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Abstract. In a real Hilbert space H , in order to develop fast optimization methods, we analyze the
asymptotic behavior, as time t tends to infinity, of a large class of autonomous dissipative inertial
continuous dynamics. The function f WH !R to be minimized (not necessarily convex) enters the
dynamic via its gradient, which is assumed to be Lipschitz continuous on bounded subsets of H .
This results in autonomous dynamical systems with nonlinear damping and nonlinear driving force.
We first consider the case where the damping term @�. Px.t// acts as closed-loop control of the
velocity. The damping potential � W H ! RC is a convex continuous function which reaches its
minimum at the origin. We show the existence and uniqueness of a global solution to the associated
Cauchy problem. We analyze the asymptotic convergence and the convergence rates of the traject-
ories generated by this system. To do this, we use techniques from optimization, control theory,
and PDEs: Lyapunov analysis based on the decreasing property of an energy-like function, quasi-
gradient and Kurdyka–Łojasiewicz theory, and monotone operator theory for wave-like equations.
Convergence rates are obtained based on the geometric properties of the data f and �. We put
forward minimal hypotheses on the damping potential � guaranteeing the convergence of trajector-
ies, thus showing the dividing line between strong and weak damping. When f is strongly convex,
we give general conditions on the damping potential � which provide exponential convergence
rates. Then, we extend the results to the case where additional Hessian-driven damping enters the
dynamic, which reduces the oscillations. Finally, we consider a new inertial system where damping
jointly involves the velocity Px.t/ and the gradient rf .x.t//. This study naturally leads to similar
results for proximal-gradient algorithms obtained by temporal discretization; some of them are stud-
ied in the article. In addition to its original results, this work surveys numerous works devoted to the
interaction between damped inertial continuous dynamics and numerical optimization algorithms,
with an emphasis on autonomous systems, adaptive procedures, and convergence rates.
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1. Introduction

Our work is part of the active research stream which studies the close link between con-
tinuous dissipative dynamical systems and optimization algorithms obtained by temporal
discretization. In this context, second-order evolution equations provide a natural and
intuitive way to speed up algorithms. Then, the optimization properties come from the
damping term. It is the skill of the mathematician to design this term to obtain rapidly
converging trajectories and algorithms (ideally, to obtain optimal convergence rates).

More precisely, we will consider the following system (ADIGE) which covers a large
number of situations. Let H be a real Hilbert space endowed with a scalar product h�; �i
and norm k � k. Let f W H ! R be a differentiable function (not necessarily convex)
whose gradient rf W H ! H is Lipschitz continuous on bounded subsets of H , and
such that infH f > �1 (when considering the Hessian of f , we will assume that f is
twice differentiable). Our objective is to study from the optimization point of view the
Autonomous Damped Inertial Gradient Equation

.ADIGE/ Rx.t/C G
�
Px.t/;rf .x.t//;r2f .x.t//

�
Crf .x.t// D 0;

where the damping term G . Px.t/; rf .x.t//; r2f .x.t/// acts as a closed-loop control.
Under suitable assumptions, this term will induce dissipative effects, which tend to sta-
bilize asymptotically (i.e. as t !C1) the trajectories to critical points of f (minimizers
in the case where f is convex). We will use the generic terminology damped inertial
continuous dynamics to designate second-order evolution systems which have a strict
Lyapunov function. To be specific we will refer to (ADIGE) or to some of its particu-
lar cases. From this, we can distinguish two distinct classes of dynamics and algorithms,
depending on whether the damping term involves coefficients which are given a priori
as functions of time (open-loop damping, nonautonomous dynamic), or is a feedback
of the current state of the system (closed-loop damping, adaptive methods, autonomous
dynamic). We will use these terms describing the two classes of dynamics indiscrimin-
ately, but to be precise they correspond to the cases of autonomous and nonautonomous
dynamics respectively. Indeed, one of our objectives is to understand if the closed-loop
damping can achieve (and possibly improve) the fast convergence properties of the accel-
erated gradient method of Nesterov. Recall that, in convex optimization, the accelerated
gradient method of Nesterov (which is associated with a nonautonomous damped inertial
dynamic) provides convergence rate of order 1=t2, which is optimal for first-order meth-
ods (involving only evaluations of rf at iterates). This justifies the importance of inertial
dynamics for developing fast optimization methods (recall that the continuous steepest
descent, which is a first-order evolution equation, only guarantees the convergence rate of
1=t for general convex functions). Closely related questions concern the impact of geo-
metric properties of data (damping term, objective function) on the convergence rates of
trajectories and iterations. This is a wide subject which involves continuous optimization,
as well as the study of the stabilization of oscillating systems in mechanics and physics.
Due to the highly nonlinear characteristics of (ADIGE) (nonlinearity occurs both in the
damping term and in the gradient of f ), our convergence analysis will mainly rely on
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the combination of the quasi-gradient approach for inertial systems initiated by Bégout–
Bolte–Jendoubi [44] with the theory of Kurdyka–Łojasiewicz. The price to pay is that
some of the results are only valid in finite-dimensional Hilbert spaces. It should be noted
that the relative simplicity of the functional framework (single function space, differen-
tiable objective function) does not allow direct application to the corresponding PDEs.
Our objective is mainly the study of optimization problems, but the Lyapunov analysis
developed in the article can be a very useful guide for its extension to the PDE frame-
work, as was done in [9, 40, 56].

1.1. Presentation of the results

For each of the following systems, we will prove existence and uniqueness of the solution
of the Cauchy problem, and study its asymptotic behavior.

1.1.1. ADIGE-V. Our study mainly concerns the differential inclusion

(ADIGE-V) 0 2 Rx.t/C @�. Px.t//Crf .x.t//; (1)

where � W H ! R is a convex continuous function which achieves its minimum at the
origin, and the operator @� W H ! 2H is its convex subdifferential. The damping term G

depends only on the velocity, which is reflected by the suffix V. This model encompasses
several classic situations:

� The case �.u/ D 
2
kuk2 corresponds to the Heavy Ball with Friction method

.HBF/ Rx.t/C  Px.t/Crf .x.t// D 0; (2)

introduced by B. Polyak [85, 86] and further studied by Attouch–Goudou–Redont [28]
(exploration of local minima), Alvarez [8] (convergence in the convex case), Haraux–
Jendoubi [70, 71] (convergence in the analytic case), Bégout–Bolte–Jendoubi [44] (con-
vergence based on the Kurdyka–Łojasiewicz property), to cite part of the rich literature
devoted to this subject.

� The case �.u/ D rkuk corresponds to the dry friction effect. Then (ADIGE-V) is a
differential inclusion (because � is nondifferentiable), which, when Px.t/ is not equal to
zero, reads

Rx.t/C r
Px.t/

k Px.t/k
C rf .x.t// D 0:

The importance of this case in optimization comes from the finite time stabilization prop-
erty of trajectories, which is satisfied generically with respect to initial data. The rigorous
mathematical treatment of this case was given by Adly–Attouch–Cabot [5] and Amann–
Diaz [12]; see Adly–Attouch [2–4] for recent developments.

� Taking �.u/ D 1
p
kukp with p � 1 allows one to treat these questions in a unify-

ing way. We will pay particular attention to the role played by the parameter p in the
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asymptotic convergence analysis. For p > 1 the dynamic reads Rx.t/C k Px.t/kp�2 Px.t/C
rf .x.t// D 0: We will see that the case p D 2 separates weak damping (p > 2) from
strong damping (p < 2), hence the importance of this case.

1.1.2. ADIGE-VH. We will extend the previous results to the differential inclusion

(ADIGE-VH) Rx.t/C @�. Px.t//C ˇr2f .x.t// Px.t/Crf .x.t// 3 0;

which, besides a damping potential � as above acting on the velocity, also involves geo-
metric damping driven by the Hessian of f , hence the terminology. The inertial system

.DIN/;ˇ Rx.t/C  Px.t/C ˇr2f .x.t// Px.t/Crf .x.t// D 0

was introduced in [11]. In the same spirit as (HBF), the dynamic (DIN);ˇ contains a fixed
positive viscous friction coefficient  > 0. The introduction of Hessian-driven damping
allows one to damp the transversal oscillations that might arise with (HBF), as observed
in [11] in the case of the Rosenbrock function. The need to consider geometric damping
adapted to f had already been observed by Alvarez [8] who considered the inertial system

Rx.t/C � Px.t/Crf .x.t// D 0;

where � W H ! H is a linear positive anisotropic operator (see also [47]). But still
this damping operator is fixed. For a general convex function, Hessian-driven damping
in (DIN);ˇ acts similarly, in an adaptive way. Here (DIN) stands for Dynamic Inertial
Newton system. It refers to the natural link between this dynamic and the continuous
Newton method (see Attouch–Svaiter [37]). Recent studies have been devoted to the
dynamic

Rx.t/C
˛

t
Px.t/C ˇr2f .x.t// Px.t/Crf .x.t// D 0;

which combines asymptotic vanishing damping with Hessian-driven damping. The
corresponding algorithms involve a correcting term in the Nesterov accelerated gradi-
ent method which reduces oscillatory aspects; see Attouch–Peypouquet–Redont [35],
Attouch–Chbani–Fadili–Riahi [24], and Shi–Du–Jordan–Su [89].

1.1.3. ADIGE-VGH. Finally, we will consider the new dynamical system

(ADIGE-VGH) Rx.t/C@�
�
Px.t/Cˇrf .x.t/

�
Cˇr2f .x.t// Px.t/Crf .x.t// 3 0;

where the damping term @�. Px.t/ C ˇrf .x.t// involves both the velocity vector and
the gradient of the potential function f . The parameter ˇ � 0 is attached to the geomet-
ric damping induced by the Hessian. As previously, � is a damping potential function.
Assuming that f is convex and � is a sharp function at the origin, that is, �.u/ � rkuk
for some r > 0, we will show that, for each trajectory generated by (ADIGE-VGH),

(i) x.�/ converges weakly as t !C1, and its limit belongs to argminH f ;

(ii) Px.t/ and rf .x.t// converge strongly to zero as t !C1;

(iii) after a finite time, x.�/ follows the steepest descent dynamic.
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1.2. Contents

The paper is organized in accordance with the above presentation. In Section 2, we recall
some classical facts concerning the Heavy Ball with Friction method, the Su–Boyd–
Candès dynamic approach to the Nesterov method, Hessian-driven damping, and dry
friction. Then, we successively examine each of the cases considered above: Sections 3–7
are devoted to the closed-loop control of the velocity, which is the main part of our study.
We show the existence and uniqueness of a global solution for the Cauchy problem, the
exponential convergence rate for f strongly convex, the effect of weak damping, and
finally analyze the convergence under the Kurdyka–Łojasiewicz (KŁ) property. Section 8
concerns some related algorithmic results. Section 9 is devoted to closed-loop damping
with Hessian-driven damping. Section 10 is devoted to closed-loop damping involving
the velocity and the gradient. We conclude by mentioning several lines of research for the
future.

2. Classical facts

Let us recall some classical facts which will serve as comparison tools.

2.1. (HBF) dynamic system

The Heavy Ball with Friction system

.HBF/r Rx.t/C r Px.t/Crf .x.t// D 0

was introduced by B. Polyak [85,86]. It involves a fixed viscous friction coefficient r > 0.
Assuming that f is a convex function such that argminH f ¤ ;, we know, by Alvarez’s
theorem [8], that each trajectory of .HBF/r converges weakly, and its limit belongs to
argminH f . In addition, we have the following convergence rates, the proof of which
(see [19]) is based on the decrease property of the Lyapunov function

E.t/ WD
1

r2
.f .x.t// �minH f /C

1

2

x.t/ � x� C 1

r
Px.t/

2;
where x� 2 argminH f .

Theorem 1. Let f W H ! R be a convex function of class C1 such that argmin f ¤ ;,
and let r be a positive parameter. Let x.�/ W Œ0;C1Œ! H be a solution of .HBF/r . Set
x.0/ D x0 and Px.0/ D x1. Then

(i)
Z C1
0

.f .x.t// �minH f / dt < C1,
Z C1
0

tk Px.t/k2 dt < C1;

(ii) f .x.t// �minH f �
C.x0; x1/

t
, k Px.t/k �

p
2C.x0; x1/
p
t

, where

C.x0; x1/ DW
3

2r
.f .x0/ �minH f /C r dist.x0; argminf /2 C

5

4r
kx1k

2
I

(iii) f .x.t// �minH f D o

�
1

t

�
and k Px.t/k D o

�
1
p
t

�
as t !C1.
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Let us now consider the case of a strongly convex function. Recall that a function
f W H ! R is �-strongly convex for some � > 0 if f � �

2
k � k2 is convex. We have

the exponential convergence rate, whose proof relies on the decrease properties of the
Lyapunov function

E.t/ WD f .x.t// �minH f C 1
2
k
p
� .x.t/ � x�/C Px.t/k2;

where x� is the unique minimizer of f .

Theorem 2. Suppose that f W H ! R is a function of class C1 which is �-strongly
convex for some � > 0. Let x.�/ W Œ0;C1Œ! H be a solution of

Rx.t/C 2
p
� Px.t/Crf .x.t// D 0: (3)

Set x.0/ D x0 and Px.0/ D x1. Then for all t � 0,

f .x.t// �minH f � Ce�
p
�t ;

where C WD f .x0/ �minH f C � dist.x0; S/2 C kx1k2:

A recent account on the best tuning of the damping coefficient can be found in Aujol–
Dossal–Rondepierre [39]. The above results show the important role in convergence rates
played by the geometric properties of the data. Apart from the convex case, the first
convergence result for (HBF) was obtained by Haraux–Jendoubi [70] in the case where
f W Rn ! R is a real-analytic function. They have shown the central role played by
Łojasiewicz’s inequality (see also [60]). Then, on the basis of Kurdyka’s work in real
algebraic geometry, Łojasiewicz’s inequality was extended in [45] by Bolte–Daniilidis–
Ley–Mazet to a large class of tame functions, possibly nonsmooth. This is the Kurdyka–
Łojasiewicz inequality, (KŁ) for short. The convergence of first and second-order prox-
imal-gradient dynamical systems in the context of the (KŁ) property was obtained by
Boţ–Csetnek [48] and Boţ–Csetnek–László [50]. The (KŁ) property will be a key tool for
obtaining convergence rates based on the geometric properties of the data. Note that this
theory only works in the finite-dimensional setting1 (the infinite-dimensional setting is a
difficult topic which is the subject of current research), and only for autonomous systems.
This explains why working with autonomous systems is important: it allows us to use the
powerful (KŁ) theory.

2.2. Su–Boyd–Candès dynamic approach to Nesterov accelerated gradient method

The nonautonomous system

.AVD/˛ Rx.t/C
˛

t
Px.t/Crf .x.t// D 0

1In the field of PDEs, the Łojasiewicz–Simon theory [62] makes it possible to deal with certain
classes of problems, such as semi-linear equations.



Optimization via inertial dynamics with closed-loop damping 7

will serve as a reference to compare our results with the open-loop damping approach.
It was introduced in the context of convex optimization by Su–Boyd–Candès [90]. As a
specific feature, the viscous damping coefficient ˛=t vanishes (tends to zero) as t goes
to infinity, hence the terminology “Asymptotic Vanishing Damping”. This contrasts with
(HBF) where the viscous friction coefficient is fixed, which precludes obtaining fast con-
vergence of the values for general convex functions. Recall the main results concerning
the asymptotic behavior of the trajectories generated by (AVD)˛ .

� For ˛ � 3, for each trajectory x.�/ of (AVD)˛ , f .x.t// � infH f D O.1=t2/ as
t !C1.

� For ˛ > 3, each trajectory converges weakly to a minimizer of f [25]. In addition, it is
shown in [33] and [78] that f .x.t// � infH f D o.1=t2/ as t !C1.

� For ˛ � 3, we have f .x.t// � infH f D O.t�2˛=3/ [13, 26].

� ˛ D 3 is a critical value.2 It corresponds to the historical case studied by Nesterov
[80, 81].

The implicit time discretization of (AVD)˛ provides an inertial proximal algorithm that
enjoys the same properties as the continuous dynamics. Replacing the proximal step by
a gradient step gives the following Nesterov accelerated gradient method (illustrated in
Figure 1): 8<:yk D xk C .1 � ˛=k/.xk � xk�1/;xkC1 D yk � srf .yk/;

which still enjoys the same properties when the step size s is less than the inverse of the
Lipschitz constant of rf . Based on the dynamic approach above, many recent studies
have been devoted to the convergence properties of the sequences .xk/ and .yk/, which
has led to a better understanding and improvement of Nesterov’s accelerated gradient
algorithm [13, 20, 24–26, 33, 59, 90], and of the Ravine algorithm [64, 87].

yk D xk C .1 � ˛=k/.xk � xk�1/�

xk�

xk�1�

xkC1 D yk � srf .yk/

argminf

Fig. 1. Nesterov accelerated gradient method.

2The convergence of the trajectories is an open question in this case.
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2.2.1. Optimal convergence rates. In the above results the convergence rates are optimal,
that is, they can be reached, or approached arbitrarily close, as shown by the following
example from [25]. Let us show that O.1=t2/ is the worst possible case for the rate of
convergence of the values for (AVD)˛ trajectories when ˛ � 3. It is attained as a limit
in the following example. Take H D R and f .x/ D cjxj , where c and  are positive
parameters. We look for nonnegative solutions of .AVD/¸ of the form x.t/ D 1=t� with
� > 0. This means that the trajectory is not oscillating, it is completely damped. Let us
determine the values of c,  and � that provide such solutions. We have

Rx.t/C
˛

t
Px.t/ D �.� C 1 � ˛/

1

t�C2
; rf .x.t// D c jx.t/j�2x.t/ D c

1

t�.�1/
:

Thus, x.t/ D 1=t� is solution of .AVD/¸ if, and only if,

(i) � C 2 D �. � 1/, which is equivalent to  > 2 and � D 2
�2

; and

(ii) c D �.˛ � � � 1/, which is equivalent to ˛ > 
�2

and c D 2
.�2/

.˛ � 
�2

/.

We have minf D 0 and f .x.t// D 2
.�2/

.˛ � 
�2

/ 1

t2=.�2/
:

The speed of convergence of f .x.t// to 0 depends on the parameter  . The exponent
2
�2

is greater than 2, and tends to 2 when  tends to C1. This limiting situation is
obtained by taking a function f which becomes very flat around the set of its minimizers.
Therefore, without any other geometric assumptions on f , we cannot expect a conver-
gence rate better than O.1=t2/. This means that it is not possible to obtain a rate O.1=t r /

with r > 2, which holds for all convex functions. Hence, when ˛ � 3, O.1=t2/ is sharp.
This does not contradict the rate o.t�2/ obtained when ˛ > 3.

2.3. Hessian-driven damping

The inertial system

(DIN);ˇ Rx.t/C  Px.t/C ˇr2f .x.t// Px.t/Crf .x.t// D 0

was introduced in [11]. In line with (HBF), the viscous friction coefficient  is a fixed
positive real number. The introduction of Hessian-driven damping makes it possible to
neutralize the oscillations likely to occur with (HBF), a key property for numerical optim-
ization purposes.

To accelerate this system, several studies considered the case where the viscous damp-
ing is vanishing. As a model example, which is based on the Su–Boyd–Candès continuous
model for the Nesterov accelerated gradient method, we have

(DIN-AVD)˛;ˇ Rx.t/C
˛

t
Px.t/C ˇr2f .x.t// Px.t/Crf .x.t// D 0: (4)

In connection with this system, let us cite Attouch–Peypouquet–Redont [35], Attouch–
Chbani–Fadili–Riahi [24], Boţ–Csetnek–László [52], Castera–Bolte–Févotte–Pauwels
[58], Kim [76], Lin–Jordan [79], Shi–Du–Jordan–Su [89]. While preserving the conver-
gence properties of (AVD)˛ , the above system provides fast convergence to zero of the
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Fig. 2. Evolution of the objective (left) and trajectories (right) for .AVD/˛ (˛ D 3:1/ and
(DIN-AVD)˛;ˇ (˛ D 3:1; ˇ D 1) on an ill-conditioned quadratic problem in R2.

gradients, namely
R1
t0
t2krf .x.t//k2 dt < C1 for ˛ � 3 and ˇ > 0, and reduces the

oscillatory aspects.
To illustrate the remarkable effect of Hessian-driven damping, let us compare the two

dynamics .AVD/˛ and (DIN-AVD)˛;ˇ on a simple ill-conditioned quadratic minimization
problem. In the following example of [24], the trajectories can be computed in closed
form. Take H D R2 and f .x1; x2/ D 1

2
.x21 C 1000x

2
2/. We take parameters ˛ D 3:1,

ˇ D 1, to obey the condition ˛ > 3. Starting with the initial conditions .x1.1/; x2.1// D
.1; 1/, . Px1.1/; Px2.1// D .0; 0/, we have the trajectories displayed in Figure 2. We observe
that the wild oscillations of .AVD/˛ are neutralized by the presence of Hessian-driven
damping in (DIN-AVD)˛;ˇ .

At first glance, the presence of the Hessian may seem to cause numerical diffi-
culties. However, this is not the case because the Hessian intervenes in the above ODE
in the form r2f .x.t// Px.t/, which is nothing other than the derivative with respect to
time of rf .x.t//. Thus, the temporal discretization of this dynamic provides first-order
algorithms which, by comparison with the accelerated gradient method of Nesterov, con-
tain a correction term which is equal to the difference of the gradients at two consecutive
steps. The following closely related inertial system was recently introduced by Alecsa–
László–Pinta [7]:

Rx.t/C
˛

t
Px.t/Crf .x.t/C ˇ Px.t// D 0:

The link with (DIN-AVD)˛;ˇ results from Taylor expansion: as t ! C1 we have
Px.t/! 0, and so rf .x.t/C ˇ Px.t// � rf .x.t//C ˇr2f .x.t// Px.t/.

2.3.1. Hessian-driven damping and unilateral mechanics. Another motivation for the
study of (DIN);ˇ comes from mechanics, and modeling of damped shocks. In [31],
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Attouch–Maingé–Redont consider the inertial system with Hessian-driven damping

Rx.t/C  Px.t/C ˇr2f .x.t// Px.t/Crf .x.t//Crg.x.t// D 0; (5)

where g WH !R is a smooth real-valued function. An interesting property of this system
is that, after the introduction of an auxiliary variable y, it can be equivalently written
as a first-order system involving only the time derivatives Px.t/, Py.t/ and the gradient
terms rf .x.t//, rg.x.t//. More precisely, the system (5) is equivalent to the first-order
differential equation ´

Px.t/C ˇrf .x.t//C ax.t/C by.t/ D 0;

Py.t/ � ˇrg.x.t//C ax.t/C by.t/ D 0;
(6)

where a and b are real numbers such that aC b D  and ˇb D 1. Note that (6) is different
from the classical Hamiltonian formulation, which would still involve the Hessian of f .
In contrast, the formulation (6) uses only first-order information on the function f (no
occurrence of the Hessian of f ). Replacing rf by @f in (6) allows us to extend the
analysis to the case of a convex lower semicontinuous function f WH !R[ ¹C1º, and
so to introduce constraints in the model. When f D ıK is the indicator function of a closed
convex set K � H , the subdifferential operator @f takes account of the contact forces,
whilerg takes account of the driving forces. In this setting, by playing with the geometric
damping parameter ˇ, one can describe nonelastic shock laws with restitution coefficient
(for more details we refer to [31] and references therein). Combination of dry friction
(�.u/ D rkuk) with Hessian damping has been considered by Adly–Attouch [3, 4].

2.4. Inertial dynamics with dry friction

Although dry friction (also called Coulomb friction) plays a fundamental role in mech-
anics, its use in optimization has only recently been analyzed. Due to the nonsmooth
character of the associated damping function �.u/ D rkuk, the dynamics is a differential
inclusion, which, when the speed is not equal to zero, is given by

Rx.t/C r
Px.t/

k Px.t/k
C rf .x.t// D 0:

In this case, the energy estimate gives
R C1
0
k Px.t/k dt < C1: Therefore, the trajectory

has finite length, and it converges strongly. The limit x1 of the trajectory x.�/ satisfies

krf .x1/k � r:

Thus, x1 is an “approximate” critical point of f . In practice, for optimization purposes,
we choose a small r > 0. This amounts to solving the optimization problem minH f

with the variational principle of Ekeland, instead of the Fermat rule. The importance of
this case in optimization comes from the finite time stabilization property of trajector-
ies, which is satisfied generically with respect to initial data. The rigorous mathemat-
ical treatment of this case has been undertaken by Adly–Attouch–Cabot [5]; see Adly–
Attouch [2–4] for recent developments. Corresponding PDE results have been obtained
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by Amann–Diaz [12] for the nonlinear wave equation, and by Carles–Gallo [57] for the
nonlinear Schrödinger equation.

2.5. Closed-loop versus open-loop damping

In the strongly convex case, the autonomous system (HBF) provides an exponential rate
of convergence. On the other hand, the (AVD)˛ system provides a convergence rate of
order 1=t˛ . Thus, in this case, closed-loop damping behaves better than open-loop damp-
ing. For general convex functions (i.e. in the worst case), we have the opposite situation:
(AVD)˛ provides a convergence rate 1=t2, while (HBF) gives only 1=t . In this paper,
we will study the impact of the choice of the damping potential on the rate of con-
vergence. A related question is: using autonomous systems, can we obtain for general
convex functions a convergence rate of order 1=t2, i.e. as good as the Nesterov acceler-
ated gradient method? As we will see, to answer these questions, we will have to study
different types of closed-loop damping, and rely on the geometric properties of the data.
These questions fall within the framework of an active research current: Apidopoulos–
Aujol–Dossal–Rondepierre [14] (geometrical properties of the data), Iutzeler–Hendricx
[75] (online acceleration), Lin–Jordan [79] (control perspective on high-order optimiz-
ation), Poon–Liang [88] (geometry of first-order methods and adaptive acceleration), to
cite only some recent works.

3. Damping via closed-loop velocity control: existence and uniqueness

In this section, we will first introduce the notion of damping potential, and then prove the
existence and uniqueness of the solution of the corresponding Cauchy problem.

3.1. Damping potential

We consider the differential inclusion

(ADIGE-V) 0 2 Rx.t/C @�. Px.t//Crf .x.t//;

where � is a convex damping potential, as defined below.

Definition 1. A function � W H ! RC is a damping potential if

(i) � is a nonnegative convex continuous function;

(ii) �.0/ D 0 D minH �;

(iii) the minimal section of @� is bounded on bounded sets, that is, for any R > 0,

sup
kuk�R

k.@�/0.u/k < C1:

In the above, .@�/0.u/ is the element of minimal norm of the closed convex nonempty
set @�.u/ [53, Proposition 2.6]. Note that when H is finite-dimensional, property (iii) is
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automatically satisfied. Indeed, in this case, @� is bounded on bounded sets [43, Proposi-
tion 16.17].

The concept of damping potential is flexible, and allows one to cover various situ-
ations. For example,

�1.u/ D


2
kuk2 C rkuk; �2.u/ D max

²


2
kuk2; rkuk

³
are damping potentials which combine dry friction with viscous damping [3].

3.2. Existence and uniqueness results

In this section, we study the existence and uniqueness of the solution of the Cauchy prob-
lem associated with (ADIGE-V), where � is a convex damping potential. No convexity
assumption is made on the function f , which is supposed to be differentiable. Since we
work with autonomous (dissipative) systems, we can take an arbitrary initial time t0. As
is common, we take t0 D 0, and hence work on the time interval Œ0;C1Œ.

Let us specify the notion of strong solution.

Definition 2. The trajectory x W Œ0;C1Œ! H is said to be a strong global solution of
(ADIGE-V) if

(i) x 2 C1.Œ0;C1ŒIH /;

(ii) Px 2 Lip.0; T IH /, Rx 2 L1.0; T IH / for all T > 0;

(iii) for almost all t > 0, 0 2 Rx.t/C @�. Px.t//Crf .x.t//:

Note that since Px 2 Lip.0; T IH /, it is absolutely continuous on bounded time inter-
vals, so its distribution derivative coincides with its derivative almost everywhere (which
exists). Thus, the acceleration Rx belongs to L1.0; T IH / for all T > 0, but it is not neces-
sarily continuous. See [53, Appendix] for further details on vector-valued Lebesgue and
Sobolev spaces.

Let us prove the following existence and uniqueness result for the associated Cauchy
problem.

Theorem 3. Let f W H ! R be a differentiable function whose gradient is Lipschitz
continuous on bounded subsets of H , and such that infH f > �1. Let � W H ! RC
be a damping potential .see Definition 1/. Then, for any x0; x1 2 H , there exists a
unique strong global solution x W Œ0;C1Œ ! H of (ADIGE-V) such that x.0/ D x0
and Px.0/ D x1, that is, ´

0 2 Rx.t/C @�. Px.t//Crf .x.t//;

x.0/ D x0; Px.0/ D x1:

Proof. We first consider the case whererf is Lipschitz continuous over the whole space,
and then the case where it is Lipschitz continuous only on bounded sets. In both cases, the
idea is to mix the existence results for ODEs which are based on the Cauchy–Lipschitz
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theorem with those based on the theory of maximally monotone operators. We treat the
two cases independently because the proof is much simpler in the first case.

Case (a): rf is Lipschitz continuous on the whole space. The Hamiltonian formula-
tion of (ADIGE-V) gives the equivalent first-order differential inclusion in the product
space H �H :

0 2 Pz.t/C @ˆ.z.t//C F.z.t//; (7)

where z.t/ D .x.t/; Px.t// 2 H �H , and

� ˆ W H �H ! R is the convex function defined by ˆ.x; u/ D �.u/;

� F W H �H ! H �H is defined by F.x; u/ D .�u;rf .x//.

Since rf is Lipschitz continuous on the whole space H , we immediately see that F
is a Lipschitz continuous mapping on H �H . So, we can apply a result on evolution
equations governed by Lipschitz perturbations of convex subdifferentials [53, Propos-
ition 3.12] to conclude that (7) has a unique strong global solution with initial data
z.0/ D .x0; x1/.

Case (b): rf is Lipschitz continuous on bounded sets. The major difficulty in
(ADIGE-V) is the presence of the term @�. Px.t//, which involves a possibly nonsmooth
operator @�. A natural idea is to regularize this operator, and thus obtain a classical evolu-
tion equation. To this end, we use Moreau–Yosida regularization. Let us recall some basic
facts concerning this regularization procedure. For any � > 0, the Moreau envelope of �
of index � is the function �� W H ! R defined by

��.u/ D min
�2H

²
�.�/C

1

2�
ku � �k2

³
for all u 2 H :

The function �� is convex, of class C1;1, and satisfies infH �� D infH �, argminH �� D

argminH �. One can consult [18, Section 17.2.1] and [38, 43, 53] for an in-depth study
of the properties of the Moreau envelope in a Hilbert framework. In our context, since
� WH!R is a damping potential, we can easily verify that �� is still a damping potential.
In particular, ��.0/D infH �� D 0. According to the subdifferential inequality for convex
functions, this implies that, for all u 2 H ,

hr��.u/; ui � 0: (8)

We will also use the following inequality [53, Proposition 2.6]: for any � > 0 and any
u 2 H ,

kr��.u/k � k.@�/
0.u/k: (9)

So, for each � > 0, we consider the approximate evolution equation

Rx�.t/Cr��. Px�.t//Crf .x�.t// D 0; t 2 Œ0;C1Œ: (10)

We will first prove the existence and uniqueness of a global classical solution x� of (10)
satisfying x�.0/D x0 and Px�.0/D x1. Then, we will prove that the filtered sequence .x�/
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converges uniformly as �! 0 over bounded time intervals to a solution of (ADIGE-V).
In view of the Hamiltonian formulation of (10), it is equivalent to consider the first-order
(in time) system ´

Px�.t/ � u�.t/ D 0;

Pu�.t/Cr��.u�.t//Crf .x�.t// D 0;
(11)

with Cauchy data x�.0/ D x0, u�.0/ D x1. Set

Z�.t/ D .x�.t/; u�.t// 2 H �H :

The system (11) can be written equivalently as

PZ�.t/C F�.Z�.t// D 0; Z�.0/ D .x0; x1/;

where F� W H �H ! H �H , .x; u/ 7! F�.x; u/, is defined by

F�.x; u/ D .0;r��.u//C .�u;rf .x//:

Hence F� splits as F�.x; u/ D rˆ�.x; u/CG.x; u/; where

ˆ.x; u/ D �.u/; ˆ�.x; u/ D ��.u/; G.x; u/ D .�u;rf .x//:

Therefore, it is equivalent to consider the first-order differential inclusion with Cauchy
data

PZ�.t/Crˆ�.Z�.t//CG.Z�.t// D 0; Z�.0/ D .x0; x1/: (12)

By the Lipschitz continuity of rˆ�, and the fact that G is Lipschitz continuous on
bounded sets, the sum operator rˆ� C G which governs (12) is Lipschitz continuous
on bounded sets. As a consequence, the existence of a local solution to (12) follows from
the classical Cauchy–Lipschitz theorem. To pass from a local solution to a global solu-
tion, we use a standard energy argument, and the following a priori estimate on solutions
of (10). After taking the scalar product of (10) with Px�, and using (8), we find that the
global energy

E�.t/ WD f .x�.t// � infH f C 1
2
k Px�.t/k

2 (13)

is a decreasing function of t . In view of the Cauchy data, and since f is bounded below,
this implies that, on any bounded time interval, the filtered sequences .x�/ and . Px�/ are
bounded. In view of the property (9) of Yosida approximation, and the property (iii) of
the damping potential �, this implies that

kr��.x�.t//k � k.@�/
0.x�.t//k

is also uniformly bounded for � > 0 and t bounded. By the constitutive equation (10),
this in turn implies that the filtered sequence . Rx�/ is also bounded. This implies that if a
maximal solution is defined on a finite time interval Œ0; T Œ, then the limits of x�.t/ and
Px�.t/ as t! T exist. Then, we can apply the local existence result, which gives a solution
defined on a larger interval, thus contradicting the maximality of T .
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To prove the uniform convergence of the filtered sequence .Z�/ on bounded time
intervals, we proceed in a similar way to [53, proof of Theorem 3.1] (see also Adly–
Attouch [4] in the context of damped inertial dynamics). Take T > 0, and �; � > 0.
Consider the corresponding solutions of (12) on Œ0; T �,

PZ�.t/Crˆ�.Z�.t//CG.Z�.t// D 0; Z�.0/ D .x0; x1/;

PZ�.t/Crˆ�.Z�.t//CG.Z�.t// D 0; Z�.0/ D .x0; x1/:

Subtracting the two equations above, and taking the scalar product with Z�.t/ � Z�.t/,
we obtain

1

2

d

dt
kZ�.t/ �Z�.t/k

2
C hrˆ�.Z�.t// � rˆ�.Z�.t//; Z�.t/ �Z�.t/i

C hG.Z�.t// �G.Z�.t//; Z�.t/ �Z�.t/i D 0: (14)

We now use the following ingredients:

(a) By the properties of Yosida approximation [53, Theorem 3.1], we have

hrˆ�.Z�.t// � rˆ�.Z�.t//; Z�.t/ �Z�.t/i

� �
�

4
krˆ�.Z�.t//k

2
�
�

4
krˆ�.Z�.t//k

2:

Since the filtered sequences .x�/ and . Px�/ are uniformly bounded on Œ0; T �, there exists
a constant CT such that, for all 0 � t � T ,

kZ�.t/k � CT :

From (9), and the fact that � is a damping potential (Definition 1 (ii)), we deduce that

krˆ�.Z�.t//k � sup
k�k�CT

k.@�/0.�/k DMT < C1:

Therefore

hrˆ�.Z�.t// � rˆ�.Z�.t//; Z�.t/ �Z�.t/i � �
1
4
MT .�C �/:

(b) On account of the local Lipschitz assumption on rf , the mapping G W H �H !

H �H is Lipschitz continuous on bounded sets. Using again the fact that the sequence
.Z�/ is uniformly bounded on Œ0; T �, we deduce that there exists a constant LT such that,
for all t 2 Œ0; T � and all �;� > 0,

kG.Z�.t// �G.Z�.t//k � LT kZ�.t/ �Z�.t/k:

Combining the above results, and using the Cauchy–Schwarz inequality, we deduce from
(14) that

1

2

d

dt
kZ�.t/ �Z�.t/k

2
�
1

4
MT .�C �/C LT kZ�.t/ �Z�.t/k

2:



H. Attouch, R. I. Boţ, E. R. Csetnek 16

We now integrate this differential inequality. Elementary calculus using Z�.0/ � Z�.0/
D 0 gives

kZ�.t/ �Z�.t/k
2
�
MT

4LT
.�C �/.e2LT t � 1/:

Therefore, .Z�/ is a Cauchy sequence for uniform convergence on Œ0; T �, and hence it
converges uniformly. This means that x� and Px� converge uniformly to x and Px respect-
ively. To pass to the limit in (10), let us write it as

r��. Px�.t// D ��.t/ (15)

where ��.t/ WD � Rx�.t/ � rf .x�.t//: We now rely on the variational convergence prop-
erties of Yosida approximation. Since .��/ converges increasingly to � as � # 0, the
sequence of integral functionals

‰�.�/ WD

Z T

0

��.�.t// dt

converges increasingly to ‰.�/ D
R T
0
�.�.t// dt: Therefore .‰�/ Mosco-converges to ‰

in L2.0; T IH /. According to the theorem which makes the link between the Mosco
convergence of a sequence of convex lower semicontinuous functions and the graph con-
vergence of their subdifferentials (see Attouch [15, Theorem 3.66]), we have

@‰� ! @‰

in the strong-L2.0; T IH / � weak-L2.0; T IH / topology. According to (15) we have

�� D r‰
�. Px�/:

Since Px�! Px strongly inL2.0;T IH / and �� converges weakly inL2.0;T IH / to � given
by

�.t/ D �Rx.t/ � rf .x.t//; (16)

we deduce that � 2 @‰. Px/, that is,

�.t/ 2 @�. Px.t//:

From (16), we finally conclude that x is a solution of (ADIGE-V).
The uniqueness of the solution of the Cauchy problem is obtained exactly in the same

way as in the case of the global Lipschitz assumption.

Remark 1. The above existence and uniqueness result uses as essential ingredient the fact
that the potential function f to be minimized is a differentiable function whose gradient
is locally Lipschitz continuous. The introduction of constraints into f via the indicator
function would lead to solutions involving shocks when reaching the boundary of the
constraint. In this case, existence can still be obtained in finite dimensions, but uniqueness
may not be satisfied (see Attouch–Cabot–Redont [23]).
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4. Closed-loop velocity control: preliminary convergence results

Let x W Œ0;C1Œ! H be a solution of (ADIGE-V).

4.1. Energy estimates

Define the global energy at time t as follows:

E.t/ WD f .x.t// � infH f C 1
2
k Px.t/k2: (17)

Take the scalar product of (ADIGE-V) with Px.t/. By the chain rule, we get

d

dt
E.t/C h@�. Px.t//; Px.t/i D 0: (18)

The convex subdifferential inequality and �.0/ D 0 gives, for all u 2 H ,

h@�.u/; ui � �.u/: (19)

Combining the above two inequalites, we get

d

dt
E.t/C �. Px.t// � 0: (20)

Since � is nonnegative, this implies that the global energy is nonincreasing. Since f is
bounded below, this implies that the velocity Px.t/ is bounded over Œ0;C1Œ. Precisely,

sup
t�0

k Px.t/k � R1 WD
p
2E.0/: (21)

To go further, suppose that the trajectory x.�/ is bounded (this is so for example if f is
coercive), and set

sup
t�0

kx.t/k � R2: (22)

Let us now establish a bound on the acceleration. For this, we rely on the approximate
dynamics

Rx�.t/Cr��. Px�.t//Crf .x�.t// D 0; t 2 Œ0;C1Œ: (23)

A similar estimate as above gives supt�0 k Px�.t/k � R1 WD
p
2E.0/. According to prop-

erty (iii) of the damping potential, we obtain

kr��. Px�.t//k � sup
kuk�R1

k.@�/0.u/k DM1 < C1:

By the local Lipschitz continuity of rf ,

krf .x�.t//k � sup
kxk�R2

krf .x/k DM2 < C1:

Combining the above two inequalities with (23), we see that for all � > 0 and all t � 0,

k Rx�.t/k �M1 CM2:
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Since Rx�.t/ converges weakly to Rx.t/ as �! 0 (see the proof of Theorem 3), we obtain

sup
t�0

k Rx.t/k < C1: (24)

Moreover, by integrating (20), we immediately obtain
R C1
0

�. Px.t// dt < C1: Let us
summarize the above results, and complete them, in the following proposition.

Proposition 1. Let x W Œ0;C1Œ!H be a solution of (ADIGE-V). Then the global energy
E.t/ D f .x.t// � infH f C 1

2
k Px.t/k2 is nonincreasing, and

sup
t�0

k Px.t/k < C1;

Z C1
0

�. Px.t// dt < C1:

Suppose moreover that x is bounded. Then

sup
t�0

k Rx.t/k < C1: (25)

If additionally there exist p � 1 and r > 0 such that �.u/ � rkukp for all u 2 H , then

lim
t!C1

k Px.t/k D 0: (26)

Proof. We just need to prove the last point. From
R C1
0

�. Px.t// dt < C1 and
�.u/ � rkukp , we get

R C1
0
k Px.t/kp dt < C1. This estimate, combined with

supt�0 k Rx.t/k < C1, classically implies that limt!C1 k Px.t/k D 0:

Let us complete the above result by examining the convergence of the acceleration to
zero. To get this result, we need additional assumptions on the data f and �.

Proposition 2. Let x W Œ0;C1Œ ! H be a bounded solution of (ADIGE-V). Suppose
that f is a C2 function, and � is a C2 function which satisfies

(i) (local strong convexity) there exist constants  > 0 and � > 0 such that for all u in
H with kuk � �,

hr
2�.u/�; �i � k�k2 for all � 2 H I

(ii) (global growth) there exist p � 1 and r > 0 such that �.u/ � rkukp for all u 2 H .

Then
lim

t!C1
k Rx.t/k D 0: (27)

Proof. Let us differentiate (ADIGE-V), and set w.t/ WD Rx.t/. We obtain

Pw.t/Cr2�. Px.t//w.t/ D �r2f .x.t// Px.t/:

Take the scalar product of the above equation with w.t/. We get

1

2

d

dt
kw.t/k2 C hr2�. Px.t//w.t/; w.t/i D �hr2f .x.t// Px.t/; w.t/i:
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By Proposition 1, we have limt!C1 k Px.t/kD 0: From the local strong convexity assump-
tion (i), and the Cauchy–Schwarz inequality, we deduce that for t sufficiently large, say
t � t1,

1

2

d

dt
kw.t/k2 C kw.t/k2 � kr2f .x.t// Px.t/k kw.t/k:

Since x.�/ is bounded and rf is Lipschitz continuous on bounded sets, we deduce that
for some C > 0,

1

2

d

dt
kw.t/k2 C kw.t/k2 � Ck Px.t/k kw.t/k for all t � t1:

After multiplication by e2t , and integration from t1 to t , we get

1
2
.etkw.t/k/2 � 1

2
.et1kw.t1/k/

2
C C

Z t

t1

e�k Px.�/k.e�kw.�/k/ d�:

According to the Gronwall inequality (see [53, Lemma A.5]) we obtain

etkw.t/k � et1kw.t1/k C C

Z t

t1

e�k Px.�/k d�:

Therefore

k Rx.t/k � k Rx.t1/ke
�.t�t1/ C Ce�t

Z t

t1

e�k Px.�/k d�:

Since limt!C1 k Px.t/k D 0; we have

lim
t!C1

e�t
Z t

t1

e�k Px.�/k d� D 0:

Therefore, by passing to the limit in the above inequality we get limt!C1 k Rx.t/kD 0:

Corollary 1. Under the assumption of Proposition 2, suppose that the trajectory x.�/ is
relatively compact. Then for any sequence x.tn/! x1 with tn!C1 we have rf .x1/
D 0. Set S D ¹x 2 H W rf .x/ D 0º. Then

lim
t!C1

d.x.t/; S/ D 0:

Remark 2. (a) Without any geometric assumption on the function f , the trajectories of
(ADIGE-V) may fail to converge. In [28] Attouch–Goudou–Redont exhibit a function
f W R2 ! R which is C1, coercive, whose gradient is Lipschitz continuous on bounded
sets, and such that the (HBF) system admits an orbit t 7! x.t/ which does not converge
as t ! C1. The above result shows that in such a situation, the attractor is the set S D
¹x 2 H W rf .x/ D 0º.

(b) It is necessary to assume that � is a smooth function in order to get the conclusion
of Corollary 1. In fact, in the case of dry friction, that is, �.u/ D rkuk, there is conver-
gence of the orbits to points satisfying krf .x1/k � r , which are not in general critical
points of f .
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4.2. Model example

Consider the case �.u/ D r
p
kukp with p > 1, in which case the dynamic (ADIGE-V)

reads
Rx.t/C rk Px.t/kp�2 Px.t/Crf .x.t// D 0: (28)

Therefore, for p > 2, the viscous damping coefficient .�/ that enters equation (28), and
which is equal to

.t/ WD rk Px.t/kp�2; (29)

tends to zero as t ! C1. So, we are in the setting of inertial dynamics with vanish-
ing damping coefficient. Consequently, in the associated inertial gradient algorithms, the
extrapolation coefficient tends to 1, and we can expect fast asymptotic convergence. To
summarize, in the case of (28), and for f coercive, we have shown that, for p > 2,

lim
t!C1

.t/ D 0; .�/ 2 L
p
p�2 .0;C1/: (30)

Is this information sufficient to derive the convergence rate of the values, and obtain sim-
ilar convergence properties to those for the (AVD)˛ system?

To give a first answer to this question, we rely on the results of Cabot–Engler–Gaddat
[55], Attouch–Cabot [19] and Attouch–Chbani–Riahi [27] which concern the asymptotic
stabilization of inertial gradient dynamics with general time-dependent viscosity coeffi-
cient .t/. In the case of a vanishing damping coefficient, the key property which ensures
the asymptotic minimization property is thatZ C1

0

.t/ dt D C1:

This means that the coefficient .t/ can go to zero as t ! C1, but not too fast in order
to dissipate the energy enough. On the positive side, .t/ D ˛=t does satisfy (30) for any
p > 0, which does not exclude the Nesterov case. On the negative side, we can easily find
.t/ such that

lim
t!C1

.t/ D 0; .�/ 2 L
p
p�2 .0;C1/ and

Z C1
0

.t/ dt < C1: (31)

So, without any other hypothesis, we cannot rely on this information alone. At this point,
the idea is to introduce additional information, assuming a geometric property of the func-
tion f being minimized. In the next two sections, we first consider the case where f is
a strongly convex function, and then the case of the functions f satisfying the Kurdyka–
Łojasiewicz property.

5. The strongly convex case: exponential convergence rate

We will study the asymptotic behavior of the system (ADIGE-V) when f is a strongly
convex function. Recall that f W H ! R is said to be �-strongly convex (with � > 0)
if f � �

2
k � k2 is convex. Then, we will consider the particular case where f is strongly

convex and quadratic. Finally, we will give numerical illustrations in dimension 1.
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5.1. General strongly convex function f

Theorem 4. Let f W H ! R be a differentiable function which is �-strongly convex for
some � > 0, and whose gradient is Lipschitz continuous on bounded sets. Let x be the
unique minimizer of f . Let � WH ! RC be a damping potential .see Definition 1/ which
is differentiable, and whose gradient is Lipschitz continuous on bounded subsets of H .
Suppose that � satisfies the following growth conditions:

(i) (local) there exist constants ˛ > 0 and � > 0 such that for all u in H with kuk � �,

hr�.u/; ui � ˛kuk2I

(ii) (global) there exist p � 1 and c > 0 such that �.u/ � ckukp for all u in H .

Then, for any solution x W Œ0;C1Œ!H of (ADIGE-V), we have exponential convergence
rate to zero as t !C1 for f .x.t// � f .x/, kx.t/ � xk and the velocity k Px.t/k.

Proof. We will use the following inequalities which are attached to the strong convexity
of f :

f .x/ � f .x.t// � hrf .x.t//; x � x.t/i C
�

2
kx.t/ � xk2; (32)

f .x.t// � f .x/ �
�

2
kx.t/ � xk2: (33)

Let us consider the global energy (introduced in (17), in the preliminary estimates)

E.t/ WD 1
2
k Px.t/k2 C f .x.t// � f .x/:

By Proposition 1, Px.t/ is bounded on RC. Moreover, E.�/ is nonincreasing, and hence
bounded from above. By definition of E.t/, this implies that f .x.t// is bounded from
above. Since f is strongly convex, it is coercive, which implies that x.�/ is bounded.
Since x.�/ and Px.�/ are bounded, and the vector fields rf and r� are locally Lipschitz
continuous, we deduce from the constitutive equation Rx.t/ D �r�. Px.t// � rf .x.t//
that Rx.�/ is also bounded. According to the preliminary estimates established in Proposi-
tion 1, we have

R C1
0

�. Px.t// dt < C1: Combining this property with the global growth
assumption (ii) on �, we deduce that there exists p � 1 such thatZ C1

0

k Px.t/kp dt < C1:

Since Rx.�/ is bounded, this implies that Px.t/! 0 as t !C1. So, for t sufficiently large,
say t � t1,

k Px.t/k � �:

The time derivative of E.�/, together with the constitutive equation (ADIGE-V), gives, for
t � t1,

PE.t/ D h Px.t/;�r�. Px.t// � rf .x.t//i C h Px.t/;rf .x.t//i

D �h Px.t/;r�. Px.t//i � �˛k Px.t/k2; (34)
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where the last inequality comes from the growth condition (i) on �, and from k Px.t/k � �
for t � t1.

Since Px.�/ is bounded, let L be the Lipschitz constant of r� on a ball that contains
the velocity vector Px.t/ for all t � 0. Since r�.0/ D 0 we have, for all t � 0,

kr�. Px.t//k � Lk Px.t/k: (35)

Using successively (ADIGE-V), (35) and (32), we obtain

d

dt
.hx.t/� x; Px.t/i/ D k Px.t/k2Chx.t/� x;�r�. Px.t//�rf .x.t//i

� k Px.t/k2CLkx.t/� xkk Px.t/k� hx.t/� x;rf .x.t//i

� k Px.t/k2C
L2

2�
k Px.t/k2C

�

2
kx.t/� xk2Chx� x.t/;rf .x.t//i

�

�
1C

L2

2�

�
k Px.t/k2Cf .x/�f .x.t//: (36)

Take now � > 0 (to be specified below), and define

h�.t/ WD E.t/C �hx.t/ � x; Px.t/i:

The time derivative of h� , together with (34) and (36), gives, for t � t1,

Ph�.t/ � �

�
˛ � �

�
1C

L2

2�

��
k Px.t/k2 � �.f .x.t// � f .x//:

Choose � > 0 such that ˛ � �.1C L2

2�
/ > 0. Set C1 WDmin ¹˛ � �.1C L2

2�
/; �º. We deduce

that
Ph�.t/ � �C1

�
k Px.t/k2 C f .x.t// � f .x/

�
: (37)

Further, from (33) and the Cauchy–Schwarz inequality we easily obtain

h�.t/ �
1

2
k Px.t/k2 C f .x.t// � f .x/C

�

2
kx.t/ � xk2 C

�

2
k Px.t/k2

�

�
1

2
C
�

2

�
k Px.t/k2 C

�
1C

�

�

�
.f .x.t// � f .x//

�

�
1C �

�
1

2
C
1

�

���
k Px.t/k2 C f .x.t// � f .x/

�
:

Combining this inequality with (37), we obtain Ph�.t/CC2h�.t/� 0withC2 WD C1
1C�. 12C

1
� /

> 0. Then, the Gronwall inequality classically implies

h�.t/ � h�.0/e
�C2t : (38)

Finally, from (33) and the Cauchy–Schwarz inequality we have

h�.t/ �
1

2
k Px.t/k2 C f .x.t// � f .x/ �

�

2
kx.t/ � xk2 �

�

2
k Px.t/k2

�

�
1

2
�
�

2

�
k Px.t/k2 C

�
1 �

�

�

�
.f .x.t// � f .x//:
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Therefore, by taking � small enough, we obtain the existence of C3 > 0 such that

h�.t/ � C3
�
k Px.t/k2 C f .x.t// � f .x/

�
:

Combining this inequality with (38) and (33), we obtain an exponential convergence rate
to zero for f .x.t// � f .x/, kx.t/ � xk and the velocity k Px.t/k.

Remark 3. In Section 7.4, as a consequence of the Kurdyka–Łojasiewicz theory, we will
extend the above results to the case where we only assume a quadratic growth assumption

f .x/ � infH f � c dist.x; argminf /2:

Remark 4. In Section 6, we will give indications concerning the case of a general convex
function f , whose solution set argmin f is nonempty. Let us recall that, in the case of
(HBF), which corresponds to �.u/ D rkuk2, each trajectory converges weakly and its
limit belongs to argmin f . Apart from this important case, convergence of trajectories
depends both on the geometric properties of the function f to be minimized and on those
of the damping potential �. In Section 6 we will give an example in dimension 1, with
trajectories which do not converge.

5.2. Case of f convex quadratic positive definite

Let us make precise the previous results in the case f .x/D 1
2
hAx;xi; where A WH !H

is a linear continuous positive definite self-adjoint operator. Then rf .x/ D Ax; and
(ADIGE-V) can be written as

Rx.t/C @�. Px.t//C A.x.t// 3 0: (39)

Let us prove the following ergodic convergence result, valid for a general damping poten-
tial �.

Theorem 5. Let x W Œ0;C1Œ!H be a solution of (39), where � is a damping potential,
and A W H ! H is a linear continuous positive definite self-adjoint operator. Then we
have the following ergodic convergence result for the weak topology: as t !C1,

1

t

Z t

0

x.�/ d� * x1;

where the limit x1 satisfies 0 2 @�.0/C Ax1:
When � is differentiable at the origin, we have Ax1 D 0, that is, x1 D 0.
When �.x/ D rkxk, we have kAx1k � r:

Proof. The Hamiltonian formulation of (39) gives the equivalent first-order differential
inclusion in the product space H �H :

0 2 Pz.t/C @ˆ.z.t//C F.z.t//; (40)

where z.t/ D .x.t/; Px.t// 2 H �H , and
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� ˆ W H �H ! R is the convex continuous function defined by ˆ.x; u/ D �.u/,

� F W H �H ! H �H is defined by F.x; u/ D .�u;Ax/.

The trick is to renorm the product space H � H as follows. The mapping .x; y/ 7!
hAx;yi defines a scalar product on H , which is equivalent to the initial one. Accordingly,
let us equip H �H with the scalar product

hh.x1u1/; .x2; u2/ii WD hAx1; x2i C hu1; u2i:

L et us observe that, with respect to this new scalar product:

� F W H � H ! H � H is a linear continuous skew-symmetric operator. Since A is
self-adjoint,

hhF.x; u/; .x; u/ii D hh.�u;Ax/; .x; u/ii D �hAu; xi C hAx; ui D 0:

� The subdifferential of ˆ is unchanged, that is, @ˆ.x; u/ D .0; @�.u//:

Therefore, the differential inclusion (40) is governed by the sum of two maximally mono-
tone operators; one of them is the subdifferential of a convex continuous function, the
other is a monotone skew-symmetric operator. By the classical Rockafellar theorem [43,
Corollary 24.4], their sum is still maximally monotone. Consequently, we can apply the
theory of semigroups generated by maximally monotone operators, and conclude that z.t/
converges weakly and in an ergodic way towards a zero z1 D .x1; u1/ of @ˆCF . This
means

.0; @�.u1//C .�u1; Ax1/ D .0; 0/:

Equivalently, u1 D 0 and @�.0/C Ax1 3 0.

In the case of the wave equation, this type of argument was developed by Haraux [68,
Lecture 12, Theorem 45]. A recent account of these questions can be found in Haraux–
Jendoubi [71] and Alabau-Boussouira–Privat–Trélat [6].

5.3. Numerical illustrations

Finding explicit solutions in closed form of nonlinear oscillators has direct applications
in various fields. In the one-dimensional case, the corresponding second-order differen-
tial equation Rx.t/ C d.x.t/; Px.t// Px.t/ C g.x.t// D 0 is known as the Levinson–Smith
equation. It reduces to the Liénard equation when d depends only on x. One can consult
[63,65] for recent reports on the subject and the description of some of the different tech-
niques developed to resolve these questions. In our setting, we will provide some insight
on this question by combining energetic and topological arguments.

5.3.1. A numerical one-dimensional example. Consider the case H D R, f .x/D 1
2
jxj2,

and �.u/ D 1
p
jujp with p > 1. Then (ADIGE-V) reads

Rx.t/C j Px.t/jp�2 Px.t/C x.t/ D 0: (41)
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It is a linear oscillator with nonlinear damping. According to the previous facts, we have
the following results.

� For p D 2, according to the strong convexity of the potential function f .x/ D 1
2
jxj2

and Theorem 4, we have convergence at an exponential rate of x.t/ and Px.t/ toward 0.
Indeed, p D 2 is the only value of p for which the hypotheses of Theorem 4 are satisfied.
For p > 2 the local hypothesis (i) is not satisfied, and for p < 2 the gradient of � fails to
be Lipschitz continuous on bounded sets containing the origin.

� For p > 1, let us first show that limt!C1 Px.t/ D 0: This results from Proposition 1,
and the fact that the trajectory is bounded. This last property results from the fact that the
global energy E.t/ D 1

2
j Px.t/j2 C 1

2
jx.t/j2 is nonincreasing, and hence convergent (and

bounded from above).
Let us show that x.t/ tends to zero. Since limt!C1 Px.t/ D 0, and limt!C1 E.t/

exists, we see that
lim

t!C1
jx.t/j2 D lim

t!C1
E.t/ exists: (42)

Since the identity operator clearly satisfies the assumptions of Theorem 5, we have the
ergodic convergence limt!C1

1
t

R t
0
x.�/ d� D 0: There are two possibilities:

(a) For t sufficiently large, x.t/ has a fixed sign. By (42), limt!C1 x.t/ WD x1 exists.
This convergence implies ergodic convergence: limt!C1

1
t

R t
0
x.�/ d� D x1: But we

know that the ergodic limit is zero, hence x1 D 0:

(b) The trajectory changes sign an infinite number of times as t !C1. This means that
there exist sequences sn and tn which tend to infinity such that x.tn/x.sn/ < 0. Since the
trajectory is continuous, by the mean value theorem there exists �n 2 Œsn; tn� such that
x.�n/ D 0. Hence x.�n/2 D 0 for all n 2 N, with �n ! C1. Since limt!C1 jx.t/j

2

exists, this implies that limt!C1 jx.t/j
2 D 0. Clearly, this implies that limt!C1 x.t/

D 0.
So, for p > 1, for any solution trajectory of (41), we have

lim
t!C1

x.t/ D 0 and lim
t!C1

Px.t/ D 0: (43)

Now let us analyze how the trajectories and their speeds go to zero. As we shall see, the
case p > 2 corresponds to weak damping, while p < 2 corresponds to strong damping.

Case p > 2. Since the speed j Px.t/j tends to zero, we have .t/ WD j Px.t/jp�2 ! 0 as
t ! C1: The viscous damping coefficient .t/ becomes asymptotically small. Con-
sequently, the damping effect also becomes weak (that is what we call weak damping).
As p increases, the damping effect tends to decrease, the trajectory tends to oscillate more
and more, and the rate of convergence deteriorates.

This is illustrated in Figure 3, where we can see the evolution of the trajectory x.t/
(blue line) and its derivative Px.t/ (red line) of the dynamical system (41) with starting
point .x.0/; Px.0// D .3; 1/ and for different values of p � 2. The trajectory and the velo-
city tend to zero, but the oscillations become stronger as p increases, and the convergence
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Fig. 3. The evolution of the trajectories x.t/ (blue line) and Px.t/ (red line) of the dynamical system
(41) for different values of p � 2.

to zero becomes very slow. For large p, the oscillatory aspect conforms to the ergodic
convergence of the trajectory to 0 (indeed, in dimension 1 the trajectory tends to zero,
but we can expect that in higher dimensions there is only ergodic convergence to zero).
Note also that for p > 2, and p close to 2, the trajectory is close to that corresponding to
p D 2, and therefore enjoys excellent convergence properties. It would be interesting to
study this situation, because it is a natural candidate to obtain convergence rates similar
to the accelerated gradient method of Nesterov.

Case 1 < p < 2. According to (43) we have limt!C1 Px.t/D 0 and limt!C1 x.t/D 0:

Since limt!C1 Px.t/ D 0 and 2 � p > 0, the viscous damping coefficient satisfies

.t/ WD
1

j Px.t/j2�p
!C1 as t !C1:

We are in the setting of a strong damping effect. This situation was analyzed in the fol-
lowing result of [21], concerning the asymptotic behavior of

.IGS/ Rx.t/C .t/ Px.t/Crf .x.t// D 0:

Proposition 3. Let f W H ! R be a function of class C1 such that rf is bounded on
bounded subsets of H . Given r > 0 and � > 1, assume that .t/D rt� for every t � t0 � 0.
Then each bounded solution x.�/ of .IGS/ satisfies

R C1
t0
k Px.t/k dt < C1, and hence

converges strongly to some x� 2 H .

From this result, we can obtain some information about the convergence rate of the
velocity to zero. We have two cases: either

R C1
t0
k Px.t/k dt < C1, or

R C1
t0
k Px.t/k dt
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Fig. 4. Evolution of x.t/ (blue) and Px.t/ (red) for different values of 1 < p < 2.

D C1. In this last case, according to Proposition 3, we cannot have .t/ D 1=j Px.t/j2�p

of order rt� with � > 1. This excludes the possibility to have j Px.t/j of order 1=t�=.2�p/

with � > 1. So, the best that we can expect is j Px.t/j � 1=t1=.2�p/ as t ! C1: This
estimate is in accordance with the exponential decay when p D 2, and the finite length
property when p D 1. We emphasize that the above argument is not a rigorous proof; it
just gives an indication of the type of convergence rate we can expect.

In Figure 4 we can see the evolution of the trajectory t 7! x.t/ (blue line) and of its
derivative t 7! Px.t/ (red line) of the dynamical system (41) with starting point .x.0/; Px.0//
D .3; 1/ for different values of 1 < p < 2. Because of strong damping, the trajectories
exhibit small oscillations, and the velocity converges fast to zero. By contrast, conver-
gence of x.t/ to zero highly depends on the parameter p. When p is close to 1, the
convergence of the trajectory to zero is poor, but already a slight increase of p improves
the convergence.

6. Weak damping: from slow convergence to attractor effect

As already mentioned, even in the case of a strongly convex function f , when the damp-
ing effect becomes too weak, the convergence property deteriorates. In the case of the
damping k Px.t/kp�2 Px.t/, this corresponds to situations where p > 2. In this section, we
give examples showing that in the case of a general convex function, the situation is even
worse, and the trajectory may not converge in the case of weak damping. In this case, one
has to replace the convergence notions by the concept of attractor, a central object of the
theory of dynamical systems and PDEs; see Hale [67], Haraux [69] for seminal contri-
butions to the subject in the case of gradient systems (i.e. systems for which there exists
a Lyapunov function). For optimization purposes, this is a promising research topic, still
largely to be explored in the case of a general damping function. In the next section, we
take a convex function f with a continuum of minimizers, and examine the lack of con-
vergence when damping becomes too weak. In fact, as already underlined, convergence
depends both on the geometric properties of the damping potential and on the potential
function f to be minimized. The corresponding geometric aspects concerning f will be
examined later.
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6.1. An example where convergence fails to hold

The following example is based on Haraux [69, Section 5.1]. Take H DR, and f WR!R
a convex function of class C1 which achieves its minimal value on the line segment Œa; b�
with a < b. We suppose that f is coercive, i.e. limjxj!C1 f .x/ D C1. Its graph looks
like a bowl with a flat bottom.

Consider the evolution equation with closed-loop damping

Rx.t/C j Px.t/jp�2 Px.t/Crf .x.t// D 0: (44)

Let us discuss, depending to the value of p, the convergence properties of the trajectories
of this system. We will need the following elementary lemma; we recall the proof for
completeness.

Lemma 1 ([69, Lemma 5.1.3]). Let v 2 C2.RC/ satisfy, for some c > 0,

Pv.0/ > 0; Rv.t/ � �c Pv.t/2 for all t � 0:

Then v is increasing, and limt!C1 v.t/ D C1:

Proof. As long as Pv.t/ > 0, by integration of the differential inequality Rv.t/C c Pv.t/2 � 0
we obtain

Pv.t/ �
1

ct C 1
Pv.0/

:

This immediately implies that Pv.t/ > 0 for all t � 0. By integrating, we obtain

v.t/ � v.0/C

Z t

0

1

c� C 1
Pv.0/

d�;

which implies limt!C1 v.t/ D C1:

Proposition 4. Suppose that p � 3. Then any trajectory of (44) which is not constant
passes infinitely many times through the points a and b.

Proof. According to Proposition 1, the trajectory x.�/ is bounded and satisfies

lim
t!C1

k Px.t/k D 0 and sup
t�0

k Rx.t/k < C1: (45)

Let us argue by contradiction, and assume that there exists some t1 > 0 such that x.t/� a
for all t � t1. We can distinguish two cases:

� First case: Px.t/ � 0 for all t � t1. Then t 7! x.t/ is increasing and bounded, hence
converges to some x1 2 R. From the constitutive equation (44), limt!C1 k Px.t/k D 0,
and the continuity of rf , we deduce that limt!C1 Rx.t/ D �rf .x1/. Using again
limt!C1 k Px.t/k D 0, we deduce that rf .x1/ D 0. Since x 7! rf .x/ is an increas-
ing function, and rf .x.t1// � 0, we obtain

rf .x.t// D 0 for all t � t1:



Optimization via inertial dynamics with closed-loop damping 29

Returning to the constitutive equation (44), we get

Rx.t/C j Px.t/jp�2 Px.t/ D 0 for all t � t1:

Since limt!C1 k Px.t/k D 0, and p � 3, for t sufficiently large, say t � t2 � t1, we have
j Px.t/jp�1 � j Px.t/j2: Therefore, for all t � t2,

Rx.t/C j Px.t/j2 � 0:

Since x.�/ is not constant, there exists some t3 � t2 such that Px.t3/ > 0. According to
Lemma 1, we have limt!C1 x.t/ D C1, contradicting the convergence of x.t/.

� Second case: there exists t2 � t1 such that Px.t2/ < 0. From the constitutive equation
(44) and x.t/ � a we get, for all t � t2,

Rx.t/C j Px.t/jp�2 Px.t/ D �rf .x.t// � 0

This implies, for t large enough,

Rx.t/ � j Px.t/j2:

Let us apply Lemma 1 to �x.�/. Since � Px.t2/ > 0, we obtain limt!C1 x.t/ D �1,
a contradiction.

A similar argument gives the same kind of result for b, namely, for every t1 > 0 there
exists t > t1 such that x.t/ > b. Therefore, an infinite number of times the trajectory takes
the values a and b, so it oscillates indefinitely between a and b.

By contrast, if the damping effect is sufficiently strong, there is convergence. In our
situation, this corresponds to the case 2 � p < 3, as shown in the following proposition.

Proposition 5. Suppose that 2 � p < 3. Then any trajectory of (44) converges, and its
limit belongs to Œa; b�.

Proof. When p D 2 the convergence follows from Alvarez’s theorem for (HBF). So sup-
pose 2 < p < 3. We sketch the main lines of the proof; the details can be found in
Haraux–Jendoubi [71, Theorem 9.2.1], which deals with a slightly more general situ-
ation. Let x be a solution of (44), and denote by !.x/ its limit set, that is, the set of its
limit points as t ! C1 (limits of sequences x.tn/ for tn ! C1). By a classical argu-
ment, this set is a connected subset of ¹rf D 0º, that is, !.x/� Œa; b�. If !.x/ is reduced
to a singleton, the proof is finished. Let us therefore examine the complementary case

!.x/ D Œc; d � � Œa; b� with c < d;

and show that this leads to a contradiction. Set l WD 1
2
.c C d/. Let us prove that

limt!C1 x.t/D l , which gives !.x/D ¹lº, contrary to !.x/D Œc; d �, c ¤ d . First, since
l is in the interior of !.x/, by the intermediate value property there exists a sequence .tn/
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with tn ! C1 such that x.tn/ D l . By continuity of x, and since l is in the interior of
Œc; d �, for each n 2 N there exists ın > 0 such that

x.t/ 2 Œc; d � for all t 2 Œtn; tn C ın�:

Let us prove that for n large enough we can take ın D C1. Set

�n D inf ¹t > tn W x.t/ … Œc; d �º;

and assume �n < C1. So for all t 2 Œtn; �n� we have rf .x.t// D 0, and (44) reduces to

Rx.t/C j Px.t/jp�2 Px.t/ D 0:

After multiplying by Px.t/ we get, for all t 2 Œtn; �n�,

d

dt
j Px.t/j2 C 2j Px.t/jp D 0:

After integration from tn to t 2 Œtn; �n� we get, for all t 2 Œtn; �n�,

j Px.t/j D
�
j Px.tn/j

�pC2
C .p � 2/.t � tn/

� �1
p�2 :

After further integration we get, for all t 2 Œtn; �n�,

jx.t/ � l j D jx.t/ � x.tn/j �

Z t

tn

j Px.s/j ds

D
1

p � 3

�
j Px.tn/j

�pC2
C .p � 2/.t � tn/

�p�3
p�2 C

1

3 � p
j Px.tn/j

3�p

�
1

3 � p
j Px.tn/j

3�p;

where, for the last inequality, we use the hypothesis 2 < p < 3. Since Px.tn/ converges to
zero as tn ! C1, for n large enough we have �n D C1. This means that for n large
enough,

x.t/ 2 Œc; d � and jx.t/ � l j �
1

3 � p
j Px.tn/j

3�p
8t 2 Œtn;C1/;

which implies that x.t/ converges to l as t !C1.

Figure 5 illustrates the attractor effect when damping becomes too weak. Take f W
R! R, f .x/ D 1

2
.x C 1/2 for x � �1; f .x/ D 0 for jxj < 1; and f .x/ D 1

2
.x � 1/2

for x � 1:
For p D 3 there is a radical change in the trajectory behavior. For p � 3, they do not

converge asymptotically, and exhibit very oscillating behavior by steadily passing through
the points �1 and C1. For 2 < p < 3, there is numerical evidence that the trajectories
converge, which confirms the conclusion of Proposition 5.
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Fig. 5. Evolution of the trajectories x.t/ (blue) and Px.t/ (red) of the dynamical system (41) for
p � 2.

6.2. An explicit one-dimensional example

Take H D R and f .x/ D cjxj , where c and  are positive parameters. Let us look for
solutions of

Rx.t/C r j Px.t/jp�2 Px.t/Crf .x.t// D 0; (46)

when p > 1. More precisely, we look for nonnegative solutions of the form x.t/ D 1=t�

with � > 0. This means that the trajectory is not oscillating, it is completely damped. We
proceed by identification, and determine the values of the parameters c,  , r; p and �
which provide such solutions. On the one hand,

Rx.t/C r j Px.t/jp�2 Px.t/ D
�.� C 1/

t�C2
�

�p�1r

t .�C1/.p�1/
:

On the other hand, rf .x/ D c jxj�2x, which gives

rf .x.t// D
c

t�.�1/
:

Thus, x.t/ D 1=t� is a solution of (46) if and only if

�.� C 1/

t�C2
�

�p�1r

t .�C1/.p�1/
C

c

t�.�1/
D 0:

This is equivalent to solving the following system:

(i) � C 2 D �. � 1/;

(ii) � C 2 D .� C 1/.p � 1/;
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(iii) c D �p�1r � �.� C 1/;

(iv) � > 0, c > 0.

Solving (i) and (ii) for  gives 2 < p < 3,  > 2, and the following values:

� D
2

 � 2
; p D

3 � 2


:

Condition (iii) gives c D �

.�p�2r � .� C 1// and the positivity condition (iv) gives

r > �C1
�p�2

: We have minf D 0 and

f .x.t// D c
1

t2=.�2/
D

c

t2=.p�2/
:

To summarize, we have shown that when taking 2 < p < 3 and f .x/ D cjxj
2
3�p there

exists a solution of

Rx.t/C rk Px.t/kp Px.t/Crf .x.t// D 0

of the form x.t/ D 1=t3�p=.p�2/, for which

f .x.t// �minf D
c

t2=.p�2/
:

As expected, the speed of convergence of f .x.t// to 0 depends on p. Therefore,
without other geometric assumptions on f , for 2 < p < 3 we cannot expect a conver-
gence rate better than O.1=t2=.p�2//. When p ! 3 from below, the function f .x/ D
cjxj2=.3�p/ becomes very flat around its minimum (the origin) and the convergence of
x.t/ D 1=t .3�p/=.p�2/ to the origin becomes very slow.

7. Damping via closed-loop velocity control, quasi-gradient and (KŁ)

In this section, H D RN is a finite-dimensional Euclidean space. This will allow us to
use the Kurdyka–Łojasiewicz property, briefly (KŁ). Unless otherwise indicated, no con-
vexity assumption is made on the function f being minimized, which will be assumed
to satisfy (KŁ). To obtain the convergence of orbits, the need for a geometric assumption
on the function f to be minimized has long been recognized. As for the steepest descent,
without additional geometric assumptions on the potential function f , the bounded orbits
of the heavy ball with friction dynamic (HBF) may not converge. Let us recall the result
from [28] where a function f W R2 ! R is shown which is C1, coercive, its gradient is
Lipschitz continuous on bounded sets, and the (HBF) system admits an orbit t 7! x.t/

which does not converge as t ! C1. This example is an inertial version of the famous
Palis–De Melo counterexample for the continuous steepest descent [84]. In this section,
we examine an important situation where the convergence property is satisfied, namely
when f is assumed to satisfy (KŁ), a geometric notion which is presented below.
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7.1. Some basic facts concerning (KŁ)

A function G W RN ! R satisfies the (KŁ) property if its values can be reparametrized
in the neighborhood of each of its critical points so that the resulting function becomes
sharp in the sense that there exists a continuous, concave, increasing function � such that
for all u in a slice of G,

kr.� ıG/.u/k � 1:

The function � captures the geometry of G around its critical point, it is called a desingu-
larizing function; see [16,17,45] for further results. Tame functions satisfy property (KŁ).
Tameness refers to an ubiquitous geometric property of functions and sets encountered in
most finite-dimensional optimization problems. Sets or functions are called tame when
they can be described by a finite number of basic formulas/inequalities/Boolean oper-
ations involving standard functions such as polynomial, exponential, or max functions.
Classical examples of tame objects are piecewise linear objects (with finitely many pieces)
and semi-algebraic objects. The general notion covering these situations is the concept of
o-minimal structure; see van den Dries [91]. Tameness models nonsmoothness via the
so-called stratification property of tame sets/functions. It was this property that motiv-
ated the vocable of tame topology, “la topologie modérée” according to Grothendieck.
All these aspects have been well documented in a series of recent papers devoted to non-
convex nonsmooth optimization; see Ioffe [74], Castera–Bolte–Févotte–Pauwels [58] for
an application to deep learning, and references therein. We refer to [16] for illustrations,
and examples within a general optimization setting.

This property is particularly interesting in our context, because we work with an
autonomous dynamical system, in which case (KŁ) theory applies to quasi-gradient sys-
tems. This contrasts with the accelerated gradient method of Nesterov which is based on
a nonautonomous dynamical system, and for which we have no convergence theory based
on the (KŁ) property. Under this property, we will obtain convergence results with conver-
gence rates linked to the geometry of the data functions f and �, via the desingularizing
function.

7.2. Quasi-gradient systems

Let us first recall the main lines of the quasi-gradient approach to inertial gradient systems
as developed by Bégout–Bolte–Jendoubi [44]. The geometric interpretation is simple: a
vector field F is called quasi-gradient for a function E if it has the same singular point as
E and if the angle between the field F and the gradient rE remains acute and bounded
away from �=2. A precise definition is given below. Of course, such systems behave very
similarly to gradient systems. We refer to Bárta–Chill–Fašangová [41, 42, 61], Chergui
[60], Huang [73] and the references therein for further geometrical insights into this topic.

Definition 3. Let � be a nonempty closed subset of RN , and let F W RN ! RN be
a locally Lipschitz continuous mapping. We say that the first-order system

Pz.t/C F.z.t// D 0 (47)
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has a quasi-gradient structure for E on � if there exist a differentiable function E W
RN ! R and ˛ > 0 such that the following two conditions are satisfied:

(angle condition) hrE.z/; F.z/i � ˛krE.z/k kF.z/k for all z 2 �;
(rest point equivalence) critE \ � D F �1.0/ \ � .

Based on this notion, we have the following convergence properties of bounded tra-
jectories of (47). The following result is a localized version and straight adaptation of
[44, Theorem 3.2].

Theorem 6. Let F W RN ! RN be a locally Lipschitz continuous mapping. Let z W
Œ0;C1Œ ! RN be a bounded solution of (47). Take R � supt�0 kz.t/k. Assume that
F defines a quasi-gradient vector field for ER on NB.0; R/, where ER W RN ! R is a
differentiable function. Assume further that the function ER is (KŁ). Then

(i) z.t/! z1 as t !C1, where z1 2 F �1.0/;

(ii) Pz 2 L1.0;C1IRN / and Pz.t/! 0 as t !C1;

(iii) kz.t/ � z1k � 1
˛R
�.ER.z.t// �ER.z1//,

where � is the desingularizing function for ER at z1, and ˛R enters the angle condition
of Definition 3.

7.3. Convergence of systems with closed-loop velocity control under (KŁ)

Let us apply the above approach to the inertial system with closed-loop damping

Rx.t/Cr�. Px.t//Crf .x.t// D 0; (48)

by writing it as a first-order system, via its Hamiltonian formulation. We will assume that
r� is locally Lipschitz continuous. Indeed, we can reduce to this situation by using a
regularization procedure based on the Moreau envelope.

Theorem 7. Let f W RN ! R be a C2 function whose gradient is Lipschitz continuous
on bounded sets, and such that infRN f > �1. Let E� W RN �RN ! R be defined by

E�.x; u/ WD
1
2
kuk2 C f .x/C �hrf .x/; ui for all .x; u/ 2 RN �RN :

Suppose that the function E� satisfies the (KŁ) property. Let � W RN ! RC be a damp-
ing potential .see Definition 1/ which is differentiable and satisfies the following growth
conditions:

(i) (local) there exist constants ; ı; � > 0 such that, for all u in RN with kuk � �,

�.u/ � kuk2 and kr�.u/k � ıkukI

(ii) (global) there exist p � 1 and c > 0 such that �.u/ � ckukp for all u in RN .
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Let x W Œ0;C1Œ! RN be a bounded solution of

Rx.t/Cr�. Px.t//Crf .x.t// D 0:

Then

(i) x.t/! x1 as t !C1, where x1 2 critf ;

(ii) Px 2 L1.0;C1IRN / and Px.t/! 0 as t !C1;

(iii) for � sufficiently small, and t sufficiently large,

kx.t/ � x1k �
1

˛
�
�
E�.x.t/; u.t// �E�.x1; 0/

�
;

where � is the desingularizing function for E� at .x1; 0/, and ˛ enters the corres-
ponding angle condition.

Proof. From the preliminary estimates established in Proposition 1, we haveZ C1
0

�. Px.t// dt < C1 and sup
t�0

k Px.t/k < C1:

Combining the first property above with the global growth assumption on �, we deduce
that there exists p � 1 such thatZ C1

0

k Px.t/kp dt < C1:

From the constitutive equation, we have

Rx.t/ D �r�. Px.t// � rf .x.t//:

Since x.�/ and Px.�/ are bounded, and rf is locally Lipschitz continuous, we deduce that
Rx.�/ is also bounded. Classically, these properties imply that Px.t/! 0 as t !C1. Take
R � supt�0 kx.t/k. Then, for t sufficiently large, the trajectory t 7! .x.t/; Px.t// in the
phase space RN �RN lies in the closed set � D NB.0;R/ � NB.0; �/.

The Hamiltonian formulation of (48) gives the first-order differential system

Pz.t/C F.z.t// D 0; (49)

where z.t/ D .x.t/; Px.t// 2 RN �RN , and F W RN �RN ! RN �RN is defined by

F.x; u/ D .�u;r�.u/Crf .x//: (50)

Following [44], take E� W RN �RN ! R defined by

E�.x; u/ WD
1
2
kuk2 C f .x/C �hrf .x/; ui; (51)

where the parameter � > 0 will be adjusted to have the quasi-gradient property. We have

rE�.x; u/ D
�
rf .x/C �r2f .x/u; uC �rf .x/

�
:
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Let us analyze the angle condition with � D NB.0; R/ � NB.0; �/. According to the above
formulas for F and rE�, we have

hrE�.x; u/; F.x; u/i

D h.rf .x/C �r2f .x/u; uC �rf .x//; .�u;r�.u/Crf .x//i

D �hrf .x/C �r2f .x/u; ui C huC �rf .x/;r�.u/Crf .x/i:

After development and simplification, we get

hrE�.x; u/; F.x; u/i

D ��hr2f .x/u; ui C hu; r�.u/i C �hrf .x/; r�.u/i C �krf .x/k2:

By the local Lipschitz assumption on rf , let

M WD sup
kxk�R

kr
2f .x/k < C1:

Since � is a damping potential, we have

hu;r�.u/i � �.u/:

Combining the above results, we obtain

hrE�.x; u/; F.x; u/i

� ��Mkuk2 C �.u/C �hrf .x/; r�.u/i C �krf .x/k2

� ��Mkuk2 C �.u/ �
�

2
krf .x/k2 �

�

2
kr�.u/k2 C �krf .x/k2

� ��Mkuk2 C �.u/ �
�

2
kr�.u/k2 C

�

2
krf .x/k2: (52)

At this point, we use the local growth assumption on �: for all u in RN with kuk � �,

�.u/ � kuk2 and kr�.u/k � ıkuk: (53)

By combining (52) with (53), we obtain

hrE�.x; u/; F.x; u/i �

�
 � �M �

�

2
ı2
�
kuk2 C

�

2
krf .x/k2: (54)

Take � small enough to satisfy

 > �.M C ı2=2/:

Then
hrE�.x; u/; F.x; u/i � ˛0.kuk

2
C krf .x/k2/ (55)

with ˛0 WD min ¹ � �.M C ı2=2/; �=2º.
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On the other hand,

krE�.x; u/k �
p
2.1C �max ¹1;M º/.kuk2 C krf .x/k2/1=2

kF.x; u/k �
p
2.1C ı/.kuk2 C krf .x/k2/1=2:

Therefore

krE�.x; u/k kF.x; u/k � 2.1C �max ¹1;M º/.1C ı/.kuk2 C krf .x/k2/: (56)

As a consequence, the angle condition

hrE.z/; F.z/i � ˛krE.z/k kF.z/k

is satisfied on � with

˛ D
min ¹ � �.M C ı2=2/; �=2º
2.1C �max ¹1;M º/.1C ı/

:

Finally, the rest point equivalence is a consequence of the inequality (55). Then, apply the
abstract Theorem 6 to obtain claims (i)–(iii).

Remark 5. (i) The above result allows us to consider nonlinear damping. The main
restrictive assumption is that the damping potential is assumed to be nearly quadratic
close to the origin. It is not necessarily quadratic close to the origin but it has to satisfy:
for all u in RN with kuk � �,

�.u/ � kuk2 and kr�.u/k � ıkuk:

(ii) According to [44, Proposition 3.11], a desingularizing function of f (see [44,
Definition 2.1]) is desingularizing for E� too, for all � 2 Œ0; �1�.

(iii) In Sections 9.3 and 10.6 we will develop a similar analysis for related dynamical
systems which involve Hessian-driven damping.

(iv) Following [44, Theorems 4.1 and 3.7], a key condition which yields convergence
rates for trajectories of a quasi-gradient system with the (KŁ) property is

krE�.x; u/k � bkF.x; u/k for .x; u/ 2 � (57)

with b > 0. Let us check this condition in the setting of Theorem 7. We have seen there
that

krE�.x; u/k
2
� C1.kuk

2
C krf .x/k2/

for some C1 > 0. Further, from the Cauchy–Schwarz inequality and the properties of �
we derive, for all � > 1,

kF.x; u/k2 D kuk2 C kr�.u/Crf .x/k2

� kuk2 C kr�.u/k2 C krf .x/k2 � 2kr�.x/k krf .x/k

� kuk2 C kr�.u/k2 C krf .x/k2 � �kr�.u/k2 �
1

�
krf .x/k2

�

�
1 �

1

�

�
krf .x/k2 C .1 � .� � 1/ı2/kuk2:
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Hence, we can choose � > 1 such that

kF.x; u/k2 � C3.kuk
2
C krf .x/k2/

for some C3 > 0. Condition (57) is now met with b D
p
C1=C3.

As in [44, Section 5], explicit convergence rates can be derived from [44, Theorems
4.1 and 3.7], based on [44, (3.19) and Remark 3.4(c)].

7.4. Application: f with polynomial growth

This concerns the question raised at the end of Section 5.1. Additionally to the hypotheses
of Theorem 7, assume that f is convex, argminf ¤ ; and for each x� 2 argminf , there
exists � > 0 such that

f .x/ � infH f � c dist.x; argminf /r 8x 2 B.x�; �/;

for some r � 1 and c > 0.
According to [44, proof of Corollary 5.5], f satisfies the Łojasiewicz inequality with

desingularizing function (see [44, Definition 2.1]) of the form '.s/ D c0s1=r with c0 > 0.
By [44, Proposition 3.11], this is a desingularizing function of E� too, for all � 2 Œ0; �1�
(withE� defined in Theorem 7). In Remark 5 (iv) we have shown that (57) holds. Relying
now on [44, Theorem 3.7 and Remark 3.4(c)], we derive sublinear rates for kx.t/ � x1k
in case r < 2 and an exponential rate in case r D 2.

7.5. Application: fixed damping matrix

We will recover and improve the results of Alvarez [8, Theorem 2.6], which concern the
case of f convex, and the damped inertial equation

Rx.t/C A. Px.t//Crf .x.t// D 0;

where A W H ! H is a positive definite self-adjoint linear operator, which is possibly
anisotropic (see also [47]). While the proof of [8, Theorem 2.6] works in general Hilbert
spaces, we have to restrict ourselves to finite-dimensional spaces, but we can drop the
convexity assumption on f . The following result is a direct consequence of Theorem 7
applied to � W RN ! RC; �.x/ D

1
2
hAx; xi; where A W RN ! RN is a positive def-

inite self-adjoint linear operator. We note that in this setting, � is a damping potential,
it is convex continuous and attains its minimum at the origin. Moreover, the local and
global growth conditions are met. Indeed, for all u 2 RN , we have �.u/ � 1

2
�minkuk

2

and kr�.u/k � �maxkuk, where �min and �max are the smallest and the largest positive
eigenvalues of A respectively.

Theorem 8. Let f W RN ! R be a C2 function whose gradient is Lipschitz continuous
on bounded sets, and such that infRN f > �1. Let A W RN ! RN be a positive definite
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self-adjoint linear operator. Suppose that the function E� is (KŁ) .which is true if f
satisfies (KŁ)) where

E�.x; u/ WD
1
2
kuk2 C f .x/C �hrf .x/; ui:

Let x W Œ0;C1Œ! RN be a bounded solution of

Rx.t/C A. Px.t//Crf .x.t// D 0:

Then

(i) x.t/! x1 as t !C1, where x1 2 critf ;

(ii) Px 2 L1.0;C1IRN / and Px.t/! 0 as t !C1;

(iii) f .x.t//! f .x1/ 2 f .critf / as t !C1.

Indeed, we can complete this result with the convergence rates which are linked to the
desingularization function provided by the (KŁ) property of f .

8. Algorithmic results: an inertial type algorithm

The following convergence result is a discrete algorithmic version of Theorem 7. To
stay close to the continuous dynamic we use a semi-implicit discretization: implicit with
respect to the damping potential �, and explicit with respect to the function f to minim-
ize. This will make it possible to make minimal assumptions on the damping potential �,
and thus cover various situations. As above, the underlying structure of the proof is the
quasi-gradient property. We give a direct proof, which is a bit simpler in this case. Con-
sider the following temporal discretization of (ADIGE-V) with step size h > 0:

1

h2
.xnC2 � 2xnC1 C xn/Cr�

�
1

h
.xnC2 � xnC1/

�
Crf .xnC1/ D 0:

Equivalently,

xnC2 � xnC1

h
�
xnC1 � xn

h
C hr�

�
xnC2 � xnC1

h

�
C hrf .xnC1/ D 0: (58)

This gives the proximal-gradient algorithm

xnC2 D xnC1 C h proxh�

�
1

h
.xnC1 � xn/ � hrf .xnC1/

�
: (59)

Recall that, for any x 2 H D RN and any � > 0,

prox��.x/ WD argmin
�2H

®
��.�/C 1

2
kx � �k2

¯
:

Let us start by establishing a decrease property for the sequence .Wn/n2N of global ener-
gies

Wn WD
1
2
kunk

2
C f .xnC1/;

where un D 1
h
.xnC1 � xn/ is the discrete velocity.
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Lemma 2. Suppose that f W RN ! R is a differentiable function whose gradient is
L-Lipschitz continuous on a ball containing the iterates .xn/n2N , and such that infRN f

> �1. Suppose that �.u/ � kuk2 for all u 2 RN . Then, for all n 2 N,

WnC1 �Wn C h
�
 � 1

2
Lh
�
kunC1k

2
� 0:

As a consequence, under the assumption  > 1
2
Lh, we haveX

n2N

kunk
2 < C1 and un ! 0 as n!C1:

Proof. Write the algorithm as

unC1 � un C hr�.unC1/C hrf .xnC1/ D 0:

By taking the scalar product with unC1, we obtain

hunC1 � un; unC1i C hhr�.unC1/; unC1i C hrf .xnC1/; xnC2 � xnC1i D 0: (60)

We have

hunC1 � un; unC1i �
1
2
kunC1k

2
�
1
2
kunk

2;

hr�.unC1/; unC1i � �.unC1/ � kunC1k
2;

f .xnC2/ � f .xnC1/ � hrf .xnC1/; xnC2 � xnC1i C
1
2
Lh2kunC1k

2;

where the last inequality follows from the descent gradient lemma. By combining the
above inequalities with (60), we obtain

1
2
kunC1k

2
�
1
2
kunk

2
ChkunC1k

2
Cf .xnC2/�f .xnC1/�

1
2
Lh2kunC1k

2
� 0: (61)

Equivalently,
WnC1 �Wn C h

�
 � 1

2
Lh
�
kunC1k

2
� 0:

By summing the above inequalites, and since f is bounded below, we get

h
�
 � 1

2
Lh
�X
n�1

kunk
2
� W0 � inff:

Since  � 1
2
Lh > 0, we get

P
n2N kunk

2 < C1, and hence un ! 0 as n!C1.

Theorem 9. Let f WRN !R be a C2 function whose gradient is Lipschitz continuous on
bounded sets, and such that infRN f > �1. Let � W RN ! RC be a damping potential
.see Definition 1/ which is differentiable. Let .xn/n2N be a bounded sequence generated
by the algorithm

xnC2 D xnC1 C h proxh�

�
1

h
.xnC1 � xn/ � hrf .xnC1/

�
: (62)

We make the following assumptions on the data f , �, and h:
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� (Assumption on f ) Suppose that the function H satisfies the (KŁ) property, where
H W RN �RN ! R is defined for all .x; y/ 2 RN �RN by

H.x; y/ WD f .x/C
1

2h2
kx � yk2:

� (Assumption on �) Suppose that � satisfies the following growth conditions: there
exist ; "; ı > 0 such that �.u/ � kuk2 for all u in RN , and kr�.u/k � ıkuk for all
u with kuk � ".

� (Assumption on h) Suppose that the step size h is so small that

0 < h < 2=L;

where L is the Lipschitz constant of rf on the ball centered at the origin and with
radius R D supn2N kxnk.

Then

(i) xn ! x1 as n!C1, where x1 2 critf ;

(ii)
P
n2N kxnC1 � xnk < C1.

Proof. By assumption, the sequence .xn/n2N is bounded. Lemma 2 shows that .un/n2N

tends to zero, where un D 1
h
.xnC1 � xn/. In addition,

WnC1 �Wn C h
�
 � 1

2
Lh
�
kunC1k

2
� 0

for all n 2 N, where
Wn WD

1
2
kunk

2
C f .xnC1/:

Equivalently, by setting

H.x; y/ D f .x/C
1

2h2
kx � yk2;

we have, for all n 2 N,

H.xnC2; xnC1/C CkxnC2 � xnC1k
2
� H.xnC1; xn/; (63)

where C D 1
h
. � 1

2
Lh/ > 0. The rest of the proof is classical in the framework of (KŁ)

theory; we refer the reader to [49,82] for similar techniques relying on the above decrease
property. Relation (63) implies that

lim
n!C1

H.xnC1; xn/ 2 R (64)

exists. Further, let us denote by !..xn/n2N/ the set of cluster points of the
sequence .xn/n2N , and recall that crit f D ¹x 2 RN W rf .x/ D 0º is the set of critical
points of f .

We easily derive

critH D ¹.x; x/ 2 RN �RN W x 2 critf º
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and notice that !..xn/n2N/� critf , thus !..xnC1; xn/n2N/� critH: From (64) one can
easily conclude that H is constant on !..xnC1; xn//. Indeed, for x� 2 !..xn/n2N/, we
see from the above (and the definition of H ) that

lim
n!C1

H.xnC1; xn/ D f .x
�/ D H.x�; x�/: (65)

Assume now that H satisfies the (KŁ) property with desingularizing function � . We con-
sider two cases.

I. There exists n � 0 such thatH.xnC1; xn/DH.x�; x�/. From the decreasing prop-
erty (63) we find that .xn/n�n is a constant sequence and the conclusion follows.

II. For all n � 0 we have H.xnC1; xn/ > H.x�; x�/. Since � is concave and � 0 > 0,
we deduce from (63) that there exists n0 � 0 such that for all n � n0,

�n;nC1 WD �.H.xnC1; xn/ �H.x
�; x�// � �.H.xnC2; xnC1/ �H.x

�; x�//

� � 0.H.xnC1; xn/ �H.x
�; x�// � .H.xnC1; xn/ �H.xnC2; xnC1//

� � 0.H.xnC1; xn/ �H.x
�; x�// � C � kxnC2 � xnC1k

2

�
CkxnC2 � xnC1k

2

krH.xnC1; xn/k
; (66)

where the last inequality follows from the uniformized (KŁ) property [46, Lemma 6]
applied to the nonempty compact and connected set � D !..xnC1; xn/n2N/ (by [46,
Remark 5] the connectedness is generic for sequences satisfying limn!C1.xnC1 � xn/

D 0).
Further, since rH.x; y/ D .rf .x/C 1

h2
.x � y/; 1

h2
.y � x//, we deduce from (58),

the fact that limn!C1.xnC1 � xn/ D 0 and the properties of � that there exists C2 > 0
such that

krH.xnC1; xn/k � C2.kxnC2 � xnC1k C kxnC1 � xnk/ 8n 2 N:

Hence there exist C3 > 0 and n00 2 N such that for all n � n00,

a2nC1

anC1 C an
� C3�n;nC1;

where an WD kxnC1 � xnk. From this we see that for all n � n00,

anC1 D
p
C3�n;nC1.anC1 C an/ �

anC1 C an

4
C C3�n;nC1;

which implies
anC1 �

1
3
an C

4
3
C3�n;nC1:

Summing the last inequality over nwe obtain
P
n2N kxnC1 � xnk<C1. This classically

implies that .xn/n2N is a Cauchy sequence in RN , hence it converges to a critical point
of f .
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Remark 6. (i) If f W RN ! R is a C2 coercive function whose gradient is Lipschitz
continuous on RN , then the boundedness of the sequence .xn/n2N follows from (63).
The function H is a (KŁ) function if f is, for instance, semialgebraic; we refer to [77]
for other results related to the preservation of the (KŁ) property under addition.

(ii) For a general damping function � we obtain in the limit

rf .x1/C @�.0/ 3 0:

When � is differentiable at the origin, it attains its minimum at this point, and hence
r�.0/ D 0. So, we get rf .x1/ D 0, i.e. x1 is a critical point of f , which is the situ-
ation considered above. In the case of dry friction, for example �.u/ D rkuk, we get
krf .x1/k � r , which gives an approximate critical point [2, 3, 5].

(iii) The above result has been given as an illustration of our results, showing that
the continuous dynamic approach gives a valuable guideline to develop corresponding
algorithmic results. In the particular case �.u/ D kuk2 one can also consult [66,82]. The
explicit discretization gives rise to inertial gradient algorithms, an interesting subject to
explore in this general setting.

9. Closed-loop velocity control with Hessian-driven damping

9.1. Hessian-driven damping

We now tackle questions similar to the previous sections, concerning the combination of
closed-loop velocity control with Hessian-driven damping. The following system com-
bines closed-loop velocity control with Hessian-driven damping:

Rx.t/C @�. Px.t//C ˇr2f .x.t// Px.t/Crf .x.t// D 0: (67)

This autonomous system will be our main object of study in this section.

� The case �.u/ D 
2
kuk2 of a fixed viscous coefficient was first considered by Alvarez–

Attouch–Bolte–Redont [11]. In this case, (67) can be equivalently written as a first-order
system in time and space (different from the Hamiltonian formulation), which allows one
to extend this system naturally to the case of a nonsmooth function f . This property has
been exploited by Attouch–Maingé–Redont [31] to model nonelastic shocks in unilateral
mechanics. To accelerate this system, several recent studies considered the case where the
viscous damping is vanishing, that is,

Rx.t/C
˛

t
Px.t/C ˇr2f .x.t// Px.t/Crf .x.t// D 0I (68)

see [24, 35, 52, 58, 76, 79, 89] and Section 2.3 for the properties of this system.

� The case �.u/ D 
2
kuk2 C rkuk which combines viscous friction with dry friction and

Hessian-driven damping has been considered by Adly–Attouch [3, 4].
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� By taking �.u/ D r
p
kukp , we get

Rx.t/C rk Px.t/kp�2 Px.t/C ˇr2f .x.t// Px.t/Crf .x.t// D 0; (69)

for which we will address similar issues. In addition to the fast minimization property,
one can expect fast convergence of gradients to zero.

9.2. Existence and uniqueness results

Let us consider the differential inclusion

(ADIGE-VH) Rx.t/C @�. Px.t//C ˇr2f .x.t// Px.t/Crf .x.t// 3 0; (70)

which involves a damping potential �, and geometric damping driven by the Hessian of
f . The suffix V refers to velocity and H to Hessian. They both enter the damping terms.
This allows one to cover different situations, in particular system (69) corresponds to
�.u/ D r

p
kukp for p > 1. To prove existence and uniqueness results for the associated

Cauchy problem, we make additional assumptions. We assume that f is convex, and
that the Hessian mapping H 3 x 7! r2f .x/ 2 L.H ;H / is Lipschitz continuous on
bounded sets, where L.H ;H / is equipped with the norm operator. Note that this property
implies that rf is Lipschitz continuous on bounded subsets of H (apply the mean value
theorem in the vectorial case). However, in the following statement, we formulate the two
hypotheses for the sake of clarity.

Theorem 10. Let f W H ! R be a convex function which is twice continuously differen-
tiable, and infH f > �1. Suppose that

(i) rf is Lipschitz continuous on bounded subsets of H ;

(ii) r2f is Lipschitz continuous on bounded subsets of H .

Let � W H ! R be a convex continuous damping function. Then, for any Cauchy data
.x0; x1/ 2 H � H , there exists a unique strong global solution x W Œ0;C1Œ ! H of
(ADIGE-VH) satisfying x.0/ D x0 and Px.0/ D x1.

Proof. To make the reading of the proof easier, we divide the proof into several steps.

Step 1: A priori estimate. Let us establish a priori energy estimates of solutions of (70).
After taking the scalar product of (70) with Px.t/, we get

d

dt
E.t/C h@�. Px.t//; Px.t/i C ˇhr2f .x.t// Px.t/; Px.t/i D 0;

where E.t/ WD f .x.t// � infH f C 1
2
k Px.t/k2 is the global energy. Since � is a damping

potential, the subdifferential inequality for convex functions, combined with �.0/ D 0,
gives

h@�. Px.t//; Px.t/i � �. Px.t//:

Since f is convex, r2f is positive semidefinite, which gives

hr
2f .x.t// Px.t/; Px.t/i � 0:
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Collecting the above results, we obtain the following decay property of the energy:

d

dt
E.t/C �. Px.t// � 0: (71)

Therefore, the energy is nonincreasing, which implies that, as long as the trajectory is
defined,

k Px.t/k2 � 2E.0/: (72)

Step 2: Hamiltonian formulation of (70). According to the Hamiltonian formulation
of (70), it is equivalent to solve the first-order system´

Px.t/ � u.t/ D 0;

Pu.t/C @�.u.t//Crf .x.t//C ˇr2f .x.t//u.t/ 3 0;

with the Cauchy data x.0/ D x0, u.0/ D x1. Set Z.t/ D .x.t/; u.t// 2 H �H :

The above system can be written equivalently as

PZ.t/C F.Z.t// 3 0; Z.0/ D .x0; x1/;

where F W H �H � H �H , .x; u/ 7! F.x; u/, is defined by

F.x; u/ D .0; @�.u//C .�u;rf .x/C ˇr2f .x/u/:

Hence F splits as F.x; u/ D @ˆ.x; u/CG.x; u/; where

ˆ.x; u/ D �.u/ and G.x; u/ D .�u; rf .x/C ˇr2f .x/u/: (73)

Therefore, it is equivalent to solve the following first-order differential inclusion with
Cauchy data:

PZ.t/C @ˆ.Z.t//CG.Z.t// 3 0; Z.0/ D .x0; x1/: (74)

Let us prove that the mapping .x; u/ 7! G.x; u/ is Lipschitz continuous on bounded
subsets of H �H . For any .x; u/ 2 H �H , set G.x; u/ D .�u;K.x; u// where

K.x; u/ WD rf .x/C ˇr2f .x/u:

Let LR be the Lipschitz constant of rf and r2f on the ball centered at the origin and
with radiusR, and setMR D supkxk�R kr

2f .x/k. Take .xi ; ui / 2H �H , i D 1; 2, with
k.xi ; ui /k � R. We have

K.x2; u2/ �K.x1; u1/ D rf .x2/ � rf .x1/C ˇ.r
2f .x2/u2 � r

2f .x1/u1/:

By the triangle inequality, and the local Lipschitz continuity of rf and r2f ,

kK.x2; u2/ �K.x1; u1/k � krf .x2/ � rf .x1/k C ˇkr
2f .x2/u2 � r

2f .x1/u2k

C ˇkr2f .x1/u2 � r
2f .x1/u1k

� LRkx2 � x1k C ˇLRkx2 � x1k ku2k C ˇMRku2 � u1k

� LR.1CRˇ/kx2 � x1k C ˇMRku2 � u1k:
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Therefore,

kG.x2; u2/ �G.x1; u1/k � LR.1CRˇ/kx2 � x1k C .1C ˇMR/ku2 � u1k; (75)

so .x; u/ 7! G.x; u/ is Lipschitz continuous on bounded subsets of H �H .

Step 3: Approximate dynamics. We proceed as in Theorem 3 (which corresponds to the
case ˇ D 0), and consider the approximate dynamics

Rx�.t/Cr��. Px�.t//C ˇr
2f .x�.t// Px�.t/Crf .x�.t// D 0; t 2 Œ0;C1Œ; (76)

which uses the Moreau–Yosida approximations .��/ of �. We will prove that the filtered
sequence .x�/ converges uniformly as �! 0 over bounded time intervals to a solution
of (70). The Hamiltonian formulation of (76) gives the first-order (in time) system´

Px�.t/ � u�.t/ D 0;

Pu�.t/Cr��.u�.t//Crf .x�.t//C ˇr
2f .x�.t//u�.t/ D 0;

with the Cauchy data x�.0/ D x0, u�.0/ D x1. Set Z�.t/ D .x�.t/; u�.t// 2 H �H :

The above system can be written equivalently as

PZ�.t/C F�.Z�.t// 3 0; Z�.t0/ D .x0; x1/;

where F� W H �H ! H �H , .x; u/ 7! F�.x; u/, is defined by

F�.x; u/ D .0;r��.u//C .�u;rf .x/C ˇr
2f .x/u/:

Hence F�.x; u/ D rˆ�.x; u/ C G.x; u/ where ˆ and G have been defined in (73).
Therefore, the approximate equation is equivalent to the first-order differential system
with Cauchy data

PZ�.t/Crˆ�.Z�.t//CG.Z�.t// D 0; Z�.0/ D .x0; x1/: (77)

Fix � > 0. According to the Lipschitz continuity of rˆ�, and the fact that G is Lipschitz
continuous on bounded sets, the operator rˆ� CG which governs (77) is Lipschitz con-
tinuous on bounded sets. As a consequence, the existence of a local solution to (77)
follows from the classical Cauchy–Lipschitz theorem. To pass from a local solution to
a global solution, we use the a priori estimate obtained in Step 1 of the proof. Note that
this estimate is valid for any damping potential, in particular for ��. In view of the Cauchy
data, and since f is bounded below, this implies that, on any bounded time interval, the
functions .x�/ and . Px�/ are bounded. By the property (9) of Yosida approximation, and
the property (iii) of the damping potential �, this implies that

kr��.x�.t//k � k.@�/
0.x�.t//k

is also bounded uniformly for t bounded. Moreover, in view of the local boundedness
assumption made on the gradient and the Hessian of f , we infer that rf .x�.t// and
r2f .x�.t// Px�.t/ are also bounded. By the constitutive equation (76), this in turn implies
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that . Rx�/ is also bounded. This implies that if a maximal solution is defined on a finite
time interval Œ0;T Œ, then the limits of x�.t/ and Px�.t/ as t! T exist. Hence, passing from
a local to a global solution is a classical argument. So for any � > 0 we have a unique
global solution of (76) with satisfies the Cauchy data x�.0/ D x0, Px�.0/ D x1.

Step 4: Passing to the limit as �! 0. Take T > 0 and �; � > 0. Consider the corres-
ponding solutions on Œ0; T �,

PZ�.t/Crˆ�.Z�.t//CG.Z�.t// D 0; Z�.0/ D .x0; x1/;

PZ�.t/Crˆ�.Z�.t//CG.Z�.t// D 0; Z�.0/ D .x0; x1/:

Subtracting the two equations, and taking the scalar product with Z�.t/ �Z�.t/, we get

1

2

d

dt
kZ�.t/ �Z�.t/k

2
C hrˆ�.Z�.t// � rˆ�.Z�.t//; Z�.t/ �Z�.t/i

C hG.Z�.t// �G.Z�.t//; Z�.t/ �Z�.t/i D 0: (78)

We now use the following ingredients:

(i) By the properties of Yosida approximation [53, Theorem 3.1], we have

hrˆ�.Z�.t// � rˆ�.Z�.t//; Z�.t/ �Z�.t/i

� �
�

4
krˆ�.Z�.t//k

2
�
�

4
krˆ�.Z�.t//k

2:

In view of the energy estimates, the sequence .Z�/ is uniformly bounded on Œ0; T �:

kZ�.t/k � CT :

From these properties we immediately infer that

krˆ�.Z�.t//k � sup
k�k�CT

k.@�/0.�/k DMT < C1;

because our assumption on � gives that .@�/0 is bounded on bounded sets. Therefore

hrˆ�.Z�.t// � rˆ�.Z�.t//; Z�.t/ �Z�.t/i � �
1
4
MT .�C �/:

(ii) Since G W H �H ! H �H is Lipschitz continuous on bounded sets, and .Z�/ is
uniformly bounded on Œ0; T �, there exists a constant LT such that

kG.Z�.t// �G.Z�.t//k � LT kZ�.t/ �Z�.t/k:

Combining the above results, and using the Cauchy–Schwarz inequality, we deduce from
(78) that

1

2

d

dt
kZ�.t/ �Z�.t/k

2
�
1

4
MT .�C �/C LT kZ�.t/ �Z�.t/k

2:
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Integrating this differential inequality and taking into account that Z�.0/ � Z�.0/ D 0,
elementary calculus gives

kZ�.t/ �Z�.t/k
2
�
MT

4LT
.�C �/.e2LT .t�t0/ � 1/:

Therefore, .Z�/ is a Cauchy sequence for uniform convergence on Œ0; T �, and hence it
converges uniformly. This means that x� and Px� converge uniformly on Œ0; T � to x and Px
respectively. That x is solution of (70) is proved in a similar way to Theorem 3. Just rely
on the classical chain rule d

dt
.rf .x�.t/// D r

2f .x�.t// Px�.t/ to pass to the limit in the
Hessian term.

9.3. Convergence based on the quasi-gradient approach

Our objective is to address, from the perspective of quasi-gradient systems, the system
(ADIGE-VH)

Rx.t/Cr�. Px.t//C ˇr2f .x.t// Px.t/Crf .x.t// D 0; (79)

as in Section 7.3. We assume that H D RN is a finite-dimensional Hilbert space, and that
the hypotheses of Theorems 7 and 10 hold. We follow the steps of the proof of Theorem 7.
By using the estimates in Step 1 of the proof of Theorem 10, we easily derive the first part
of the proof of Theorem 7, namely that the trajectory t 7! .x.t/; Px.t// in the phase space
RN � RN lies in the closed bounded set � D NB.0; R/ � NB.0; �/. According to Step 2
in the proof of Theorem 10, the Hamiltonian formulation of (79) gives the first-order
differential system

Pz.t/C F.z.t// D 0; (80)

where z.t/ D .x.t/; Px.t// 2 RN �RN , and F W RN �RN ! RN �RN is defined by

F.x; u/ D .�u;r�.u/Crf .x/C ˇr2f .x/u/:

Let us focus on the key point which is the angle condition (E� is defined as in Theorem 7).
We have

hrE�.x; u/; F.x; u/i

D h.rf .x/C �r2f .x/u; uC �rf .x//; .�u;r�.u/Crf .x/C ˇr2f .x/u/i:

After simplification, we get

hrE�.x; u/; F.x; u/i

D ��hr2f .x/u; ui C hu; r�.u/i C �hrf .x/; r�.u/i C �krf .x/k2

C ˇhuC �rf .x/;r2f .x/ui

� ��hr2f .x/u; ui C hu; r�.u/i C �hrf .x/; r�.u/i C �krf .x/k2

C �ˇhrf .x/;r2f .x/ui;
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where we have used the fact thatr2f .x/ is positive semidefinite. The only difference with
respect to the next step in the proof of Theorem 7 is that we need to estimate the extra term
�ˇhrf .x/;r2f .x/ui. We do this by writing �ˇhrf .x/;r2f .x/ui � ��

4
krf .x/k2 �

�ˇ2M 2kuk2, and get

hrE�.x; u/; F.x; u/i �

�
 � �M �

�

2
ı2 � �ˇ2M 2

�
kuk2 C

�

4
krf .x/k2: (81)

Take � small enough to satisfy  > �.M C ı2=2C ˇ2M 2/: Then

hrE�.x; u/; F.x; u/i � ˛0.kuk
2
C krf .x/k2/; (82)

with ˛0 WD min ¹ � �.M C ı2=2C ˇ2M 2/; �=4º. On the other hand, as in Theorem 7,

krE�.x; u/k � C1.kuk
2
C krf .x/k2/1=2;

kF.x; u/k � C2.kuk
2
C krf .x/k2/1=2;

where C2 D
p
4C 3ı2 C 3ˇ2M 2. Therefore

krE�.x; u/k kF.x; u/k � C1C2.kuk
2
C krf .x/k2/: (83)

Therefore, for ˛ WD ˛0
C1C2

; the angle condition hrE.z/; F.z/i � ˛krE.z/k kF.z/k is
satisfied on � . Let us summarize the above results.

Theorem 11. Let f W H ! R be a convex function which is twice continuously differen-
tiable, and such that infH f > �1. Suppose that

(i) rf is Lipschitz continuous on bounded subsets of H ;

(ii) r2f is Lipschitz continuous on bounded subsets of H .

Let E� W RN �RN ! R be defined by

E�.x; u/ WD
1
2
kuk2 C f .x/C �hrf .x/; ui for .x; u/ 2 RN �RN :

Suppose that E� satisfies the (KŁ) property. Let � W RN ! RC be a damping potential
which is differentiable, and which satisfies the following growth conditions:

(i) (local) there exist constants ; ı; � > 0 such that, for all u in RN with kuk � �,

�.u/ � kuk2 and kr�.u/k � ıkuk:

(ii) (global) there exist p � 1 and c > 0 such that �.u/ � ckukp for all u in RN .

Let x W Œ0;C1Œ! RN be a bounded solution of

Rx.t/Cr�. Px.t//C ˇr2f .x.t// Px.t/Crf .x.t// D 0:

Then

(i) x.t/! x1 as t !C1, where x1 2 critf ;
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(ii) Px 2 L1.0;C1IRN / and Px.t/! 0 as t !C1;

(iii) for � sufficiently small and t sufficiently large,

kx.t/ � x1k �
1

˛
�.E�.x.t/; u.t// �E�.x1; 0//

where � is the desingularizing function for E� at .x1; 0/, and ˛ enters the angle condi-
tion.

9.4. Numerical illustrations

We revisit the numerical examples of Section 5.3 where we introduce additional Hessian-
drive damping.

So, we take H D R, f .x/ D 1
2
jxj2, and �.u/ D 1

p
jujp with p > 1. Then equation

(ADIGE-VH) reads

Rx.t/C j Px.t/jp�2 Px.t/C ˇ Px.t/C x.t/ D 0: (84)
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Fig. 6. Evolution of the trajectories x.t/ (blue) and Px.t/ (red) of (84) for different values of ˇ.
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For ˇ > 0, we are in the framework of Theorem 4 with �.u/D ˇ
2
juj2C p

2
jujp . So we

have convergence at an exponential rate of x.t/ and Px.t/ to zero. This makes a big contrast
with the case ˇ D 0, for which we have convergence to zero, but with many oscillations
in the case of weak damping (p large). Note that even for very small ˇ > 0, we have a
rapid stabilization of the trajectory towards the origin. On the other hand, taking large ˇ
is not beneficial: we can observe in Figure 6 that the convergence deteriorates in this case.
Indeed, since the damping attached to j Px.t/jp�2 Px.t/ is negligible for large p compared
to the damping attached to ˇ Px.t/, the “optimal” value of ˇ is close to the optimal value
for (HBF). So, by Theorem 2, it is close to 2

p
� where � is the coefficient of strong

convexity of f (see Theorem 2). In our situation, this gives ˇ � 2.

9.5. Link with the regularized Newton method

Let us specify the link between our study and Newton’s method for solvingAx 3 0, where
A is a general maximally monotone operator (for convex minimization take A D @f ). To
overcome the ill-posedness of the continuous Newton method, the following first-order
evolution system was studied by Attouch–Svaiter [37]:´

v.t/ 2 A.x.t//;

.t/ Px.t/C ˇ Pv.t/C v.t/ D 0:

The system can be considered as a continuous version of the Levenberg–Marquardt sys-
tem, which acts as a regularization of the Newton method. Under a fairly general assump-
tion on the regularization parameter .t/, this system is well-posed and generates traject-
ories that converge weakly to equilibria. Parallel results have been obtained for the asso-
ciated proximal algorithms obtained by implicit temporal discretization [1,32,36]. Form-
ally, whenA is differentiable, this system reads .t/ Px.t/C ˇ d

dt
.A.x.t///CA.x.t//D 0:

When A D rf we obtain

.t/ Px.t/C ˇr2f .x.t// Px.t/Crf .x.t// D 0: (85)

The system (ADIGE-VH) considered in the previous section can be seen as an inertial ver-
sion of (85). Most interestingly, Attouch–Redont–Svaiter developed in [36] a closed-loop
version of the above results. They showed the convergence of the trajectories generated
by the closed-loop control system when 0 < p < 1, where A is a general maximally
monotone operator: 8̂̂<̂

:̂
v.t/ 2 A.x.t//;

kv.t/kp Px.t/C Pv.t/C v.t/ D 0;

x.0/ D x0; v.0/ 2 A.x0/; v0 ¤ 0:

:

For optimization problems, this naturally suggests considering autonomous inertial sys-
tems where the damping coefficient yields closed-loop control of the gradient of f .
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A first answer to this question has been obtained by Lin–Jordan [79] who considered
the autonomous system

Rx.t/C .t/ Px.t/C ˇ.t/r2f .x.t// Px.t/C b.t/rf .x.t// D 0; (86)

where  , ˇ and b are defined by the following formulas:.8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

j�.t/jpkrf .x.t//kp�1 D �;

a.t/ D 1
4
.
R t
0

p
�.s/ ds C c/2;

.t/ D 2 Pa.t/
a.t/
�
Ra.t/
Pa.t/
;

ˇ.t/ D
�
Pa.t/
a.t/

�2
;

b.t/ D Pa.t/. Pa.t/CRa.t//
a.t/

:

(87)

As a specific feature, the damping coefficients are expressed with the help of �.t/
which is equal to a power of the inverse of the norm of the gradient of f . The authors
give some interesting nontrivial convergence rates of values. Owing to the presence of the
Hessian-driven damping term, they show fast convergence to zero of gradient norms.

10. Closed-loop damping involving the velocity and the gradient

Let us consider the following system, where the damping term @�. Px.t/ C ˇrf .x.t//

involves both the velocity vector and the gradient of the potential function f :

(ADIGE-VGH) Rx.t/C @�
�
Px.t/C ˇrf .x.t/

�
C ˇr2f .x.t// Px.t/Crf .x.t// 3 0:

(88)

The parameter ˇ � 0 is attached to the geometric damping induced by the Hessian. As
previously, � is a damping potential function. The suffixes V,G,H make respectively ref-
erence to the Velocity, the Gradient of f , and the Hessian of f , which enter the damping
terms of the above dynamic. This model makes it possible to encompass several situations.

�When ˇ D 0, we recover the closed loop controled system

Rx.t/C @�. Px.t//Crf .x.t// D 0; (89)

studied in Sections 3 to 7. So studying (88) can be viewed as an extension of our previous
study. Still, we will see that taking ˇ > 0 yields several favorable properties.

�When �.u/ D 
2
kuk2, we obtain the system

Rx.t/C  Px.t/C ˇr2f .x.t// Px.t/C .1C ˇ/rf .x.t// D 0; (90)

studied in Section 9, and which was introduced by Alvarez–Attouch–Bolte–Redont
in [11].
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10.1. Existence and uniqueness results

A key property for studying (88) is the following equivalent formulation, different from
the Hamiltonian formulation, and whose proof is immediate. Just introduce the new vari-
able u.t/ WD Px.t/C ˇrf .x.t//.

Proposition 6. The following are equivalent:

(i) Rx.t/C @�. Px.t/C ˇrf .x.t///C ˇr2f .x.t// Px.t/Crf .x.t// 3 0:

(ii)

´
Px.t/C ˇrf .x.t// � u.t/ D 0;

Pu.t/C @�.u.t//Crf .x.t// 3 0:

A major interest of the formulation (ii) is that it is a first-order system in time and space
(without occurrence of the Hessian). As such, it requires fewer regularity assumptions
on f than in Theorem 10.

Theorem 12. Let f WH !R be a convex C2 function such that infH f > �1. Suppose
that rf is Lipschitz continuous on bounded subsets of H . Let � W H ! R be a convex
continuous damping function. Then, for any Cauchy data .x0; x1/ 2 H �H , there exists
a unique strong global solution x W Œ0;C1Œ!H of (ADIGE-VGH) satisfying x.0/D x0
and Px.0/ D x1.

Proof. The structure of the proof being similar to Theorem 10, we only develop the ori-
ginal aspects.

Step 1: A priori estimate. Note that (88) can be equivalently written as

d

dt

�
Px.t/C ˇrf .x.t//

�
C @�

�
Px.t/C ˇrf .x.t//

�
Crf .x.t// 3 0: (91)

After taking the scalar product of (91) with Px.t/C ˇrf .x.t//, we get

1

2

d

dt
k Px.t/C ˇrf .x.t//k2 C

˝
@�
�
Px.t/C ˇrf .x.t//

�
; Px.t/C ˇrf .x.t//

˛
C hrf .x.t//; Px.t/C ˇrf .x.t//i D 0: (92)

Since � is a damping potential, the subdifferential inequality for convex functions gives˝
@�
�
Px.t/C ˇrf .x.t//

�
; Px.t/C ˇrf .x.t//

˛
� �

�
Px.t/C ˇrf .x.t//

�
:

Collecting the above results, we obtain

d

dt

�
1
2
k Px.t/C ˇrf .x.t//k2 C f .x.t// � infH f

�
C �

�
Px.t/C ˇrf .x.t//

�
C ˇkrf .x.t//k2 � 0: (93)

Therefore, the energy-like function

t 7! 1
2
k Px.t/C ˇrf .x.t//k2 C f .x.t// � infH f is nonincreasing: (94)
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This implies that, as long as the trajectory is defined,

k Px.t/C ˇrf .x.t//k2 � C WD kx1 C ˇrf .x0/k
2
C 2.f .x0/ � infH f /: (95)

From this, we will obtain a bound on the trajectory. We have

Px.t/C ˇrf .x.t// D k.t/

with kk.t/k �
p
C . Take the scalar product of the above equation with x.t/ � x0:

1

2

d

dt
kx.t/ � x0k

2
C ˇhrf .x.t// � rf .x0/; x.t/ � x0i C ˇhrf .x0/; x.t/ � x0i

D hk.t/; x.t/ � x0i:

By the convexity of f , and hence the monotonicity of rf , and by the Cauchy–Schwarz
inequality,

1

2

d

dt
kx.t/ � x0k

2
� .kk.t/k C ˇkrf .x0/k/kx.t/ � x0k: (96)

According to the Gronwall inequality, and kk.t/k �
p
C , we obtain

kx.t/ � x0k � t
�
kx1 C ˇrf .x0/k C

p
2.f .x0/ � infH f /C ˇkrf .x0/k

�
: (97)

Step 2: Frst-order formulation of (88). According to Proposition 6, it is equivalent to
solve the first-order system´

Px.t/C ˇrf .x.t// � u.t/ D 0;

Pu.t/C @�.u.t//Crf .x.t// 3 0;

with the Cauchy data x.0/D x0, u.0/D x1. SetZ.t/D .x.t/;u.t// 2H �H : The above
system can be written equivalently as

PZ.t/C F.Z.t// 3 0; Z.0/ D .x0; x1/;

where F W H �H � H �H , .x; u/ 7! F.x; u/, is defined by

F.x; u/ D .0; @�.u//C .ˇrf .x/ � u;rf .x//:

Hence F splits as F.x; u/ D @ˆ.x; u/CG.x; u/, where

ˆ.x; u/ D �.u/ and G.x; u/ D .ˇrf .x/ � u;rf .x//: (98)

Therefore, it is equivalent to solve the following first-order differential inclusion with
Cauchy data:

PZ.t/C @ˆ.Z.t//CG.Z.t// 3 0; Z.0/ D .x0; x1/: (99)

By the local Lipschitz assumption on the gradient of f , we immediately see that .x;u/ 7!
G.x; u/ is Lipschitz continuous on bounded subsets of H �H .
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Step 3: Approximate dynamics. We consider the approximate dynamics

Rx�.t/Cr��
�
Px�.t/C ˇrf .x�.t//

�
C ˇr2f .x�.t// Px�.t/Crf .x�.t// D 0; t 2 Œ0;C1Œ; (100)

which uses the Moreau–Yosida approximations .��/ of �. We will prove that the filtered
sequence .x�/ converges uniformly as �! 0 over bounded time intervals to a solution
of (88). The first-order formulation of (100) gives the system´

Px�.t/C ˇrf .x�.t// � u�.t/ D 0;

Pu�.t/Cr��.u�.t//Crf .x�.t// D 0;

with the Cauchy data x�.0/ D x0, u�.0/ D x1. Set Z�.t/ D .x�.t/, u�.t// 2 H �H :

The above system can be written equivalently as

PZ�.t/C F�.Z�.t// 3 0; Z�.t0/ D .x0; x1/;

where F� W H �H ! H �H , .x; u/ 7! F�.x; u/, is defined by

F�.x; u/ D .0;r��.u//C .ˇrf .x/ � u;rf .x//:

Hence F�.x; u/ D rˆ�.x; u/ C G.x; u/ where ˆ and G have been defined in (98).
Therefore, the approximate equation is equivalent to the first-order differential system
with Cauchy data

PZ�.t/Crˆ�.Z�.t//CG.Z�.t// D 0; Z�.0/ D .x0; x1/: (101)

Fix � > 0 fixed. By the Lipschitz continuity of rˆ�, and the fact that G is Lipschitz
continuous on bounded sets, the sum operator rˆ�CG which governs (101) is Lipschitz
continuous on bounded sets. As a consequence, the existence of a local solution to (101)
follows from the Cauchy–Lipschitz theorem. To pass from a local solution to a global
solution, we use the a priori estimates (95) and (97) obtained in Step 1 of the proof. Note
that these estimates are valid for any damping potential, in particular for ��. Suppose that
a maximal solution is defined on a finite time interval Œ0; T Œ. From (97) we first find that
x�.t/ remains bounded on Œ0; T Œ. Then, using (95) and the fact that the gradient of f is
Lipschitz continuous on the bounded sets, we infer that Px�.t/ is also bounded on Œ0; T Œ.
By the property (9) of Yosida approximation, the property (iii) of the damping potential �,
and (95), this implies thatr��� Px�.t/C ˇrf .x�.t//� � .@�/0� Px�.t/C ˇrf .x�.t//�
is also bounded on Œ0; T Œ. Moreover, by the local boundedness assumption on the gradi-
ent, and the boundedness of x�.t/ and Px�.t/, we deduce that r2f .x�.t// Px�.t/ is also
bounded. The constitutive equation (76) then implies that . Rx�/ is also bounded. Hence
the limits of x�.t/ and Px�.t/ as t ! T exist. Passing from a local to a global solution is
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then a classical argument. So, for any � > 0 we have a unique global solution of (76) with
Cauchy data x�.0/ D x0, Px�.0/ D x1.

Step 4: Passing to the limit as �! 0. Take T > 0 and �; � > 0. Consider the corres-
ponding solutions on Œ0; T �:

PZ�.t/Crˆ�.Z�.t//CG.Z�.t// D 0; Z�.0/ D .x0; x1/;

PZ�.t/Crˆ�.Z�.t//CG.Z�.t// D 0; Z�.0/ D .x0; x1/:

Subtracting these equations, and taking the scalar product with Z�.t/ �Z�.t/, we get

1

2

d

dt
kZ�.t/ �Z�.t/k

2
C hrˆ�.Z�.t// � rˆ�.Z�.t//; Z�.t/ �Z�.t/i

C hG.Z�.t// �G.Z�.t//; Z�.t/ �Z�.t/i D 0: (102)

We now use the following ingredients:

(i) By the general properties of Yosida approximation [53, Theorem 3.1], we have

hrˆ�.Z�.t// � rˆ�.Z�.t//; Z�.t/ �Z�.t/i

� �
�

4
krˆ�.Z�.t//k

2
�
�

4
krˆ�.Z�.t//k

2:

According to the energy estimates, the sequence .Z�/ is uniformly bounded on Œ0; T �; let

kZ�.t/k � CT :

From these properties we immediately infer that

krˆ�.Z�.t//k � sup
k�k�CT

k.@�/0.�/k DMT < C1

because our assumption on � gives that .@�/0 is bounded on bounded sets. Therefore

hrˆ�.Z�.t// � rˆ�.Z�.t//; Z�.t/ �Z�.t/i � �
1
4
MT .�C �/:

(ii) Since G W H �H ! H �H is Lipschitz continuous on bounded sets, and .Z�/ is
uniformly bounded on Œ0; T �, we deduce that there exists a constant LT such that

kG.Z�.t// �G.Z�.t//k � LT kZ�.t/ �Z�.t/k:

Combining the above results, and using the Cauchy–Schwarz inequality, we deduce from
(78) that

1

2

d

dt
kZ�.t/ �Z�.t/k

2
�
1

4
MT .�C �/C LT kZ�.t/ �Z�.t/k

2:

We now integrate this differential inequality. Elementary calculus using Z�.0/ � Z�.0/
D 0 gives

kZ�.t/ �Z�.t/k
2
�
MT

4LT
.�C �/.e2LT .t�t0/ � 1/:
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Therefore, the filtered sequence .Z�/ is a Cauchy sequence for uniform convergence on
Œ0; T �, and hence it converges uniformly. This means that x� and Px� converge uniformly
on Œ0; T � to x and Px respectively. That x is solution of (88) is proved as in Theorem 3.
Just rely on the property d

dt
.rf .x�.t/// D r

2f .x�.t// Px�.t/ to pass to the limit in the
Hessian term.

10.2. Convergence properties

We have the following convergence properties of trajectories of the system (88) with
closed-loop damping involving both the velocity and the gradient.

Theorem 13. Let f WH!R be a convex C2 function such that argminH f ¤;. Suppose
that rf is Lipschitz continuous on bounded subsets of H . Let ˇ > 0. Let � W H ! R
be a convex continuous damping function. Then, for any solution x W Œ0;C1Œ! H of
(ADIGE-VGH) we have

(i) the energy-like function t 7! 1
2
k Px.t/C ˇrf .x.t//k2 C f .x.t// is nonincreasing;

(ii)
R C1
0

�
�
Px.t/C ˇrf .x.t//

�
dt < C1;

(iii)
R C1
0
krf .x.t//k2 dt < C1.

Suppose moreover that there exists r > 0 such that �.u/ � rkuk for all u 2 H . Then

(a) the trajectory x.t/ converges weakly as t!C1, and its limit belongs to argminH f ;

(b) Px.t/ and rf .x.t// converge strongly to zero as t !C1.

Proof. Items (i) to (iii) are direct consequences of the estimate (93) established in Step 1
of the proof of Theorem 12.

Let us now make the additional assumption �.u/ � rkuk. By (ii),Z C1
0

k Px.t/C ˇrf .x.t//k dt �
1

r

Z C1
0

�
�
Px.t/C ˇrf .x.t//

�
dt < C1:

Therefore, x.�/ is a solution of the nonautonomous steepest descent equation

Px.t/C ˇrf .x.t// D k.t/

with k 2 L1.0;C1IH /. Theorem 3.11 of [53] gives the convergence of the trajectory to
a point in argminH f . In particular, the trajectory remains bounded. In view of (i), Px.t/ is
also bounded. Returning to the constitutive equation (88), we deduce that the acceleration
Rx.t/ is also bounded. This implies that �.t/ D Px.t/C ˇrf .x.t// satisfiesZ C1

0

k�.t/k dt < C1 and kP�.t/k �M

for some M > 0. This classically implies that �.t/ D Px.t/C ˇrf .x.t// tends to zero as
t !C1. From (iii), the same argument applied to rf .x.t// shows that rf .x.t// tends
to zero as t ! C1. As the difference of the previous two quantities, Px.t/ tends to zero
as t !C1.
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Indeed, Theorem 3.11 of [53] was proved under the additional assumption that f is
inf-compact. Recent progress based on the Opial lemma [83] and the Bruck theorem [54]
allows one to extend it to general convex functions f , without making this additional
assumption. This is made precise below.

Proposition 7. Let f WH ! R[ ¹C1º be a convex lower semicontinuous proper func-
tion such that argminH f ¤;, and let k 2L1.0;C1IH /. Suppose that x W Œ0;C1Œ!H

is a strong global solution of

Px.t/C @f .x.t// 3 k.t/:

Then the trajectory x.t/ converges weakly as t ! C1, and its limit belongs to
argminH f .

Proof. Take � > 0. Since k 2L1.0;C1IH /, there exists T� > 0 such that
R C1
T�
kk.t/kdt

< �. Consider the solution v W Œ0;C1Œ! H of

Pv.t/Crf .v.t// 3 0; v.0/ D x.T�/:

By properties of contraction semigroups we have, for all t � T� ,

kx.t/ � v.t � T�/k � kx.T�/ � v.0/k C

Z t

T�

kk.t/k dt � �: (103)

Take � 2 H . By the Cauchy–Schwarz inequality,

jhx.t/ � v.t � T�/; �ij � �k�k:

By the triangle inequality, we deduce that, for all t; t 0 � T� ,

jhx.t/; �i � hx.t 0/; �ij � jhv.t � T�/ � v.t
0
� T�/; �ij C 2�k�k:

According to the Bruck theorem, we know that the weak limit of v.t/ exists. Passing to
the limsup on the above inequality we get

lim sup
t;t 0!C1

jhx.t/; �i � hx.t 0/; �ij � lim sup
t;t 0!C1

jhv.t � T�/� v.t
0
� T�/; �ij C 2�k�k � 2�k�k:

This being true for any � > 0, we deduce that the limit of hx.t/; �i exists, which implies
that the weak limit of x.t/ exists as t ! C1; let x1 be that limit. Passing to the lower
limit in (103), by the lower semicontinuity of the norm for the weak topology, we deduce
that x1 � lim

t!C1
v.t/

 � �: (104)

Since the weak limit of v.t/ belongs to argminH f , we deduce that dist.x1; argminH f /

� �: This being true for any � > 0, and since argminH f is closed, we conclude that
x1 2 argminH f .
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10.3. An approach based on Opial’s lemma

Here we will prove the weak convergence of the trajectory x to a minimizer of f , based
on the continuous version of the Opial lemma [83]. As in the proof of Theorem 13, items
(i) to (iii) hold. Assume �.u/ � rkuk for all u 2 H . According to item (ii) we obtainZ C1

0

k Px.t/C ˇrf .x.t//k dt < C1:

Equivalently, we have
Px.t/C ˇrf .x.t// D k.t/

with k 2L1.0;C1IH /. Let us prove that x is bounded. Relying on Step 1 of the proof of
Theorem 12, notice that (96) holds for a generic x0 2H . Taking an arbitrary z 2 argminf ,
we deduce from (96) that

1

2

d

dt
kx.t/ � zk2 � kk.t/k � kx.t/ � zk: (105)

Integrating we obtain

1

2
kx.T / � zk2 �

1

2
kx0 � zk

2
C

Z T

0

kk.t/k � kx.t/ � zk dt 8T � 0: (106)

Now apply [53, Lemme A.5, p. 157] to conclude that

kx.T / � zk � kx0 � zk C

Z T

0

kk.t/k dt 8T � 0:

Since k 2 L1.0;C1IH / we see that x is bounded. Now we can repeat the arguments in
the proof of Theorem 13 to conclude that limt!1 Px.t/ D limt!1 rf .x.t// D 0, so we
omit the proof. Let us pass forward and see how the Opial lemma [83] can be applied.

Since x is bounded and k 2L1.0;C1IH /, we see from (105) that limt!1 kx.t/�zk

exists, hence the first condition in the Opial lemma is fulfilled. To check the second condi-
tion in the Opial lemma is standard. Take x 2H and tn!C1 such that x.tn/ converges
weakly to x as n!C1. The convexity of f yields, for all x 2 H and all n 2 N,

f .x/ � f .x.tn//C hrf .x.tn//; x � x.tn/i:

Fixing x and taking the limit as n ! C1, and relying on the strong convergence of
rf .x.t// to 0 and the boundedness of x, we derive

f .x/ � lim inf
n!C1

f .x.tn// � f .x/;

where the last inequality follows from the weak lower semicontinuity of the convex
function f . Since the last inequality holds for an arbitrary x, we obtain x 2 argmin f .
Therefore, the second condition in the Opial lemma is fulfilled as well.
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10.4. A finite stabilization property

As already mentioned, (ADIGE-VGH) can be equivalently written as

Pu.t/C @�.u.t// 3 �rf .x.t//

where u.t/ D Px.t/C ˇrf .x.t//. After taking the scalar product of the above equation
with u.t/, we get

1

2

d

dt
ku.t/k2 C h@�.u.t//; u.t/i D �hrf .x.t//; u.t/i:

When �.u/ � rkuk, by the Cauchy–Schwarz inequality we get

1

2

d

dt
ku.t/k2 C rku.t/k � krf .x.t//k ku.t/k:

Since rf .x.t// converges strongly to zero as t ! C1 (that is the last point of The-
orem 13), for t large enough we get krf .x.t//k � 1

2
r , and hence

1

2

d

dt
ku.t/k2 C

1

2
rku.t/k � 0:

This yields u.t/� 0 after a finite time. Let us summarize the above results in the following
proposition.

Proposition 8. Under the hypothesis of Theorem 13, and when �.u/ � rkuk for some
r > 0, after a finite time we have

Px.t/C ˇrf .x.t// � 0;

i.e. the trajectory follows the steepest descent dynamic.

10.5. The case of f strongly convex: exponential convergence rate

Theorem 14. Let f W H ! R be a  -strongly convex C2 function .for some  > 0/

whose gradient is Lipschitz continuous on bounded sets. Let x be the unique minimizer of
f . Let � W H ! RC be a damping potential which is differentiable, and whose gradient
is Lipschitz continuous on bounded subsets of H . Suppose that � satisfies the following
growth conditions:

(i) (local) there exist constants ˛; � > 0 such that, for all u in H with kuk � �,

hr�.u/; ui � ˛kuk2:

(ii) (global) there exist p � 1 and r > 0 such that �.u/ � rkukp for all u in H .

Let ˇ > 0. Let x W Œ0;C1Œ! H be a solution of (ADIGE-VGH)

Rx.t/Cr�. Px.t/C ˇrf .x.t//C ˇr2f .x.t// Px.t/Crf .x.t// D 0: (107)
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Then we have exponential convergence rate to zero as t ! C1 for f .x.t// � f .x/,
kx.t/ � xk and k Px.t/C ˇrf .x.t//k. As a consequence, we also have exponential con-
vergence rate to zero for k Px.t/k and krf .x.t//k.

Proof. Since f is strongly convex, f is a coercive function. By the decrease property
of the global energy (see (94) and Theorem 13 (i)), f .x.t// is bounded from above, and
hence the trajectory x is bounded. Theorem 13 (ii) and the global growth assumption on �
imply that, for some p � 1,Z C1

0

k Px.t/C ˇrf .x.t//kp dt < C1:

By a similar argument to the proof of Theorem 13 (where we argued with p D 1) we
deduce that limt!C1 k Px.t/C ˇrf .x.t//k D 0. Therefore, for t sufficiently large,

k Px.t/C ˇrf .x.t//k � �:

From (92) and the local property (i) we derive

d

dt

�
1
2
k Px.t/C ˇrf .x.t//k2 C f .x.t// � f .x/

�
C ˛k Px.t/C ˇrf .x.t//k2 C ˇkrf .x.t//k2 � 0: (108)

Since Px.�/C ˇrf .x.�// is bounded, let L > 0 be the Lipschitz constant of r� on a ball
that contains the vectors Px.t/C ˇrf .x.t// for all t � 0. Since r�.0/ D 0 we have, for
all t � 0,

kr�. Px.t//C ˇrf .x.t//k � Lk Px.t/C ˇrf .x.t//k: (109)

Using successively (107), (109) and (32), we obtain

d

dt
hx.t/ � x; Px.t/C ˇrf .x.t//i

D k Px.t/k2 C ˇ
d

dt
.f .x.t// � f .x//

C hx.t/ � x;�r�. Px.t/C ˇrf .x.t/// � rf .x.t//i

� k Px.t/k2 C ˇ
d

dt
.f .x.t// � f .x//C

L2

2
k Px.t/C ˇrf .x.t//k2

C


2
kx.t/ � xk2 C hx � x.t/;rf .x.t//i

� k Px.t/k2 C ˇ
d

dt
.f .x.t// � f .x//C

L2

2
k Px.t/C ˇrf .x.t//k2

C f .x/ � f .x.t//: (110)

Take now " > 0 (to be specified below), and define

h";ˇ .t/ WD
1
2
k Px.t/C ˇrf .x.t//k2 C .1 � ˇ"/

�
f .x.t// � f .x/

�
C "hx.t/ � x; Px.t/C ˇrf .x.t//i:
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Multiplying (110) by " and adding the result to (108), we derive

Ph";ˇ .t/ � �˛k Px.t/C ˇrf .x.t//k
2
� ˇkrf .x.t//k2 C "k Px.t/k2

C
"L2

2
k Px.t/C ˇrf .x.t//k2 � ".f .x.t// � f .x//:

We use the inequality

"k Px.t/k2 � 2"k Px.t/C ˇrf .x.t//k2 C 2"ˇ2krf .x.t//k2 (111)

to obtain
Ph";ˇ .t/ � �

�
˛ � 2" �

"L2

2

�
k Px.t/C ˇrf .x.t//k2

� .ˇ � 2"ˇ2/krf .x.t//k2 � ".f .x.t// � f .x//: (112)

Choose " > 0 small enough such that C1 WD min ¹˛ � 2" � "L2

2
; ˇ � 2"ˇ2; "º > 0. We

obtain

Ph";ˇ .t/ � �C1
�
k Px.t/C ˇrf .x.t//k2 C krf .x.t//k2 C f .x.t// � f .x/

�
: (113)

Further, we have

h";ˇ .t/ D
1
2
k Px.t/C ˇrf .x.t//k2 C "ˇ

�
hx.t/ � x;rf .x.t//i C f .x/ � f .x.t//

�
C f .x.t// � f .x/C "hx.t/ � x; Px.t/i: (114)

Since f is strongly convex, we have (see for example [80, Theorem 2.1.10])

hx.t/ � x;rf .x.t//i C f .x/ � f .x.t// �
1

2
krf .x.t//k2: (115)

Moreover, from (33) and (111) we get

f .x.t// � f .x/C "hx.t/ � x; Px.t/i � f .x.t// � f .x/C
"

2
kx.t/ � xk2 C

"

2
k Px.t/k2

�

�
1C

"



��
f .x.t// � f .x/

�
C "k Px.t/C ˇrf .x.t//k2 C "ˇ2krf .x.t//k2:

From this, (115) and (114) we get

h";ˇ .t/ �

�
1

2
C "

�
k Px.t/C ˇrf .x.t//k2 C

�
"ˇ

2
C "ˇ2

�
krf .x.t//k2

C

�
1C

"



��
f .x.t// � f .x/

�
� C2.k Px.t/C ˇrf .x.t//k

2
C krf .x.t//k2 C f .x.t// � f .x//;

where C2 WD max ¹1
2
C "; "ˇ

2
C "ˇ2; 1C "


º > 0. Combining this inequality with (113)

yields
Ph";ˇ .t/C C3h";ˇ .t/ � 0;
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with C3 WD C1
C2
> 0. Then, the Gronwall inequality implies

h";ˇ .t/ � h";ˇ .0/e
�C3t : (116)

Finally, from (33) and the Cauchy–Schwarz inequality we have

h";ˇ .t/ �
1

2
k Px.t/C ˇrf .x.t//k2 C .1 � ˇ"/

�
f .x.t// � f .x/

�
�
"

2
kx.t/ � xk2 �

"

2
k Px.t/C ˇrf .x.t//k2

�
1 � "

2
k Px.t/C ˇrf .x.t//k2 C

�
1 � ˇ" �

"



��
f .x.t// � f .x/

�
:

Therefore, by taking " small enough, we obtain

h";ˇ .t/ � C4
�
k Px.t/C ˇrf .x.t//k2 C f .x.t// � f .x/

�
(117)

with C4 WD min ¹1�"
2
; 1 � ˇ" � "


º > 0. Combining this inequality with (116) and (33),

we obtain an exponential convergence rate to zero for f .x.t// � f .x/, kx.t/ � xk and
k Px.t/C ˇrf .x.t//k.

Since rf is Lipschitz continuous on bounded sets, and x.t/ converges to x, there
exists Lf > 0 such that for all t � 0,

krf .x.t//k D krf .x.t// � rf .x/k � Lf kx.t/ � xk:

Hence the exponential convergence rate of kx.t/ � xk to zero yields the same property
for krf .x.t//k. By combining this last property with the exponential convergence rate
of k Px.t/C ˇrf .x.t//k to zero, we finally infer that k Px.t/k converges exponentially to
zero when t !C1.

Remark 7. Similar rates have been reported in [24, Theorem 4.2] for the heavy ball
method with Hessian-driven damping.

Remark 8. It is possible to derive similar exponential rates also for the system (70), but
for a restrictive choice of ˇ > 0. To see this, notice that for � > 0 we have

d

dt

�
1

2
k Px.t/C ˇrf .x.t//k2 C f .x.t// � f .x/

�
D �h Px.t/;r�. Px.t//i � ˇhr�. Px.t//;rf .x.t//i � ˇkrf .x.t//k2

� �˛k Px.t/k2 C
ˇ�

2
krf .x.t//k2 C

ˇL2

2�
k Px.t/k2 � ˇkrf .x.t//k2

D �

�
˛ �

ˇL2

2�

�
k Px.t/k2 � ˇ

�
1 �

�

2

�
krf .x.t//k2:

10.6. Further convergence results based on the quasi-gradient approach

Let us consider the dynamical system (ADIGE-VGH) in case � is differentiable, f W
RN ! R is a C2 function (possibly nonconvex) whose gradient is Lipschitz continuous
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on bounded sets, and such that infRN f > �1:

Rx.t/Cr�
�
Px.t/C ˇrf .x.t//

�
C ˇr2f .x.t// Px.t/Crf .x.t// D 0: (118)

The considerations are similar to those of Section 7.3 and Theorem 7.
According to Step 2 in the proof of Theorem 12, the first-order reformulation is

Pz.t/C F.z.t// D 0; (119)

where z.t/ D .x.t/; u.t// 2 RN �RN , and F W RN �RN ! RN �RN is defined by

F.x; u/ D .ˇrf .x/ � u;r�.u/Crf .x//:

Let us check the angle condition (E� is defined as in Theorem 7). We have

hrE�.x; u/; F.x; u/i

D h.rf .x/C �r2f .x/u; uC �rf .x//; .ˇrf .x/ � u;r�.u/Crf .x//i:

After simplification, we get

hrE�.x; u/; F.x; u/i D ��hr
2f .x/u; ui C hu;r�.u/i C �hrf .x/;r�.u/i

C �krf .x/k2 C ˇkrf .x/k2 C �ˇhrf .x/;r2f .x/ui:

We estimate the last term by writing

�ˇhrf .x/;r2f .x/ui � �
�

4
krf .x/k2 � �ˇ2M 2

kuk2

and get (as in the proof of Theorem 7)

hrE�.x; u/; F.x; u/i �

�
 � �M �

�

2
ı2 � �ˇ2M 2

�
kuk2 C

�
�

4
C ˇ

�
krf .x/k2:

(120)

We also have
kF.x; u/k � C2.kuk

2
C krf .x/k2/1=2;

where C2 D
p
2.2C ˇ2 C ı2/. The rest can be done along the lines of the proof of The-

orem 7.

11. Conclusion and perspectives

In this article, from the point of view of optimization, we put forward some classical and
new properties concerning the asymptotic convergence of autonomous damped inertial
dynamics. From a control point of view, the damping terms of these dynamics can be
considered as closed-loop controls of the current data: position, speed, gradient of the
objective function, Hessian of the objective function, and combinations of these objects.
Let us cite some of the main results and advantages of the autonomous approach compared
to the nonautonomous approach, where damping involves parameters given from the start
as functions of time.
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11.1. Pros

� Autonomous systems are easy to implement. It is not necessary to adjust the damping
coefficient as is the case for nonautonomous systems.

� When the function to be minimized is strongly convex, there is convergence at an expo-
nential rate, and this is valid for a large class of damping potentials.

� We were able to exploit the quasi-gradient structure of the autonomous damped dynam-
ics and combine them with Kurdyka–Łojasiewicz theory to obtain convergence rates
for a large class of functions f , possibly nonconvex. This is specific to the autonomous
case because the theories mentioned above are not developed in the nonautonomous
case.

� Hessian-driven damping naturally appears within the framework of autonomous sys-
tems. It notably improves the theoretical and numerical behavior of the trajectories, by
reducing the oscillatory aspects. Its introduction into the algorithms does not change
their numerical complexity (it makes appear the difference of the gradient at two con-
secutive steps). This makes this geometric damping successful; several recent articles
have been devoted to it.

� The closed-loop approach clearly distinguishes between strong and weak damping
effects, and the transition between them. It also shows the replacement of the theory
of convergence by the notion of attractor when damping becomes too weak.

� We have introduced a new autonomous system where damping involves both the speed
and the gradient of f , and which benefits from very good convergence properties. At
the beginning of time it takes advantage of the inertial effect, then after a finite time
it turns into a steepest descent dynamic, thus avoiding oscillatory aspects. This regime
change has some similarities with the restart method, and also the recent work of Poon–
Liang [88] on adaptive acceleration.

� The closed-loop approach makes it possible to make the link with different fields, such
as PDE and control theory, where the stabilization of oscillating systems is a central
issue. Although the simple mathematical framework chosen in this article (single func-
tion space H , differentiable objective function f ) does not make it possible to deal
directly with the associated PDEs, the Lyapunov analysis that we have developed can
naturally be extended to this framework.

� We have developed an inertial algorithm which shares good convergence properties
with the related continuous dynamics, in the case of the quasi-gradient and Kurdyka–
Łojasiewicz approach. Note that the quasi-gradient approach reflects relative errors in
the algorithms, and therefore gives a lot of flexibility. It is this approach that has made
it possible to deal with many different algorithms in Attouch–Bolte–Svaiter [17] in
the nonconvex nonsmooth case. It would be interesting to develop these aspects for
splitting algorithms, such as proximal gradient algorithms, regularized Gauss–Seidel
algorithms, and PALM (see also [51] for a continuous-times approach to structured
optimization problems).
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11.2. Cons

(1) To date, we do not know, in the autonomous case, the equivalent of the accelerated
gradient method of Nesterov and Su–Boyd–Candès damped inertial dynamic, that
is, an adjustment of the damping potential which guarantees the rate of convergence
1=t2 for any convex function. This is a current research subject; for recent progress
in this direction, see Lin–Jordan [79].

(2) The general approach based on the quasi-gradient and Kurdyka–Łojasiewicz theory
(as developed in Section 7) works mainly in finite dimensions. Extension of the (KŁ)
theory to spaces of infinite dimension is a current research subject.

11.3. Perspectives

(1) Develop closed-loop versions of the Nesterov accelerated gradient method from a
theoretical and numerical point of view. Our analysis allowed us to better define the
type of damping potential � capable of doing this, but this remains an open question
for study. Indeed, the case p D 2 (i.e. quadratic behavior of the damping potential
near the origin) is the critical case separating weak damping from strong damping.
Taking p > 2 close to 2 provides a vanishing viscosity damping coefficient, which is
a specific property of the Nesterov accelerated gradient method. Our intuition is that
we need to refine the power scale which is not precise enough to provide the correct
setting of the vanishing damping term (i.e. going from p D 2 to p > 2, with p even
very close to 2 is too sudden a change).

(2) Extend our study to the case of nonsmooth optimization possibly involving a con-
straint. This is an important subject, which is closely related to item (6) of this list,
because the common device to deal with a constrained optimization problem is to use
the gradient-projection method, which falls under fixed point methods.

(3) Develop a control perspective with closed-loop damping for restarting methods.
Restarting methods take advantage of the inertial effect to accelerate trajectories, then
stop when a given criterion deteriorates. Then one restarts from the current point with
zero velocity, and so on. In many ways, the dynamic we developed in Section 10
follows a similar strategy. Our results are valid with general data functions f and �,
while the known results concerning restart methods only concern the case where f is
strongly convex. It is an important subject to explore.

(4) Obtain a closed-loop version of the Tikhonov regularization method, and make the
link with the Haugazeau method. The objective is then, within the framework of
convex optimization, to obtain an autonomous dynamic whose trajectories strongly
converge to the solution of minimum norm; see Attouch–Cabot–Chbani–Riahi [22],
and Boţ–Csetnek–László [52] for some recent results in the open-loop case (the
Tikhonov regularization parameter tends to zero in a controlled manner, not too fast)
and references therein.
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(5) Develop the corresponding algorithmic results. Continuous dynamics provide a valu-
able guide to introduce and analyze algorithms that enjoy similar convergence prop-
erties. In Theorem 9 we have analyzed the convergence of an inertial algorithm
with general damping potential � and general (tame) function f . A similar ana-
lysis can certainly be developed on the basis of Theorems 11 and 13 which also
involve Hessian-driven damping. Natural extensions then consist in studying struc-
tured optimization problems and the corresponding proximal-based algorithms.

(6) In recent years, most of the previous themes have been extended (in the open-
loop case) to the case of maximally monotone operators: see Alvarez–Attouch [10],
Attouch–Maingé [30], Attouch–Peypouquet [34], Attouch–Cabot [21], Attouch–
László [29], Boţ–Csetnek [47]. It would be interesting to consider closed-loop
versions of these dynamics, as was done by Attouch–Redont–Svaiter [36] for first-
order Newton-like evolution systems.

(7) Time rescaling is a powerful tool to accelerate inertial systems; see Attouch–Chbani–
Riahi [27], Shi–Du–Jordan–Su [89] and references therein. It leads naturally to
nonautonomous dynamics. It would be interesting to study autonomous closed-loop
versions. This means first extracting quantities which tend monotonically toC1.

(8) Stability of dynamics and algorithms with respect to perturbations/errors is an import-
ant topic from the numerical point of view [22, 25, 27, 92].

(9) The concepts of control theory and dissipative dynamical systems have proven to be
useful and intuitive design guidelines for speeding up stochastic gradient methods,
especially for the variance-reduction methods for the finite-sum problem (see [72]
and the references therein). It is likely that our approach fits these questions well.
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E. R. Csetnek was supported by the Austrian Science Fund, project P 29809-N32.

References

[1] Abbas, B., Attouch, H., Svaiter, B. F.: Newton-like dynamics and forward-backward methods
for structured monotone inclusions in Hilbert spaces. J. Optim. Theory Appl. 161, 331–360
(2014) Zbl 1339.47080 MR 3193795

[2] Adly, S., Attouch, H.: First-order inertial algorithms involving dry friction damping. Math.
Program. (online, 2021); DOI:10.1007/s10107-020-01613-y

[3] Adly, S., Attouch, H.: Finite convergence of proximal-gradient inertial algorithms combining
dry friction with Hessian-driven damping. SIAM J. Optim. 30, 2134–2162 (2020)
Zbl 1452.65103 MR 4133483

[4] Adly, S., Attouch, H.: Finite-time stabilization of continuous inertial dynamics combining dry
friction with Hessian-driven damping. J. Convex Anal. 28, 281–310 (2021) Zbl 1470.37118
MR 4245869

[5] Adly, S., Attouch, H., Cabot, A.: Finite time stabilization of nonlinear oscillators subject to
dry friction. In: Nonsmooth Mechanics and Analysis, Adv. Mech. Math. 12, Springer, New
York, 289–304 (2006) MR 2205459

[6] Alabau-Boussouira, F., Privat, Y., Trélat, E.: Nonlinear damped partial differential equations
and their uniform discretizations. J. Funct. Anal. 273, 352–403 (2017) Zbl 1364.37155
MR 3646303

https://zbmath.org/?q=an:1339.47080&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3193795
https://doi.org/10.1007/s10107-020-01613-y
https://zbmath.org/?q=an:1452.65103&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4133483
https://zbmath.org/?q=an:1470.37118&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4245869
https://mathscinet.ams.org/mathscinet-getitem?mr=2205459
https://zbmath.org/?q=an:1364.37155&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3646303


H. Attouch, R. I. Boţ, E. R. Csetnek 68
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