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Abstract. We develop a splitting method to prove the well-posedness, in short time, of solutions for
two master equations in mean field game (MFG) theory: the second order master equation, describ-
ing MFGs with a common noise, and the system of master equations associated with MFGs with
a major player. Both problems are infinite-dimensional equations stated in the space of probability
measures. Our new approach simplifies and generalizes previous existence results for second order
master equations and provides the first existence result for systems associated with MFG problems
with a major player.
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1. Introduction

The paper is dedicated to the construction of a solution of the so-called “master equations”
in mean field game theory (MFG). These equations have been introduced by Lasry and
Lions and discussed by Lions in [25]. Let us recall that mean field games describe the
behavior of infinitely many agents in interaction. We consider here two problems: the
master equation with common noise and the master equation with a major player. We
present a general approach valid for both problems.

Let us first discuss the master equation with common noise. In this problem, the agents
are subject to a common source of randomness. The master equation is then a second order
equation in the space of measures and reads as follows:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

� @tU.t; x;m/ � Tr..a.t; x/C a0.t; x//D2
xxU.t; x;m//CH.x;DxU.t; x;m/;m/

�

ˆ
Rd

Tr..a.t; y/C a0.t; y//D2
ymU.t; x;m; y//m.dy/

C

ˆ
Rd
DmU.t; x;m; y/ �Hp.y;DxU.t; y;m/;m/m.dy/

� 2

ˆ
Rd

TrŒ�0.t; y/.�0.t; x//TD2
xmU.t; x;m; y/�m.dy/

�

ˆ
R2d

TrŒ�0.t; y/.�0.t; y0//TD2
mmU.t; x;m; y; y

0/�m.dy/m.dy0/ D 0

in .0; T / �Rd �P2;

U.T; x;m/ D G.x;m/ in Rd �P2;

(1)

In the above equation, the unknown U D U.t; x;m/ is scalar valued and depends on the
time variable t 2 Œ0; T �, the space variable x 2 Rd and the distribution of the agents m
in P2, the space of Borel probability measures with finite second order moment; the
derivatives DmU and D2

mmU refer to the derivative with respect to the probability meas-
ure (see Section 2.2); the maps H D H.x; p; m/ and G D G.x; m/ reflect the running
and terminal costs of the agents. The matrix valued function a D a.t; x/ is the volatility
term corresponding to idiosyncratic noise of the small players, while a0 D a0.t; x/ D

�0.�0/T .t; x/ is the volatility corresponding to the common noise.
As explained by Lions [25], the master equation can be understood as a non-linear

transport equation in the space of probability measures. When a0 D 0 (i.e., in the so-
called first order master equation), the characteristics of this transport equation are given
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by the MFG system: if we fix an initial time t0 and an initial probability measure m0
on Rd , and if the pair .u;m/ is a solution of the MFG system8̂<̂
:
.i/ �@tu � Tr.a.t; x/D2u/CH.x;Du;m.t// D 0 in .t0; T / �Rd ;

.ii/ @tm �
P
i;j Dij .ai;jm/ � div.mHp.x;Du;m.t/// D 0 in .t0; T / �Rd ;

.iii/ m.t0/ D m0; u.T; x/ D G.x;m.T // in Rd ;

(2)

then we expect the following equality to hold:

U.t; x;m.t// D u.t; x/ 8t 2 Œt0; T �: (3)

The interpretation of the MFG system (2) is the following: the map u is the value func-
tion of a typical small agent (anticipating the evolution of the population density m.t/)
and accordingly solves the Hamilton–Jacobi equation (2) (i). When this agent plays in an
optimal way, the drift in the dynamic of its state is given by the term �Hp.x;Du;m.t//.
By a mean field argument (assuming that the noises of the agents are independent), the
resulting evolution of the population density Qm satisfies the Kolmogorov equation8<: @t Qm �

X
i;j

Dij .ai;j Qm/ � div. QmHp.x;Du;m.t/// D 0 in .t0; T / �Rd ;

m.t0/ D m0 in Rd :

In an equilibrium configuration, i.e., when agents correctly anticipate the evolving meas-
ure, one has Qm D m and therefore the population density m solves (2) (ii).

The existence/uniqueness of the solution for the MFG system is rather well under-
stood: it relies on Schauder estimates, fixed point methods and monotonicity arguments
(see, in particular, [21–23]). From the well-posedness of the MFG system, one can derive
the existence of a solution to the first order master equation “quite easily”: one just needs
to define the map U by (3) with t D t0 and check that the map U thus defined is a classical
solution to the first order master equation. This is the path followed in [17,27] (when there
is no diffusion at all: a D a0 � 0) and in [11] (when a > 0 is constant and a0 D 0). See
also [10] for a similar result (for the torus) using PDE linearization techniques.

When a0 6� 0 (i.e., for the second order master equation, or master equation with
a common noise), the characteristics are now given by the system of SPDEs (called
“stochastic MFG system”):8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

du.t; x/ D Œ�Tr..aC a0/.t; x/D2u.t; x//CH.x;Du.t; x/;m.t//

�
p
2Tr.�0.t; x/Dv.t; x//� dt C v.t; x/ � dWt in .0; T / �Rd ;

dm.t; x/ D
hX
i;j

Dij ...aij /C a
0
ij /.t; x/m.t; x//

C div.m.t; x/DpH.x;Du.t; x/;m.t///
i
dt

� div.m.t; x/
p
2 �0.t; x/dWt / in .0; T / �Rd ;

u.T; x/ D G.x;m.T //; m.0/ D m0 in Rd ;

(4)

In the above system, .Wt / is the common noise (here a Brownian motion) and the
unknown is the triplet .u;m; v/, where the new variable v (a random vector field in Rd )
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ensures that the solution u of the backward Hamilton–Jacobi (HJ) equation is adapted to
the filtration generated by the common noise .Wt /. The analysis of this system is much
more involved than that of the deterministic one: Schauder estimates are no longer avail-
able and the usual fixed point methods based on compactness arguments can no longer
be applied. One has to replace them by continuation methods, which are much heavier
to handle [10]. Besides the PDE approach we just mentioned, MFG with common noise
can also be handled through a probabilistic formulation: see the pioneering result [13], as
well as [2, 19] and the monograph [12]. Once the analysis of the stochastic MFG system
has been performed, one can proceed with the construction of the second order master
equation as in the first order case, defining the map U by (3) for t D t0, where u is
now the u-component of the solution of the stochastic MFG system (u.t0; �/ turns out to
be deterministic). However, here again, the verification that the map U defined so far is
smooth enough to satisfy (1) requires a lot of work: see [10] and [12].

Let us finally recall another approach, suggested by P.-L. Lions in the seminar [26]: it
consists in writing the equation for the quantityDmU as a hyperbolic equation in a Hilbert
space of random variables. The construction requires, however, convexity conditions on
the system with respect to the space variable (but no uniform ellipticity for the matrix a).

We now discuss the second equation considered in this paper: the master equation
corresponding to MFG models with a major player. It reads as follows:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

�@tU
0
��x0U

0
CH 0.x0;Dx0U

0; m/ �

ˆ
Rd

divy DmU 0.t; x0; m; y/m.dy/

C

ˆ
Rd
DmU

0.t; x0; m; y/ �Hp.x0; y;DxU.t; x0; y;m/;m/m.dy/ D 0

in .0; T / �Rd0 �P2;

�@tU ��xU ��x0U CH.x0; x;DxU;m/ �

ˆ
Rd

divy DmU.t; x0; x;m; y/m.dy/

CDx0U �H
0
p .x0;Dx0U

0.t; x0; m/;m/

C

ˆ
Rd
DmU.t; x0; x;m; y/ �Hp.x0; y;DxU.t; x0; y;m/;m/m.dy/ D 0

in .0; T / �Rd0 �Rd �P2;

U 0.T; x0; m/ D G
0.x0; m/ in Rd0 �P2;

U.T; x0; x;m/ D G.x0; x;m/ in Rd0 �Rd �P2:
(5)

In the above system, U 0 D U 0.t; x0; m/ corresponds to the payoff at equilibrium for a
major player interacting with a crowd in which each agent has at equilibrium a payoff
given by U D U.t; x0; x; m/. Here m is the distribution law of the agents. Notice that
each agent is influenced by the major player whereas the latter is only influenced by the
distribution of the whole population. Mean field games with a major player have been
first discussed by Huang [18], and several notions of equilibria, in different contexts, have
been proposed in the literature since then: see [5–8, 12, 14–16, 24]. The above system has
been introduced by Lasry and Lions [24]. In the companion paper [9], we explain how the
above master equation is related to the approach by Carmona and al. [14–16]. Concerning
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the existence of a solution, [16] shows the existence of an equilibrium in short time for the
case of a finite state space, [24] proves the existence of a solution to the master equation
still in the finite state space framework and notes that the Hilbertian techniques described
in [26] could be adapted to the master equation with a major player (5).

The purpose of this paper is to introduce a different path towards the construction of
a solution to the second order master equation and to the master equation with a major
player, using as a building block the construction of a solution to the first order master
equation. For the second order master equation, we justify this point of view by the fact
that the deterministic MFG system and the first order master equation are much easier
to manipulate than the stochastic MFG system. Our approach allows one for instance to
build solutions of the second order master equation (in short time) under more general
assumptions than in [10,12]. For the MFG problem with a major player, we prove for the
first time the (short time) well-posedness of the associated system of master equations in
continuous space.

Let us first explain our ideas for the master equation with common noise (1). In con-
trast to previous works, we do not use directly the representation formula (3) (for t D t0)
for the solution of the second order master equation. Instead, we somehow decompose the
second order master equation as the superposition of the first order master equation:8̂̂̂̂
<̂
ˆ̂̂:
�@tU � Tr.a.t; x/D2

xxU/CH.x;DxU;m/ �

ˆ
Rd

Tr.a.t; y/D2
ymU/m.dy/

C

ˆ
Rd
DmU �Hp.y;DxU;m/m.dy/ D 0 in .0; T / �Rd �P2,

U.T; x;m/ D G.x;m/ in Rd �P2

(6)

and of a linear second order master equation:8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

�@tU � TrŒ�0.�0/T .t; x/D2
xxU � �

ˆ
Rd

TrŒ�0.�0/T .t; y/D2
ymU �m.dy/

� 2

ˆ
Rd

TrŒ�0.t; y/.�0.t; x//TD2
xmU �m.dy/

�

ˆ
R2d

TrŒ�0.t; y/.�0.t; y0//TD2
mmU �m.dy/m.dy

0/ D 0

in .0; T / �Rd �P2;

U.T; x;m/ D G.x;m/ in Rd �P2:

(7)

The solution to this linear second order master equation is just given by a Feynman–
Kac formula, and thus it is very easy to handle. Then we use the Trotter–Kato formula,
alternating the two equations in short time intervals to build in the limit a solution of
the full equation (1). Even if the technique is quite transparent, its actual implementation
requires some care. Indeed, one has to check that, at each step of the process, the regularity
of the solution does not deteriorate too much, meaning at least in a linear way in time.
The aim of Section 5.2 is precisely to quantify this deterioration for the solution U of the
first order master equation (6), as well as for its derivatives in the measure variable. As the
solution of (6) is built by using the representation formula (3) (where t D t0) presented
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above, one has first to do the analysis on the MFG system (2), and this is the aim of Section
5.1. Note that we are able to control the regularity of the linear second order equation (7)
only when the matrix a0 is constant. Hence we only prove the short time existence of a
solution to (1) in that case.

For the problem with a major player, we argue in a similar way: we view equation (5)
as the superposition of two systems: the first one is a first order system of master equations
(for a fixed x0):8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�@tU
0
�

ˆ
Rd

divy DmU 0.t; x0; m; y/m.dy/

C

ˆ
Rd
DmU

0.t; x0; m; y/ �Hp.x0; y;DxU.t; x0; y;m/;m/m.dy/ D 0;

�@tU ��xU CH.x0; x;DxU;m/ �

ˆ
Rd

divy DmU.t; x0; x;m; y/m.dy/

C

ˆ
Rd
DmU.t; x0; x;m; y/ �Hp.x0; y;DxU.t; x0; y;m/;m/m.dy/ D 0:

(8)

It turns out that this system can be handled by the method of characteristics. As for the
second one, it is a simple system of HJ equations (for fixed x;m):´

�@tU
0
��x0U

0
CH 0.x0;Dx0U

0; m/ D 0;

�@tU ��x0U CDx0U �H
0
p .x0;Dx0U

0.t; x0; m/;m/ D 0:
(9)

The idea of splitting time is not completely new in the framework of mean field games.
Let us quote for instance the paper in preparation [1] in which the authors use a split-
ting technique similar to the one described above to compute numerically the solution of
MFGs with a major player. The construction, given in [13], of (weak) equilibria for MFG
problems with common noise also relies on a time splitting. The main difference is that it
is done at the level of the MFG equilibrium, while we do the construction at the (stronger)
level of the master equation. One consequence is that, with our approach, the construction
of a solution to the stochastic MFG system (in short time, though) is straightforward once
the solution of the master equation is built, while deriving a solution of the master equa-
tion from the stochastic MFG system is much trickier. Our method is particularly relevant
for the problem with a major player: indeed, for this problem, the associated MFG system
involves two backward stochastic HJ equations, a stochastic Kolmogorov equation and a
McKean–Vlasov equation; the construction of a solution to the system of master equa-
tions (5), based directly on this MFG system, would therefore be extremely technical.
Instead, our method relies on the one hand on the analysis of system (8) (which derives
directly from the analysis of the standard first order master equation) and on the other
hand on estimates for system (9) (which is just an ordinary system of HJ equations).

Let us finally point out that, in this paper, we do not address at all the problem of
the existence of a solution on a large time interval. For the first and second order master
equation, this question is related to the Lasry–Lions monotonicity condition [22,23]. The
existence of a solution on a large time interval can be obtained under this condition either
by the Hilbertian approach, as explained in [26], or by a continuation method, as in [11]
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and [12], or even directly by using the long time existence of a solution for the MFG
system, as in [10]. Let us recall that when the monotonicity condition is not fulfilled, the
solution to the second order master equation is expected to develop shocks (i.e., discon-
tinuities) in finite time. Note also that a structure condition similar to the monotonicity
condition is not known for MFGs with a major player.

The paper is organized in the following way. In Section 2 we fix the notation and
we recall the definition of derivatives in the space of measures; then we introduce our
assumptions and we state the main results of this article. We also present, at the end of
Section 2, the general idea of splitting method that we adopt for both systems (1) and (5).
In order to prove the existence results, our strategy is put in practice in Section 3 for the
second order master equation (equation (1)) and in Section 4 for the system of master
equations for MFG with a major player (system (5)), respectively. Both sections require
several estimates on first order master equations, which are collected in Section 5. As first
order master equations are built by the method of characteristics involving the solutions
of classical MFG systems (2), Section 5.1 first provides estimates for these systems. Then
Section 5.2 is devoted to the analysis of first order master equations. We complete the
paper by appendices in which we prove short-time estimates for the standard Hamilton–
Jacobi equations (Appendix A) and we discuss several facts on maps defined on the space
of measures (differentiability, interpolation and the Ascoli theorem, Appendix B).

2. Notation, assumptions and main results

2.1. Notation

Throughout the paper, we work in the euclidean space Rd (with d 2 N, d � 1), endowed
with the scalar product .x; y/ 7! x � y and the distance j � j. Given T > 0 and a map
� W .0; T / � Rd ! R, we denote by @t� the derivative of � with respect to the time
variable, by @xi� its partial derivative with respect to the i -th space variable (i D 1; : : : ;d )
and by D� the gradient with respect to the space variable.

For n 2 N, we denote by C n
b

the set of maps � W Rd ! R which are n-times differen-
tiable with continuous and bounded derivatives; in particular, C 0

b
is the set of continuous

and bounded maps. Given � 2 C n
b

and a multi-index k D .k1; : : : ; kd / 2 Nd , with length

jkj WD
Pd
iD1 ki � n, we denote by @k� D @k1

@x
k1
1

: : : @
kd

@x
kd
d

� (or briefly �k) the k-th deriv-

ative of �. We also denote by Dn� (n 2 N, n � 1) the vector .@k�/jkjDn. The norm of �
in C n

b
is

k�kn WD

nX
rD0

sup
x

�X
j˛jDr

j@˛�.x/j2
�1=2
D

nX
rD0

kDr�k1:

For n D 0, we use interchangeably the notation k�k0 or k�k1.
For .n1; : : : ; nk/ 2 Nk (k 2 N, k � 2), we denote by C n1;:::;nk

b
the space of func-

tions � W Rd1 � � � � � Rdk ! R (di � 1) having continuous and bounded derivatives
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D
l1
x1 � � �D

lk
xk� for all l1 � n1; : : : ; lk � nk , endowed with the norm

k�kn1;:::;nk D k�.�x1 ; : : : ; �xk /kn1;:::;nk WD
X

l1�n1;:::;lk�nk

kDl1
x1
� � �Dlk

xk
�k1;

where now .x1; : : : ; xk/ stands for a generic element of Rd1 �Rdk .
We denote by C�n the dual space of C n

b
, endowed with the usual norm

k�k�n WD sup
k�kn�1

�.�/ 8� 2 C�n:

Finally, when a map � D �.t; x/ depends also on time t belonging to an interval I ,
we often write supt2I k�.t/kn for supt2I k�.t; �/kn. We use a corresponding notation for
a map � 2 C 0.Œ0; T �; C�k/.

Throughout the paper, P stands for the set of Borel probability measures on Rd and
for k � 1, Pk stands for the set of measures in P with finite moment of order k: namely,

Mk.m/ WD

�ˆ
Rd
jxjk m.dx/

�1=k
< C1 if m 2 Pk :

The set Pk is endowed with the distance (see for instance [4, 28, 29])

dk.m;m0/ D inf
�

�ˆ
Rd
jx � yjk �.dx; dy/

�1=k
8m;m0 2 Pk ;

where the infimum is taken over the couplings � between m and m0, i.e., over the Borel
probability measures � on Rd �Rd with first marginal m and second marginal m0. Note
that P2 � P1 and d1 � d2 by the Cauchy–Schwarz inequality. We will often use the fact
that if � W Rd ! R is Lipschitz continuous with a Lipschitz constant L � 0, thenˇ̌̌̌ˆ

Rd
�.x/ .m �m0/.dx/

ˇ̌̌̌
� Ld1.m;m0/ 8m;m0 2 P1:

Moreover, d1.m;m0/ is the smallest constant for which the above inequality holds for any
L-Lipschitz continuous map � (see for instance [28, 29]). Given m 2 P and � 2 C 0

b
, the

image �]m of m by � is the element of P defined byˆ
Rd
f .x/ �]m.dx/ D

ˆ
Rd
f .�.x//m.dx/ 8f 2 C 0b :

2.2. Derivatives in the space of measures

We now define the derivative in the space P2. For this, we mostly follow the definition
and notations introduced in [10] (in a slightly different context) and which are reminiscent
of earlier approaches: see [3,4] and the references in [12]. We say that a map U W P2!R
is C 1 if there exists a continuous and bounded map ıU

ım
W P2 �Rd ! R such that

U.m0/ � U.m/ D

ˆ 1

0

ˆ
Rd

ıU

ım
..1 � s/mC sm0; y/ .m0 �m/.dy/ ds 8m;m0 2 P2:

(10)



Splitting methods and short time existence for the master equations in mean field games 1831

Note that the restriction on ıU
ım

to be continuous on the entire space Rd and globally
bounded is restrictive; it will however simplify our forthcoming construction. The map
ıU
ım

is defined only up to an additive constant that we fix with the convention
ˆ

Rd

ıU

ım
.m; y/m.dy/ D 0 8m 2 P2: (11)

We say that the map U is continuously L-differentiable (for short, L-C 1) if U is C 1

and y 7! ıU
ım
.m; y/ is everywhere differentiable with a continuous and globally bounded

derivative on P2 �Rd . We denote by

DmU.m; y/ WD Dy
ıU

ım
.m; y/

this L-derivative. In view of the discussion in [10], DmU coincides with the Lions deriv-
ative as introduced in [25] and discussed in [12]. In particular, it estimates the Lipschitz
regularity of U in P2 [12, Remark 5.27]:

jU.m/ � U.m0/j � d2.m;m0/ sup
�2P2

�ˆ
Rd
jDmU.�; y/j

2 �.dy/

�1=2
8m;m0 2 P2:

(12)
Of course one can also estimate the Lipschitz regularity of U through the d1 norm, as

jU.m/ � U.m0/j � d1.m;m0/ sup
�2P2

kDmU.�; �/k1

� d2.m;m0/ sup
�2P2

kDmU.�; �/k1: (13)

Note that, with our boundedness convention, if U is continuously L-differentiable, then
it is automatically globally Lipschitz continuous.

When U is smooth enough, we often see the map ıU
ım

as a linear map on C�k by

ıU

ım
.m/.�/ D

�
�;
ıU

ım
.m; �/

�
C�k ;Ck

8� 2 C�k :

We say that U is C 2 if ıU
ım

is C 1 in m with a continuous and bounded derivative, that

is, ı
2U
ım2
D

ı
ım
. ıU
ım
/ W P2 �Rd �Rd ! R is continuous in all variables and bounded. We

say that U is twice L-differentiable if the map DmU is L-differentiable with respect to
m with a second order derivative D2

mmU D D2
mmU.m; y; y

0/ which is continuous and
bounded on P2 �Rd �Rd with values in Rd�d .

When a map U W Rd � P2 ! R is of class C n
b

with respect to the space variable,
uniformly with respect to the measure variable, we often set

jjjU jjjn WD sup
m2P2

kU.�; m/kn: (14)

Note here the use of the different symbol jjj � jjj. We use similar notation for a map U
depending on several space variables and on a measure:

jjjU jjjn1;:::;nk WD sup
m2P2

kU.�; m/kn1;:::;nk :
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When a map U W Rd � P2 ! R is Lipschitz continuous with respect to m, uniformly
with respect to the space variable in some C n norm, we define Lipn.U / as the smallest
constant C such that

kU.�; m1/ � U.�; m2/kn � Cd2.m1; m2/ 8m;m0 2 P2:

That is,

Lipn.U / WD sup
m1¤m2

kU.�; m1/ � U.�; m2/kn

d2.m1; m2/
:

More generally, if U W .Rd /k �P2!R (for k 2N, k � 1) is Lipschitz continuous in the
measure variable in some C n1;:::;nk

b
norm (where ni 2 N for i D 1; : : : ; k), then we set

Lipn1;:::;nk .U / WD sup
m1¤m2

kU.�x1 ; : : : ; �xk ; m1/ � U.�x1 ; : : : ; �xk ; m2/kn1;:::;nk
d2.m1; m2/

:

We will typically use this notation for the derivatives of a map U WRd �P2!R; indeed,
we will often have to estimate quantities of the form

Lipn1;n2.DmU/ WD sup
m1¤m2

kDmU.�x ; m1; �y/ �DmU.�x ; m2; �y/kn1;n2
d2.m1; m2/

and

Lipn1;n2;n3.D
2
mmU/ WD sup

m1¤m2

kD2
mmU.�x ; m1; �y ; �y0/�D

2
mmU.�x ; m2; �y ; �y0/kn1;n2;n3

d2.m1; m2/
:

Concerning the Lipschitz continuity with respect to one of the entries xi , we will use the
following notation:

Lipxin1;:::;ni�1;niC1;:::;nk .U /

WD sup
m;x1

i
¤x2

i

kU.�x1 ; : : : ; �xi�1 ; x
1
i ; �xiC1 ; : : : ; �xk ; m/

� U.�x1 ; : : : ; �xi�1 ; x
2
i ; �xiC1 ; : : : ; �xk ; m/kn1;:::;ni�1;niC1;:::;nk

jx1i � x
2
i j

:

Further norms. In order to estimate the y-dependence of a derivative with respect to the
measure of a map U D U.x; m/, we systematically proceed by duality method, testing
this derivative against distributions. This leads to the following norms, for n; k 2 N:



ıUım






nIk

WD sup
m2P2

nX
rD0

sup
x2Rd ; �2C0c
k�k�kD1

�X
j˛jDr

ˇ̌̌̌
@˛x
ıU

ım
.x;m/.�/

ˇ̌̌̌2�1=2

D sup
m2P2

nX
rD0

sup
x2Rd ; �2C0c ;
k�k�kD1

ˇ̌̌̌
Dr
x

ıU

ım
.x;m/.�/

ˇ̌̌̌
;





ı2Uım2





nIk;k0

WD sup
m2P2

nX
rD1

sup
x2Rd ; �;�02C0c ;
k�k�kDk�

0k�k0D1

ˇ̌̌̌
Dr
x

ı2U

ım2
.x;m/.�; �0/

ˇ̌̌̌
:
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We point out the subtle difference in notation between, say, jjj ıU
ım
jjj
n;k

(which involves a

supremum over y) and k ıU
ım
knIk (in which the dependence is estimated by duality). The

same difference holds between jjj ı
2U
ım2
jjj
n;k;k

and k ı
2U
ım2
knIk;k .

For maps U D U.x1; x2; m/ depending on two (or more) space variables, we use the
transparent notation k � kn1;n2Ik (and, if n1 D 0 (say), we simply set k � kn2;k D k � k0;n2Ik).
Finally, we use similar notation for the Lipschitz norms, setting, for instance for a map
U D U.x;m/,

LipnIk;k0
�
ı2U

ım2

�
WD sup

m1¤m2

d2.m1; m2/�1

�

nX
rD0

sup
x2Rd ; �;�02C0c
k�k�kDk�

0k�k0D1

ˇ̌̌̌
Dr
x

ı2U

ım2
.x;m2/.�; �

0/ �Dr
x

ı2U

ım2
.x;m1/.�; �

0/

ˇ̌̌̌
:

Some comments about the norms we have just introduced are now in order. We discuss
the norm k � knIk to fix ideas. With these notations, if U D U.x;m/ is smooth enough, we
have 



ıUım.�; m/.�/






n

�





ıUım





nIk

k�k�k

for every fixed m 2 P2. Inequalities of this type are used throughout the text. Next we
note that the norms jjj � jjjn;k and k � knIk are equivalent if we know a priori that ıU

ım
D

ıU
ım
.x; m; y/ is in C n;k

b
. In general we do not have this information, but only know that

ıU
ım

is (at least) continuous. In this case, we use the following result:

Lemma 2.1. Let k 2 N with k � 1 and u 2 C 0 be such that

� WD sup
�2C0c ; k�k�kD1

ˆ
Rd
u.y/�.y/ dy < C1: (15)

Then u 2 C k�1
b

with kukk�1 � Ck� .where Ck depends on d and k/ and, for any ˇ 2Nd

with jˇj D k � 1, @ˇu is � -Lipschitz continuous.

Remark 2.2. In particular, if ıU
ım
2 C

n;0
b

and k ıU
ım
knIk is finite for some n; k 2 N with

k � 1, then ıU
ım
2 C

n;k�1
b

andˇ̌̌̌̌̌̌̌ ˇ̌̌̌
ıU

ım

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
n;k�1

� Cn;k





ıUım





nIk

for some constant Cn;k depending in addition on dimension only. Moreover, the derivat-
ives of the form @˛x@

ˇ
y
ıU
ım

for j˛j � n and ˇ � k � 1 are Lipschitz continuous with respect
to y and thus—by (13)—also with respect to m, with a Lipschitz constant bounded by
k
ıU
ım
knIk .

Proof of Lemma 2.1. For k D 1, approximating Dirac masses by continuous maps with
compact support, for any x; y 2 Rd we have

ju.x/j � �kıxk�1 D � and ju.x/ � u.y/j � �kıx � ıyk�1 D � jx � yj:
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This proves the claim for k D 1. Let now assume that (15) holds for k D 2. Then u can
be extended to an element T in .C�2/0 with norm kT k � � such that T .�/ D

´
ud� for

any Radon measure �. As, for any v 2 Rd ,

lim
h!0; v0!v

h�1.ıxChv0 � ıx/ D �@vıx in C�2;

we infer that
lim

h!0; v0!v
h�1.u.x C hv0/ � u.x// D �T .@vıx/:

The map .x; v/ 7! @vıx being continuous in C�2 with k@vıxk�2 � jvj, u is in C 1 with
kDuk � � . Then, arguing as for k D 1, one can easily check that Du is � -Lipschitz
continuous. So the result also holds for k D 2. The proof can be completed in the same
way for any k by induction.

Finally, note that the norm jjj � jjjn;k will only be used to state the assumptions on the
dataH;H 0; : : : ; as it is more standard. On the other hand, the “equivalent” norm k � knIk ,
being the natural one for the methods used to get the estimates, will be extensively used
throughout the paper.

2.3. Assumptions on the data

We state here the assumptions needed on a, H and G for the existence of a classical
solution to the second order master equation (1) and to the master equation (5) for the
MFG problem with a major player. These assumptions are in force throughout the paper.
Note that they are common to both problems (1) and (5) since both require the same kind
of estimates on the first order master equation (see Section 5.2).

We assume that the map a W Œ0; T � �Rd ! Rd�d can be written as a D ��T where
� W Œ0; T � � Rd ! Rd (M 2 N, M � 1) is bounded in C n

b
with respect to the space

variable, uniformly with respect to the time variable, for some n � 4. We also assume that
the following uniform ellipticity condition holds:

a.t; x/ � C�10 Id ; kDak1 � C0; (16)

for some C0 > 0, where Id is the d � d identity matrix.
We assume that the mapH WRd0 �Rd �Rd �P2!R satisfies the growth condition

sup
x02Rd0 ; x2Rd ;m2P2

jDxH.x0; x; p;m/j � C0.1C jpj

 / 8p 2 Rd ; (17)

for some 
 > 1. We also suppose that, for any R > 0, the quantities

jjjH.�x0 ; �x ; �p; m/jjj3;n;nC1;

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
ıH

ım
.�x0 ; �x ; �p; m; �y/

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
2;n�1;n;k

;ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
ı2H

ım2
.�x0 ; �x ; �p; m; �y ; �y0/

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
1;n�2;n�1;k�1;k�1

;

and Lip1;n�3;n�2;k�1;k�1.
ı2H
ım2

/ are bounded for jpj � R, m 2 P2 and x0 2 Rd0 , for any
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k 2 ¹2; : : : ; n � 1º. Note that we could also allow for a time dependence for H without
changing at all the arguments; we will not do so to simplify the notation a little. For the
second order master equation, the HamiltonianH actually does not depend on x0, but this
dependence is important to handle the MFG problem with a major player.

As for the initial conditionG WRd0 �Rd �P2!R, we assume thatG is of class C 2

with respect to all variables and that the quantities

jjjG.�x0 ; �x ; m/jjj3;n;

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
ıG

ım
.�x0 ; �x ; m; �y/

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
2;n�1;k

;ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
ı2G

ım2
.�x0 ; �x ; m; �y ; �y0/

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
1;n�2;k�1;k�1

; Lip1;n�3;k�2;k�2

�
ı2G

ım2

�
.�x0 ; �x ; m; �y ; �y0/;

are bounded uniformly with respect to m 2 P2. Here again, for the second order master
equation, the terminal condition G does not depend on x0, but this dependence is needed
in the MFG problem with a major player.

Additional assumptions for the MFG problem with a major player. This problem
involves in addition a Hamiltonian H 0 W Rd0 �Rd0 � P2 ! R and a terminal condition
G0 W Rd0 �P2 ! R. We assume that the map H 0 satisfies the growth property

sup
x02Rd0 ;m2P2

�
jDx0;pH

0.x0; p;m/j C jD
2
x0;p

H 0.x0; p;m/j
�
� C0.jpj



C 1/ (18)

for some 
 > 1. We also suppose that, for any R > 0, the quantities

jjjH 0.�x0 ; �p; m/jjj3;4;

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
ıH 0

ım
.�x0 ; �p; m; �y/

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
2;3;k

;ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
ı2H 0

ım2
.�x0 ; �p; m; �y ; �y0/

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
1;2;k�1;k�1

;

and Lip0;1;k�2;k�2.
ı2H
ım2

/ are bounded for jpj � R, m 2 P2 and x0 2 Rd0 , for any
k 2 ¹2; : : : ; n � 1º.

The initial condition G0 W Rd0 � P2 ! R is assumed to be of class C 2 with respect
to the measure variable, and the quantities

jjjG0.�; m/jjj3;

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
ıG0

ım
.�; m; �/

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
2;k

;

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
ı2G0

ım2
.�x0 ; m; �y ; �y0/

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
1;k�1;k�1

;

Lip0;k�2;k�2

�
ı2G0

ım2

�
.�x0 ; m; �y ; �y0/;

are supposed to be bounded uniformly with respect to m 2 P2.
Throughout the proofs, we assume that the time horizon T is small, say T � 1. We

denote by C and CM constants which might change from line to line and which depend
only on the data of the problem, i.e., on a, H and H 0—the dependence on G and G0

being always explicitly written—and, for CM , on the additional real number M . In some
proofs, when there is no ambiguity, we drop the M dependence of CM to simplify the
expressions.



P. Cardaliaguet, M. Cirant, A. Porretta 1836

2.4. Main results

In this section we state the two main results on the short-time existence and uniqueness
of the second order master equation and the master equation with a major player. We also
state, as a corollary, the existence of solutions to the stochastic MFG system.

Let us start with the second order master equation, which reads as follows:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

�@tU.t; x;m/ � Tr..a.t; x/C a0/D2
xxU.t; x;m//CH.x;DxU.t; x;m/;m/

�

ˆ
Rd

Tr..a.t; y/C a0/D2
ymU.t; x;m; y//m.dy/

C

ˆ
Rd
DmU.t; x;m; y/ �Hp.y;DxU.t; y;m/;m/m.dy/

� 2

ˆ
Rd

TrŒa0D2
xmU.t; x;m; y/�m.dy/

�

ˆ
R2d

TrŒa0D2
mmU.t; x;m; y; y

0/�m.dy/m.dy0/ D 0 in .0; T / �Rd �P2;

U.T; x;m/ D G.x;m/ in Rd �P2;

(19)

where a0 is a symmetric positive definite d � d matrix (independent of time and space).
We say that U W Œ0; T � �Rd � P2 ! R is a classical solution of (19) if U and its deriv-
atives involved in (19) exist, are continuous in all variables and are bounded, and if (19)
holds.

Our first main result is the following short time existence theorem:

Theorem 2.3. Under the assumptions of Section 2.3, there exists a time T > 0 such that
the second order master equation (19) has a unique classical solution U on Œ0; T �.

The proof of Theorem 2.3 is given at the end of Section 3.2, after some preliminary
steps. We shall not prove here the uniqueness of the solution to (19), which holds under
our assumptions; this point has often been discussed in the literature (see [10, 12] for
instance). The reader may notice that we cannot handle a second order master equation
with a space dependent matrix a0 D a0.t; x/. The reason is that we do not know how to
extend the estimate in Proposition 3.1 to the space dependent case.

An easy consequence of the existence of a solution to the master equation is the well-
posedness of the stochastic MFG system8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

du.t; x/ D Œ�Tr..aC a0/.t; x/D2u.t; x//CH.x;Du.t; x/;m.t//

�
p
2Tr.�0Dv.t; x//� dt C v.t; x/ � dWt in .0; T / �Rd ;

dm.t; x/ D
hX
i;j

Dij ...aij /C a
0
ij /.t; x/m.t; x//

C div.m.t; x/Hp.x;Du.t; x/;m.t///
i
dt

� div.m.t; x/
p
2 �0dWt / in .0; T / �Rd ;

u.T; x/ D G.x;m.T //; m.0/ D m0 in Rd :

(20)

We say that .u;m;v/ is a classical solution to (20) if u,m and v are random with values in
C 0.Œ0; T �; C 2

b
/, C 0.Œ0; T �;P2/ and C 0.Œ0; T �; C 1

b
.Rd ;Rd // respectively and adapted to
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the filtration generated by W and if the backward HJ equation is satisfied in the classical
sense:

u.t; x/ D G.x;m.T // �

ˆ T

t

�
�Tr..aC a0/.s; x/D2u.s; x//CH.x;Du.s; x/;m.s//

�
p
2Tr.�0Dv.s; x//

�
ds �

ˆ T

t

v.s; x/ � dWs

while the Fokker–Planck equation is satisfied in the sense of distributions: for any � 2
C1c .Œ0; T / �Rd /,

0 D

ˆ
Rd
�.0; x/m0.dx/

C

ˆ T

0

ˆ
Rd

�
Tr..aCa0/.s; x/D2�.s; x//�D�.s; x/�Hp.x;Du.s; x/;m.s//

�
m.s; dx/ ds

C
p
2

ˆ T

0

ˆ
Rd
.�0/TD�.s; x/m.s; dx/�dWs :

Theorem 2.4. Under the assumptions of Theorem 2.3, there exists a time T > 0 for which
the stochastic MFG system (20) has a classical solution .u;m; v/ in Œ0; T �. Moreover,

v.t; x/ D
p
2

ˆ
Rd
.�0/TDmU.t; x;m.t/; y/m.t; dy/; (21)

where U is the solution to the second order master equation (19).

The proof of Theorem 2.4 is given in Section 3.3.
Then, we investigate the well-posedness of the master equation associated with the

MFG problem with a major player. Here the unknown .U 0;U / solves the system of master
equations8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

�@tU
0.t; x0; m/ ��x0U

0.t; x0; m/CH
0.x0;Dx0U

0.t; x0; m/;m/

�

ˆ
Rd

divy DmU 0.t; x0; m; y/m.dy/

C

ˆ
Rd
DmU

0.t; x0; m; y/ �Hp.x0; y;DxU.t; x0; y;m/;m/m.dy/ D 0

in .0; T / �Rd0 �P2;

�@tU.t; x0; x;m/ ��xU.t; x0; x;m/ ��x0U.t; x0; x;m/

CH.x0; x;DxU.t; x0; x;m/;m/

�

ˆ
Rd

divy DmU.t; x0; x;m; y/m.dy/CDx0U �H
0
p .x0;Dx0U

0.t; x0; m/;m/

C

ˆ
Rd
DmU.t; x0; x;m; y/ �Hp.x0; y;DxU.t; x0; y;m/;m/m.dy/ D 0

in .0; T / �Rd0 �Rd �P2;

U 0.T; x0; m/ D G
0.x0; m/ in Rd0 �P2;

U.T; x0; x;m/ D G.x0; x;m/ in Rd0 �Rd �P2:
(22)
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Let U 0 W Œ0; T � �Rd0 �P2! R and U W Œ0; T � �Rd0 �Rd �P2! R. We say that
.U 0; U / is a classical solution of (22) if U 0 and U and their derivatives involved in (22)
exist, are continuous in all variables and are bounded, and if (22) holds. Our main result
is the following:

Theorem 2.5. Under the assumptions of Section 2.3, there exists a time T > 0 and a clas-
sical solution .U 0; U / to (22) on the time interval Œ0; T � such that Dx0U

0 and Dx0;xU
are uniformly Lipschitz continuous in the space and measure variables.

The proof of Theorem 2.5 is given in Section 4. The result can be easily extended to
non-constant diffusions. We work here with a constant diffusion to simplify the notation.

The constructions of solutions to the two master equations share a common strategy.
The key idea is to use a Trotter–Kato scheme alternating two simpler evolutive problems
on vanishing time intervals. This is commonly referred to as a splitting method; according
to this approach, the solution u of the evolution equation

ut D AuC Bu

can be built by alternating, in smaller and smaller time-steps, the evolution driven by A
and the evolution driven by B , respectively. Indeed, if A and B were generating semig-
roups etA, etB acting on a common Banach space X , then the Trotter–Kato product
formula implies

et.ACB/U D lim
n!1

.e
t
nAe

t
nB/nU:

Notice that, for this formula to hold (i.e. for this scheme to be convergent), it is crucial to
have estimates of the form

ke�AU kX � .1C c�/kU kX ; ke
�BU kX � .1C c�/kU kX ;

which yield in the limit ket.ACB/U kX � e2ctkU kX . One may even allow c in the above
estimate to depend on kU kX itself; if so, one has convergence of the scheme for short
time t only, which will be the case in our settings.

The idea of using a splitting method needs to be carefully rephrased in our context.
The main point is to choose suitable pairs .A;B/ in order to decompose our master equa-
tions into simpler and efficient problems. In our settings, the second order master equation
will be obtained as the superposition of the first order master equation (6) and a linear
second order master equation (7). The system of master equations with a major player
will be seen as the superposition of a system of first order master equations (8) (where
the major player is “frozen”), and a system of HJ equations (9) (where the population of
minor players is “frozen”).

We do not need to prove that the two separate problems driven byA;B actually gener-
ate semigroups. However, we need to identify a suitable norm, or some other meaningful
quantity, which is not deteriorated more than linearly in time by both the alternating prob-
lems. This is the main technical issue in our proofs. Indeed, the quantities that we estimate,
and the corresponding norms that we use, turn out to be quite involved in the two settings
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that we address, and especially for the major player problem. We postpone the details on
the technicalities to the next two sections.

3. The second order master equation

This section is devoted to the proof of Theorem 2.3. The assumptions of Section 2.3 will
be in force. Following the discussion at the end of the previous section, we are going to
apply a Trotter–Kato alternating scheme using the first order master equation (problem
(6)) and the linear second order master equation (problem (7)). The key step will be to
show that both problems provide suitable estimates for the solution U in the following
norm:

sup
t2Œ0;T �

�
kU.t/knC





ıUım.t/





n�1Ik

C





ı2Uım2 .t/





n�2Ik�1;k�1

CLipn�3Ik�2;k�2

�
ı2U

ım2
.t/

��
where, we recall, the above quantities are defined in Section 2. In particular, for a function
U.t; x; m/, the first term means an estimate on n-derivatives with respect to x, while the
second and third terms yield an estimate on first and second derivatives with respect to
m, represented by ıU

ım
.t; x; y/ and ı2U

ım2
.t; x; y; y0/ respectively: in this case, n refers to

regularity in x, while k refers to regularity in y; y0.
Note that we will not only need bounds on derivatives, but also to establish some

compactness for the scheme to converge. This motivates the presence of the Lipschitz
norm in the above quantity.

Thus, the main technical issue for the proof of Theorem 2.3 will be to establish the
following estimate (for some T;C > 0 depending on the upper bound M of norms of G)

sup
t2Œ0;T �

�
kU.t/knC





ıUım.t/





n�1Ik

C





ı2Uım2 .t/





n�2Ik�1;k�1

CLipn�3Ik�2;k�2

�
ı2U

ım2
.t/

��
� kGkn C





ıGım





n�1Ik

C





ı2Gım2





n�2Ik�1;k�1

C Lipn�3Ik�2;k�2

�
ı2G

ım2

�
C CT; (23)

for both the solution of problem (6) and the solution of problem (7). The analysis of the
former, being quite technical, is postponed to Section 5.2 below. The latter is considered
in the next subsection. The bounds on the four terms appearing in (23) will be obtained
in different propositions, which will in turn require several steps (especially those for the
first order master equation). For a quick reference on each estimate on the individual terms
above, one may have a look at the table below.

kU kn and k ıU
ım
kn�1Ik k

ı2U
ım2
kn�2Ik�1;k�1 Lipn�3Ik�2;k�2.

ı2U
ım2

/

1st order master equation Prop. 5.11 Prop. 5.16 Prop. 5.18

linear 2nd order master eq. Proposition 3.1
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Finally, Lemma 3.5 shows how these estimates are chained together in the Trotter–
Kato scheme, with some additional control of Hölder/Lipschitz seminorms which is
needed for the convergence of the scheme and is obtained by interpolation.

3.1. The linear second order master equation

In this section we consider the (forward) second order linear master equation8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

@tU.t; x;m/ � TrŒa0D2
xxU.t; x;m/� �

ˆ
Rd

TrŒa0D2
ymU.t; x;m; y/�m.dy/

� 2

ˆ
Rd

TrŒa0D2
xmU.t; x;m; y/�m.dy/

�

ˆ
R2d

TrŒa0D2
mmU.t; x;m; y; y

0/�m.dy/m.dy0/ D 0

in .0; T / �Rd �P2;

U.0; x;m/ D G.x;m/ in Rd �P2:

(24)

Let � be the fundamental solution of the equation associated with a0:´
@t�.t; x/ � TrŒa0D2

xx�.t; x/� D 0 in .0;C1/ �Rd ;

�.0; x/ D ı0.x/ in Rd ;

and, given a map G W Rd �P2 ! R of class C 2 in .x;m/, let us set

U.t; x;m/ D

ˆ
Rd
G.�; .id � x C �/]m/�.t; x � �/ d� 8.t; x;m/ 2 Œ0; T � �Rd �P2:

Proposition 3.1. The map U is a classical solution to the second order equation (24).
Moreover, there exists a constant C > 0 .depending only on n, k and a0/ such that

sup
t2Œ0;T �

kU.t/kn � .1C CT / sup
m2P2

kGkn

and, for k 2 ¹2; : : : ; n � 1º,

sup
t2Œ0;T �





ıUım.t/





n�1Ik

� .1C CT /





ıGım





n�1Ik

;

sup
t2Œ0;T �





ı2Uım2 .t/





n�2Ik�1;k�1

� .1C CT /





ı2Gım2





n�2Ik�1;k�1

sup
t2Œ0;T �

Lipn�3Ik�2;k�2

�
ı2U

ım2
.t/

�
� .1C CT /Lipn�3Ik�2;k�2

�
ı2G

ım2

�
:

Remark 3.2. If, for some constant M ,

kGkn C





ıGım





n�1Ik

C





ı2Gım2





n�2Ik�1;k�1

C Lipn�3Ik�2;k�2

�
ı2G

ım2

�
�M;
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then the above estimates can be rewritten in the form

sup
t2Œ0;T �

�
kU.t/knC





ıUım.t/





n�1Ik

C





ı2Uım2 .t/





n�2Ik�1;k�1

CLipn�3Ik�2;k�2

�
ı2U

ım2
.t/

��
� kGkn C





ıGım





n�1Ik

C





ı2Gım2





n�2Ik�1;k�1

C Lipn�3Ik�2;k�2

�
ı2G

ım2

�
C CMT;

for some constant CM depending on n, k, a0 and M .

In order to prove this proposition, we need two lemmas, the proofs of which are easy
and left to the reader.

Lemma 3.3. LetU WP2!R beL-C 1 and let � WRd !Rd be of class C 1 with bounded
derivative. Set V.m/ D U.�]m/. Then V is L-C 1 with

DmV.m; y/ D .D�.y//
TDmU.�]m;�.y//:

Lemma 3.4. Let U W P2 ! R be L-C 1 and let V.x;m/ D U..idC x/]m/. Then V is of
class C 1 with

DxV.x;m/ D

ˆ
Rd
DmU..idC x/]m; x C y/m.dy/:

Proof of Proposition 3.1. Let us first note that

U.t; x;m/ D

ˆ
Rd
G.�; .id � x C �/]m/�.t; x � �/ d�

D

ˆ
Rd
G.x � z; .id � z/]m/�.t; z/ dz:

In particular, U is C 1 in t , C 2 in x and has second order derivatives which are C 2 in the
space variables with, in view of Lemmas 3.3 and 3.4,

DxU.t; x;m/ D

ˆ
Rd
DxG.x � y; .id � y/]m/�.t; y/ dy;

D2
xU.t; x;m/ D

ˆ
Rd
D2
xG.x � y; .id � y/]m/�.t; y/ dy;

DmU.t; x;m; y/ D

ˆ
Rd
DmG.x � z; .id � z/]m; y � z/�.t; z/ dz;

D2
mU.t; x;m; y; y

0/ D

ˆ
Rd
D2
mG.x � z; .id � z/]m; y � z; y

0
� z/�.t; z/ dz:

This easily implies the estimates on U and its derivatives.
On the other hand, since .id � w/]Œ.id � z/]m� D .id � z � w/]m, we have, for any

t 2 .0; T / and h 2 .0; T � t /,
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ˆ
Rd
U.t; x � z; .id � z/]m/�.h; z/ dz

D

ˆ
Rd

ˆ
Rd
G.x � z � w; .id � z � w/]m/�.h; z/�.t; w/ dw dz

D

ˆ
Rd
G.x � u; .id � u/]m/

�ˆ
Rd
�.h; u � w/�.t; w/ dw

�
du

D

ˆ
Rd
G.x � u; .id � u/]m/�.t C h; u/ du D U.t C h; x;m/:

So, taking the derivative with respect to h > 0 in the above expression we get

@tU.t C h; x;m/ D

ˆ
Rd
U.t; x � z; .id � z/]m/@t�.h; z/ dz:

Integrating by parts and using Lemmas 3.3 and 3.4 yields

@tU.t C h; x;m/ D

ˆ
Rd
U.t; x � z; .id � z/]m/

�
TrŒa0D2

zz�.h; z/�
�
dz

D

ˆ
Rd

�
TrŒa0D2

xxU.t; x � z; .id � z/]m/�

C2

ˆ
Rd

TrŒa0D2
xmU.t; x�z; .id�z/]m; y�z/�m.dy/

C

ˆ
Rd

TrŒa0D2
ymU.t; x�z; .id�z/]m; y�z/�m.dy/

C

ˆ
Rd

ˆ
Rd

TrŒa0D2
mmU.t; x�z; .id�z/]m; y�z; y

0
�z/�m.dy/m.dy0/

�
�.h; z/ dz:

Letting h! 0 we obtain

@tU.t; x;m/ D TrŒa0D2
xxU.t; x;m/�C 2

ˆ
Rd

TrŒa0D2
xmU.t; x;m; y/�m.dy/

C

ˆ
Rd

TrŒa0D2
ymU.t; x;m; y/�m.dy/

C

ˆ
Rd

ˆ
Rd

TrŒa0D2
mmU.t; x;m; y; y

0/�m.dy/m.dy0/:

So U is a solution to (24).

3.2. Existence of a solution

3.2.1. Definition of the semi-discrete scheme. Let us fix some horizon T > 0 (small) and
a step size � WD T=.2N / (whereN 2N,N � 1). We set tk D kT=.2N /, k 2 ¹0; 2N º. We
define by backward induction a continuous map UN D UN .t; x;m/, with UN W Œ0; T � �
Rd �P2 ! R, as follows: we require that

(i) UN satisfies the terminal condition

UN .T; x;m/ D G.x;m/ 8.x;m/ 2 Rd �P2;
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(ii) UN solves the backward linear second order master equation

�@tU
N
� 2TrŒa0D2

xxU
N � � 2

ˆ
Rd

TrŒa0D2
ymU

N � m.dy/

� 4

ˆ
Rd

TrŒa0D2
xmU

N � m.dy/ � 2

ˆ
R2d

TrŒa0D2
mmU

N � m.dy/m.dy0/ D 0

(25)

on time intervals of the form .t2jC1; t2jC2/ for j D 0; : : : ; N � 1,

(iii) UN solves the first order master equation

�@tU
N
� 2Tr.aD2

xxU
N /C 2H.x;DxU

N ; m/ � 2

ˆ
Rd

Tr.aD2
ymU

N /m.dy/

C 2

ˆ
Rd
DmU

N
�Hp.y;DxU

N ; m/m.dy/ D 0 (26)

on time intervals of the form .t2j ; t2jC1/, for j D 0; : : : ; N � 1.

Our aim is to show that if the time horizon is short enough,UN converges to a solution
of the second order master equation as N !C1.

3.2.2. Estimates of UN . For n � 4 and k 2 ¹3; : : : ; n � 1º, let

M WD kGkn C





ıGım





n�1Ik

C





ı2Gım2





n�2Ik�1;k�1

C Lipn�3Ik�2;k�2

�
ı2G

ım2

�
C 1: (27)

Lemma 3.5. There exists TM > 0 such that, for any T 2 .0; TM � and N � 1, we have

sup
t2Œ0;T �

�
kUN .t/kn C





ıUNım .t/






n�1Ik

C





ı2UNım2
.t/






n�2Ik�1;k�1

C Lipn�3Ik�2;k�2

�
ı2UN

ım2
.t/

��
�M:

Moreover:

� The maps UN , DxUN , D2
xxU

N are globally Lipschitz continuous in .t; x; m/, uni-
formly with respect to N .

� The maps DmU , DmDxUN , DyDmUN are Hölder continuous in .t; x; m; y/, uni-
formly with respect to N , in any set of the form

¹.t; x;m; y/ 2 Œ0; T � �Rd �P2 �Rd WM2.m/ � R; jyj � Rº; (28)

where M2.m/ D .
´

Rd jyj
2m.dy//1=2.

� The map D2
mU

N is Hölder continuous in .t; x;m; y; y0/, uniformly with respect to N ,
in any set of the form

¹.t; x;m; y; y0/ 2 Œ0; T � �Rd �P2 �Rd �Rd WM2.m/ � R; jyj; jy
0
j � Rº: (29)



P. Cardaliaguet, M. Cirant, A. Porretta 1844

Proof. In order to prove the estimate, we use Proposition 3.1 as well as Propositions 5.11,
5.16, 5.18 (in Section 5.2 below). Let TM be the smallest positive constant associated with
these propositions. Let also CM be the largest constant in Propositions 3.1, 5.11, 5.16 and
5.18. We assume without loss of generality that TM < 1=.2CM / and we fix T 2 .0; TM �.

We define the sequence .�k/2NkD0 by

�2j DM � 1C CM
T

N
.N � j /; j D 0; : : : ; N:

As TM � 1=.2CM /, we have �2j �M for any T 2 .0; TM � and N � 1.
Now, using Propositions 5.11, 5.16, 5.18 and 3.1 one checks by backward induction

that

sup
t2Œt2j ;t2jC2�

²
kUN .t/kn C





ıUNım .t/






n�1Ik

C





ı2UNım2
.t/






n�2Ik�1;k�1

C Lipn�3Ik�2;k�2

�
ı2UN

ım2
.t/

�³
� �2j �M 8j D 0; : : : ; N � 1: (30)

Indeed, assume that this is true for j C 1; Proposition 3.1 (see also Remark 3.2), applied in
the interval Œt2jC1; t2jC2� and with the terminal condition UN .t2jC2; �; �/ which satisfies
(30) by assumption, implies that

sup
t2Œt2jC1;t2jC2�

²
kUN .t/kn C





ıUNım .t/






n�1Ik

C





ı2UNım2
.t/






n�2Ik�1;k�1

C Lipn�3Ik�2;k�2

�
ı2UN

ım2
.t/

�³
� �2jC2 C

CMT

2N
:

Then using Propositions 5.11, 5.16, 5.18 for the interval Œt2j ; t2jC1� and the terminal
condition UN .t2jC1; �; �/ for which (30) now holds, one gets

sup
t2Œt2j ;t2jC1�

²
kUN .t/kn C





ıUNım .t/






n�1Ik

C





ı2UNım2
.t/






n�2Ik�1;k�1

C Lipn�3Ik�2;k�2

�
ı2UN

ım2
.t/

�³
� �2jC2 C

CMT

N
D �2j ;

so (30) holds for j . Since the first step (j D N � 1) can be proved similarly using the
very definition ofM in (27), we can conclude that (30) holds for every j D 0; : : : ;N � 1.

We now prove the second part of the lemma. As UN solves (25) on the time intervals
.t2jC1; t2jC2/ and (26) on .t2j ; t2jC1/, we obtain directly, by the space estimates proved
above,

sup
t;m
k@tU.t; �; m/kn�2 � CM ; (31)

where CM does not depend on N .
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Let now l 2 Nd with jl j � 2. By (31) and the fact that kUN kn is bounded for n > jl j,
DlUN is uniformly Lipschitz continuous in t and x. Moreover, since k ıU

N

ım
kn�1Ik is

bounded (for k� 1),DlUN is uniformly Lipschitz continuous inm as well by Remark 2.2
since jl j � n � 1.

Next we prove the uniform continuity of Dl
xD

r
yDmU

N for jl j; jr j � 1. First we

recall that k ıU
N

ım
kn�1Ik is bounded, so that kDmUN kn�1Ik�1 is bounded, with n � 1

� 2 and k � 1 � 2. Therefore Dl
xD

r
yDmU

N is uniformly Lipschitz continuous in

.x; y/ (for y, this is Remark 2.2). Second, recall that k ı
2UN

ım2
kn�2Ik�1;k�1 is bounded,

so that k ı
ım
DmU

N kn�2Ik�2;k�1 is bounded as well, with n � 3 and k � 3; therefore
Dl
xD

r
yDmU

N is uniformly Lipschitz continuous in m. As we have already proved that
UN is uniformly Lipschitz continuous in t , we can deduce from Lemma B.4 below
applied to UN that DmUN is also Hölder continuous in time in any set of the form (28).

Finally, we considerD2
mmU

N DD2
mmU

N .t; x;m; y; y0/. Since k ı
2UN

ım2
kn�2Ik�1;k�1

and Lipn�3Ik�2;k�2.
ı2UN

ım2
/ are bounded, with n � 4 and k � 3, D2

mmU
N is uniformly

Lipschitz continuous in .x; m; y; y0/. Applying Lemma B.4 to the map DmUN , which
is Hölder continuous in time in sets of the form (28) (as we have seen above) and such
that D2

mmU is uniformly Lipschitz in .m; y; y0/, we deduce that D2
mmU

N is also Hölder
continuous in time, uniformly inN , in sets of the form (29). So we conclude thatD2

mmU
N

is uniformly Hölder continuous in all variables.

3.2.3. Proof of Theorem 2.3. In view of Lemma 3.5, the maps UN , DxUN , D2
xxU

N ,
DmU

N , DmDxUN , DyDmUN and D2
mU

N are locally Hölder continuous in all vari-
ables, uniformly with respect to N . So, by a version of the Arzelà–Ascoli theorem (see
Lemma B.5 below), there is a subsequence denoted in the same way such that UN ,
DxU

N , D2
xxU

N , DmUN , DmDxUN , DyDmUN and D2
mU

N converge pointwise in
m and locally uniformly in time-space to some maps U , DxU , D2

xxU , V , DxV , DyV
and W . Moreover, using the integral formula (10), it is easy to check that V D DmU and
W D D2

mU .
By the equation satisfied by UN we have, for any 0 � s < t � T ,

UN .t; x;m/ � UN .s; x;m/

D �

N�1X
kD0

ˆ t2kC2

t2kC1

2

²
TrŒa0D2

xxU
N �C

ˆ
Rd

TrŒa0D2
ymU

N � m.dy/

C 2

ˆ
Rd

TrŒa0D2
xmU

N � m.dy/C

ˆ
R2d

TrŒa0D2
mmU

N � m.dy/m.dy0/

³
1Œs;t�.�/ d�

�

N�1X
kD0

ˆ t2kC1

t2k

2

²
Tr.aD2

xxU
N /�H.x;DxU

N ; m/

C

ˆ
Rd

Tr.aD2
ymU

N / m.dy/�

ˆ
Rd
DmU

N
�Hp.y;DxU

N ; m/m.dy/

³
1Œs;t�.�/ d�:
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Since, as N tends to infinity, the maps

t 7!

N�1X
kD0

1Œt2kC1;t2kC2�.t/ and t 7!

N�1X
kD0

1Œt2k ;t2kC1�.t/

weakly converge to the constant 1=2 and since the space integrals in the above equation
converge pointwise to the corresponding quantities for the limit U , by the dominated
convergence theorem we obtain

U.t; x;m/ � U.s; x;m/

D �

ˆ t

s

�
TrŒa0D2

xxU �C

ˆ
Rd

TrŒa0D2
ymU � dm

C 2

ˆ
Rd

TrŒa0D2
xmU � dmC

ˆ
R2d

TrŒa0D2
mmU � dm˝ dm

C Tr.aD2
xxU/ �H.x;DxU;m/

C

ˆ
Rd

Tr.aD2
ymU/ dm �

ˆ
Rd
DmU �Hp.y;DxU;m/ dm

�
d�;

so that U is a classical solution to (19).

3.3. Existence of the solution to the stochastic MFG system

This section is devoted to the (short) proof of Theorem 2.4.

Proof of Theorem 2.4. Let m be the solution to the stochastic McKean–Vlasov equation8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

dm.t; x/ D
hX
i;j

Dij ..ai;j C a
0
i;j /.t; x/m.t; x//

C div.m.t; x/Hp.x;DU.t; x;m.t//;m.t///
i
dt

� div.m.t; x/
p
2 �0dWt / in .0; T / �Rd ;

m.0; dx/ D m0 in Rd :

(32)

Existence of a solution for this system can be obtained, for instance, as the mean field
limit of the SDE8̂̂<̂

:̂
dX

N;i
s D �Hp.X

N;i
s ;DxU.t; X

N;i
s ; mN

XNs
/;mN

XNs
/ ds

C
p
2 �.s; X

N;i
s / ; dB is C

p
2 �0.s; X

N;i
s / dWs

X
N;i
0 D NX

N;i
0 ;

where NXN;i0 is a family of i.i.d. r.v. of law m0 and where mN
XNs
D

1
N

PN
iD1 ıXN;is

. Indeed,

one can show that the family of laws of .mN
XNs
/ is tight in C 0.Œ0; T �;P2/ and that its limit

is a solution to (32). Uniqueness for (32) comes from the regularity of U and Gronwall’s
lemma.
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Then one can use Itô’s formula [10, Theorem A.1] (see also [12, Theorem 11.13]) to
derive that u.t; x/ WD U.t; x;m.t// solves the backward stochastic HJ equation8̂<̂

:
du.t; x/ D Œ�Tr..aC a0/.t; x/D2u.t; x//CH.x;Du.t; x/;m.t//

�
p
2Tr.�0Dv.t; x//� dt C v.t; x/ � dWt in .0; T / �Rd ;

u.T; x/ D G.x;m.T // in Rd ;

where v is given by (21). Note that, by the regularity of U , u and v have the required
regularity.

4. The master equation for MFGs with a major player

We now discuss the proof of Theorem 2.5. We recall that, throughout the whole section,
the assumptions in Section 2.3 are in force.

The idea of the proof follows a similar splitting method as we did in Section 3, by
dividing the time interval Œ0;T � into Œt2k ; t2kC1/ and Œt2kC1; t2kC2/, where tk D kT=.2N /,
k 2 ¹0; 2N º. This time we alternate the following two problems: in Œt2kC1; t2kC2/ we
solve, for a fixed x0 2 Rd0 , the first order system of master equations in Rd �P2:8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�@tU
0
� 2

ˆ
Rd

divy DmU 0.t; x0; m; y/m.dy/

C2

ˆ
Rd
DmU

0.t; x0; m; y/ �Hp.x0; y;DxU.t; x0; y;m/;m/m.dy/ D 0;

�@tU � 2�xU C 2H.x0; x;DxU;m/ � 2

ˆ
Rd

divy DmU.t; x0; x;m; y/m.dy/

C2

ˆ
Rd
DmU.t; x0; x;m; y/ �Hp.x0; y;DxU.t; x0; y;m/;m/m.dy/ D 0;

(33)

while on Œt2k ; t2kC1/ we solve for a fixed .x; m/ 2 Rd � P2 the system of HJ equations
in Rd0 : ´

.i/ �@tU 0 � 2�x0U
0
C 2H 0.x0;Dx0U

0; m/ D 0;

.ii/ �@tU � 2�x0U C 2Dx0U �H
0
p .x0;Dx0U

0.t; x0; m/;m/ D 0:
(34)

As explained at the end of Section 2, we need to introduce a suitable norm which is
preserved in the estimates of both problems. To this end, we need to treat the pair of maps
.U 0; U / simultaneously; this requires specific notation that we discuss first.

4.1. Notation for the norms

We will be dealing with pairs of maps .V 0; V / D .V 0.x0; m/; V .x0; x;m// which might
also depend on time t , not indicated here. The way we compute the norms is crucial in



P. Cardaliaguet, M. Cirant, A. Porretta 1848

order to match all the estimates. We use the following norms:



.V 0; V /


n
WD sup

m2P2

nX
rD0

sup
x02Rd0 ; x2Rd

�
jV 0.x0; m/j

2
C jDr

xV.x0; x;m/j
2
�1=2

;



ı.V 0; V /ım






nIk

WD sup
m2P2

nX
rD0

sup
x02Rd0 ; x2Rd ;
�2C0

b
; k�k�kD1

�ˇ̌̌̌
ıV 0

ım
.x0; m/.�/

ˇ̌̌̌2
C

ˇ̌̌̌
Dr
x

ıV

ım
.x0; x;m/.�/

ˇ̌̌̌2�1=2
;





ı2.V 0; V /ım2






nIk;k

WD sup
m2P2

nX
rD0

sup
x02Rd0 ; x2Rd ;

�;�02C0
b
; k�k�kDk�

0k�kD1�ˇ̌̌̌
ı2V 0

ım2
.x0; m/.�; �

0/

ˇ̌̌̌2
C

ˇ̌̌̌
Dr
x

ı2V

ım2
.x0; x;m/.�; �

0/

ˇ̌̌̌2�1=2
and

LipnIk;k

�
ı2.V 0; V /

ım2

�
WD sup

m1¤m2

d2.m1; m2/�1




 ı2

ım2

�
V 0.m2/ � V

0.m1/; V .m2/ � V.m1/
�




nIk;k

D sup
m1¤m2

d2.m1; m2/�1
nX
rD0

sup
x02Rd0 ; x2Rd ;

�;�02C0
b
; k�k�kDk�

0k�kD1�ˇ̌̌̌
ı2V 0

ım2
.x0; m2/.�; �

0/ �
ı2V 0

ım2
.x0; m1/.�; �

0/

ˇ̌̌̌2
C

ˇ̌̌̌
Dr
x

ı2V

ım2
.x0; x;m2/.�; �

0/ �Dr
x

ı2V

ım2
.x0; x;m1/.�; �

0/

ˇ̌̌̌2�1=2
:

We define in a similar way the quantities

Lipx0n .D
2
x0
V 0;D2

x0
V /; LipnIk

�
ıV 0x0
ım

;
ıVx0
ım

�
; Lipn.D

2
x0
V 0;D2

x0
U/:

Note that arguing as in Remark 2.2, control of k ı.V
0;V /
ım
knIk yields control of

k
ıV 0

ım
kn;k�1 and k ıV

ım
kn;k�1, and similarly for k ı

2.V 0;V /

ım2
knIk;k , LipnIk;k.

ı2.V 0;V /

ım2
/; : : : :



Splitting methods and short time existence for the master equations in mean field games 1849

We are going to show that the two systems (33) and (34) preserve with a linear rate
(as in (23) for the second order master equation) the following norms:

k.U 0; U /.t/kn C kDx0.U
0; U /.t/kn�1 C kD

2
x0
.U 0; U /.t/kn�2

CLipx0n�3..D
2
x0
U 0;D2

x0
U/.t//

C





ı.U 0; U /ım
.t/






n�1Ik

C





ı.U 0x0 ; Ux0/ım
.t/






n�2Ik�1

CLipx0
n�3Ik�2

��
ıU 0x0
ım

;
ıUx0
ım

�
.t/

�
C





ı2.U 0; U /ım2
.t/






n�2Ik�1;k�1

CLipx0
n�3Ik�2;k�2

��
ı2U 0

ım2
;
ı2U

ım2

�
.t/

�
CLipn�3Ik�2;k�2

��
ı2U 0

ım2
;
ı2U

ım2

�
.t/

�
CLipn�3Ik�2

��
ıU 0x0
ım

;
ıUx0
ım

�
.t/

�
:

The (technical) analysis of the system of master equations (33) is postponed to Section
5.2. We rather concentrate on system (34) in the next subsection. We stress again that
the only difference from the second order master equation problem is the derivation of
suitable bounds. Once these are given, the proof of the convergence of the Trotter–Kato
scheme is identical. Since these bounds are collected in several propositions, we give a
short guidance for the reader in the following table, where for each term in the above
defined norms, we refer to the proposition in which this term is estimated.

First order system of master eqns. System of HJ equations

k.U 0; U /kn
Proposition 5.15

Proposition 4.1
kDx0.U

0; U /kn�1

kD2x0.U
0; U /kn�2 Proposition 5.17

Lipx0n�3.D
2
x0
U 0;D2x0U/ Proposition 5.19

 ı.U 0;U /

ım




n�1Ik

Proposition 5.15

Proposition 4.2

 ı.U 0x0 ;Ux0 /
ım




n�2Ik�1

Proposition 5.17

Lipx0
n�3Ik�2

� ıU 0x0
ım

;
ıUx0
ım

�
Proposition 5.19

 ı2.U 0;U /

ım2




n�2Ik�1;k�1

Proposition 5.17
Proposition 4.3

Lipx0
n�3Ik�2;k�2

�
ı2U 0

ım2
; ı
2U
ım2

�
Proposition 5.19Lipn�3Ik�2;k�2

�
ı2U 0

ım2
; ı
2U
ım2

�
Proposition 4.4

Lipn�3Ik�2
� ıU 0x0
ım

;
ıUx0
ım

�
Proposition 4.5
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4.2. Analysis of the simple system of HJ equations

In this section we consider the system8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�@tU
0.t; x0Im/ ��x0U

0.t; x0Im/CH
0.x0;Dx0U

0.t; x0Im/;m/ D 0

in .0; T / �Rd0 ,
�@tU.t; x0I x;m/ ��x0U.t; x0I x;m/

CDx0U.t; x0I x;m/ �H
0
p .x0;Dx0U

0.t; x0; m/;m/ D 0 in .0; T / �Rd0 ;

U 0.T; x0Im/ D G
0.x0; m/ in Rd0 ; U.T; x0I x;m/ D G.x0; x;m/ in Rd0 ;

(35)

where .x; m/ 2 Rd � P2 are fixed. The main part of this subsection consists in proving
estimates on the solution .U 0; U / to (35).

4.2.1. Basic regularity of .U 0; U /. We recall that H 0 satisfies the assumptions of Sec-
tion 2.3, in particular condition (18) is in force.

Proposition 4.1. Fix M > 0 and n � 3. There are constants KM ; TM > 0, depending
on M , C0 and 
 , and a constant CM > 0 depending on

sup
jpj�KM

sup
m2P2

3X
kD0

kDk
.x0;p/

H 0.�; p;m/k1 C

3X
kD0

kDk
.x0;p/

H 0
p .�; p;m/k1;

such that if

k.G0;G/kn C kDx0.G
0;G/kn�1 C kD

2
x0
.G0;G/kn�2 C Lipx0n�3.D

2
x0
G0;D2

x0
G/ �M;

then, for any T 2 .0; TM /, we have

sup
t

�
k.U 0; U /.t/kn C kDx0.U

0; U /.t/kn�1 C kD
2
x0
.U 0; U /.t/kn�2

C Lipx0n�3.D
2
x0
.U 0; U /.t//

�
� k.G0; G/knCkDx0.G

0; G/kn�1CkD
2
x0
.G0; G/kn�2CLipx0n�3.D

2
x0
.G0; G//CCMT:

Proof. To estimate k.U 0; U /kn it suffices to apply successively Proposition A.8 with
r D 0 and l � n, and to sum over l . The argument to estimate first and higher order derivat-
ives with respect to x0 is identical: apply successively Proposition A.8 with r D 1 and l �
n� 1 (for k.Dx0U

0;Dx0U/kn�1), with r D 2 and l � n� 2 (for k.D2
x0
U 0;D2

x0
U/kn�2)

and finally with r D 3 and l � n � 3 (for the Lipschitz bound in x0 of D2
x0
.U 0; U /).

4.2.2. First order differentiability in m

Proposition 4.2. Under the assumptions of Proposition 4.1, the pair .U 0; U / is of
class C 1 with respect to m, as also are its derivatives with respect to x appearing below,
and, for any fixed .x;m; �/ 2 Rd �P2 � C

�k the derivative

.v0; v/ D

�
ıU 0

ım
.t; x0Im/.�/;

ıU

ım
.t; x0I x;m/.�/

�
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solves8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�@tv
0
��x0v

0
C
ıH 0

ım
.x0;Dx0U

0; m/.�/

CH 0
p .x0;Dx0U

0; m/ �Dx0v
0
D 0 in .0; T / �Rd0 ;

�@tv ��x0v CDx0v �H
0
p .x0;Dx0U

0; m/

CDx0U �

�
ıH 0

p

ım
.x0;Dx0U

0; m/.�/CH 0
pp.x0;Dx0U

0; m/Dx0v
0

�
D 0

in .0; T / �Rd0 ;

v0.T; x0Im/ D
ıG0

ım
.x0; m/.�/; v.T; x0; xIm/ D

ıG

ım
.x0; x;m/.�/ in Rd0 :

(36)

Suppose in addition that, for k � 2,



ı.G0; G/ım






n�1Ik

C





ı.G0x0 ; Gx0/ım






n�2Ik�1

C Lipx0
n�3Ik�2

�
ıG0x0
ım

;
ıGx0
ım

�
�M:

Then there exist TM ; CM > 0 such that, for any T 2 .0; TM /, we have

sup
t

�



ı.U 0; U /ım
.t/






n�1Ik

C





ı.U 0x0 ; Ux0/ım
.t/






n�2Ik�1

CLipx0
n�3Ik�2

�
ıU 0x0
ım

;
ıUx0
ım

�
.t/

�
�





ı.G0; G/ım






n�1Ik

C





ı.G0x0 ; Gx0/ım






n�2Ik�1

C Lipx0
n�3Ik�2

�
ıG0x0
ım

;
ıGx0
ım

�
C CMT;

where CM depends on M , r , n, k and on the regularity of H 0.

Proof. In order to show that U 0 is C 1 with respect to m, let us define

OU 0.t; x0I s;m; y/ WD U
0.t; x0; .1 � s/mC sıy/:

Then, as OH 0 WD H 0.x0; p; .1 � s/mC sıy/ and Og0 WD G0.x0; .1 � s/mC sıy/ are of
class C 1 with respect to the parameter s 2 Œ0; 1�, the map OU 0 is C 1 in s and its derivative
Ov0.t; x0Im; y/ WD .d OU

0=ds/.t; x0I 0;m; y/ solves the linearized equation8̂̂̂̂
<̂
ˆ̂̂:
�@t Ov

0
��x0 Ov

0
C
ıH 0

ım
.x0;Dx0U

0; m; y/CH 0
p .x0;Dx0U

0; m/ �Dx0 Ov
0
D 0

in .0; T / �Rd0 ;

Ov0.T; x0/ D
ıG0

ım
.x0; m; y/ in Rd0 :

By uniqueness and parabolic regularity, the solution to this equation depends continu-
ously on the parameters .m; y/. Hence Lemma B.1 states that U 0 is C 1 in m with
ıU 0

ım
.t; x0; m; y/ D Ov

0.t; x0Im; y/.
Next we consider the linear equation satisfied by U . By our previous discussion

on U 0, the vector field

.t; x0/ 7! H 0
p .x0;Dx0U

0.t; x0; m/;m/
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is C 1 with respect tom. For .s;m;y/ 2 Œ0; 1��P2 �Rd0 , the map OU.t; x0I s; x;m;y/ WD
U.t; x0; x; .1 � s/mC sıy/ solves a linear equation in which the vector field

OV .t; x0I s;m; y/ WD H
0
p .x0;Dx0U

0.t; x0I .1 � s/mC sıy/; .1 � s/mC sıy/

and the terminal condition Og.x0I x; s; m; y/ WD G.x0; x; .1 � s/m C sıy/ are C 1 in s.
Then OU is C 1 in s and its derivative Ov.t; x0Ix;m;y/ WD .d=ds/ OU.t; x0I0;x;m;y/ solves
the linear equation8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

�@t Ov ��x0 Ov CDx0 Ov �H
0
p .x0;Dx0U

0; m/

CDx0U �

�
ıHp

ım
.x0;Dx0U

0; m; y/CHpp.x0;Dx0U
0; m/Dx0 Ov

0

�
D 0

in .0; T / �Rd0 ;

Ov.T; x0I x;m; y/ D
ıG

ım
.x0; x;m; y/ in Rd0 :

As the solution to this equation depends continuously on the parameters .m; y/,
Lemma B.1 states that U is C 1 in m with ıU

ım
.t; x0; x; m; y/ D Ov.t; x0I x; m; y/. This

proves that the derivative . Ov0; Ov/ D . ıU
0

ım
; ıU
ım
/.t; x0; x;m; y/ solves (36) with � D ıy .

Hence, for any � 2C 0
b

, the pair .v0;v/D . ıU
0

ım
.t;x0Im/.�/;

ıU
ım
.t;x0Ix;m/.�// solves

a linear system of the form (116) in which the drifts

V 0.t; x0Im/ WD H 0
p .x0;Dx0U

0.t; x0; m/;m/;

V .t; x0I x;m/ WD H 0
pp.x0;Dx0U

0.t; x0; m/;m/Dx0U.t; x0I x/

are bounded of class C 1
b

and C 0;n�1
b

\ C
1;n�2
b

respectively, while the source terms

f 0.t; x0Im/ WD
ıH 0

ım
.x0;Dx0U

0; m/.�/;

f .t; x0I x;m/ WD Dx0U.t; x0I x/ �
ıH 0

p

ım
.x0;Dx0U

0; m/.�/

are in C 1
b

and C 0;n�1
b

\ C
1;n�2
b

respectively, thanks to Proposition 4.1. We then use Pro-
position A.9 successively to obtain the estimates: first with r D 0 and l � n � 1, we get�ˇ̌̌̌

ıU 0

ım
.t; x0Im/.�/

ˇ̌̌̌2
C

ˇ̌̌̌
Dl
x

ıU

ım
.t; x0I x;m/.�/

ˇ̌̌̌2�1=2
� .1C CT / sup

x0;x

�ˇ̌̌̌
ıG0

ım
.x0Im/.�/

ˇ̌̌̌2
C

ˇ̌̌̌
Dl
x

ıG

ım
.x0I x;m/.�/

ˇ̌̌̌2�1=2
C CT:

Then by taking the supremum over k�k�k D 1;x0; x and summing over l � n� 1 we find
the estimate for k ı.U

0;U /
ım

kn�1Ik . An analogous application of Proposition A.9 with r D 1

and l � n � 2 provides the bound for k
ı.U 0x0

;Ux0 /

ım
kn�2Ik�1, while the Lipschitz estimate

in x0 for .
ıU 0x0
ım

;
ıUx0
ım

/ is obtained similarly with r D 2 and l � n � 3.
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4.2.3. Second order differentiability with respect to m

Proposition 4.3. Under the assumptions of Proposition 4.2, k � 3, the pair .U 0; U /
.together with its derivatives with respect to x/ is of class C 2 with respect to m and, for
any fixed .x;m; �; �0/ 2 Rd �P2 � C

�.k�1/ � C�.k�1/ the derivative

.w0; w/ D

�
ı2U 0

ım2
.t; x0Im/.�; �

0/;
ı2U

ım2
.t; x0I x;m/.�; �

0/

�
solves8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

�@tw
0
��x0w

0
CH 0

p .x0;Dx0U
0; m/ �Dx0w

0
C
ı2H 0

ım2
.x0;Dx0U

0; m/.�; �0/

CH 0
pp.x0;Dx0U

0; m/Dx0v
0
�Dx0.v

0/0 C
ıH 0

p

ım
.x0;Dx0U

0; m/.�/ �Dx0.v
0/0

C
ıH 0

p

ım
.x0;Dx0U

0; m/.�0/ �Dx0v
0
D 0 in .0; T / �Rd0 ;

�@tw ��x0w CH
0
p .x0;Dx0U

0; m/ �Dx0w

CDx0v �

�
ıH 0

p

ım
.x0;Dx0U

0; m/.�0/CH 0
pp.x0;Dx0U

0; m/Dx0.v
0/0
�

CDx0v
0
�

�
ıH 0

p

ım
.x0;Dx0U

0; m/.�/CH 0
pp.x0;Dx0U

0; m/Dx0v
0

�
CDx0U �

�
ıH 0

pp

ım
.x0;Dx0U

0; m/.�/Dx0.v
0/0 C

ı2H 0
p

ım2
.x0;Dx0U

0; m/.�; �0/

CH 0
ppp.x0;Dx0U

0; m/Dx0v
0Dx0.v

0/0 C
ıH 0

pp

ım
.x0;Dx0U

0; m/.�0/Dx0v
0

CH 0
pp.x0;Dx0U

0; m/Dx0w
0

�
D 0 in .0; T / �Rd0 ;

w0.T; x0Im/ D
ı2G0

ım2
.x0; m/.�; �

0/; w.T; x0I x;m/ D
ı2G

ım2
.x0; x;m/.�; �

0/ in Rd0 ;

(37)
where .v0; v/; ..v0/0; v0/ are the solutions to (36) associated with � and �0 respectively.
Moreover, if



ı2.G0; G/ım2






n�2Ik�1;k�1

C Lipx0
n�3Ik�2;k�2

�
ı2G0

ım2
;
ı2G

ım2

�
�M;

then there exist TM ; CM > 0 such that, for any T 2 .0; TM /,

sup
t

�



ı2.U 0; U /ım2
.t/






n�2Ik�1;k�1

C Lipx0
n�3Ik�2;k�2

�
ı2U 0

ım2
;
ı2U

ım2

�
.t/

�
�





ı2.G0; G/ım2






n�2Ik�1;k�1

C Lipx0
n�3Ik�2;k�2

�
ı2G0

ım2
;
ı2G

ım2

�
C CMT:

Proof. The differentiability of ıU
0

ım
and of ıU

ım
and the representation formula (37) can be

established as for U 0 and U in Proposition 4.2. To prove the estimate, we use Proposition
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A.9 with

V 0.t; x0Im/ WD H 0
p .x0;Dx0U

0.t; x0; m/;m/;

V .t; x0xIm/ WD H 0
pp.x0;Dx0U

0.t; x0; m/;m/Dx0U.t; x0; x/;

which are bounded of class C 1
b

and C 0;n�1
b

\C
1;n�2
b

respectively, while the source terms

f 0.t; x0Im/ WD
ı2H 0

ım2
.x0;Dx0U

0; m/.�; �0/CH 0
pp.x0;Dx0U

0; m/Dx0v
0
�Dx0.v

0/0

C
ıH 0

p

ım
.x0;Dx0U

0; m/.�/ �Dx0.v
0/0 C

ıH 0
p

ım
.x0;Dx0U

0; m/.�0/ �Dx0v
0

and

f .t; x0; xIm/ WD Dx0v �

�
ıH 0

p

ım
.x0;Dx0U

0; m/.�0/CH 0
pp.x0;Dx0U

0; m/Dx0.v
0/0
�

CDx0v
0
�

�
ıH 0

p

ım
.x0;Dx0U

0; m/.�/CH 0
pp.x0;Dx0U

0; m/Dx0v
0

�
CDx0U �

�
ıH 0

pp

ım
.x0;Dx0U

0; m/.�/Dx0.v
0/0 C

ı2H 0
p

ım2
.x0;Dx0U

0; m/.�; �0/

CH 0
ppp.x0;Dx0U

0; m/Dx0v
0Dx0.v

0/0 C
ıH 0

pp

ım
.x0;Dx0U

0; m/.�0/Dx0v
0

�
are inC 0

b
andC 0;n�2

b
respectively, thanks to Propositions 4.1 and 4.2. By Proposition A.9,

with r D 0 and n � 2 we obtain the estimates for k ı
2.U 0;U /

ım2
kn�2Ik�1;k�1. The Lipschitz

bound in x0 of . ı
2U 0

ım2
; ı
2U
ım2

/ follows analogously.

4.2.4. Lipschitz regularity of second order derivatives. We finally address the Lipschitz
regularity of second order derivatives of U 0 and U with respect to m and x0.

Proposition 4.4. Under the assumptions of Proposition 4.3 and if, in addition,

Lipn�3Ik�2;k�2

�
ı2G0

ım2
;
ı2G

ım2

�
�M;

then

sup
t

Lipn�3Ik�2;k�2

�
ı2U 0

ım2
;
ı2U

ım2

�
.t/ � Lipn�3Ik�2;k�2

�
ı2G0

ım2
;
ı2G

ım2

�
C CMT;

where the constant CM depends on the regularity of H and H 0 and on M .

Proof. Let .x;�;�0/2Rd �C�.k�2/ �C�.k�2/,m1;m2 2P2, .U 0;1;U 1/ be the solution
to (35) associated with .x; m1/, and .U 0;2; U 2/ be the solution associated with .x; m2/.
We denote by .v0;1; v1/, ..v0/0;1; .v0/1/ (resp. .v0;2; v2/, ..v0/0;2; .v0/2/) the correspond-
ing solutions to the first order linearized system (36) associated with � and �0, and by
.w0;1; w1/ (resp. .w0;2; w2/) the corresponding solution of the second order linearized
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system (37). We want to estimate the difference .z0; z/ WD .w0;2 � w0;1; w2 � w1/. We
have 8̂̂̂̂

ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�@tz
0
��x0z

0
CH 0

p .x0;Dx0U
0;1.t; x0; m

1/;m1/ �Dx0z
0
C f 0 D 0;

�@tz ��x0z CDx0z �H
0
p .x0;Dx0U

0;1; m1/

�H 0
pp.x0;Dx0U

0;1; m/Dx0U
1 �Dx0z

0 C f D 0;

z0.T / D
ı2G0

ım2
.x0; m

2/.�; �0/ �
ı2G0

ım2
.x0; m

1/.�; �0/;

z.T / D
ı2G

ım2
.x0; x;m

2/.�; �0/ �
ı2G

ım2
.x0; x;m

1/.�; �0/;

where

f 0 WD .H 0
p .x0;Dx0U

0;2; m2/ �H 0
p .x0;Dx0U

0;1; m1// �Dx0w
0;2

C
ı2H 0

ım2
.x0;Dx0U

0;2; m2/.�; �0/ �
ı2H 0

ım2
.x0;Dx0U

0;1; m1/.�; �0/

CH 0
pp.x0;Dx0U

0;2; m2/Dx0v
0;2
�Dx0.v

0/0;2

�H 0
pp.x0;Dx0U

0;1; m1/Dx0v
0;1
�Dx0.v

0/0;1

C
ıH 0

p

ım
.x0;Dx0U

0;2; m2/.�/ �Dx0.v
0/0;2 �

ıH 0
p

ım
.x0;Dx0U

0;1; m1/.�/ �Dx0.v
0/0;1

C
ıH 0

p

ım
.x0;Dx0U

0;2; m2/.�0/ �Dx0v
0;2
�
ıH 0

p

ım
.x0;Dx0U

0;1; m1/.�0/ �Dx0v
0;1

and

f WD Dx0w
2
� .H 0

p .x0;Dx0U
0;2; m2/ �H 0

p .x0;Dx0U
0;1; m1//

CDx0v
2
�

�
ıH 0

p

ım
.x0;Dx0U

0;2; m2/.�0/CH 0
pp.x0;Dx0U

0;2; m2/Dx0.v
0/0;2

�
�Dx0v

1
�

�
ıH 0

p

ım
.x0;Dx0U

0;1; m1/.�0/CH 0
pp.x0;Dx0U

0;1; m1/Dx0.v
0/0;1

�
CDx0.v

0/2 �

�
ıH 0

p

ım
.x0;Dx0U

0;2; m2/.�/CH 0
pp.x0;Dx0U

0;2; m2/Dx0v
0;2

�
�Dx0.v

0/1 �

�
ıH 0

p

ım
.x0;Dx0U

0;1; m1/.�/CH 0
pp.x0;Dx0U

0;1; m1/Dx0v
0;1

�
CDx0U

2
�

�
ıH 0

pp

ım
.x0;Dx0U

0;2; m2/.�/Dx0.v
0/0;2C

ı2H 0
p

ım2
.x0;Dx0U

0;2; m2/.�; �0/

CH 0
ppp.x0;Dx0U

0;2; m2/Dx0v
0;2Dx0.v

0/0;2C
ıH 0

pp

ım
.x0;Dx0U

0;2; m2/.�0/Dx0v
0;2

�
C
�
H 0
pp.x0;Dx0U

0;2; m/Dx0U
2
�H 0

pp.x0;Dx0U
0;1; m/Dx0U

1
�
�Dx0w

0;2

�Dx0U
1
�

�
ıH 0

pp

ım
.x0;Dx0U

0;1; m1/.�/Dx0.v
0/0;1C

ı2H 0
p

ım2
.x0;Dx0U

0;1; m1/.�; �0/

CH 0
ppp.x0;Dx0U

0;1; m1/Dx0v
0;1Dx0.v

0/0;1C
ıH 0

pp

ım
.x0;Dx0U

0;1; m1/.�0/Dx0v
0;1

�
:
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Proposition 4.2 (for the representation of .v0;i ; vi /) and Proposition 4.3 (for their
Lipschitz regularity in m and in x0) imply in particular that

sup
t

�
kDx0.v

0;2
� v0;1/k1 C kDx0.v

2
� v1/k0;n�3

�
� Cd2.m1; m2/

and hence we have, using also Proposition 4.3,

sup
t
.kf 0k1 C kf k0;n�3/ � Cd2.m1; m2/:

Using Proposition A.9 (with r D 0), we obtain, for any l � n � 3,

sup
t;x0;x

.jz0.t; x0/j
2
C jDl

xz.t; x0; x/j
2/1=2

� .1C CT / sup
x0;x

�ˇ̌̌̌
ı2G0

ım2
.x0; m

2/.�; �0/ �
ı2G0

ım2
.x0; m

1/.�; �0/

ˇ̌̌̌2
C

ˇ̌̌̌
Dl
x

ı2G

ım2
.x0; x;m

2/.�; �0/ �Dl
x

ı2G

ım2
.x0; x;m

1/.�; �0/

ˇ̌̌̌2�1=2
C CT d2.m1; m2/;

which gives the claim.

We complete this section by stating similar estimates on the Lipschitz regularity of
the other second order derivatives:

Proposition 4.5. Under the assumptions of Proposition 4.3 and if, in addition,

Lipn�3Ik�2

�
ıG0x0
ım

;
ıGx0
ım

�
C Lipn�3.D

2
x0
G0;D2

x0
G/ �M;

then

sup
t

Lipn�3Ik�2

�
ıU 0x0
ım

;
ıUx0
ım

�
.t/ � Lipn�3Ik�2

�
ıG0x0
ım

;
ıGx0
ım

�
C CMT;

sup
t

Lipn�3.D
2
x0
U 0;D2

x0
U/.t/ � Lipn�3.D

2
x0
G0;D2

x0
G/C CMT;

where the constant CM depends on the regularity of H and H 0 and on M .

As the proof is completely similar to the proof of Proposition 4.4, we omit it.

4.3. Existence of a solution

4.3.1. Definition of the semi-discrete scheme. Let us fix some horizon T > 0 (small) and
a step size � WD T=.2N / (whereN 2N,N � 1). We set tk D kT=.2N /, k 2 ¹0; 2N º. We
define by backward induction the continuous maps U 0;N D U 0;N .t; x0; m/ and UN D
UN .t; x0; x;m/ as follows: we require that
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(i) .U 0;N ; UN / satisfies the terminal condition:

U 0;N .T; x0; m/ D G
0.x0; m/; UN .T; x0; x;m/ D G.x0; x;m/

for all .x0; x;m/ 2 Rd �Rd0 �P2,

(ii) for x0 2 Rd0 fixed, .U 0;N ; UN / solves the backward system of first order master
equations:8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�@tU
0
� 2

ˆ
Rd

divy DmU 0.t; x0; m; y/m.dy/

C 2

ˆ
Rd
DmU

0.t; x0; m; y/ �Hp.x0; y;DxU.t; x0; y;m/;m/m.dy/ D 0;

�@tU � 2�xU C 2H.x0; x;DxU;m/ � 2

ˆ
Rd

divy DmU.t; x0; x;m; y/m.dy/

C 2

ˆ
Rd
DmU.t; x0; x;m; y/ �Hp.x0; y;DxU.t; x0; y;m/;m/m.dy/ D 0

(38)
on time intervals of the form .t2jC1; t2jC2/ for j D 0; : : : ; N � 1,

(iii) for .x;m/2Rd �P2 fixed, .U 0;N ;UN / solves the backward system of HJ equations´
�@tU

0
� 2�x0U

0
C 2H 0.x0;Dx0U

0; m/ D 0;

�@tU � 2�x0U C 2Dx0U �H
0
p .x0;Dx0U

0.t; x0; m/;m/ D 0
(39)

on time intervals of the form .t2j ; t2jC1/ for j D 0; : : : ; N � 1.

Our aim is to show that if the time horizon is short enough, .U 0;N ; UN / converges to
a solution of the master equation for MFGs with a major player as N !C1.

4.3.2. Proof of the existence of a solution. For n � 4 and k 2 ¹3; : : : ; n � 1º, let

M WD 1C k.G0; G/kn C kDx0.G
0; G/kn�1 C kD

2
x0
.G0; G/kn�2

C Lipx0n�3.D
2
x0
G0;D2

x0
G/C





ı.G0; G/ım






n�1Ik

C





ı.G0x0 ; Gx0/ım






n�2Ik�1

C Lipx0
n�3Ik�2

�
ıG0x0
ım

;
ıGx0
ım

�
C





ı2.G0; G/ım2






n�2Ik�1;k�1

C Lipx0
n�3Ik�2;k�2

�
ı2G0

ım2
;
ı2G

ım2

�
C Lipn�3Ik�2;k�2

�
ı2G0

ım2
;
ı2G

ım2

�
C Lipn�3Ik�2

�
ıG0x0
ım

;
ıGx0
ım

�
C Lipn�3.D

2
x0
G0;D2

x0
G/:
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Lemma 4.6. There exists TM > 0, depending on the regularity ofH 0,H and onM , such
that, for any T 2 .0; TM � and N � 1, we have, for any t 2 Œ0; T �,

k.U 0; U /.t/kn C kDx0.U
0; U /.t/kn�1 C kD

2
x0
.U 0; U /.t/kn�2

C Lipx0n�3..D
2
x0
U 0;D2

x0
U/.t//C





ı.U 0; U /ım
.t/






n�1Ik

C





ı.U 0x0 ; Ux0/ım
.t/






n�2Ik�1

C Lipx0
n�3Ik�2

��
ıU 0x0
ım

;
ıUx0
ım

�
.t/

�
C





ı2.U 0; U /ım2
.t/






n�2Ik�1;k�1

C Lipx0
n�3Ik�2;k�2

��
ı2U 0

ım2
;
ı2U

ım2

�
.t/

�
C Lipn�3Ik�2;k�2

��
ı2U 0

ım2
;
ı2U

ım2

�
.t/

�
C Lipn�3Ik�2

��
ıU 0x0
ım

;
ıUx0
ım

�
.t/

�
C Lipn�3..D

2
x0
U 0;D2

x0
U/.t// �M: (40)

Moreover:

� The maps U 0;N and UN are globally Lipschitz continuous in all variables and their
first and second space derivatives are globally Hölder continuous in all variables, uni-
formly with respect to N .

� The maps DmU
0;N and DmU

N are Hölder continuous in .t; x0; m; y/ and
.t; x0; x;m; y/ respectively, uniformly with respect to N , in any set of the form

¹.t; x0; m; y/ 2 Œ0; T � �Rd0 �P2 �Rd WM2.m/ � R; jyj � Rº;

¹.t; x0; x;m; y/ 2 Œ0; T � �Rd0 �Rd �P2 �Rd WM2.m/ � R; jyj � Rº
(41)

respectively, where M2.m/ D .
´

Rd jyj
2m.dy//1=2.

Proof. We only sketch the proof, since it is exactly the same as for the second order
master equation (see Lemma 3.5). The proof of (40) can be established by collecting
the estimates in Propositions 5.15, 5.17 and 5.19 in Section 5.2 below, which provide
the bounds on intervals of the form .t2jC1; t2jC2/, and, for the intervals of the form
.t2j ; t2jC1/, by Propositions 4.1–4.4.

The Lipschitz regularity in space of U 0;N and UN and of their first and second order
space derivatives follows immediately from (40). As DmU 0;N and DmUN are bounded
according to (40), U 0;N and UN and their first and second order space derivatives are
also Lipschitz continuous in m. Finally, since U 0;N and UN satisfy (38) and (39), the
bounds in (40) show that @tU 0;N and @tUN are bounded and therefore U 0;N and UN

are also Lipschitz continuous in time. The global Hölder regularity of the first and second
space derivatives of U 0;N and UN then follows by interpolation (Lemma B.2).

The Lipschitz regularity in space and in measure of DmU 0;N and DmUN is a con-
sequence of (40), while the Hölder regularity in time in sets of the form (41) comes from
interpolation (Lemma B.4).

Proof of Theorem 2.5. The argument is exactly the same as in the proof of Theorem 2.3
and we omit it.
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4.4. Uniqueness of the solution

We finally address the uniqueness of the solution of the master equation for MFGs with a
major player:

Theorem 4.7. Let .U 0;1; U 1/ and .U 0;2; U 2/ be two classical solutions to (22) defined
on the time interval Œ0; T � and such that Dx0U

0;1 and Dx0;xU
1 are uniformly Lipschitz

continuous in the space and measure variables. Then .U 0;1; U 1/ D .U 0;2; U 2/.

Proof. Let .t0; Nx0; Nm0/ 2 Œ0; T / �Rd0 �P2 be an initial condition, Z a random variable
with law Nm0, and .X0t ; mt ; Xt / the solution to8̂̂̂<̂
ˆ̂:
dX0t D �H

0
p .X

0
t ;Dx0U

0;1.t; X0t ; mt /;mt / dt C
p
2 dW 0

t in .0; T /;
dmt D .�mt C div.mtHp.X0t ; x;DxU

1.t; X0t ; x;mt /;mt /// dt in .0; T / �Rd ;

dXt D �Hp.X
0
t ; Xt ;DxU

1.t; X0t ; Xt ; mt /;mt / dt C
p
2 dWt in .0; T /;

X0t0 D Nx0; mt0 D Nm0; Xt0 D Z;

where .W 0
t / and .Wt / are Brownian motions, .W 0

t /, .Wt / and Z being independent. As
DxU

0;1 and DxU 1 are globally Lipschitz continuous, the above system has a unique
solution. Note that mt is the conditional law of Xt given .W 0

s /s�t .
We compute the variation of U 0;1 along .t; X0t ; mt /:

dU 0;1.t; X0t ; mt / D

�
@tU

0;1
C�x0U

0;1
�H 0

p .X
0
t ;Dx0U

0;1; mt / �Dx0U
0;1

�

ˆ
Rd
DmU

0;1
�Hp.X

0
t ; y;DxU

1.t; X0t ; y;mt /;mt /mt .dy/

C

ˆ
Rd

divy DmU 0;1mt .dy/
�
dt C

p
2Dx0U

0;1
� dW 0

t ;

where, unless specified otherwise, U 0;1 and its space derivatives are computed at
.t; X0t ; mt / while DmU 0;1 and its space derivatives are computed at .t; X0t ; mt ; y/. In
view of the equation satisfied by U 0;1, we find

dU 0;1.t; X0t ; mt / D
�
H 0.X0t ;Dx0U

0;1; mt / �H
0
p .X

0
t ;Dx0U

0;1; mt / �Dx0U
0;1
�
dt

C
p
2Dx0U

0;1
� dW 0

t :

We proceed in the same way forU 0;2 and obtain, in view of the equation satisfied byU 0;2,

dU 0;2.t; X0t ; mt / D

�
H 0.X0t ;Dx0U

0;2; mt / �H
0
p .X

0
t ;Dx0U

0;1; mt / �Dx0U
0;2

C

ˆ
Rd
DmU

0;2
�
�
Hp.X

0
t ; y;DxU

2.t; X0t ; y;mt /;mt /

�Hp.X
0
t ; y;DxU

1.t; X0t ; y;mt //;mt
�
mt .dy/

�
dt C

p
2Dx0U

0;2
� dW 0

t ;
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where, unless specified otherwise, U 0;2 and its space derivatives are computed at
.t;X0t ;mt /whileDmU 0;2 and its space derivatives are computed at .t;X0t ;mt ; y/. There-
fore

d.U 0;2 � U 0;1/2 D 2.U 0;2 � U 0;1/

�
H 0.X0t ;Dx0U

0;2; mt / �H
0.X0t ;Dx0U

0;1; mt /

�H 0
p .X

0
t ;Dx0U

0;1; mt / � .Dx0U
0;2
�Dx0U

0;1/

C

ˆ
Rd
DmU

0;2
� .Hp.X

0
t ; y;DxU

2.t; X0t ; y;mt /;mt /

�Hp.X
0
t ; y;DxU

1.t; X0t ; y;mt /;mt //mt .dy/

�
dt

C 2.Dx0U
0;2
�Dx0U

0;1/2 dt C 2
p
2 .U 0;2 � U 0;1/.Dx0U

0;2
�Dx0U

0;1/ � dW 0
t :

Let us set U 0;it D U
0;i .t;X0t ;mt / (for i D 1; 2). We integrate in time between s 2 Œt0; T �

and T , take expectation and use the fact that U 0;1T D U
0;2
T D G0.X0T ; mT /:

0 D E

�
.U 0;2s � U 0;1s /2

C

ˆ T

s

2.U
0;2
t � U

0;1
t /

�
H 0.X0t ;Dx0U

0;2; mt / �H
0.X0t ;Dx0U

0;1; mt /

�H 0
p .X

0
t ;Dx0U

0;1; mt / � .Dx0U
0;2
�Dx0U

0;1/

C

ˆ
Rd
DmU

0;2
� .Hp.X

0
t ; y;DxU

2.t; X0t ; y;mt /;mt /

�Hp.X
0
t ; y;DxU

1.t; X0t ; y;mt /;mt //mt .dy/

�
dt

C 2

ˆ T

s

jDx0U
0;2
�Dx0U

0;1
j
2 dt

�
:

Thanks to the regularity of the solutions, by the Cauchy–Schwarz inequality and for any
� > 0 we have

0 � E

�
.U 0;2s � U 0;1s /2 �

ˆ T

s

�
C�.U

0;2
t � U

0;1
t /2 C �jDx0.U

0;2
� U 0;1/j2

C �

ˆ
Rd
jDx.U

2
� U 1/.t;X0t ; y;mt /j

2mt .dy/

�
dt C 2

ˆ T

s

jDx0.U
0;2
� U 0;1/j2 dt

�
:

So, for � small enough, we obtain

0 � E

�
.U 0;2s � U 0;1s /2 �

ˆ T

s

�
C�.U

0;2
t � U

0;1
t /2

C �

ˆ
Rd
jDx.U

2
� U 1/.t; X0t ; y;mt /j

2mt .dy/

�
dt C

ˆ T

s

jDx0.U
0;2
� U 0;1/j2 dt

�
:
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We argue in the same way for U it WD U
i .t; X0t ; Xt ; mt / (i D 1; 2) and find that

0 � E

�
.U 2s � U

1
s /
2
�

ˆ T

s

�
C�.U

2
t � U

1
t /
2
C �jDx0.U

0;2
� U 0;1/j2

C �

ˆ
Rd
jDx.U

2
� U 1/.t; X0t ; y;mt /j

2mt .dy/

�
dt

C

ˆ T

s

.jDx0.U
2
� U 1/j2 C jDx.U

2
� U 1/j2/ dt

�
:

We add the last two inequalities to obtain

0 � E

�
.U 0;2s � U 0;1s /2 C .U 2s � U

1
s /
2
�

ˆ T

s

�
C�..U

0;2
t � U

0;1
t /2 C .U 2t � U

1
t /
2/

C �jDx0.U
0;2
� U 0;1/j2 C 2�

ˆ
Rd
jDx.U

2
� U 1/.t; X0t ; y;mt /j

2mt .dy/

�
dt

C

ˆ T

s

�
jDx0.U

0;2
� U 0;1/j2 C jDx0.U

2
� U 1/j2 C jDx.U

2
� U 1/j2

�
dt

�
:

(42)

Note that, as mt is the conditional law of Xt given .W 0
u /u�t , we have

EŒjDx.U
2
�U 1/.t; X0t ; Xt ; mt /j

2� D E
�
EŒjDx.U

2
�U 1/.t; X0t ; Xt ; mt /j

2
j .W 0

u /u�t �
�

D E

�ˆ
Rd
jDx.U

2
�U 1/.t; X0t ; y;mt /j

2mt .dy/

�
since X0t and Xt are adapted to .W 0

u /u�t . Plugging this relation into (42) we find there-
fore, for � > 0 small enough,

0 � E

�
.U 0;2s � U 0;1s /2 C .U 2s � U

1
s /
2
�

ˆ T

s

C�..U
0;2
t � U

0;1
t /2 C .U 2t � U

1
t /
2/ dt

C
1

2

ˆ T

s

�
jDx0.U

0;2
� U 0;1/j2 C jDx0.U

2
� U 1/j2 C jDx.U

2
� U 1/j2

�
dt

�
:

We conclude by Gronwall’s inequality that, for any t 2 Œt0; T �,

EŒ.U 0;2.t;X0t ;mt /�U
0;1.t;X0t ;mt //

2
C.U 2.t;X0t ;Xt ;mt /�U

1.t;X0t ;Xtmt //
2�D 0:

For t D t0, we therefore have U 0;2.t0; Nx0; Nm0/ D U 0;1.t0; Nx0; Nm0/ and

U 1.t0; Nx0; Z; Nm0/ D U
2.t0; Nx0; Z; Nm0/ a.s.

If Nm0 has a positive density, the fact that the law of Z is Nm0 easily implies the equality
of U 1 and U 2 at any point .t0; Nx0; x; Nm0/ for x 2 Rd . We conclude by density of such
laws and by continuity of the U i ’s.
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5. Analysis of the first order master equations

In this section, we complete our program by proving regularity results for the solutions of
the various first order master equations encountered in the previous sections. We mainly
consider the first order master equation8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�@tU.t; x0; x;m/ � Tr.a.t; x/D2
xxU.t; x0; x;m//CH.x0; x;DxU.t; x0; x;m/;m/

�

ˆ
Rd

Tr.a.t; y/D2
ymU.t; x0; x;m; y//m.dy/

C

ˆ
Rd
DmU.t; x0; x;m; y/ �Hp.x0; y;DxU.t; x0; y;m/;m/m.dy/ D 0

in .0; T / �Rd �P2;

U.T; x0; x;m/ D G.x0; x;m/ in Rd �P2:

(43)
In the above equation, x0 2Rd0 is considered as a parameter. Our aim is to build a solution
to this equation and study its regularity. The method for finding a solution to (43) is well-
known, and is based on looking at its characteristics: if we set

U.t0; x0; x;m0/ WD u.t0; x/ (44)

where .u;m/ is the solution to the MFG system8̂̂̂̂
<̂̂
ˆ̂̂̂:
�@tu.t; x/�Tr.a.t; x/D2u.t; x//CH.x0; x;Du.t; x/;m.t// D 0 in .t0; T /�Rd ;

@tm.t; x/�
X
i;j

Dij .ai;j .t; x/m.t; x//�div.m.t; x/Hp.x0; x;Du.t; x/;m.t/// D 0

in .t0; T /�Rd ;

m.t0/ D m0; u.T; x/ D G.x0; x;m.T // in Rd

(45)
(here x0 2 Rd0 is again treated as a fixed parameter), then U is a solution to (43).

In order to study the Major–Minor agents’ problem, we also have to consider a linear
master equation8̂̂̂̂

<̂
ˆ̂̂:
�@tU

0
�

ˆ
Rd

Tr.a.t; y/D2
ymU

0.t; x0; m; y//m.dy/

C

ˆ
Rd
DmU

0.t; x0; m; y/ �Hp.x0; y;DxU.t; x0; y;m/;m/m.dy/ D 0;

U 0.T; x0; m/ D G
0.x0; m/ in Rd �P2;

(46)

where U is the solution to (43). In this case, we build the solution U 0 by the simple
formula

U 0.t0; x0; m0/ D G
0.x0; m.T //; (47)

where .u;m/ is also the solution to (45).
Our aim is to show that if G and G0 are regular enough, then (43) and (46) have

classical solutions, given by the above representation formulas. Moreover, we show that
the regularity of these solutions only deteriorates linearly in time. This last point is the
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key result in order to build later solutions to the second order master equation and to the
master equation for the Major–Minor agents’ problem.

To guide the reader, the plan of the section is as follows: Section 5.1 is devoted to
the study of the regularity of the MFG system (45), together with its linearizations, in
particular:

� Basic estimates on .u; m/ solving the MFG system are given in Section 5.1.1. Note
that these heavily rely on technical bounds for Hamilton–Jacobi equations, that will be
proven in Appendix A.

� Estimates on the first order linearized system are given in Section 5.1.2, and these are
again based on results in Appendix A.

� Estimates on the second order linearized system are given in Section 5.1.3, and their
proofs basically follow the scheme of the first order linearized system.

Then, we will use these regularity results to obtain bounds on solutions to the master
equations in Section 5.2:

� Basic estimates and first order differentiability of U and U 0 are shown in Section 5.2.1.
These are consequences of estimates for the MFG system (in Section 5.1.1) and its first
order linearization (in Section 5.1.2). Note that here we also need a general criterion
for differentiability of functions depending on measures (Lemma B.1).

� Second order differentiability of U and U 0 is established in Section 5.2.2. Here we
will need several bounds for the MFG system, its first and second order linearizations
(Sections 5.1.1–5.1.3).

� Finally, Section 5.2.3 is devoted to uniform continuity estimates on second order deriv-
atives, that are crucial to obtain compactness for the Trotter–Kato scheme. Again, we
rely on estimates on the linearized system (Sections 5.1.2–5.1.3).

A complete roadmap of Section 5 is given in Figure 1.

Fig. 1. A roadmap of Section 5.
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5.1. Estimates on the MFG system

Let us first explain the notion of solution to (45). Fix .t0;m0/ 2 Œ0;T ��P2 and x0 2Rd0 .
We say that .u;m/ is a solution to (45) if u 2 C 0.Œt0; T �; C 2b / satisfies

u.t; x/ D G.x0; x;m.T //C

ˆ T

t

�
Tr.a.s; x/D2u.s; x// �H.x0; x;Du.s; x/;m.s//

�
ds

for all t 2 Œt0; T � and if m 2 C 0.Œt0; T �;P2/ solves the Fokker–Planck equation in the
sense of distributions: for any � 2 C1c .Œ0; T / �Rd /,

0 D

ˆ
Rd
�.0; x/m0.dx/

C

ˆ T

0

ˆ
Rd
.Tr.a.s; x/D2�.s; x//�D�.s; x/ �Hp.x0; x;Du.s; x/;m.s///m.s; dx/ ds:

The assumptions on a, H and G given in Section 2.3 are in force throughout the
section.

5.1.1. Well-posedness and regularity of the MFG system. We discuss here the well-
posedness of the MFG system (45) and provide several estimates. Let us start with
the Hamilton–Jacobi (HJ) equation (general estimates on this equation are given in
Appendix A).

Proposition 5.1. For anyM > 0, there exist TM ; LM > 0, depending on C0 and 
 given
in assumptions (16) and (17), such that if supx0;m kG.x0; �; m/k1 � M , then, for any
T 2 .0; TM / and any m 2 C 0.Œ0; T �;P2/, the solution u to the HJ equation´
�@tu.t; x/�Tr.a.t; x/D2u.t; x//CH.x0; x;Du.t; x/;m.t// D 0 in .t0; T /�Rd ;

u.T; x/ D G.x0; x;m.T // in Rd

(48)
satisfies

sup
t2Œt0;T �

kuk1 � sup
x0;m
kG.x0; �; m/k1 C LMT:

Henceforth, we set KM WD supx0;m kG.x0; �; m/k1 C LMTM .
If, in addition, supx0;m kG.x0; �; m/kn �M , then there exists CM > 0, depending on

n, C0, 
 and

sup
t2Œ0;TM �

ka.t/kn C sup
jpj�KM ; x02Rd0 ;m2P2

nX
kD0

kDk
.x;p/H.x0; �; p;m/k1;

such that, for any T 2 .0; TM /, x0 2 Rd0 and r � n,

sup
t2Œt0;T �; x2Rd

jDr
xu.t; x/j � sup

x2Rd
jDr

xG.x0; x;m.T //j C CMT:
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Therefore, for any x0 2 Rd0 ,

sup
t2Œt0;T �

ku.t/kn � sup
m
kG.x0; �; m/kn C CMT: (49)

Proof. Use Propositions A.1 and A.6.

Next we discuss the dependence of the solution u of (48) on .m.t//t2Œt0;T �
and x0 2 Rd0 . We stress that, hereafter, we use the preliminary gradient estimate
supt2Œt0;TM � ku.t/k1 � KM which is obtained as a first step in Proposition 5.1. In par-
ticular, the Hamiltonian H.x0; x; p;m/ will be systematically estimated for jpj � KM .

Proposition 5.2. If the assumptions of Proposition 5.1 are satisfied so that (49) holds
true, then there exists TM > 0 such that, for T 2 .0; TM / and any t0 2 Œ0; T �, for any
m1; m2 2 C 0.Œ0; T �;P2/ and any x10 ; x

2
0 2 Rd0 , if u1 and u2 are the corresponding

solutions to the HJ equation (48), then we have, for n � 2,

sup
t2Œt0;T �

ku1.t/ � u2.t/kn�1 � CMT
�

sup
t2Œt0;T �

d2.m1.t/;m2.t//C jx10 � x
2
0 j

�
C .1C CMT /

®
ŒLip0;n�1.G/�d2.m

1.T /;m2.T //C ŒLipx0n�1.G/�jx
1
0 � x

2
0 j
¯

where CM depends on the same quantities as in Proposition 5.1 as well as on
Lipn�1;n.H.x0; �; �; m//, Lipx0n�1;n.H.x0; �; �; m// . for x 2 Rd and jpj � KM / and
supx0;m kG.x0; �; m/kn.

Proof. The map v WD u1 � u2 satisfies´
�@tv � Tr.a.t; x/D2v/C V.t; x/ �Dv C f .t; x/ D 0;

v.T; x/ D G.x10 ; x;m
1.T // �G.x20 ; x;m

2.T //;

where

V.t; x/ WD

ˆ 1

0

Hp
�
x; x20 ; sDu

1.t; x/C .1 � s/Du2.t; x/;m2.t/
�
ds;

f .t; x/ WD H.x10 ; x;Du
1.t; x/;m1.t// �H.x20 ; x;Du

1.t; x/;m2.t//:

By Proposition A.7 (applied with k D 1 and n � 1), we have

sup
t2Œ0;T �

ku1.t/ � u2.t/kn�1

� .1C CT /kG.x10 ; �; m
1.T // �G.x20 ; �; m

2.T //kn�1 C CT sup
t2Œt0;T �

kf .t/kn�1

� .1C CT /¹ŒLip0;n�1.G/�d2.m
1.T /;m2.T //C ŒLipx0n�1.G/�jx

1
0 � x

2
0 jº

C CT
�

sup
t2Œt0;T �

d2.m1.t/;m2.t//C jx10 � x
2
0 j

�
;

where the constant C depends on H and on supt2Œ0;T � kV.t/kn�1, hence on
supt2Œ0;T � ku

1.t/kn, supt2Œ0;T � ku
2.t/kn, which are estimated thanks to Proposi-

tion 5.1.
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In our next step, we consider the solution to the Fokker–Planck equation8̂̂̂<̂
ˆ̂:
@t Qm.t; x/ �

X
i;j

Dij .ai;j .t; x/ Qm.t; x//

� div. Qm.t; x/Hp.x0; x;Du.t; x/;m.t/// D 0 in .t0; T / �Rd ;

Qm.t0/ D m0 in Rd ;

(50)

where .m.t//t2Œt0;T � is given and u satisfies (48). Let us recall that, under the assumptions
of Proposition 5.1, there exists a unique weak solution Qm 2 C 0.Œt0; T �;P2/ to (50).

Proposition 5.3. Assume that

kDxGk1 �M; kD
2
xxGk1 �M; Lip0;1.G/C Lipx01 .G/ �M: (51)

Then there exists a constant CM > 0, only depending onM , kak2 and the regularity ofH ,
such that, for anym1;m2 2 C 0.Œ0; T �;P2/, x10 ; x

2
0 2 Rd0 andm10;m

2
0 2 P2, if u1 and u2

are the corresponding solutions to the HJ equation (48) with x0 D xi0 and if Qm1; Qm2 are
the corresponding solutions to (50) starting from m10 and m20 respectively, then

sup
t2Œt0;T �

d22. Qm
1.t/; Qm2.t//

� .1C CMT /d22.m
1
0; m

2
0/C CMT

�
sup

t2Œt0;T �

d22.m
1.t/;m2.t//C jx10 � x

2
0 j
2
�
:

Proof. We can represent Qmi .t/ as the law ofX it where EŒjX10 �X
2
0 j
2�D d22.m

1
0;m

2
0/ and

X i solves

X it D X
i
0 �

ˆ t

0

Hp.x
i
0; X

i
s ;Du

i .s; X is /;m
i .s// ds C

p
2

ˆ t

0

�.s; X is / dBs;

so that

EŒjX1t �X
2
t j
2� � EŒjX10 �X

2
0 j
2�

C2E

�ˆ t

0

.X1s �X
2
s /�
�
Hp.x

1
0 ; X

1
s ;Du

1; m1.t//�Hp.x
2
0 ; X

2
s ;Du

2; m2.t//
�
ds

�
CE

�ˆ t

0

Tr
�
.�.s; X1s /��.s; X

2
s //.�.s; X

1
s /��.s; X

2
s //
�
�
ds

�
� EŒjX10�X

2
0 j
2�

CCME

�ˆ t

0

.jX1s �X
2
s j
2
CjD.u1�u2/.s; X1s /j

2
Cd22.m

1.s/;m2.s//Cjx10�x
2
0 j
2/ ds

�
;

where CM depends on the Lipschitz regularity ofHp in Rd0 �Rd �B.KM /�P2 (where
KM is defined in Proposition 5.1), on supt ku

1.t/k2, and on the Lipschitz regularity of � .
We infer from Gronwall’s lemma that

EŒjX1t �X
2
t j
2� � .1C CMT /EŒjX

1
0 �X

2
0 j
2�

C CMT
�

sup
t
kD.u1 � u2/.t/k21 C sup

t2Œt0;T �

d22.m
1.t/;m2.t//C jx10 � x

2
0 j
2
�
:
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As EŒjX10 �X
2
0 j
2� D d22.m

1
0; m

2
0/ and d22. Qm

1.t/; Qm2.t// � EŒjX1t �X
2
t j
2�, we obtain

sup
t2Œt0;T �

d22. Qm
1.t/; Qm2.t// � .1C CMT /d22.m

1
0; m

2
0/

C CMT .sup
t
kD.u1 � u2/.t/k21 C sup

t2Œt0;T �

d22.m
1.t/;m2.t//C jx10 � x

2
0 j
2/:

We estimate the term supt kD.u
1 � u2/.t/k21 by Proposition 5.2 (with n D 2): since

Lip0;1.G/ and Lipx01 .G/ are estimated by (51), we deduce, for some (possibly different)
constant CM :

sup
t2Œt0;T �

d22. Qm
1.t/; Qm2.t//

� .1C CMT /d22.m
1
0; m

2
0/C CMT

�
sup

t2Œt0;T �

d22.m
1.t/;m2.t//C jx10 � x

2
0 j
2
�
:

Collecting the estimates in Propositions 5.1–5.3 yields the well-posedness of the MFG
system and estimates on the solution:

Proposition 5.4. Fix M > 0 and assume that (51) holds true and that kGkn �M holds.
Then there exist TM ; CM > 0, depending on M , n, C0, 
 and

sup
t2Œ0;TM �

ka.t/kn C sup
jpj�KM ; x02Rd0 ;m2P2

nX
kD0

kDk
.x;p/H.x0; �; p;m/k1

.whereKM is given in Proposition 5.1/ such that, for any T 2 .0;TM / and any .t0;m0/ 2
Œ0; T � �P2, there exists a unique solution to the MFG system (45). This solution satisfies

sup
t2Œt0;T �

ku.t/kn � kG.x0; �; m.T //kn C CMT:

Moreover, if .t0; m10/ and .t0; m
2
0/ are two initial conditions in Œ0; T � � P2 and

x10 ; x
2
0 2 Rd0 , and if .u1; m1/ and .u2; m2/ are the corresponding solutions to the MFG

system (45) with x0 D x10 and x0 D x20 respectively, then

sup
t2Œt0;T �

d2.m1.t/;m2.t// � .1C CMT /d2.m10; m
2
0/C CMT jx

1
0 � x

2
0 j;

and

sup
t2Œt0;T �

ku1.t/ � u2.t/kn�1 � CMT .d2.m10; m
2
0/C jx

1
0 � x

2
0 j/

C .1C CMT /¹ŒLip0;n�1.G/�.d2.m
1
0; m

2
0/C jx

1
0 � x

2
0 j/C ŒLipx0n�1.G/�jx

1
0 � x

2
0 jº:

Proof. The existence and uniqueness come from a standard fixed point argument on
C 0.Œt0; T �;P2/ for T small enough (say T � TM where CMTM � 1=2, CM being given
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by the previous propositions). For the stability with respect to the initial condition, one
first uses the estimate in Proposition 5.3 with Qmi D mi :

sup
t2Œt0;T �

d22.m
1.t/;m2.t//

� .1C CMT /d22.m
1
0; m

2
0/C CMT

�
sup

t2Œt0;T �

d22.m
1.t/;m2.t//C jx10 � x

2
0 j
2
�
:

Thus, as CMT � 1=2, one obtains

sup
t2Œt0;T �

d2.m1.t/;m2.t// � .1C CMT /d2.m10; m
2
0/C CMT jx

1
0 � x

2
0 j;

modifying CM if necessary. Plugging this estimate into the estimate for ui in Proposition
5.2 gives the result.

5.1.2. The first order linearized system. Next we consider the linearized system8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

.i/ �@tv � Tr.a.t; x/D2v/CHp.x0; x;Du;m.t// �Dv

C
ıH

ım
.x0; x;Du;m.t//.�.t// D R1.t; x/ in .t0; T / �Rd ;

.ii/ @t� �
X
i;j

Dij .ai;j�/ � div.�Hp.x0; x;Du;m.t/// � div.mHppDv/

� div
�
m
ıHp

ım
.�/

�
D div.R2.t; x// in .t0; T / �Rd ;

.iii/ �.t0/ D �0; v.T; x/ D
ıG

ım
.x0; x;m.T //.�.T //CR3.x/ in Rd ;

(52)

where .u;m/ solves (45) andH and its derivatives are evaluated at .x0;x;Du.t;x/;m.t//.
In this section, we work under the conditions given in Proposition 5.4 so that (45) admits
a unique solution, in particular we always assume that T � TM , where TM is given by
Proposition 5.4. Our goal now is to establish estimates for .v; �/ in dependence on G
and u; we implicitly assume that G.x0; �; m/ is sufficiently regular (say, C n

b
) so that u

inherits the same regularity (from (49)).
The data of equation (52) are x0 2 Rd0 , �0 2 C�k , R1 2 C 0.Œ0; T �; C n�1b

/, R2 2
C 0.Œ0; T �; C�.k�1// and R3 2 C n�1b

. Here n � 2 and k � 1. By a solution to (52), we
mean a pair .v;�/ such that v 2C 0.Œ0;T �;C n�1

b
/ satisfies (52) (i) (integrated in time) with

terminal condition v.T; �/D ıG
ım
.x0; �;m.T //.�.T //CR3.�/ and � 2 C 0.Œ0;T �;C�.k�1/

b
/

is a solution in the sense of distributions to (52) (ii) with initial condition �.t0/ D �0.

Proposition 5.5. FixM > 0, n� 2 and k � 1. Under the assumptions of Proposition 5.4,
and if 



ıGım






1Ik

�M; (53)

then there exist constants TM ; CM > 0, depending on M , n, k, supt2Œ0;T � ku.t/kn,
supt2Œ0;T � ku.t/kkC1, such that for T � TM there exists a unique solution .v; �/ to (52),
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and this solution satisfies

sup
t2Œt0;T �

kv.t/kn�1 �

.1CCMT /





ıGım.x0; �x ;m.T /; �y/





n�1Ik

�
k�0k�kCT sup

t
kR2.t/k�.k�1/CT sup

t
kR1.t/k1

�
C .1C CMT /kR3kn�1 C CMT

�
1C sup

t
kR1.t/kn�1 C kR2k�.k�1/

�
; (54)

as well as

sup
t2Œt0;T �

k�.t/k�k � .1C CMT /k�0k�k

C CMT
�

sup
t
kR1.t/k1 C sup

t
kR2.t/k�.k�1/ C kR3kn�1

�
: (55)

Moreover, for any r � n � 1,

sup
t2Œ0;T �

kDr
xv.t/k1 � .1C CMT /

�



Dr
x

ıG

ım
.x0; �; m.T //.�.T //






1

C kDr
xR3k1

�
C CMT

�
k�0k�k C sup

t
kR.t/kn�1 C sup

t
kR2.t/k�.k�1/ C kR3kn�1

�
: (56)

Proof. After proving the a priori estimates, the existence of a solution can be obtained
using a continuation argument (see [10] for details). The uniqueness is an obvious con-
sequence of the estimates. So it remains to prove the estimates. To simplify the expression,
we omit the dependence of the constant C on M . Fix t1 2 Œt0; T � and z1 2 C kb with
k 2 ¹1; : : : ; n � 1º. Let z be the solution to´
�@tz � Tr.a.t; x/D2z/CHp.x0; x;Du;m.t// �Dz D 0 in .t0; t1/ �Rd ;

z.t1; �/ D z1.x/ in Rd :
(57)

According to Proposition A.7 (with k D 1), we have

sup
t2Œt0;t1�

kz.t/kk � .1C CT /kz1kk ;

where C depends on the regularity of a and H and on supt ku.t/kkC1. Then, by duality,

ˆ
Rd
z1�.t1/

D

ˆ
Rd
z.t0/�0�

ˆ t1

t0

ˆ
Rd

�
HppDv�DzC

ıHp

ım
.�/�Dz

�
m�

ˆ t1

t0

ˆ
Rd
Dz�R2

� kz.t0/kkk�0k�kCCkDzk1

�
T kDvk1C

ˆ t1

t0

k�.t/k�k

�
CT sup

t
kz.t/kkkR2k�.k�1/

� .1CCT /kz1kk

�
k�0k�kCC.T kDvk1C

ˆ t1

t0

k�.t/k�k

�
CT kR2k�.k�1//;
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where kR2k�.k�1/ WD supt kR2.t/k�.k�1/. Thus, taking the supremum over kz1kk � 1,
we obtain

k�.t1/k�k � .1C CT /k�0k�k C CT .kDvk1 C kR2k�.k�1//C C

ˆ t1

t0

k�.t/k�k :

Since this holds for all t1 2 .t0; T �, by Gronwall’s inequality we obtain

sup
t2Œt0;T �

k�.t/k�k � .1C CT /k�0k�k C CT .kDvk1 C kR2k�.k�1//: (58)

Next we apply Proposition A.7 (with k D 1) to the HJ equation satisfied by v: we have,
for any r � n � 1,

sup
t
kv.t/kr � .1C CT /kv.T /kr C CTC1; (59)

where C depends on supt ka.t/kn�1, on the regularity of H , on supt ku.t/kn, and where
C1 is estimated by

C1 D sup
t





ıHım .x0; �;Du.t; �/;m.t//.�.t//





n�1

C kR1kn�1

� C sup
t
k�.t/k�k C kR1kn�1; (60)

where we have used the inequality



ıHım .x0; �;Du.t; �/;m.t//.�.t//





n�1

�





ıHım .x0; �;Du.t; �x/;m.t/; �/kn�1;kk�.t/





�k

:

Again we notice here that the right-hand side is estimated through the regularity ofH and
supt ku.t/kn. Similarly we estimate, for r � n � 1,

kv.T /kr �





ıGım.x0; �; m.T //





rIk

sup
t
k�.t/k�k C kR3kr : (61)

Collecting the estimates in (58)–(61), we find, for r � n � 1,

sup
t
kv.t/kr

� .1CCT /





ıGım.x0; �;m.T /; �/





rIk

¹.1CCT /k�0k�k CCT .kDvk1CkR2k�.k�1//º

C kR3kr .1C CT /C CT
�
k�0k�k C T .kDvk1 C kR2k�.k�1//C kR1kn�1

�
: (62)

We first consider this inequality for r D 1. Recall that k ıG
ım
k1Ik � M . So, if we choose

TM > 0 such that
.1C CTM /MCTM C CT

2
M < 1;

we obtain (54) for T � TM and nD 2. Then from (58) we infer (55) (with a constant only
depending on supt ku.t/kkC1). Having now estimated kDvk1, we deduce from (62) that
(54) holds.
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To obtain (56), we apply again Proposition A.7 to the HJ equation satisfied by v,
together with estimates (60) and (55).

5.1.3. The second order linearized system. Next we study the second order linearization
of the MFG system. Given a solution .u;m/ to (45) and .v; �/ and two solutions .v0; �0/
to (52) with arbitrary R1; R2; R3 and R01; R

0
2; R

0
3, we consider a solution .w; �/ to8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

.i/ �@tw � Tr.aD2w/CHp �Dw C
ıH

ım
.�.t//C

ı2H

ım2
.�.t/; �0.t//

CHppDv �Dv
0
C
ıHp

ım
.�/ �Dv0 C

ıHp

ım
.�0/ �Dv D QR1.t; x/

in .t0; T / �Rd ;

.ii/ @t� �
X
i;j

Dij .ai;j�/ � div.�Hp/ � div.mHppDw/ � div
�
m
ıHp

ım
.�/

�
� div.�HppDv0/ � div

�
�
ıHp

ım
.�0/

�
� div.�0HppDv/ � div.mHpppDvDv0/

� div
�
m
ıHpp

ım
.�0/Dv

�
� div

�
�0
ıHp

ım
.�/

�
� div

�
m
ıHpp

ım
.�/Dv0

�
� div

�
m
ı2Hp

ım2
.�; �0/

�
D div. QR2.t; x// in .t0; T / �Rd ;

.iii/ �.t0/ D 0; w.T; x/ D
ı2G

ım2
.x0; x;m.T //.�.T /; �

0.T //

C
ıG

ım
.x0; x;m.T //.�.T //C QR3.x/ in Rd ;

(63)
where H and its derivatives are evaluated at .x0; x;Du.t; x/;m.t//. Here again we work
under the conditions assumed in the previous sections which guarantee the existence,
uniqueness and enough regularity for .u;m/ as well as for the solutions of the linearized
system. In particular, we always assume that T � TM , where TM is now given by Pro-
position 5.5. The goal now is to establish estimates for .w; �/ in terms of G as well as of
.u;m/ and .v; �/, .v0; �0/.

The data of the problem are QR1 2 C 0.Œ0; T �; C n�2b
/, QR2 2 C 0.Œ0; T �; C�.k�1// and

QR3 2 C
n�2
b

. By a solution to (63), we mean a pair .w;�/ such that w 2 C 0.Œ0; T �;C n�2
b

/

satisfies (63) (i) (integrated in time) with the terminal condition in (63) (iii) and � 2
C 0.Œ0; T �; C�k/ solves (63) (ii), in the sense of distributions with vanishing initial con-
dition. Here we assume n � 3 and k � 2; the reason for this condition is just that we
wish to keep the regularity threshold of .w; �/ consistent with what stated previously for
.u;m/ and for .v; �/. In general, the estimates below apply to any degree of k; n but this
is obviously a cascade regularity: an estimate of w in C n�2

b
requires an estimate of v in

C n�1
b

and of u in C n
b

, while an estimate of � in C�k requires an estimate of � in C�.k�1/.

Proposition 5.6. Fix M > 0, n � 3 and k � 1. Under the assumptions of Proposition
5.4, and if (53) holds, there exist TM > 0, depending onM and the regularity ofH , such
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that for any T 2 .0; TM �, system (63) has a unique solution which satisfies

sup
t
kw.t/kn�2 � .1C CMT /

�

�



ı2Gım2 .x0; �; m.T /; �; �/





n�2Ik�1;k�1

k�.T /k�.k�1/k�
0.T /k�.k�1/ C k QR3kn�2

�
C CMT

�
1C





ıGım





n�2;k

��
sup
t
k QR1.t/kn�2 C sup

t
k QR2.t/k�.k�1/

CRk�1;kR0k�1;k CRk�1;n�1R
0
k�1;n�1

�
(64)

for some CM depending on M , on the regularity of H as well as on n; k;

supt2Œ0;T � kukn�1; supt2Œ0;T � kukkC1, and

sup
t
k�.t/k�k

� QCMT

��
1C





ı2Gım2 .x0; �; m.T /; �; �/





1Ik�1;k�1

�
k�.T /k�.k�1/k�

0.T /k�.k�1/

C sup
t2Œ0;T �

k QR1.t/k1

C sup
t2Œ0;T �

k QR2.t/k�.k�1/ C k QR3k1 CRk�1;kR0k�1;k CRk�1;2R
0
k�1;2

�
; (65)

where QCM depends on M , the regularity of H , n; k; supt2Œ0;T � kukkC1, and where we
have set, for k; j � 1,

Rk�1;j WD sup
t
.k�.t/k�.k�1/ C kv.t/kj /; R0k�1;j WD sup

t
.k�0.t/k�.k�1/ C kv

0.t/kj /:

In addition, if 



ıGım





n�2Ik

�M;

then for any r � n � 2 and .t; x0/ 2 Œ0; T � �Rd0 ,

kDrw.t; �/k1 �

�



Dr
x

ı2G

ım2
.x0; �; m.T //.�.T /; �

0.T //






1

C kDr
x
QR3.�/k1

�
C CMT

�



ı2Gım2 .x0; �; m.T /; �; �/





n�2Ik�1;k�1

k�.T /k�.k�1/k�
0.T /k�.k�1/

C sup
t
k QR1.t/kn�2 C sup

t
k QR2.t/k�.k�1/ C k QR3kn�2 CRk�1;kR0k�1;k

CRk�1;n�1R
0
k�1;n�1

�
: (66)
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Remark 5.7. We recall that the quantities k�.T /k�.k�1/ and Rk�1;j are estimated from
(54) and (55). In particular, we have

Rk�1;k � .1C CMT /C
�
k�0k�.k�1/ C sup

t
kR2.t/k�.k�2/ C sup

t
kR1.t/kk C kR3kk

�
for some constant C depending on k ıG

ım
kkIk�1 and supt ku.t/kkC1, and similarly

Rk�1;n�1

� .1C CMT /C
�
k�0k�.k�1/ C sup

t
kR2.t/k�.k�2/ C kR3kn�1 C sup

t
kR1.t/kn�1

�
for a constant C depending on k ıG

ım
knIk�1 and supt ku.t/kn. Of course the same holds for

�0; v0 accordingly.

Proof. We omit the proof of the well-posedness of the system, which is a consequence
of the estimates (as for Proposition 5.5). To simplify the expression, we also omit the
dependence of the constant C on M . We first estimate � by duality. Fix t1 2 Œt0; T � and
z1 2 C

k
b

for k 2 ¹1; : : : ; n � 1º. Let z be the solution to (57). Recall that Proposition A.7
(with k D 1) implies that there is a constant C > 0, depending on supt ku.t/kkC1, such
that

sup
t2Œt0;t1�

kz.t/kk � .1C CT /kz1kk :

Then
ˆ

Rd
�.t1/z1 D �

²ˆ t1

t0

ˆ
Rd
Dz �

�
mHppDw Cm

ıHp

ım
.�/C �HppDv

0
C �0HppDv

C �
ıHp

ım
.�0/C �0

ıHp

ım
.�/CmHpppDvDv

0

Cm
ıHpp

ım
.�0/Dv Cm

ıHpp

ım
.�/Dv0 Cm

ı2Hp

ım2
.�; �0/C QR2.t; x/

�³
:

Hence
ˆ

Rd
�.t1/z1 � CT kDwk1kDzk1 C CkDzk1

ˆ t1

t0

k�.s/k�k ds

CCT
�

sup
t
k�.t/k�.k�1/ sup

t
kv0.t/kkCsup

t
k�0.t/k�.k�1/ sup

t
kv.t/kk

�
sup
t
kz.t/kk

CCT
�

sup
t
k�.t/k�.k�1/ sup

t
k�0.t/k�.k�1/

�
sup
t
kz.t/kkCCT kDvk1kDv

0
k1kDzk1

CCT
�

sup
t
k�.t/k�.k�1/kDv

0
k1Csup

t
k�0.t/k�.k�1/kDvk1

Csup
t
k�.t/k�.k�1/ sup

t
k�0.t/k�.k�1/

�
kDzk1

CCT k QR2k�.k�1/ sup
t
kz.t/kk ;
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where the constant C depends on the regularity of the function H and on supt ku.t/kk .
Taking the supremum over kz1kk � 1, we infer that

k�.t1/k�k � C

ˆ t1

t0

k�.s/k�k ds C CT
°
kDwk1 C k QR2k�.k�1/

C

�
sup
t
k�.t/k�.k�1/ C sup

t
kv.t/kk

��
sup
t
k�0.t/k�.k�1/ C sup

t
kv0.t/kk

�±
:

By Gronwall’s inequality, we obtain

sup
t
k�.t/k�k � CT

°
kDwk1 C sup

t
k QR2.t/k�.k�1/ CRk�1;kR0k�1;k

±
; (67)

where C depends on the regularity of the function H and on supt ku.t/kkC1. From Pro-
position A.7 (with k D 1), we have

sup
t
kw.t/kn�2 � .1CCT /

�



ı2Gım2 .�.T /;�0.T //





n�2

C





ıGım.�.T //





n�2

Ck QR3kn�2

�
C CT sup

t
kf .t/kn�2; (68)

where

f .t; x/ D
ıH

ım
.�.t//C

ı2H

ım2
.�.t/; �0.t//CHppDv �Dv

0

C
ıHp

ım
.�/ �Dv0 C

ıHp

ım
.�0/ �Dv � QR1.t; x/:

We estimate

sup
t
kf .t/kn�2 �

�



ıHım .x0; �x ;Du.t; �x/;m.t/; �y/





n�2Ik

sup
t
k�.t/k�k C k QR1kn�2

C C sup
t
.k�.t/k�.k�1/ C kv.t/kn�1/.k�

0.t/k�.k�1/ C kv
0.t/kn�1/

�
for a constantC depending on the regularity ofH and on supt ku.t/kn�1. So we conclude,
using also (67), that

sup
t
kf .t/kn�2 � CT .kDwk1 CRk�1;kR0k�1;k C k

QR2k�.k�1//

C sup
t
k QR1kn�2 C C Rk�1;n�1R

0
k�1;n�1:

Similarly, again from (67) we get



ıGım.�.T //





n�2

� CT





ıGım.x0; �; m.T /; �/





n�2Ik

.kDwk1 CRk�1;kR0k�1;k C k
QR2k�.k�1//
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and



ı2Gım2 .�.T /; �0.T //





n�2

�





ı2Gım2 .x0; �; m.T /; �; �/





n�2Ik�1;k�1

k�.T /k�.k�1/k�
0.T /k�.k�1/:

Then, we find

sup
t
kw.t/kn�2 �

.1CCT /

�



ı2Gım2 .x0; �; m.T /; �; �/





n�2Ik�1;k�1

k�.T /k�.k�1/k�
0.T /k�.k�1/Ck QR3kn�2

�
CCT

�
1C





ıGım





n�2Ik

�
.kDwk1Ck QR2k�.k�1/CRk�1;kR0k�1;k/

CCT .k QR1kn�2CRk�1;n�1R
0
k�1;n�1/;

where now the constant C depends on both supt ku.t/kkC1 and supt ku.t/kn�1.
For n D 3, if we choose T small enough (depending on k ıG

ım
k1;k and supt ku.t/k2)

we estimate kDwk1. Then, plugging this estimate into (67) gives (65) (with a constant
only depending on supt ku.t/kkC1). Finally, we deduce (64) for n > 3.

For any r � n � 2, x0 2 Rd0 and t 2 Œ0; T �, the estimate (66) on Dr
xw follows again

from Proposition A.7 (with k D 1), which gives, arguing as before,

kDr
xw.t; �/k1

� .1C CT /

�



Dr
x

ı2G

ım2
.�.T /; �0.T //






1

C





Dr
x

ıG

ım
.�.T //






1

C kDr
x
QR3k1

�
C CT sup

t
kf .t/kn�2

�





Dr
x

ı2G

ım2
.�.T /; �0.T //






1

C kDr
x
QR3k1

C .1C CT /





ıGım.x0; �; m.t/; �/





n�2Ik

sup
t
k�.t/k�k

C CT

�
k QR1kn�2 C k QR2k�.k�1/ C k QR3kn�2

C





ı2Gım2 .x0; �; m.T /; �; �/





n�2Ik�1;k�1

k�.T /k�.k�1/k�
0.T /k�.k�1/

CRk�1;kR0k�1;k CRk�1;n�1R
0
k�1;n�1

�
;

which yields the desired claim using (65).
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By gathering together Propositions 5.5 and 5.6, we deduce the following three corol-
laries, which will be useful in the derivation of second order estimates for the solution of
the master equation.

Corollary 5.8. Let M > 0, n � 3 and k 2 ¹2; : : : ; n � 1º, and assume that

kGkn C





ıGım





n�1Ik

C





ı2Gım2





n�2Ik�1;k�1

�M:

Let .u; m/ be the unique solution to (45) in some interval Œ0; TM � given by Proposition
5.4, and let .v; �/ and .v0; �0/ be two solutions to (52) withR1 DR2 DR3 D 0 and initial
conditions �0, �00 respectively.

Then there exists a constant CM such that the solution .w; �/ to (63) corresponding
to .u;m/, .v; �/ and .v0; �0/ and with QR1 D QR2 D QR3 D 0 satisfies, for any T 2 .0; TM /,
r � n � 2,

sup
t;x
jDr

xw.t; x/j

� sup
x

ˇ̌̌̌
Dr
x

ı2G

ım2
.x0; x;m.T //.�.T /; �

0.T //

ˇ̌̌̌
C CMT k�0k�.k�1/k�

0
0k�.k�1/;

where CM depends on M , as well as on kakn and the regularity of H .

Proof. We first notice that

Lip0;1.G/ � sup
x0;m





ıGım.x0; �; m; �/





1;1

�M;

hence we are in a position to apply Proposition 5.4, and there exists a time TM > 0 such
that the unique solution .u;m/ to (45) satisfies u 2 C n

b
with an estimate depending on M

and supx0;m kG.x0; �; m/kn.
From Proposition 5.6, we have

kDr
xw.t; �/k1 �





Dr
x

ı2G

ım2
.x0; �; m.T //.�.T /; �

0.T //






1

C CMT .k�.T /k�.k�1/k�
0.T /k�.k�1/ CRk�1;kR0k�1;k CRk�1;n�1R

0
k�1;n�1/:

On the other hand, we know from Proposition 5.5 that

sup
t
kv.t/kn�1 � .1C CMT /





ıGım





n�1Ik�1

k�0k�.k�1/;

sup
t
k�.t/k�.k�1/ � .1C CMT /k�0k�.k�1/;

which allows us to estimate Rk�1;k and Rk�1;n�1. Here the constant depends on
supt ku.t/kn. A similar estimate holds for .v0; �0/. Therefore, we conclude the desired
estimate.
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Corollary 5.9. Under the assumptions of Corollary 5.8, suppose in addition that



Dx0 ıGım





n�2Ik�1

�M:

Let .u; m/ be the unique solution to (45) in Œ0; TM �, let .v; �/ be a solution to (52) with
R1 DR2 DR3 D 0 and initial condition �0, and, for any l 2Rd0 with jl j D 1, let .vl ; �l /
be a solution to (52) with zero initial condition and with

R1.t; x/ D �@
l
x0
H.y0; x;Du.t; x/;m.t//;

R2.t; x/ D m.t; x/@
l
x0
Hp.y0; x;Du.t; x/;m.t//;

R3.t; x/ D @
l
x0
G.y0; x;m.T //: (69)

Then there exists a constant CM such that the solution .wl ; �l / to (63) corresponding to
.u;m/, .v; �/ and .vl ; �l / and with

QR1.t; x/ D �@
l
x0
Hp.x0; x;Du;m.t//Dv�@

l
x0

ıH

ım
.x0; x;Du;m.t//.�.t//;

QR2.t; x/ D �@
l
x0
Hp.x0; x;Du;m.t//Cm@

l
x0
Hpp.x0; x;Du;m.t//DvCm@

l
x0

ıHp

ım
.�/;

QR3.x/ D @
l
x0

ıG

ım
.x0; x;m.T //.�.T //;

(70)

satisfies, for any T 2 .0; TM / and r � n � 2,

sup
t;x

�X
jljD1

jDr
xw

l .t;x/j2
�1=2
� sup

x

ˇ̌̌̌
Dr
xDx0

ıG

ım
.x0;x;m.T //.�.T //

ˇ̌̌̌
CCMT k�0k�.k�1/;

where CM depends on M , as well as on kakn and the regularity of H .

Proof. We first notice that

sup
t
k QR1.t/kn�2 C sup

t
k QR2.t/k�.k�1/ � C sup

t
.kv.t/kn�1 C k�.t/k�.k�1//

for a constant depending on the regularity of H , on supt ku.t/kn�1 and on supt ku.t/kk .
However, the last term is bounded by supt ku.t/kn�1 since k � n � 1. Next we estimate
the terms .v; �/, .vl ; �l / and �l : we have, from Propositions 5.5 and 5.6,

sup
t
kv.t/kn�1 � .1C CMT /





ıGım





n�1Ik�1

k�0k�.k�1/ � CMk�0k�.k�1/;

sup
t
k�.t/k�.k�1/ � .1C CMT /k�0k�.k�1/;

sup
t
kvl .t/kn�1 � .1C CMT /





ıGım





n�1Ik�1

C CMT � CM ;

sup
t
k�l .t/k�.k�1/ � CMT; k�

l
k�k � CMT k�0k�.k�1/:
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We note that the functions wl solve linear equations with the same diffusion and the same
drift. So, combining Proposition A.7 with the inequalities above and arguing as in the
proof of Proposition 5.6 gives, for any r � n � 2,

sup
x

�X
jljD1

jDr
xw

l .t; x/j2
�1=2
� .1C CT /

� sup
x

�X
jljD1

�ˇ̌̌̌
Dr
x

ı2G

ım2
.�.T /; �l .T //

ˇ̌̌̌
C

ˇ̌̌̌
Dr
x

ıG

ım
.�l .T //

ˇ̌̌̌
C

ˇ̌̌̌
Dr
x@
l
x0

ıG

ım
.�l .T //

ˇ̌̌̌�2�1=2
C CMT k�0k�.k�1/

� sup
x

�X
jljD1

�ˇ̌̌̌
Dr
x@
l
x0

ıG

ım
.�l .T //

ˇ̌̌̌
C CMT k�0k�.k�1/

�2�1=2
CCMT k�0k�.k�1/;

where we have omitted the dependence of G on .x0; x;m.T //. This gives the result.

Corollary 5.10. Under the assumptions of Corollary 5.9, suppose in addition that
kD2

x0
G.x0; �; m/kn�2 �M: Fix l; l 0 2 Nd0 with jl j D jl 0j D 1. Let .u;m/ be the unique

solution to (45) in Œ0;TM � and let .vl ; �l /, .vl
0

; �l
0

/ be the solution to (52) with zero initial
condition and with R1; R2; R3 and R01; R

0
2; R

0
3 given by (69) for l and l 0 respectively.

Let .wl;l
0

;�l;l
0

/ be the solution to (63) corresponding to .u;m/, .vl ; �l / and .vl
0

; �l
0

/

and with

QR
l;l 0

1 .t; x/ D �

�
@lCl

0

x0
HC@lx0HpDv

l 0
C@l

0

x0
HpDv

l
C@lx0

ıH

ım
.�l
0

.t//C@l
0

x0

ıH

ım
.�l .t//

�
;

QR
l;l 0

2 .t; x/ D �l
0

@lx0Hp C �
l@l
0

x0
Hp Cm.@

l
x0
HppDv

l 0
C @l

0

x0
HppDv

l /

Cm

�
@lx0

ıHp

ım
.�l
0

/C @l
0

x0

ıHp

ım
.�l /

�
Cm@lCl

0

x0
Hp (71)

QR
l;l 0

3 .t; x/ D @lCl
0

x0
G.x0; x;m.T //CD

l
x0

ıG

ım
.x0; x;m.T //.�

l 0.T //

C @l
0

x0

ıG

ım
.x0; x;m.T //.�

l .T //;

where H and its derivatives are computed at .x0; x;Du.t; x/; m.t//. Then there exists a
constant CM such that, for any T 2 .0; TM / and r � n � 2,

sup
t;x

�X
l;l 0

jDr
xw

l;l 0.t; x/j2
�1=2
� sup

x
jDr

xD
2
x0
G.x0; �; m.T //j C CMT;

where CM depends on M , as well as on kakn and the regularity of H .

Proof. We can estimate .vl ; �l / and .vl
0

; �l
0

/ and �l;l
0

—and therefore QRl;l
0

1 and QRl;l
0

2 —
exactly as in the previous corollary. Moreover, as the functions wl;l

0

solve a HJ with
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the same diffusion and the same drift term, we can use Proposition A.7 to bound
.
P
l;l 0 jD

r
xw

l;l 0.t; x/j2/1=2:

sup
t;x

�X
l;l 0

jDr
xw

l;l 0.t; x/j2
�1=2

� sup
x

�X
l;l 0

�
jDr

x@
lCl 0

x0
G.x0; �; m.T //j C CMT

�2�1=2
C CMT;

which gives the required estimate after rearranging.

5.2. Estimates on the first order master equation

Armed with the regularity results for the MFG system, we finally prove the estimates
on the solutions to the master equations that appear in our splitting schemes. As before,
throughout the section, the assumptions of Section 2.3 on a, H , G and G0 are in force.

5.2.1. First order differentiability of U and U 0

Proposition 5.11. For any M > 0, there exist TM ; KM > 0, depending on C0, 
 and
kDak1, and there exists CM > 0, depending also on n, k 2 ¹2; : : : ; n� 1º, supt ka.t/kn
and the regularity of H , such that, if

kGkn C





ıGım





n�1Ik

�M; (72)

and if T 2 .0; TM �, then the map U defined by (44) is a classical solution to (43), and
satisfies

sup
t2Œ0;T �

kU.t/kn � kGkn C CMT:

Moreover, for any j˛j � n � 1, @˛x
ıU
ım

is of class C 1 in m, and for k 2 ¹2; : : : ; n � 1º,

sup
t2Œ0;T �





ıUım.t/





n�1Ik

�





ıGım





n�1Ik

C CMT:

Remark 5.12. In the proof we show the following representation:
ˆ

Rd

ıU

ım
.t0; x0; x;m0; y/ �0.dy/ D v.t0; x/ (73)

where .u; m/ is the solution of the MFG system (45) and .v; �/ is the solution of the
linearized system (52) with right-hand side R1 D R2 D R3 D 0 and with initial condition
.t0; �0/. Note that the normalization condition (11) is satisfied, because if one chooses
�0 D m0, then .v; �/ D .0;m/.

The proof relies on the following lemma, in which we also provide estimates to obtain
the differentiability of U with respect to x0 later on.
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Lemma 5.13. Under the assumptions of Proposition 5.11, fix .t0;m0/; .t0;m1/ 2 Œ0;T /�
P2 and y0; � 2 Rd with j�j � 1. Let .u;m/ be the solution to (45) with x0 D y0 and with
initial condition .t0; m0/, and, for h 2 .0; 1/, let .uh; mh/ be the solution to (45) with
x0 D y0 C �h and with initial condition .t0; .1 � h/m0 C hm1/. Let also .v; �/ be the
solution to (52) associated with .u;m/, x0 D y0 and with

R1.t; x/ D �Hx0.y0; x;Du.t; x/;m.t// � �;

R2.t; x/ D m.t; x/Hx0p.y0; x;Du.t; x/;m.t// � �;

R3.t; x/ D Gx0.y0; x;m.T // � �; (74)

and initial condition .t0; m1 � m0/. Then there exists a constant C .independent of h/
such that

sup
t2Œt0;T �

kuh.t/ � u.t/ � hv.t/kn�1 � Ch
2; (75)

sup
t2Œt0;T �

kmh.t/ �m.t/ � h�.t/k�k � Ch
2: (76)

Remark 5.14. The goal of this lemma is to identify the first order derivatives ıU
ım

and
Dx0U . The constant C above will depend on the regularity of H and G, as well as on
supt2Œt0;T � ku.t/kn; however, this is not detailed later since it will not be relevant; indeed,
(75) and (76) are only used when letting h! 0.

Proof of Lemma 5.13. We set

vh.t; x/ D uh.t; x/ � u.t; x/ � hv.t; x/; �h.t; x/ D mh.t; x/ �m.t; x/ � h�.t; x/:

Then the pair .vh; �h/ solves8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

�@tvh � Tr.a.t; x/D2vh/CHp.y0; x;Du;m.t// �Dvh

C
ıH

ım
.y0; x;Du;m.t//.�h.t// D Rh;1.t; x/ in .t0; T / �Rd ;

@t�h �
X
i;j

Dij .ai;j�h/ � div.�hHp.x;Du;m.t/// � div.mHpp.x;Du;m.t//Dvh/

� div
�
m
ıHp

ım
.x;Du;m.t//.�h/

�
D div.Rh;2.t; x// in .t0; T / �Rd ;

�h.t0/ D 0; vh.T; x/ D
ıG

ım
.x;m.T //.�h.T //CRh;3.x/ in Rd ;

where

Rh;1.t; x/ D �

�
H.y0 C �h; x;Duh.t; x/;mh.t// �H.y0; x;Du.t; x/;m.t//

�Hp.y0; x;Du.t; x/;m.t// �D.uh.t; x/ � u.t; x//

�
ıH

ım
.y0; x;Du.t; x/;m.t//.mh.t/ �m.t//

� hHx0.y0; x;Du.t; x/;m.t// � �

�
;
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Rh;2.t; x/ D mh.t; x/Hp.y0 C �h; x;Duh.t; x/;mh.t//

�m.t; x/Hp.y0; x;Du.t; x/;m.t//

� .mh.t; x/ �m.t; x//Hp.y0; x;Du.t; x/;m.t//

�m.t; x/Hpp.y0; x;Du.t; x/;m.t//D.uh � u/.t; x/

� hm.t; x/Hx0p.y0; x;Du.t; x/;m.t// � �

�m.t; x/
ıHp

ım
.y0; x;Du.t; x/;m.t//.mh.t/ �m.t//;

Rh;3.x/ D G.y0 C �h; x;mh.T // �G.y0; x;m.T //

�
ıG

ım
.y0; x;m.T //.mh.T / �m.T // � hGx0.y0; x;m.T // � �:

Next we estimate Rh;1, Rh;2 and Rh;3. As

Rh;1 D

�

ˆ 1

0

²
.Hp.x� ; x; p� .t; x/;m� .t//�Hp.y0; x;Du.t; x/;m.t/// �D.uh.t; x/�u.t; x//

C .Hx0.x� ; x; p� .t; x/;m� .t//�Hx0.y0; x;Du.t; x/;m.t/// � h�

C

ˆ
Rd

�
ıH

ım
.x� ; x; p� .t; x/;m� .t/; y/�

ıH

ım
.y0; x;Du.t; x/;m.t/; y/

�
� .mh.t/ �m.t//.dy/

³
d�;

where x� WD .1� �/y0C �.y0C �h/, p� WD .1� �/Du.t; x/C �Duh.t; x/ andm� .t; x/
WD .1 � �/m.t; x/C �mh.t; x/, we have

kRh;1.t/kn�1 � C
�
kuh.t/ � u.t/k

2
n C h

2
C d22.mh.t/;m.t//

�
:

In the same way,

kRh;3kn�1 � C.d22.mh.T /;m.T //C h
2/

� C
�
kuh.T / � u.T /k

2
n C d22.mh.T /;m.T //C h

2
�
:

Finally, for k � 2, we have

kRh;2.t/k�.k�1/

D sup
k�kk�1�1

ˆ
Rd
�.t; x/

�
Hp.x0; x;Duh.t; x/;mh.t// �Hp.y0; x;Du.t; x/;m.t//

�
� .mh.t; dx/ �m.t; dx//

C

ˆ
Rd
�.t; x/

�
Hp.x0; x;Duh.t; x/;mh.t// �Hp.y0; x;Du.t; x/;m.t//

�Hx0p.y0; x;Du.t; x/;m.t// � h� �Hpp.y0; x;Du.t; x/;m.t//D.uh � u/.t; x/

�
ıHp

ım
.y0; x;Du.t; x/;m.t//.mh.t/ �m.t//

�
m.t; dx/

� C.kuh � uk
2
2 C d22.mh.t/;m.t//C h

2/:
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By Proposition 5.5, there exist constants TM ; CM > 0, depending on M , n, k,
supt2Œ0;T � kukn, such that if T � TM and if (72) holds, then

sup
t2Œ0;T �

kvh.t/kn�1

� .1C CMT /kRh;3kn�1 C CMT
�

sup
t
kRh;1.t/kn�1 C sup

t
kRh;2.t/k�.k�1/

�
� C

�
sup
t
kuh.t/ � u.t/k

2
n C sup

t
d22.mh.t/;m.t//C h

2
�
:

We then infer by Proposition 5.4 and the definition of vh that

sup
t2Œt0;T �

kuh.t/ � u.t/ � hv.t/kn�1 � C
�
d22..1 � h/m0 C hm1; m0/C h

2
�
� Ch2:

The estimate of �h comes from Proposition 5.5 in the same way.

Proof of Proposition 5.11. Proposition 5.4 and the representation formula (44) imply the
estimate on kU.t; �;m/kn. Let us now show that the map U given by (44) is differentiable
with respect tom. Fix x0 2 Rd0 , .t0;m0/; .t0;m1/ 2 Œ0; T /�P2, let .u;m/, .uh;mh/ and
.v; �/ be as in Lemma 5.13 with � D 0, so R1 D R2 D R3 D 0. Then

sup
t2Œt0;T �

kuh.t/ � u.t/ � hv.t/kn�1 � o.h/:

Taking t D t0, this implies that

kU.t0; x0; �; .1 � h/m0 C hm1/ � U.t0; x0; �; m0/ � hv.t0; �/kn�1 � o.h/:

So, if we choose m1 D ıy for a fixed y 2 Rd , we have just proved that the map
OU.hIm0; y/ D U.t0; x0; x; .1 � h/m0 C hıy/ has a derivative at h D 0 and that this

derivative is given by v.t0; x/. Note that the map .m0; y/ 7! v.t0; xIm0; y/ is continuous
and bounded thanks to the estimates in Proposition 5.5 and the uniqueness of the solution.
So we can apply Lemma B.1 which says that U is C 1 in m with

v.t0; x/ D
ıU

ım
.t0; x0; x;m0; y/:

Then by linearity and continuity one easily checks that (73) and the normalization condi-
tion (11) hold. A similar argument applies to derivatives of ıU

ım
with respect to x.

Next we check that U solves (43). Let us start withm.t0/Dm0 with a smooth density.
Then .u;m/ is a classical solution and, as

U.t; x0; x;m.t// D u.t; x/ 8.t; x/ 2 Œt0; T � �Rd ;

we have, for any h > 0 and in view of the equation for m,
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u.t0 C h; x/ � u.t0; x/ D U.t0 C h; x0; x;m.t0 C h// � U.t0; x0; x;m.t0//

D

ˆ t0Ch

t0

ˆ
Rd

ıU

ım
.t0Ch; x0; x;m.t/; y/@tm.t; y/ dy dt

CU.t0Ch; x0; x;m.t0//�U.t0; x0; x;m.t0//

D �

ˆ t0Ch

t0

ˆ
Rd
DmU.t0Ch; x0; x;m.t/; y/ �Hp.x0; y;Dxu.t; y/;m.t//m.t; y/ dy dt

C

ˆ t0Ch

t0

ˆ
Rd

Tr.a.t; y/D2
ymU.t; x0; x;m; y//m.dy/ dt

CU.t0Ch; x0; x;m.t0//�U.t0; x0; x;m.t0//:

On the other hand, by the equation for u,

u.t0 C h; x/ � u.t0; x/

D

ˆ t0Ch

t0

�
�Tr.a.t; x/D2u.t; x//CH.x0; x;Du.t; x/;m.t//

�
dt

D

ˆ t0Ch

t0

�
�Tr.a.t; x/D2

xxU.t;x0; x;m.t///CH.x0; x;DxU.t;x0; x;m.t//;m.t//
�
dt:

So

U.t0 C h; x0; x;m0/ � U.t0; x0; x;m0/

D

ˆ t0Ch

t0

ˆ
Rd
DmU.t0 C h; x0; x;m.t/; y/

�Hp.x0; y;DxU.t; x0; y;m.t//;m.t//m.t; y/ dy dt

�

ˆ t0Ch

t0

ˆ
Rd

Tr.a.t; y/D2
ymU.t; x0; x;m; y//m.dy/ dt

C

ˆ t0Ch

t0

�
�Tr.a.t; x/D2

xxU.t; x0; x;m.t///CH.x0; x;DxU.t; x0; x;m.t//;m.t//
�
dt:

Therefore U has a time derivative at .t0; x0; x;m0/ and

@tU.t0; x0; x;m0/

D

ˆ
Rd
DmU.t0; x0; x;m0; y/ �Hp.x0; y;DxU.t0; x0; y;m0/;m0/m0.y/ dy

�

ˆ
Rd

Tr.a.t0; y/D2
ymU.t0; x0; x;m; y//m.dy/

� Tr.a.t0; x/D2
xxU.t0; x0; x;m0//CH.x0; x;DxU.t; x0; x;m0/;m0/:

This shows thatU satisfies (43) at any point .t0;x0;x;m0/wherem0 has a smooth density.
The general case can be treated by a density argument, since the right-hand side of the
above equation is continuous in .t0; x0; x;m0/.
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Let us now explain the estimates on ıU
ım

. In view of (72), (73) and Proposition 5.5, we
have, for any r � n � 1,



Dr

x

ıU

ım
.t0; x0; �; m0/.�0/






1

D kDr
xv.t0; x0; �/k1

� .1C CMT /





Dr
x

ıG

ım
.x0; �; m.T /; �/






0Ik

k�0k�k C CMT k�0k�k :

Taking the sup over �0 with k�0k�k � 1, x0 2 Rd0 , summing over r � n � 1 and then
taking the sup over t; m gives the estimate on ıU

ım
. Notice that the estimate given by

Proposition 5.5 depends on supt ku.t/kn (we use here k � n � 1); but this last term is
estimated in terms of M only, because of Proposition 5.4 and since kG.x0; �;m/kn �M .

Proposition 5.15. Under the assumptions of Proposition 5.11, let M; TM ; CM > 0 be
given accordingly. Assume, in addition, that T 2 .0; TM � and

sup
x0;m
jG0.x0; m/j C jDx0G

0.x0; m/j C





ıG0ım
.x0; m; �/






n�1Ik

C kDx0G.x0; �; m/kn�1

�M: (77)

Then the map U 0 defined by (47) is a classical solution to (46). In addition, U 0 and U
are differentiable with respect to x0 and satisfy

sup
t
k.U 0; U /.t/kn � k.G

0; G/kn C CMT; (78)

sup
t
kDx0.U

0; U /.t/kn�1 � k.Dx0G
0;Dx0G/kn�1 C CMT; (79)

sup
t





ı.U 0; U /ım
.t/






n�1Ik

�





ı.G0; G/ım






n�1Ik

C CMT: (80)

As we will see in the proof, it is possible to estimate U 0 and U separately. However,
we will need the specific form of the estimate in the analysis of the MFG problem with a
major player.

Proof of Proposition 5.15. Differentiability of U with respect to x0 can be checked just
as its differentiability with respect to m. Let � be any unit vector of Rd0 , and .u; m/,
.uh; mh/ and .v; �/ be as in Lemma 5.13 with m1 D m0. Then, by Proposition 5.5 and
the fact that

sup
t
kR1.t/kn�1 C sup

t
kR2.t/k�.k�1/ � C; kR3kn�1 � sup

x0;m
kGx0.x0; �; m.T //kn�1;

(81)
one has

kU.t0; x0 C h�; �; m0/ � U.t0; x0; �; m0/ � hv.t0; �/kn�1 � o.h/;
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and so
Ux0.t0; x0; x;m0/ � � D v.t0; x/: (82)

To show the differentiability of U 0 with respect to m we proceed as in the proof of
Proposition 5.11. Fix x0 2 Rd , .t0; m0/; .t0; m1/ 2 Œ0; T / �P2, and let .u;m/, .uh; mh/
and .v; �/ be as in Lemma 5.13 with � D 0, so R1 D R2 D R3 D 0. Then

sup
t2Œt0;T �

k�h.t/k�k � o.h/;

where �h.t;x/Dmh.t;x/�m.t;x/� h�.t;x/. This inequality and Proposition 5.4 implyˇ̌̌̌
G0.x0;mh.T //�G

0.x0;m.T //�h
ıG0

ım
.x0;m.T //.�.T //

ˇ̌̌̌
�

ˇ̌̌̌
ıG0

ım
.x0;m.T //.�h.T //

ˇ̌̌̌
C

ˇ̌̌̌ ˆ 1

0

ˆ
Rd

�
ıG0

ım
.x0; .1 � �/m.T /C �mh.T /; y/ �

ıG0

ım
.x0; m.T /; y/

�
� .mh.t/ �m.t//.dy/ d�

ˇ̌̌̌
� o.d2.mh.T /;m.T //C h/ � o.h/: (83)

For y 2 Rd choose now m1 D ıy ; thenˇ̌̌̌
U 0.t0; x0; .1 � h/m0 C hıy/ � U

0.t0; x0; m0/ � h
ıG0

ım
.x0; m.T //.�.T //

ˇ̌̌̌
� o.h/:

Note that �0 7! �.T / is linear and continuous as a map from C�k onto itself. Apply then
Lemma B.1 to deduce that U 0 is C 1 in m with

ıU 0

ım
.t0; x0; m0; y/ D

ıG0

ım
.x0; m.T //.�.T //: (84)

Moreover, one can check as in the proof of Proposition 5.11 that U 0 solves (46) (here it is
even simpler, and based on the fact that by definition of U 0, U 0.t0 C h; x0;m.t0 C h//�
U 0.t0; x0; m.t0// D 0).

Concerning the differentiability of U 0 with respect to x0, let � be any unit vector
of Rd , and let .u;m/, .uh; mh/ and .v; �/ be as in Lemma 5.13 with m1 D m0. Thenˇ̌̌̌
G0.y0C�h;mh.T //�G

0.y0; m.T //�hG
0
x0
.y0; m.T // ���h

ıG0

ım
.y0; m.T //.�.T //

ˇ̌̌̌
� jG0.y0 C �h;mh.T // �G

0.y0; mh.T // � hG
0
x0
.y0; mh.T // � �j

C hjG0x0.y0; mh.T // �G
0
x0
.y0; m.T //j

C

ˇ̌̌̌
G0.y0; mh.T // �G

0.y0; m.T // � h
ıG0

ım
.y0; m.T //.�.T //

ˇ̌̌̌
:

The third term of this inequality can be treated as in (83). Therefore,ˇ̌̌̌
U 0.t0;y0C �h;m0/�U

0.t0;y0;m0/� hG
0
x0
.y0;m.T // � � � h

ıG0

ım
.y0;m.T //.�.T //

ˇ̌̌̌
� o.h/;
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and hence it follows that

Dx0U
0.t0; x0; m0/ � � D G

0
x0
.x0; m.T // � � C

ıG0

ım
.x0; m.T //.�.T //: (85)

We now prove the estimates. By Proposition 5.1 and the representation formulas (44)
and (47), we have, for any x0 2 Rd0 , m 2 P2 and r � n,

jU 0.t; x0; m/j
2
C jDr

xU.t; x0; x;m/j
2
D jG0.x0; m.T //j

2
C jDr

xu.t; x/j
2

� jG0.x0; m.T //j
2
C

�
sup
x
jDr

xG.x0; x;m.T //j C CMT
�2

�

��
jG0.x0; m.T //j

2
C sup

x
jDr

xG.x0; x;m.T //j
2
�1=2
C CMT

�2
(where we have used x2C .yC z/2 � ..x2C y2/1=2C z/2 for nonnegative reals x;y; z),
which gives (78). Next we prove (79). For jl j D 1, l 2Nd0 , we represent @lx0U

0 and @lx0U
by (85) and (82) respectively, where .vl ; �l / is as in Lemma 5.13 with � D el , m1 D m0
(so that �l0 D 0). Then, for r � n � 1,X

jljD1

j@lx0U
0.t; x0; m/j

2
C jDr

x@
l
x0
U.t; x0; x;m/j

2

D

X
jljD1

ˇ̌̌̌
@lx0G

0.x0; m.T //C
ıG0

ım
.x0; m.T //.�

l .T //

ˇ̌̌̌2
C jDr

xv
l .t; x/j2:

Note that supt k�.t/k�k � CMT by Proposition 5.5. As the vl solve HJ equations with
the same diffusion and the same drift, Proposition A.7, (77) and (81) imply that

sup
x

�X
jljD1

jDrvl j2
�1=2
� .1C CT / sup

x

�X
jljD1

jDrvl .T /j2
�1=2
C CMT

� .1C CT /

� sup
x

�X
jljD1

�



Dr
x

ıG

ım
.x0; �; m.T /; �/






0Ik

k�.T /k�k C jD
r
x@
l
x0
G.x0; x;m.T //j

�2�1=2
C CMT

� sup
x

�X
jljD1

.jDr
x@
l
x0
G.x0; x;m.T //j C CMT /

2
�1=2
C CMT

� sup
x

�X
jljD1

jDr
x@
l
x0
G.x0; x;m.T //j

2
�1=2
C CMT;

whileX
jljD1

j@lx0U
0.t; x0; m/j

2
�

X
jljD1

�
j@lx0G

0.x0; m.T //j C

ˇ̌̌̌
ıG0

ım
.x0; m.T //.�

l .T //

ˇ̌̌̌�2
�

X
jljD1

�
j@lx0G

0.x0; m.T //j C CMT
�2
�

��X
jljD1

j@lx0G
0.x0; m.T //j

2
�1=2
C CMT

�2
:
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Using ..x C z/2 C .y C z/2/1=2 � .x2 C y2/1=2 C
p
2 z, we obtain

sup
x

�X
jljD1

�
j@lx0U

0.t; x0; m/j
2
C jDr

x@
l
x0
U.t; x0; x;m/j

2
��1=2

� sup
x

�X
jljD1

�
j@lx0G

0.x0; m.T //j
2
C jDr

x@
l
x0
G.x0; x;m.T //j

2
��1=2

C CMT;

from which we derive (79), by taking the sup over x0, summing over r and finally taking
the sup over m.

For (80), let .v; �/ be as in Lemma 5.13 with m1 �m0 D �0 2 C�k and � D 0, as in
(84) and (73). We have, for any r � n � 1,ˇ̌̌̌

ıU 0

ım
.t; x0; m/.�0/

ˇ̌̌̌2
C

ˇ̌̌̌
Dr
x

ıU

ım
.t; x0; x;m/.�0/

ˇ̌̌̌2
D

ˇ̌̌̌
ıG0

ım
.x0; m.T //.�.T //

ˇ̌̌̌2
C jDr

xv.t; x/j
2:

So again by Proposition 5.5,ˇ̌̌̌
ıU 0

ım
.t; x0; m/.�0/

ˇ̌̌̌2
C

ˇ̌̌̌
Dr
x

ıU

ım
.t; x0; x;m/.�0/

ˇ̌̌̌2
�

ˇ̌̌̌
ıG0

ım
.x0; m.T //.�.T //

ˇ̌̌̌2
C

�
sup
x

ˇ̌̌̌
Dr
x

ıG

ım
.x0; �; m.T //.�.T //

ˇ̌̌̌
C CMT k�.T /k�k

�2
�

�
sup
x

1

k�.T /k�k

�ˇ̌̌̌
ıG0

ım
.x0; m.T //.�.T //

ˇ̌̌̌2
C

ˇ̌̌̌
Dr
x

ıG

ım
.x0; x;m.T //.�.T //

ˇ̌̌̌2�1=2
C CMT

�2
k�.T /k2

�k

� .1C CMT /
2

�
sup

x;k�k�kD1

�ˇ̌̌̌
ıG0

ım
.x0; m.T //.�/

ˇ̌̌̌2
C

ˇ̌̌̌
Dr
x

ıG

ım
.x0; x;m.T //.�/

ˇ̌̌̌2�1=2
C CMT

�2
k�0k

2
�k ;

This gives (80).

5.2.2. Second order differentiability of U and U 0

Proposition 5.16. Let U be the solution of (43) given by (44). Let n � 3 and k 2
¹2; : : : ; n � 1º. Suppose, in addition to the assumptions of Proposition 5.11, that G is
of class C 2 and 



ı2Gım2 .x0; �; m; �; �/






n�2Ik�1;k�1

�M:

Then there exists TM > 0 .depending on M and on the data but not on G/ such that if
T 2 .0;TM �, then the mapU isC 2 with respect to the measure variable and the parameter
x0, and satisfies

sup
t2Œ0;T �





ı2Uım2 .t/





n�2Ik�1;k�1

�





ı2Gım2





n�2Ik�1;k�1

C CMT:
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Proof. Our first goal is to show that ıU
ım

is differentiable with respect tom. Let .t0;m0/ 2
Œ0; T / �P2, y; y0 2 Rd and let

� .u; m/ (respectively .uh; mh/) be the solution of the MFG system (45) with initial
condition .t0; m0/ (respectively .t0; .1 � h/m0 C hıy0/),

� .v; �/ (respectively .v0; �0/) be the solution of the first order linearized system (52)
with zero right-hand side, initial condition .t0; ıy/ (respectively .t0; ıy0/) and where the
Hamiltonian and its derivatives are evaluated at .x0; x;Du.t; x/;m.t//,

� . Qvh; Q�h/ be the solution to the first order linearized system (52) with zero right-hand
side, with initial condition .t0; ıy/ and where the Hamiltonian and its derivatives are
evaluated at .x0; x;Duh.t; x/;mh.t//,

� .w;�/ be the solution to the second order linearized system (63) associated with .u;m/,
.v; �/; .v0; �0/ and with right-hand side 0.

Recall (see (73)) that

Qvh.t0; x/ D
ıU

ım
.t0; x0; x; .1 � h/m0 C hıy0 ; y/;

v.t0; x/ D
ıU

ım
.t0; x0; x;m0; y/; v0.t0; x/ D

ıU

ım
.t0; x0; x;m0; y

0/

(86)

so we expect w.t0; �/ to represent the derivative in m of ıU
ım

, that is, ı2U
ım2

.t0; x0; x;

m0; y; y
0/.

We consider
. Ovh; O�h/ WD . Qvh; Q�h/ � .v; �/ � h.w;�/:

Let us first note that, by Proposition 5.4, we have

sup
t2Œt0;T �

�
k Quh.t; x/ � u.t; x/kn�1 C d2.mh.t/;m.t//

�
� Cd2..1 � h/m0 C hıy0 ; m0/

� Ch: (87)

Next we claim that

sup
t2Œt0;T �

�
k Qvh.t; x/ � v.t; x/kn�2 C k Q�h.t/ � �.t/k�.k�1/

�
� Ch: (88)

Indeed, the pair . Qvh; Q�h/ � .v; �/ solves the first order linearized system (52), associated
with .u;m/, initial condition .t0; 0/ and with a right-hand side given by

Rh;1.t; x/ D �

��
Hp.x0; x;Duh; mh.t// �Hp.x0; x;Du;m.t//

�
�D Qvh

C

�
ıH

ım
.x0; x;Duh; mh.t// �

ıH

ım
.x0; x;Du;m.t//

�
. Q�h.t//

�
Rh;2.t; x/ D Q�h

�
Hp.x0; x;Duh; mh.t// �Hp.x0; x;Du;m.t//

�
C
�
mhHpp.x0; x;Duh; mh/ �mHpp.x0; x;Du;m/

�
�D Qvh

C

�
mh

ıHp

ım
.x0; x;Duh; mh/ �m

ıHp

ım
.x0; x;Du;m/

�
. Q�h/
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Rh;3.t; x/ D

�
ıG

ım
.x0; x;mh.T // �

ıG

ım
.x0; x;m.T //

�
. Q�h.T //:

Applying Proposition 5.5 and using (87) we infer that (88) holds.
In view of the equations satisfied by . Qvh; Q�h/, .v;�/ and .w;�/, the pair . Ovh; O�h/ solves

the first order linearized system (52), associated with .u;m/, initial condition .t0; 0/ and
with

Rh;1.t; x/ D �

��
Hp.x0; x;Duh; mh.t// �Hp.x0; x;Du;m.t//

�
�D Qvh

� hHpp.x0; x;Du;m.t//Dv �Dv
0
� h

ıHp

ım
.x0; x;Du;m.t//.�

0.t// �Dv

C

�
ıH

ım
.x0; x;Duh; mh.t// �

ıH

ım
.x0; x;Du;m.t//

�
. Q�h.t//

� h
ı2H

ım2
.x0; x;Du;m.t//.�.t/; �

0.t//

� h
ıHp

ım
.x0; x;Du;m.t//.�.t// �Dv

0

�
;

Rh;2.t; x/ D Q�h.Hp.x0; x;Duh; mh.t// �Hp/ � h�

�
HppDv

0
C
ıHp

ım
.�0/

�
CD Qvh � .mhHpp.x0; x;Duh; mh.t// �mHpp/

� hDv �

�
�0Hpp Cm

ıHpp

ım
.�0/CmHpppDv

0

�
C

�
mh

ıHp

ım
.x0; x;Duh; mh.t// �m

ıHp

ım

�
. Q�h/

� h

�
�0
ıHp

ım
CmDv0 �

ıHpp

ım

�
.�/ � hm

ı2Hp

ım2
.�; �0/;

Rh;3.x/ D
ıG

ım
.x0; x;mh.T //. Q�h.T // �

ıG

ım
.x0; x;m.T //. Q�h.T //

� h
ı2G

ım2
.x0; x;m.T //.�.T /; �

0.T //

(Hp and its derivatives in Rh;2 are evaluated at .x0; x;Du;m.t//, unless otherwise spe-
cified). Using

sup
t2Œt0;T �

kuh.t/ � u.t/ � hv
0.t/kn�2 � Ch

2;

sup
t2Œt0;T �

kmh.t/ �m.t/ � h�
0.t/k�.k�1/ � Ch

2
(89)

(see (75) and (76) in Lemma 5.13) as well as the above estimate (87), we have

sup
t

�
kRh;1.t; �/kn�2 C kRh;2.t; �/k�.k�1/ C kRh;3.t; �/kn�2

�
� Ch2:
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Then Proposition 5.5 and the representation formula (86) imply that



ıUım.t0; x0; �; .1 � h/m0 C hıy0 ; y/ � ıUım.t0; x0; �; m0; y/ � hw.t0; �/





n�2

D kQvh.t0; �/ � v.t0; �/ � hw.t0; �/kn�2 � sup
t
k Ovh.t/kn�2 � Ch

2:

Note that we also have

sup
t2Œt0;T �

k Q�h.t/ � �.t/ � h�.t/k�k � Ch
2: (90)

Hence, we can apply Lemma B.1 as in the proof of Proposition 5.11 and infer that ıU
ım

has
a derivative in m given by w:

ı2U

ım2
.t0; x0; x;m0; y; y

0/ D w.t0; x/:

If, in general, w is the solution to the second order linearized system (63) associated with
.v; �/; .v0; �0/ (having initial data .t0; �0/ and .t0; �00/ respectively) and with Ri D 0,
QRi D 0, i D 1; 2; 3, then by a linearity argument one may also conclude that

ˆ
Rd

ı2U

ım2
.t0; x0; x;m0; y; y

0/ �0.dy/ �
0
0.dy

0/ D w.t0; x/: (91)

Thus, the estimate of ı
2U
ım2

follows from Corollary 5.8:



ı2Uım2 .t0; x0; �; m0; �; �/





n�2Ik�1;k�1

�





ı2Gım2 .x0; �; m.T /; �; �/





n�2Ik�1;k�1

C CMT;

(92)
using the fact that supt k�.t/k�.k�1/ � .1C CMT /k�0k�.k�1/ and that the same holds
for �0.

Next we discuss the second order regularity of U and U 0 with respect to m and x0.

Proposition 5.17. Let U 0 and U be the solutions of (46) and (43) respectively. Suppose,
in addition to the assumptions of Propositions 5.15 and 5.16, that

kD2
x0
.G0; G/kn�2 C





Dx0 ı.G0; G/ım






n�2Ik�1

C





ı2.G0; G/ım2






n�2Ik�1;k�1

�M:

Then there exists TM > 0 .depending on M and on the data but not on G/ such that if
T 2 .0; TM �, the maps U 0 and U are C 2 with respect to the measure variable and x0,
and

sup
t
kD2

x0
.U 0; U /.t/kn�2 � k.D

2
x0
G0;D2

x0
G/kn�2 C CMT;

sup
t





Dx0 ı.U 0; U /ım
.t/






n�2Ik�1

�





Dx0 ı.G0; G/ım






n�2Ik�1

C CMT:
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Moreover,

sup
t





ı2.U 0; U /ım2
.t/






n�2Ik�1;k�1

�





ı2.G0; G/ım2






n�2Ik�1;k�1

C CMT:

Proof. Step 1. The differentiability of ıU
ım

with respect to x0 can be achieved exactly as its
differentiability with respect to m in Proposition 5.16. For any direction � 2 Rd0 , let

� .u; m/ (respectively .uh; mh/) be the solution of the MFG system (45) with initial
condition .t0; m0/ and parameters x0 and x0 C h� respectively,

� .v; �/ (respectively .v0; �0/) be the solution of the first order linearized system (52) with
zero right-hand side (respectively right-hand side as in (74)), initial condition .t0; ıy/
(respectively .t0; 0/) and where the Hamiltonian and its derivatives are evaluated at
.x0; x;Du.t; x/;m.t//,

� . Qvh; Q�h/ be the solution to the first order linearized system (52) with zero right-hand
side, with initial condition .t0; ıy/ and where the Hamiltonian and its derivatives are
evaluated at .x0 C h�; x;Duh.t; x/;mh.t//,

� .w; �/ be the solution to the second order linearized system (63) associated with
.v; �/; .v0; �0/ (and .u;m/), and with right-hand side

QR1.t; x/ D �Hx0p.x0; x;Du;m.t//� �Dv �
ıHx0
ım

.x0; x;Du;m.t//.�.t// � �;

QR2.t; x/ D �Hx0p.x0; x;Du;m.t//� CmHx0pp.x0; x;Du;m.t//�Dv

Cm
ıHx0p

ım
.�/�;

QR3.x/ D
ıGx0
ım

.x0; x;m.T //.�.T // � �;

so that

Qvh.t0; x/ D
ıU

ım
.t0; x0 C h�; x;m0; y/;

v.t0; x/ D
ıU

ım
.t0; x0; x;m0; y/; v0.t0; x/ D Ux0.t0; x0; x;m0/ � �:

Then we find ıUx0
ım

.t0; x0; x;m0; y/ � � D w.t0; x/, and if one replaces ıy by an arbitrary
�0 2 C

�.k�1/ as the initial datum for �, the following representation holds:

ıUx0
ım

.t0; x0; x;m0/.�0/ � � D w.t0; x/: (93)

Step 2. The second order differentiability of U with respect to x0 can be checked in a
similar way. Let .u;m/ and .uh; mh/ be as before, and let

� .v; �/, . Qvh; Q�h/ be the solutions of (52) with right-hand side as in (74), initial condition
.t0; 0/, and Hamiltonian and its derivatives evaluated at .x0; x; Du.t; x/; m.t// and
.x0 C h�; x;Duh.t; x/;mh.t// respectively,
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� .w;�/ be the solution to (63) associated with .v; �/; .v0; �0/ D .v; �/ (and .u;m/), and
with right-hand side QR1; QR2; QR3 given by (71).

Then we find
D2
x0
U.t0; x0; x;m0/� � � D w.t0; x/: (94)

Step 3. We now prove the regularity of U 0. To show that ıU 0

ım
is differentiable with

respect to m, let .t0; m0/ 2 Œ0; T / �P2, y; y0 2 Rd and

� .u; m/ (respectively .uh; mh/) be the solution of (45) with initial condition .t0; m0/
(respectively .t0; .1 � h/m0 C hıy0/),

� .v; �/ (respectively .v0; �0/) be the solution of (52) with zero right-hand side, initial
condition .t0; ıy/ (respectively .t0; ıy0/) and where the Hamiltonian and its derivatives
are evaluated at .x0; x;Du.t; x/;m.t//,

� . Qvh; Q�h/ be the solution to (52) with zero right-hand side, with initial condition .t0; ıy/
and where the Hamiltonian and its derivatives are evaluated at .x0;x;Duh.t;x/;mh.t//,

� .w; �/ be the solution to (63) associated with .v; �/; .v0; �0/ (and .u; m/), and with
right-hand side 0,

as in the proof of differentiability of ıU
ım

with respect to m in Proposition 5.16. Note that

ıU 0

ım
.t0; x0; .1 � h/m0 C hıy0 ; y/ D

ıG0

ım
.x0; mh.T //. Q�h.T //;

ıU 0

ım
.t0; x0; m0; y/ D

ıG0

ım
.x0; m.T //.�.T //:

Therefore, using (89) and (90),ˇ̌̌̌
ıG0

ım
.x0; mh.T //. Q�h.T // �

ıG0

ım
.x0; m.T //.�.T //

� h

�
ı2G0

ım2
.x0; m.T //.�.T /; �

0.T //C
ıG0

ım
.x0; m.T //.�.T //

�ˇ̌̌̌
� Ch2:

Lemma B.1 then implies that ıU
0

ım
.t0; x0; �; y/ has a derivative, and by linearity, if � is the

solution to (63) associated with .v; �/; .v0; �0/ (which in turn have initial data .t0; �0/ and
.t0; �

0
0/ respectively and with zero right-hand side), then

ˆ
Rd

ı2U 0

ım2
.t0; x0; m0; y; y

0/ �0.dy/ �
0
0.dy

0/

D
ı2G0

ım2
.x0; m.T //.�.T /; �

0.T //C
ıG0

ım
.x0; m.T //.�.T //: (95)

Hence, by the representation formula (91) for ı
2U
ı2m

, Propositions 5.5 and 5.6 and Corollary
5.8, we have, for r � n � 2,
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ˇ̌̌̌
ı2U 0

ım2
.t; x0; m0/.�0; �

0
0/

ˇ̌̌̌2
C

ˇ̌̌̌
Dr
x

ı2U

ım2
.t; x0; x;m0/.�0; �

0
0/

ˇ̌̌̌2
D

�ˇ̌̌̌
ı2G0

ım2
.x0; m.T //.�.T /; �

0.T //

ˇ̌̌̌
C

ˇ̌̌̌
ıG0

ım
.x0; m.T //.�.T //

ˇ̌̌̌�2
C jDr

xw.t; x/j
2

�

�ˇ̌̌̌
ı2G0

ım2
.x0; m.T //.�.T /; �

0.T //

ˇ̌̌̌
C CMT k�0k�.k�1/k�

0
0k�.k�1/

�2
C

�
sup
x

ˇ̌̌̌
Dx

ı2G

ım2
.x0; x;m.T //.�.T /; �

0.T //

ˇ̌̌̌
C CMT k�0k�.k�1/k�

0
0k�.k�1/

�2
�

²
sup
x

1

k�.T /k�.k�1/k�0.T /k�.k�1/

�

�ˇ̌̌̌
ı2G0

ım2
.x0; m.T //.�.T /; �

0.T //

ˇ̌̌̌2
C

ˇ̌̌̌
Dr
x

ı2G

ım2
.x0; x;m.T //.�.T /; �

0.T //

ˇ̌̌̌2�1=2
� .1C CMT /C CMT

³2
k�0k

2
�.k�1/k�

0
0k
2
�.k�1/;

(where we use .x C z/2 C .y C z/2 � ..x2 C y2/1=2 C 2z/2 for x; y; z � 0). Taking the
square root, then sup over x0, �0 and �00 and summing over r � n � 2 gives the estimate
on k ı

2.U 0;U /

ım2
kn�2Ik�1;k�1.

Differentiability of ıU 0

ım
with respect to x0 follows analogous lines: .v; �/, .v0; �0/,

. Qvh; Q�h/ and .w; �/ have to be changed according to Step 1. By (93), we have, using the
notations of Corollary 5.9 and for any r � n � 2,

X
jljD1

�ˇ̌̌̌
@lx0

ıU 0

ım
.t0; x0; m0; y/.�0/

ˇ̌̌̌2
C

ˇ̌̌̌
Dr
x@
l
x0

ıU

ım
.t; x0; x;m0/.�0/

ˇ̌̌̌2�
D

X
jljD1

�ˇ̌̌̌
@lx0

ıG0

ım
.�.T //C

ı2G0

ım2
.�.T /; �l .T //C

ıG0

ım
.�l .T //

ˇ̌̌̌2
C jDr

xw
l .t; x/j2

�
;

where G0 and its derivatives are all evaluated at .x0; m.T //. We obtain the bounds on

.
ıU 0x0
ım

, ıUx0
ım

/ by using Propositions 5.5 and 5.6 and Corollary 5.9.
Finally, second order differentiability of U 0 with respect to x0, and the corresponding

bound, can be obtained similarly. Let l; l 0 2 Rd0 with jl j D jl 0j D 1, .vl ; �l /, .vl
0

; �l
0

/

and .wl;l
0

; �l;l
0

/ be as in Corollary 5.10. Note that

@lCl
0

x0
U 0.t0; x0; m0/ D @

lCl 0

x0
G0 C @lx0

ıG0x0
ım

.�l
0

.T //C @l
0

x0

ıG0x0
ım

.�l .T //

C
ı2G0

ım2
.�l .T /; �l

0

.T //C
ıG0

ım
.�l;l

0

.T //;

while @lCl
0

x0
U 0.t0; x0; m0/ is given by polarizing the representation formula (94). We can

then conclude the proof by using Propositions 5.5 and 5.6 and Corollary 5.10.
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5.2.3. Uniform continuity estimates on second order derivatives

Proposition 5.18. LetU be the solution of (43) given by (44) and n�4, k2¹3; : : : ;n� 1º.
Suppose, in addition to the assumptions of Proposition 5.16, that

Lipn�3Ik�2;k�2

�
ı2G

ım2

�
�M: (96)

Then there exists TM > 0 .depending on M and on the data but not on G/ such that

sup
t

Lipn�3Ik�2;k�2

�
ı2U

ım2
.t/

�
� sup

x0

Lipn�3Ik�2;k�2

�
ı2G

ım2

�
C CMT:

Proof. We establish for later use a slightly stronger estimate involving the depend-
ence on x0. This is used in Proposition 5.19 below. Fix .t0; m1; m2/ 2 Œ0; T � � P 2

2

and x10 ; x
2
0 2 Rd0 . We use the representation formula (91) for ı2U

ım2
.t0; x

1
0 ; m1/ and

ı2U
ım2

.t0; x
2
0 ; m2/. In particular, for i D 1; 2, we let

� .ui ; mi / be the solution to (45) starting from mi at time t0 with H (and G) evaluated
at .xi0; x;Du

i .t; x/;mi .t// (and .xi0; x;m
i .T //),

� .vi ; �i / (respectively .v0i ; �
0
i /) be the solution of (52) with zero right-hand side, initial

condition .t0; �0/ (respectively .t0; �00/) and where the Hamiltonian and its derivatives
are evaluated at .xi0; x;Du

i .t; x/;mi .t//,

� .wi ; �i / be the solution to (63) associated with .vi ; �i /; .v0i ; �
0
i / (and xi0; u

i ; mi ), and
with zero right-hand side.

We aim at estimating . Nw; N�/ WD .w1 � w2; �1 � �2/, since

Nw.t0; x/ D
ı2U

ım2
.t0; x

1
0 ; x;m1/.�0; �

0
0/ �

ı2U

ım2
.t0; x

2
0 ; x;m2/.�0; �

0
0/: (97)

We first set . Nv; N�/ WD .v1 � v2; �1 � �2/ and . Nv0; N�0/ WD .v01 � v
0
2; �
0
1 � �

0
2/. The

pair . Nv; N�/ solves (52) with zero initial datum, with H and its derivatives evaluated at
.x10 ; x;Du

1.t; x/;m1.t//, and with right-hand side

R1.t; x/ D �.H
1
p �H

2
p / �Dv2 �

�
ıH 1

ım
�
ıH 2

ım

�
.�2.t//;

R2.t; x/ D �2.H
1
p �H

2
p /C .m

1H 1
pp �m

2H 2
pp/Dv2 C

�
m1
ıH 1

p

ım
�m2

ıH 2
p

ım

�
.�2/;

R3.x/ D

�
ıG1

ım
�
ıG2

ım

�
.�2.T //;

where H i and its derivatives correspond to H and its derivatives evaluated at
.xi0; x;Du

i .t; x/;mi .t//.
By Proposition 5.5 we have

sup
t2Œt0;T �

kvi .t/kn�1 � Ck�0k�.k�2/; sup
t2Œt0;T �

k�i .t/k�.k�2/ � .1C CT /k�0k�.k�2/;

(98)
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where C depends on the regularity of ıG
ım

, Hx0 , Hx0p , mi and supt ku
ikn. Note that, by

the above estimates and Proposition 5.4,

sup
t
kR1.t/kn�2 C sup

t
kR2.t/k�.k�2/ C kR3kn�2

� C.d2.m1; m2/C jx10 � x
2
0 j/k�0k�.k�2/;

and therefore by Proposition 5.5 (applied to n � 1 � 2 and k � 2 � 1) we obtain

sup
t
k Nv.t/kn�2 � CT .d2.m1; m2/C jx10 � x

2
0 j/k�0k�.k�2/; (99)

sup
t
k N�.t/k�.k�1/ � CT .d2.m1; m2/C jx10 � x

2
0 j/k�0k�.k�2/: (100)

Completely analogous estimates hold for v0i ; �
0
i and their differences Nv0; N�0.

We now proceed by estimating . Nw; N�/, which solves the first order linearized system
with zero initial datum, withH and its derivatives evaluated at .x10 ; x;Du

1.t; x/;m1.t//,
and with right-hand side

R1.t; x/ WD �

�
.H 1

p �H
2
p / �Dw

2
C

�
ıH 1

ım
�
ıH 2

ım

�
.�2.t//

C
ı2H 1

ım2
.�1.t/; �

0
1.t// �

ı2H 2

ım2
.�2.t/; �

0
2.t//CH

1
ppDv1 �Dv

0
1

�H 2
ppDv2 �Dv

0
2 C

ıH 1
p

ım
.�1/ �Dv

0
1 �

ıH 2
p

ım
.�2/ �Dv

0
2 C

ıH 1
p

ım
.�01/ �Dv1

�
ıH 2

p

ım
.�02/ �Dv2

�
;

R2.t; x/ WD �
2.H 1

p �H
2
p /C .m

1H 1
pp �m

2H 2
pp/Dw

2
C

�
m1
ıH 1

p

ım
�m2

ıH 2
p

ım

�
.�2/

C �1H
1
ppDv

0
1 � �2H

2
ppDv

0
2 C �

0
1H

1
ppDv1 � �

0
2H

2
ppDv2

Cm1H 1
pppDv1Dv

0
1 �m

2H 2
pppDv2Dv

0
2 Cm

1
ı2H 1

p

ım2
.�1; �

0
1/

�m2
ı2H 2

p

ım2
.�2; �

0
2/C �1

ıH 1
p

ım
.�01/ � �2

ıH 2
p

ım
.�02/C �

0
1

ıH 1
p

ım
.�1/

� �02
ıH 2

p

ım
.�2/Cm

1
ıH 1

pp

ım
.�01/Dv1 �m

2
ıH 2

pp

ım
.�02/Dv2

Cm1
ıH 1

pp

ım
.�1/Dv

0
1 �m

2
ıH 2

pp

ım
.�2/Dv

0
2;

R3.x/ WD
ı2G1

ım2
.�1.T /; �

0
1.T // �

ı2G2

ım2
.�2.T /; �

0
2.T //C

�
ıG1

ım
�
ıG2

ım

�
.�2.T //:

Recall also that Proposition 5.6 and Remark 5.7 (applied to n � 1 and k � 1) yield

sup
t
kwi .t/kn�3 � .1C CT /k�0k�.k�2/k�

0
0k�.k�2/;

sup
t
k�i .t/k�.k�1/ � CT k�0k�.k�2/k�

0
0k�.k�2/:

(101)
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By (98)–(101) we get

sup
t
kR1.t/kn�3 C sup

t
kR2.t/k�.k�1/

� CT .d2.m1; m2/C jx10 � x
2
0 j/k�0k�.k�2/k�

0
0k�.k�2/:

Similarly, using also the Lipschitz regularity of ıG
ım

,

kR3kn�3 � .1C CT /





ı2Gım2 .x20 ; m2.T // � ı2Gım2 .x10 ; m1.T //





n�3Ik�2;k�2

� k�0k�.k�2/k�
0
0k�.k�2/

C CT .d2.m1; m2/C jx10 � x
2
0 j/k�0k�.k�2/k�

0
0k�.k�2/;

Then, recalling that Nw D w1 �w2 satisfies (97), we obtain in view of (56) in Proposition
5.5 and for any r � n � 3,



Dr

x

ı2U

ım2
.t0; x

2
0 ; m2/ �D

r
x

ı2U

ım2
.t0; x

1
0 ; m1/






0Ik�2;k�2

� .1C CMT /





Dr
x

ı2G

ım2
.x20 ; m2.T // �D

r
x

ı2G

ım2
.x10 ; m1.T //






0Ik�2;k�2

C CMT .d2.m1; m2/C jx10 � x
2
0 j/: (102)

Choosing x10 D x
2
0 , summing over r � n � 3 and recalling Proposition 5.4 and (96) then

gives the claim.
Note that we also have the following inequality for N�D �1 ��2, which will be useful

in the next proposition:

sup
t2Œt0;T �

k�1.t/ � �2.t/k�k

� CT .d2.m1; m2/C jx10 � x
2
0 j/k�0k�.k�2/k�

0
0k�.k�2/: (103)

Finally, we establish the Lipschitz regularity of the second order derivatives of G0

and G with respect to x0 and m.

Proposition 5.19. Let U be the solution of (43) given by (44) and U 0 be the solution
to (46) given by (47). Suppose that the assumptions of Proposition 5.18 hold and that in
addition

Lipn�3Ik�2;k�2

�
ı2G0

ım2
;
ı2G

ım2

�
CLipn�3Ik�2

�
ıG0x0
ım

;
ıGx0
ım

�
CLipn�3.D

2
x0
G0;D2

x0
G/

�M;

Lipx0
n�3Ik�2;k�2

�
ı2G0

ım2
;
ı2G

ım2

�
CLipx0

n�3Ik�2

�
ıG0x0
ım

;
ıGx0
ım

�
CLipx0n�3.D

2
x0
G0;D2

x0
G/

�M;
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for some n � 4 and k 2 ¹3; : : : ; n � 1º. Then

sup
t

Lipn�3Ik�2;k�2

�
ı2U 0.t/

ım2
;
ı2U.t/

ım2

�
� Lipn�3Ik�2;k�2

�
ı2G0

ım2
;
ı2G

ım2

�
C CMT;

sup
t

Lipx0
n�3Ik�2;k�2

�
ı2U 0.t/

ım2
;
ı2U.t/

ım2

�
� Lipx0

n�3Ik�2;k�2

�
ı2G0

ım2
;
ı2G

ım2

�
C CMT;

sup
t

Lipn�3Ik�2

�
ıU 0x0.t/

ım
;
ıUx0.t/

ım

�
� Lipn�3Ik�2

�
ıG0x0
ım

;
ıGx0
ım

�
C CMT;

sup
t

Lipx0
n�3Ik�2

�
ıU 0x0.t/

ım
;
ıUx0.t/

ım

�
� Lipx0

n�3Ik�2

�
ıG0x0
ım

;
ıGx0
ım

�
C CMT;

Lipx0n�3.D
2
x0
U 0.t/;D2

x0
U.t// � Lipx0n�3.D

2
x0
G0;D2

x0
G/C CMT:

Proof. We will detail only the proof of Lipschitz estimates of . ı
2U 0

ım2
; ı
2U
ım2

/. Lipschitz

regularity of
ıU 0x0
ım

andD2
x0
U 0, ıUx0

ım
andD2

x0
U can be proven along the same lines using

the representation formulas that appear in the proof of Proposition 5.17.
Let us start with ı2U 0

ım2
. Fix .t0; m1; m2/ 2 Œ0; T � � P 2

2 and x10 ; x
2
0 2 Rd . Also, as in

the proof of Proposition 5.17, for i D 1; 2 let

� .ui ; mi / be the solution to the MFG system (45) starting from mi at time t0 with H
(and G) evaluated at .xi0; x;Du

i .t; x/;mi .t// (and .xi0; x;m
i .T // ),

� .vi ; �i / (respectively .v0i ; �
0
i /) be the solution of the first order linearized system (52)

with zero right-hand side, initial condition .t0; �0/ (respectively .t0; �00/) and where the
Hamiltonian and its derivatives are evaluated at .xi0; x;Du

i .t; x/;mi .t//,

� .wi ; �i / be the solution to the second order linearized system (63) associated with
.vi ; �i /; .v

0
i ; �
0
i / (and .ui ; mi /), and with zero right-hand side.

Recall that (95) provides a representation formula for ı
2U 0

ım2
:

ı2U 0

ım2
.t0; x

i
0; mi /.�0; �

0
0/

D
ı2G0

ım2
.xi0; m

i .T //.�i .T /; �
0
i .T //C

ıG0

ım
.xi0; m

i .T //.�i .T //;

and ı2U
ım2

.t0; x
i
0; x;mi /.�0; �

0
0/ D w

i .t0; x/. Let us recall the inequalities

sup
t2Œt0;T �

d2.m1.t/;m2.t// � .1C CT /d2.m10; m
2
0/C CT jx

1
0 � x

2
0 j;

sup
t2Œt0;T �

k�i .t/k�.k�2/ � .1C CT /k�0k�.k�2/;

sup
t2Œt0;T �

k�0i .t/k�.k�2/ � .1C CT /k�
0
0k�.k�2/;

sup
t2Œt0;T �

k�1.t/ � �2.t/k�.k�1/ � CT
�
d2.m1; m2/C jx10 � x

2
0 j
�
k�0k�.k�2/;
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sup
t2Œt0;T �

k�01.t/ � �
0
2.t/k�.k�1/ � CT .d2.m1; m2/C jx

1
0 � x

2
0 j/k�

0
0k�.k�2/;

sup
t2Œt0;T �

k�i .t/k�.k�1/ � CT k�0k�.k�2/k�
0
0k�.k�2/;

sup
t2Œt0;T �

k�1.t/ � �2.t/k�k � CT .d2.m1; m2/C jx10 � x
2
0 j/k�0k�.k�2/k�

0
0k�.k�2/;

which are consequences of Proposition 5.4, (98), (100), (101) and (103). Setting

�T WD CT .d2.m1; m2/C jx10 � x
2
0 j/k�0k�.k�2/k�

0
0k�.k�2/;

we obtain, using also (102), for any r � n � 3,ˇ̌̌̌�
ı2U 0

ım2
.t; x10 ; m1/ �

ı2U 0

ım2
.t; x20 ; m2/

�
.�0; �

0
0/

ˇ̌̌̌2
C sup

x

ˇ̌̌̌
Dr
x

�
ı2U

ım2
.t; x10 ; x;m1/ �

ı2U

ım2
.t; x20 ; x;m2/

�
.�0; �

0
0/

ˇ̌̌̌2
� .1C CT /

�

²ˇ̌̌̌
ı2G0

ım2
.x10 ; m

1.T //.�1.T /; �
0
1.T // �

ı2G0

ım2
.x20 ; m

2.T //.�1.T /; �
0
1.T //

ˇ̌̌̌
C �T

³2
C .1C CT /

²
sup
x

ˇ̌̌̌
Dr
x

ı2G

ım2
.x10 ; x;m

1.T //.�1.T /; �
0
1.T //

�Dr
x

ı2G

ım2
.x20 ; x;m

2.T //.�1.T /; �
0
1.T //

ˇ̌̌̌
C �T

³2
:

Choosing m1 D m2 D m and rearranging gives Lipschitz estimates in x0:ˇ̌̌̌�
ı2U 0

ım2
.t; x10 ; m/ �

ı2U 0

ım2
.t; x20 ; m/

�
.�0; �

0
0/

ˇ̌̌̌2
C sup

x

ˇ̌̌̌
Dr
x

�
ı2U

ım2
.t; x10 ; x;m/ �

ı2U

ım2
.t; x20 ; x;m/

�
.�0; �

0
0/

ˇ̌̌̌2
� .1CCT /

²�ˇ̌̌̌
ı2G0

ım2
.x10 ; m

1.T //.�1.T /; �
0
1.T //�

ı2G0

ım2
.x20 ; m

1.T //.�1.T /; �
0
1.T //

ˇ̌̌̌2
C sup

x

ˇ̌̌̌
Dr
x

ı2G

ım2
.x10 ; x;m

1.T //.�1.T /; �
0
1.T //

�Dr
x

ı2G

ım2
.x20 ; x;m

1.T //.�1.T /; �
0
1.T //

ˇ̌̌̌2�1=2
C CT jx10 � x0jk�0k�.k�2/k�

0
0k�.k�2/

³2
;

while the choice x10 D x
2
0 similarly gives Lipschitz estimates in m.
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Appendix A. Estimates for solutions to HJ equations

A.1. Main estimates

In this section, we assume that the data a, h and g are smooth and we are looking for
a priori estimates on the smooth and globally bounded solution u to the HJ equation´
�@tu.t; x/ � Tr.a.t; x/D2u.t; x//C h.t; x;Du.t; x// D 0 in .0; T / �Rd ;

u.T; x/ D g.x/ in Rd :
(104)

We always assume that there exist C0 > 0 and 
 � 1 such that

a.t; x/ � C�10 Id ; kDak1 � C0

and
jDxh.t; x; p/j � C0.1C jpj


 /

for every .t; x; p/ 2 .0; T / �Rd �Rd .

Proposition A.1 (Lipschitz estimates). For anyM > 0 there exists TM ;CM > 0, depend-
ing on M , C0 and 
 , such that if T 2 .0; TM / and kDgk1 �M , then

sup
t2Œ0;T �

kDu.t/k1 � kDgk1 C CMT:

Proof. We use the standard Bernstein method. Let v.t; x/ D
P
i u
2
i .t; x/. Then

@tv.t; x/ D 2
X
i

ui .t; x/ui;t .t; x/; vj .t; x/ D 2
X
i

ui .t; x/uij .t; x/;

vjk.t; x/ D 2
X
i

�
uik.t; x/uij .t; x/C ui .t; x/uijk.t; x/

�
:

Thus

�@tv � Tr.a.t; x/D2v.t; x//

D �2
X
i

ui .t; x/ui;t .t; x/ � 2
X
i;j;k

ajk.t; x/.uik.t; x/uij .t; x/C ui .t; x/uijk.t; x//

D �2
X
i;j;k

ajk.t; x/uik.t; x/uij .t; x/ � 2
X
i

ui .t; x/Di
�
@tuC Tr.a.t; x/D2u.t; x//

�
C 2

X
i;j;k

ui .t; x/.ajk/i .t; x/ujk.t; x/;

where .ajk/i denotes the xi -derivative of the element ajk of the matrix a.t; x/.
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Using the equation for u we find

�@tv � Tr.a.t; x/D2v.t; x//

D �2
X
i;j;k

ajk.t; x/uik.t; x/uij .t; x/

� 2
X
i

ui .t; x/.hi .t; x;Du.t; x//C hp.t; x;Du.t; x// �Dui .t; x//

C 2
X
i;j;k

ui .t; x/.ajk/i .t; x/ujk.t; x/: (105)

Using our assumptions on a and h, we infer that

�@tv � Tr.a.t; x/D2v.t; x//C hp.t; x;Du.t; x// �Dv.t; x/

� �2C�10 jD
2uj2 C 2C0jDuj.1C jDuj


 /C kDak1jDuj jD
2uj

� 2C0jDuj.1C jDuj

 /C cdkDak

2
1C0jDuj

2

for some constant cd only depending on the dimension d . In particular, by the maximum
principle we estimate

kvkL1.QT / � kDgk
2
L1.QT /

C T Œ2C0kDukL1.QT /.1C kDuk



L1.QT /
/C cdkDak

2
1C0kDuk

2
L1.QT /

�; (106)

which implies

kvkL1.QT / � kDgk
2
L1.QT /

C 4T 2C 20 C
1
4
kDuk2L1.QT /

C OCT kDuk2L1.QT /ŒkDuk

�1

L1.QT /
C 1� (107)

for some OC only depending on d and C0. Recall that

kvkL1.QT / D kDuk
2
L1.QT /

;

and define TM as

TM D min
²
1

2C0
M;

1

4 OC.1C .2M/
�1/

³
:

Then it is easy to see that

kDukL1.QT / � 2M 8T � TM : (108)

Indeed, for T < TM and kDukL1.QT / � 2M , (107) implies

kDuk2L1.QT / � kDgk
2
L1.QT /

C 4T 2MC
2
0 C

1
4
kDuk2L1.QT /

C OCTM kDuk
2
L1.QT /

Œ.2M/
�1 C 1�

< kDgk2L1.QT / CM
2
C

1
2
kDuk2L1.QT /;
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hence
kDukL1.QT / < 2M

whenever T < TM and kDukL1.QT / � 2M . A continuity argument implies that

sup ¹T W kDukL1.QT / � 2M º D TM ;

so (108) holds true. Using this information, we deduce from (106) that

kDuk2L1.QT / � kDgk
2
L1.QT /

C CMT kDukL1.QT /;

where CM D 2C0.1C .2M/
 /C cdkDak
2
1C02M . Hence�

kDukL1.QT / �
1
2
CMT

�2
� kDgk2L1.QT / C

1
4
C 2MT

2

which implies kDukL1.QT / � CMT C kDgkL1.QT /.

Proposition A.2 (Lipschitz estimates, linear case). Assume that T � 1 and

jDxh.t; x; p/j � C1 C C2jpj 8.t; x; p/ 2 .0; T / �Rd �Rd ;

for some constants C1; C2 > 0. Then there exists a constant C , depending on C0, C2 and
kDak1 only, such that

sup
t2Œ0;T �

kDu.t/k1 � kDgk1.1C CT /C CC1T:

Proof. Our starting point is inequality (105) in the previous proof. Using our assumptions
on a and h we get

�@tv � Tr.a.t; x/D2v.t; x//C hp.t; x;Du.t; x// �Dv.t; x/

� �2C�10 jD
2uj2 C 2jDuj.C1 C C2 jDuj/C kDak1jDuj jD

2uj

� 2jDuj.C1 C C2jDuj/C cdkDak
2
1C0jDuj

2;

which implies

�@tv � Tr.a.t; x/D2v.t; x//C hp.t; x;Du.t; x// �Dv.t; x/ � �v C 2C1v
1=2;

where � D 2C2 C cdkDak21C0. By the maximum principle we get

kvkL1.QT / � e
�T .2C1T kvk

1=2

L1.QT /
C kDgk21/;

from which we derive

kvk
1=2

L1.QT /
� 2C1Te

�T
C e�T=2kDgk1:

Since T � 1 (and so e�T=2 � 1C c�T ), the conclusion follows.
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Proposition A.3 (Second order estimate). Assume that h and a are of class C 2
b

. Then, for
any M > 0, there are constants TM ; CM > 0, depending on M and on

sup
t2Œ0;T �

ka.t/k2 C sup
jpj�kDuk1

kD2
xph.�; �; p/k1; (109)

such that if kD2gk1 �M and T 2 .0; TM /, then

sup
t2Œ0;T �

kD2u.t/k1 � kD
2gk1 C CMT:

If in addition h is affine in p, then there is a constant C , depending only on C0,
supt2Œ0;T � ka.t/k2 and on kD2

xphk1, such that, for any T 2 .0; 1�,

sup
t2Œ0;T �

kD2u.t/k1 � .1C CT /kD
2gk1 C CT sup

jpj�kDuk1

kD2
xxh.�; �; p/k1:

Proof. We use the Bernstein method again. Let w.t; x/ D
P
i;j u

2
ij . Then

�@tw � Tr.a.t; x/D2w.t; x//

D �2
X
i;j;k;l

akl .t; x/uijk.t; x/uijl .t; x/ � 2
X
i;j

uij .t; x/Di;j

�
@tuC

X
k;l

aklukl

�
C 2

X
i;j;k;l

uij .t; x/..akl /i .t; x/ujkl .t; x/C .akl /j .t; x/uikl .t; x/C .akl /ijukl /:

So

�@tw�Tr.a.t; x/D2w.t; x// D

�2
X
i;j;k;l

akluijkuijl�2
X
i;j

uij .hijChi;p �DujChj;p �DuiChppDui �DujChpDuij /

C2
X
i;j;k;l

uij .t; x/
�
.akl /i .t; x/ujkl .t; x/C.akl /j .t; x/uikl .t; x/C.akl /ijukl

�
; (110)

which yields, using the ellipticity of a.t; x/,

�@tw�Tr.a.t; x/D2w.t; x//Chp.t; x;Du.t; x//�Dw.t; x/

� �2C�10 jD
3uj2CChjD

2uj.1CjD2ujCjD2uj2/CC jD2uj.kak1jD
3ujCkak2jD

2uj/

for some constant Ch depending on supjpj�kDuk1 kD
2
x;ph.�; �; p/k1. Young’s inequality

leads to

�@tw � Tr.a.t; x/D2w.t; x//C hp.t; x;Du.t; x// �Dw.t; x/

� C jD2uj.1C jD2uj C jD2uj2/;

where now C depends on kak2 as well. We conclude the proof using the maximum prin-
ciple as in the proof of Proposition A.1.
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If h is affine in p, then with the same estimates we deduce from (110) that

� @tw � Tr.a.t; x/D2w.t; x//C hp.t; x;Du.t; x// �Dw.t; x/

� jD2uj.2kDxxhk1 C C jD
2uj/ � Cw C 2kDxxhk1jD

2uj;

where C depends on kak2, C0 and supjpj�kDuk1 kD
2
x;ph.�; �; p/k1. The conclusion fol-

lows as in Lemma A.2.

Proposition A.4 (Third order estimate). Assume that h and a .and the solution u/ are of
class C 3

b
. Then there is a constant C , depending on kD2uk1, on kDak1 C kD2ak1 C

kD3ak1 and on

sup
jpj�kDuk1

¹kD3
.x;p/h.�; �; p/k1 C khpp.�; �; p/k1º;

such that, for any T 2 .0; 1�,

sup
t2Œ0;T �

kD3u.t/k1 � .1C CT /kD
3gk1 C CT:

Proof. Let w D
P
ijk u

2
ijk

. Then

�@tw � Tr.a.t; x/D2w.t; x// D

�2
X

i;j;k;l;m

alm.t; x/uijkl .t; x/uijkm.t; x/ � 2
X
i;j

uijk.t; x/Di;j;k

�
@tuC

X
l;m

almulm

�
C 2

X
i;j;k;l;m

uijk.t; x/
�
.alm/ijkulm C .alm/ijuklm C .alm/ikujlm C .alm/jkuilm

C .alm/iujklm C .alm/juiklm C .alm/kuijlm
�

So

�@tw � Tr.a.t; x/D2w.t; x//

D �2
X

i;j;k;l;m

alm.t; x/uijkl .t; x/uijkm.t; x/ � 2
X
i;j

uijk.t; x/Di;j;k¹hº

C 2
X

i;j;k;l;m

uijk.t; x/
�
.alm/ijkulm C .alm/ijuklm C .alm/ikujlm C .alm/jkuilm

C .alm/iujklm C .alm/juiklm C .alm/kuijlm
�
: (111)

As before, the coercivity of a implies

�2
X

i;j;k;l;m

alm.t; x/uijkl .t; x/uijkm.t; x/ � �2C
�1
0 jD

4uj2;
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whereas the last term in (111) is estimated as

2
X

i;j;k;l;m

uijk.t; x/
�
.alm/ijkulm C .alm/ijuklm C .alm/ikujlm C .alm/jkuilm

C .alm/iujklm C .alm/juiklm C .alm/kuijlm
�

� C�10 jD
4uj2 C jD3uj.2kD3ak1jD

2uj C C jD3uj/;

for some C depending on C0 and kD2ak1. Finally, a direct computation of Di;j;k¹hº
and a straightforward estimate of all terms involved imply

�2
X
i;j

uijk.t; x/Di;j;k¹hº � �hp.t; x;Du.t; x// �Dw.t; x/

C C jD3ujŒkD2hk1jD
3uj.1C jD2uj/C kD3hk1.1C jD

2uj3/�:

Hence, putting all together we deduce from (111) that

�@tw � Tr.a.t; x/D2w.t; x//C hp.t; x;Du.t; x// �Dw.t; x/

� C jD3ujŒkD2hk1jD
3uj.1C jD2uj/C kD3hk1.1C jD

2uj3/�

C jD3uj.2kD3ak1jD
2uj C C jD3uj/

� C jD3uj2 C C jD3uj;

where C depends also on kDkuk1 for k � 2. We conclude the proof as in Proposi-
tion A.2.

Lemma A.5 (Higher order estimate). Let n 2N with n� 3 and assume that h and a .and
the solution u/ are of class C n

b
. There is a constant C , depending on n, d , supt ku.t/kn�1,

supt ka.t/kn and

sup
jpj�kDuk1

nX
kD0

kDk
.x;p/h.�; �; p/k1; (112)

such that, for any T 2 .0; 1�,

sup
t
kDnu.t/k1 � .1C CT /kD

ngk1 C CT:

Proof. Let w WD
P
jkjDn u

2
k

, where k D .k1; : : : ; kd / 2 Nd and jkj D
P
i ki . Then

�@tw � Tr.a.t; x/D2w.t; x//

D �2
X
jkjDn

X
i;j

aij .t; x/uk;i .t; x/uk;j .t; x/ � 2
X
jkjDn

uk.t; x/Dk¹@tuC Tr.aD2u/º

C 2
X
jkjDn

uk
�
Dk.Tr.aD2u// � Tr.aD2uk/

�
:

As n � 3, a simple induction argument shows that Dk¹hº is of the form

Dk¹hº D fk C gk �D
nuC hp �Duk
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where the map
fk D fk.t; x;Du.t; x/; : : : ;D

n�1u.t; x//

is a polynomial function of the derivatives of u up to order n � 1 with coefficients
involving derivatives of hwith respect to .x;p/ up to order n computed at .t;x;Du.t;x//,
while

gk �D
nu D

X
j�jDn�1

X
zC�Dk

Dz;ph.t; x;Du.t; x//Du� C hpp.t; x;Du.t; x//DuzDu� ;

where � is any multi-index of length n� 1, z is a multi-index of length 1 (z D ej for some
j 2 ¹1; : : : ; dº) and � C z D k. Therefore

�@tw � Tr.a.t; x/D2w.t; x//C hp �Dw

D �2
X
i;j

X
jkjDn

aij .t; x/uk;i .t; x/uk;j .t; x/ � 2
X
jkjDn

uk.t; x/.fk C gk �D
nu/

C 2
X
jkjDn

uk
�
Dk.Tr.aD2u// � Tr.aD2uk/

�
� �2C�10

X
jkjDn

jDukj
2
C C jukj.1C jukj/

C 2
X
jkjDn

uk
�
Dk.Tr.aD2u// � Tr.aD2uk/

�
;

where C depends on supt ku.t/kn�1 and the quantity in (112). The last term can be
estimated as before: the higher order quantity involvesDuk , so by Young’s inequality we
have

2
X
jkjDn

uk
�
Dk.Tr.aD2u// � Tr.aD2uk/

�
� 2C�10

X
jkjDn

jDukj
2
C C jukj.1C jukj/

for some C depending on supt ka.t/kn and supt ku.t/kn�1. Finally, we use the maximum
principle, as in Lemma A.2.

Proposition A.6 (Higher order estimate, further informations). Let n 2 N with n � 3
and assume that h and a .and the solution u/ are of class C n

b
. For any M > 0, there are

constants KM ; TM > 0, depending on M , C0 and 
 , and a constant CM > 0 depending
on

sup
t2Œ0;TM �

ka.t/kn C sup
jpj�KM

nX
kD0

kDk
.x;p/h.�; �; p/k1;

such that if kgkn �M , then, for any T 2 .0; TM / and any r � n, we have

sup
t2Œ0;T �

kDr
xu.t/k1 � kD

r
xgk1 C CMT

and therefore
sup
t2Œ0;T �

ku.t/kn � kgkn C CMT: (113)
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Proof. The proof is by a straightforward combination of Propositions A.1 and A.3 and
Lemma A.5.

We finally address the same issue for (uncoupled) systems of linear parabolic equa-
tions. Let .ul /k

lD1
solve the system´

�@tu
l � Tr.a.t; x/D2ul /C V.t; x/ �Dul C f l .t; x/ D 0 in .0; T / �Rd ;

ul .T; x/ D gl .x/ in Rd ;

where a, V and the f l are bounded in C n
b

independently of t 2 Œ0; 1�, for some n 2 N�.
Note that the diffusion and the drift terms are independent of l .

Proposition A.7 (Higher order estimate, systems of affine equations). There is a constant
C , depending on k, d , supt ka.t/kn and supt kV.t/kn, such that, for any T 2 .0; 1� and
any r � n,

sup
t;x

� kX
lD1

jDr
xu
l .t; x/j2

�1=2
� .1C CT / sup

x

� kX
lD1

jDr
xg
l .x/j2

�1=2
C CT sup

l

.kglkr C sup
t
kf l .t/kr /:

In particular, if k D 1 then for any r � n,

sup
t2Œ0;T �

kDr
xu.t/k1 � .1C CT /kD

r
xgk1 C CT sup

t
kDr

xf .t/k1:

The only small point here is that the supremum over x is outside the sum (and not
inside as it would be by simply applying the previous propositions to each ul ).

Proof of Proposition A.7. The proof runs exactly as before and so we just briefly explain
the idea for r D 0. Let v.t; x/ D

Pk
lD1.u

l .t; x//2. Then v solves

�@tv � Tr.aD2v/C V �Dv D �2

kX
lD1

ulf l �
X
i;j;l

aiju
l
iu
l
j :

We infer the result by using the positivity of a and the maximum principle.

A.2. Systems with parameters

In this section we revisit the above estimates for specific systems of Hamilton–Jacobi
equations involving a parameter y. The motivation for the specific form of the system is
the analysis of MFG problems with a major player. Note that here the variables-parameter
couple .xI y/ plays the role of .x0I x/ in the HJ system (35) analyzed throughout Sec-
tion 4.2. As usual, we discuss linear and nonlinear systems separately.
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A.2.1. Nonlinear systems. Here we consider the system consisting in coupling a nonlin-
ear HJ equation with a linear one:8̂̂̂<̂

ˆ̂:
�@tu

0.t; x/ ��u0.t; x/C h0.t; x;Du0.t; x// D 0 in .0; T / �Rd ;

�@tu.t; xIy/ ��u.t; xIy/

C h0p.t; x;Du
0.t; x// �Du.t; xIy/C f .t; xIy/ D 0 in .0; T / �Rd ;

u0.T; x/ D g0.x/; u.T; x/ D g.xIy/ in Rd ;

(114)

where h0 W Œ0; T � �Rd �Rd ! R and f W Œ0; T � �Rd �Rd1 ! R (d1 being the space
parameter of the variable y) are smooth maps satisfying in addition the bounds

jDx;ph
0.t; x; p/j C jD2

x;ph
0.t; x; p/j � C0.jpj



C 1/ (115)

for some 
 > 0 and C0 > 0.

Proposition A.8. Let r; n 2 N and assume .in addition to (115)/ that h0; h0p are of class
C r
b

and that f is bounded in C r;n
b

independently of t 2 Œ0; 1� for some n 2 N. For any
M > 0, there are constants KM ; TM > 0, depending on M , C0 and 
 in (115), and a
constant CM > 0 depending on

sup
jpj�KM

� rX
kD0

kDk
.x;p/h

0.�; �; p/k1 C

rX
kD0

kDk
.x;p/h

0
p.�; �; p/k1

�
; sup

t
kf .t/kr;n

such that if kg0kr Ckgkr;n �M and T 2 .0; TM /, and if .u0; u/ is the solution to (114),
then, for l � n,

sup
t;x;y

�
jDru0.t; x/j2 C jDr

xD
l
yu.t; xIy/j

2
�1=2

� sup
x;y

�
jDrg0.x/j2 C jDr

xD
l
yg.xIy/j

2
�1=2
C CMT:

Recall thatDr
xD

l
yuD .@

ˇ
x@
˛
yu/jˇ jDr;j˛jDl , hence jDr

xD
l
yuj

2D
P
jˇ jDr;j˛jDl .@

ˇ
x@
˛
yu/

2.
Let us also point out that the main difference compared to Proposition A.6 is that we need
to estimate u0 and u at the same time.

Proof. The proof uses the same technique as for a single Hamilton–Jacobi equation
without parameter. We only explain the main changes. We first prove the result for l D 0.

By the maximum principle we can first bound ju0j2C juj2 by k.g0/2C g2k1CCT .
Next we address the Lipschitz estimate. We claim that, for any M > 0 and any n 2 N, if
kDg0k1 C kDxgk1 �M , then there exist TM and CM (depending on M , C0, n and 

in (115) only) such that

sup
t;x;y

�
jDu0.t; x/j2 C jDxu.t; xIy/j

2
�1=2

� sup
x;y

�
jDg0.x/j2 C jDxg.xIy/j

2
�1=2
C CMT

�
1C sup

t
kDxf .t/k1

�
:
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To see this, set v.t; x/ D
Pd
iD1..u

0
i /
2 C .ui /

2/. Then following the computation in the
proof of Proposition A.1, we find

�@tv ��v.t; x/

D �2
X
i

.u0iDxi .@tu
0
C�u0/C uiDxi .@tuC�u// � 2.jD

2u0j2 C jD2uj2/

D �2
X
i

�
u0i .h

0
xi
C h0p �Du

0
i /C ui .h

0
p;xi
�DuC h0ppDu

0
i �DuC h

0
p �Dui C fi /

�
� 2.jD2u0j2 C jD2uj2/;

so that

�@tv ��v.t; x/C h
0
p �Dv

D �2
X
i

�
u0i h

0
xi
C ui .h

0
p;xi
�DuC h0ppDu

0
i �DuC fi /

�
� 2.jD2u0j2 C jD2uj2/:

Using our assumption on h0 we get

�@tv ��v.t; x/C h
0
p �Dv � Cv

1=2.jvj� C 1C kDxf k1/

for some C > 0 and � > 0 which depend on C0 and 
 only. We derive from this the
Lipschitz estimate thanks to the maximum principle, exactly as in the proof of Proposi-
tion A.1.

The higher order estimates can be checked exactly as in Propositions A.3 and Lem-
ma A.5, so we omit the proof. Note that the higher order estimates on Dru0 and Dru

depend on Dr�1u0 and Dr�1u, but this dependence affects the constant CM only.
Let us finally explain how to handle the derivative with respect to y. We note that

@˛yu satisfies the same linear equation as u with f replaced by @˛yf , and the final datum
g is replaced by @˛yg. So, in order to estimate DxDl

y.u
0; u/ for instance, we just set

cl D .
P
j˛jDl 1/

�1, v˛ D
Pd
iD1.cl .u

0
i /
2 C .@˛yui /

2/ and w D
P
j˛jDl v

˛ . As above,

�@tv
˛
��v˛.t; x/C h0p �Dv

˛
� C.v˛/1=2.jv˛j� C 1C kDx@

˛
yf k1/

� Cw1=2.jwj� C 1C kDxD
l
yf k1/;

and summing up one gets the desired inequality, noting that w D
P
jˇ jD1.@

ˇ
xu

0/2 CP
jˇ jD1; j˛jDl .@

ˇ
x@
˛
yu/

2.

A.2.2. Linear systems. We also need to quantify the regularity of linear systems of the
form8̂̂̂<̂
ˆ̂:
�@tu

0.t; x/ ��u0.t; x/C V 0.t; x/ �Du0.t; x/C f 0.t; x/ D 0 in .0; T / �Rd ;

�@tu.t; xIy/ ��u.t; xIy/C V
0.t; x/ �Du.t; xIy/C V.t; xIy/ �Du0.t; x/

Cf .t; xIy/ D 0 in .0; T / �Rd ;

u0.T; x/ D g0.x/; u.T; x/ D g.xIy/ in Rd ;
(116)
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Proposition A.9. Assume that, independently of t 2 .0; 1�, V 0; f 0 are bounded in C r ,
and V; f are bounded C r;n

b
for some r; n � 0. If .u0; u/ is a solution of (116) which is

bounded in C r
b
� C

r;n
b

and if kg0kr C kgkr;n �M , then, for any T 2 .0; 1�, l � n,

sup
t;x;y

�
jDr

xu
0.t; x/j2 C jDr

xD
l
yu.t; xIy/j

2
�1=2

� sup
x;y

�
jDr

xg
0.x/j2 C jDr

xD
l
yg.xIy/j

2
�1=2
C CMT;

whereCM depends onM and the bounds on V 0;f 0 and V;f inC r andC r;n
b

respectively.
In addition, for r D 0 and l � n, we have

sup
t;x;y

�
ju0.t; x/j2 C jDl

yu.t; xIy/j
2
�1=2

� .1C CT / sup
x;y

�
jg0.x/j2 C jDl

yg.xIy/j
2
�1=2
C CT .kf 0k1 C kD

l
yf k1/;

where C depends just on the bounds of V 0 and V .

Proof. We first note that the derivatives of u with respect to y solve a system which has
the same structure as the one for u; so we just need to check the result for n D 0, and
proceed as in the proof of Proposition A.8 for n > 0.

Let us start with the L1 bounds. We consider Qv WD .u0/2 C u2. Then v satisfies

�@t Qv �� Qv D �2u
0.@tu

0
C�u0/ � 2u.@tuC�u/ � 2.jDu

0
j
2
C jDuj2/

D �2u0.V 0.t; x/ �Du0.t; x/C f 0.t; x//

� 2u
�
V 0.t; x/ �Du.t; x/C V.t; xIy/ �Du0.t; x/C f .t; xIy/

�
� 2.jDu0j2 C jDuj2/

� C Qv C Qv1=2.kf 0k1 C kf k1/;

where C depends on kV 0k1 and kV k1 only. This implies the result for r D n D 0.
We now check the C 1 estimate. Set as usual v.t; x/ D

Pd
iD1..u

0
i /
2 C .ui /

2/. Then

�@tv ��v.t; x/

D �2
X
i

�
u0iDxi .@tu

0
C�u0/C uiDxi .@tuC�u/

�
� 2.jD2u0j2 C jD2uj2/

D �2
X
i

�
u0i .V

0
xi
�Du0 C V 0 �Du0i C f

0
i /C ui .V

0
xi
�DuC V 0 �Dui C Vxi �Du

0

C V �Du0i C fi /
�
� 2.jD2u0j2 C jD2uj2/

� Cv C v1=2.kDf 0k1 C kDxf k1/;

where C only depends on theC 1 bounds on V 0 and V and on d . This implies the estimate
for r D 1 and n D 0.

As for the C 2 estimate, set as usual w.t; x/ D
Pd
i;jD1..u

0
ij /
2 C .uij /

2/. Then

�@tw��w.t; x/ � CwCCw
1=2.1CkD2f 0k1CkD

2
xf k1CkDu

0
k1CkDxuk1/;
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where C depends on the C 1 bound on V 0 and on V and on d only. We then get the
estimate for r D 2 and n D 0 by the maximum principle and using the previous bounds
for Du0;Du.

The estimate on higher order derivatives can be checked in a similar way and we omit
the proof.

Appendix B. Functions on P2

B.1. A criterion of differentiability

Here we introduce a simple criterion for a map U , depending on a measure, to be of
class C 1.

Lemma B.1. Let U W P2 ! R be continuous. For .s;m; y/ 2 Œ0; 1� �P2 �Rd set

OU.sIm; y/ WD U..1 � s/mC sıy/:

If the map s 7! OU.sIm; y/ has a derivative at s D 0 and if d
ds

ˇ̌
sD0
OU W P2 �Rd ! R is

continuous and bounded, then U is of class C 1 with

ıU

ım
.m; y/ D

d

ds
OU.0Im; y/:

Proof. We have to show that, for any m0; m1 2 P2, we have

U.m1/ � U.m0/ D

ˆ 1

0

ˆ
Rd

d

ds
OU.0I .1 � s/m0 C sm1; y/ .m1 �m0/.dy/:

Before starting the proof, let us note that the continuity of d
ds
OU at s D 0 implies its

continuity at any s 2 Œ0; 1�, replacing m by .1 � s/mC sıy .
Let us start by considering the case wherem0 is fixed andm1 is an empirical measure:

m1 D m
N
y WD

1
N

PN
kD1 ıyk for some N 2 N, N � 1, yk 2 Rd . The general case will be

treated next by approximation.
All the measures we are going to manipulate belong to the set

K WD
°
˛0m0 C

NX
kD1

˛kıyk W ˛k � 0;

NX
kD0

˛k D 1
±

which is compact in P2. So, by continuity of d
ds
OU , if we fix � > 0, there exists ı 2 .0;1=2/

such that if m0; m00 2 K with d2.m;m0/ < ı and s 2 Œ0; ı�, then

sup
k

ˇ̌̌̌
d

ds
OU.sIm; yk/ �

d

ds
OU.0Im0; yk/

ˇ̌̌̌
� �: (117)

Our first step consists in showing that, for s > 0 small enough (to be defined below) and
for any m 2 K, we haveˇ̌̌̌
U..1 � s/mC smNy / � U.m/ � s

ˆ
Rd

d

ds
OU.0Im; y/mNy .dy/

ˇ̌̌̌
� C.�s C s2/; (118)
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where C depends on the sup norm of d
ds
OU on Œ0; 1� �K � ¹yk W k D 1; : : : ; N º. In order

to prove (118), we define ˛k D s
N�.N�k/s

for k D 0; : : : ; N and note that

NY
lDk

.1 � ˛l / D 1 �
.N C 1 � k/s

N
: (119)

We now define by induction

m0 D m; mk D .1 � ˛k/mk�1 C ˛kıyk ; (120)

and using (119) we get

mN D

NY
kD1

.1 � ˛k/mC ˛nıyN C

N�1X
kD1

˛kıyk

NY
lDkC1

.1 � ˛l /

D .1 � s/mC

NX
kD1

ıyk
s

N � .N � k/s

�
1 �

.N � k/s

N

�
D .1 � s/mC smNy :

So, by the definition of mkC1 in terms of mk in (120),

U..1 � s/mC smNy / � U.m/ D

N�1X
kD0

U.mkC1/ � U.mk/

D

N�1X
kD0

. OU.˛kC1Imk ; ykC1/ � OU.0Imk ; ykC1// D

N�1X
kD0

ˆ ˛kC1

0

d

ds
OU.� Imk ; ykC1/ d�:

Assume that s 2 .0; ı/. As s < 1=2, we have ˛k � 2s=N for any k, and thus

d2.mk ; m/ � Cs

for a constant C which depends onm0 and on the yk (but not onm 2K nor on s 2 .0; ı/).
We now require that s is so small that Cs < ı. Then, for any k and any � 2 .0; ˛k/, by
(117) we have ˇ̌̌̌

d

ds
OU.� Imk ; ykC1/ �

d

ds
OU.0Im; ykC1/

ˇ̌̌̌
� �:

We infer from this thatˇ̌̌̌
U..1 � s/mC smNy / � U.m/ �

N�1X
kD0

˛kC1
d

ds
OU.0Im; ykC1/

ˇ̌̌̌
� C�

N�1X
kD0

˛kC1:

As j˛k � s=N j � Cs2=N , we conclude that (118) holds.
The next step consists in showing that

U.e�1m0 C .1 � e
�1/mNy / � U.m0/

D

ˆ 1�e�1

0

ˆ
Rd

d

ds
OU.0I .1 � �/m0 C �m

N
y ; y/m

N
y .dy/

d�

1 � �
: (121)
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For this, let us now choose T 2 N large and let

mn D

�
1 �

1

T

�n
m0 C

�
1 �

�
1 �

1

T

�n�
mNy ; n 2 ¹0; : : : ; T º:

We have

mnC1 D

�
1 �

1

T

�
mn C

1

T
mNy ; n 2 ¹0; : : : ; T º:

So, by (118),ˇ̌̌̌
U.mT / � U.m0/ � T

�1

T�1X
nD0

ˆ
Rd

d

ds
OU.0Imn; y/m

N
y .dy/

ˇ̌̌̌
�

T�1X
nD0

ˇ̌̌̌
U..1 � 1=T /mn C .1=T /m

N
y / � U.mn/ � T

�1

ˆ
Rd

d

ds
OU.0Imn; y/m

N
y .dy/

ˇ̌̌̌
� C

T�1X
nD0

.�=T C .1=T /2/ � C.� C T �1/:

We let T !C1 and then � ! 0 to conclude by continuity of U and of d
ds
OU that

U.e�1m0 C .1 � e
�1/mNy / � U.m0/

D

ˆ 1

0

ˆ
Rd

d

ds
OU.0I e�sm0 C .1 � e

�s/mNy ; y/m
N
y .dy/ ds

D

ˆ 1�e�1

0

ˆ
Rd

d

ds
OU.0I .1 � �/m0 C �m

N
y ; y/m

N
y .dy/

d�

1 � �
:

This is (121).
By continuity of U and of d

ds
OU and by density of the empirical measures, one deduces

from (121) that, for any measures m0; m1 2 P2,

U.e�1m0 C .1 � e
�1/m1/ � U.m0/

D

ˆ 1�e�1

0

ˆ
Rd

d

ds
OU.0I .1 � �/m0 C �m1; y/m1.dy/

d�

1 � �
: (122)

Choosing m1 D m0 then implies the normalization convention
ˆ

Rd

d

ds
OU.0Im0; y/m0.dy/ D 0

for any m0 2 P2. In particular, this yields
ˆ

Rd

d

ds
OU.0I .1 � �/m0 C �m1; y/m1.dy/

D .1 � �/

ˆ
Rd

d

ds
OU.0I .1 � �/m0 C �m1; y/ .m1 �m0/.dy/:
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Inserting this relation in (122) gives the more standard form

U.e�1m0 C .1 � e
�1/m1/ � U.m0/

D

ˆ 1�e�1

0

ˆ
Rd

d

ds
OU.0I .1 � �/m0 C �m1; y/ .m1 �m0/.dy/ d�:

Using again the continuity of U and of d
ds
OU , one easily deduce from this the desired

equality.

B.2. Interpolation and Ascoli theorem in P2

In the proof of Lemma 3.5, we have used two interpolation lemmas. The first one is
standard (see, for instance, [20, Lemma II.3.1]); we recall it because we need a specific
setting. The second one is an adaptation to P2 of the same techniques.

Lemma B.2. LetW W Œ0; 1��Rd1 !Rd2 be Hölder continuous in time locally uniformly
in space: for any R > 0, there exist C0;R; ˛R > 0 such that

jW.t; y/ �W.s; y/j � C0;Rjt � sj
˛

8.s; t; y/ 2 Œ0; 1� � Œ0; 1� �Rd1 with jyj � R and jt � sj � ˛R;

and such that DyW is Hölder continuous in space uniformly in time: there exists C1 > 0
such that

jDyW.t; y0/ �DyW.t; y1/j � C1jy0 � y1j
ı
8.t; y1; y2/ 2 Œ0; 1� �Rd1 �Rd1 :

Then DyW is Hölder continuous in time locally uniformly in space:

jDyW.t; y/ �DyW.s; y/j � CRjt � sj
˛ı
1Cı

8.s; t; y/ 2 Œ0; 1� � Œ0; 1� �Rd1 with jyj � R and jt � sj � ˛0R;

for some constants CR > 0 and ˛0R only depending on C0;RC1, ˛RC1, C1, ˛ and ı.

Remark B.3. The proof below also shows that if in addition W is Hölder continuous in
time uniformly in space (i.e., C0;R and ˛R do not depend on R) and if DyW is bounded,
then DyW is also Hölder continuous in time uniformly in space.

Proof of Lemma B.2. Fix y0; y1 2 Rd with jy0j � R and jy1j � R C 1. Let y� D
.1 � �/y0 C �y1 for � 2 Œ0; 1�. We haveˇ̌̌̌ˆ 1

0

.DyW.t; y� / �DyW.s; y� // � .y1 � y0/ d�

ˇ̌̌̌
D jW.t; y1/ �W.t; y0/ �W.s; y1/CW.s; y0/j � 2C0;RC1 jt � sj

˛:
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So

j.DyW.t; y0/ �DyW.s; y0// � .y1 � y0/j

�

ˇ̌̌̌ˆ 1

0

.DyW.t; y0/ �DyW.t; y� // � .y1 � y0/ d�

ˇ̌̌̌
C

ˇ̌̌̌ˆ 1

0

.DyW.t; y� / �DyW.s; y� // � .y1 � y0/ d�

ˇ̌̌̌
C

ˇ̌̌̌ˆ 1

0

.DyW.s; y� / �DyW.s; y0// � .y1 � y0/ d�

ˇ̌̌̌
� 2C0;RC1jt � sj

˛
C 2C1jy1 � y0j

1Cı ;

using also the Hölder continuity of DyW . Choosing y1 D y0 C hv with jvj D 1, we getˇ̌
ŒDyW.t; y/ �DyW.s; y/� � v

ˇ̌
�
2C0;RC1

jhj
jt � sj˛ C 2C1jhj

ı :

Optimizing with respect to h 2 .0; ˛RC1� and jvj D 1, we find the result for jt � sj � ˛0R
for a suitable constant ˛0R depending on C0;RC1, ˛, C1 and ı.

Lemma B.4. Let W W Œ0; 1� � P2 ! Rd2 be Hölder continuous, locally in time and uni-
formly in measure: there exists ˛ 2 .0; 1� and, for any R > 0, there exists C0;R > 0 such
that

jW.t;m/ �W.s;m/j � C0;Rjt � sj
˛
8m 2 P2 with M2.m/ � R; 8s; t 2 Œ0; 1�

.where M2.m/ D .
´

Rd jyj
2m.dy//1=2/ and such that ıW

ım
and DmW are bounded and

DmW is Hölder continuous with respect to the measure uniformly in time: there exist

; ı 2 .0; 1� and C1 > 0 such that

jDmW.t;m0; y0/ �DmW.t;m1; y1/j � C1.d
2.m0; m1/C jy0 � y1j
ı/

for any t 2 Œ0; 1� and any .mi ; yi / 2 P2 �Rd . Then DmW is Hölder continuous in time
locally uniformly in .m; y/ 2 P2 � Rd : for any R > 0, there exists a constant CR > 0,
depending on R, kDmW k1, C0;RC1, C1, ˛, 
 and ı, such that

jDmW.t;m; y/ �DmW.s;m; y/j � CRjt � sj
˛
=..2C
/.1Cı//

for any s; t 2 Œ0; 1� and any .m; y/ 2 P2 �Rd with jyj � R and M2.m/ � R.

Proof. Let R � 1. Fix m0;m1 2 P2 with M2.mi / � R and set m� D .1� �/m0 C �m1.
Thenˇ̌̌̌ˆ 1

0

ˆ
Rd

�
ıW

ım
.t;m� ; y/ �

ıW

ım
.s;m� ; y/

�
.m1 �m0/.dy/ d�

ˇ̌̌̌
D jW.t;m1/ �W.t;m0/ �W.s;m1/CW.s;m0/j � 2C0;Rjt � sj

˛:
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As ˇ̌̌̌ˆ
Rd

�
ıW

ım
.t;m0; y/ �

ıW

ım
.s;m0; y/

�
.m1 �m0/.dy/

ˇ̌̌̌
�

ˇ̌̌̌ˆ 1

0

ˆ
Rd

�
ıW

ım
.t;m� ; y/ �

ıW

ım
.s;m� ; y/

�
.m1 �m0/.dy/ d�

ˇ̌̌̌
C

ˇ̌̌̌ˆ 1

0

ˆ
Rd

�
ıW

ım
.t;m� ; y/ �

ıW

ım
.t;m0; y/

�
.m1 �m0/.dy/ d�

ˇ̌̌̌
C

ˇ̌̌̌ˆ 1

0

ˆ
Rd

�
ıW

ım
.s;m� ; y/ �

ıW

ım
.s;m0; y/

�
.m1 �m0/.dy/ d�

ˇ̌̌̌
;

we obtain, by our Hölder continuity assumption on DmW ,ˇ̌̌̌ˆ
Rd

�
ıW

ım
.t;m0; y/ �

ıW

ım
.s;m0; y/

�
.m1 �m0/.dy/

ˇ̌̌̌
� 2C0jt � sj

˛
C sup
�2Œ0;1�

kDmW.t;m� ; �/ �DmW.t;m0; �/k1 d1.m0; m1/

C sup
�2Œ0;1�

kDmW.s;m� ; �/ �DmW.s;m0; �/k1 d1.m0; m1/

� 2C0jt � sj
˛
C 2C1d
2.m0; m1/d1.m0; m1/:

For any y0 2 Rd with jy0j � R, let m1 D .1 � �/m0 C �ıy0 for some � 2 .0; 1� to be
chosen below. Note that

d1.m1; m0/ � �
ˆ

Rd
jy0 � xjm0.dx/ � �.jy0j C .M2.m0//

1=2/ � 2�R

(since R � 1), while

d2.m1;m0/�
�
�

ˆ
Rd
jy0 � xj

2m0.dx/

�1=2
� .2�/1=2.jy0j

2
CM 2

2 .m0//
1=2
� 2�1=2R:

We get, by the convention on the derivative and our previous estimates,ˇ̌̌̌
ıW

ım
.t;m0; y0/ �

ıW

ım
.s;m0; y0/

ˇ̌̌̌
D
1

�

ˇ̌̌̌ˆ
Rd

�
ıW

ım
.t;m0; y/ �

ıW

ım
.s;m0; y/

�
.m1 �m0/.dy/

ˇ̌̌̌
�
1

�
Œ2C0;Rjt � sj

˛
C cC1R

1C
�1C
=2�;

where c is universal. If jt � sj is small enough such that C0;Rjt � sj˛=.cC1R1C
 / � 1,
then we choose �1C
=2 WD C0;Rjt � sj˛=.cC1R1C
 / and obtainˇ̌̌̌

ıW

ım
.t;m0; y0/ �

ıW

ım
.s;m0; y0/

ˇ̌̌̌
� cC


=.2C
/
0;R C

1=.1C
=2/
1 R2.1C
/=.2C
/jt � sj˛
=.2C
/; (123)

where c is another universal constant.
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To show the regularity in time of DmW , we just need to apply Lemma B.2 to ıW
ım

since, by (123), ıW
ım

is locally Hölder in time locally uniformly in space (the constant
depending also on the measure) and DyıW

ım
DDmW is globally bounded and Hölder in y

uniformly in time by assumption. We can remove the smallness restriction on jt � sj by
using the fact that DmW is globally bounded.

In the proof of Theorem 2.3 we also used the following version of the Arzelà–Ascoli
theorem.

Lemma B.5. Let .X;d/ be a locally compact space andW N WX �P2!R be a family of
uniformly bounded and locally uniformly continuous maps: there exists x0 2 X such that,
for anyR>0, there exists a continuous nondecreasing modulus !R W Œ0;C1/! Œ0;C1/

with !R.0/ D 0 such that

jW N .x;m/ �W N .x0; m0/j � !R.d.x; x
0/C d2.m;m0// (124)

for any x; x0 2 X and m; m0 2 P2 with d.x; x0/ � R, d.x0; x0/ � R, M2.m/ � R,
M2.m

0/ � R.
Then there exists a continuous map W W X � P2 ! R and a subsequence .denoted

in the same way/ such that .W N / converges to W pointwise in m and locally uniformly
in x: for any R > 0 and any m 2 P2,

lim
N!C1

sup
d.x;x0/�R

jW N .x;m/ �W.x;m/j D 0: (125)

The only (very small) issue in the result is that P2 is not locally compact, so that the
standard Arzelà–Ascoli theorem cannot be applied.

Proof of Lemma B.5. Let D be countable dense subset of X � P2. By a diagonal argu-
ment we can find a subsequence (denoted in the same way) such that, for any .x;m/ 2D,
.W N .x; m// converges to some W.x;m/. By our regularity assumption (124) and since
X �P2 is complete, W can be extended to the whole space X �P2 as a continuous map
which satisfies

jW.x;m/ �W.x0; m0/j � !R.d.x; x
0/C d2.m;m0// (126)

for any x; x0 2 X and m; m0 2 P2 with d.x; x0/ � R, d.x0; x0/ � R, M2.m/ � R,
M2.m

0/ � R.
We claim that, for any .x;m/ 2 X �P2, .W N .x;m// converges to W.x;m/. Indeed,

fix � > 0 and R D 2.1 C d.x; x0/ CM2.m//. Then there is .x0; m0/ 2 D such that
d.x0; x0/ � R, M2.m

0/ � R and !R..d.x; x0/C d2.m; m0// � �=3. Let also N0 be so
large that jW N .x0; m0/ �W.x0; m0/j � �=3 for N � N0. Then, for N � N0, we have

jW N .x;m/ �W.x;m/j

� jW N .x;m/�W N .x0;m0/jCjW N .x0;m0/�W.x0;m0/jCjW.x0;m0/�W.x;m/j � �;

where we have used (124) and (126) in the last inequality.
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It remains to show that (125) holds. Fix � > 0 and let � > 0 be such that !.�/ � �=3.
As X is locally compact, we can find x1; : : : ; xn such that any point x 2 BX .x0; R/ is
at a distance at most � from one of the .xi /niD1. Let N0 be so large that jW N .xi ; m/ �

W.xi ; m/j � �=3 for any i D 1; : : : ; n. Then, for any x 2 BX .x0; R/ and any N � N0,
we have (for i such that d.x; xi / � �, so that !R.d.x; xi // � �=3)

jW N .x;m/ �W.x;m/j

� jW N .x;m/�W N .xi ;m/j C jW
N .xi ;m/�W.xi ;m/j C jW.xi ;m/�W.x;m/j � �;

where we have again used (124) and (126) in the last inequality. This shows (125).
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