

Let E=Qp be a coefficient field containing the image of every embedding F ! Qp .
After possibly enlarging E, we can assume that there is a model � W GF;S ! GLn.O/
of r�;�, which extends to a homomorphism r W GFC;S ! Gn.O/ such that � ı r D
�1�nın

F=FC
. Let D denote the group determinant of �, which is then defined over k.

With these choices the pseudodeformation ring denoted RS in §2.4 is defined, as well
as the prime ideal qS D ker.RS ! O/ determined by �. Moreover, for any Taylor–Wiles
datum .Q; zQ; .˛zv;1; : : : ; ˛zv;n/v2Q/ we have the auxiliary ring RS[Q. We introduce one
more object here: it is the maximal quotientRS[Q!RS[Q;ab over which for each v 2Q,
the restriction of the universal pseudocharacter toWFzv factors throughW ab

Fzv
. Thus we have

a diagram
RS[Q ! RS[Q;ab ! RS :

4.2. Hecke algebras

We can find a representation V� of the group scheme .ResO
FC

=ZG/O , finite free over O,
and such that V� ˝O Qp Š V�. (For example, use the construction of [22, §2.2].) Thus
V�.O/ is a finite free O-module which receives an action of Up D

Q
v2Sp

Uv . For any
open compact subgroup V D

Q
v Vv � U , and any O-algebra A, we define S�.V; A/ to

be the set of functions f W G.A1
FC
/! V�.A/ such that for each v 2 V ,  2 G.FC/,

g 2 G.A1
FC
/, vpf .gv/ D f .g/. We observe that

lim
�!
Up

S�.U
pUp; A/

has a natural structure of AŒU p�-module, and the U p-invariants are S�.U; A/. It follows
that S�.U;A/ has a natural structure of H .G.A1;p

FC
/; U p/-module. A standard argument
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(cf. [22, Lemma 2.2.5]) shows that there is an isomorphism of H .G.A1;p
FC

/;U p/-modules

S�.U;O/˝�;O C Š
M
�

.�1/U ;

where the sum is over automorphic representations of G.AFC/ (with multiplicity) such
that �1 Š �1.

If V D
Q
v Vv is an open compact subgroup of U and T is a finite set of places of

FC containing all places such that Vv ¤ G.OFCv /, then we write TT
�
.V; A/ for the A-

subalgebra of EndA.S�.V;A// generated by the unramified Hecke operators at split places
away from T . After possibly enlarging E, the existence of � implies the existence of a
homomorphism

hV;� W T
T
� .V;O/! O

giving the Hecke eigenvalues of ��1�1. On the other hand, the results of [31, §5] imply
the existence of a group determinant DV;� of GF;T valued in TT

�
.V;O/ (construction as

in [53, Proposition 4.11]).
Let m � TS

�
.U;O/ denote the unique maximal ideal containing ker hU;� , and set

S; D S�.U;O/m; T; D TS
� .U;O/m:

Then there is a surjective homomorphism RD;S ! T; classifying DU;�.

Lemma 4.2. The map RD;S ! T; factors through the quotient RS .

Proof. If we invert p then T; ˝O Qp D
Q
� E� is a product of fields indexed by auto-

morphic representations � ofG.AFC/ with �Um ¤ 0 and �1 Š �1. To prove the lemma,
it suffices to show that each of the maps RD;S ! E� factors through the quotient RS : in
other words, the conjugate self-duality condition and the semistability condition of (2.3).
These conditions follow from local-global compatibility for the Galois representation
associated to the base change of �.

4.3. Automorphic data associated to Taylor–Wiles data

Suppose given a set Q of Taylor–Wiles places. In this case we define open compact sub-
groups U0.Q/ D

Q
v U0.Q/v and U1.Q/ D

Q
v U1.Q/v as follows:

� If v 62 Q, then U0.Q/v D U1.Q/v D Uv .

� If v 2 Q, then U0.Q/v D ��1
zv
.Iwzv/ and U1.Q/v is the smallest open subgroup of

U1.Q/v such that U0.Q/v=U1.Q/v is a p-group.

We set �Q D U0.Q/=U1.Q/, which may be naturally identified with
Q
v2Q k.v/

�.p/n.

We write mQ for the intersection of m with TS[Q

�
.U;O/, m0;Q for the pre-image of mQ

in TS[Q

�
.U0.Q/;O/, and m1;Q for the pre-image of m0;Q in TS[Q

�
.U1.Q/;O/. We

define

T0;Q D TS[Q

�
.U0.Q/;O/m0;Q ; TQ D TS[Q

�
.U1.Q/;O/m1;Q :
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As in Lemma 4.2, we have a surjective map RS[Q ! TQ. Note that the natural map
TS[Q

�
.U;O/mQ ! T; is in fact an isomorphism, and so there are surjections

TQ ! T0;Q ! T;:

So far we have not used any Hecke operators at places v 2 Q. For any v 2 Q, ˛ 2 F �
zv

,
and 1 � i � n, we let tv;i W F �zv ! H .G.FCv /; U1.Q/v/ denote the composite with ��1

zv

of the homomorphism defined just above [2, Proposition 2.2.7] (and denoted tv;i there).
That proposition shows that if �v is an irreducible admissible QpŒG.F

C
v /�-module such

that �U1.Q/vv ¤ 0, then for any � 2 WFzv and ˛ 2 F �
zv

such that ArtFzv .˛/ D � jF ab
zv

, the

characteristic polynomial of recTFzv .�v ı �
�1
zv
/ on � equals

nX
iD0

.�1/iXn�iev;i .˛; �v/; (4.1)

where ev;i .˛/ 2 H .G.FCv /; U1.Q/v/ is the i th elementary symmetric polynomial in
tv;1.˛/; : : : ; tv;n.˛/, and ev;i .˛; �v/ 2 Qp is the scalar by which it acts on �U1.Q/vv . The
elements ev;i .˛/ generate the centre of H .G.FCv /; U1.Q/v/ ˝O Qp , by [21, Proposi-
tion 4.11].

We define TQ
0;Q � End.S�.U0.Q/;O/m0;Q/ to be the subalgebra generated by T0;Q

and the elements tv;i .˛/ for all v 2 Q, i D 1; : : : ; n and ˛ 2 F �
zv

. We define TQ
Q �

End.S�.U1.Q/;O/m1;Q/ similarly. Thus TQ
Q is an OŒ�Q�-algebra (the image of OŒ�Q�

in TQ
Q is generated by the elements tv;i .˛/ with ˛ 2 O�Fzv

). Neither TQ
0;Q nor TQ

Q need be
local rings. We denote by aQ the augmentation ideal of OŒ�Q�.

Lemma 4.3. S�.U1.Q/;O/ is a free OŒ�Q�-module and the trace map induces

S�.U1.Q/;O/=aQ Š S�.U0.Q/;O/:

Proof. The proof is identical to that of [16, Lemma 3.3.1], using that U (and hence any
subgroup of U ) is sufficiently small.

We letAQ D
N
v2QOŒtv;1.$v/

˙1; : : : ; tv;n.$v/
˙1�. This is a polynomial subalgebra

of
N
v2Q H .G.FCv /; U0.Q/v/ that receives an action of the group WQ D

Q
v2Q Sn. For

every m � 1, we have a canonical morphism of TQ-modules

�Q;m W S�.U;O=$
m/m ˝

A
WQ
Q

AQ ! S�.U0.Q/;O=$
m/m0;Q ;

as in (3.1).
For each v 2Q, the universal pseudocharacter overRS[Q;ab determines by restriction

an n-dimensional pseudocharacter v of W ab
Fzv

valued in RS[Q;ab. Each restriction vjIFzv
factors through the quotient k.v/�.p/ of ArtFzv .O

�
Fzv
/ (compare [15, Lemma 3.8]).

On the other hand, for each i D 1; : : : ; n, there is a character ˛v;i W W ab
Fzv
! .TQ

Q /
�

given by the formula ˛v;i .ArtFzv .˛//D tv;i .˛/. We write ˛v for the pseudocharacter ˛v D
˛v;1 ˚ � � � ˚ ˛v;n.
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These two families of pseudocharacters are related by the following lemma, which is
a formulation of local-global compatibility at v 2 Q.

Lemma 4.4. (1) The map RS[Q ! TQ factors through the quotient RS[Q;ab.

(2) Let v 2 Q. The composite of v with the map RS[Q;ab ! TQ ,! TQ
Q equals ˛v .

(3) The image of the map RS[Q;ab ! TQ ,! TQ
Q contains the Hecke operators ev;i .˛/

for each v 2 Q, i D 1; : : : ; n and ˛ 2 F �
zv

.

Proof. If we invert p then TQ ˝O Qp D
Q
� E� is a product of fields indexed by auto-

morphic representations � ofG.AFC/with �U1.Q/m1;Q ¤ 0 and �1 Š �1. To prove the first
part of the lemma, it suffices to show that each of the maps RS[Q ! E� factors through
the quotient RS[Q;ab. This follows from [2, Prop. 2.2.7]. The second and third parts of
the lemma follow from the formula (4.1) which computes the characteristic polynomials
of recTFzv .�zv ı �

�1
zv
/ evaluated on elements of WFzv .

We caution the reader that the map RS[Q;ab ! TQ
Q is not in general surjective,

because of the presence of Hecke operators at Q which do not lie in the Bernstein centre.
The following proposition will be crucial for controlling our patched modules of

automorphic forms. As mentioned in the introduction, this is inspired by arguments of
Pan [39].

Proposition 4.5. Fix d 2 N. There exists a constant c 2 N .depending only on d/ such
that, for any N and any Taylor–Wiles datum .Q; zQ; .˛zv;1; : : : ; ˛zv;n/zv2 zQ/ for r�;� of
level N satisfying X

v2Q

X
1�i<j�n

ord$ .˛zv;i � ˛zv;j / � d;

there is an element fQ 2 RS[Q;ab such that

(1) fQ kills the kernel and cokernel of �Q;m for all m � N ;

(2) the image fQ;� of fQ under the composition RS[Q;ab ! TQ
hU1.Q/;�
������! O satisfies

ord$ .fQ;� / � c.

Proof. We set

f Q D
�Y
v2Q

Y
1�i<j�n

.tv;i .$v/ � tv;j .$v//
nŠ
�
2 TQ

Q

and let fQ be a pre-image of f Q in RS[Q;ab (such a pre-image exists by Lemma 4.4). It
follows from Proposition 3.1 that fQ kills the kernel and cokernel of �Q;m for allm � N .
If we take c D nŠd then, again using Lemma 4.4, we see that the second part of the
proposition is satisfied.

We give one last piece of structure. Suppose fixed an ordering Q D ¹v1; : : : ; vqº
and for each v 2 Q a surjection Zp ! k.v/�.p/. This data determines a surjection
.Znp/

q !
Q
v2Q k.v/

�.p/n D �Q, hence a surjective algebra homomorphism S1 !
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OŒ�Q�, where S1 D OJy.i/1 ; : : : ; y
.i/
q W 1 � i � nK. The group WQ D

Q
v2Q Sn acts

on S1 by permutation of co-ordinates, and the invariant subring SWQ1 may be identified
with OJe.i/1 ; : : : ; e

.i/
q W 1 � i � nK, where e.i/j is the i th elementary symmetric polynomial

in y.1/j ; : : : ; y
.n/
j . The ring SWQ1 also has a role to play as a consequence of the following

easy lemma:

Lemma 4.6. The functor of deformations of the trivial pseudocharacter of Zp of dimen-
sion n is represented by OJX1; : : : ; XnKSn , with the universal characteristic polyno-
mial �.t/ of 1 2 Zp given by

Qn
iD1..t � 1/ �Xi /.

Proof. Indeed, a residually trivial pseudocharacter of Zp of dimension n over a ring
A 2 CO is precisely a point of .GLn�GLn/.A/ lying over the image of the identity in
.GLn�GLn/.k/. Now we use the identification of the adjoint quotient GLn�GLn with
the quotient of the diagonal maximal torus by the Weyl group. The universal deformation
is given by the orbit of the matrix diag.1CX1; : : : ; 1CXn/.

Consequently, there is a homomorphism S
WQ
1 ! RS[Q;ab, classifying the pullback

of the tuple .v/v2Q to a tuple of n-dimensional pseudocharacters of the group Zp . There
is also a homomorphism S

WQ
1 ! TQ

Q , classifying the pullback of .˛v/v2Q to a tuple
of n-dimensional pseudocharacters of the group Zp . This coincides with the restriction
to SWQ1 of the homomorphism S1 ! TQ

Q determined by the OŒ�Q�-algebra structure

on TQ
Q . Lemma 4.4 has the following corollary.

Lemma 4.7. The map SWQ1 ! TQ
Q factors through TQ, and the map RS[Q;ab ! TQ is

a homomorphism of SWQ1 -algebras.

4.4. The patching argument

� Fix q D corankOH
1.FS=F

C; ad �.1/ ˝O E=O/. Applying Corollary 2.27, we fix
for each N � 1 a Taylor–Wiles datum QN of level N , and we write �N D �QN ,
aN D aQN , RN D RS[QN ;ab, TN D TQN . We set R0 D RS . We set qN D

ker.RN
hU1.QN /;�
�������! O/ and q0 D ker.R0

hU;�
���! O/. Thus qN is the pre-image of q0

under the natural map RN ! R0.

� Let S1 D OJy.i/1 ; : : : ; y
.i/
q W 1 � i � nK and fix orderings of QN and generators of

k.v/�.p/ for all N and all v 2 QN and thus surjective maps S1 ! OŒ�N �. Let
a1 � S1 be the augmentation ideal (equal to the inverse image of aN under each
of the previously defined maps).

� We moreover fix uniformizers $v for all v 2 QN (for every N ). This allows us to
think of the pseudocharacters v as pseudocharacters of k.v/�.p/ � Z. Recalling that
we have fixed a generator of k.v/�.p/ and an ordering on QN , for every N we have a
q-tuple .N;1; : : : ;N;q/ of n-dimensional pseudocharacters of Zp �Z with coefficients
in RN .
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� We have actions of tv;i .$v/ on S�.U0.QN /;O/m0;Q and S�.U1.QN /;O/m1;Q for
each v 2 QN and i D 1; : : : ; n. Using these actions, together with the fixed orderings
on QN , we obtain an action of the algebra

A D

qO
jD1

OŒ.t
.1/
j /˙1; : : : ; .t

.n/
j /˙1�

on these spaces, together with an identification of A with AQN sending t
.i/
j to

tvj ;i .$vj /. We have characters ˛.i/j W Zp � Z! .S1 ˝O A/
� for i D 1; : : : ; n and

j D 1; : : : ; q. By Lemma 4.4, the pushforward of the pseudocharacter j̨ D tr ˛.1/j ˚

� � � ˚ ˛
.n/
j to EndO.S�.U1.QN /;O/m1;Q/ takes values in TN and equals the pushfor-

ward of N;j there.

� We can identify all the Weyl groups WQN (using our fixed orderings of QN for
each N ). We denote them all by W . There is a natural W -action on S1, compatible
with the maps to OŒ�N �. The invariants SW1 are a regular local O-algebra, with S1
a finite free SW1 -algebra (SW1 is a power series algebra over the elementary symmet-
ric polynomials in y.1/j ; : : : ; y

.n/
j for each j ). Write aW1 D a1 \ SW1 ; this is the ideal

of SW1 generated by the elementary symmetric polynomials. There is also a natural
W -action on A.

� We let g D nq and R1 D OJx1; : : : ; xgK, and let q1 D .x1; : : : ; xg/ 2 Spec.R1/.
For each N we have a map R1 ! RN such that q1RN � qN and qN =.q

2
N ;q1/ is

killed by a power of $ which is independent of N .

� Fix a non-principal ultrafilter F on N, and let R D
Q
N2N O. If I 2 F , then we define

eI D .ıN2I /N2N 2 R. Then S D ¹eI W I 2 F º is a multiplicative subset of R, and we
define RF D S�1R. The natural map R! RF is surjective and factors through the
projection

Q
N�1O!

Q
N�mO for anym � 1. The ring RF can also be described as

the localization of R at the prime ideal ¹.xN /N2N W 9I 2 F ; 8N 2 I; xN 2 $Oº.

Definition 4.8. We define

M1 D lim
 �
m

�
RF ˝R

Y
N�m

�
S�.U1.QN /;O/m1;QN =m

m
S1

��
;

M0 D lim
 �
m

�
RF ˝R

Y
N�m

S�.U0.QN /;O=$
m/m0;QN

�
;

M D lim
 �
m

�
RF ˝R

Y
N�m

S�.U;O=$
m/m ˝AW

QN

AQN

�
:

Here AWQN acts on S�.U; O=$m/m via the spherical Hecke algebra action at
places in QN . We note that we naturally obtain compatible actions of A on M , M0

and M1. Identifying S�.U;O/m with lim
 �m

.RF ˝R
Q
N�m S�.U;O=$

m/m/, we equip

S�.U;O/m with an AW -action (AW acts on the N factor in the product via its identifica-
tion withAWQN ) and we see that we have a natural isomorphismM Š S�.U;O/m˝AW A.
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Lemma 4.9. (1) M1 is a flat S1-module.

(2) The trace maps induce M1=a1 ŠM0.

(3) We have a map � W M ! M0 induced by the �QN ;m, which has kernel and cokernel
killed by f , where f D .f 2QN / 2

Q
N2N RN and fQN is as in the statement of

Proposition 4.5.

Proof. For the first two parts we apply [39, Lemma 4.4.4 (2)] (see also [51, Tag 0912]): it
suffices to prove that for each m,

M1;m D RF ˝R
Y
N�m

�
S�.U1.QN /;O/m1;QN =m

m
S1

�
is a flat S1=mm

S1
-module, the natural transition maps M1;mC1 ! M1;m induce iso-

morphisms M1;mC1=m
m
S1
ŠM1:m and the trace maps induce M1;m=a1 ŠM0;m.

Flatness of M1;m follows from flatness of S�.U1.QN /;O/m1;QN over OŒ�N � (note
that S1=mN

S1
is a quotient of OŒ�N �).

We have

M1;mC1=m
m
S1
D RF ˝R

Y
N�mC1

�
S�.U1.QN /;O/m1;QN =m

m
S1

�
DM1;m

and

M1;m=a1 D RF ˝R
Y
N�m

�
S�.U1.QN /;O/m1;QN =.a1 Cmm

S1
/
�

D RF ˝R
Y
N�m

�
S�.U0.QN /;O=$

m/m0;QN

�
(see [39, Lemma 4.5.9] for the first equalities).

The third part follows from [39, Lemma 4.5.12].

Now we can define a patched pseudodeformation ring:

Definition 4.10. Form � 1 we define Rp
m D RF ˝R

Q
N�1RN =.mRN fQN /

m and then
define Rp D lim

 �m
R

p
m.

Lemma 4.11. For each m � 1 there is an integer n.m/ .independent of N/ such that
.mRN fQN /

n.m/ annihilates S�.U1.QN /;O/m1;QN =m
m
S1

for all N � m.

Proof. By considering the a1-adic filtration on S�.U1.QN /;O/m1;QN =m
m
S1

it suffices
to prove that there is an integer n.m/ (independent of N ) such that .mRN fQN /

n.m/ anni-
hilates S�.U0.QN /;O=$m/m0;QN for all N � m.

Since fQN S�.U0.QN /; O=$m/m0;QN is a finite length O-module with length
bounded by qnŠ times that of S�.U;O=$m/m, its length as an RN -module is bounded
independently of N and therefore it is annihilated by an m

n.m/
RN

for some n.m/ independ-
ent of N .

https://stacks.math.columbia.edu/tag/0912
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It follows from Lemma 4.11 that Rp acts on M1 (this is why Rp is defined the way it
is). We are going to use [39, Lemma 4.5.3] a few times, so we restate it here:

Lemma 4.12. Suppose for i 2 N, Mi is an O-module equipped with a decreasing filtra-
tion by O-modules Mi �Mi;1 �Mi;2 � � � � . Then the natural mapY

i�1

Mi ! lim
 �
m

�
RF ˝R

Y
i�1

Mi=Mi;m

�
is surjective with kernel given by elements of the form .mi / such that for each m there
exists Im 2 F with mi 2Mi;m for all i 2 Im.

We have a natural map
Q
N�1RN ! Rp which is surjective by Lemma 4.12. We also

have a natural map Rp ! R0 given by taking the limit over m of

Rp
m ! RF ˝R

Y
N�1

R0=.mR0/
m
D R0=.mR0/

m:

Lemma 4.13. The map Rp ! R0 we have just defined is surjective.

Proof. We again apply Lemma 4.12: this implies that the natural mapY
N�1

RN ! lim
 �
m

�
RF ˝R

Y
N�1

R0=.mR0/
m
�

is surjective; on the other hand, it factors through our map Rp ! R0.

From the n-dimensional pseudorepresentations .N;j /N�1 (j D 1; : : : ; q) with coeffi-
cients in

Q
N�1RN , we obtain n-dimensional pseudorepresentations 1;j (j D 1; : : : ; q)

of Zp � Z with coefficients in Rp. On the other hand, M1 has a natural structure of
S1 ˝O A-module, and we have defined characters ˛.i/j W Zp � Z! .S1 ˝O A/

� and

pseudocharacters j̨ D tr˛.1/j ˚ � � � ˚ ˛
.n/
j .

Lemma 4.14. Fix 1 � i � q.

(1) Composing 1;i with the map Rp ! R0 gives a pseudorepresentation which is
inflated from the ‘unramified quotient’ Zp �Z!Z .i.e. projection to second factor/.

(2) The composite of 1;j with the map Rp ! End.M1/ equals the composite of j̨

with the map S1 ˝O A! End.M1/. Consequently, the map Rp ! End.M1/ is a
homomorphism of SW1 -algebras.

Proof. The first part follows from the analogous statement for each of the pseudorep-
resentations N;i (which holds because the pseudorepresentations classified by R0 are
unramified at places in QN ). The second part follows from Lemma 4.4.

Definition 4.15. We let qp be the prime ideal inRp given by the inverse image of q0�R0.

Lemma 4.16. The image of
Q

qN �
Q
N�1RN in Rp is equal to qp.
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Proof. Write I for the kernel of
Q
N�1 RN ! Rp and I 0 for the image of I inQ

N�1 RN =qN D
Q
N�1 O. It suffices to prove that the map

Q
N�1 RN ! R0 induces

an isomorphism�Y
N�1

RN

�
=
�
I;
Y

qN

�
D

�Y
N�1

O
�
=I 0 Š R0=q0 D O:

The ideal I is the set of elements .xN / 2
Q
RN such that for each m � 1 there

exists Im 2 F with xN 2 .mRN fQN /
m for all N 2 Im. We have .mRN fQN /

m C qN D

.$mf mQN /C qN � .$
m/C qN . It follows that I 0 is contained in the kernel of the mapQ

N�1 O ! O. We need to show that I 0 equals the kernel. To this end, choose a tuple of
elements .yN / 2

Q
N�1 O which does lie in the kernel. Recall that there is a constant c

such that the image of fQN inRN =qN DO has$ -adic valuation� c. Let ImD ¹N � 1 W
ord$ yN �m.cC 1/º. Then I1 � I2 � � � � and

T
m�1 Im D;. Moreover, each Im is in F

(since .yN / is in the kernel of the map to O).
We have .mRN fQN /

mCqN D .$
mf mQN /CqN , and this contains .$ .cC1/m/CqN .

Therefore we can for eachm � 1 andN 2 Im find an element xN;m 2 .mRN fQN /
m such

that xN;m C qN D yN . We define a tuple .xN /N�1 2
Q
N�1 RN by taking xN to be an

arbitrary pre-image of yN if N 62 I1 and xN D xN;m if N 2 Im � ImC1. Then .xN / lies
in I and its image in

Q
N�1 O equals .yN /, as required.

Lemma 4.17. (1) We have an equality of ideals
Q
N�1qmND.

Q
N�1qN /

m in
Q
N�1RN .

(2) For m � 1 the image of
Q
N�1 qmN in Rp is equal to .qp/m.

The possibility of proving a statement like this one is mentioned in [39, Remark
4.6.10].

Proof of Lemma 4.17. It suffices to prove the first part. Recall from the proof of Corol-
lary 2.27 that there exists an integer g0 such that for every N there exists a surjection
OJx1; : : : ; xg0K ! RN such that the images of the xi are in qN (since qN =q

2
N can

be generated by g0 elements). Now it suffices to prove that we have an equality of
ideals

Q
N�1.x1; : : : ; xg0/

m D .
Q
N�1.x1; : : : ; xg0//

m in
Q
N�1 OJx1; : : : ; xg0K. We

conclude using the fact that for any ring R and any ideal I � R we have Im
Q
N�1R D

.I
Q
N�1R/

m, and we also have I
Q
N�1R D

Q
N�1 I when I is finitely generated.

For the statement of the next proposition, we recall that our data includes, for each
N � 1, a map R1 D OJx1; : : : ; xgK! RN sending the ideal q1 D .x1; : : : ; xg/ to qN .
The diagonal map R1 !

Q
N�1RN induces a map R1 ! Rp which sends q1 into qp.

Proposition 4.18. (1) The O-module qp=..qp/2; q1/ is killed by $c , where c is as in
Corollary 2.27.

(2) The natural map on completed local rings

.R1/bq1 ! .Rp/bqp

is surjective. In particular, .Rp/bqp is a complete Noetherian local E-algebra with
residue field E.
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Proof. It follows from Corollary 2.27 that the cokernel of the mapY
N�1

q1=.q1/
2
!

Y
N�1

qN =.qN /
2

is killed by $c . Applying Lemmas 4.16 and 4.17, it remains to show that the image of
q1=.q1/

2 in qp=.qp/2 is the same as the image of
Q
N�1 q1=.q1/

2. This is done as in
the proof of [39, Prop. 4.6.16]: it suffices to show that the composition of maps

q1=.q1/
2
!

Y
N�1

q1=.q1/
2
! O ˝Q

N�1O

Y
N�1

q1=.q1/
2

is surjective. Here the first map is the diagonal embedding and we regard O as a
Q
N O-

algebra via the map
Q
N O ! Rp=qp Š O. We conclude using Lemma 4.19.

This shows the first part of the proposition. For the second, we see that the first part
implies that each of the maps

gi W .R1=q
i
1/q1 ! .Rp=.qp/i /qp

is surjective. To check that lim
 �i

gi is surjective, it is enough to note that the sequence
.ker gi /i�1 satisfies the Mittag-Leffler condition (because each of these ideals has finite
length, being contained in an Artinian local ring).

Lemma 4.19. Let R be a commutative ring and M a finitely generated R-module. Sup-

pose we have an R-algebra map
Q
N�1R

�
! R. Then the composite map

M !
Y
N�1

M ! R˝Q
N�1R

Y
N�1

M

is surjective.

Proof. IfM is finite free over R, then
Q
N�1M has a .

Q
N R/-basis given by diagonally

embedded basis elements for M , and the statement is clear. In general, we write M as
a quotient of a finite free R-module F . The composition F ! R ˝Q

N�1R

Q
N�1 F !

R˝Q
N�1R

Q
N�1M is surjective and factors through M .

Remark 4.20. Note that we have not shown that qp is finitely generated, so we rely on the
comparison withR1 to show that the qp-adic completion .Rp/bqp is qp-adically complete!

Now we are going to consider the modules

� m1 D .M1=a21/qp ,

� m0 D .M0/qp ,

� m DMqp DMq0 .

Lemma 4.21. (1) m1 is a finite free S1;a1=a21-module.

(2) The trace maps induce an isomorphism m1=a1 Š m0.

(3) The map � induces an isomorphism � W m Š m0.
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Proof. We start with the third part: this follows immediately from Lemma 4.9, since
by Proposition 4.5 the image of f in Rp is not in qp. The second part also follows
immediately from Lemma 4.9. It remains to show the first part. Since the inverse image
of qp in SW1 is aW1 , the action of S1 on m1 factors through the localization S1 ˝SW1
.SW1 /aW1 D S1;a1 (note that a1 is the unique point of Spec.S1/ in the pre-image of aW1
under the finite map Spec.S1/! Spec.SW1 /). We know from Lemma 4.9 that M1=a21
is a flat S1=a21-module, so the localization m1 is a flat S1=a21-module, and hence a flat
S1;a1=a21-module. Since m1=a1 is finite-dimensional (by the second and third parts),
m1 is finitely generated over the Artinian local ring S1;a1=a21.

Since m1 is a finite-dimensional E-vector space, the action of the local E-algebra
.Rp/qp factors through an action by (an Artinian quotient of) .Rp/bqp . It follows from
Lemma 4.21 (3) that the action of .Rp/bqp on m0 Š m factors through the composition of
surjective maps

.Rp/bqp ! .R0/bq0 ! .T;/q0 D E: (4.2)

Now we consider again our pseudorepresentations 1;j (1 � j � q) of Zp � Z with
coefficients in Rp.

Definition 4.22. For 1 � j � q, we let ıj 2 Rp denote the discriminant of the character-
istic polynomial �j .t/ 2 RpŒt � of .0; 1/ 2 Zp � Z under the pseudorepresentation 1;j .

Lemma 4.23. For 1 � j � q, ıj … qp. Moreover, �j .t/ mod qp splits into linear factors
in EŒt�.

Proof. To show that ıj ¤ 0, it suffices to show that for somem � 1 the image of ıj under
the composition

Rp
! R0

hU;�
���! O ! O=$m

is non-zero. Recall the constant d from Lemma 2.26. Choose m > dn.n � 1/. Then it
follows from Lemma 2.26 that we will be done if we can identify the image of ıj in
O=$m with the image of the discriminant of the characteristic polynomial of a Frobenius
element �zv for some v 2 QN . Choose m0 so that our map R0 ! O=$m factors through
R0=m

m0

R0
. Now we can identify the image of ıj in R0=mm0

R0
with the image of an element

.ıj;N /N�1 2
Q
N�1R0=m

m0

R0
in RF ˝R

Q
N�1R0=m

m0

R0
, where ıj;N is the image of the

discriminant for the Frobenius element at the j th element of QN . We deduce that the
image of ıj in R0=mm0

R0
coincides with one of these Frobenius discriminants.

The same argument shows that the image of �j .t/ mod qp splits into linear factors in
O=$mŒt � for allm � 1. Indeed, for each �zv 2 GF , the characteristic polynomial of �.�zv/
has all of its roots in O (this is part of the definition of an enormous subgroup of GLn.O/).
Hensel’s lemma implies that �j .t/ itself factors in OŒt �.

For each j 2 ¹1; : : : ; qº we fix an ordering x.1/j ; : : : ; x
.n/
j of the (pairwise distinct)

roots in E of the polynomial �j .t/ mod qp. For each j , we may consider the pseudorep-
resentation .1;j /qp of Zp �Z with coefficients in .Rp/bqp given by composing 1;j with
the natural map Rp ! .Rp/bqp . This pseudorepresentation is residually multiplicity free.
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Lemma 4.24. There is a unique collection of continuous characters  .i/j W Zp � Z !

..Rp/bqp/� .i D 1; : : : ; n, j D 1; : : : ; q/ such that  .i/j mod qp is the character .a; b/ 7!

.x
.i/
j /b and .1;j /qp D tr  .1/j ˚ � � � ˚ 

.n/
j .

Proof. This follows from, e.g., [7, Proposition 1.5.1], since in a commutative GMA we
have (using the notation of loc.cit.) Ai;jAj;i DAj;iAi;j �Ai;i \Aj;j D 0 for i ¤ j .

The characters  .i/j jZp�0 W Zp ! ..Rp/bqp/� determine an extension of the homo-
morphism SW1 !Rp to a homomorphism S1! .Rp/bqp . This in turn naturally extends to
a map from the formally smooth E-algebra .S1/ba1 and we choose a lift of this through
the surjective map (see Proposition 4.18)

.R1/bq1 ! .Rp/bqp

to equip .R1/bq1 with a map from .S1/ba1 . We denote by A0 the localization of A at the
prime ideal .t .i/j � x

.i/
j W 1 � j � q; 1 � i � n/ and define

m01 D m1 ˝A A
0; m00 D m0 ˝A A

0:

(We recall that the ring A, defined at the beginning of §4.4, is a Laurent polynomial ring
in elements .t .i/j /˙1 (j D 1; : : : ; q, i D 1; : : : ; n) which represent the patched version of
the Hecke operators tv;i .$v/

˙1 for Taylor–Wiles primes v.)

Remark 4.25. The above localization is our replacement for the usual ‘localization with
respect to a suitable eigenvalue of the Uq operator’ which appears in the Taylor–Wiles
method. We can only do this after patching and inverting p because we do not assume
that �.�zv/ has distinct eigenvalues for Taylor–Wiles places v.

Lemma 4.26. (1) For each i D 1; : : : ; n and j D 1; : : : ; q, the respective pushforwards
of the characters ˛.i/j ,  .i/j to End.m01/ are equal.

(2) The two structures of S1-module on m01 .the standard one, and the one induced by
the homomorphism S1 ! .Rp/bqp constructed above/ are the same.

(3) The map .Rp/bqp ! .R0/bq0 factors through the quotient .Rp/bqp=a1.

(4) The trace maps induce m01=a1 Š m00.

(5) m01 is a finite free .non-zero/ S1;a1=a21-module.

Proof. Let X D ¹˛.i/j .z/; 
.i/
j .z/ W z 2 Zp � Z; i D 1; : : : ; n; j D 1; : : : ; qº. By con-

struction, the elements of X commute with each other; let T denote the E-subalgebra
of End.m01/ generated by the elements of X . Then T is an Artinian E-algebra. The
pushforwards of the characters ˛.i/j and  .i/j take values in T and the pseudocharacters

tr ˛.1/j ˚ � � � ˚ ˛
.n/
j and tr  .i/j ˚ � � � ˚ 

.n/
j are equal after pushforward to T for each

j D 1; : : : ; q. To show that the characters ˛.i/j and  .i/j are equal after pushforward to T
for each j D 1; : : : ; q it is enough (by the uniqueness assertion of [7, Proposition 1.5.1]) to
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show that they are equal after pushforward to each residue field of T . However, our con-
struction shows that for each i D 1; : : : ; n and j D 1; : : : ; q the elements ˛.i/j .0; 1/� x

.i/
j

and  .i/j .0; 1/ � x
.i/
j are commuting nilpotent elements of End.m01/ and therefore their

difference ˛.i/j .0; 1/ � 
.i/
j .0; 1/ lies in the Jacobson radical of T . This proves the first

part of the lemma. The second is an immediate consequence since the two S1-module
structures are determined by the two sets of characters ˛.i/j and  .i/j .

The third part of the lemma is equivalent to the assertion that the characters  .i/j jZp�0
become trivial after pushforward along the map .Rp/bqp ! .R0/bq0 . Since the pseudochar-
acter tr .1/j ˚ � � � ˚ 

.n/
j is residually multiplicity-free, the desired statement follows from

uniqueness and Lemma 4.14.
The fourth part of the lemma follows from the same statement before localization

to A0 (Lemma 4.21). We now prove the final part of the lemma. Since m01 is a dir-
ect summand of m1, we just need to prove that m01 is non-zero, or indeed that m00 is
non-zero. For this, we note that it follows from Lemma 4.14 (compatibility of Galois
and automorphic pseudocharacters) and the observation above (4.2) that the character-
istic polynomial

Qn
iD1.t � t

.i/
j / of .0; 1/ under j̨ pushes forward to

Qn
iD1.t � x

.i/
j / D

�j .t/ mod qp in End.m0/. It follows that AW acts on m0 via the map AW ! E induced
by t .i/j 7! x

.i/
j . Since the A-module m0 is isomorphic to S�.U;O/q0 ˝AW A, we deduce

that the localization m00 is non-zero.

To complete the proof of this section’s main theorem, we recall Brochard’s freeness
criterion:

Theorem 4.27 ([13, Theorem 1.1]). Let A! B be a local morphism of Noetherian local
rings satisfying the inequality on embedding dimensions:

edim.B/ � edim.A/:

LetM be a non-zero A-flat B-module which is finitely generated over B . Then M is finite
free over B .

Theorem 4.28. The map .R0/bq0 ! .T;/q0 D E is an isomorphism, and as a con-
sequence

H 1
f .F

C; ad r�;�/ D 0:

Proof. We apply Brochard’s criterion withADS1;a1=a21,B D .R1/bq1=a21,M Dm01.
Note that the embedding dimension of S1;a1=a21 is qn, and since .R1/bq1 is a power
series ring over E in qn variables, the embedding dimension of .R1/bq1=a21 is � qn.

We conclude that m01 is finite free over .R1/bq1=a21 and therefore m00 is finite free
over .R1/bq1=a1. Since the action of .R1/bq1 on m00 factors through the action of
.T;/q0 , we deduce that each of the surjective maps

.R1/bq1=a1 ! .Rp/bqp=a1 ! .R0/bq0 ! .T;/q0 D E

is an isomorphism. The vanishing of the adjoint Selmer group follows from the identific-
ation of this with the reduced tangent space of .R0/bq0 (i.e. Proposition 2.17).
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Remark 4.29. We find it convenient (or amusing) to use Brochard’s freeness cri-
terion here, although we could alternatively have worked with the .S1/ba1 -module
lim
 �m

..M1=am1/qp/ in place of m1 and concluded using Auslander–Buchsbaum as in the
work of Diamond and Fujiwara.

5. Applications

We now deduce our main theorems. We begin with a useful lemma.

Lemma 5.1. Let F be a number field, and let E=Qp be a coefficient field. Let � W GF !
GLn.E/ be a continuous representation which is unramified almost everywhere. Let S be
a finite set of places of F . Then we can find a finite set T of places of F with the following
properties:

� T \ S D ;.

� For any T -split finite extension F 0=F , �.GF 0.�p1 // D �.GF.�p1 //.

Proof. After replacing � by �˚ �, it is enough to show we can choose T so that �.GF /D
�.GF 0/ if F 0=F is T -split. Conjugate � so that it takes values in GLn.O/, and let L1=F
be the extension cut out by �, and LN =F the extension cut out by �N D � mod $N . We
have �.GF / D lim

 �N
�N .GF /, so it is enough to show that we can choose T so that if

F 0=F is T -split, then �N .GF / D �N .GF 0/ for all N � 1.
To this end, we let M=F be the compositum of all the extensions of F cut out by

simple quotients of Gal.LN =F / (for any N � 1). The extension M=F is finite, because
simple quotients of Gal.LN =F / (for varying N � 1) correspond to simple quotients of
�.GF / by closed normal subgroups. Since �.GF / has a normal, closed subgroup of finite
index which is a topologically finitely generated pro-p group, these quotients are finite in
number.

We can therefore choose T to be any set disjoint from S and such that for each inter-
mediate field M=M 0=F with Gal.M 0=F / simple, there exists v 2 T which does not split
in M 0.

We prove a theorem for regular algebraic, cuspidal, polarized automorphic represent-
ations. First we treat the case of a CM base field.

Theorem 5.2. Let F be a CM number field, and let .�; �/ be a regular algebraic,
cuspidal, polarized automorphic representation of GLn.AF /. Let � W Qp ! C be an iso-
morphism, and suppose that r�;�.GF.�p1 // is enormous. Then H 1

f .F
C; ad r�;�/ D 0.

Proof. As in the proof of [6, Theorem 1.2], � has a twist which is polarized with respect
to ın

F=FC
(i.e. of unitary type). The twist does not alter ad r�;�, so we can assume that �

is of unitary type. For any finite extension F 0=FC, the induced map

H 1
f .F

C; ad r�;�/! H 1
f .F

0; ad r�;�/
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is injective. It is therefore enough to find a soluble totally real extension LC=FC with the
following properties:

� Let L D LCF . Then r�;�.GL.�p1 // D r�;�.GF.�p1 //.

� Let �L denote the base change of � (which exists and is regular algebraic, by [3, Ch. 3,
Theorems 4.2, 5.1]). It is cuspidal, because r�;�jGL is irreducible. Each place of L at
which �L is ramified, or dividing p, is split over LC.

� For every place w of L, �L;w has an Iwahori-fixed vector.

To achieve this, let S be the set of places of FC dividing p or above which � is ramified,
and let SF denote the set of places of F lying above a place of S . Let TF denote a set as
provided by Lemma 5.1, disjoint from SF , and let T denote the set of places of FC lying
below a place of TF . Then S and T are disjoint, and if LC=FC is T -split, then L=F is
TF -split. We can choose LC=FC to be any T -split soluble totally real extension which
has the correct behaviour at the places in S , the existence of such an extension being a
consequence of [16, Lemma 4.1.2].

Next we treat the case of a totally real base field F . We consider a regular algebraic,
cuspidal, polarized automorphic representation .�;�/ of GLn.AF /. Let � WQp!C be an
isomorphism, and suppose that r�;� is irreducible. Let V denote the space on which r�;�
acts. Then there is a unique GF -equivariant pairing h�; �i W V � V ! �1�nr�;�, which is
symmetric if n is odd or n is even and r�;�.cv/ D 1 (v j1), or antisymmetric if n is even
and r�;�.cv/ D �1 (see [8] and [5, §2.1]). We thus obtain a homomorphism

r 0�;� W GF ! GS.h�; �i/.Qp/

to the general similitude group of the pairing h�; �i. We write gs for the Lie algebra of this
reductive group over Qp .

Theorem 5.3. Let F be a totally real number field, and let .�; �/ be a regular algeb-
raic, cuspidal, polarized automorphic representation of GLn.AF /. Let � WQp ! C be an
isomorphism, and suppose that r�;�.GF.�p1 // is enormous. Then H 1

f .F;gs/ D 0.

Proof. This can be deduced from Theorem 5.2 using base change in the same way that
[1, Theorem B] is deduced from [1, Theorem A]. We omit the details.

When n D 2, these results take a particularly simple form:

Theorem 5.4. Let F be a totally real number field, and let � be a regular algebraic,
cuspidal automorphic representation of GL2.AF /. Let � W Qp ! C be an isomorphism.
Suppose that one of the following holds:

(1) � does not have CM.

(2) � has CM by an extension K=F , and K 6� F.�p1/.

Then H 1
f .F; ad r�;�/ D 0.
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Proof. When n D 2, gs D gl2. Our result will follow from Theorem 5.3 if we can verify
that our hypotheses imply that r�;�.GF.�p1 // is enormous. If � does not have CM, this is
Example 2.29.

Suppose instead that � has CM by a CM quadratic extension K=F , and K is
not contained in F.�p1/. To show that r�;�.GF.�p1 // is enormous, it is enough to
show that we can find regular semisimple elements in the image of both GK.�p1 / and
GF.�p1 / � GK.�p1 /. Elements of the latter type exist because of our assumption that K
is not contained in F.�p1/.

Now suppose for a contradiction that r�;� Š IndGFGK � is scalar on restriction to
GK.�p1 /. This implies that �=�c is trivial on GK.�p1 /, and hence that .�=�c/2 D 1

(since c acts trivially on Gal.K.�p1/=K/). This contradicts the fact that �=�c has infin-
ite order (because its Hodge–Tate weights are all non-zero, since � is regular algebraic).
This completes the proof.

We can also prove results for elliptic curves.

Theorem 5.5. Let F be a totally real number field, and let E be an elliptic curve over F .
Let p be a prime, and suppose that one of the following holds:

(1) E does not have CM.

(2) E has CM by a quadratic field K=Q, and K 6� F.�p1/.

Then H 1
f .F; adVp.E// D 0.

Proof. If the elliptic curve E has CM, then its p-adic Galois representations are auto-
morphic and we can appeal to Theorem 5.4. If E does not have CM, then there exists a
totally real extension F 0=F such that the p-adic Galois representations of EF 0 are auto-
morphic (for example, by [50]) and we can appeal again to the same theorem.

Combining our results with potential automorphy theorems, we can prove some more
general vanishing results. Here is an example for symmetric powers of two-dimensional
representions.

Theorem 5.6. Let F be a CM number field, and let .�; �/ be a regular algeb-
raic, cuspidal, polarized automorphic representation of GL2.AF / such that Sym2 � is
cuspidal. Let p be a prime, and fix an isomorphism � W Qp ! C. Then for any n � 1,

H 1
f .F

C; ad Symn�1 r�;�/ D 0:

Proof. By [5, Theorem 5.4.1], there exists a Galois, CM extension F 0=F such that
Symn�1 r�;�jGF 0 is automorphic. It suffices to show thatH 1

f ..F
0/C; ad Symn�1 r�;�/ van-

ishes, and this follows from Theorem 5.2 once we verify that Symn�1 r�;�.GF 0.�p1 // is
enormous. However, this follows from Example 2.29.

Finally, we give an application to vanishing results for anticyclotomic characters, as
predicted by the Bloch–Kato conjecture. Over a general CM field our main theorem gives
vanishing results which are not covered by known cases of the anticyclotomic main con-
jecture (cf. those proved in [24]).
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Theorem 5.7. Let F be a CM number field, and let � W F �nA�F ! C� be a unitary
character of type A0. Let � W Qp ! C be an isomorphism, and suppose that the following
conditions are satisfied:

(1) ��c D 1.

(2) The integers n� (� 2 Hom.F;C/) defined by �v.z/ D �.z/n� �c.z/n�c for each place
v j1 are of constant parity, and none of them are zero.

(3) F 6� FC.�p1/.

Then H 1
f .F; r�;�/ D 0.

Proof. The given conditions imply that there is a character  W F �nA�F !C� of typeA0
such that  = c D �. Given this, let � denote the automorphic induction of  from F

to FC. It is a regular algebraic, cuspidal automorphic representation of GL2.AFC/ and
Ind

G
FC

GF
r�;� is a subquotient of ad r�;�, so the desired vanishing follows from Shapiro’s

lemma for Bloch–Kato Selmer groups and Theorem 5.4.
Let us explain why  exists. Choose arbitrarily integers m� such that 2m� C n� D w

is independent of � . Then m�c D w � m� , so there exists a character � W F �nA�F !
C� of type A0 such that �v.z/ D �.z/m� �c.z/m�c . Moreover m� � m�c D �n� , so
�0 D �.�=�c/ has finite order and satisfies �0�c0 D 1. Lemma 5.8 implies that there
exists another finite order Hecke character � such that �=�c D �0, so we can then take
 D ���1.

Lemma 5.8. Let F be a CM field, and let � W GF ! Q=Z be a continuous character
such that ��c D 1. Then there exists a continuous character � W GF ! Q=Z such that
�=�c D �.

Proof. It is equivalent to ask thatH 1.F=FC;H 1.F;Q=Z//D 0. We use the Hochschild–
Serre spectral sequence

Hp.F=FC;H q.F;Q=Z//) HpCq.FC;Q=Z/:

We recall that if K is a number field, then the product

H r .K;Q=Z/!
Y
v j1

H r .Kv;Q=Z/

of restriction maps is an isomorphism when r � 3 [35, Theorem 4.20], andH 2.K;Q=Z/
D 0 (Tate’s theorem, see [49, Theorem 4] or [41, Theorem 2.1.1]). Since F has no real
places, the groups H r .F;Q=Z/ vanish when r � 2 and so the spectral sequence in ques-
tion has only two rows, and can be pieced together into a long exact sequence (cf. [55,
Exercise 5.2.2]) including the terms

H 2.FC;Q=Z/ //H 1.F=FC;H 1.F;Q=Z//

��

H 3.F=FC;H 0.F;Q=Z// //H 3.FC;Q=Z/
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The edge morphism H 3.F=FC; H 0.F; Q=Z// ! H 3.FC; Q=Z/ is inflation, and
is injective because the extension F=FC is CM and the map H 3.FC; Q=Z/ !Q
v j1H

3.FCv ;Q=Z/ is bijective. This completes the proof.
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