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Abstract. I prove that the visible parts of a compact set in R”, n > 2, have Hausdorff dimension
at most n — ﬁ from almost every direction.
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1. Introduction

Letn >2,e e S™ ! andlet £, := {te : t > 0} be the “positive” closed half-line spanned
by e. Let K C R” be compact. The visible part of K in direction e, denoted Vis, (K), is
the set of points x € R” satisfying

(x+42.)N K = {x}.
Alternatively, Vis, (K) is the set of points x € K with the property
ye Kand m(x) =m(y) = y-e<x-e. (1.1)

Here, and in what follows, I will write 7.: R” — e~ for the orthogonal projection to the
(n — 1)-plane e*. Evidently Vis. (K) C K, so dimy Vis, (K) < dimy K. Here dimy stands
for Hausdorff dimension. Since 7.(K) = 7. (Vis.(K)), it follows from the Marstrand—
Mattila projection theorem [11, 12] (or [13, Corollary 9.4]) that

dimyg Vis, (K) > min {dimyg K,n — 1}

for 7! almost every e € S™~!. Does the converse inequality hold? This visibility con-
Jjecture is a well-known open question in geometric measure theory, mentioned explicitly
for example in [1, (1.3)], [7, Conjecture 1.3], and [14, Problem 11]. The answer is positive
if dimyg K <n — 1, simply because Vis,(K) C K. So, the open question concerns the case
dimyg K > n — 1, and, explicitly, the problem is then to show that

dimy Vise(K) =n—1 for #" lae. ec S" L.
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To give an idea of what is involved, consider a construction of Davies and Fast [6] from
1978: there exists a compact set K C R? with dimy K = 2 such that K = Vis,(K) for a
dense Gg-set of directions e € S'. In particular, dimy Vis, (K) = 2 for these directions e.
It has been open, until now, if dimyg Vis, (K) = 2 is possible for a set of directions e € S1
of positive measure. Theorem 1.2 says that it is not. It has, however, been known since
Marstrand’s slicing theorem [11] in 1954 that if dimyg K > 1, then K = Vis, (K) can only
hold for a null set of directions e € S!. More precisely, the main result in [18] shows that
this is only possible for a set of directions e € S! of dimension < 2 — dimy K.

Meanwhile, a positive answer — in fact a full solution — to the visibility problem in R?
has been obtained for several classes of special sets:

e quasicircles, graphs of continuous functions, and some self-similar sets [8],
e self-similar sets (with enough separation) whose projections are intervals [7],
e fractal percolation (almost surely) [1].

Another remarkable partial result is due to O’Neil [17]: he considers a variant of the visib-
ility problem concerning the sets Visy (K) — the visible parts of K from points x € R? \ K
(the precise definition is easy to guess, or see [17]). Then, if I' C R? is a compact con-
tinuum with s := dimyg I > 1, O’Neil proves that

dimy Vis,(T') < 1/2 4+ /s —3/4

for Lebesgue almost every viewpoint x € R? \ T'. The right hand side of O’Neil’s inequal-
ity is strictly smaller than s for s € (1, 2] and also stays bounded away from 2 as s " 2.
The main caveat in O’Neil’s result is that it uses the continuum hypothesis (namely the
hypothesis that I" is a continuum, not the other continuum hypothesis!) in an essential
way, and in particular does not rule out the possibility of positively many 2-dimensional
visible parts for totally disconnected sets.

For general compact sets in R” (or even R?), the only positive result, as far as I know,
is [9, Theorem 1.1]: a special case of it implies that if X C R” is a compact set with
0 < H5(K) <ooforn—1<s <n,then #°(Vise(K)) = 0 for #"! almost every
e € S"1. So, in this sense, visible parts of K tend to be smaller than K, as long as
dimyg K > n — 1. The main result of this paper improves on this conclusion considerably
for sets with dimension sufficiently close to n:

Theorem 1.2. Let K C R” be compact, n > 2. Then

dimy Vis.(K) <n — ﬁ for #" L ae e e SP1.

Remark 1.3. The constant 50 is a little arbitrary, and could be slightly lowered by optim-
ising the argument. On the other hand, it seems likely that more ideas will be needed
to get an upper bound of the form n — ¢ for some absolute ¢ > 0. In particular, there
is a clear obstruction why the method cannot yield a universal upper bound lower than
n — 1/2. Namely, the final part of the proof of Theorem 1.2 in Section 2.2 deals with
“bad” lines £, paralleltoe € § n=1 whose union is denoted Lp ... The proof has noth-
ing to say about Lj , N Vis. (K), but it will be shown, roughly speaking, that dimyg Ly , <
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2(n — 1) + 1 — dimy K for a.e. e € S"~!. Consequently, if dimy K < n — 1/2, it may
happen than dimy Lp, . > dimg K, and the trivial estimate dimy Vis.(K) < dimyg K beats
the best bound the proof of Theorem 1.2 can offer.

I close the section by mentioning that the “visibility problem” may refer to many
distinct questions within geometric measure theory. For example: from how many view-
points can a planar set of dimension > 1 be invisible? Or how to quantify the invisibility of
purely 1-unrectifiable sets? For more on these topics, see for example [2-5,10,16,19-22].

1.1. A few words on the method

The idea that visible parts should typically be at most 1-dimensional quite likely originates
from the following observation. Let § € 27N, let D5 be the family of dyadic squares
Q C [0, 1)? of side-length §, and let ¥ C Ds be an arbitrary collection. Consider the

union
F = U 0.
Qe¥F
Then
N(Visq 0)(F),8) <871 (1.4)

Here N (A, §) is the minimal number of balls of radius § required to cover a (bounded)
set A. The point is simply that whenever two squares Q, Q' € ¥ lie in the same vertical
“column”, then the lower completely “blocks the upper from view”. On the other hand,
the collection of “lowest” squares in ¥ clearly has cardinality < §~!.

Why does this argument not prove the whole conjecture? Assume that K C F is
a compact set such that K N Q # @ for all Q € . Then F can be viewed as a “§-
discretisation” of K. Nonetheless, (1.4) implies absolutely nothing about Vis(; ¢y (K): the
visible part of K can easily contain points in multiple squares of ¥ — even all of them
— in any fixed vertical column. Therefore, the best universal estimate is the trivial one:
N(ViS(1,0) (K), 8) 5 8_2.

Evidently, it would be useful to know thatif Q, Q' € ¥ lie in the same vertical column,
then K N Q “blocks a part of K N @ from view”. If dimy K > 1 (the only interesting
case), this not unreasonable: Marstrand’s projection theorem [11] tells us that we may
expect both 71,0)(K N Q) and 7(1,0)(K N Q) to have positive length (at least if (1, 0)
is replaced by a generic choice e € S!). If these positive-length sets, moreover, happen to
intersect, then at least a part of K N Q' “hides behind” K N Q.

The main point in the proof of Theorem 1.2 is to quantify — even if quite weakly — the
idea above. Here is a false, but perhaps illuminating, statement: the typical . -projection
of an s-dimensional set K C R2, with s > 1, not only has positive length, but actually
“fills” span(e) up to a set of dimension 2 — s < 1. This is formally false for the reason
that K, := 7. (K) is compact, and certainly does not fill most of span(e). But, whenever
K. has positive length, then any dense union of translates of K, fills R up to an #!-null
set. And if K, is the typical projection of an s-dimensional compact set, s > 1, then K,
satisfies something even better:
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Proposition 1.5. Let 1 <s <2, and assume that E C R is a Borel set supporting a Borel
probability measure v with

/Rlﬁ(é)lzléls“ d§ < oo. (1.6)

Then any dense union of E covers all of R, except for a set of dimension < 2 — s. In other
words, if D C R is dense, then dimg[R \ (E + D)] <2 —s.

It is well-known that if 1 is a finite Radon measure on R? with /(1) < oo, then J!
almost every projection v = 1, (1) satisfies (1.6). The proof is very simple, see (2.4).

Proof of Proposition 1.5. Assume to the contrary that dimg[R \ (E + D)] > 2 — s, and
pick, using Frostman’s lemma, a non-trivial Radon measure n with

sptn CR\ (E+D) and Irs(n)~ fR BEPIE dE <o, (1)

Here, we used the well-known Fourier-representation formula for /,_(v) [13, Lemma
12.12]. The first relation in (1.7) in particular implies that if x € A :=sptnand y € E,
then there is no number ¢ € D such that x — y = ¢. In other words,

[A—E]ND =0.

To reach a contradiction, it now suffices to argue that A — E has non-empty interior. To
see this, note that A — E contains the support of p := 1 * ¥, where ¥ is the measure on R
defined by v(C) := v(—C). But

/m(s)ws =/R|ﬁ(E)II5(E)IdE

1/2 1/2
< ( / Iﬁ(é)lzléll‘sdé) ( / |ﬁ(s>|2|s|s—1ds) <o
R R

by (1.6), (1.7), and Cauchy—Schwarz, so p € L'(R), and hence p € C(R). Therefore
spt p C A — E has non-empty interior, as claimed, and the proof of the proposition is
complete. ]

The idea that the projections of a >m-dimensional set to m-dimensional subspaces
should typically “fill” everything except a <m-dimensional set is at the core of the proof
of Theorem 1.2, and the reader will recognise a more quantitative version of the previous
proof appearing in Section 2.2.

2. Proof of the main result

This section contains the proof of Theorem 1.2. We assume with no loss of generality that

K C [0,1)". We write
1

TI= 50m and ¢ :=2r,
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and use the variant of Frostman’s lemma given in Appendix A (Lemma A.l), to find a
Radon measure p supported on K, satisfying

w(Bx,r)) <" ", xeR", r>0, (2.1)
and

pw(Q) 2 min{H (K N Q). £(Q)"} (2.2)
for all dyadic cubes Q C [0, 1)". Write s := n — 1/4, and note that

n—1/2+1<s<n-—r. (2.3)

The second inequality combined with (2.1) gives

- [ 7

The constant I5(u) will be regarded as “absolute” below, and the implicit constants in
the “<” notation are allowed to depend on it. I will also abbreviate <, to <. It might
be worth remarking here that nothing prevents the possibility u = 0: this is, in fact, the
case if " F(K) = 0, in which case the statement of the theorem simply follows from
Vis.(K) C K.

Next, fix a dyadic scale § € (0, Wlo)' Assume with no loss of generality that §° € 27N
(one may restrict attention to those § = 2~ > 0 such that N/(50n) € N). The scale § > 0
may be taken arbitrarily small to begin with, and I will often do so (to cancel the effect of
certain multiplicative constants) without further mention. Let

Q:=1{0eDs:: 0NK #0,

where, in general, &, stands for dyadic sub-cubes Q C [0, 1) of side-length £(Q) =
n € 27N Evidently |@| < |Dse| = §7¢. For Q € @, let 1o = i|o. Then of course
Is(no) < Is(p) for all O € @, and consequently

/ / o ©)RIEP~D dgen 1 &) d #e (e) ~ / @ PIEP™ dE < 1. 2.4)
Sn—l eL R”?

using (generalised) integration in polar coordinates in the first step [15, (24.2)], and the
well-known Fourier representation [ 13, Lemma 12.12] for the s-energy in the second step.
In particular, the “exceptional set”

Eg = {e es" . f o (re))?|r|*tdr > 8_8(”“)}
R

has measure #""1(Eg) < 86+ Noting again that |@| < §7¢", we conclude that the
“total” exceptional set
= U Eo

Qe@
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has length
H"Y(E) < 88, (2.5)

We now fix e € §7! \ E, and claim that
HT (Vis, (K)) < 6572 (2.6)

Before starting the proof, let us briefly observe that the theorem follows immediately from
a combination of (2.5) and (2.6). Namely, the exceptional set E evidently depends on §, so
it would be more accurate to write £ = E(8). Then, if (2.5) is applied with each § = 27/
(small enough), one infers from the Borel-Cantelli lemma that #”~! almost every point
e € ™! only lies in finitely many sets E(27/). The remaining points e € S"~! satisfy
(2.6) for all § = 27/ large enough, which in particular implies that

2 8//(2n) (Vise(K)) £27 8j/2

for all j € N large enough (noting that every oo-cover satisfying (2.6) must in fact be a
8¢/C@m _cover). In particular, the sequence {H "5/ any (Vise(K)) }jen remains bounded as
j — 00, and it follows that dimy Vis.(K) < n — t, as claimed.

To get started with (2.6), for each Q € @, let

Q5(Q) :=={Qs € Ds : Qs C Q and O N K # 0}.

We also write @} for the union of the collections @§(Q), over all Q € @. Thus @ is a
cover for K. A little technical annoyance is that some cubes in @ may perhaps be light,
i.e. satisfy u(Qs) < §"*¢. (In fact, if H"~*(K) = 0, then all cubes in @ will be light
by (2.1), but in that case there is nothing to prove anyway.) Such cubes turn out to be
undesirable, and we wish to get rid of them immediately. The lower bound (2.2) gets used
here: for any light cube (if § > 0 is small enough), evidently

HETT(K N Q) < u(0s) = n(Qs) < 8",

The middle equality follows from the fact that u charges no lines by (2.1). Therefore, if
Kiigne is the part of K contained in the union of the light cubes, we have

HET (Vise (K) N Kiight) < Hoo " (Kiign) < 6°,
and this is even better than (2.6). Thus, (2.6) will follow once we manage to show that
HT (Vise (K) N Ky) < 8572, 2.7)

where K} := K \ Kjign — i.e. the part of K contained in the union of the “heavy” cubes
={Qs € @§ : Qs is not light} (define also @5(Q) := @s N Q5(Q) for Q € @). The
upshot of the previous discussion is then that

w(Qs) > 8"*¢, Qs € Qs, 2.8)
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and @; is a cover for Ky,. As a small digression, I point out that Vis.(K) N K, may be

a strict subset of Vis, (K},) (as points in Kj may occasionally be “blocked from view” by
points in Kiign).

Denote the lines parallel to e by £. We split them into two disjoint subfamilies, the
“good” lines £¢ and the “bad” lines &£;. Informally, the lines £ € £} intersect a high
“stack” of -cubes in some collection @5(Q), O € @, but still manage to “percolate”
through K N Q. More precisely, we define that £ € £ if there exists Q € @ such that

Qs € @5(0) : Q5 NL(25) # B}| = 62!

and (NK ﬂ@ =@;
see Figure 1.

(2.9)

o O
o O 0 =
- O R
o R
D 1
5 e
o gt
[E | l
O
o g

Fig. 1. The red line £ is in £ it hits many cubes in @5(Q) but not K N Q.
At the risk of over-explaining, I emphasise that the cubes Qs € @5(Q) are heavy.
Also define £¢ := £ \ £5, and set

Ly:=|J¢ and Lg:= (] ¢
lely lelg

The proof of (2.7) now splits into separate estimates for the sets Lg N Vis.(K) N K} and
Ly N Vis.(K) N Kp.

2.1. Visible part on the good lines

Subdivide [0, 1)" D K into ~ §~®~1 tubes T3 of width § which are perpendicular to e.
We claim that

N(Vise(K)NKnN Ly NT,8) <87, TeT;. (2.10)
This will immediately yield
HPTT(Vise (K) N Ky N Lg) < |T5|- 8571 - 6"77 < 6°2,

recalling that ¢ = 27, and this estimate is better than (2.6).
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To prove (2.10), fix T € T5. There are two options. First, it may happen that

{05 € Qs(Q): Qs NT # 0} <8*7', Qeaq,

or in other words 7" never meets a “high stack” of heavy §-cubes in any single collection
@5(Q). In this case simply

N(Vise(K)N KN Ly NT,8) < N(KyNT,8) <§¢-8%71 <71,

recalling that the cubes in @5 form a cover for K}, and T can only meet < §~¢ cubes
Q0 € @. This is (2.10). The other alternative is where there exists at least one Q0 € @ such
that

{05 € Qs(Q) : Qs NT # @} > 5§71 (2.11)

In particular, we may choose “the e-highest” Q; € @ satisfying (2.11): more precisely,
let Q1 be the cube Q € @ satisfying (2.11) such that inf {x - e : x € Q} is maximised (if
there are several candidates, pick any of them). Now, every line £ C T evidently satisfies
T C £(26), hence

{05 € @5(Q1) : Q5 NL(26) # 0}] = 8271,
and consequently, by definition of £,

lefgandl CT = LNKNQ, #0. (2.12)
Therefore, if Q € @ is another cube “lower” than Q1, now in the precise sense of

supx-e < inf y-e, (2.13)
x€eQ yeQq

we claim that Vis,(K) N Lg N Q N'T = @ (the set K}, plays no role here), so in particular
N(Visc(K)NL N O NT,8) =0. (2.14)

Indeed, a hypothetical point x € Vis,(K) N Lg N Q N T would lie on some line £ € £
contained in 7', which, by (2.12), satisfies £ N K N @1 # . This, with (2.13), means that
some point y € £ N K N O has . (x) = m(y) and x - e < y - e, and hence x ¢ Vis, (K)
(recall the characterisation (1.1) of Vis. (K)).

Therefore, Vis,(K) N Ly N T is contained in the union of the cubes O € @ intersect-
ing T and satisfying the negation of (2.13), that is,

supx-e > inf y-e. (2.15)
er yte

We still need to split these cubes into two groups. First come those cubes Q € @ which
satisfy (2.15) and meet the §-tube T, but for which

inf x-e < inf y-e. 2.16
xeQ _yEQly ( )
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Evidently there are ~ 1 such cubes Q € @ (they notably include Q1), and for each of
them we use the trivial estimate

N(Vise(K)NLg N QNT,8) <NQNT,8 <8 (2.17)

Finally, to treat the remaining cubes Q € @ — which meet T and satisfy the opposite
of (2.16) — we recall the choice of O as the “e-highest” cube in @ to satisfy (2.11).
Therefore (2.11) fails for the remaining Q € @, as specified above, and hence they satisfy

N(Vise(K) N Ky N Ly N QNT.8) < N(KyNLg NQNT.5)

SHQs €Qs(0): Qs NT # 0} S 8>
(2.18)

The number of cubes Q € @ of this type is < §7¢ (just use the trivial estimate that the
8-tube T only meets < 67¢ cubes in @). Putting (2.14), (2.17), and (2.18) together, we
find that

N(Vise(K)NKyN Ly NT,8) <8782 4571 <5571

This concludes the proof of (2.10).

2.2. Visible part on the bad lines

To complete the proof of (2.7), and hence of (2.6), it remains to consider the set
Vis. (K) N Ky, N Ly. A very crude estimate will be made here: since Vis, (K) N Ky N Ly,
C Ly N[0, 1)", it suffices to show that

HITT(Ly N[0, 1)") < 85, (2.19)

To prove (2.19), we split the lines in &£ into the natural subsets & o 5 associated to indi-
vidual balls Q € @: we write £ € £¢ p if the badness condition (2.9) of £ is satisfied
for Q. The sets £ need not be disjoint, but this is irrelevant: since |@| < §7°7, it
suffices to prove that

t%go—r([o’ D" N LQ,b) < 81/8+sn’

where Lo j is the union of the lines in £¢ 5, and then sum the estimates to arrive at
(2.19). Moreover, since ¢ < 1/(8n), the preceding displayed estimate will clearly follow
from

HL T (we(Lo ) < 8Y%. (2.20)

Assume that (2.20) fails, and write H := Hg . := m.(Lg ) C [-n,n] (all the bad lines
of course need to meet [0, 1), and we identify the plane e* with R”~! in what follows).
Let v be a Borel probability measure supported on H satisfying

V(B(x,r)) < §7 V41T, (2.21)

For this, use Frostman’s lemma [13, Theorem 8.8], and in particular the sharp version
that the “best multiplicative constant” of v is comparable to the inverse of the Hausdorff
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content of H. The same estimate alternatively follows from Lemma A.1, applying the
lower bound (A.3) at unit scale, and then re-normalising so that a probability measure is
obtained.

Recalling from (2.3) thats >n —1/2 +t,wehaven — 1 —7 > 1/24+2(n—1) —s,
and consequently

Lyaa-n-s(v) S 8714 (2.22)
by (2.21) (see [13, p. 109] for this standard calculation). Since every line in &£ ¢ , misses
KN Q Dspt Mo by definition, and v is supported on the m.-projection of these lines, we
have
sptitg,e Nspty = @,

where (g . := m. (o). Both sets (g . and spt v are compact, so also their n-neighbour-
hoods are disjoint for 0 < n < § small enough, and hence

0= [nocrunav= [ omeng. @@ de. .23)

Here ¢, (x) = n~®"Dy(x/n), where ¢ is any standard bump function on R”~! (smooth,
non-negative, compactly supported, with integral 1, and ¢(0) > 0). We remind the reader
here thate € S"~! \ E, so in particular e ¢ E ¢, which means that

[ @Rl ag < 5o, (.24

(This also uses the standard fact [15, (5.15)] that the Fourier transform of the projected
measure (Lo . = 7. (ig) coincides with the restriction of jZg to the subspace e*.) Now,
we estimate the right hand side of (2.23) as follows:

(2.23) >

[ scspmenz.©ic s

- ‘V/Rn—] [ _ﬁ(CSE)]ﬁ(US)/fQ\,e(S)ﬁ(é) dé“ =1 — I,.

Here C > 1 is an absolute constant to be chosen momentarily. We plan to estimate [
from below and I, from above, and show that in fact /; > I, (for § > 0 small enough).
To estimate I, from above, note that ¢ is a bounded Lipschitz function with ¢(0) = 1, so

1 —$(C88)| = [9(0) — (C88)| < min{|8E|. 1} < §/4g[/*.
Consequently, using also Cauchy—Schwarz, (2.22) and (2.24),

IS 5“4[ 61V 4 g (©)] 1D(8)| dE
Rnfl
1/2
581/4(/ |lfQ\,e(§)|2|§|s_(n_l)d§)
Rn—l

1/2
([ popio/znn--en gg)

R72—1

< 81/4 .8—8(}14—1)/2 . 8—1/8 < 81/16, (225)
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since (n + 1)/2 = (n + 1)/(100n) < 1/16. Finally, to obtain a lower bound for 7;, we
use Parseval (again):

L= / [0es * on * oo (F)] dv(r).

Now recall that v was a probability measure supported on the set H = 7.(Lg ). By
definition, if r € H, then £ := n 1{r} € £op, which in particular means that £(28)
meets > 8§26~ cubes Qs € @5(Q). All of these cubes are heavy, and contained in Q, and
hence satisfy 1o (Qs) = u(Qs) > §"¢ (recalling (2.8)). It follows that

/,LQ(K(Z(S)) > 828—1 X 8n+8 > 838+(n_1),

which easily implies that
Vs * @ ¥ o e(r) 2 87

if C > 1 is chosen sufficiently large, and 1 > 0 sufficiently small (note that n > 0 can be
taken arbitrarily small, even in a manner depending on §). Consequently, I; > §3¢, using
the fact that v is a probability measure. Since 3¢ = 3/(25n) < 3/50 < 1/16 for n > 2,
we see from this estimate and (2.25) that I; — I, > 0 for all § > 0 sufficiently small. This
contradicts (2.23) and concludes the proof of (2.19) — and also completes the proof of
Theorem 1.2.

Appendix A. Frostman’s lemma with lower bounds

Frostman’s lemma [13, Theorem 8.8] states that if £ C R” is a compact set with #3_(E)
> 0, then K supports a measure p satisfying the growth bound w(B(x,r)) <, r®, and
with total variation ||| > H#3,(E). One might hope to improve the lower bound to
w(B(x,r)) 2 H3 (B(x,r) N E) for all x € E and r > 0, but I do not know if this is
true (and it frankly sounds a little too optimistic). The next lemma gives a weaker substi-
tute, which turns out to be good enough for the application in this paper:

Lemma A.1. Let 0 < s < n, and let E C [0, 1)" be compact. Then there exists a Radon
measure [ supported on E and satisfying

u(B(x,r)) <pr®, xeR™ r>0, (A.2)

and
p(Q) Zn min {H5o(E N Q). 101} (A3)
for all dyadic cubes Q C [0, 1)", where | - | stands for Lebesgue measure.

Proof. We may assume that #35 (E) > 0, since otherwise the measure u = 0 works.
We follow the standard proof of Frostman’s lemma with minor modifications to achieve
the lower bound (A.3). Let § € 27N, and let D be the collection of dyadic cubes of
side-length £(Q) = § which are contained in [0, 1)". Also, let Ds(E) := {Q € Ds :
0 N E # 0}, and write

Es:= |J ocl.n"

QeDs(E)
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We first construct a measure 5 € M(Es) satisfying (A.2)—(A.3) for scales § < r < 1.
For Q € Ds, start by finding a measure ug € M(Es) such that

tQ)* if Q € Ds(E),

0 R
Hs(Q) = {0 if O € D5 \ Ds(E).

To be more precise, for Q € Dg, let /Lg |o be a weighted copy of Lebesgue measure on Q,
with weights determined by the equation above.
Assume that ,ufg has already been defined for some k > 0, and consider a cube Q in
Dok+15. If
5 (Q) = £(Q) = 218y,

set

ws o = uilo.
If, on the other hand,

15 (Q) > UQ)". (A4)
define Mlg *1|o as follows. Consider the (possibly empty) family § := ﬁg of maximal
dyadic subcubes Q' C Q of side-length § < £(Q’) < £(Q) such that

ko <10'1/2.

The cubes in § are disjoint, by maximality, and their union G := | J § satisfies

! K S
THOEDYS %5%5 (g) :
Q’c§g

Then, write B := B’é = 0\ G C Q, and define

LQ)’
WG o= pfle and  pkt|p ::T’S‘(Q).MI‘HB' (A.5)
Note that “0)" «0)
psth0) < + - uf(B) < €(Q)". (A.6)

2 2-45(0)
Moreover, since ,u’g(G) <L(0)/2 < u’g(Q)/Z by (A.4), we have M’g(B) > ,u’g(Q)/z,

and consequently

Uy 2-m5(B) _ Q)
4 uk) T 4

We have now defined /ng *1 on one cube Q € D,k+15, and we repeat the same procedure

on each of them. It is worth pointing out that

1itQ) =

(A7)

kA < pka), Acr" k>o, (A.8)

since £(Q)*/(2- 1k (Q)) < 1/21in (A.5) (again by (A.4)).
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Let N > 0 be the index such that 2V 8§ = 1, and set ps := /Lév. Then us ([0, 1)") <1
by (A.6) with @ = [0, 1)", and since ug(R” \ [0, 1)") = 0, we also have

ps(Q) < £(Q)° forall Q dyadic with £(Q) > 1. (A.9)

We next plan to check the bounds (A.2)—(A.3) for the measure pg. We start by verify-
ing a version of (A.2) for dyadic cubes: fix a cube Q € D, forsome k > 0.If k > N,
justrecall (A.9). If k < N, the construction ensures that /L]g(Q) < {£(Q)*, and then (A.8)
implies that us(Q) < /L]g(Q) < £(Q)*. So, we conclude that us(Q) < £(Q)* for all
dyadic cubes of side-length > §. Since every ball B(x, r), with x € R” and r > §, can be
covered by m <, 1 such dyadic cubes Q1, ..., O, of side-lengths £(Q;) € [r, 2r), we
infer that
w(B(x,r)) <, r’, xeR" r>3. (A.10)

Next, we verify the lower bound (A.3) for the measure 15, namely
1s(Q) = ps(Q) = anmin{HG(EN Q). |01}, Q€ Dy, 0=k <ko. (A.lD)
The constant a, > 0 will only depend on 7. So, fix
0 € Dyrys forsome 0 < ko < N.
We start by observing that
150(Q) = by - HEL(E N Q), (A.12)

where b,, > 0 is another constant, to be determined in a moment. This follows from the
fact that every point x € Es N Q is contained in some maximal cube Q, C Q of side-
length § < £(Qx) < £(Q) such that p,]go(Qx) > £(Qx)° /4. Indeed, we may take Q.
to be the largest cube satisfying x € Q, C Q, where alternative (A.4) occurred up to
step k¢ (or simply Q, € Dj if (A.4) does not occur before and including step k¢ on any
cube containing x, because then u’g(Qx) = ug(Qx) = §° = £(Q%)®). Then, denoting by
0 <k < ko the index such that Q € D,xg, we see from (A.7) and the maximality of Q
that
150 (Qx) = 1 (Qx) = £(Qx)* /4.

Now, if m(Q) is the collection of these maximal, hence disjoint, cubes O C Q, we find
that
w0 = > w0 =L DT Q) za HEL(EN Q)
Q’em(Q) Qem(Q)
as claimed in (A.12), with constant b, :=  diam([0, 1]")™".

We now claim that (A.11) holds for some constant a,, = b,. To this end, assume
that (A.11) fails with constant b,. By (A.12) and (A.8), we certainly have MIS‘(Q) >
by - min {F#5 (E N Q),|Q|} for 0 < k < ko, so the failure of (A.11) means that there
exists a first index kg < k1 < N such that

1EN(Q) < by -min{J(E N Q), 101} < by - 10] < |0]/2.



T. Orponen 1982

Since k1 is the first index with this property, we conclude that the unique cube Q; in
D,k g containing Q must satisfy alternative (A.4) with k = ky — 1 (otherwise ,ulgl Q)=

w571 (Q)). Then

00"
2-157(00)

using the fact that ,ulg‘*l(Ql) <n £(Q1)* (that is, even though Mlg‘*l(Ql) > £(01)*
by alternative (A.4), the converse inequality still “almost” holds, since it holds for the
children of Q).

Now, for all indices k; < k < N, the cube Q will satisfy

15(0) < 15t (Q) < 101/2,

and hence will be contained in the “good set” G of step k (associated with the particular
cube of that step which happens to contain Q). Consequently, recalling (A.5), the value
k — /L]g(Q) remains constant for k; < k < N, and (A.11) now follows from (A.13).
The rest of the proof is carried out as in the usual proof of Frostman’s lemma. After
passing to a subsequence, the measures g converge to a non-negative Radon measure
supported on E (noting that ys is supported on Eg). The upper and lower bounds in
(A.2)—(A.3) follow from (A.10) and (A.11), and standard results on weak convergence
[13, Theorem 1.24]. This completes the proof. ]

1) > uS1TNQ) 2w by -min{HL(Q N E), O}, (A13)
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