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Abstract. We develop a splitting method to prove the well-posedness, in short time, of solutions for
two master equations in mean field game (MFG) theory: the second order master equation, describ-
ing MFGs with a common noise, and the system of master equations associated with MFGs with
a major player. Both problems are infinite-dimensional equations stated in the space of probability
measures. Our new approach simplifies and generalizes previous existence results for second order
master equations and provides the first existence result for systems associated with MFG problems
with a major player.
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1. Introduction

The paper is dedicated to the construction of a solution of the so-called “master equations”
in mean field game theory (MFG). These equations have been introduced by Lasry and
Lions and discussed by Lions in [25]. Let us recall that mean field games describe the
behavior of infinitely many agents in interaction. We consider here two problems: the
master equation with common noise and the master equation with a major player. We
present a general approach valid for both problems.

Let us first discuss the master equation with common noise. In this problem, the agents
are subject to a common source of randomness. The master equation is then a second order
equation in the space of measures and reads as follows:

—0,U(t,x,m) — Tr((a(t, x) + a®(t,x)) D2, U(t, x,m)) + H(x, Dy U(t, x,m), m)
— [ @) + DU ) mdy)

+ /Rd DU, x,m,y) - Hy(y, DxU(t, y,m),m) m(dy)

2 / T (t, y)(@° (1. X)) D2, Ut x.m. y)] m(dy) M
R4

—/ Tr[o%(t, y)(0°(t, ")) D2, Ut, x,m, y, y" )| m(dy) m(dy') = 0
2d
R in (0,T) x RY x P,

U(T,x,m) = G(x,m) inR? x P,

In the above equation, the unknown U = U(t, x, m) is scalar valued and depends on the
time variable ¢ € [0, T], the space variable x € R? and the distribution of the agents m
in &, the space of Borel probability measures with finite second order moment; the
derivatives D, U and D2, U refer to the derivative with respect to the probability meas-
ure (see Section 2.2); the maps H = H(x, p,m) and G = G(x,m) reflect the running
and terminal costs of the agents. The matrix valued function a = a(¢, x) is the volatility
term corresponding to idiosyncratic noise of the small players, while a® = a°(¢, x) =
%7 (¢, x) is the volatility corresponding to the common noise.

As explained by Lions [25], the master equation can be understood as a non-linear
transport equation in the space of probability measures. When a® = 0 (i.e., in the so-
called first order master equation), the characteristics of this transport equation are given
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by the MFG system: if we fix an initial time 7o and an initial probability measure mg
on RY, and if the pair (u,m) is a solution of the MFG system

(i) —0;u — Tr(a(t, x)D?u) + H(x, Du,m(t)) =0 in (t, T) x R4,
(i) 9;m — Y, ; Dij(ai,jm) — div(mHy,(x, Du.m(t))) =0 in (t.T) xR, (2)
(iii) m(to) = mo, u(T,x) = G(x,m(T)) in R?,

then we expect the following equality to hold:
U, x,m(t)) =u(t,x) Vtelt,T] 3)

The interpretation of the MFG system (2) is the following: the map u is the value func-
tion of a typical small agent (anticipating the evolution of the population density m(t))
and accordingly solves the Hamilton—Jacobi equation (2) (i). When this agent plays in an
optimal way, the drift in the dynamic of its state is given by the term —H, (x, Du, m(t)).
By a mean field argument (assuming that the noises of the agents are independent), the
resulting evolution of the population density /m satisfies the Kolmogorov equation

0t = Dij(ai jii) — div(i Hp (x. Du,m(1))) =0 in (1. T) x RY,
i,j
m(tg) = mg in R,
In an equilibrium configuration, i.e., when agents correctly anticipate the evolving meas-
ure, one has 11 = m and therefore the population density m solves (2) (ii).

The existence/uniqueness of the solution for the MFG system is rather well under-
stood: it relies on Schauder estimates, fixed point methods and monotonicity arguments
(see, in particular, [21-23]). From the well-posedness of the MFG system, one can derive
the existence of a solution to the first order master equation “quite easily”: one just needs
to define the map U by (3) with t = #¢ and check that the map U thus defined is a classical
solution to the first order master equation. This is the path followed in [17,27] (when there
is no diffusion at all: ¢ = a® = 0) and in [11] (when a > 0 is constant and a® = 0). See
also [10] for a similar result (for the torus) using PDE linearization techniques.

When a° # 0 (i.e., for the second order master equation, or master equation with
a common noise), the characteristics are now given by the system of SPDEs (called
“stochastic MFG system”):

du(t,x) = [ Tr((a + a®)(t, x) D?u(t, x)) + H(x, Du(t, x), m(t))
—«/ETr(UO(t,x)Dv(t,x))] dt +v(t,x)-dW; in(0,T) x R,
dm(t.x) = [ 37 Dij (@) + af) . xym(a, x))
" + div(m (¢, x) Dy H(x, Du(t, ), m(1))) ] dt

—div(m(t, x)v/26°(t, x)dW;) in (0,T) x R¢,
u(T,x) = G(x,m(T)), m(0) =my inR?,

“4)

In the above system, (W;) is the common noise (here a Brownian motion) and the
unknown is the triplet (1, m, v), where the new variable v (a random vector field in Rd)
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ensures that the solution u of the backward Hamilton—Jacobi (HJ) equation is adapted to
the filtration generated by the common noise (W;). The analysis of this system is much
more involved than that of the deterministic one: Schauder estimates are no longer avail-
able and the usual fixed point methods based on compactness arguments can no longer
be applied. One has to replace them by continuation methods, which are much heavier
to handle [10]. Besides the PDE approach we just mentioned, MFG with common noise
can also be handled through a probabilistic formulation: see the pioneering result [13], as
well as [2, 19] and the monograph [12]. Once the analysis of the stochastic MFG system
has been performed, one can proceed with the construction of the second order master
equation as in the first order case, defining the map U by (3) for t = #y, where u is
now the u-component of the solution of the stochastic MFG system (u(fp, ) turns out to
be deterministic). However, here again, the verification that the map U defined so far is
smooth enough to satisfy (1) requires a lot of work: see [10] and [12].

Let us finally recall another approach, suggested by P.-L. Lions in the seminar [26]: it
consists in writing the equation for the quantity D, U as a hyperbolic equation in a Hilbert
space of random variables. The construction requires, however, convexity conditions on
the system with respect to the space variable (but no uniform ellipticity for the matrix a).

We now discuss the second equation considered in this paper: the master equation
corresponding to MFG models with a major player. It reads as follows:

—0;U° — Ay, U® + H%(x0, Dx,U°, m) —/ divy D, U(t, xo,m, y) m(dy)
Rd

+ [ DnU°Gx0.m.9) - Hy 0.3, DU 50, o)) m(dy) = 0

in (0, 7) x R% x P,,

—0,U — AU — Ay U + H(xg,x, DU, m) — /I;{d divy, D, U(t, xo, x,m, y) m(dy)
+ Dy U - HI?(xo, DxOUO(t,xo,m),m)

+ [ DUt 0, 5.1.9) - Hy 50,3, DSUG. oy, ). ) mdy) = 0

in (0,7) x R% x R? x P,,
U%T, xg.m) = G%(xo,m)  inR% x P,,
U(T, x9,x,m) = G(xg,x,m) in RY x R4 x P5.

®)
In the above system, U® = U°(¢, xo, m) corresponds to the payoff at equilibrium for a
major player interacting with a crowd in which each agent has at equilibrium a payoff
given by U = U(t, x¢, x, m). Here m is the distribution law of the agents. Notice that
each agent is influenced by the major player whereas the latter is only influenced by the
distribution of the whole population. Mean field games with a major player have been
first discussed by Huang [ 18], and several notions of equilibria, in different contexts, have
been proposed in the literature since then: see [5-8, 12, 14—16,24]. The above system has
been introduced by Lasry and Lions [24]. In the companion paper [9], we explain how the
above master equation is related to the approach by Carmona and al. [14—16]. Concerning
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the existence of a solution, [16] shows the existence of an equilibrium in short time for the
case of a finite state space, [24] proves the existence of a solution to the master equation
still in the finite state space framework and notes that the Hilbertian techniques described
in [26] could be adapted to the master equation with a major player (5).

The purpose of this paper is to introduce a different path towards the construction of
a solution to the second order master equation and to the master equation with a major
player, using as a building block the construction of a solution to the first order master
equation. For the second order master equation, we justify this point of view by the fact
that the deterministic MFG system and the first order master equation are much easier
to manipulate than the stochastic MFG system. Our approach allows one for instance to
build solutions of the second order master equation (in short time) under more general
assumptions than in [10, 12]. For the MFG problem with a major player, we prove for the
first time the (short time) well-posedness of the associated system of master equations in
continuous space.

Let us first explain our ideas for the master equation with common noise (1). In con-
trast to previous works, we do not use directly the representation formula (3) (for ¢t = ty)
for the solution of the second order master equation. Instead, we somehow decompose the
second order master equation as the superposition of the first order master equation:

-0, U — Tr(a(t,x)DixU) + H(x, DU, m) —/ Tr(a(t, y)DimU)m(dy)
R4
+/ DU - Hy(y, DU, m)ym(dy) =0 in(0,T)xRY x ,, (0
R4
U(T,x,m) = G(x,m) inR?x P,

and of a linear second order master equation:
0 =T @) (. 0DRU] - [ T @) (0.) D3, Ulm(dy)
R4

) / Tr[o°(1. y)(0° (. )T D2, U] m(dy)
R4

7
- [, T @ DT Dl Ulm(dy)midy') =0 v

in (0, T) x R? x P,

U(T,x,m) = G(x,m) inR? x P,.

The solution to this linear second order master equation is just given by a Feynman—
Kac formula, and thus it is very easy to handle. Then we use the Trotter—Kato formula,
alternating the two equations in short time intervals to build in the limit a solution of
the full equation (1). Even if the technique is quite transparent, its actual implementation
requires some care. Indeed, one has to check that, at each step of the process, the regularity
of the solution does not deteriorate too much, meaning at least in a linear way in time.
The aim of Section 5.2 is precisely to quantify this deterioration for the solution U of the
first order master equation (6), as well as for its derivatives in the measure variable. As the
solution of (6) is built by using the representation formula (3) (where ¢ = f¢) presented
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above, one has first to do the analysis on the MFG system (2), and this is the aim of Section
5.1. Note that we are able to control the regularity of the linear second order equation (7)
only when the matrix a° is constant. Hence we only prove the short time existence of a
solution to (1) in that case.

For the problem with a major player, we argue in a similar way: we view equation (5)
as the superposition of two systems: the first one is a first order system of master equations
(for a fixed xg):

—a,U°—/Rd divy DU(t, x0.m, y) m(dy)

+/d DmUO(t,xo,m, y) - Hp(xo,y, DxU(t, x0,y,m),m)ym(dy) =0,
R,

®)
—0,U — AU + H(xg,x, DU, m) — / divy, D, U(t, x9,x,m,y) m(dy)
R4

+ /d D, U(t, x0,x,m,y) - Hy(x0,y, DxU(t, x9,y,m),m)m(dy) = 0.
R

It turns out that this system can be handled by the method of characteristics. As for the
second one, it is a simple system of HJ equations (for fixed x, m):

{—a,U" — Ay U + H(xo, D U, m) = 0, ©

—0:U — AxoU + DU - HY (x0. D, U°(t. x0.m), m) = 0.

The idea of splitting time is not completely new in the framework of mean field games.
Let us quote for instance the paper in preparation [1] in which the authors use a split-
ting technique similar to the one described above to compute numerically the solution of
MFGs with a major player. The construction, given in [13], of (weak) equilibria for MFG
problems with common noise also relies on a time splitting. The main difference is that it
is done at the level of the MFG equilibrium, while we do the construction at the (stronger)
level of the master equation. One consequence is that, with our approach, the construction
of a solution to the stochastic MFG system (in short time, though) is straightforward once
the solution of the master equation is built, while deriving a solution of the master equa-
tion from the stochastic MFG system is much trickier. Our method is particularly relevant
for the problem with a major player: indeed, for this problem, the associated MFG system
involves two backward stochastic HJ equations, a stochastic Kolmogorov equation and a
McKean—Vlasov equation; the construction of a solution to the system of master equa-
tions (5), based directly on this MFG system, would therefore be extremely technical.
Instead, our method relies on the one hand on the analysis of system (8) (which derives
directly from the analysis of the standard first order master equation) and on the other
hand on estimates for system (9) (which is just an ordinary system of HJ equations).

Let us finally point out that, in this paper, we do not address at all the problem of
the existence of a solution on a large time interval. For the first and second order master
equation, this question is related to the Lasry—Lions monotonicity condition [22,23]. The
existence of a solution on a large time interval can be obtained under this condition either
by the Hilbertian approach, as explained in [26], or by a continuation method, as in [11]
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and [12], or even directly by using the long time existence of a solution for the MFG
system, as in [10]. Let us recall that when the monotonicity condition is not fulfilled, the
solution to the second order master equation is expected to develop shocks (i.e., discon-
tinuities) in finite time. Note also that a structure condition similar to the monotonicity
condition is not known for MFGs with a major player.

The paper is organized in the following way. In Section 2 we fix the notation and
we recall the definition of derivatives in the space of measures; then we introduce our
assumptions and we state the main results of this article. We also present, at the end of
Section 2, the general idea of splitting method that we adopt for both systems (1) and (5).
In order to prove the existence results, our strategy is put in practice in Section 3 for the
second order master equation (equation (1)) and in Section 4 for the system of master
equations for MFG with a major player (system (5)), respectively. Both sections require
several estimates on first order master equations, which are collected in Section 5. As first
order master equations are built by the method of characteristics involving the solutions
of classical MFG systems (2), Section 5.1 first provides estimates for these systems. Then
Section 5.2 is devoted to the analysis of first order master equations. We complete the
paper by appendices in which we prove short-time estimates for the standard Hamilton—
Jacobi equations (Appendix A) and we discuss several facts on maps defined on the space
of measures (differentiability, interpolation and the Ascoli theorem, Appendix B).

2. Notation, assumptions and main results

2.1. Notation

Throughout the paper, we work in the euclidean space R? (with d € N, d > 1), endowed
with the scalar product (x, y) — x - y and the distance | - |. Given T > 0 and a map
¢ :(0,T) x RY - R, we denote by d,¢ the derivative of ¢ with respect to the time
variable, by d,; ¢ its partial derivative with respect to the i -th space variable (i =1,...,d)
and by D¢ the gradient with respect to the space variable.

Forn € N, we denote by C;' the set of maps ¢ : R¢ — R which are n-times differen-
tiable with continuous and bounded derivatives; in particular, C 1? is the set of continuous
and bounded maps. Given ¢ € C l:l and a multi-index k = (k1,...,kq) € N9, with length

k| := Z;j=1 ki < n, we denote by 3¢ = L a4 ¢ (or briefly ¢y ) the k-th deriv-

2T ek
ative of ¢. We also denote by D" ¢ (n € N, n > 1) the vector (3k¢)‘k|=n. The norm of ¢
inCis
b

n / n
¢l = Y sup (X 10 P) = 3 1D gl
r=0 * r=0

lae|=r

For n = 0, we use interchangeably the notation ||¢||¢ or ||@]|co-
For (n1,...,nx) € N*¥ (k € N, k > 2), we denote by Cl;”""’"k the space of func-
tions ¢ : R4 x --- x R% — R (d; > 1) having continuous and bounded derivatives
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Di‘l ---Di’j{qﬁ forallly <nq,...,Ir < ni,endowed with the norm
. I 1
Upllnrrme = 1PCareevx g == Y. IDM - D% ¢loc.
llsnl ..... lkfnk
where now (x1, ..., xg) stands for a generic element of R4 x R

We denote by C " the dual space of C}}, endowed with the usual norm

lpl—n := sup p(¢) VpeC™™.
lolln<1
Finally, when a map ¢ = ¢(, x) depends also on time ¢ belonging to an interval /,
we often write sup,c; ||¢(?)||, for sup,c; |9 (%, ) |l». We use a corresponding notation for
amap p € C°([0,T],C75).
Throughout the paper, & stands for the set of Borel probability measures on R? and
for k > 1, $ stands for the set of measures in 4 with finite moment of order k: namely,

1/k
M (m) := (/]Rd |x|km(dx)) < 400 ifm e P.

The set P is endowed with the distance (see for instance [4,28,29])

1/k
dy(m,m’) = inf(/ Ix — y| n(dx,dy)) VYm,m' € Py,

where the infimum is taken over the couplings 7 between m and m’, i.e., over the Borel
probability measures 7 on R¢ x R with first marginal m and second marginal m’. Note
that P, C #; and d; < d; by the Cauchy—Schwarz inequality. We will often use the fact
that if ¢ : R — R is Lipschitz continuous with a Lipschitz constant L > 0, then

<Ldi(m,m’) VYm,m' € Pi.

' / $(x) (m — m')(dx)
]Rd

Moreover, dy (m, m’) is the smallest constant for which the above inequality holds for any
L-Lipschitz continuous map ¢ (see for instance [28,29]). Givenm € & and ¢ € C?, the
image ¢ym of m by ¢ is the element of /> defined by

/ () gam(dx) = / F@)mdx) VfecP.
]Rd ]Rd

2.2. Derivatives in the space of measures

We now define the derivative in the space &,. For this, we mostly follow the definition
and notations introduced in [10] (in a slightly different context) and which are reminiscent
of earlier approaches: see [3,4] and the references in [12]. We say thatamap U : >, — R
is C! if there exists a continuous and bounded map ‘g—% : P, x R? — R such that

1
Um')—U(m) = / / S—U((l —s)ym+sm',y)(m' —m)(dy)ds VYm,m' € P,.
0 R4 Sm (10)
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Note that the restriction on g—z to be continuous on the entire space R and globally
bounded is restrictive; it will however simplify our forthcoming construction. The map

g—% is defined only up to an additive constant that we fix with the convention

sU
/Rd %(m,y)m(dy) =0 Vme P, (11)

We say that the map U is continuously L-differentiable (for short, L-C') if U is C!
and y — g—g(m, y) is everywhere differentiable with a continuous and globally bounded
derivative on 2, x R?. We denote by

sU
DmU(m,y) = Dy%(””,y)

this L-derivative. In view of the discussion in [10], D,,U coincides with the Lions deriv-
ative as introduced in [25] and discussed in [12]. In particular, it estimates the Lipschitz
regularity of U in &, [12, Remark 5.27]:

1/2
[U(m) — U(m")| < da(m,m’) sup (/ IDmU(M,y)Izu(dy)) Vm.m' € P,.
R4

HEP>
(12)
Of course one can also estimate the Lipschitz regularity of U through the d; norm, as
|U(m) —U(m')| < di(m,m’) sup [DmU(1.)lloo
HEP>
< dy(m,m’) sup | DmU(1t.")lloo- (13)
HEP>
Note that, with our boundedness convention, if U is continuously L-differentiable, then
it is automatically globally Lipschitz continuous.
When U is smooth enough, we often see the map % as a linear map on C ¥ by

sU sU _
~—(m)(p) ={p. c—(m.") VpeCk
sm dm c—k.ck

We say that U is C? if g—% is C! in m with a continuous and bounded derivative, that

, % = Sim(g—ffl) 1 P> x R? x R? — R is continuous in all variables and bounded. We

say that U is twice L-differentiable if the map D,,U is L-differentiable with respect to

m with a second order derivative D2, U = D2, U(m,y,y’) which is continuous and
bounded on P, x RY x R? with values in R4*¢.

When a map U : RY x £, — R is of class C;’ with respect to the space variable,

uniformly with respect to the measure variable, we often set

is

WU, == sup UG, m)n. (14)
mEsz
Note here the use of the different symbol ||| - |||. We use similar notation for a map U

depending on several space variables and on a measure:

WUy, 2= sup (UG m) Iy ..o

mefi’z
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When a map U : R¢ x £, — R is Lipschitz continuous with respect to m, uniformly
with respect to the space variable in some C” norm, we define Lip, (U) as the smallest
constant C such that

|UG,my) — UG mp)|ln < Cda(my,mz) VYm,m' € P,.

That is,

Lip, (U) 1= sup 10Cm) =UCm2)lln.

mﬁémz d2(m1am2)
More generally, if U : Rk x P, - R (fork e N,k > 1) is Lipschitz continuous in the
measure variable in some CI:’"""""' norm (where n; € N fori = 1,...,k), then we set
”U('X] seee Xgo ml) - U('x1 see e TXgo m2)||n1,...,nk

Lip,, . (U):= sup
MLl mI;émz dZ(mlamz)

We will typically use this notation for the derivatives of amap U : R¢ x £, — R; indeed,
we will often have to estimate quantities of the form

D, U(-, ) — D U, y
Lipnl,nz(DmU) = sup 1D UCx, i ») mUCx, 2 y)”nl,nz
my#my dy(mq,msy)

and

2 2
Li D2 U):= ”DmmU('Xsmla'ya'y’)_DmmU(')mst'ya'y’)||n1,n2,n3
lpnl,n2,n3( mm )'_ sup :
my£m> dx(my,mz)
Concerning the Lipschitz continuity with respect to one of the entries x;, we will use the
following notation:

Lipat iy (U)
”U('X]v . ""xi—l’xil"x[-H’ ...,-xk,m)
. - U('xl s X xiz* Xig10c o Xgo m)”nl,m,ni—lJli+1,.--,nk
= sup 1 3 .
mx} #x? Ix; —x;

Further norms. In order to estimate the y-dependence of a derivative with respect to the
measure of a map U = U(x, m), we systematically proceed by duality method, testing
this derivative against distributions. This leads to the following norms, for n,k € N:

sU “ sU 2\1/2
H‘S_ = sup Z sup (Z 8%8—(x,m)(p) )
M sk mePs . —o xeR9, peC? la|=r m
loll—x=1
- L8U
— Y s [ m)|
mep; r:oxeRd,peCCO, m
loll—x=1
§2U - §2U
‘ oy = sup Z sup D;S—Z(x,m)(p,p/) .
m= |k & mePr .1 xeR4,p,p'eC, m

loll—x=llo"ll =1
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sU
l

We point out the subtle difference in notation between, say, ||, nk (which involves a

supremum over y) and || SU |2 (1n which the dependence is estimated by duality). The

same difference holds between || 8m2 |||n Kk

For maps U = U(x, x,, m) depending on two (or more) space variables, we use the
transparent notation || - ||;, .»,:k (and, if n1 = 0 (say), we simply set || - |1, .k = || - [l0,n5:4)-
Finally, we use similar notation for the Lipschitz norms, setting, for instance for a map
U =U(x,m),

§2U -
L]pnkk/((s 2) = ms;lél:n dz(ml»mZ) !
1 2

n
X E sup
r=0 x€R?, p,peC?
loll—x=lp"ll—x=1

52U 52
D;(g_z(x mz)(p,p') — D xS 2(x my)(p, p')|.

Some comments about the norms we have just introduced are now in order. We discuss
the norm || - || ,;x to fix ideas. With these notations, if U = U(x, m) is smooth enough, we
have

sU
o tm@)| =)l
m n m nk
for every fixed m € $,. Inequalities of this type are used throughout the text. Next we
note that the norms ||| - [Il,, x and || - ||;x are equivalent if we know a priori that g—% =

U § (X, m, y)isin Cy "k In general we do not have this information, but only know that

‘w is (at least) continuous. In this case, we use the following result:

Lemma 2.1. Letk € N withk > 1 andu € C° be such that

0 .= sup / u(y)p(y)dy < +oo. (15)
peC?, llpll—x=1/R?

Thenu € le_l with ||u||g—1 < Cr 6 (Where Cy, depends on d and k) and, for any 8 € N4

with |B| = k — 1, 88w is O-Lipschitz continuous.

Remark 2.2. In particular, if 8—U € C"’O and || 8U |5 is finite for some n, k € N with
sU n,k—1
kzl,thenmecb and

for some constant C, x depending in addition on dimension only. Moreover, the derivat-

ives of the form 0% Byﬂ g% for |@| <nand B <k — 1 are Lipschitz continuous with respect

to y and thus—by (13)—also with respect to m, with a Lipschitz constant bounded by

sU
ém

n,k—1 n;k

152 In;

Proof of Lemma 2.1. For k = 1, approximating Dirac masses by continuous maps with
compact support, for any x, y € R? we have

[u(x)[ = 0l8x]|-1 =6 and [u(x) —u(y)| < 0]8x = 8y[-1 = Olx —y|.
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This proves the claim for k = 1. Let now assume that (15) holds for k = 2. Then u can
be extended to an element 7" in (C~2)" with norm |7 || < 6 such that T(p) = [ u dp for
any Radon measure p. As, for any v € R?,
lim A7 8y ppy — 8x) = —0y6x inC 2,
h—0,v'—>v
we infer that
lim A7 (u(x + hv') —u(x)) = —T(0p8y).

h—0,v'—v
The map (x, v) > 0,8, being continuous in C 2 with ||0,8,||—2 < |v], u is in C! with
|| Du|| < 6. Then, arguing as for k = 1, one can easily check that Du is 6-Lipschitz
continuous. So the result also holds for k = 2. The proof can be completed in the same

way for any k by induction. |
Finally, note that the norm || - [||,,  will only be used to state the assumptions on the
data H, H®, ..., as it is more standard. On the other hand, the “equivalent” norm || - ||k,

being the natural one for the methods used to get the estimates, will be extensively used
throughout the paper.

2.3. Assumptions on the data

We state here the assumptions needed on a, H and G for the existence of a classical
solution to the second order master equation (1) and to the master equation (5) for the
MFG problem with a major player. These assumptions are in force throughout the paper.
Note that they are common to both problems (1) and (5) since both require the same kind
of estimates on the first order master equation (see Section 5.2).

We assume that the map a : [0, T] x R — R4*4 can be written as ¢ = oo’ where
0:[0,T]xR? - R? (M € N, M > 1) is bounded in C;’ with respect to the space
variable, uniformly with respect to the time variable, for some n > 4. We also assume that
the following uniform ellipticity condition holds:

a(t,x) > Cy'1y, ||Dalls < Co, (16)

for some Cy > 0, where [ is the d x d identity matrix.
We assume that the map H : R% x R4 x R x £, — R satisfies the growth condition

sup |Dx H(xo,x, p.m)| < Co(l +|p|¥) Vpe R4, 17

xOERdO, x€R4 , mePy
for some y > 1. We also suppose that, for any R > 0, the quantities

SH

Sm ('JCO? ‘X °p> m, 'y)

’

2.n—1,n,k

|”H('x0"x"P’m)|”3,n,n+1’ ‘

. 2
and Llpl,n,3’n,2’k,1,k,1(‘§7g) are bounded for | p| < R, m € £, and xo € R9, for any

§*H
W(.xoa'Xa'p7m7'ya'y,) ’

1,n—2,n—1,k—1,k—1
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k €{2,...,n — 1}. Note that we could also allow for a time dependence for H without
changing at all the arguments; we will not do so to simplify the notation a little. For the
second order master equation, the Hamiltonian H actually does not depend on xg, but this
dependence is important to handle the MFG problem with a major player.

As for the initial condition G : R% x R x P, — R, we assume that G is of class C2
with respect to all variables and that the quantities

3G

G Cagemse )l o 'H%(my)

are bounded uniformly with respect to m € $,. Here again, for the second order master
equation, the terminal condition G does not depend on Xy, but this dependence is needed
in the MFG problem with a major player.

)

2,n—1,k

§2G

§2G .
’ Llpl,n—3,k—2,k—2 sz ('X()’ x, M, ‘Yo 'y’),

M_z('xO»'Xama‘y,'y’)

1,n—2,k—1,k—1

Additional assumptions for the MFG problem with a major player. This problem
involves in addition a Hamiltonian H® : R90 x R0 x &> — R and a terminal condition
G® : R% x £, — R. We assume that the map H° satisfies the growth property

sup  (|Dxg,pH(x0, p.m)| + | D2, H (xo. p.m)|) < Co(lp|” +1) (18)

X0,P
onRdO ,MEP)

for some y > 1. We also suppose that, for any R > 0, the quantities

’

2,3,k

SHY
|||H0(‘xo~‘p’m)|||3,4’ HW('XO"”’m"y)

. 2
and LlPo,l,k—z,k—z(ngI-zI) are bounded for |p| < R, m € $, and xo € R9%, for any
ke{2,....,n—1}.
The initial condition G : R90 x £, — R is assumed to be of class C2 with respect
to the measure variable, and the quantities

8G°
F; ('smv')
m

82HO
Sm?2 ('xo» M, y, ‘y/)

’

1,2,k—1,k—1

§2G°

NGO Cm)lls. Sz Cxos My )

’

1,k—1,k—1

2,k, H
52G0
Lipo k2 k2 (8m_2) (xp> M5y y7)s

are supposed to be bounded uniformly with respect to m € P;.

Throughout the proofs, we assume that the time horizon 7 is small, say 7 < 1. We
denote by C and Cjps constants which might change from line to line and which depend
only on the data of the problem, i.e., on a, H and H 0__the dependence on G and GO
being always explicitly written—and, for Cjy, on the additional real number M. In some
proofs, when there is no ambiguity, we drop the M dependence of Cys to simplify the
expressions.
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2.4. Main results

In this section we state the two main results on the short-time existence and uniqueness
of the second order master equation and the master equation with a major player. We also
state, as a corollary, the existence of solutions to the stochastic MFG system.

Let us start with the second order master equation, which reads as follows:

=8, U(t.x,m) = Tr((a(t, x) + a®) D U(t, x,m)) + H(x, Dy U(t, x,m), m)
_ /R Tr((@(t, ) + a®) D3, Ut x,m, ) m(dy)

+ / DUt x.m.y) - Hy(y. DxU(t. y.m), m) m(dy)
RY (19)

- 2/ Tr{a® D2,,U(t, x,m, y) m(dy)
R4

—/ Tr[a® D2, U(t, x,m, y,y)m(dy)m(dy') =0 in(0,T) x RY x P,,
R2d
U(T,x,m) = G(x,m) in R4 x P,

where a° is a symmetric positive definite d x d matrix (independent of time and space).

We say that U : [0, T] x R? x £, — R is a classical solution of (19) if U and its deriv-
atives involved in (19) exist, are continuous in all variables and are bounded, and if (19)
holds.

Our first main result is the following short time existence theorem:

Theorem 2.3. Under the assumptions of Section 2.3, there exists a time T > 0 such that
the second order master equation (19) has a unique classical solution U on [0, T].

The proof of Theorem 2.3 is given at the end of Section 3.2, after some preliminary
steps. We shall not prove here the uniqueness of the solution to (19), which holds under
our assumptions; this point has often been discussed in the literature (see [10, 12] for
instance). The reader may notice that we cannot handle a second order master equation
with a space dependent matrix a® = a®(t, x). The reason is that we do not know how to
extend the estimate in Proposition 3.1 to the space dependent case.

An easy consequence of the existence of a solution to the master equation is the well-
posedness of the stochastic MFG system

du(t,x) = [-Tr((a + a®) (¢, x)D?u(t, x)) + H(x, Du(t, x), m(t))
—V2Tr(6°Du(t, x))] dt + v(t,x)-dW, in(0,T) x R?,

dm(t.x) = [ 3" Dij (@) + af) . x)m(a, x))
" + div(m(t, x) Hy (x, Du(t,x),m(t)))] dt

—div(m(t, x)v/26°dW,) in (0,T) x R?,
u(T,x) = G(x,m(T)), m(0)=my inR?.

(20)

We say that (1, m, v) is a classical solution to (20) if u, m and v are random with values in
CO([0. T].C2), C°([0. T], P2) and C°([0, T], C} (RY, R?)) respectively and adapted to
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the filtration generated by W and if the backward HJ equation is satisfied in the classical
sense:

T
u(t,x) = Gx,m(T)) —/t (— Tr((a + a®) (s, x)D?u(s, x)) + H(x, Du(s, x), m(s))
T
- «/ETr(UODv(s,x))) ds — / v(s,x)-dWs
t

while the Fokker—Planck equation is satisfied in the sense of distributions: for any ¢ €
C2([0,T) x RY),

0= [ 900 modn
T

+/ / (Tr((a+a0)(s,x)D2¢(s,x))—D¢(s,x)-Hp(x,Du(s,x),m(s)))m(s,dx)ds
0o JR4

T
+ﬁ/0 /Rd(cro)TD¢(s,x)m(s,dx)-dWs.

Theorem 2.4. Under the assumptions of Theorem 2.3, there exists a time T > 0 for which
the stochastic MFG system (20) has a classical solution (u, m, v) in [0, T]. Moreover,

v(t,x) = ﬁ/ 0T D, U(t, x,m(t), y) m(t, dy), 1)
]Rd

where U is the solution to the second order master equation (19).

The proof of Theorem 2.4 is given in Section 3.3.

Then, we investigate the well-posedness of the master equation associated with the
MFG problem with a major player. Here the unknown (U°, U) solves the system of master
equations

—3tUO(Z,xo,m) - Ax()UO([,xo,m) + HO(XO’ DXOUO(I’XO’m)’m)
_/ divy Dy U°(t. x0.m, y) m(dy)
R4

+ /d DmUO(t,xo,m,y) - Hp(x0,y, DxU(t, xo9,y,m),m)m(dy) =0
R

in (0, 7) x R% x P,
—0:U(t, x0,x,m) — A U(t, xg, x,m) — Ay, U(t, X0, x, m)
+ H(xg,x, D, U(t, x9,x,m),m)

- /d divy Dy U(t, x0.x,m, y) m(dy) + Dx,U - H)(x0. DxyU°(t. xo,m), m)
R

+ /d D U(t,x0,x,m,y) - Hy(x0,y, DxU(t, X0, y,m),m) m(dy) =0
R
in (0, 7) x R x R? x P,
UT, xo,m) = G°(xo,m) in R9 x P,
U(T, xo, x,m) = G(xg,x,m) inR% xR x P.

(22)
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Let U :[0,T] x R% x P, — Rand U : [0, T] x R% x R¢ x £, — R. We say that
(U°, U) is a classical solution of (22) if U° and U and their derivatives involved in (22)
exist, are continuous in all variables and are bounded, and if (22) holds. Our main result
is the following:

Theorem 2.5. Under the assumptions of Section 2.3, there exists a time T > 0 and a clas-
sical solution (U°,U) to (22) on the time interval [0, T] such that onUO and Dy, xU
are uniformly Lipschitz continuous in the space and measure variables.

The proof of Theorem 2.5 is given in Section 4. The result can be easily extended to
non-constant diffusions. We work here with a constant diffusion to simplify the notation.

The constructions of solutions to the two master equations share a common strategy.
The key idea is to use a Trotter—Kato scheme alternating two simpler evolutive problems
on vanishing time intervals. This is commonly referred to as a splitting method; according
to this approach, the solution u of the evolution equation

u; = Au + Bu

can be built by alternating, in smaller and smaller time-steps, the evolution driven by A
and the evolution driven by B, respectively. Indeed, if A and B were generating semig-
roups e’4, e'B acting on a common Banach space X, then the Trotter—Kato product
formula implies
S UFBY = lim (e%Ae%B)"U.
n—>o0o

Notice that, for this formula to hold (i.e. for this scheme to be convergent), it is crucial to
have estimates of the form

leUllx < (1 +ct)|Ulx, [e"BU|x < (1 +c0)||U]x,

which yield in the limit [|e!“TB)U||x < e2¢?||U | x. One may even allow ¢ in the above
estimate to depend on ||U ||x itself; if so, one has convergence of the scheme for short
time ¢ only, which will be the case in our settings.

The idea of using a splitting method needs to be carefully rephrased in our context.
The main point is to choose suitable pairs (A4, B) in order to decompose our master equa-
tions into simpler and efficient problems. In our settings, the second order master equation
will be obtained as the superposition of the first order master equation (6) and a linear
second order master equation (7). The system of master equations with a major player
will be seen as the superposition of a system of first order master equations (8) (where
the major player is “frozen”), and a system of HJ equations (9) (where the population of
minor players is “frozen”).

We do not need to prove that the two separate problems driven by A, B actually gener-
ate semigroups. However, we need to identify a suitable norm, or some other meaningful
quantity, which is not deteriorated more than linearly in time by both the alternating prob-
lems. This is the main technical issue in our proofs. Indeed, the quantities that we estimate,
and the corresponding norms that we use, turn out to be quite involved in the two settings
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that we address, and especially for the major player problem. We postpone the details on
the technicalities to the next two sections.

3. The second order master equation

This section is devoted to the proof of Theorem 2.3. The assumptions of Section 2.3 will
be in force. Following the discussion at the end of the previous section, we are going to
apply a Trotter—Kato alternating scheme using the first order master equation (problem
(6)) and the linear second order master equation (problem (7)). The key step will be to
show that both problems provide suitable estimates for the solution U in the following

norm:
82
’ +L1pn—3;k—2,k—2( (l)))
n—2k—1,k—1

where, we recall, the above quantities are defined in Section 2. In particular, for a function
U(t, x, m), the first term means an estimate on n-derivatives with respect to x, while the
second and third terms yield an estimate on first and second derivatives with respect to
m, represented by (t x,y) and 8 (t x,y,y’) respectively: in this case, n refers to
regularity in x, Whlle k refers to regulanty iny,y’.

Note that we will not only need bounds on derivatives, but also to establish some
compactness for the scheme to converge. This motivates the presence of the Lipschitz
norm in the above quantity.

Thus, the main technical issue for the proof of Theorem 2.3 will be to establish the
following estimate (for some 7', C > 0 depending on the upper bound M of norms of G)

sU 82U
s (1wl + |50 +[550
n—1;k

t€l0,T]

82U §2U
s (l0ol+|5o0] 45 ity 52250
t€[0,T] n—1;k n—2k—1,k—1
8G §°G 582G
< |G — — Li . — CT, 23
=16+ H §m n—1;k ‘ §m? n—2;k—1,k—1 " 1pn3,k2’k2(8m2) " 29

for both the solution of problem (6) and the solution of problem (7). The analysis of the
former, being quite technical, is postponed to Section 5.2 below. The latter is considered
in the next subsection. The bounds on the four terms appearing in (23) will be obtained
in different propositions, which will in turn require several steps (especially those for the
first order master equation). For a quick reference on each estimate on the individual terms
above, one may have a look at the table below.

sU 82U . 82U
[Ulln and |50 ln—1:k |5 2||n 2:k—1,k—1 | LiPp—3:k—2 k—2(5;,2)

1st order master equation Prop. 5.11 Prop. 5.16 Prop. 5.18

linear 2nd order master eq. Proposition 3.1
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Finally, Lemma 3.5 shows how these estimates are chained together in the Trotter—
Kato scheme, with some additional control of Holder/Lipschitz seminorms which is
needed for the convergence of the scheme and is obtained by interpolation.

3.1. The linear second order master equation

In this section we consider the (forward) second order linear master equation
o, U(t,x,m) — Tr[aoD)zcx U(t,x,m)] — / Tr[aODfmU(t, x,m,y)]m(dy)
R4

- 2/Rd Tr[a®D2,,U(t, x.m, y)| m(dy)
(24)
B / Tr[a® D}, U(t, x,m, y, y")]m(dy) m(dy') = 0
R2d

in (0,7) x R x P,

U, x,m) = G(x,m) inR?x P,.
Let I be the fundamental solution of the equation associated with a°:

3, T(t,x) — Tr[a® D2, T'(t,x)] = 0 in (0, +00) x R¥,
['0,x) =8p(x) inR?,

and, given amap G : R? x £, — R of class C2 in (x, m), let us set
U(t,x,m) = / GE, ({d—x+&Eym)I(t,x —&)dE V(t,x,m)e[0,T] x R? x P
R4

Proposition 3.1. The map U is a classical solution to the second order equation (24).
Moreover, there exists a constant C > 0 (depending only on n, k and a®) such that

sup [[U@)]ln = (14 CT) sup [|G]ln

t€l0,T] meP,

and, fork € {2,...,n— 1},

8G
sup —(t) f(l—i—CT)H— ,
refo,71 0m " 1k $m ||,y
82
sup —()
t€[0,T] Sm? n—2:k—1k—1 5 sm2 n—2;k—1,k—1
. 52U . 852G
sup Lan—3;k—2,k—2 (t) <+ CT)Lip,_3:4—3 k—2 sm2 )
t€[0,T] m

Remark 3.2. If, for some constant M,

0G

582G
sm

. 52G
Gl + H Sr? +Lip, 3% 2k (W) =M,

n—1:k n—2;k—1,k—1
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then the above estimates can be rewritten in the form

SU 52U 52U
sup (U] +u—(r) o L T Liy sk (—(z)))
te[O,T]( " em n—tk Il 6m? n—2:k—1,k—1 noIk=2ko2 m2
5G 52G 526G
<G o oo Lip, . OO\ L eyT.
=16+ H Sm |, 1k Sm? |, _pik—1k-1 " lpn_a’k_Lk_z(‘sz) - m

for some constant Cys depending on n, k, a®and M.

In order to prove this proposition, we need two lemmas, the proofs of which are easy
and left to the reader.

Lemma3.3. Let U : P, — R be L-C' and let ¢ : R¢ — R¢ be of class C* with bounded
derivative. Set V(m) = U(¢ym). Then V is L-C! with

D V(m,y) = (D) DuU(pym, d(»)).

Lemma 3.4. Let U : $, — R be L-C' and let V(x,m) = U((id + x)gm). Then V is of
class C with

D,V(x,m) = /Rd D, U((id + x)gm, x + y) m(dy).
Proof of Proposition 3.1. Let us first note that
Ut,x,m) = /]Rd GE, (id—x+&ymI@,x—§)d§
= /Rd G(x—2z,(d—z)ym)I'(t,z)dz.

In particular, U is C Lin ¢, C? in x and has second order derivatives which are C2 in the
space variables with, in view of Lemmas 3.3 and 3.4,

DU x.m) = [ DLGx = y. =yt ) dy.
DU x.m) = [ DIGG: =y (id = gL 9) dy.
D,U(t,x,m,y) = /Rd DnG(x —z,(id—z)ym,y —z)['(t,z) dz,
D;U(t,x,m, y,y) = /]Rd D,znG(x —z,(id=z)gm,y —z,y' —2)[(t,z) dz.
This easily implies the estimates on U and its derivatives.

On the other hand, since (id — w)[(id — z)ym] = (id — z — w)ym, we have, for any
te(0,Tyandh € (0, T — 1),
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/ U(t,x —z,(d—z)gm)I'(h,z) dz
R4
= / / Gx—z—w,(d—z—wyymI'(h, )¢ w)dwdz
R4 JRA
= / G(x —u, (id —u)ym) (/ T'(h,u —w)l'(¢, w) dw) du
R4 R
= / G(x —u, (id—u)ym)I'(t + h,u)du = U(t + h, x, m).
R4
So, taking the derivative with respect to 2 > 0 in the above expression we get
Ut +h,x,m) = / U(t,x —z,(id —z)ym)0,;I'(h,z) dz.
R4

Integrating by parts and using Lemmas 3.3 and 3.4 yields
Ut +h,x,m)= /]Rd U(t,x — z, (id — z)gm) (Tr[a® D2, (h, z)]) dz

= /Rd (Tr[aoDixU(t, x —z,(id — z)ym)]

+2/Rd Tr[aOD)Zch(t,x—Z,(id—z)nm,y—z)]m(dy)

+/Rd Tr[aoD)%mU(t, x—z,(id—z)ym,y—z)|m(dy)

—i—/}Rd /]Rd Tr[aOD,anU(t,x—z,(id—z)nm,y—z,y’—z)]m(dy)m(dy’))l"(h,z) dz.
Letting 7 — 0 we obtain

0, U(t,x,m) = Tr[aOD)zch(t,x,m)] + Z/Rd Tr[aODimU(t,x,m, )] m(dy)
+ /Rd Tr[aODf,mU(t,x,m,y)]m(dy)

+/ / Trfa® D}, U(t. x.m, y,y ) m(dy) m(dy').
R4 JR4

So U is a solution to (24). [ ]

3.2. Existence of a solution

3.2.1. Definition of the semi-discrete scheme. Let us fix some horizon 7' > 0 (small) and
astepsizet :=T/(2N) (where N e N, N > 1). Wesetty =kT/(2N),k € {0,2N }. We
define by backward induction a continuous map UY = UM (¢, x,m), with UV : [0, T] x
R x P> — R, as follows: we require that

(i) UV satisfies the terminal condition

UN(T, x,m) = G(x,m) V(x,m)e R? x P,
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(i) UV solves the backward linear second order master equation
-3, UN —2Tr[a" D%, UN] - 2/ Tr[a® D2, U m(dy)
R4

—4/ Tr[aoz)gmUN]m(dy)—z/ Tr[a® D2, UN m(dy) m(dy') = 0
R4 R2d
(25)

on time intervals of the form (t2j41,f2;42) for j =0,..., N — 1,
(iii) UV solves the first order master equation
-3, UN — 2Tr(aD§xUN) +2H(x, D, UN m) — 2/ Tr(aDimUN) m(dy)
R4
+ 2/ DUV - Hy(y. DyUN .mym(dy) =0 (26)
R4

on time intervals of the form (t2;,#3j41),for j =0,..., N — 1.
Our aim is to show that if the time horizon is short enough, U converges to a solution
of the second order master equation as N — +oc0.
3.2.2. Estimates ofUN. Forn >4andk € {3,...,n—1}, let

582G
Sm?2

2

8G . G
M = ||G||n + H_ + Llpn3;k2,k2(W) + 1. (27)

sm

n—1:k n—2k—1,k—1

Lemma 3.5. There exists Tay > 0 such that, for any T € (0, Tpg] and N > 1, we have

s2UN
sup (10701, -+ H—(z) +‘—2(r)
t€[0,T] n—1;k n—2k—1,k—1
, s2UN
+ Llpn3;k2,k2( (l)))
Moreover:

e The maps UN, D, UV, D%xUN are globally Lipschitz continuous in (t, x, m), uni-
Sformly with respect to N .

e The maps D, U, D,,D,U", DmeUN are Holder continuous in (t, x,m, y), uni-
formly with respect to N, in any set of the form

{(t.x,m,y) €[0,T] x R? x P, x R? : My(m) < R, |y| < R}, (28)

where Ma(m) = ([ga |y|? m(dy))'/2.
o The map D,%l UN is Holder continuous in (t, x,m, y, y'), uniformly with respect to N,
in any set of the form

{(t,x,m, y,9) € [0, T] x RY x P, x R? x R : My(m) < R, |y|,|y'| < R}. (29)



P. Cardaliaguet, M. Cirant, A. Porretta 1844

Proof. In order to prove the estimate, we use Proposition 3.1 as well as Propositions 5.11,

5.16,5.18 (in Section 5.2 below). Let Tjs be the smallest positive constant associated with

these propositions. Let also Cys be the largest constant in Propositions 3.1, 5.11, 5.16 and

5.18. We assume without loss of generality that Ty < 1/(2Cpy) and we fix T € (0, Tys].
We define the sequence (Gk)iﬁ oD

T

As Ty < 1/(2Cp), wehave 0; < M forany T € (0, Tys] and N > 1.
Now, using Propositions 5.11, 5.16, 5.18 and 3.1 one checks by backward induction
that

§2UN

suN
s fiw¥ o, + |7 -0 e

telty),t2)42]

n—1;k ‘ n—2k—1,k—1

§2UN
+ Lipn_s;k_z,k_z( (t))} <6,; <M Vj=0,....N—1. (30

Indeed, assume that this is true for j + 1; Proposition 3.1 (see also Remark 3.2), applied in
the interval [t2;41, 2 +2] and with the terminal condition U (t5;45, -, ) which satisfies
(30) by assumption, implies that

82UN

sUN
—— (@)

sup {nUN(r)nn ‘ L

t€ltrj 41,12 +2]

+
n—1k

n—2;k—1,k—1

. §2UN CuT
+ Llpn—s;k—z,k—z( (Z))} Orjy2 + ——.

Then using Propositions 5.11, 5.16, 5.18 for the interval [t»;, #>;+1] and the terminal
condition U¥ (1, j+1. ) for which (30) now holds, one gets

SUN §2UN

sup {HUN(t)nn ‘ el

teltrjtrj41]

5~ (1)

|5
1;k

n—2;k—1,k—1
, §2UN CuT
+ Lan—3;k—2,k—2( (Z))} baj+2 + - = = 0y,

so (30) holds for j. Since the first step (j = N — 1) can be proved similarly using the
very definition of M in (27), we can conclude that (30) holds forevery j =0,..., N — 1.
We now prove the second part of the lemma. As U™ solves (25) on the time intervals
(t2j+1.t2j+2) and (26) on (¢2;, t2;+1), we obtain directly, by the space estimates proved

above,
sup 10: U, m)|l,—> < Cm. (€1

where Cys does not depend on N.
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Let now / € N¢ with |/| < 2. By (31) and the fact that |U Y |, is bounded for n > |I|,
D'UW is uniformly Lipschitz continuous in # and x. Moreover, since ||%|| n—1;k 18
bounded (for k > 1), D'U¥ is uniformly Lipschitz continuous in 7 as well by Remark 2.2
since || <n —1.

Next we prove the uniform continuity of D! Dy DU N for |I|, |r| < 1. First we
recall that | %Hn_l;k is bounded, so that || D, U ||,—1:xk—1 is bounded, with n — 1
> 2 and k — 1 > 2. Therefore DiD;DmU N s uniformly Lipschitz continuous in
(x, y) (for y, this is Remark 2.2). Second, recall that ||%||n—2;k—1,k—1 is bounded,
so that ||%DmUN||n_2;k_2,k_1 is bounded as well, with n > 3 and k > 3; therefore
ch Dy DU N is uniformly Lipschitz continuous in m. As we have already proved that
U" is uniformly Lipschitz continuous in ¢, we can deduce from Lemma B.4 below
applied to UY that D,,U" is also Holder continuous in time in any set of the form (28).

Finally, we consider D2, UN = D2 UN(t,x,m,y,y"). Since || %”n—z;k—l,k—l
and Lipn_3;k_2,k_2(%) are bounded, with n > 4 and k > 3, D2, UV is uniformly
Lipschitz continuous in (x,m, y, y"). Applying Lemma B.4 to the map D,,U", which
is Holder continuous in time in sets of the form (28) (as we have seen above) and such
that D2, U is uniformly Lipschitz in (m, y, y’), we deduce that D2, UV is also Holder
continuous in time, uniformly in NV, in sets of the form (29). So we conclude that D,Zn mU N
is uniformly Holder continuous in all variables. ]

3.2.3. Proof of Theorem 2.3. In view of Lemma 3.5, the maps UV, D, UV, D2 UV,
DnUN, DD UV, D, D, UN and D2UN are locally Holder continuous in all vari-
ables, uniformly with respect to N. So, by a version of the Arzela—Ascoli theorem (see
Lemma B.5 below), there is a subsequence denoted in the same way such that UV,
D,UN, D2 UN, D, UV, D,,D,UN, DyD,,UN and D2UN converge pointwise in
m and locally uniformly in time-space to some maps U, D, U, DJZCXU, V,D,V, D,V
and W. Moreover, using the integral formula (10), it is easy to check that V = D,,U and
W = D2U.
By the equation satisfied by U N we have, for any0<s<t<T,

UN(t,x,m)—UN(s,x,m)
N—-1

Dk+2
= —Z/ Z{Tr[aoD)%xUN]+/ Tr[aoDimUN]m(dy)
k=0 ” L2k+1 R4
+2 / Trla® D2, UN | m(dy) + / Tr[aOD,znmUN]m(dy)m(dy’)}l[s,,](r)dt
R4 R2d
N=1rtopt
- Z/ z{Tr(aDﬁxUN)—H(x,DxUN,m)
k=0 " 12k

+/ Tr(aD32,,UY) m(dy)—/ DmUN-Hp(y,DxUN,m)m(dy)}l[s,t](r)dt.
R4 R4
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Since, as N tends to infinity, the maps

N—-1 N-1
I Z 1[t2k+1912k+2](t) and 1+ Z lllzkalzkﬂ](l)
k=0 k=0

weakly converge to the constant 1/2 and since the space integrals in the above equation
converge pointwise to the corresponding quantities for the limit U, by the dominated
convergence theorem we obtain

U(t,x,m)—U(s,x,m)
t
= _/ (Tr[aOchxU] +/ Tr[a®D3},,Uldm
s R4
+ 2/ Tr[a° D2, Uldm +/ Tr[a®D2,,,Uldm ® dm
R4 R2d
+Tr(@D2,U) — H(x, DU, m)

+/ Tr(aD)Z)mU)dm—/ DmU-Hp(y,DxU,m)dm)dr
R4 R4

so that U is a classical solution to (19). [

3.3. Existence of the solution to the stochastic MFG system

This section is devoted to the (short) proof of Theorem 2.4.

Proof of Theorem 2.4. Let m be the solution to the stochastic McKean—Vlasov equation

dm(t, x) = [Z Dij((ai,; + a;)(t. x)m(t, x))
i,j
+ div(m(r, x) Hy (x, DU(t,x,m(t)),m(t)))] dt (32)
—div(m(t,x)v/26°dW;) in (0,T) x R?,
m(0,dx) = mo inR.

Existence of a solution for this system can be obtained, for instance, as the mean field
limit of the SDE

dX;" = —Hp(X" . DxUG X3 mfly).mYly) ds
+ V20 (s. XV dBi + V2005 XNy d W
X = X,
where X" is a family of i.i.d. r.v. of law mq and where mi{v,\, =Lyy, Syn.i- Indeed,

one can show that the family of laws of (m N) is tightin C 0([O T1], #,) and that its limit

is a solution to (32). Uniqueness for (32) comes from the regularity of U and Gronwall’s
lemma.
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Then one can use It6’s formula [10, Theorem A.1] (see also [12, Theorem 11.13]) to
derive that u(z, x) := U(t, x,m(t)) solves the backward stochastic HJ equation

du(t,x) = [-Tr((a + a®)(t, x)D?u(t, x)) + H(x, Du(t,x), m(t))
— V2Tr(@°Du(t, x))| dt + v(t,x)-dW, in(0,T) x R?,
u(T,x) = G(x,m(T)) inR?,

where v is given by (21). Note that, by the regularity of U, u and v have the required
regularity. |

4. The master equation for MFGs with a major player

We now discuss the proof of Theorem 2.5. We recall that, throughout the whole section,
the assumptions in Section 2.3 are in force.

The idea of the proof follows a similar splitting method as we did in Section 3, by
dividing the time interval [0, T'] into [t2x, t2k+1) and [tag 41, L2k +2), Where ty =kT/(2N),
k € {0,2N}. This time we alternate the following two problems: in [t25+t1, f2k+2) We
solve, for a fixed xg € Rdo, the first order system of master equations in RY x Py

-9, U° — 2/ div,, DnU°(t, xo,m, y)m(dy)
R4

+2/d DU, xo.m. y) - Hp(x0,y, DxU(t, x9,y,m),m)m(dy) = 0,
R

—0,U —2A,U + 2H(x¢,x, DU, m) —2/ divy, D, U(t, x0,x,m,y) m(dy)
R4

+2/d D U(t,x0,x,m,y) - Hy(x0,y, DxU(t, xo, y,m),m) m(dy) = 0,
R,
(33)

while on [tk t2k+1) We solve for a fixed (x,m) € R x £, the system of HJ equations
in R%:
(i) —0,U° —2A,,U® +2H(x9, D, U, m) = 0, 34
(ii) —8,U —2Ax U 4 2Dy, U - H)(x0. Dx,U°(t, xo.m), m) = 0.
As explained at the end of Section 2, we need to introduce a suitable norm which is
preserved in the estimates of both problems. To this end, we need to treat the pair of maps
(U°, U) simultaneously; this requires specific notation that we discuss first.

4.1. Notation for the norms

We will be dealing with pairs of maps (V°, V) = (V°(xo,m), V(xg, x, m)) which might
also depend on time 7, not indicated here. The way we compute the norms is crucial in
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order to match all the estimates. We use the following norms:

||(V°,V)Hn ‘= sup Z sup (1V°(xo,m)|* + | DLV (xg. x, m)| )1/2

meP2 .—o xgeR90, xeR9

HS(VO,V)
n;k
n 2 2\ 1/2
sVo 114
= sup Y sup (‘S—(XO,””)(P) ‘D;S—(xo,x,m)(p) ) ;
meP2 . —g xgcR90, xeR¥, m m
PeCY, llpll—k=1
B2V, v $
’ ( > )” = sup Z sup
Sm meﬂ’z r=0 onRdO,XERds
00" €CY, lpll—k =o' ll—x =1
62 0 2 82V 2\ 1/2
( BV 0. m)(p. o) +‘D;5m—2(xo,X,m)(P,P/) )
and

. §2(VO,v)
Lip,.ik T

2
= sup dp(my.mp)”" ;W(Vo(mz) — VO(my), V(mz) — V(my))

my#ma n;k.k
n
= sup dz(ml,mz)_1 E sup
my#ma r=0 xoeRdO,xeRd,

p:p'€CP. lpll—k=lp ll—x =1

(820 2170

(x0.m2)(p. p') = 5 (xo. m1) (p. p)
2 2

8 8 2 1/2
+ ‘ x8 2(x07x mZ)(p p)_ x8 2(x07x ml)(p p) ) *

2

We define in a similar way the quantities

Lip;°(D; V°. D} V), Li Vs 8V, Lip, (D3 V°. D3 U
lpn ( xo ) lpn;k Sm ’ 8m ’ 1pn( X0 )

Note that arguing as in Remark 2.2, control of ||8(V V) |72k y1elds control of

52(vov Vo v
18 =1 and | 8% |, 1, and similarly for || 2P0 Lip, ., (2000
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We are going to show that the two systems (33) and (34) preserve with a linear rate
(as in (23) for the second order master equation) the following norms:

”(UO U)(t)”n + ”on(UOv U)(t)”nfl + ”D)%()(Uov U)(t)”an
+Lip,°,((D2,U°, D3 U)(1))

S(U° 8(UY . Us, 8Us, 8Ux,
fJro, HM() (52 55 ) o)
n—2:k—1 gm
§2(U°, U) o §2U° 52
5O n—2;k—1,k—1+Llpn_3;k_2’k_2(( S )( ))

+Llpn_3;k_z,k_2((m, W)(r)) +L1pn—3;k—2(( 8m0’ xo)( ))

The (technical) analysis of the system of master equations (33) is postponed to Section
5.2. We rather concentrate on system (34) in the next subsection. We stress again that
the only difference from the second order master equation problem is the derivation of
suitable bounds. Once these are given, the proof of the convergence of the Trotter—Kato
scheme is identical. Since these bounds are collected in several propositions, we give a
short guidance for the reader in the following table, where for each term in the above
defined norms, we refer to the proposition in which this term is estimated.

First order system of master eqns. | System of HJ equations
WO, U)lln -
Proposition 5.15
I1Dxo (U, U)lln—1
i . Proposition 4.1
D2, (U°. U)|ln—2 Proposition 5.17
Lip,° ;(D%,U°. D2 U) Proposition 5.19
0
H 8(U .U) Hn 1k Proposition 5.15
sU? ,U_ ) .. iti
|| XSOTYO ||n_2;k_1 Proposition 5.17 Proposition 4.2
SU()
Lip ® 3k (72, ngrflo) Proposition 5.19
PR ARY) .
— . Proposition 5.17
” 8’”2 “"_Z’k_l’k_l Proposition 4.3
Li (22U 52U
Ppe 3:k—2,k—2\ §m? * §m?
20 g2 .
Lip,_3:k—2.k—2 (88% g#) Proposition 5.19 Proposition 4.4
sU°
Lip, 35— (g ngri;o ) Proposition 4.5
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4.2. Analysis of the simple system of HJ equations

In this section we consider the system

—0:U°(t, x0;m) — Ay, U(t, xo;m) + H(x0, Dy U(t, x0;m), m) =0
in (0, T) x R,
—0,U(t, x0; x,m) — Ay U(t, x0; x,m) (35)
+Dx,U(t, xp;x,m) - Hl?(xg, onUo(t,xo,m),m) =0 in(0,7T)x R%
UO(T, Xo;m) = GO(xo,m) in Rdo, U(T, xg; x,m) = G(xg,x,m) in Rdo,

where (x,m) € R? x P, are fixed. The main part of this subsection consists in proving
estimates on the solution (U°, U) to (35).

4.2.1. Basic regularity of (U°,U). We recall that H satisfies the assumptions of Sec-
tion 2.3, in particular condition (18) is in force.

Proposition 4.1. Fix M > 0 and n > 3. There are constants Ky, Tyg > 0, depending
on M, Cy and y, and a constant Cpy > 0 depending on

sup  sup ZnD(xo,,)H @ p,m)||oo+2||D(xO o HY G pom)]co,
|p|<KMm€J2k 0 k=0

such that if
1(G®, G)lln + I1Dxo(G°, G)lln—1 + | D3, (G°, G)ln—2 + Lip,° 5(D3,G°, D3 G) < M,

then, for any T € (0, Tpr), we have

Sup(II(U0 U)(O)lln + 1Dxo(U°, U) (@) a1 + [ D%, (U, U)(D)lln—2
+ Lip,? 4(D3, (U, U)(1)))
< 1(G®, G)ln+1Dxo (G, G)lIn—1+11D%, (G°, G) lln—2+Lip,* 5 (D3, (G°, G))+Cu T.
Proof. To estimate ||(U°, U)||, it suffices to apply successively Proposition A.8 with
r =0and!/ <n, and to sum over /. The argument to estimate first and higher order derivat-
ives with respect to x is identical: apply successively Proposition A.8 with r = 1 and [ <

n — 1 (for ||(DxOU0, Dx,U)|ln=1), withr =2and ! < n —2 (for ||(D)2COU0, D)%OU)H,[_Z)
and finally with » = 3 and / < n — 3 (for the Lipschitz bound in x¢ of D)zc0 (U°,U)). =

4.2.2. First order differentiability in m

Proposition 4.2. Under the assumptions of Proposition 4.1, the pair (U°, U) is of
class C' with respect to m, as also are its derivatives with respect to x appearing below,
and, for any fixed (x,m, p) € R% x £, x C~* the derivative

sU° sU
(UO»U) = (W(I,XO;m)(p), %(hXo;X,m)(P))
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solves

0 o, 0H° 0
—E)tv —AXOU + W(X(),DXOU ,m)(p)
+ HJ(x0, DxgU®.m) - Dx,v® =0 in (0,T) x R%,
—0:v — Axgv + Dyyv - HI?(xO, DxOUO,m)
SH;) 0 0 0 0 (36)
+D,,U - W(XO’DXOU ,m)(p) + Hp,,(x0, DxoU”,m)Dxyv” | =0

in (0,T) x R%,
5G° 5G

vO(T, x03m) = ~— (x0,m)(p), v(T, xp,x;m) = — (x0,x,m)(p) in R,
dm Sm

Suppose in addition that, for k > 2,

H S(GO, ” 8(Gx07 X())

§GY 8G
+ Lip;(lg,;k 2( > 5}’:0) <M.

n—2k—1

Then there exist Tpr, Cag > 0 such that, for any T € (0, Typr), we have

5(U°, U) 8(UL, Uxy) . U, 5Uxo
sup(H—( H—(z) TLip® ( , )())
t §m n—1:k n—2;k—1 k2 8m

5(G°, G) 8(GY,, Gxy) 3Gy, 8Gxy
LGRS 8C0xy Oxo) Li o, CuT,
- H Mmoo p-rk Sm n—2:k— 1jL TS 2( §m — &m )+ M

where Cyy depends on M, r, n, k and on the regularity of H°.
Proof. In order to show that U° is C! with respect to m, let us define
U°(t.x0:5.m. ) i= U°(t.x0. (1 = s)m + 58).

Then, as H? := H%(xo, p, (1 —s)m + 58,) and g° := Go(xo (1 —s)m + s6,) are of
class C! with respect to the parameter s € [0, 1], the map U%is C'in s and its derivative
00(t, x0;m, y):=(d UO/ds)(t, xo0;0,m, y) solves the linearized equation

A A SHO A
—9,0° — Axovo + W(xo, DxOUO,m,y) + H;,)(xo, DXOUO,m) . onvo =0

in (0,7) x R4,
§G°
30(T, x¢) = —(x0.m,y) inR%.
sm
By uniqueness and parabolic regularity, the solution to this equation depends continu-
ously on the parameters (m, y). Hence Lemma B.1 states that U® is C! in m with
0 A~
8= (t,x0.m, y) = 0°(t, x0:m. y).
Next we consider the linear equation satisfied by U. By our previous discussion
on U, the vector field

(t» XO) = H’f)(x(b DJCOUO(I? xO’m)vm)
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is C! with respect to m. For (s,m, y) € [0, 1] x £, x R?, the map U(t X038, X,m,y) =
U(t, xo, x, (1 —s)m + 56,) solves a linear equation in which the vector field

V(t,x0:5.m,y) := HJ(xo, Dx,U°(t, x0; (1 — )m + 58), (1 — s)m + 58)

and the terminal condition &(xo; x, s, m, y) := G(xo, x, (1 — s)m + s8y) are C! in s.
Then U is C! in s and its derivative d(z, xo; x,m, y) 1= (d/ds)U (t,x0;0,x,m,Yy) solves
the linear equation
=010 — AxoD + Dyyd - Hp(x0, DU, m)
8H, R
+Dy,U - (S—Hf(xo, DxOUO,m,y) + Hpp(xo, DxOUO,m)DxOvO) =0
in (0,7) x R%,
(T, x; x,m,y) = —(xo,x m,y) inR%,

As the solution to this equation depends continuously on the parameters (m, y),
Lemma B.1 states that U is C! in m with ‘SU(I X0, X, m, y) = 0(t, xo; x, m, y). This

proves that the derivative (0°, 9) = (v 5m , 8m)(t Xo,Xx,m,y) solves (36) with p = §,.

Hence, for any p € C?, the pair (v°,v) = ( (t xo;m)(p), 8U (t,x0;x,m)(p)) solves
a linear system of the form (116) in which the dr1fts

Vo, x% m) = H;(xo, D, U°(t, xo,m), m),
V(t,xo;x,m) = ngp(xo, DXOUO(t,xo,m),m)DxOU(t,xo;x)

are bounded of class Cb1 and C ,? anNele bl n=2 respectively, while the source terms

0/, .0 SH° 0
S, xTm) = S (x0. Dxo U, m)(p),
8H) o
S, xo;x,m) := Dy, U(t, x0;x) W(xo, Dy, U", m)(p)

are in C bl and C }? nlnc bl n=2 respectively, thanks to Proposition 4.1. We then use Pro-
position A.9 successively to obtain the estimates: first with r = 0O and / <n — 1, we get

8U0 2 1/2
W(on;

8GY 5G
<(1+4+CT) sup(‘m(xo;m)(p) Di—m(xogx,m)(p)

X0,X

Dx%(l‘,)(fo;

2 2\ 1/2
) + CT.

Then by taking the supremum over ||p||l-x = 1, X0, x and summing over [ <n — 1 we find

the estimate for || M ln—1;x. An analogous application of Proposition A.9 with r =1

U
and/ <n — 2 provides the bound for || M ln—2:k—1, while the Lipschitz estimate
in xq for ( 3 m , 8(;],;0) is obtained similarly with » = 2 and/ < n — 3. [
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4.2.3. Second order differentiability with respect to m

Proposition 4.3. Under the assumptions of Proposition 4.2, k > 3, the pair (U°, U)
(together with its derivatives with respect to x) is of class C? with respect to m and, for
any fixed (x,m, p, p') € R% x £, x C~* =D 5 C=*=D the derivative

. §2U° S2U
(w°,w) = ( s (p. ). S (o), p/>)
solves

82
—9,w — Axowo + H;(xo, DxOUO,m) . DwaO + 3

HO
5~ (x0. Dx, U, m)(p, p')

0 0 0 N 8H1? 0 N
pr(xo,DxOU ,m)Dx,v" - Dy, (V') +W(XO’DXOU ,m)(p) - Dx,(v")
8H19 0 / 0 d

+ —=(x0. Dxo, U",m)(p") - Dx,v” =0 in(0,T) x R,

m

—0;w — Ayow + Hl(,)(xo, DxOUO,m) - Dyow
SHI? 0 / 0 0 O
+onv' W(XOaDX()U vm)(p)+pr(x07Dx0U ’m)on(v)

/ SHIE) 0 0 0 0
+ Dy - W(XO’D)COU ,m)(p) + H,,(x0, DxyU", m)Dxyv
SH? 82H?
+ DX()U : ( 8”1’711) (.X'(), onUovm)(p)on(v/)o + 8”’15 (X(), onUosm)(IO9 IO/)

0

H
8_’/’7(-’50, Dy U®,m)(p") Dy v°

+HY (x0. D, U®. m)Dyyw ) =0 in(0,T)xR%,

+ H]?pp(x07 DX()UOsm)DX()UODX()(v/)O +

200 2
—(x0.m)(p. ). w(T.x0:x.m) = — (xo.x.m)(p.p)) in R%,
m? sm?

(37)
where (v°,v), ((v)°, V') are the solutions to (36) associated with p and p’ respectively.
Moreover, if

then there exist Ty, Cpgr > 0 such that, for any T € (0, Tyy),
L s2U° §?U o
su 1 _
P Pl ak—2 k-2 sm2’ Sm2

52G0 §2G
+L1pn 3k—2.k=2\ 52 ' §m2 +CuT.

w®(T, xo:m) =

§2(G°, G)

52G° §2G - M
Sm? -

+L1pn 3jk—2,k— 2(W5m_2

n—2;k—1,k—1

$2(U°,U)
Sm?

S ‘

Proof. The differentiability of % and of and the representation formula (37) can be
established as for U? and U in Proposmon 4 2. To prove the estimate, we use Proposition

(1)
n—2;k—1,k—1
§2(GY, G)
Sm?

n—2k—1,k—1
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A.9 with
VO(t,x% m) := HY(xo. DxyU°(t, x0.m). m),
V(ta xox; m) = H’f)p(x()v DXOUO(I’ X(), m)v m)D)C() U(t7 an x)a
which are bounded of class C;} and C z? n=lnc bl’n_z respectively, while the source terms

2H0
£t x%m) := W(xo, D, U, m)(p. p') + HYy(x0. DxyU° m)Dyyv® - Dy (v)°

SHYO . o | SHY 0 , 0
+W(XOaDXOU ’m)(p)‘on(v) +W(XO’DXOU 7m)(p)'Dx0v

and
SHI(?) 0 ’ 0 0 "0
f(taXOvX;m) = onv' W(x09onU vm)(p)—i_pr(xO’onU sm)on(v)

/ 8H1? 0 0 0 0
+ Dy v - W(xo,DxOU ,m)(p) + Hp,(x0, DxoU™, m)Dy,v

8H0 210
+ DxOU . ( 5171;1] (x0. onUO» m)(P)Dx()(v/)O + 87’}’15 (x0. DX()UO’ m)(p, P/)

§H?
—|— HI?PP(XO’ D)COUO,m)Dx(]UODx()(U/)O + 8_rzp(x07 DXOUO’m)(p,)DxOUO)

arein C l? and C l? =2 respectively, thanks to Propositions 4.1 and 4.2. By Proposition A.9,

. . . 2o . .
with » = 0 and n — 2 we obtain the estimates for || § (gnz’U) ln—2:k—1,k—1. The Lipschitz
. 2170 2
bound in x¢ of (85;,]2 , ng) follows analogously. |

4.2.4. Lipschitz regularity of second order derivatives. We finally address the Lipschitz
regularity of second order derivatives of U® and U with respect to m and xg.

Proposition 4.4. Under the assumptions of Proposition 4.3 and if, in addition,

. §2G° §°G
Lipy—sp—2k-2\ 5, 55,2 ) =M

then

, 2U° $2U . §26° 82G
Sl;.p Llpn—3;k—2,k—2 87, 5’”_2 (l) = Llpn—3;k—2,k—2 Sm2 "’ 81’}’[_2 +CuT,

where the constant Cyy depends on the regularity of H and H® and on M.

Proof. Let (x,p,p') e R? x C~*=2) 5 ¢=*=2) 1yl 12 e P,, (U%!,U) be the solution
to (35) associated with (x,m!), and (U%2, U?) be the solution associated with (x, m?).
We denote by (v%1!,vl), (v)%1, (v)!) (resp. (v%2,v?), ((v")%2, (v")?)) the correspond-
ing solutions to the first order linearized system (36) associated with p and p’, and by
(w%!, wl) (resp. (w2, w?)) the corresponding solution of the second order linearized
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system (37). We want to estimate the difference (z°, z) := (w%2 —

wol w? —wh). We

have
—0,2% — A2 + Hg(xo, Dy U% (1. x0.m"),m") - D% + f° =0
—0sz — Axyz + DxOZ . HI?(xO, DxOUO’l,ml)
Hy (x0, DxoU»' ,m)Dy U - Dy, 2% + f =0,
0 2G 2 >G° 1 /
(1) = Sm2 (xo.m*)(p. p') — ) (x0,m")(p, p').
2 2
Z(T):5 (x0.x,m?)(p, p)— (xo,xm)(pp)
where

0= (Hy(x0. D, U"? . m?) —
f D 0

HJ (x0. D U™ m")) - Dyyuw®?

82H0 0,2 2 82 0 0,1 1
+ Sm2 (XO’DXOU ,m )(IO’IO/)_ ()C(),DXOU ,m )(pvp/)
+ HY (x0. Dx,U%?, m?) Dy, 02 D ( %2
_H (XOv xOUOI m )DX()U 1 xo(v )01

SHO
+ S_I’If(xo, onUo,zv
0

m*)(p) - Dy (v')*? —

0

H
(S_}’)’lp(xo’ DX()UO,lsml)(p) : on(v/)O,l

SHP 0,2 2\, ./ 0,2 8H19 0,1 , 1\, ./ 0,1
+ W(xo,DxOU “,m7)(p') - Dxyv™ _W(XO»onU ,m)(p") - Dxgv™
and
f = Dxyw? - (H? (x0. Dx,U%?,m?) — HY(x0, Dx, U%", m"))

SHO
+Dx0v2-(8—nf(x0,DxOUO’Z,mZ)(p’)—F 0 (x0. DU m 2)on(v/)"’z)

SHO
_DXOUI'(S_”I;(XO’ DXQUO’lvml)(p/)—i_Hl())p(an DX()(]O’1 I)DXO(U )0 1)

0

N2 8
+Dx0(v) . F;
HO

xO(U) ( ’: (Xo, XOUOI

SH?
+Dx0U2'(8_an(x0! DXQUO,Z,

02
+ ppp(XO» xOU

+(Hp, (x0. DxyU**.m)Dy,U?
0

8
—onUl.(S_nl;P(xo, Dy, U1,

+H pp(-x()5 xOUO,ls

H
2 (X(), D)C() U0,2’
m

m2)(p) Dy (v))°2 +

Z)Dx()UO,Zon (UI)O,Z

m")(p) Dy ()™

ml)DxOUO’l on (v/)O,l

m)(p)+ HY, (xo, DxOUO’Z,m2)Dx0v°2)

m)(p)+ HY, (x0. Dag UL, m") D 10 )

2 0

Sm 2
SH?
+ 8n1,71p (-xO’ DXOUO,Z’ mZ)(p/)Dx()UO,Z)

—Hp (x0. DxgU®' . m) Dy U")- Dyyw®?
2H0

+8—;(X0,onU0’l,

0

+ SHZP(XOsonUO,ls

—2L(x0, Dy U2, m*)(p, 0)

m')(p, p')

ml)(p/)onvO’l).
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Proposition 4.2 (for the representation of (v, v?)) and Proposition 4.3 (for their
Lipschitz regularity in m and in x¢) imply in particular that

SLtlp(IIDxO(vO’2 — "D lloo + [ Do (> = v lo,n—3) < Cda(m1, ms)
and hence we have, using also Proposition 4.3,
Sl;p(llfolloo + 1 f lon-3) < Cda(m'. m?).
Using Proposition A.9 (with r = 0), we obtain, for any / < n — 3,

sup (1z°(t, x0)|* + | DLz (t, x0, x)|?)"/?
1,X0,X

2 2 2

8
(xo, m?)(p, R

8 0
<a+crsu( G om0, )

X0,X Sm?

1/2
) + CTdy(m', m?),

8 8
+‘ X5 2(?CO»X m?)(p, p') — D "8 2(?COJCm

which gives the claim. ]

We complete this section by stating similar estimates on the Lipschitz regularity of
the other second order derivatives:

Proposition 4.5. Under the assumptions of Proposition 4.3 and if, in addition,

. §G? $8G
Llpn_3;k_2(8—”xlo, gmxo) + Lip,_3(D},G°. D G) < M,

then

ém 6 sm  dm
sup Lip, (D3, U®, D3, U) (1) < Lip, 5(D5, G D3,G) + Cu T.

UL sU 5G0 8G
Slt‘PLiPn—3;k—2( =, xo)(f) = Lip, 3 2( ; xo) + CuT,

where the constant Cyy depends on the regularity of H and H® and on M.

As the proof is completely similar to the proof of Proposition 4.4, we omit it.

4.3. Existence of a solution

4.3.1. Definition of the semi-discrete scheme. Let us fix some horizon 7' > 0 (small) and
astepsizet :=T/(2N) (where N e N, N > 1). Wesetty =kT/(2N),k € {0,2N}. We
define by backward induction the continuous maps U%N = U%N (¢, xo, m) and UN =
unN (¢, x9, x,m) as follows: we require that
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i U 0N UN ) satisfies the terminal condition:
UON(T, xo,m) = G®(xg.m). UN(T,x0,x,m) = G(xo,x,m)

for all (xo,x,m) € R4 x R4 x P,

(i) for xo € R% fixed, (U%N, UN ) solves the backward system of first order master
equations:

—3,U° — 2/ div, D,U°(t, xo,m,y) m(dy)
R4

+ 2/4 DmUO(t,xo,m,y) - Hpy(xo,y, DU, x0,y,m),m)m(dy) =0,
R

—0,U —2A,U 4+ 2H (x¢,x, D U, m) — 2/ divy D, U(t, xo,x,m,y) m(dy)
R4

+ Z/d D,U(t, x0,x,m,y) - Hy(xo,y, DxU(t, x0,y,m),m)ym(dy) =0
R
(38)
on time intervals of the form (t2;41,t2j42) for j =0,..., N —1,

(iii) for (x,m) e R x P, fixed, (U%N ,UN) solves the backward system of HJ equations

{—8,U° —2A,U° + 2H (xo. Dy, U, m) = 0, 9)

—0:U —2Ax,U + 2D U - H) (x0. D, U°(t, x0.m), m) = 0
on time intervals of the form (t5;,#,j41) for j =0,...,N — 1.
Our aim is to show that if the time horizon is short enough, (U%Y, U") converges to

a solution of the master equation for MFGs with a major player as N — +o0.

4.3.2. Proof of the existence of a solution. Forn > 4andk € {3,...,n — 1}, let

M =1+ [(G° G)n + | Dxg(G® G)lln-1 + D3, (G®, G) a2

5(G°, G 8(G° .G
4 Lip;g3(D§ GO, D)% G) + g 4 M
0 0 om om

n—1:k
§%(G°,G)
Sm?

n—2;k—1

. 8GR, 8Gx
+L1p§(l3;k_2( e SmO)
n—2k—1,k—1
- 52G° §2G , 52G° §2G
+Llpn_3;k_2’k_2 Sm2 ) Sm?2 +Llpn—3;k—2,k—2 Sm2 ’ Sm2

§G%  §G
+ Lipn_g;k_z(—x‘), MXO) + Lip,_5(D3,G°. D G).

sm



P. Cardaliaguet, M. Cirant, A. Porretta 1858

Lemma 4.6. There exists Tyy > 0, depending on the regularity of H®, H and on M, such
that, for any T € (0, Tpg]l and N > 1, we have, for any t € [0, T],

I, U))lln + D2 (U, U)(@)lln—1 + 1D, (U, V) (@) lln—2

. 5(U0 U) 8(U0 ,Ux )
Lip™© D2 UO,D2 U)(t N 7 X0 Y t
+ lpn—3(( X0 X0 )( )) + Sm ( ) N1k + sm ( ) n—2;k—1
sUQ §U §2(U°. U)
L. X0 XO’ x0 t -~ -7 t
(5t ) 0) + 7m0

- 2U° 82U , 2U° 82U
+Lip,~ 54 5 ks S S () ) + Lipy_3.6—2 k-2 S22 ()

. 38Uy, 8Ux .
+ Llpn_s;k_z((g—n’ff, 5m°)(r)) + Lip,—3((D3,U°. DL, U)@0) = M. (40)

Moreover:

o The maps UN and UN are globally Lipschitz continuous in all variables and their
first and second space derivatives are globally Holder continuous in all variables, uni-
formly with respect to N.

o The maps D,U%N and D,UN are Holder continuous in (t, xo, m, y) and
(t, x9, x,m, y) respectively, uniformly with respect to N, in any set of the form

{(t, x0.m,y) € [0, T] x R% x P, x R : My(m) < R, |y| < R},

1)
{(t.x0.x.m,y) € [0, T] x R% x RY x £, x R : My(m) < R, |y| < R}

respectively, where M, (m) = (fRd |y |2 m(dy))'/2.

Proof. We only sketch the proof, since it is exactly the same as for the second order
master equation (see Lemma 3.5). The proof of (40) can be established by collecting
the estimates in Propositions 5.15, 5.17 and 5.19 in Section 5.2 below, which provide
the bounds on intervals of the form (f;;41, t2j+2), and, for the intervals of the form
(t2j.t2j+1), by Propositions 4.1-4.4.

The Lipschitz regularity in space of U%" and U" and of their first and second order
space derivatives follows immediately from (40). As D,,U%" and D,,U" are bounded
according to (40), U%N and U¥ and their first and second order space derivatives are
also Lipschitz continuous in m. Finally, since U 0.N and UN satisfy (38) and (39), the
bounds in (40) show that 3,U%" and 3,U" are bounded and therefore U%N and UV
are also Lipschitz continuous in time. The global Holder regularity of the first and second
space derivatives of U%" and U¥ then follows by interpolation (Lemma B.2).

The Lipschitz regularity in space and in measure of D,,U%" and D,,U" is a con-
sequence of (40), while the Holder regularity in time in sets of the form (41) comes from
interpolation (Lemma B.4). [

Proof of Theorem 2.5. The argument is exactly the same as in the proof of Theorem 2.3
and we omit it. |
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4.4. Uniqueness of the solution

We finally address the uniqueness of the solution of the master equation for MFGs with a
major player:

Theorem 4.7. Let (U%!, U') and (U%2, U?) be two classical solutions to (22) defined
on the time interval [0, T] and such that D ,,U 0.1 and Dy xU U are uniformly Lipschitz
continuous in the space and measure variables. Then (U%', U') = (U%2, U?).

Proof. Let (tg, Xg,mg) € [0,T) X R9 x P, be an initial condition, Z a random variable
with law ¢, and (Xto, my;, X) the solution to

dX? = —HY(X?, Dx,U% (¢, X0, m;).my)dt + ~2dW2 in (0.T),

dm; = (Am, + div(m, Hy(X?, x, DU (¢, X°, x,m;),m;)))dt in (0,T) x R,
dX, = —H,(X%, X,, DU (t, X%, X;,m;),m;)dt +~/2dW, in(0,T),

XD =Xo. myy =10, Xiy=Z,

where (W) and (W;) are Brownian motions, (W), (W;) and Z being independent. As
D,U%" and D,U! are globally Lipschitz continuous, the above system has a unique
solution. Note that m, is the conditional law of X, given (WSO) s<t-

We compute the variation of U%! along (¢, X2, m;,):

du®t@, x% m,) = (B,UO’I + AU — HY(XD. D U™  my) - Dy U
= [ DU Hy X3 DU XDy, i)
+ /Rd div, D,,U%! m,(dy)) dt + N2 Dy U - dw2,
where, unless specified otherwise, U%! and its space derivatives are computed at

(¢, X9, m;) while D, U%! and its space derivatives are computed at (¢, X2, m,, y). In
view of the equation satisfied by U%!, we find

dU%N (e, X my) = (HY(X). DU my) — HY) (X)) DU my) - Dy U™ dt
+ V2D U - awp.

We proceed in the same way for U %2 and obtain, in view of the equation satisfied by U %2,
dU%(t, X).m;) = (H‘)(X",DXOU”,mt) — HY(X). D U m;) - Dy U2
4 [ Dl (Hy X0,y DU XD,y i)
R4

— Hy(X),y. DU (t. X0, y.my)), m;) m,(dy)) dt + V2D, U%2 - dwp,
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where, unless specified otherwise, U%? and its space derivatives are computed at
(t,X ,0 ,my) while D,,,U 0.2 and its space derivatives are computed at (z, X ? ,my, y). There-
fore

AU U =2(U" - U°’1)(H°(X°, Dy U2 me) — HO(X], D, U™ my)
— H)(X?. DyyU%' . m;) - (DyU»? — Dy U™

+ /R¥d DmUO’Z : (Hp(Xovys DXUZ(I»XtO»yva)va)

— Hy(X?,y, DU\, X°,y,m,),m,))m,(dy)) dt
+2(DyyU%? — Dy UOH2 dt + 242 (U2 —U%Y) (D, U%? — D, U%Y) - d WP,

Let us set Uto’i = Ui (t, X% my) (fori =1,2). We integrate in time between s € [tg, T
and T, take expectation and use the fact that UTO’1 = U79’2 =G%X%, mr):

0 — ]E|:(USO,2 _ Us0,1)2
T
+/ 20 - Uto’l)(HO(XO,DXOUO’z,m,) — H°(X?, Dx, U my)
N
- HP?(Xos onUo,laml‘) . (D)C()(]O’2 - DX()UO,I)

+/ DmUO’Z'(Hp(Xovy’DXUz(taXtO»yvml)»mt)
Rd
—Hp(X?,y,Dxul(z,x",y,mt),mt»m,(dy)) dr
T
+2/ |DxOU°’2—Dx0U°’1|2dt]
N

Thanks to the regularity of the solutions, by the Cauchy—Schwarz inequality and for any
€ > 0 we have

T
0 > E|:(US0,2 _ UxO,l)Z _/ (CE(UIO,Z _ Ut0,1)2 + ElDXQ(UO’Z _ UO,1)|2
S
T
e [ - X°,y,mt)|2m,<dy)) ar+2 [ DU - U‘“)Pdr].
R4 s
So, for € small enough, we obtain
T
0 > ]E[(USO,Z _ USO,I)Z _/ (CG(UZO’Z _ UtO,l)Z
S

T
4 e/ DL (U — Ul>(z,x°,y,m,)|2m,<dy>) dt +/ Dy (U2 U°")|2dr].
R4 s
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We argue in the same way for U,i = Ui(t,XO,X,,mt) (i = 1,2) and find that
T
0> E[(USZ —-UH? - / (Ce(UtZ —UMN? + €| Dy (U —U%H 2
S
re [ DU - UNe XD )P mitay) ) ar
R4

# [ U@ U+ 10w - U ]
s
We add the last two inequalities to obtain
0> IEJ|:(USO’2 _ Ux0,1)2 + (Us2 . Usl)z _ /T (Ce((UzO’Z _ Ut0,1)2 + (Ut2 . Utl)z)
S
4Dy U0 = UODP 4 26 [ 1DV = UKDy om0 mita) ) di

+ /T(|DXO<U°’2 —U"D> +[Dxy(U* =UYH? + D (U* = UHP?) dr].
s (42)
Note that, as m; is the conditional law of X, given ( Wuo)ug, we have
E[|Dx(U*=U"Y(t, X, X¢.m)[*] = E[E[|Dx(U>~U" (1, X, Xe.m) P | (W )u=]]

= E[/ |Dx(U?=UN, Xo,y,mz)lzmz(dy)}
R4

since X2 and X, are adapted to (W,2), <. Plugging this relation into (42) we find there-
fore, for € > 0 small enough,

T
0 > EI:(USO,Z _ USO,I)Z + (USZ _ US1)2 _ / Ce((UtO,z _ Ut0,1)2 + (UIZ _ Utl)Z) dt

s
b3 [ 02 U 4 1oy = U 41017 - U ]
We conclude by Gronwall’s inequality that, for any ¢ € [tg, T],
E[(U*(t, X m)—U> (. X0 .m)> + (U, XD, X¢.m) U (t, X, X;my))*] =0.
For t = tg, we therefore have U %2(tg, Xg, 1119) = U% (29, X0, 110) and
U'(to. X0, Z.10) = U>(tg. Xo. Z,119) ass.

If mo has a positive density, the fact that the law of Z is mg easily implies the equality
of U' and U? at any point (fo, Xo. X, /1) for x € R?. We conclude by density of such
laws and by continuity of the U*’s. ]
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5. Analysis of the first order master equations

In this section, we complete our program by proving regularity results for the solutions of
the various first order master equations encountered in the previous sections. We mainly
consider the first order master equation

—0,U(t, x9,x,m) — Tr(a(t,x)D)zch(t,xo,x,m)) + H(xg,x, D, U(t, xg, x,m), m)
—Ad Tr(a(l,y)DJZ,mU(I,XO,X»m,Y))m(dy)

—i—/d DU, x0,x,m,y) - Hp(x0,y, DxU(t,x0,y,m),m)m(dy) =0
R
in (0,7) xR x P,

U(T, x9,x,m) = G(xg,x,m) in RY x Ps.

(43)
In the above equation, xo € R% is considered as a parameter. Our aim is to build a solution
to this equation and study its regularity. The method for finding a solution to (43) is well-
known, and is based on looking at its characteristics: if we set

Ul(to, x9, x,mp) := u(to, x) (44)
where (1, m) is the solution to the MFG system

—9;u(t, x)—Tr(a(t, x)D?u(t, x)) + H(xo, x, Du(t, x),m(t)) = 0 in (to, T) x R¥,
d;m(t, x) —Z Dij(a; ;(t, x)m(t, x))—div(m(t, x) Hp(xo, x, Du(t,x),m(t))) =0
b in (fo, T) xR?,
m(ty) = mo, u(T,x)= G(xg,x,m(T)) in R4
(45)
(here xo € R is again treated as a fixed parameter), then U is a solution to (43).

In order to study the Major—Minor agents’ problem, we also have to consider a linear
master equation

0,00 = [ THa(t. ) D3 U° . 5o m. ) m(dy)

+ /]Rd DmUo(t,xo,m,y) - Hp(x0,y, DxU(t, x9, y,m),m)m(dy) = 0, (46)
UO(T, Xo,m) = GO(xo,m) in RY x P, ,

where U is the solution to (43). In this case, we build the solution U° by the simple
formula
U°(t0. x0.mo) = G°(x0.m(T)), 47

where (u, m) is also the solution to (45).

Our aim is to show that if G and G° are regular enough, then (43) and (46) have
classical solutions, given by the above representation formulas. Moreover, we show that
the regularity of these solutions only deteriorates linearly in time. This last point is the
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key result in order to build later solutions to the second order master equation and to the
master equation for the Major—Minor agents’ problem.

To guide the reader, the plan of the section is as follows: Section 5.1 is devoted to

the study of the regularity of the MFG system (45), together with its linearizations, in
particular:

Basic estimates on (u, m) solving the MFG system are given in Section 5.1.1. Note
that these heavily rely on technical bounds for Hamilton—Jacobi equations, that will be
proven in Appendix A.

Estimates on the first order linearized system are given in Section 5.1.2, and these are
again based on results in Appendix A.

Estimates on the second order linearized system are given in Section 5.1.3, and their
proofs basically follow the scheme of the first order linearized system.

Then, we will use these regularity results to obtain bounds on solutions to the master
equations in Section 5.2:

Basic estimates and first order differentiability of U and U are shown in Section 5.2.1.
These are consequences of estimates for the MFG system (in Section 5.1.1) and its first
order linearization (in Section 5.1.2). Note that here we also need a general criterion
for differentiability of functions depending on measures (Lemma B.1).

Second order differentiability of U and U° is established in Section 5.2.2. Here we
will need several bounds for the MFG system, its first and second order linearizations
(Sections 5.1.1-5.1.3).

Finally, Section 5.2.3 is devoted to uniform continuity estimates on second order deriv-
atives, that are crucial to obtain compactness for the Trotter—Kato scheme. Again, we
rely on estimates on the linearized system (Sections 5.1.2-5.1.3).

A complete roadmap of Section 5 is given in Figure 1.

. Proposition 5.5
Estimates on P
the HJ equation
Appendix A Second order linearization

Section 5.1 Section 5.2

\

. >| Regularity of MFG system First order differentiability

Proposition 5.4 Proposition 5.11 : U

Proposition 5.15 : (U,U%)
\ Lemma B.1

Second order differentiability

/

First order linearization

Proposition 5.16 : U
Proposition 5.17 : (U, U?)

<

i

Proposition 5.6

Useful corollaries

Corollary 5.8 — 62,U

Corollary 5.9 — Dy, 6,,U

— Corollary 5.10 — D2 U

Uniform continuity of
2nd order derivatives

Proposition 5.18 : U
Proposition 5.19 : (U,U%)

Fig. 1. A roadmap of Section 5.
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5.1. Estimates on the MFG system

Let us first explain the notion of solution to (45). Fix (tg,mg) € [0, T] x £, and x¢ € R,
We say that (u, m) is a solution to (45) if u € C°([ty, T, Cbz) satisfies

T
u(t,x) = G(xg, x,m(T)) + / (Tr(a(s, x) D?u(s, x)) — H(xo, x, Du(s, x), m(s))) ds

for all ¢ € [ty, T] and if m € C°([ty, T], $>) solves the Fokker—Planck equation in the
sense of distributions: for any ¢ € C2([0, T) x R),

0= /]R (0, x) mo(dx)

T
+/ / (Tr(a(s, x) D¢ (s, x)) — D (s, x) - Hp(x0,x, Du(s,x), m(s))) m(s,dx) ds.
0o JR4

The assumptions on a, H and G given in Section 2.3 are in force throughout the
section.

5.1.1. Well-posedness and regularity of the MFG system. We discuss here the well-
posedness of the MFG system (45) and provide several estimates. Let us start with
the Hamilton—Jacobi (HJ) equation (general estimates on this equation are given in
Appendix A).

Proposition 5.1. For any M > 0, there exist Tpr, Lyg > 0, depending on Cy and y given
in assumptions (16) and (17), such that if supy, ., [|G(xo,-,m)|1 < M, then, for any
T € (0, Tyr) and any m € C°([0, T], $,), the solution u to the HJ equation

—d;u(t, x)—Tr(a(t, x)D*u(t, x)) + H(xo. x, Du(t,x),m()) =0 in(to,T) x R4,
u(T, x) = G(xo,x,m(T)) inR?
(48)
satisfies
sup [[ully < sup [|G(xo,-,m)|l1 + LaT.
t€lto,T] Xx0,m

Henceforth, we set Ky = supy, ., |G(xo0,-,m)|[1 + Ly Ty

If, in addition, supy , [|G(xo,,m)|ln < M, then there exists Cpy > 0, depending on
n, Co, y and

n
k
sup fla(0)]l + sup D DG py Hxo, 5 o) oo
1€[0,T] |pl<Kar, x0€R0, mePs j—o

such that, for any T € (0, Tpr), xo € R% and r < n,

sup |Diu(t,x)| < sup |DLG(xo,x,m(T))| + CmT.

teftg,T], xeR4 xeR4
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Therefore, for any xo € R4,

sup Ju(@)lln < sup |G (xo,-,m)|ln + CuT. (49)
t€lto,T] m
Proof. Use Propositions A.1 and A.6. ]

Next we discuss the dependence of the solution u of (48) on (m(?))refy,T]
and xo € R%. We stress that, hereafter, we use the preliminary gradient estimate
SUP; ety a1 14 (D11 < K which is obtained as a first step in Proposition 5.1. In par-
ticular, the Hamiltonian H(x¢, x, p, m) will be systematically estimated for | p| < Kjy.

Proposition 5.2. If the assumptions of Proposition 5.1 are satisfied so that (49) holds
true, then there exists Tpy > 0 such that, for T € (0, Tpr) and any ty € [0, T], for any
m',m? € C°([0, T], ) and any x;,x} € R9%, if u' and u? are the corresponding
solutions to the HJ equation (48), then we have, for n > 2,

sup [l (1) = 12(O)lla-1 < Cu T(_ sup_dalm! (1), m(0)) + 1§ = x3])
t€ro,T] t€to,T]

+ (1 + Cpr T){[Lipg -1 (G)lda(m" (T), m*(T)) + [Lip, 2, (G)]lxg — x5}
where Cypy depends on the same quantities as in Proposition 5.1 as well as on
Lip,_; ,(H (xo, -, -, m)), Lipz‘ll’n(H(xo, - -,m)) (for x € R% and |p| < Kuy) and
SUPxq,m ”G(XO» 7m)||n

1

Proof. The map v := u! — u? satisfies

—d;v — Tr(a(t, x)D?v) + V(t,x) - Dv + f(t,x) =0,
u(T, x) = G(xy,x,m"(T)) — G(x¢, x,m*(T)),

where
1
Vit x):= / Hp(x, x%,sDul(t,x) + (1 —s)Du’(t, x),mz(t)) ds,
0

f(t,x) == H(xg,x, Du'(t,x),m" (t)) — H(x}, x, Du'(t,x), m?(t)).

By Proposition A.7 (applied with k = 1 and n — 1), we have

sup lu' (1) = u (1) [ln—1
t€l0,T]

<(1+CD|G(xg.-.m"(T) = G(xg.-,m*(T) =1 + CT sup || f(1)]ln—1
t€lto,T]
< (1 + CT){[Lipy 1 (G))d2(m' (T), m*(T)) + [Lip)°, (G)]|xg — x|}
+CT( sup dalm' (0).m°(0)) + [x§ x5 ).
t€fto,T]
where the constant C depends on H and on sup,cro 7y [[V(?)|n—1, hence on

sup;cfo.r) 1 @)lln. supsefo. 7y l4*(@)|ln, which are estimated thanks to Proposi-
tion 5.1. n
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In our next step, we consider the solution to the Fokker—Planck equation
duifi(t.x) = Dij(ai; (1. x)ii(t, x))
i,J
—div(mn(t, x) Hp(xo, x, Du(t,x),m())) =0 in (tp,T) x R4,
m(to) = mo inR?,

(50)

where (m(?)) e[, 7] is given and u satisfies (48). Let us recall that, under the assumptions
of Proposition 5.1, there exists a unique weak solution 7 € C°([tg, T], $2) to (50).
Proposition 5.3. Assume that

IDxGllo <M, [|D?,Glloo <M, Lipy,(G)+Lipi°(G) < M. (51)

Then there exists a constant Cpg > 0, only depending on M, ||a ||, and the regularity of H,
such that, for any m', m? e CO([O, T1, %2), x(l),xg € R% and mé, m(z) € P, iful and u?
are the corresponding solutions to the HJ equation (48) with xo = xé and if my, my are
the corresponding solutions to (50) starting from m(l) and m% respectively, then

sup d5(m' (1), m*(1))
telto,T]

< (14 CyT)d3(my, md) + CMT( sup d3(m'(t), m*(t)) + |xg —x§|2).
t€lto,T]

Proof. We can represent 772’ (t) as the law of X! where E[| X} — X2|?] = d2(m}, m3) and
X' solves

t t
X =x5_/ H,,(x;,,X;,Du’(s,xg),m'(s))ds+fz/ o(s, X!) dBs,
0 0
so that
E[IX;} — X2 <E[|IXg — X3]

+2]E|:/Ot(Xs1—XS2)-(Hp(xé, X} Du',m' (1)) — Hy (x5, X2, Du®, m*(1))) ds]
—HE[/t Tr((o (s, X;)—0(s. X)) (o (s, X;)—0 (s, X2)¥) ds} <E[|Xy—-X3I*]
0
+CMJE[ / t(|X;—X3|2+|D(u1—u2)(s, XHP+d50m' (s), m*(5)) +|xo—x31%) ds]
0

where Cyps depends on the Lipschitz regularity of H), in R% x R? x B(Kpr) x P, (where
K is defined in Proposition 5.1), on sup, [u!(¢)||2, and on the Lipschitz regularity of o.
We infer from Gronwall’s lemma that

E[ X} — X2[] < (1 + CuT)E[|X — X2

+ Cu T (sup D' —ud)OI% + sup_dZon' (0).m*(©) + g — <3 ).
t t€lto,T]
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AsE[|Xg — X2 ?] = d3(m}, m3) and d3(m' (r), m*(1)) < E[| X} — X?2|?], we obtain

sup d3(m' (1), m*(t)) < (1 + CpT)d3(my, md)
t€lto,T]

+ CuT(sup [ DO =) O)l% + sup d3om' (1), m>(@) + xg — x3)
t t€lto,T]
We estimate the term sup, || D(u! — u?)(¢)||%, by Proposition 5.2 (with n = 2): since
Lip, ;(G) and Lip;°(G) are estimated by (51), we deduce, for some (possibly different)
constant Cyy:

sup d3 (' (1), m*(1))

t€lt,T]

< (1+ CyT)d2(mb, m?) + CMT( sup d2(m' (), m2(1)) + |x} — x§|2). -
tefto,T]
Collecting the estimates in Propositions 5.1-5.3 yields the well-posedness of the MFG
system and estimates on the solution:

Proposition 5.4. Fix M > 0 and assume that (51) holds true and that |G ||, < M holds.
Then there exist Ty, Cag > 0, depending on M, n, Cy, y and

n
sup  Jla(®)]ln + sup D D py H(xo. . p.m)loo

t€[0,T] |p|<Kpr, x0€R0, mePs =

(where Kyy is given in Proposition 5.1) such that, for any T € (0, Tas) and any (tg, mg) €
[0, T'] x P, there exists a unique solution to the MFG system (45). This solution satisfies

sup [u@)|ln < 1G(xo,-,m(T))|ln + CumT.
t€ltg,T]

Moreover, if (1o, m(l,) and (ty, m%) are two initial conditions in [0, T| x P, and
xé, xg € R%, and if (u', m") and (u*, m?) are the corresponding solutions to the MFG

system (45) with xo = xé and xg = xg respectively, then

sup _da(m' (). m*(1)) < (1 + Cy T)da(my. m3) + Cyr T|xg — x3.
telto,T]

and

sup [ul(t) — u?(t)|n—1 < Cy T(da(mb, m3) + |x§ — x2|)
t€to,T]

+ (1 + Cu T){[Lipg p—1 (G)](@2(mg. m3) + |xg — x5 1) + [Lip, 21 (G)]lxg — x5}

Proof. The existence and uniqueness come from a standard fixed point argument on
CO([to, T], ) for T small enough (say T < Tps where Cyy Tpy < 1/2, Cpy being given
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by the previous propositions). For the stability with respect to the initial condition, one
first uses the estimate in Proposition 5.3 with /' = m':

sup d3(m’ (1), m*(1))
t€lto,T]

< (1+ Cy T)d3my, m3) + Cy T( sup_d3m" (1), m>(0)) + x§ — x3%).
t€lto,T]

Thus, as Cyy T < 1/2, one obtains

sup dp(m' (1), m*(1)) < (1 + Cy T)da(mg, mg) + Cyu T lxg — x5,
t€ltg,T]

modifying Cy if necessary. Plugging this estimate into the estimate for u? in Proposition
5.2 gives the result. ]

5.1.2. The first order linearized system. Next we consider the linearized system
(i) —9;v — Tr(a(t, x)D?v) + Hp(xo,x, Du,m(t))- Dv
SH .

+ 5 (0, X, Du,m()(p(1)) = Ri(t,%) in (10, T) x R,

(ii) d;p — Z Djj(a;,jp) — div(pHp,(xo, x, Du,m(t))) — div(mHpp Dv)

i,

(52)
- div(mgg%(p)) = div(R,(t,x)) in (1o, T) x R?,

(i) p(10) = po. 0(T,3) = 50 (xg, 2. m(TN () + Ro(x) in &Y,

where (1, m) solves (45) and H and its derivatives are evaluated at (xo, x, Du(z,x),m(t)).
In this section, we work under the conditions given in Proposition 5.4 so that (45) admits
a unique solution, in particular we always assume that 7' < Tjs, where Ty is given by
Proposition 5.4. Our goal now is to establish estimates for (v, p) in dependence on G
and u; we implicitly assume that G(xo, -, m) is sufficiently regular (say, C;') so that u
inherits the same regularity (from (49)).

The data of equation (52) are xg € R, py € C7%, Ry € C°([0, T].C}™1), Ry €
C([0,T],C~%*=D) and Ry € C/'~!. Here n > 2 and k > 1. By a solution to (52), we
mean a pair (v, p) such that v € C°([0,T],C ;—1) satisfies (52) (i) (integrated in time) with
terminal condition v(7T,-) = g—,Gn(xo, - m(T))(p(T)) + R3(-) and p € C°([0, T, Cb_(k_l))
is a solution in the sense of distributions to (52) (i) with initial condition p(#9) = po.

Proposition 5.5. Fix M > 0, n > 2 and k > 1. Under the assumptions of Proposition 5.4,
and if

§G

dm ||,

then there exist constants Tyr, Cpy > 0, depending on M, n, k, SUP;e[0,7] [ (t) ]| s
sup;eo,7] |4 (@) lk+1, such that for T < Ty there exists a unique solution (v, p) to (52),

=M, (53)
k
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and this solution satisfies

sup [[v(@)[n-1 =
telto,T]

(1+CyuT) H g—Z(xO, 5 m(T),y)

(Ilpoll s+ sup I Ra ()| -1y +T sup [ Ra 1)1 )
n—1:k

+ (1 4+ Cu T Ralla—1 + Cau T (14 sup [ Ry () ln—1 + [ Rall -y ). (54)
t
as well as

sup [lp()ll-x = (1 + Cpr T)poll -k

t€fto,T]
+ Cu T (sup [Ry0) 1 + sup [ Ro(®)l| -1y + [ Rslla-1)-  (55)
t t

Moreover, foranyr <n — 1,
r r 8G r
sup [[D3v(D)]leo = (1 +CuT) ng—(xO, ~m(T))(p(T))|| + [[DxR3lleo
t€l0,T] m 0o

+ CuT (lpoll—t + sup I RW)r + 509 | o) -y + [ Rallama) - (56)

Proof. After proving the a priori estimates, the existence of a solution can be obtained
using a continuation argument (see [10] for details). The uniqueness is an obvious con-
sequence of the estimates. So it remains to prove the estimates. To simplify the expression,
we omit the dependence of the constant C on M. Fix t; € [tp, T] and z; € C[f with
k € {1,...,n — 1}. Let z be the solution to

(57)

—3;z — Tr(a(t,x)D?z) + Hp(xo,x, Du,m(t))- Dz =0 in (fp,11) X R4,
z(t1,) = z1(x) inR4.

According to Proposition A.7 (with k = 1), we have

sup flz(@)llx <A+ CT)|z1 ]l

t€to,t1]

where C depends on the regularity of @ and H and on sup, ||#(¢)| x+1. Then, by duality,

JET
R4
1 0H n
=/ z(to),oo—/ / (prDv-Dz—i-—p(p)-Dz)m—/ / Dz-R,
R4 o JRA dm 0 JRd

131
< IIZ(to)IIkIIpoll—k+CIIDZIIoo(TIIDvlloo+/ IIp(t)II—k)+T sup 2@ [kl Rzl - k-1
17

0

51
= (1+CT)llz1x (||PO||—k+C(T||DU”oo+/ ||p(t)||_k)+T||Rz||—(k_1)),

to
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where || Rz ||—#—1) := sup; [[R2(¢)||—k—1)- Thus, taking the supremum over ||z1|[x <1,
we obtain

t

1
oG-k < (L + CT)poll-k + CT(IDv]loo + [R2]l-x-1)) + C/ o«

fo

Since this holds for all #; € (ty, T], by Gronwall’s inequality we obtain

sup [[p(®)||—x < (1 4+ CT)|poll—k + CT(IDv]loo + IR2ll-k-1))-  (58)

t€(to,T]

Next we apply Proposition A.7 (with k = 1) to the HJ equation satisfied by v: we have,
foranyr <n—1,

sup [v@)[lr = (1 + CT)|lo(T)|lr + CTCy, (59)
t

where C depends on sup; ||a(?)|»—1, on the regularity of H, on sup, ||u(¢)||», and where
C is estimated by

+ | R1lln-1

n—1

k)
2 (0. Dutt, ). me) (1)
m

= Csupllp@)ll—k + 1 Rifln-1, (60)

Cy =sup
t

where we have used the inequality

<

n—1

) )
H SH (x0.-, Du(z,-), m(1))(p(1)) —SH (X0, Du(t, x), m(2). ) |ln—1,kll o()
m m

Again we notice here that the right-hand side is estimated through the regularity of H and
sup, [|u(¢)||,. Similarly we estimate, forr <n — 1,
(Ml =

8G
5y X0 m(D)) supflp®)]l— + (R3]l (61)
m t

rik

Collecting the estimates in (58)—(61), we find, forr <n — 1,
sup lv(@) |l
t

<(A+CT) Hg—g(xo, m(T),-)

{1+ CDllpoll-k + CT([[Dv]loc + | R2[l-—1))}

r:k
+ IR3]l;(1 + CT) + CT(lpoll—« + T(IDvlloo + I R2l—k-1)) + [IR1[ln=1).  (62)

We first consider this inequality for » = 1. Recall that ||§—,?, |16 < M. So, if we choose

Ty > 0 such that
(1+CTy)MCTy +CTg < 1,

we obtain (54) for T < Tjs and n = 2. Then from (58) we infer (55) (with a constant only
depending on sup, || (?)]|x+1)- Having now estimated || Dv ||, we deduce from (62) that
(54) holds.
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To obtain (56), we apply again Proposition A.7 to the HJ equation satisfied by v,
together with estimates (60) and (55). [

5.1.3. The second order linearized system. Next we study the second order linearization
of the MFG system. Given a solution (u, m) to (45) and (v, p) and two solutions (v’, p’)
to (52) with arbitrary Ry, R, R3 and R/, R/z, R’3, we consider a solution (w, i) to

2

(i) —9;w — Tr(aD*w) + Hp - Dw + iﬂ(ﬂ(l)) + S—Ig(P(f)a o' (1))
m sm

SH SH .
+Hp,,Dv-Dv' + 8—”(,0) -Dv' + 8—”(,0/) -Dv = Ry(t,x)
m m
in (to, T) x RY,
.. . . . §H)p,
(i) o — Z Dij(a; ;) —div(uHp) — divimHpp Dw) — div ms—(u)
— m
> SH
—div(pH,p DV') — div(pg—nf(p/)) —div(p'Hpp Dv) — div(mHppp DvDY')
SH SH SH
—div[m—=L2 (") Dv ) —div| o' =L (p) | — div| m —=LE (p) DV’
(gm ém dm
H -
—div[m—=2(p, ') | = div(R»(t.x)) in (to.T) x R?,
sm? i

8°G
(iii) p(z0) =0, w(T.x) = W(Xo,x,m(T))(p(T)yp'(T))

420 g mT )T + Ro() inRY,

(63)
where H and its derivatives are evaluated at (xo, x, Du(¢, x), m(t)). Here again we work
under the conditions assumed in the previous sections which guarantee the existence,
uniqueness and enough regularity for (u, m) as well as for the solutions of the linearized
system. In particular, we always assume that 7" < Tjps, where Tjs is now given by Pro-
position 5.5. The goal now is to establish estimates for (w, u) in terms of G as well as of
(u,m) and (v, p), (v', p').

The data of the problem are R; € C°([0, T, Cb"_z), R, € C°([0, T], C~%*=D) and
Rs € CI;’_Z. By a solution to (63), we mean a pair (w, i) such that w € C°([0, T}, Cl;’_z)
satisfies (63) (i) (integrated in time) with the terminal condition in (63)(iii) and pu €
CO([0, T], C %) solves (63) (ii), in the sense of distributions with vanishing initial con-
dition. Here we assume n > 3 and k > 2; the reason for this condition is just that we
wish to keep the regularity threshold of (w, ;) consistent with what stated previously for
(u,m) and for (v, p). In general, the estimates below apply to any degree of k, n but this
is obviously a cascade regularity: an estimate of w in C 1;1—2 requires an estimate of v in
C/~'and of u in CJ!, while an estimate of y in C 7 requires an estimate of p in C~*=1,

Proposition 5.6. Fix M > 0, n > 3 and k > 1. Under the assumptions of Proposition
5.4, and if (53) holds, there exist Tyy > 0, depending on M and the regularity of H, such
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that for any T € (0, Tar), system (63) has a unique solution which satisfies

sup [w(?)|ln—2 = (1 + Cu T)
t

582G
X ﬁ

(x0,+,m(T),",")
m
5
(i
sm

1T ey 19 () |ty + ||1é3||n_2)
n—2;k—1,k—1

) (00120112 + 5091 Ra)] -
n—2,k t t

+ Rt kR + Rietna Ry my) - (64)

for some Cypp depending on M, on the regularity of H as well as on n,k,
SUP;e(0,T] lulln—1, SUP;efo,T] lullk+1, and

sup (|-

< éMT((l +

+ sup [[Ri(@)lx
t€l0,T]

52G
i)’m_z(xo"’m(T)’ 1)

)np(T)n<k1>||p'(T)||(kn
l;k—l,k—l

+ S[HP]||R2(I)|| U—1) T IRt + Rtk Rj_y g + Ri—12R}_ 12) (65)
te[0,T

where Cyy depends on M, the regularity of H, n.k, sup;eqo, 1] 1Ullk+1, and where we
have set, fork,j > 1,

Ri—1,j = Sl;p(”P([)”—(k—l) O, Rieey, = Sltlp(||/0/(l)||—(k—1) + [V @)

then for any r < n —2 and (t, xo) € [0, T] x R,

In addition, if

n2k

1D w(t. o < (HD;8—2<xo, (D) (p(T). p(T))H +IDL R )

2

8°G
+ CMT(‘ — (xo,-,m(T),-.)
sm

(T —g—y 10" (Tl k-1
n—2:k—1,k—1

+ sup | Ry (1) lln—2 + sup | Ro (1) —e—1) + 1 R3[ln—2 + Ri—1.kRj_; 1
t t

4 mk_l,,,_lyz;”,nl). (66)
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Remark 5.7. We recall that the quantities ||0(T')||—x—1) and Ry ; are estimated from
(54) and (55). In particular, we have

Ri—16 < (1 + CMT)C(”PO”—(k—l) + sup | Ra ()]l -(k—2) + sup [R1()lx + ||R3||k>

for some constant C depending on || g—g | k:k—1 and sup, ||u(?)| x+1. and similarly

<‘Rk—l,n—l

< (14 CuTIC (ol + 50 IRoO)ll -2 + IR -1 + sup | Ra )l )

for a constant C depending on || % |ln:x—1 and sup, [|u(t)]|,. Of course the same holds for
0, v" accordingly.

Proof. We omit the proof of the well-posedness of the system, which is a consequence
of the estimates (as for Proposition 5.5). To simplify the expression, we also omit the
dependence of the constant C on M. We first estimate p by duality. Fix t; € [tg, T'] and
Z1 € le fork € {1,...,n — 1}. Let z be the solution to (57). Recall that Proposition A.7
(with k£ = 1) implies that there is a constant C > 0, depending on sup, ||u(¢)||x+1, such
that

sup [z(Dlk = A+ CT)|z1 k.

t€fto,11]

Then

n SHP l /
» u(t)zy = — e Dz |\mHpp,Dw + m%(u) + pHpp DV' 4 p'Hpp Do
0

8H, SH
+ PS_Y:(:O/) + P/S_nf('o) + mHppp DvDV’

6H oH 82H ~
+m—L2(p")Dv + m—LE(p) Dv' + m—=F(p. p') + Ra(1. %) ) {.
Sm sm?

dm
Hence
1

[, #az1 = CTIDw el Dzl + CIDz o [ I6) -t ds

o
+ CT(sL;p 1906 1=ty s0p 1" (0)li+5up 11 |- -1y sup lo@)lle) sup 12(0) i
+CT(sL;p 19(6) 1=y sup ')l Sup 120l + C T Dl DV oo D2

+ CT(SLtlp o)==y 1 DV [loo + sup 10" Ol =k—1) 1 DV [l0o

50p [o(0) |-y 5up ()]l -1 ) 1 D= o

+CT| Rl - ey sup |12 (0)]lx
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where the constant C depends on the regularity of the function H and on sup, ||u(?)]| .
Taking the supremum over ||z ||z < 1, we infer that

t

1 ~
k@l =€ [ In©)lds + CT{IDuls + 1 Rall-gny

to
+ (sup l0(0) ey + sup [v(0) e ) (sp 17/ 1)y + sup 1/ @) e )}
By Gronwall’s inequality, we obtain
sup (1)l = CT {1 Dwlloo + sup | Ra(0)| ety + Rer Rk f. (67
where C depends on the regularity of the function H and on sup, ||u(?)|/x+1. From Pro-
position A.7 (with k = 1), we have
2

8°G
— (o(T).p'(T)

supllw o2 = 1+ 1) |
t m

8G -
o] i)
n—2 m n—2

+CT sup If(Olln—2,  (68)

where
SH 82H
f@,x) = %(M(t)) + W(P(l),/?/(l)) + HppDv - DV’
S8H, S6H, -
+ —2(p)- DV + —L(p) - Dv — Ry (¢, x).
sm ém
We estimate

OH
sup /@) -2 = (Hg—m(xo,-x, Dut, ). m(1). )

sup I @)ll—& + 1 R1lln—2

n—2k

+C Sl;p(”l)(t)”—(k—l) + O lla-D Al Ol -e-1) + ”U/(t)”n—l))

for a constant C depending on the regularity of H and on sup, ||u(¢)||,—1. So we conclude,
using also (67), that

sup || /(1) ln—2 < CT(IDwlloo + Ri—1k Ry & + | R2ll-e—1))
t

+sup|Rilln—2 + € Re—1n-1Rp_1 s
t

Similarly, again from (67) we get

| )
m

n—2

(IDwlleo + Rie1x Ry + IR —-1))

8G
=< CTH —(X(), '7m(T)’ )
Sm n—2k
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and
582G
‘ 8—2(P(T),P/(T))
m n—2
582G ,
< 8—2(360, m(T),-,") (T —g-0) 12 (T |- k—1)-
m n—2k—1,k—1

Then, we find

sup [|w(®)[ln—2 =<
t

526G , )
ey (|55 com . 1T -l Dl + 1 el
m n—2;k—1,k—1
5G ) /
+CT | 1+|— (IDwloo+ | R2ll-k—1) + Ri—1,6 Ry 1)
dm n—2k

+CT(| R lln2+ Ri-1n-1Rj_y py)-

where now the constant C depends on both sup, ||u(?)||x+1 and sup, ||u(#)|ls—1.

For n = 3, if we choose 7" small enough (depending on ||§—g l1,x and sup, [|u(f)|2)
we estimate || Dw||so. Then, plugging this estimate into (67) gives (65) (with a constant
only depending on sup, ||u ()| x+1). Finally, we deduce (64) for n > 3.

Forany r <n —2, xo € R% and ¢ € [0, T, the estimate (66) on DI w follows again
from Proposition A.7 (with k = 1), which gives, arguing as before,

1DLw(t. oo
§G ~
<asen(|pig e an| +|piewm| +Ipikix)
+CT s /1)l
82
_mywmmmeDwm
+(«+Cng—umumaxo sup 11(0) |
m n—2k t

+CT0mdh44ﬂﬁﬂqu)+Hﬁﬂma

582G
8_2(x°’ ~m(T),-,") (T ==y 1" (Tl k1)
m n—2:k—1,k—1

+

+ Re—1 kR x + ka—l,n—lfR;c_l,n_l),

which yields the desired claim using (65). [
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By gathering together Propositions 5.5 and 5.6, we deduce the following three corol-
laries, which will be useful in the derivation of second order estimates for the solution of
the master equation.

Corollary 5.8. Let M > 0, n >3 andk € {2,...,n — 1}, and assume that
582G

§m?

5G
_ <M.
sm -

1G Il + H
n—2k—1,k—1

n—1;k ‘

Let (u, m) be the unique solution to (45) in some interval [0, Tys] given by Proposition
5.4, and let (v, p) and (V', p') be two solutions to (52) with Ry = R, = R3 = 0 and initial
conditions po, py respectively.

Then there exists a constant Cyy such that the solution (w, ) to (63) corresponding
to (u,m), (v, p) and (v, p') and with Ry = R, = Rz = 0 satisfies, for any T € (0, T),
r<n-2,

sup [DLw(r, x)|
t,x
r 82G / /
< sup| D} 5 (xo. %, m(T)(p(T). ¢/ ()| + Cor Tl o110l
p

where Cypy depends on M, as well as on ||a||, and the regularity of H.

Proof. We first notice that

8G
Lipg {(G) < sup | —(x0,-,m,*) <M,
’ m

X0.m

1,1

hence we are in a position to apply Proposition 5.4, and there exists a time Tps > 0 such
that the unique solution (u, m) to (45) satisfies u € C;' with an estimate depending on M
and sup , G (xo. - m) -

From Proposition 5.6, we have

§2G

+ Cu TUle(D == 10" (T =k—1) + Rk—1.6 Rp_1 g + Rik—1n-1Rp_1 —1)-

IDw(,)loo <

On the other hand, we know from Proposition 5.5 that

||,00||—(k—1),

5G
sup [v(®)[ln—1 < (1 +CyT)|+—
t Sm n—1;k—1

sup ol ——1) < A+ Cpr T)llpoll—k—1)-

which allows us to estimate Ry_;x and Ri_;,—1. Here the constant depends on
sup, ||[u(?)|ln- A similar estimate holds for (v’, p’). Therefore, we conclude the desired
estimate. ]
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Corollary 5.9. Under the assumptions of Corollary 5.8, suppose in addition that

H G

XO% SM

n—2k—1
Let (u, m) be the unique solution to (45) in [0, Tys], let (v, p) be a solution to (52) with
Ry = R, = R3 = 0 and initial condition po, and, for any | € R with |I| = 1, let (v, p')
be a solution to (52) with zero initial condition and with

Ri(t,x) = =3 H(yo,x, Du(t,x),m(t)),

Ry(t,x) = m(t,x)BiOHp(yo,x, Du(t, x), m(t)),

R(t.x) = 8, G(yo. x.m(T)). (69)

Then there exists a constant Cyy such that the solution (w', u!) to (63) corresponding to
(u,m), (v, p) and (v', p') and with

- SH
Ri(t, x) = =0, Hp(Xo, X, Dut, m(1) Dv—0y, ——(xo, X, Dut, m(1))(p(1)),

1 §Hp

Ry(t,x) = ,oaiOHp(xo,x, Du,m(t))+m8i0pr(x0,x, Du,m(t))Dv+mdy, S (p),

~ G
Rs(x) = 0% = (x0. x,m(T))(p(T).
(70)

satisfies, forany T € (0, Tyr) andr <n —2,

1/2 8G
sup(z |D;wl(t,x)|2) <sup|D’.Dy,—
X

x XOS
m
ST

(x0. X, m(T))(p(T)) |+ Cu T |l poll—x—1)-

where Cyy depends on M, as well as on ||a||, and the regularity of H.

Proof. We first notice that
sup IR (1) lln—2 + sup IR (1) ~-1) < C Sl:p(”v(t)”n—l + o)l -k-1))

for a constant depending on the regularity of H, on sup, ||u(¢)||,—1 and on sup, ||u(?)||x-
However, the last term is bounded by sup, ||u(¢)||»—1 since k& < n — 1. Next we estimate
the terms (v, p), (v, p*) and u!: we have, from Propositions 5.5 and 5.6,

§G
Sm n—1;k—1
sup lo@-k—1) < (1 + CuT)|lpoll-k—1)-

8G
Sm n—1;k—1

sup [[v(?)|ln—1 < (1 + CpuT) lpoll—k=1) < Crmllpoll=k=1).
t

+CyuT < Cy,

sup V! (1) =1 < (1 + Cp T)
t

sup o' Oll-—1) < Cu T, 1=k < Cr T lpoll—ge—1)-
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We note that the functions w’ solve linear equations with the same diffusion and the same
drift. So, combining Proposition A.7 with the inequalities above and arguing as in the
proof of Proposition 5.6 gives, for any r <n — 2,

1/2
sup( E |D;wl(t,x)|2) <(1+CT)
X
=1

)

1/2
([Pt oot 0| + CurT e 1)) )+ CuTlooll-e-y.

xsup(Z(‘ - z(pmpm)’ ‘ 15 (T))' ‘Dxaiog—m (T)
[I]=1

X

+ Cu Tl poll-k-1)
<su
< sup (Z
[1]=1
where we have omitted the dependence of G on (x¢, x,m(T)). This gives the result. =
Corollary 5.10. Under the assumptions of Corollary 5.9, suppose in addition that
||D§OG(x0, om)|ln—a < M. Fix 1,1’ € N9 with |I| = |I'| = 1. Let (u, m) be the unique
solution to (45) in [0, Tar] and let (v, pb), ("', p!") be the solution to (52) with zero initial
condition and with Ry, R», R3 and R}, R}, R}, given by (69) for | and I’ respectlvely

Let (Wb, ubt) be the solution to (63) corresponding to (u,m), (v', pt) and (V"' p*")
and with

R (1, x) = (al“ H+d, H,Dv' +3% H,Dv +al (,0 (f))+3x05 (p (z)))

x08

Ry (t.x) = pl"d% Hp + p' 3% H, +m(al JHpp DV + 04 Hpp DVY)

(0, G2 + 5 " T+l Hy an

RY (1.2) = 054 G (g x.m(T)) + D °F (xg . m(T) (0 (T))

X0 8
005 (o, m(T) (7))

where H and its derivatives are computed at (xo, x, Du(t, x), m(t)). Then there exists a
constant Cyy such that, forany T € (0, Tyg) andr <n — 2,

, 1/2
sup (Y 1D5wh (1. 0)P) " < sup| D D2, G(xo, . m(T))| + Cw T,
t,x 1 x
where Cypy depends on M, as well as on ||a||, and the regularity of H.

7 ’ ’ ~ 4 ~ 7
Proof. We can estimate (v, p') and (v!", p*") and u’!"—and therefore Rll’l and Ré’l —
exactly as in the previous corollary. Moreover, as the functions w’!" solve a HJ with
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the same diffusion and the same drift term, we can use Proposition A.7 to bound
(X1 IDEwh (1. )2

, 1/2
sup (Y 105wt (.0 ?)

tx N7

’ 1/2
< sup (S (IDLG! Glxo. (D) + CuT)’) "+ CuT,
NG

which gives the required estimate after rearranging. ]

5.2. Estimates on the first order master equation

Armed with the regularity results for the MFG system, we finally prove the estimates
on the solutions to the master equations that appear in our splitting schemes. As before,
throughout the section, the assumptions of Section 2.3 ona, H, G and GO are in force.

5.2.1. First order differentiability of U and U°

Proposition 5.11. For any M > 0, there exist Tyy, Ky > 0, depending on Cy, y and
|Da|| oo, and there exists Cpr > 0, depending also onn, k € {2,...,n — 1}, sup, ||a(t)|n
and the regularity of H, such that, if

<M, (72)

G
161 + | 5
m n—1k

and if T € (0, Tyr), then the map U defined by (44) is a classical solution to (43), and
satisfies
sup |UOn = Glln + CuT.

t€l0,T]
Moreover, for any |a| <n —1, Bzg—z is of class C' inm, and fork € {2,...,n — 1},
sU 8G
sup |—(2) < H— + CyT.
tefo, 71O 15k Sm | 1%

Remark 5.12. In the proof we show the following representation:

sU
/]Rd 5y (0 X0- X.1m0. ) po(dy) = v(lo. X) (73)

where (1, m) is the solution of the MFG system (45) and (v, p) is the solution of the
linearized system (52) with right-hand side Ry = R, = R3 = 0 and with initial condition
(t0, po)- Note that the normalization condition (11) is satisfied, because if one chooses
po = my, then (v, p) = (0, m).

The proof relies on the following lemma, in which we also provide estimates to obtain
the differentiability of U with respect to xo later on.
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Lemma 5.13. Under the assumptions of Proposition 5.11, fix (tg, mg), (tg,m1) € [0, T) X
P> and o, £ € R? with |&| < 1. Let (u, m) be the solution to (45) with xo = yo and with
initial condition (ty, my), and, for h € (0, 1), let (uy, my) be the solution to (45) with
Xo = Yo + &h and with initial condition (to, (1 — h)mg + hmy). Let also (v, p) be the
solution to (52) associated with (u,m), xo = yo and with

Rl(tvx) = - X()(y07xv Du(t’x)vm(t)) . E’
Ry(t,x) = m(t, x)Hyyp(yo,x, Du(t,x),m(t)) - &,
R3(t,x) = Gxy(yo,x,m(T)) - &, (74)

and initial condition (ty, my; — mg). Then there exists a constant C (independent of h)
such that

sup Jup (1) —u(t) = hv(®)lla-1 < Ch?, (75)
t€to,T]
sup_|mp(t) —m(t) —hp(t)|-x < Ch>. (76)
t€to,T]
Remark 5.14. The goal of this lemma is to identify the first order derivatives g—% and

Dy, U. The constant C above will depend on the regularity of H and G, as well as on
SUP; epr, 77 14(2) [|n; however, this is not detailed later since it will not be relevant; indeed,
(75) and (76) are only used when letting 4 — 0.

Proof of Lemma 5.13. We set
vp(t,x) = up(t,x) —u(t,x) —hv(t,x), ppt,x) =mpt,x)—m(t,x)—hp(t,x).
Then the pair (v, pp,) solves
—d;vp, — Tr(a(t, x)D?vp) + Hy(yo, x, Du,m(t)) - Dvy,
2 (. D m(O) (1) = Ria(6,3) in (1, T) x Y,
i pp — Z Dij(ai,jpn) — div(pp Hp(x, Du,m(t))) — divimHpp(x, Du,m(t)) Dvy,)

i,Jj

—div(mgg%(x, Du,m(t))(ph)) =div(Rp2(¢,x)) in(t,T) x R?,

pulio) = 0. vu(T.2) = 30 (. m(T)(pa(T)) + Ria(x) iR,
where
Rh,l(tvx) = —(H(y() + Shwxv DUh(t,X),mh(l)) - H()’o, X, Du(l,x),m(l))
— Hy(yo, x, Du(t,x),m(t)) - D(up(t,x) —u(t, x))
)
— S (0., Dt x), m() s (1) — (1)

— hHy,(yo, x, Du(t, x),m(t)) - S),
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Rh,z(l,X) = mh(t, -X)Hp(yo + Eh’x» Duh(l’x)’mh(t))
—m(t, x)Hp(yo, x, Du(t,x), m(t))
— (m(t,x) — m(t, X)) Hp(yo, X, Du(t, x), m(t))
—m(t, x)Hpp(yo. x, Du(t,x), m(t)) D(up — u)(t, x)
— hm(t, x) Hyop(yo, X, Du(t, x), m(t)) - §

(1) (3o, x. Dule, x). m() mi(6) — m(0)
Ri3(x) = G(yo + €, x,my(T)) — G(yo. x. m(T))

=2 (Yo e (T () = m(T)) ~ hGy (v, 2. (T &
Next we estimate Ry 1, Ry and Ry 5. As
Rp1=
-/ 1{(Hp(xf,x,mz,x),nftr(r))—Hp(yo,x,Du(r,x),nft(z)))-D(w(ux)—u(r,x))
1 (Hig (e, 5. pelt. %), me(0)) — g (o x. Dut, ). m(1))) - hé
+/Rd(i—’;(xf,x,pr(z,x),mr(n,y)—i—Z(yo,x,Dua,x),m(r),y))

(1) —m(r))(dy)} dr.

where x; ;= (1 —t)yo + t(yo + &h), pr := (1 —t)Du(t,x) + tDuy(t, x) and m (¢, x)
= (1 —1)m(t, x) + tmy(t, x), we have

IRn1 ()lln—1 < C(lun(t) —u@)|; + 1> + d5(mp (), m())).
In the same way,
IR, 3lln—1 < C(d5(mp(T), m(T)) + h?)
< C(lun(T) — (D) + d3(my(T), m(T)) + h?).

Finally, for k > 2, we have

IRn2 )l
= w0 [ 00 (Hy0. . Dyt 5. mi(0) = Hy (3.3, Dute. 0. me)
X (mi(t. dx) — m(t, d))
+ [ d¢(t,x)(Hp(xo,x,Duh(z,x),mhm)—Hp(yo,x,Dua,x),m(z))
— Hegp(v0, ¥, Dutlt, x), m(®)) - h& — Hpp(vo. %, Du(t, x), m(1)) Dy — )z, x)
=20 (. x, Dutt ). @) ma ) m(z))) m(t, dx)
< C(llup — ull3 + d5(mp (1), m(1)) + h*).
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By Proposition 5.5, there exist constants Tz, Cyy > 0, depending on M, n, k,
sup;eqo, 17 ll#|ln» such that if T < Tjy and if (72) holds, then

sup lva () lln—1
t€l0,T]

<1+ CuT)|IRp3lln-1 + CMT<Slt1P | Rp,1 () [n—1 + sup ||Rh,2(t)||f(k71))
< € (sup lhun (1) = ()| + sup 3 mp (1), m(1)) + 7).

We then infer by Proposition 5.4 and the definition of vy, that

sup lup(t) —u(t) — hv()llp—1 < C(d3((1 — hymg + hmy.mo) + h*) < Ch?.

t€fto,T]
The estimate of p;, comes from Proposition 5.5 in the same way. ]

Proof of Proposition 5.11. Proposition 5.4 and the representation formula (44) imply the
estimate on ||U(¢, -, m)||,. Let us now show that the map U given by (44) is differentiable
with respect to m. Fix x¢ € R4, (to, my), (tg,my) € [0,T) x P2, let (u,m), (up,my) and
(v, p) be as in Lemma 5.13 with £ = 0, s0 Ry = R, = R3 = 0. Then

sup up(t) —u(t) = hv(@)[ln—1 < o(h).

t€lto,T]

Taking ¢ = t, this implies that
|U(to, x0,-, (1 — hymo + hmy) — Ulto, X0, -, mo) — hv(to, )|,y < o(h).

So, if we choose m; = 8, for a fixed y € R4, we have just proved that the map
U(h; mo, y) = Ulto, X0, x, (1 — h)mo + hé,) has a derivative at 1 = 0 and that this
derivative is given by v(Zg, x). Note that the map (myg, y) — v(ty, X;mg, y) is continuous
and bounded thanks to the estimates in Proposition 5.5 and the uniqueness of the solution.
So we can apply Lemma B.1 which says that U is C! in m with

sU
U(IO’X) = %(t05x0»x7m07 y)'

Then by linearity and continuity one easily checks that (73) and the normalization condi-
tion (11) hold. A similar argument applies to derivatives of g—% with respect to x.

Next we check that U solves (43). Let us start with m(zg) = m with a smooth density.
Then (u, m) is a classical solution and, as

U(t, xo, x,m(t)) = u(t,x) V(. x)€to,T] xR?,

we have, for any 2 > 0 and in view of the equation for m,
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u(to + h,x) —u(to,x) = U(to + h, xo0. x,m(to + h)) — U(to, X0, x, m(ty))

to+h SU
:/ / —(to+h,xo,x,m(t),y)d:m(t,y)dy dt
1 R4 8}’1’1

0

+Ul(to+h, xo,x,m(tg)) — Ulto, xo, x, m(to))
to+h

= _/ /Rd DmU(IO +hwx()ax7m(t)7 y)'HP(XOv y»Dxu(ta y)’m(t))m(t’ y) dy dt
11

0

to+h
+/ / Tr(a(t,y)DJZ,mU(Z,XO,x,n%y))m(dy)dt
to R4

+U(tg+h, xo,x,m(ty))— Ulto, X9, x, m(ty)).

On the other hand, by the equation for u,

u(to + h, x) — u(to, x)
to+h
—/ ’ (—Tr(a(t,x)Dzu(t,x))—i—H(xo,x, Du(t,x),m(t)))dt

00 N
/t T (—Tr(a(t,x) D}, U(t. xo.x,m(t))) + H(xo.x, D U(t, x0,x,m(t)).m(t))) dt.
11

0

So

U(to + h, xo, x,mg) — U(to, X0, x, mo)

to+h
=/ / D U(tg + h, x9,x,m(t),y)
1o R4
- Hp(xo,y, DxU(t, x0, y,m(t)),m(¢))m(t, y) dy dt

to+h
/ Tr(a(t, y)DJZ,mU(t,xo,X»M, y))m(dy) dt
R4

OoJrh
—1—/[ (—Tr(a(t,x) D2, U(t, x9.x,m(t))) + H(xo,x, DxU(t, X0, x,m(t)), m(t))) dt.
to

Therefore U has a time derivative at (¢g, Xg, X, m¢) and

atU(t()s X0, xvmo)
e D, Ul(ty, x0,x,mo, y) - Hy(x0,y, DxU(to, X0, y,mg), mo)mo(y) dy
—/Rd Tr(a(to. y) D;,,Ulto. xo.x.m, y)) m(dy)

— Tr(a(to. x) D2, Ulto. X0, x,mo)) + H(xo.x, DxU(t, X0, X, mo), my).

This shows that U satisfies (43) at any point (¢g, Xo, X, m¢) Where mg has a smooth density.
The general case can be treated by a density argument, since the right-hand side of the

above equation is continuous in (¢y, Xg, X, 7).
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Let us now explain the estimates on . In view of (72), (73) and Proposition 5.5, we
have, forany r <n —1,

H (to,xO, ,mo)(po)H = [|D}v(f0. X0.")lloo

= -——(xo,»in(Tj M lNeoll—x + Car T |l po | -

0:k

Taking the sup over py with [|pg|l—x < 1, Xo € R?, summing over r < n — 1 and then
taking the sup over ¢, m gives the estimate on g—z Notice that the estimate given by
Proposition 5.5 depends on sup, ||u(¢)||,, (we use here k < n — 1); but this last term is
estimated in terms of M only, because of Proposition 5.4 and since |G (xq,-,m)|l, < M.

[

Proposition 5.15. Under the assumptions of Proposition 5.11, let M, Tys, Cpy > 0 be
given accordingly. Assume, in addition, that T € (0, Tys] and

+ 1D G (xo, -, m)[|ln-1

8GO
sup [GO (0. m)| + | Dy GO (0. )| + H—(xo,m,->
Sm n—1:k

x0,m

<M. 77

Then the map U° defined by (47) is a classical solution to (46). In addition, U® and U
are differentiable with respect to xo and satisfy

sup U, U)YO)ln < (G, G)ln + CuT. (78)
sup | Do (U, U)()ln=1 < I(DxyG®, DxyG)ln—1 + Cu T, (79)
t
S(U°, U 8(G°, G
sup H g(t) g + CuT. (80)
n—1;k dm n—1;k

As we will see in the proof, it is possible to estimate U° and U separately. However,
we will need the specific form of the estimate in the analysis of the MFG problem with a
major player.

Proof of Proposition 5.15. Differentiability of U with respect to xo can be checked just
as its differentiability with respect to m. Let & be any unit vector of R%, and (u, m),
(up, my) and (v, p) be as in Lemma 5.13 with m; = my. Then, by Proposition 5.5 and
the fact that

sup | Ry () [ln—1 + sup [Ra ()l -x-1) = €. [|R3lln—1 = sup [[Gxo (xo. -, m(T))[[n-1.
t t x0,m
(81)

one has

|U(to, x0 + h&, -, mo) — U(to, X0, mo) — hv(to,")|,—1 < o(h),
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and so
Ux, (to, X0, x,mg) - & = v(tg, X). (82)

To show the differentiability of U° with respect to m we proceed as in the proof of
Proposition 5.11. Fix xg € R4, (to, mo), (tg, m1) € [0, T) x P, and let (u, m), (uy, my)
and (v, p) be as in Lemma 5.13 with § = 0,s0 Ry = R, = R3 = 0. Then

sup _|lpp (@)l = o(h),
t€to,T]
where py (¢, x) = my(t,x) —m(t,x) — hp(t, x). This inequality and Proposition 5.4 imply

(1]

0 0 G 0
G (XO,mh(T))—G (x0.m(T))—h-_-(Xo.

0
(G = () -+ (). ) = 5—(xo,m(T) »)

R
X (mp(t) —m())(dy) dz
< o(da(mu(T).m(T)) + h) < o(h).  (83)

Fory € R4 choose now my = 8y; then

8GO
‘Uo(to,xm (1 — hymo + h8y) — U°(to, xo,mo) — hm(xo,m(T))(P(T)) <o(h).

Note that po — p(T') is linear and continuous as a map from C ¥ onto itself. Apply then
Lemma B.1 to deduce that U% is C! in m with
SU 0

5GO
T(lo,xo,mo,y) —m(xosm(T))(P(T)) (84)

Moreover, one can check as in the proof of Proposition 5.11 that U solves (46) (here it is
even simpler, and based on the fact that by definition of U°, U%(ty + h, xo.m(to + h)) —

Uo(lo, X0, m(l())) =0).
Concerning the differentiability of U® with respect to xo, let £ be any unit vector
of R¥, and let (v, m), (uy.my) and (v, p) be as in Lemma 5.13 with m; = mg. Then
0 0 0 5G°
G (yo+&h,mp(T))—G"(yo.m(T)) —hGy, (yo, m(T))-S—hm(yo, m(T))(p(T))

< 1G°(yo + Eh,my(T)) — G®(yo,mp(T)) — hG (vo, mu(T)) - &
+h|GY (vo. ma(T)) — G (yo, m(T))]
0

sG
+|G°(yo, ma(T)) = G°(yo,m(T)) — h— = o.m(T)(p(T))|.

The third term of this inequality can be treated as in (83). Therefore,

§ 0
Uo(lo,yo + é:h,m()) — Uo(to,yo,mo) —hGgO(yo,m(T)) E—h%(J’O,m(T))(P(T))

<o(h),
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and hence it follows that

Dy U°(t9. x0.m0) - £ = G (xo.m(T)) - & + %(Xo,m(T))(p(T))- (85)
We now prove the estimates. By Proposition 5.1 and the representation formulas (44)
and (47), we have, for any xo € Rdo, mePrandr <n,
U2, x0,m)[> + | DLU(t, x0, x, m)[> = |G®(xo, m(T))|* + | DSu(t, x)|?
< 16 (xo. m(T)P + (sup | DLG (xg, x.m(T)| + Cu T
x

1/2

< (6% 0. m(TNP + sup | DLGxo, x. (M) + Cu T)

(where we have used x2 + (y + 2)? < ((x2 + y2)!/? 4 z)? for nonnegative reals x, y, z),
which gives (78). Next we prove (79). For |I| = 1,1 € N9, we represent 850 U and 8§COU
by (85) and (82) respectively, where (v’, p!) is as in Lemma 5.13 with § = e;, m; = myg
(so that ,of) = 0). Then, forr <n —1,

> 1oL, Ut xo.m)|* + | DLO% Ut xo. x. m)[?

=)

[71=1

/ 0 SGO g r.l 2
0y, G (x0.m(T)) + m(xoy + |DLv (2, x)|".

Note that sup, ||o(¢)||_x < Cu T by Proposition 5.5. As the v’ solve HJ equations with
the same diffusion and the same drift, Proposition A.7, (77) and (81) imply that

1/2 1/2
sup(Z |D’vl|2> < (1+CT)sup<Z |D’vl(T)|2) 4 CuT
b P

[l]=1 l1|=1

<(1+CT)

x sup (|”Z=1(

1/2
()l + 10501, o, m(T))|) )

G
05
m

pe
+CuyT

1/2
< sup( D (10504, Gxo, x. m(T))| + CuT)?) "+ Cy T
X
[l|=1

< sup(z |D30 xOG(xo,x m(T))| ) + Cp T,
=1

while

0
2 105,U° @ x0.m)? = 3 (iaioG"(xo,m(Tm + “;im(xo,m(T))(p’(T))

)2
171=1 l71=1

= 3 (185, o m(T)| + Cu ) < (3 104 Go(xo,m(T))|2>l/2+CMT)2.

l71=1 171=1
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Using ((x + 2)> + (y + 2))Y? < (x% + y?)V/2 + /2 z, we obtain

1/2
sup (Z |3 U°(t, xo,m)|*> + | D~ xOU(t X0, X, m)| ))
[l|=1
) 1/2

< sup( D (104, G Cro. m(T) 2 + | D5, Glxo. x. m(THP))  + Cu T,

X

[l]=1

from which we derive (79), by taking the sup over x(, summing over r and finally taking
the sup over m.

For (80), let (v, p) be as in Lemma 5.13 with m; —mg = pg € C ¥ and £ = 0, as in
(84) and (73). We have, forany r <n — 1,

2 2

sU
+ ‘D;S—(t,xo,x,m)(ﬁ)o)
m

sU°
‘W(Iaxo,m)(l)o)
2

8G0 r 2
= S—(XO,m(T))(p(T)) + [Dv(r, x)|”.
m

So again by Proposition 5.5,

2 2

U
D;%(f,xo,xﬁm)(/)o)

2
+ (sup

Lot
= P el \[m

0
'Sgl(t,xo,m)(po)
m

0

m(T))(p(T))

2
S—(xo, ,m(T»(p(T))‘ - Cu Tl k)

)1/2
2
+cMT} (D2,
2)1/2
2
+cMT] looll%.

This gives (80). [

D;%(Xo,

2
)
‘DQ—G (x0,x,m(T))(p)
m

0
s(1+cMT>2[ sup (Sgi(xo,mm)(p)
m

x[lpll—x =1

5.2.2. Second order differentiability of U and U°

Proposition 5.16. Let U be the solution of (43) given by (44). Let n > 3 and k €

{2,...,n — 1}. Suppose, in addition to the assumptions of Proposition 5.11, that G is
of class C? and
f 82G

_2(x07.7m»"') SM'

§m n—2;k—1,k—1

Then there exists Tyy > 0 (depending on M and on the data but not on G) such that if
T € (0, Taz), then the map U is C? with respect to the measure variable and the parameter

X0, and satisfies
2

82U
—()

S§m?

§°G

sup S

t€[0,T]

+ CyT.
n—2k—1,k—1

n—2k—1,k—1 ’
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Proof. Our first goal is to show that g—z is differentiable with respect to m. Let (¢, mg) €
[0,T) x P,, y,y" € R¢ and let

e (u, m) (respectively (up, my)) be the solution of the MFG system (45) with initial
condition (g, mg) (respectively (fo, (1 — h)mo + hé,r)),

e (v, p) (respectively (v’, p')) be the solution of the first order linearized system (52)
with zero right-hand side, initial condition (#9, 8, ) (respectively (tp, §,/)) and where the
Hamiltonian and its derivatives are evaluated at (xg, x, Du(z, x), m(t)),

e (Uy, pp) be the solution to the first order linearized system (52) with zero right-hand
side, with initial condition (%o, §,) and where the Hamiltonian and its derivatives are
evaluated at (xg, x, Duy(t, x), mp(1)),

e (w, u) be the solution to the second order linearized system (63) associated with (1, m),
(v, p), (v', p') and with right-hand side 0.

Recall (see (73)) that

- sU
Uh(t(),x) = %(IOv-xO’xv (1 _h)m() + hSy’, y),
(86)

sU sU
v(to, x) = %(Io,x(},x,mo,y), v'(tg, x) = %(Io,x(),x,m(),y’)

. .82
so we expect w(ty, -) to represent the derivative in m of g—z, that is, ng(to, X0, X,

mo,y,y").
‘We consider

(On. o) == (O, pn) — (v, p) = h(w, ).
Let us first note that, by Proposition 5.4, we have
sup ([l (e, x) —u(t, x) -1 + da(mp (1), m(1))) < Cda((1 = hymo + héyr, mo)
t€ltg,T]
< Ch. (87)

Next we claim that

sup_ ([19n (2, x) = v(t, %) lln—2 + 16 (1) = p(O)l|l—e-1y) = Ch. (88)

t€to,T]

Indeed, the pair (vy, pp) — (v, p) solves the first order linearized system (52), associated
with (u, m), initial condition (¢, 0) and with a right-hand side given by

Ry (t,x) = —((Hp(xo,x, Duy, my(t)) — Hp(xo. x, Du,m(t))) - Doy,

+ ((;ﬁ(xo,x, Duy, mp(1)) — ﬁ(xo,x, Du,m(t))) (ﬁh(t)))
m sm

Rh,Z(LX) = ﬁh (HP(XO’ X, Duhvmh(l)) - Hp(XO’X, Du,m(t)))
+ (thpp(xo,x, Dup,mp) —mHpp,(xo, x, Du,m)) - Dy,

6H. SH.
+ | mp—L(x0., x, Duj.mp) — m—=(xo,x, Du,m) | (pp)
Sm dm
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6G G
Ria(t.x) = (5—m<xo,x,mh(T>) - 5—m(xo,x,m(T)))(ﬁh(T)).

Applying Proposition 5.5 and using (87) we infer that (88) holds.

In view of the equations satisfied by (0, p5), (v, p) and (w, ), the pair (0, Op) solves
the first order linearized system (52), associated with (u, m), initial condition (zy, 0) and
with

Rpa(t,x) = —|:(Hp(x0,x, Duy, mp(t)) — Hp(xo, x, Du,m(t))) - Dy,
/ 8Hp /
—hHpyp(x0,x, Du,m(t))Dv - Dv' — W(xo,x, Du,m(t))(p'(t)) - Dv

+ (‘Sﬁm,x, D ma 1) ~ S (v, x. Du,m(z)))ush(z))
8

x, Du,m(t))(p(t), p'(t))

S—m”(xo,x, Du.m(®)) (p(1)) - Dv’],

3 ,  SHp
Rh,z(t,x) = Ph(Hp(xo,x, Dup,my(t)) — Hp) - hP(prDU + 8_}’:('0 ))

+ Doy - (mpHpp(xo, x, Dup,my(t)) — mHpp)

SH
—hDv - (p’pr +m Srfzp () + meppDv’)
SH SHp\ .
+ Mh—p(XO,X,Duh,Mh([))—m—p (Ph)
dm 8m
H
—h(p/(g—p+mD i/ )()
sm

3G G
Rp3(x) = < (X0, X. mp(T))(pn(T)) = o (x0. X, m(T) (Pn(T)

§2G
— s (o, x.m(T)(p(T). p (T))

(H)p and its derivatives in R » are evaluated at (xo, x, Du, m(t)), unless otherwise spe-
cified). Using
sup Jup(t) — u(t) — hv'(t)|ln—2 < Ch?,
t€lto,T]

sup ||mp(t) —m(t) = hp' (0|l -1y < Ch?
t€lto,T]

(89)

(see (75) and (76) in Lemma 5.13) as well as the above estimate (87), we have

Sttlp(lth,l(t, Mn—2 + 1 Ra2(t, )| =e—1) + I R3(, ) |n—2) < Ch>.
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Then Proposition 5.5 and the representation formula (86) imply that

sU sU
H %(IO,XO, sy (1 - h)mo + h(gy/, y) - %(IO’XO? <, Mo, Y) - hw(t07 .)

n—2
= || (t0,-) — v(to. ") — hw(to, ) n—2 < sup ||D4(t)ln—2 < Ch>.
t

Note that we also have

sup_[|pw (1) — p(t) — hu(0)l|—x < Ch*. (90)
t€to,T]
Hence, we can apply Lemma B.1 as in the proof of Proposition 5.11 and infer that g—z has
a derivative in m given by w:

82U
§m?
If, in general, w is the solution to the second order linearized system (63) associated with

(v, p), (v, p’) (having initial data (fo, po) and (fo, pg) respectively) and with R; = 0,
R; =0,i = 1,2, 3, then by a linearity argument one may also conclude that

(t0, X0, x,mo, y,y") = w(to, X).

§2U
/]Rd 52 10 X0, X mo. v, y') po(dy) po(dy’) = w(io, x). O

Thus, the estimate of ‘;27% follows from Corollary 5.8:

82U G
_2(107x05'»m0?'7.) E _2(X0,‘,m(T),‘,‘) +CMT7
Sm n—2;k—1,k—1 Sm n—2k—1,k—1
92)
using the fact that sup, ||o(¢)|—-k—1) < (1 + Cu T)||poll-k—1) and that the same holds
for p’. [

Next we discuss the second order regularity of U and U° with respect to m and xo.

Proposition 5.17. Let U° and U be the solutions of (46) and (43) respectively. Suppose,

in addition to the assumptions of Propositions 5.15 and 5.16, that

8(G°,G)
Sm

52(G°, G)

52 <M.

1D (G°.G)lu2 + H Dy,
n—2;k—1,k—1

n—2;k—1

Then there exists Ty > 0 (depending on M and on the data but not on G) such that if
T € (0, Tpr], the maps U 0 and U are C? with respect to the measure variable and x,
and

sup ID2, (W, U)(t)|ln—2 < I(D2,G°. D2, G)ln—2 + CuT,

S(UO,U)

on—(t) S(GO—’G)
om

<
- ém

n—2;k—1

on + CyT.

n—2k—1

sup
t
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|

Proof. Step 1. The differentiability of g—z with respect to X can be achieved exactly as its
differentiability with respect to m in Proposition 5.16. For any direction £ € R4, Jet

Moreover,

§2(U°,U)
dm?

§%(G°,G)
Sm?2

(®) + CuT.

n—2;k—1,k—1

S ‘

n—2;k—1,k—1

e (u, m) (respectively (up, my)) be the solution of the MFG system (45) with initial
condition (g, mo) and parameters xo and xo + A& respectively,

e (v, p) (respectively (v’, p)) be the solution of the first order linearized system (52) with
zero right-hand side (respectively right-hand side as in (74)), initial condition (ty, dy)
(respectively (Z9, 0)) and where the Hamiltonian and its derivatives are evaluated at
(x0, x, Du(t, x),m(t)),

e (Uy, pp) be the solution to the first order linearized system (52) with zero right-hand
side, with initial condition (7o, Sy) and where the Hamiltonian and its derivatives are
evaluated at (xo + h&, x, Duy (¢, x), mp(t)),

e (w, u) be the solution to the second order linearized system (63) associated with
(v, p), (v, p') (and (u, m)), and with right-hand side

Iél(t,x) = —Hyx,p(x0.x, Du,m(t))§ - Dv — %(xo,x, Du,m(t))(p(?)) - &,

Rz(f,x) = pHx,p(xo, x, Du,m(t))§ + mHx, pp(xo, x, Du,m(t))§Dv

0H,
+m—"F(p),

sm
5G

2250 (g, x.m(T)) (p(T)) - §.
m

I%(x) =
so that
- sU
vh(t()?x) = 8_(t07x0 +h§ax?m05 y)v
m

sU
v(to, x) = %(Zo,xo,x,mo,y), V' (9, x) = Uy, (to. x0, x,mg) - £.

Then we find %(lo, X0, X,mg,y) - & = w(fp, x), and if one replaces d, by an arbitrary
po € C~%*=1 as the initial datum for p, the following representation holds:

Uy,
ém

(fo, x0. X, mg)(po) - £ = w(to, X). (93)

Step 2. The second order differentiability of U with respect to x¢ can be checked in a
similar way. Let (1, m) and (uj, my) be as before, and let

e (v, p), (Uy, pp,) be the solutions of (52) with right-hand side as in (74), initial condition
(t0, 0), and Hamiltonian and its derivatives evaluated at (xo, x, Du(t, x), m(t)) and
(xo + h&, x, Duy(t, x), my(t)) respectively,
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e (w, u) be the solution to (63) associated with (v, p), (v/, p') = (v, p) (and (u, m)), and
with right-hand side R;, R, R3 given by (71).
Then we find
DiOU(to,xo,x,mo)é <& = w(t, x). (94)

Step 3. We now prove the regularity of U°. To show that % is differentiable with

respect to m, let (tg,mo) € [0, T) X P2, y,y' € R4 and

e (u, m) (respectively (up, my)) be the solution of (45) with initial condition (fg, mg)
(respectively (¢, (1 — h)mgo + hd,)),

e (v, p) (respectively (v’, p’)) be the solution of (52) with zero right-hand side, initial
condition (fy, 8, ) (respectively (t, §,/)) and where the Hamiltonian and its derivatives
are evaluated at (xo, x, Du(t, x), m(t)),

o (Up, pp) be the solution to (52) with zero right-hand side, with initial condition (o, ;)
and where the Hamiltonian and its derivatives are evaluated at (xo, x, Duy (¢, x),my(t)),

e (w, i) be the solution to (63) associated with (v, p), (v/, 0’) (and (u, m)), and with
right-hand side 0,

as in the proof of differentiability of g—% with respect to m in Proposition 5.16. Note that

sU° 8G°

S—(IO,XO, (I =h)mo + héy,y) = S_(XOamh(T))(ﬁh(T))y
m m

sU° 5GO

8—(t0,x0,m0,y) = ——(x0,m(T))(p(T)).
m sm

Therefore, using (89) and (90),

8GO 8GO
‘—f (xO,mh(T))(ﬁh(T))——gG (x0,m(T))(p(T))
m m

§2G0 §GO
- h(%(xo,mm)(p(r),pm) n %(xo,mm)wm))‘ <cnw.

Lemma B.1 then implies that %(lo, Xo,-, ¥) has a derivative, and by linearity, if @ is the
solution to (63) associated with (v, p), (v’, p') (which in turn have initial data (¢, po) and
(to. pp) respectively and with zero right-hand side), then

§2U°
/Rd gz (0- X010, .y po(dy) po(dy')

270 5GO
= 8—2(x0,m(T))(p(T),p’(T)) + 5—(xo,m(T))(,u(T)). 95)
m m

Hence, by the representation formula (91) for g;—z, Propositions 5.5 and 5.6 and Corollary
5.8, we have, forr <n — 2,
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2770 2 52 2
8—2(1,360?”10)(00,,06) ‘ x5 2(1 X0, X, m0)(po. Pg)
§2GO 2
—~— (xo.m(T))(p(T), p (T))’ '—(Xosm(T))(M(T)) ) + | Diw(t, x)?
§2GO 2
s 0. D) (D), ()| + Cu Tl e )

2G 2
2 G (o e T (T, p(T))‘ - CorTlpol—n 1P 1))

(sup
1

sup
x (M) l-ge—nllo (T | -@-1)
2030

8°G
X S

2
X (1 +CuT) + CMT} 10012 ey 121 -

(5
g
|

2 2

8°G
D;g—z(xo,

(xo.m(T))(p(T), p'(T))

)1/2

(where we use (x + 2)2 4+ (y + 2)2 < ((x2 + y2)V/2 + 22)% for x, y, z > 0). Taking the

square root, then sup over xo, po and pj, and summing over r < n — 2 gives the estimate
$2Wwo.u)

on ||5m—z||n—2;k—1,k—1-

Differentiability of % with respect to xq follows analogous lines: (v, p), (v, p'),
(0p, pr) and (w, @) have to be changed according to Step 1. By (93), we have, using the
notations of Corollary 5.9 and for any r < n — 2,

)

> (|
2
+ |D;w’(t,x)|2),

sU
DL, —(f X0, X, mo)(po)

xx08

2
(to,xo,mo ¥)(po) ‘

sU
x08

1Z1=1

—Z(

1Z1=1

2

§2GO
8&05—(p(T)> + 5

where G° and its derivatives are all evaluated at (xg, m(T)). We obtain the bounds on

SU
(5> 8520) by using Propositions 5.5 and 5.6 and Corollary 5.9.

Finally, second order differentiability of U with respect to xg, and the corresponding
bound, can be obtained similarly. Let [, 1’ € R with || = |I'| = 1, (W}, p'), @Y, p!")
and (w™!", u'") be as in Corollary 5.10. Note that

’ / 8 x ! x
Oy’ UC o, x0,mo) = TG + 0 —=2(p 1<T>)+ax0 (0 (T)

SGO 7
5 (0 (). p" (1)) + —— ("' (7).

820

while BQII/U O(t9. x9,mo) is given by polarizing the representation formula (94). We can
then conclude the proof by using Propositions 5.5 and 5.6 and Corollary 5.10. ]
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5.2.3. Uniform continuity estimates on second order derivatives

Proposition 5.18. Let U be the solution of (43) given by (44) andn>4, ke{3,...,n—1}.
Suppose, in addition to the assumptions of Proposition 5.16, that

2
Lip, 3.2 k—z(S_G) =M. (96)
k-2, Sm2

Then there exists Ty > 0 (depending on M and on the data but not on G) such that

. 82U , §2G
Sltlp Lip,_3:6—2 k-2 (W (f)) = S;IOP Lip, 36— k- (W) +CuT.

Proof. We establish for later use a slightly stronger estimate involving the depend-

ence on xo. This is used in Proposition 5.19 below. Fix (t9, my, mz) € [0, T] x 3

and xé, x% € R4, We use the representation formula (91) for %(lo, xé, my) and

2

ng(to,xg,mz). In particular, fori = 1,2, we let

e (u',m") be the solution to (45) starting from m; at time ¢, with H (and G) evaluated
at (x(i,, x, Dul(t, x), m(t)) (and (xé, x,mi(T))),

e (v;, p;) (respectively (v;, p;)) be the solution of (52) with zero right-hand side, initial
condition (to, po) (respectively (to, p;)) and where the Hamiltonian and its derivatives
are evaluated at (x}, x, Du'(t, x), m' (1)),

e (w', u') be the solution to (63) associated with (v;, p;), (v}, p}) (and x}, u’, m’), and
with zero right-hand side.

Vw2, u! — p?), since

52U 82U

W(Io,xé, x,my1)(po. py) — W(lo,xg,x,mz)(ﬂ)o»,oﬁ)- 97)
We first set (U, p) := (vi — v2, p1 — p2) and (V', p') 1= (v] — v, pj — p5). The

pair (v, p) solves (52) with zero initial datum, with H and its derivatives evaluated at

(x4, x, Du'(t,x),m* (1)), and with right-hand side

We aim at estimating (w, it) := (w

II)(Z(),X) =

SH' §H?
Ri(t,x) = —(le — sz) - Dvy — (W - W)(Pz(l)),
SH! SH?
Rao(t,x) = pa(Hy — H}) + (m" H,,, — m*H}))Dvy + (mlg_,,f — ng—nf)(pz),
8G!  §G?
R3(x) = | — — —— | (p2(T)).
sm sm

where H' and its derivatives correspond to H and its derivatives evaluated at
(xb,x, Du'(t,x),m'(1)).
By Proposition 5.5 we have

sup [[vi(@)]ln-1 = Cllpoll-k—2).  sup_[pi(D)]-x—2) = (1 + CT)poll-k—2).
t€fto,T] t€lto,T]
(98)
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where C depends on the regularity of $&, Hy,, Hx,p, m' and sup, ||[u’|,. Note that, by

the above estimates and Proposition 5.4,
sup 1Ry (@) lln—2 + sup [R2(O) [ —k—2) + [ R3]ln—2
< C(da(my1.m2) + |xg — x5 Dl poll~x—2):
and therefore by Proposition 5.5 (appliedton — 1 > 2 and k — 2 > 1) we obtain
SUp [ D()la—2 = CT(@d2(mym2) + |xg = x5 Dllpoll—w-2). (99)
SUp 5D l——1) = CT(@da(my.m2) + |xg = 5 Dllpoll-—2)- (100)

Completely analogous estimates hold for v}, p and their differences v’, o'

We now proceed by estimating (w, ft), which solves the first order linearized system
with zero initial datum, with H and its derivatives evaluated at (x3, x, Dul(z, x), m'(t)),
and with right-hand side

Ri(t,x) = —((H; —H2) Du + (@ - @)( (1))

ém
*H! ’ 52 > ’ 1 ’
2 (,Ol(t),pl(t))_ 8 2 (PZ(Z),Pz(t))‘l‘prDUI 'Dvl
2 5H171 / 8H1? 4 8H1} /
— H,,Dvy - Dvj + W(Pl)'D%—S—m(Pz)'DUz‘FW(Pl)'Dvl

SH?
—S—r:(P/z)'sz),
— S ) . 8H1 8H2
Rz(z,x):zu(Hp—Hp)—i—(mH —m Hp)Dw + mm—mg— (1?)
+p1H L, Dl — sz sz—i-leppDvl sz Dv,

2H1
+m Hl}ppDlev’1 —mszzm,szDv’2 + mlwzp(p],p/l)
S2H?2 1 2 1

P / D / P / / D
2 (p2.p2) + 1 =(Ph) — P2 = (p2) + Py~ = (P1)

SH?2 SH1 SH?2
- ,0/25_”:(,02) +m! . P2 (p))Dvy — m2 o —E(py) Dv;

SH! 5H
+m! 8’21)(01)1)0'1 - Spp (p2) Dvj,
2

2G1 2G §G!  8G?
(T () = o D). 00 + (o = ) ).

Sm?
Recall also that Proposition 5.6 and Remark 5.7 (applied ton — 1 and k — 1) yield

ﬁ3(x) =

sup |w’ () lln—3 < (1 + C Tl poll—k—2)ll P |-k —2)
L / (101)
sup I O --1) < CTllpoll-x—2)llPoll-k—2)-
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By (98)—(101) we get
sup IR (®)lln-3 + sup IR ()|l - k-1

< CT(d2(my,m2) + |xg — xg Dl poll—k—2) I P | —k—2)-

Similarly, using also the Lipschitz regularity of B—G,

,m*(T)) — (XO’ m'(T))

n—3k—2,k—2
X || poll—k—2) 106 |-k —2)
+ CT(d2(m1, m2) + |x§ — x§ Dl oll——2) | Ph I -k—2).

1

Then, recalling that w = w" — w? satisfies (97), we obtain in view of (56) in Proposition

5.5and forany r <n —3,

82U 82U
HD;(S z(to’x§’m2) - D;(S 2(1‘0,)(&,71’11)

0;k—2,k—2
2

. 8°G
L (g ma(T) ~ DL (e my (7))

<1+ CMT)‘

0;k—2,k—2
+ Cp T(da(my, ma) + |xg — x3)). (102)

Choosing x4 = x2, summing over r < n — 3 and recalling Proposition 5.4 and (96) then

gives the claim.
Note that we also have the following inequality for ji = ' — 2, which will be useful
in the next proposition:

sup |t (1) = (@)l -k
t€lto,T]
< CT(d2(m1,m2) + |xy — xgDllpoll—k—2) I ool —k—2)-  (103)
n

Finally, we establish the Lipschitz regularity of the second order derivatives of G°
and G with respect to xo and m.

Proposition 5.19. Let U be the solution of (43) given by (44) and U° be the solution
to (46) given by (47). Suppose that the assumptions of Proposition 5.18 hold and that in
addition

. §2G° §2G §G?  sG
Llpn—3;k—2,k—2(_ _) +Lip, 34— 2( =0, xo)‘HJPn 3(D2 GOsDazcoG)

Sm?2’ Sm? Sm ~ 8m
<M,
§2G° §2G\ . 5G% §G, o
Lip,® 5o s 2(W»W)+Llpﬁ°_3k_2(5—mo, 8m°)+Llp (D% G°. D2 G)

§M7
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forsomen > 4andk € {3,...,n—1}. Then

. §2U%(t) 82U(®) . 82G° §2G
51t1p Llpn—S;k—Z,k—Z(—’ ) = Llpn—3;k—2,k—2(_ _) + CuT,

Sm? Sm? Sm?’ Sm?
. S2U0) S2U()\ 52G° §2G
Sltlp Llp;(is;k—z,k—z( sm2 " sm2 ) = Llngs;k—z,k—z( Sm2 ’8m_2) +CuT,

SUL (1) 8Uy,(t 8GY, 8G
SltlpLipn3;k2( (), xo ( )) SLipn3;k2(is xo) +CyT.

ém dm sdm ~ ém
SUR (1) 8U, (1 . §G% §G
sulepn 3k 2( 8;(1)1 ’—8)21( )) SLipn(l3;k_2( 8m0’ 81;0) +CyT,

Lip,° (D7 U°(t). D, U(1)) < Lip,° 5(D3,G°. D G) + CyT.

X0 X0

Proof. We will detail only the proof of Lipschitz estimates of (%, %). Lipschitz

. 8UY U . .
regularity of — ,’ZO and DJZC0 U°, 3 ;;0 and D)ZCO U can be proven along the same lines using
the representation formulas that appear in the proof of Proposition 5.17.

Let us start with 8 my,mp) € [0, T] x and xo, xo € R4. Also, as in

the proof of Proposition 5. 17, fori = 1,2 let

e (u',m') be the solution to the MFG system (45) starting from m; at time o with H
(and G) evaluated at (x}, x, Du' (7, x),m' (t)) (and (x}), x,m"(T))),

e (v;, p;) (respectively (v}, p})) be the solution of the first order linearized system (52)
with zero right-hand side, initial condition (o, po) (respectively (fo. py)) and where the
Hamiltonian and its derivatives are evaluated at (xé, x, Dul(t, x), m (1)),

e (w', ') be the solution to the second order linearized system (63) associated with
(vi, pi), (V1, i) (and (u', m")), and with zero right-hand side.

Recall that (95) provides a representation formula for 852 U20 :

s2U° ,
S—Z(fo,xé,mi)(l)o,ﬂf))
260 sGO .
= Sm—z(xf),ml(T))(Pi (7). pi(T)) + W(XB,WI(T))(M’ (T)).

2 . , . o
and 27(;(;0’ Xy, X, m;)(po, py) = W' (tg, x). Let us recall the inequalities

sup dp(m'(t),m*(t)) < (1 + CT)da(my, md) + CT|xy — xZ|,

t€to,T]

sup lpi (1) l|—k—2) < (1 + CT)|lpoll-k—2)

t€to,T]

sup [lo; (Dl -x—2) = (1 + CT)lppll—k—2).

tefto,T]

S[UP | o1 () = p2(O)ll—e—1) < CT (d2(my, m2) + |x§ — x§1) | poll——2).
telto, T
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wp 1p1(®) = P5 ()| ——1) = CT(d2(m1,m2) + x5 — x5 Dl Ppll—e—2).
telto,T

sup i ll-x—1) < CTllpoll-k-2) 1261~ e—2)

t€to,T]

S[UP ] ' (1) — w2 @)ll—k < CT(d2(my1.m2) + |x5 — x5 Dlleoll—k—2) 106l -k —2)-
telty,T

which are consequences of Proposition 5.4, (98), (100), (101) and (103). Setting
Or := CT(dz(m1,m2) + |xg = x5 Dllpoll—k—2) 1061k —2).
we obtain, using also (102), forany r <n — 3,

82U0 82U0 2
'(W(I’xé»ml) - W(l,xé,mz))(po, Po)

2
+ sup

§2U 82U ,
D? (5 2(z‘,xé,x,ml)—W(z‘,xé,x,mz))(,oo,/oo)

<(1+CT)

§2GO 82 0 2
x { 5 (g, m" (1) (p1(T), py(T)) — 2 —— (xg.m*(T))(p1 (T),PQ(T))‘ + QT}
+(1+ CT){sup

52
D;S_z(xmx m* (T))(p1(T), py(T))

8 2
DL (e () (or (1), pl(T))‘ n eT} |

Choosing m, = m, = m and rearranging gives Lipschitz estimates in x¢:

2

§2U° 52U’
'(W(L -x(;)m) - sz (tv x(%5m))(1007 )06)

2

82U 82U
+sup D’ (8 2(t,x(},x,m)—W(r,xé,x,m))(po,/o{,)

2 2 2

§2G° 8 G°
52 (xg.m" (T)) (o1 (T), p1(T))— g 5 (g, m (1) (p1(T), p(T))

<avenf(

52
D;S_z(xo’x m" (T))(p1(T), py (T))

)1/2

+ sup
X

52
D;8—2(x0,x m'(T)(p1(T). p}

2
LTI —xo|||po||_<k_2>||p’o||_(k_2)} ,

while the choice xé = xg similarly gives Lipschitz estimates in m. ]
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Appendix A. Estimates for solutions to HJ equations

A.l. Main estimates

In this section, we assume that the data a, h and g are smooth and we are looking for
a priori estimates on the smooth and globally bounded solution u to the HJ equation

(104)

—d;u(t, x) — Tr(a(t, x)D?u(t, x)) + h(t,x, Du(t,x)) =0 in(0,T) x R4,
u(T,x) = g(x) inR%.

We always assume that there exist Co > 0 and y > 1 such that
a(t,x) > Co_lld, |Dalloo < Co
and
|Dxh(t, x, p)| < Co(l + |p]”)
for every (¢, x, p) € (0,T) x R x R%.
Proposition A.1 (Lipschitz estimates). For any M > 0 there exists Tpr, Cpr > 0, depend-

ingon M, Co and y, such that if T € (0, Tyr) and | Dglloc < M, then

sup |[Du()looc < 1Dglloc + CuT.
t€[0,T]

Proof. We use the standard Bernstein method. Let v(z, x) = }_; uiz(l, x). Then

0v(t.x) =2 ui (1. x)ui g (1,x), v (. x) =2 u; (1. )i (1. %),

vjk(t, x) = 2Z(u,~k(t,x)u,-j (t,x)+ ui(t,x)ui_ik(t,x)).

1

Thus

—d,v — Tr(a(t, x)D?v(t, x))
= =2 wi(t, X )uig (1,5) =2 D @, ) g (8, X (8, %) + 23 (1, Yuig (2, X))
i i,k
=2 Z i (t, x)uig (2, X (1, x) — 2 Z ui(t,x)D; (0;u + Tr(a(t, x) D>u(t, x)))
i,k i
2 i (%) (@i (1 e, %),
ik

where (a;x); denotes the x;-derivative of the element a; of the matrix a(¢, x).
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Using the equation for u we find

—9;v — Tr(a(t, x)D?v(t, x))
=-2 Z aji(t, X)uig(t, x)u;;(t, x)

i)k
- ZZui(t,x)(hi(t,x, Du(t, x)) + hp(t, x, Du(t, x)) - Du;(t, x))
i
2 w6, ) (@0)i ()i (1, X). (105)
i,jk
Using our assumptions on a and &, we infer that
—d;v — Tr(a(t, x)D?v(t, x)) + hp(t,x, Du(t, x)) - Dv(t, x)
< —2Cy ' |D?ul?® + 2Co| Dul(1 + |Dul”) + || Da|los| Du| | D*ul
< 2Co|Dul(1 + | Dul|”) + cq|| Dal3,Co| Dul?
for some constant c¢; only depending on the dimension d. In particular, by the maximum

principle we estimate

lvllzeoor) < I1D€l 7o)
+ TRCol Dulzior (L + DUl g, + calDalZColl DulZocig, ). (106)
which implies
[vllzee(@r) = ”Dg”iOO(QT) +4T?CE + %”DU”%OO(QT)
+ CT DUl DUl g,y + 1] (107)

for some C only depending on d and Cy. Recall that

vllzooor) = 1DUlI7 oo (0

I I
Ty = miny —M, — .
Y {2Co 161+ (2M)1’—1)}

and define Ty as

Then it is easy to see that
|Dullpooory <2M VT <Tuy. (108)
Indeed, for T < Tys and || Dul|zo0 0,y < 2M, (107) implies

||Du||ioo(QT) = ||Dg”%°°(QT) + 4T1§ICO2 + %”Du”i"O(QT)
+ CTy | Dul|7 oo [@M) ™ + 1]
< ||Dg||%oo(QT) + M2 + %”Du“%,OO(QT)’
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hence
||Du ||L°°(QT) <2M

whenever T < Ty and || Dul|poop,) < 2M. A continuity argument implies that
sup{T : ||Du||Loo(QT) < 2M} = TM,
so (108) holds true. Using this information, we deduce from (106) that

1Dl 000,y < D€l oo 0y + CuT I Dttl|Loo(07)
where Cpyr = 2Co(1 + 2M)?) + ¢4||Dal|2,Co2M . Hence
(I DullLooor) = 3CuT)* < 1Dl oo (o) + SCHT?
which implies | Du|po(0,;) < CuT + |Dg L0y [
Proposition A.2 (Lipschitz estimates, linear case). Assume that T < 1 and
|D<h(t, x, p)| < C1 + Calp| V(t,x,p) € (0,T)xR? xR?,

for some constants C1, Cy > 0. Then there exists a constant C, depending on Cy, Co and
| Da|loo only, such that

sup [|[Du(t)]lco = I1Dglloc(l + CT) + CCT.
t€l0,T]

Proof. Our starting point is inequality (105) in the previous proof. Using our assumptions
on a and h we get

—3;v — Tr(a(t, x)D?v(t, x)) + hp(t,x, Du(t,x)) - Dv(t, x)
< —2C4 ' D?ul? 4 2|Du|(Cy + Cz |Dul) + || Dalloo| Du| | D*u|
< 2|Dul(Cy + C2|Dul) + ¢4l|Da|3,Col Dul?,

which implies
—0;v —Tr(a(t, x)D?v(t, x)) + hp(t,x, Du(t,x)) - Dv(t,x) < Av + 2002,
where A = 2C; + ¢4 || Dal|%,Co. By the maximum principle we get

1/2
Ivlizeocor < T QCITIIE o, + I1DglI%).

from which we derive

1/2
10120,y < 2C1Te*T + *T72|| Dgllos.

Since T < 1 (and so ATz <1 4 ¢, T), the conclusion follows. [
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Proposition A.3 (Second order estimate). Assume that h and a are of class C bz_ Then, for
any M > 0, there are constants Tyy, Cpyr > 0, depending on M and on

sup lla@®)ll2+  sup  [D2,h(.+ p)llco. (109)
te0,T] |pI<IDulloo

such that if |D?g|lec < M and T € (0, Tyy), then

sup [|D*u(t) oo < [I1D*glloc + Cu T.
t€l0,T]

If in addition h is affine in p, then there is a constant C, depending only on Cy,
Sup,eo,77 1 (?) |2 and on ||D§ph||oo, such that, for any T € (0, 1],

sup [ D*u()]loo < (1 + CT)|D?gloc + CT  sup [ DZ.A(. p)lloo.
1€[0.7] |pl<IDulloo

Proof. We use the Bernstein method again. Let w(z, x) = Zi, ; ulzj Then

—d,w — Tr(a(t, x)D?w(t, x))
=2 Z akr (t, x)ugp (t, x)uij (t, x) — ZZMU (t,x)D;, (E)tu + Zaklukl)
k,l

i,j.k,l i,j

+ 20 i (1) (@i (6 s (1 %) + (agn) (8, X)uira (£ %) + (a)ijun)-
i,j,k,l

So
—9,w—Tr(a(t,x)D*w(t, x)) =
=2 Z akluijku,-ﬂ—2Zuij(hij+hi7p-Duj +hjp-Dui+hppDu;-Duj+hpDu;j)

iyl i
+2 Z wij (. %) ((ar)i (¢, X ujig (8, x) +(@gp); (¢, ) uigg (6 x) +(@p)ijugr),  (110)
ik

which yields, using the ellipticity of a(¢, x),
—3;w—Tr(a(t, x) D*w(t, x))+hy(t, x, Du(t, x))-Dw(t, x)
< =2C5 ' [D*u*+Cy| D?u| (14| D?u|+| D>u>)+C | D?u|([lall1| D>ul+|all2| D?ul)

for some constant Cj, depending on sup| < puj e ||D§’ph(-, -, P)|loo- Young’s inequality
leads to

—0;w —Tr(a(t, x)D?*w(t, x)) + hp(t,x, Du(t,x)) - Dw(t, x)
< C|Du|(1 + |D?u| + | D*ul?),

where now C depends on ||a||, as well. We conclude the proof using the maximum prin-
ciple as in the proof of Proposition A.1.
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If & is affine in p, then with the same estimates we deduce from (110) that
—9;w —Tr(a(t, x)D*w(t, x)) + hp(t,x, Du(t,x)) - Dw(t, x)
< |D?u|@2[| Dxxhlloo + C|D?ul) < Cw + 2|| Dxxhlloo| D?ul,

where C depends on [|a||2, Co and sup|, < puj ||D)26,ph(~, -, P)|loo- The conclusion fol-
lows as in Lemma A.2. n

Proposition A.4 (Third order estimate). Assume that h and a (and the solution u) are of
class Cb3. Then there is a constant C, depending on | D*u||eo, on | Da||so + || D?a|co +
| D3a|| oo and on

sup {1 D¢ py G Plloo + Ilipp Covs P)lloo}

|pI=llDulloo

such that, for any T € (0, 1],

sup [|D?u(t)]oo < (14 CT)||D*glloc + CT.
t€l0,T]

Proof. Letw =, ulzjk Then

—0,w — Tr(a(t,x)Dzw(t,x)) =
-2 Z Arm (t, X)Wt (, X)Ujkm (t, X) — 22Mijk(l, x)Dj jk <3tu + Zalmulm)

i,j.k,l,m i,j l,m
+2 Z wijic (1, ) (@1m)ijkUim + (@im)ijticim + (@im)ikUjim + (@im) jkUitm
i,j.k,l.m

+ (@im)ijkim + (@im)jUikim + @im)icUijim)
So
—d,w — Tr(a(t, x)D?w(t, x))
=-2 Z Arm (t, X)Wt (t, X)ujkem (t, X) — 2 Z uijk(t, x)Dj j kih}

i,j,k,l,m i,j
+2 ) w6, X) (@m)ijetim + @im)ijitkim + @m)iktjim + @im) jktiim
i,j,k,l,m

+ (aim)ivtjkim + (@im)jikim + @im)ktijim).  (111)

As before, the coercivity of a implies

=2 > @ (6 ) (XU (1. x) < —2C5 7 [D*u?,
i,7.k,0l,m
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whereas the last term in (111) is estimated as

2 Z Wik (6, X) ((@rm)ijkim + (@im)ijUkim + @im)ikUjim + (@im) jkUitm
i,j,k,0l,m
+ (aim)iVljkim + (@im)jUikim + @im)iUijim)
< G5 '[D*u)? + | D*u|2|| Dal|oo | D?u| + C|D3ul),
for some C depending on Cy and || D?a| . Finally, a direct computation of D; ; x{h}
and a straightforward estimate of all terms involved imply

—ZZuijk(t,x)D,-’j,k{h} < —hp(t,x, Du(t,x)) - Dw(t, x)
i,j
+ C|Du|[| DRl oo D>ul(1 + | D?ul) + | D>hlloo(1 + | D>ul?)].

Hence, putting all together we deduce from (111) that

—0;w —Tr(a(t, x) D?w(t, x)) + hp(t,x, Du(t,x)) - Dw(t, x)
< C|D*ul[ID?hllco| D>ul(1 + |D?ul) + [ D*hloo(1 + [ D?ul*)]
+ |D3u|2||D3al|oo| D?u| + C|D3ul)
< C|D3ul* + C|D3u|,

where C depends also on || D¥ul|o for k < 2. We conclude the proof as in Proposi-
tion A.2. |

Lemma A.5 (Higher order estimate). Letn € N withn > 3 and assume that h and a (and
the solution u) are of class C}}. There is a constant C, depending onn, d, sup, |[u(t)||n—1,
sup, lla (1)l and

n
sup Y [IDE k(e p)loos (112)
Ip|<I Dulloo {4

such that, for any T € (0, 1],

sup [D"u()|oo = (1 +CT)[|D"glloc + CT.
t
Proof. Letw =3 1, uz, where k = (ky,....kgq) € N4 and k| = Y, k;. Then

—d,w — Tr(a(t, x)D?w(t, x))
=233 ay (. up (6 X)ug (. x) =2 uge(t. x) Didd,u + Tr(aD?u)}

|kl=n 1,j |k|=n

+2 > ug(Dr(Tr(@D?u)) — Tr(a D?uy)).
|k|=n

As n > 3, a simple induction argument shows that D {h} is of the form

Di{h} = fi + gk - D"u + hyp - Duy
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where the map
fi = fie(t.x, Du(t,x),..., D" tu(t, x))

is a polynomial function of the derivatives of u up to order n — 1 with coefficients
involving derivatives of & with respect to (x, p) up to order n computed at (¢, x, Du(¢, x)),
while

gr - D"'u = Z Z D, ph(t,x, Du(t,x))Dug + hpp(t,x, Du(t,x))Du; Dug,
|&|=n—1 z+&=k

where £ is any multi-index of length n — 1, z is a multi-index of length 1 (z = e; for some

je{l,...,d})and § + z = k. Therefore

—3;w —Tr(a(t, x)D?*w(t, x)) + hp - Dw

=23 " > @t Xu i Xug j(6,x) =2 Y ug(t, ) (e + g - D"u)

i,j |kl=n lk|=n
+2 Z uk(Dk(Tr(aDzu)) —Tr(aDzuk))
|k|=n
<=2C5" Y [Dugl? + Clug|(1 + Ju))
|k|=n
+2 > u(Dr(Tr(aD?u)) — Tr(aD?uy)).
|k|=n

where C depends on sup, |[u(?)|l,—1 and the quantity in (112). The last term can be
estimated as before: the higher order quantity involves Dug, so by Young’s inequality we
have

2 )" uk(Di(Tr(aD?u)) — Tr(aD?uy)) < 2C5" Y [Dug > + Clug|(1 + Jug)
|k|=n |k|=n

for some C depending on sup;, ||a(t)||, and sup, ||u(¢)|/,—1. Finally, we use the maximum
principle, as in Lemma A.2. ]

Proposition A.6 (Higher order estimate, further informations). Let n € N with n > 3
and assume that h and a (and the solution u) are of class Cy'. For any M > 0, there are
constants Kyr, Tpr > 0, depending on M, Cy and y, and a constant Cpy > 0 depending
on

n
sup  [la@ln+ sup Y [DE L AC. - P)loo.
1€[0,Tps] |pI=Ka j—

such that if ||glln < M, then, for any T € (0, Tyr) and any r < n, we have
sup || D3u(t)lloo < |D5glloc + CuT
t€l0,T]

and therefore

sup flu(@)lln < llglln + Cu T (113)
t€l0,T]
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Proof. The proof is by a straightforward combination of Propositions A.1 and A.3 and
Lemma A5. ]

We finally address the same issue for (uncoupled) systems of linear parabolic equa-
tions. Let (u )5‘:1 solve the system

—du! —Tr(a(t,x)D*u!) + V(t,x)- Dul + fl(t,x) =0 in(0,T) xR,
ul(T,x) = g'(x) inRY,

where a, V and the f! are bounded in C,' independently of ¢ € [0, 1], for some n € N*.
Note that the diffusion and the drift terms are independent of /.

Proposition A.7 (Higher order estimate, systems of affine equations). There is a constant
C, depending on k, d, sup, ||a(t) |, and sup, |V (t)||n, such that, for any T € (0, 1] and
anyr <n,

k , A2
sup u (t,x
(X Ip5t . 0))

t,x I=1

k
1/2
=+ CTyswp (Y1056 0P) ™ +CT suplg! - +supl £ @)
*o=1

In particular, if k = 1 then for any r < n,

sup [[Diu(t)]loc = (1 + CT)[D3glloo + CT sup [ DL f(1)]loo-
tel0,T] t
The only small point here is that the supremum over x is outside the sum (and not
inside as it would be by simply applying the previous propositions to each u’).

Proof of Proposition A.7. The proof runs exactly as before and so we just briefly explain
the idea for r = 0. Let v(¢, x) = Zle(ul(t, x))2. Then v solves

k
—9;v —Tr(aD?*v) +V -Dv = —ZZulfl - Zaijufuj'-
I=1 i,j,0

We infer the result by using the positivity of @ and the maximum principle. ]

A.2. Systems with parameters

In this section we revisit the above estimates for specific systems of Hamilton—Jacobi
equations involving a parameter y. The motivation for the specific form of the system is
the analysis of MFG problems with a major player. Note that here the variables-parameter
couple (x; y) plays the role of (x¢; x) in the HJ system (35) analyzed throughout Sec-
tion 4.2. As usual, we discuss linear and nonlinear systems separately.
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A.2.1. Nonlinear systems. Here we consider the system consisting in coupling a nonlin-
ear HJ equation with a linear one:

—3,u°(t, x) — Au®(t, x) + h°(t,x, Du®(t,x)) =0 in (0,T) x R¥,
—du(t,x;y) — Au(t, x; y)

+ hy(t,x, Du®(t, x)) - Du(t, x;y) + f(t,x;y) =0 in(0,T) x RY,
u(T.x) = g°(x), u(T.x) = g(x:y) inRY,

(114)

where 10 : [0, T] x R x R — R and f :[0,T] x R¢ x R%1 — R (d; being the space
parameter of the variable y) are smooth maps satisfying in addition the bounds

|Dx,ph®(t.x, p)| + |DF 1%t x, p)| < Co(lpl” + 1) (115)
for some y > 0 and Cy > 0.

Proposition A.8. Let r,n € N and assume (in addition to (115)) that h°, hg are of class
Cy and that f is bounded in Cl:’" independently of t € [0, 1] for some n € N. For any
M > 0, there are constants Ky, Tyy > 0, depending on M, Cy and y in (115), and a
constant Cpy > 0 depending on

sup (Z IDE pyh°( ,,p)||oo+2||D(x ,,)h"(-,-,p)noo), Sup [ £ (1)l

[pI<=Knm k=0

such that if g%\ + | gllrn <M and T € (0, Tag), and if (u®,u) is the solution to (114),
then, forl < n,
sup (ID"u(t, %) + |DLDLu(r, x; y)I?) '

L,x,y

1/2
< sup (ID"g° () + |DLDLg(x: y)?) % + Cu T.
X,y

B B
Recall that D, D) u = (35 8%u) g|=r.ja|=i- hence | DL DIu|? =37 g1, 1=y (05 8%u)2.
Let us also point out that the main difference compared to Proposition A.6 is that we need
to estimate u° and u at the same time.

Proof. The proof uses the same technique as for a single Hamilton—Jacobi equation
without parameter. We only explain the main changes. We first prove the result for / = 0.

By the maximum principle we can first bound [1°|? + |u|? by ||(g°)? + g2||cc + CT.
Next we address the Lipschitz estimate. We claim that, for any M > O and any n € N, if
1Dg°loo + |Pxglloc < M, then there exist Ty and Cps (depending on M, Cy, n and y
in (115) only) such that

12
sup (|Du®(t,x)* + | Dxu(t, x;y) %) /
t,x,y

1/2
< sup (102" (W) + Dxg (i 1)) + CuT (14 5up [ D (D)o ).
X,y
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To see this, set v(f, x) = Zid=1 ((u?)2 + (u;)?). Then following the computation in the
proof of Proposition A.1, we find

—0;v — Av(t, x)
= =2 () Dy, @:u° + Au®) + u; Dy, (0,u + Au)) — 2(|D*u’ > + | D?ul?)

14

=2 (u)(hY, +hY - Dud) +u;(hY . - Du+ h),Duf - Du + h - Du; + f;))
i

—2(|1D*u’)? + | Dul),
so that

—0;v— Av(t, x) + hg -Dv
= =2 (ulhd, +ui(h) . - Du + h),Dul - Du + f)) —2(|D*u°|* + |D?ul?).
i

Using our assumption on #° we get
—0,v = Av(t,x) + hY - Dv < Cv 2 (jv]? + 1+ [ Dy f o0

for some C > 0 and 6 > 0 which depend on Cy and y only. We derive from this the
Lipschitz estimate thanks to the maximum principle, exactly as in the proof of Proposi-
tion A.1.

The higher order estimates can be checked exactly as in Propositions A.3 and Lem-
ma A.5, so we omit the proof. Note that the higher order estimates on D"u® and D"u
depend on D"~ and D"~ 'u, but this dependence affects the constant Cys only.

Let us finally explain how to handle the derivative with respect to y. We note that
d5u satisfies the same linear equation as u with f replaced by 97 f, and the final datum
g is replaced by 97 ¢. So, in order to estimate DxDi (u°, u) for instance, we just set

e = Q=1 D= v = Z;’YZI(CI(Lt?)2 + (agui)z) and w = ), =; v*. As above,

—0,v% — AV (t,x) + h% - Dv* < C) 2 ([v*]® + 1+ | Dx0% f [loo)
< Cw2(Jw|® + 1 + | Dx D} flloo),

and summing up one gets the desired inequality, noting that w = Z‘ ﬁ|=1(8£ u%)? 4+
b1, laf=1 (0% 0510)%. u

A.2.2. Linear systems. We also need to quantify the regularity of linear systems of the
form

—0,u°(t, x) — Aul(t, x) + V°(t,x)- Du’(t,x) + f°(t,x) =0 in(0,T)x R?,
—du(t,x;y)— Au(t,x;y) + Vo(t,x) -Du(t,x;y)+V(t,x;y)- Duo(t,x)
+f(t.x;y) =0 in(0,T) x R¥,
u®(T,x) = g°(x), u(T,x) =g(x;y) inRY,
(116)
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Proposition A.9. Assume that, independently of t € (0, 1], Vo, fO are bounded in CT,
and V, f are bounded Cbr’" for some r,n > 0. If (u°, u) is a solution of (116) which is
bounded in C] x C;"" and if |g°|lr + Igllrn < M, then, forany T € (0,1],1 <n,

1/2
sup (IDLu°(t, x)|* + | DLDLu(t, x; y)[?)
XY

1/2
<sup (|DLg°(x)|> + |DLDLg(x: »)?) " + Cu T,
X,y

where Cyy depends on M and the bounds on V°, f®and V, f in C™ and Cbr’" respectively.
In addition, forr = 0 andl < n, we have

1/2
sup (Ju°(t. x)|* + [ Dhu(t. x: y)?)

L,x,y

1/2

<(1+CT) sup (18°)1> + [DLgx: IP) "+ CTU fOlloo + 1D £ llso).

where C depends just on the bounds of V° and V.

Proof. We first note that the derivatives of u with respect to y solve a system which has
the same structure as the one for u; so we just need to check the result for n = 0, and
proceed as in the proof of Proposition A.8 for n > 0.
Let us start with the L° bounds. We consider ¥ := (%)% + u2. Then v satisfies
—9;0 — AD = —2u°(,u° + Au®) — 2u@,u + Au) —2(|Du’|® + |Du|?)
=2V, x)- Dul(t, x) + £°(t,x))
—2u(VO(t,x) - Du(t,x) + V(t.x:y)- Du®(t,x) + f(t.x;))
—2(|Du’)> + | Dul?)
< Co+ 52 f lloo + 11 £ o),

where C depends on ||V°|| and ||V || only. This implies the result for r = n = 0.
We now check the C'! estimate. Set as usual v (¢, x) = Zflzl ((u?)2 + (u;)?). Then

—d,v — Av(t, x)
=2 Z(“?Dx,' 0:u° + Au®) + u; Dy, (0;u + Au)) —2(|D%u°? 4+ | D%u?)
i

=23 (V2 -Du® + V°-Dud + f°) + w; (VY - Du+ VO Du; + Vy, - Du°

" £V Dl + fi) = 2(1D%°P + [D?uf?)
< Cv + 0 2(|Dflloo + 1 Dx £ llo0)-

where C only depends on the C ! bounds on V% and V and on d . This implies the estimate

forr =1landn = 0.
As for the C? estimate, set as usual w(z, x) = Zi“tj-:l((u?j)2 + (uij)?). Then

—dw—Aw(t,x) < Cw+Cw' > (14 D? fOlloo + D3 f lloo + | Dt lloo + || Dxttll o),
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where C depends on the C! bound on V° and on V and on d only. We then get the
estimate for r = 2 and n = 0 by the maximum principle and using the previous bounds
for Du®, Du.

The estimate on higher order derivatives can be checked in a similar way and we omit
the proof. |

Appendix B. Functions on $,

B.1. A criterion of differentiability

Here we introduce a simple criterion for a map U, depending on a measure, to be of
class C1.

Lemma B.1. Let U : P, — R be continuous. For (s,m, y) € [0, 1] x £, x R? set

U(s:m,y) := U((1 — s)m + s58y).
If the map s — U(s;m,y) has a derivative at s = 0 and zf%| U:PxR4 > Ris
continuous and bounded, then U is of class C L vith

sU d -~

s=0

Proof. We have to show that, for any mq,m; € P,, we have

1 d ~
UGmy) — Umo) = /0 /R L00: 1= symo + smy. ) Omy — mo)(dy).

Before starting the proof, let us note that the continuity of %0 at s = 0 implies its
continuity at any s € [0, 1], replacing m by (1 —s)m + s6,.

Let us start by considering the case where my is fixed and 7 is an empirical measure:
mp = mév = % Z,ivzl 8y, forsome N e N, N > 1, y; € R, The general case will be
treated next by approximation.

All the measures we are going to manipulate belong to the set

N N
K = {aomo + ZakSyk Do > O,Zak = 1}
k=1 k=0
which is compact in &,. So, by continuity of % U ,if we fix € > 0, there exists 6 € (0,1/2)
such that if m’,m"” € K with dy(m, m’) < § and s € [0, §], then
d ~

—U <e. 117
ds =€ (117)

d,
(5§vak)—d U(O;vak)
S

sup
k

Our first step consists in showing that, for s > 0 small enough (to be defined below) and
for any m € K, we have

U((l—s)m+sm§v)—U(m)—s/ iU(O;m,y)mév(a’y) < C(es +s%), (118)
R4 ds
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where C depends on the sup norm of %U on[0,1]x K x{yx :k=1,...,N}. Inorder

to prove (118), we define oy = m fork = 0,..., N and note that
N
N+1—k
[Ta-an _ WA=k (119)
1=k N

We now define by induction
mo=m, mg = (1—op)mg_1 + oxdy,, (120)

and using (119) we get

N-1
my = 1‘[(1 —a)m + anbyy + Y by, 1‘[ (1—ap)
k=1 I=k+1
s (N —k)s N
- _S)m+I;8ykN—(N—k)S(l Y ) = (momromy
So, by the definition of m; in terms of my in (120),
N—-1
U((1 = s)m +sm)) =U(m) = Y Ulmy41) — U(my)
k=0

N-1 A Wbt g
= Y (U (@kr1:mi, yierr) = U0 m, yiia)) = Z/ U @me yiepy dr.
k=0 k=0"9

Assume that s € (0,8). As s < 1/2, we have oy < 2s/N for any k, and thus
dy(mg,m) <Cs

for a constant C which depends on m¢ and on the y; (but notonm € K noron s € (0,4)).
We now require that s is so small that C's < §. Then, for any k and any © € (0, o), by
(117) we have

d d ~
—U(timi, ye+1) — U (0:m, yiy1)| < €.
ds ds
We infer from this that
N-1 d . N-1
‘U((l —s)m + sm_fyv) —U(m) — kX_E) ak+1%U(0;m,yk+1) <Ce I;) Ofy1-

As |y —s/N| < Cs?/N, we conclude that (118) holds.
The next step consists in showing that

U(e 'mo + (1 — e*l)mN) — U(my)

1—e™
/ /—U(O (- r)mo+rm§v,y)m§v(dy)ld%r. (121)
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For this, let us now choose 7" € N large and let

1\" 1\"
m,,:(l—T) m0+(1—(1—T) )mév, nef0,...,T}

1
mn+1=(l——)mn+7 ;V nef0,...,T}.

We have

So, by (118),

1T—l d - N
'U(mT)—U(mO)—T ’;/Rd %U(O;mn,y)my (dy)‘
Z

n=0
T—

Z (/T +(1/T) = Cle +T7H.

d -
U =1/ Ty /Ty = UGmy) =770 [0 0ima ) m @)

We let T — 400 and then € — 0 to conclude by continuity of U and of %U that
Ule™"'mo + (1 —e " ym)') — U(mo)

/ /]Rd %U(O e*mo + (1 — e~ )my ,y)mév(dy)ds

/le / —U(O(l—t)mo—i-rm L) my

This is (121).
By continuity of U and of % U and by density of the empirical measures, one deduces
from (121) that, for any measures mg, m; € 5,

U(e_lmo + (1-— e_l)ml) — U(my)
[ L

Choosing m; = mg then implies the normalization convention

(122)

d
[, 40ma )y mady) =0
R4 d
for any mgy € #,. In particular, this yields
[, 55000 = omo -+ cm ) i)

_a _f)/Rd %U(O;a — Omo + Tmy. y) (my — mo)(dy).
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Inserting this relation in (122) gives the more standard form

U(e 'mo + (1 — e~ "ymy) — U(myo)

1—e!
d -
=/ / A 00: (1 = tymo + Tmy, ) (my — mo)(dy) dr.
0 R4 dS

Using again the continuity of U and of %LA/ , one easily deduce from this the desired
equality. [ ]

B.2. Interpolation and Ascoli theorem in P,

In the proof of Lemma 3.5, we have used two interpolation lemmas. The first one is
standard (see, for instance, [20, Lemma II.3.1]); we recall it because we need a specific
setting. The second one is an adaptation to J, of the same techniques.

LemmaB.2. Let W : [0, 1] x R4 — R be Hélder continuous in time locally uniformly
in space: for any R > 0, there exist Co,g,ar > 0 such that

[W(t. y) = W(s, )| = Co,rlt —s|*
Y(s.1,y) €[0,1] x [0, 1] x R with |y| < R and |t — 5| < ag,

and such that Dy, W is Holder continuous in space uniformly in time: there exists C1 > 0
such that

|DyW(t, yo) = DyW(t, )| < Cilyo—y1l® ¥(t,y1,2) € [0, 1] x R x R
Then Dy W is Holder continuous in time locally uniformly in space:
ol
|DyW(t,y) — DyW(s, y)| < Crlt —s|1+3
V(s.t,y) €[0,1] x [0, 1] x R¥ with |y| < Rand |t — s| < oy,
for some constants Cg > 0 and o/R only depending on Co r+1, ®r+1, C1, o and é.

Remark B.3. The proof below also shows that if in addition W is Holder continuous in
time uniformly in space (i.e., Co,g and og do not depend on R) and if D, W is bounded,
then Dy, W is also Holder continuous in time uniformly in space.

Proof of Lemma B.2. Fix yo, y1 € R? with |yo| < R and |y;| < R + 1. Let y, =
(1 —=1)yo + Ty for T € [0, 1]. We have

1
’ /0 (DyW(t.y2) — DyWis. ye) - (1 — yo) d

= |W(t,y1) — W(t, y0) — W(s, y1) + W(s. y0)| <2Co,r+1 |t — 5|
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So

|(DyW(t, yo) — DyW(s, y0)) - (¥y1 — yo)|

1
< /0 (DyW(t. y0) — DyW(t.y2)) - (1 — yo) d

1
+ ‘/0 (DyW(t, y:) = DyW(s, y2)) - (y1 = yo) dt

1
+ ‘/0 (DyW(s,yz) = DyW(s, y0)) - (y1 = yo) dt

< 2Co, 1]t — 5|% + 2C1|y1 — yo|' 1,

using also the Holder continuity of D, W. Choosing y1 = yo + hv with |v| = 1, we get

| 2CO,R-H

Dy W(t.y) = DyWs. )] -v| = =3 |t —s|* +2C1|h]’.

Optimizing with respect to i € (0, r+1] and |v| = 1, we find the result for [t — 5| < o5
for a suitable constant o, depending on Co gr+1, @, C1 and 6. ]

Lemma B.4. Let W : [0, 1] x P> — R92 be Holder continuous, locally in time and uni-
Sformly in measure: there exists o € (0, 1] and, for any R > 0, there exists Co,g > 0 such
that

[W(t,m)—W(s,m)| < Corlt —s|* Vm e P, with M(m) <R, Vs,t €]0,1]

(where M(m) = ([ga |y |2 m(dy))'/?) and such that and D, W are bounded and
D, W is Holder continuous with respect to the measure umformly in time: there exist
y,6 € (0, 1] and Cy > 0 such that

| D W(t,mo, yo) — D W(t,my, y1)| < C1(d}(mo, m1) + |yo — y1|°)

foranyt €0, 1] and any (m;, y;) € P> x Re. Then D, W is Holder continuous in time
locally uniformly in (m, y) € $» x R2: for any R > 0, there exists a constant Cg > 0,
depending on R, | D W |0, Co,r+1, C1, o, y and 8, such that

| D W(t,m,y) — DpW(s,m,y)| < Cglt _s|ay/((2+y)(1+8))
forany s,t € [0, 1] and any (m, y) € P> x R? with |y| < R and M>(m) < R.

Proof. Let R > 1. Fix mg,my € P, with My(m;) < Rand set m, = (1 — t)mg + tm;.
Then

R

SW
( (. me, y) — —m<s,mr,y>) (m1 — mo)(dy) d

= |W(t,my) — W(t.mo) — W(s,my) + W(s,mo)| < 2Co rlt —s|%.
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As

L, (i—W(I,mo,y) - S—W(s,mo,y)) (1 —mo)<dy>‘

( (. me, y) — ‘SW(s,mr,y)) (1 — mo)(dy)
]Rd dm

R

d(—(’ e y) - S_Z(,,mo,y)) (1 — mo)(dy) d

( (5. 7110 y) — S—an(s,mo,y))(ml—mo)(dy)dr,

RA

we obtain, by our Holder continuity assumption on D,, W,

/ (‘;—Wa,mo, =W (o, y)) (m1 — mo)(d)’)‘
Rd \ 8m dm

<2Co|t —s|* + sup |[|[DmW(t,mq,-) — Dy W(t,mo, )| oo d1(mo, m1)
t€[0,1]

+ sup [ DmW(s,mq¢, ) — D W(s,mo, )| oo d1(mo, m1)
7€[0,1]

< 2Co|t — s|* + 2C1d} (mo, m1)d; (mo, my).

For any yo € R? with |yo| < R, let my = (1 — 0)mgo + 06, for some 6 € (0, 1] to be
chosen below. Note that

d; (1. mo) < 9/d 10 — xlmo(dx) < 6(\yol + (Ma(mo))"/?) < 26R
R
(since R > 1), while
1/2
da (1. mo) < (0 [ o —X|2m0(dx)) < 20)2((yol? + M2(mo)) '/ <20'R.
Rd

We get, by the convention on the derivative and our previous estimates,

sW 1.4
~—(t,mo, yo) — ——(s,mo, yo)
om om

1

0

W sW
L (G o) = 5o, ) (1 = mo)(ay)
R4 \ 6m sm
1
= 52Corlt —sI" + cC RMYeIY2),

where ¢ is universal. If |# — s| is small enough such that Co g|t — s|*/(cC; R'T?) <1,
then we choose §'+7/2 := Cy g|t — 5|*/(cC; R'*7) and obtain

/4 sw
_(tvav yO) - —(S, mo, yO)

ém om
< cC({/I§2+V)C11/(l+y/2)R2(1+y)/(2+y)|t _ s|ay/(2+y)’ (123)

where ¢ is another universal constant.
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To show the regularity in time of D,,W, we just need to apply Lemma B.2 to ‘;—Z
since, by (123), ‘;—?ﬂ’ is locally Holder in time locally uniformly in space (the constant

depending also on the measure) and Dsyan = D,, W is globally bounded and Hoélder in y
uniformly in time by assumption. We can remove the smallness restriction on |t — 5| by

using the fact that D, W is globally bounded. ]

In the proof of Theorem 2.3 we also used the following version of the Arzela—Ascoli
theorem.

LemmaB.5. Let (X, d) be a locally compact space and WV : X x P — R be a family of
uniformly bounded and locally uniformly continuous maps: there exists xo € X such that,
forany R > 0, there exists a continuous nondecreasing modulus wg : [0, +00) — [0, +00)
with wg(0) = 0 such that

(WY (x,m) — WV &', m")| < wr(d(x,x") + da(m,m)) (124)

for any x,x’ € X and m,m’ € P with d(x,x9) < R, d(x’, x9) < R, M,(m) < R,
Mz(m/) < R.

Then there exists a continuous map W : X x P, — R and a subsequence (denoted
in the same way) such that (W) converges to W pointwise in m and locally uniformly
in x: forany R > 0 and any m € 5,

lim  sup |[WN(x,m)—W(x,m)| =0. (125)
N—=>+00 g4(x,x0)<R
The only (very small) issue in the result is that &, is not locally compact, so that the
standard Arzela—Ascoli theorem cannot be applied.

Proof of Lemma B.5. Let D be countable dense subset of X x #,. By a diagonal argu-
ment we can find a subsequence (denoted in the same way) such that, for any (x,m) € D,
(W (x,m)) converges to some W(x,m). By our regularity assumption (124) and since
X x &, is complete, W can be extended to the whole space X x &, as a continuous map
which satisfies

[W(x,m) = W(x',m")| < or(d(x,x) + da(m,m)) (126)

for any x,x’ € X and m, m’ € P, with d(x, xo) < R, d(x’, x9) < R, Ma(m) < R,
My(m') < R.

We claim that, for any (x,m) € X x P5, (W (x,m)) converges to W(x,m). Indeed,
fix € > 0 and R = 2(1 + d(x, xo) + M,(m)). Then there is (x’,m’) € D such that
d(x', x0) < R, Ma(m’) < R and wr((d(x,x’") + da(m,m’)) < €/3. Let also Ny be so
large that |[W N (x',m’) — W(x',m’)| < €/3 for N > Ny. Then, for N > Ny, we have

(W (x.m) — W(x,m)|
< WNG,m) =WV m)|+ WV m) =W m) |+ W m')—W(x,m)| <e,

where we have used (124) and (126) in the last inequality.
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It remains to show that (125) holds. Fix € > 0 and let > 0 be such that w(n) < €/3.
As X is locally compact, we can find x1, ..., X, such that any point x € Bx(xg, R) is
at a distance at most 1 from one of the (x;)7_,. Let Ny be so large that [WHN (x;,m) —
W(x;j,m)| <e/3 foranyi = 1,...,n. Then, for any x € Bx(xp, R) and any N > Ny,
we have (for i such that d(x, x;) <7, so that wg(d(x, x;)) < €/3)

(W (x,m) = W(x, m)|
< |WN(x,m) — WN(x,-,m)| + |WN(x,-,m) —W(xi,m)| + [W(x;,m)— W(x,m)| <e,
where we have again used (124) and (126) in the last inequality. This shows (125). [
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