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Abstract. We initiate the study of a duality theory which applies to norm inequalities for point-
wise weighted geometric means of positive operators. The theory finds its expression in terms of
certain pointwise factorisation properties of function spaces which are naturally associated to the
norm inequality under consideration. We relate our theory to the Maurey–Nikishin–Stein theory of
factorisation of operators, and present a fully multilinear version of Maurey’s fundamental theorem
on factorisation of operators through L1. The development of the theory involves convex optim-
isation and minimax theory, functional-analytic considerations concerning the dual of L1, and the
Yosida–Hewitt theory of finitely additive measures. We consider the connections of the theory with
the theory of interpolation of operators. We discuss the ramifications of the theory in the context
of concrete families of geometric inequalities, including Loomis–Whitney inequalities, Brascamp–
Lieb inequalities and multilinear Kakeya inequalities.
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1. Introduction

In this paper we introduce and develop a general functional-analytic principle which gives
a unifying framework for a range of multilinear phenomena that have recently arisen in a
number of areas of mathematical analysis.

We shall be mainly concerned with norm inequalities for pointwise weighted geomet-
ric means

dY
jD1

.Tjfj .x// j̨

of positive linear operators Tj defined on suitable spaces, where j̨ � 0 and
Pd
jD1 j̨ D 1.

Before we describe the scope of our work in this paper, and to set the scene for our study,
we briefly visit the analogous territory in the linear setting (d D 1) in order to provide
a context for what we are aiming to achieve. Throughout the whole paper we shall be
dealing with real-valued rather than complex-valued functions.

1.1. The linear setting

LetX and Y be measure spaces and let T WLp.Y /!Lq.X/ be a bounded linear operator,
that is, it satisfies

kTf kq � Akf kp (1)

for all f 2 Lp.Y /, for some A > 0. Here, 1 � p � 1 and 0 < q <1. Since Lq is a
Banach space only when q � 1, it is natural to focus separately on the regimes q � 1 and
0 < q < 1.

(i) Case q � 1. Since khkq D max ¹j
R
hgj W kgkq0 D 1º, inequality (1) holds if and only

if for all f 2 Lp and all g 2 Lq
0

we haveˇ̌̌̌Z
.Tf /g

ˇ̌̌̌
� Akf kpkgkq0 : (2)

Using the relation
R
.Tf /g D

R
f .T �g/, this is in turn equivalent to the statement

kT �gkp0 � Akgkq0 – that is, the boundedness of the adjoint operator T � between the
dual spaces of Lq and Lp respectively (at least when 1 < p; q <1). We are therefore
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firmly in the terrain of classical linear duality theory, a theory whose utility and import-
ance cannot be overstated. Notice that if q D 1 and T is also assumed to be positive (that
is, Tf � 0 whenever f � 0), the equivalence of (1) and (2) is essentially without content
since in this case it suffices to check on the function g � 1.

(ii) Case 0 < q < 1. Since khkq D min ¹j
R
hgj W kgkq0 D 1º, we see that (1) holds if

and only if for all f 2 Lp there exists an (extended real-valued) g 2 Lq
0

such that (2)
holds. Note that q0 < 0 in this situation, so it is implicit that such a g satisfies g.x/ ¤ 0
almost everywhere. It is a remarkable result of Maurey that, under certain conditions –
such as positivity of T – given inequality (1), there exists a single g 2 Lq

0

with kgkq0 D 1
such that (2) holds for all f 2 Lp . Such a result is an instance of the celebrated theory of
factorisation of operators which is developed in [35]. Indeed, it is a case of factorisation
through L1 since the inequality ˇ̌̌̌Z

.Tf /g

ˇ̌̌̌
� Akf kp

demonstrates that T may be factorised as T D Mg�1 ı S where S D Mg ı T satisfies
kSkLp!L1�A andMg�1 , the operator of multiplication by g�1, satisfies kMg�1kL1!Lq

D kgk�1q0 D 1.
Observe that there is no obvious point of direct contact between the two regimes q � 1

and 0 < q < 1 in this linear setting.
The result of Maurey to which we refer falls within the wider scope of Maurey–

Nikishin–Stein theory, which considers factorisation of operators in a broad variety of
contexts. This includes consideration of nonpositive operators, sublinear operators (for
example maximal functions), operators with various domains and codomains, and factor-
isation through various weak- and strong-type spaces, often under some auxiliary hypo-
theses. The particular case of positive operators defined on normed lattices, taking values
inLq for q < 1, and factorising through (strong-type)L1 was considered by Maurey, how-
ever, and for this reason we refer specifically to the Maurey theory rather than the broader
Maurey–Nikishin–Stein theory. For an overview of this larger theory see [26, 27, 35, 36].

1.2. The multilinear setting

The purpose of this paper is to develop duality and factorisation theories for certain classes
of multilinear operators which are analogous to those that we have set out above in the
linear setting. Amusingly, the notion of “factorisation” manifests itself in two distinct
ways in our development. One of these is as a multilinear analogue of a formulation of
a Maurey-type theorem as was briefly outlined in the discussion of the case 0 < q < 1

above. The other is that our duality theory (corresponding to the case 1 � q <1) will
be expressed in terms of pointwise factorisation properties of certain spaces of functions.
Even simple instances of these pointwise factorisation results are new and striking: see
Section 1.5.1 below.

We begin by describing the scenario in which we shall work and the classes of oper-
ators we shall consider.
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Let .X; d�/ and .Yj ; d�j /, for j D 1; : : : ; d , be measure spaces,1 let �.Yj / denote
the class of real-valued simple functions (i.e. finite linear combinations of characteristic
functions of measurable sets of finite measure) on Yj , and let M.X/ denote the class of
real-valued measurable functions on X . Let T1; : : : ; Td be linear maps

Tj W �.Yj /!M.X/:

We suppose throughout that the Tj are positive in the sense that if f � 0 almost every-
where on Yj , then Tjf � 0 almost everywhere on X .

In this paper we shall be concerned with “multilinear” Lebesgue-space inequalities of
the form  dY

jD1

.TjFj / ǰ

Lq.X/

� C

dY
jD1

kFj k
ǰ

L
pj .Yj /

(3)

where 0 < ǰ <1, 0 < pj � 12 and 0 < q � 1.
These inequalities are to be interpreted in an a priori sense, with the Fj being non-

negative simple functions defined on Yj . We are especially interested in the case that
either the Tj are not bounded operators from Lpj .Yj ; d�j / to Lq.X; d�/, or that they are
bounded but do not enjoy effective bounds.

Strictly speaking such inequalities are multilinear only when each ǰ is 1; we shall
nevertheless abuse language and will refer to the inequalities under consideration as “mul-
tilinear”. In fact the case when

Pd
jD1 ǰ D 1 will play a special role in what follows. Of

course we may always assume either that q D 1 or that
Pd
jD1 ǰ D 1.

To fix ideas, we discuss some examples of inequalities falling under the scope of our
study.

1.3. Examples

Example 1 (Hölder’s inequality). The multilinear form of Hölder’s inequality for non-
negative functions is simplyZ

X

F1.x/ � � �Fd .x/ d�.x/ � kF1kLp1 .X/ � � � kFdkLpd .X/

where pj > 0 and
Pd
jD1 p

�1
j D 1. This is of the form (3), with Tj D I for all j , q D 1

and each ǰ D 1. But, for any fixed set ¹ ǰ º of positive exponents, it is also trivially
equivalent to the inequality

kf
ˇ1
1 � � � f

ˇd
d
kq � kf1k

ˇ1
q1
� � � kfdk

ˇd
qd

1Throughout the paper, when we refer to measure spaces X , Y or Yj without explicit mention
of the measure, it is implicit that the corresponding measures are �, � and �j respectively, unless
the context demands otherwise.

2We shall soon focus on the case pj � 1 and
P
j ǰ D 1.
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for all 0 < qj <1 and 0 < q <1 which satisfy
Pd
jD1 ǰ q

�1
j D q

�1. In particular, there
is an equivalent formulation of the multilinear Hölder inequality taking the form (3) withPd
jD1 ǰ D 1. In fact, there are many such equivalent forms, limited only by the require-

ment that
Pd
jD1 ǰ q

�1
j D q

�1. Special cases of choices of exponents ¹ ǰ ; qj ; qº satisfying

this condition are (i) ǰ arbitrary subject to
Pd
jD1 ǰ D 1, qj D 1 for all j , and q D 1; and

(ii) ǰ D d
�1 for all j , qj arbitrary subject to

Pd
jD1 q

�1
j D 1, and qD d . This observation

demonstrates that we may expect that a given multilinear inequality might have multiple
equivalent manifestations, each of the form (3), with

Pd
jD1 ǰ D 1. In the context of the

factorisation theory we shall develop, each manifestation of the inequality corresponds to
a different factorisation property of associated function spaces. See Section 7.1 for further
discussion.

Example 2 (Loomis–Whitney inequality). For 1 � j � n let �j W Rn ! Rn�1 be pro-
jection on the coordinate hyperplane perpendicular to the standard unit basis vector ej ;
that is, �jx D .x1; : : : ; bxj ; : : : ; xn/. The Loomis–Whitney inequality [33] for nonnegative
functions isZ

Rn
F1.�1x/ � � �Fn.�nx/ dx � kF1kLn�1.Rn�1/ � � � kFnkLn�1.Rn�1/:

For each 0 < p <1, this is equivalent to the inequality

kf1.�1x/
1=n
� � � fn.�nx/

1=n
kLnp=.n�1/.Rn/ � kf1k

1=n

Lp.Rn�1/
� � � kfnk

1=n

Lp.Rn�1/
:

Each of these inequalities is of the form (3) with
Pn
jD1 ǰ D 1.

A very special case of the Loomis–Whitney inequality occurs in two dimensions
where it becomes the trivial identityZ

R2
F1.x2/F2.x1/ dx1 dx2 D

Z
R
F1

Z
R
F2:

In spite of its simplicity, this example will play an important guiding role for us. See
Sections 6, 9.2, 9.3 and 10.2.1.

The Loomis–Whitney inequality has many variants – for example Finner’s inequalit-
ies, the affine-invariant Loomis–Whitney inequality and the nonlinear Loomis–Whitney
inequality. See [11, 25], and Sections 9.2 and 9.3.

Example 3 (Brascamp–Lieb inequalities [18]). The class of Brascamp–Lieb inequalities
includes the previous examples. Let Bj W Rn! Rnj be linear surjections, 1 � j � d . For
0 < pj <1 and Fj nonnegative we consider the Brascamp–Lieb inequalityZ

Rn

dY
jD1

Fj .Bjx/
pj dx � C

dY
jD1

�Z
Rnj

Fj

�pj
: (4)

It is not hard to see that in order for this inequality to hold with a finite constant C , it is
necessary that

Pd
jD1 pjnj D n. It is known that the constant C is finite if and only if, in
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addition to
Pd
jD1 pjnj D n,

dimV �

dX
jD1

pj dimBjV

for all V in the lattice of subspaces of Rn generated by ¹kerBj ºdjD1. (See [8, 9, 42].)

From this one sees easily that
Td
jD1 kerBj D ¹0º,

Pd
jD1 pj � 1, and pj � 1 are also

necessary conditions for the finiteness of C . A celebrated theorem of Lieb [31] states
that the value of the best constant C is obtained by checking the inequality on Gaussian
inputs Fj . Lieb’s theorem generalises Beckner’s theorem [6] on extremisers for Young’s
convolution inequality.

Suppose that 0 < rj < 1 and 0 < s < 1. Setting Fj D f
rj
j in (4) and taking sth

roots, we see that (4) is equivalent to dY
jD1

fj .Bjx/
pj rj =s


Ls.Rn/

� C 1=s
dY
jD1

kfj k
pj rj =s

L
rj .Rnj /

:

If
Pd
jD1 pj rj D s this is an inequality of the form (3) with

Pd
jD1 ǰ D 1. In particular,

we can take rj D nj and s D n to obtain the equivalent form dY
jD1

fj .Bjx/
pjnj =n


Ln.Rn/

� C 1=n
dY
jD1

kfj k
pjnj =n

L
nj .Rnj /

I

or we can take rj D 1 and s D
Pd
jD1 pj (recall that this number is at least 1 when the

inequality is nontrivial) to obtain another equivalent form dY
jD1

fj .Bjx/
pj =s


Ls.Rn/

� C 1=s
dY
jD1

kfj k
pj =s

L1.Rnj /
: (5)

A special case of the class of Brascamp–Lieb inequalities is the class of geometric
Brascamp–Lieb inequalities. Suppose that the linear surjections Bj W Rn ! Rnj satisfy

dX
jD1

pjB
�
j Bj D In:

Then, by a result of Ball and Barthe [4, 5] (see also [8]) we haveZ
Rn

dY
jD1

Fj .Bjx/
pj dx �

dY
jD1

�Z
Rnj

Fj

�pj
; (6)

and the sharp constant 1 is achieved by the standard Gaussians Fj .y/ D e��jyj
2
. Cor-

respondingly, in the equivalent variants presented above, the constants are also 1. The
geometric Brascamp–Lieb inequalities include a suitably reformulated version of the
sharp Young inequality of Beckner [6]. See Section 1.5.1 and Section 10.1 for an applic-
ation of the theory we present in the context of geometric Brascamp–Lieb inequalities.
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Example 4 (Multilinear generalised Radon transforms). There is a vast literature on mul-
tilinear generalised Radon transforms into which we do not wish to enter. For us, this term
will mean consideration of multilinear inequalities of the form (3) when the operators Tj
take the form Tjf D f ıBj for suitable mappings Bj WX ! Yj . In most cases,X and Yj
will be endowed with a topological or smooth structure, and the mappings Bj will respect
that structure in such a way that issues of measurability do not arise.

The class of multilinear generalised Radon transforms includes the Brascamp–Lieb
inequalities. The most basic multilinear generalised Radon transform which is not
included in the Brascamp–Lieb inequalities is probably the nonlinear Loomis–Whitney
inequality. See Section 9.3 below.

Example 5 (Multilinear Kakeya inequalities). The Loomis–Whitney inequality of
Example 2 is equivalent toZ

Rn

nY
jD1

� X
Pj2Pj

aPj �Pj .x/
�1=.n�1/

dx �
nY

jD1

� X
Pj2Pj

aPj

�1=.n�1/
;

where Pj is a finite family of 1-tubes in Rn which are parallel to the j th standard basis
vector ej , and the aPj are arbitrary positive numbers. (A 1-tube is simply a neighbourhood
of a doubly infinite line in Rn which has .n � 1/-dimensional cross-sectional area equal
to 1.) Multilinear Kakeya inequalities have the same set-up, but now we allow the tubes
in the family Pj to be approximately parallel to ej , i.e. the direction e.P / 2 Sn�1 of
the central axis of the tube P 2 Pj must satisfy je.P / � ej j � cn where cn is a small
dimensional constant. Such inequalities have been studied in [10, 16, 23, 29] and have
proved to be very important over the last decade with significant applications in partial
differential equations and especially in number theory – see for example [12–15]. The
multilinear Kakeya inequality is the statement nY

jD1

� X
Pj2Pj

aPj �Pj .x/
�1=n

Ln=.n�1/.Rn/
� Cn

nY
jD1

� X
Pj2Pj

aPj

�1=n
:

This inequality is of the form (3) with X D Rn, q D n=.n � 1/, Yj D Pj with counting
measure, pj D 1 for all j , ǰ D 1=n for all j , and T ..aPj //.x/ D

P
Pj2Pj

aPj �Pj .x/.
It was Guth’s approach to such multilinear Kakeya inequalities in [29] which inspired the
present paper.

The recent multilinear kj -plane Kakeya inequalities, and indeed the even more general
perturbed Brascamp–Lieb inequalities, both recently established by Zhang [45], also fit
into our framework, the latter as a generalisation of inequality (5).

We shall return to these examples in some detail later in Part III. In particular we shall
discuss the affine-invariant Loomis–Whitney inequality, the nonlinear Loomis–Whitney
inequality and certain aspects of Brascamp–Lieb inequalities in the light of the theory we
develop.
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1.4. The weighted geometric mean operator

As we have just seen, all of our examples fit into the framework of inequality (3) withPd
jD1 ǰ D 1, and with the Lpj (and Lq) spaces in the Banach regime, i.e. with pj � 1

(and q � 1). We shall therefore be concerned in this paper with norm inequalities for the
weighted geometric mean operator

T˛ W .f1; : : : ; fd / 7! .T1f1/
˛1 � � � .Tdfd /

˛d

where ˛ D .˛1; : : : ; ˛d / and the j̨ are positive numbers satisfying
Pd
jD1 j̨ D 1. That

is, we shall consider inequalities of the form dY
jD1

.Tjfj / j̨

Lq.X/

� A

dY
jD1

kfj k
j̨

L
pj .Yj /

(7)

for nonnegative simple functions fj 2 �.Yj /, in the regime pj � 1 and q > 0. While the
case q � 1 is pertinent to our examples, we also wish to consider the case 0 < q < 1

because this corresponds to the situation treated by Maurey in the linear setting. Through-
out the paper, we use the quantities j̨ to represent positive numbers whose sum is 1.

We have chosen to present our general theory for the weighted geometric mean oper-
ator T˛ – which is manifestly not linear in its arguments f1; : : : ; fd – mainly because
of the extra elegance and simplicity that such a treatment affords. Nevertheless, nearly
all of the examples above also have equivalent strictly multilinear formulations. In par-
ticular, the multilinear Kakeya inequality of Example 5 can be re-cast as the manifestly
multilinear  nY

jD1

� X
Pj2Pj

ˇPj �Pj .x/
�
L1=.n�1/.Rn/

� C

nY
jD1

� X
Pj2Pj

ˇPj

�
:

The one class of examples that does not admit a genuinely multilinear reformulation
consists of the perturbed Brascamp–Lieb inequalities which were briefly mentioned in
Example 5.

Our first purpose in this paper is to propose and undertake a systematic study of the
duality theory associated to the weighted geometric mean operator T˛ in the context of
inequality (7) in the case q � 1, and some of its generalisations. It is hoped that the
framework for this multilinear duality theory will in time have applications in a wide
variety of contexts. Our second purpose is to establish suitable analogues of Maurey’s
theorems in the context of (7) in the case 0 < q < 1. Interestingly, the case q D 1 will be
central to our development of both the regimes q � 1 and 0 < q < 1, unlike in the classical
linear setting where the case q D 1 is essentially vacuous, and in which there appears to
be no direct link between the two regimes q � 1 and 0 < q < 1.

1.5. A theory of multilinear duality: the regime q � 1

We begin with the Banach regime q � 1.
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One half of our duality theory – the “easy” half – is largely contained in the following
simple observation, the content of which is that if we have a certain pointwise factorisation
property for the space Lq

0

, then the weighted geometric mean norm inequality (7) will
hold.

Proposition 1.1. Suppose that Tj W Lpj .Yj /! Lq.X/ are positive linear operators, that
pj ; q � 1 and that

Pd
jD1 j̨ D 1. Suppose that for every nonnegative G 2 Lq

0

.X/ there
exist nonnegative measurable functions gj defined on X such that

G.x/ �

dY
jD1

gj .x/ j̨ a.e. on X , and

kT �j gj kLpj
0
.Yj /
� AkGkLq0 .X/ for all j .

(8)

Then, for all nonnegative fj 2 Yj , dY
jD1

.Tjfj / j̨

Lq.X/

� A

dY
jD1

kfj k
j̨

L
pj .Yj /

I

that is, (7) holds for all nonnegative fj 2 Lpj .Yj /.

For the (easy) proof and some discussion of this result, see the more general Proposi-
tion 2.1 below.

Rather surprisingly, the implication in Proposition 1.1 can be essentially reversed, and
one of the main aims of this paper is to show that the factorisation property (8) enunciated
in Proposition 1.1 is in fact necessary as well as sufficient for (7) to hold. This is the
second half of the multilinear duality principle referred to in the abstract of the paper.

Before coming to this, however, we note that if there is a subset ofX of positive meas-
ure upon which Tjfj vanishes for all fj 2 Lpj , then this subset will play no role in the
analysis of inequality (7). There is therefore no loss of generality in assuming such sub-
sets do not exist. We formalise this notion by introducing the notion of saturation below.3

In order to facilitate what follows later, we at the same time introduce the closely related
notion of strong saturation, and also make the definitions in slightly greater generality
than what is required by the current discussion. The definitions apply to linear operators
T W Y!M.X/, with Y a normed lattice and .X; d�/ a measure space, which are positive
in the sense that for every nonnegative f 2 Y we have Tf � 0. (What is currently relevant
is the fact that the space of simple functions defined on a measure space Y , together with
the Lp norm for p � 1, forms a normed lattice.)

Definition 1.2. (i) We say that T saturatesX if for each subsetE �X of positive meas-
ure, there exists a subset E 0 � E with �.E 0/ > 0 and a nonnegative h 2 Y such that
T h > 0 a.e. on E 0.

(ii) We say that T strongly saturates X if there exists a nonnegative h 2 Y such that T h
is a.e. bounded away from 0 on X .

3For a related notion, see [44].
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For further discussion of the relevance of these conditions, see Remarks 6 and 10
below. If T saturates a � -finite measure space X , then there is an increasing and exhaust-
ing sequence of measurable subsets on each of which T is strongly saturating. For this
and more, see Lemma 5.4 below.

Now we can state one of the main results of the paper:

Theorem 1.3. Suppose that X and Yj , for j D 1; : : : ; d , are measure spaces. Suppose
that the linear operators Tj W �.Yj /!M.X/ are positive and that each Tj saturates X .
Suppose that pj � 1 for all j , 1 � q � 1 and

Pd
jD1 j̨ D 1. When q D 1 suppose

additionally that X is � -finite. Finally, suppose that dY
jD1

.Tjfj / j̨

Lq.X/

� A

dY
jD1

kfj k
j̨

L
pj .Yj /

for all nonnegative simple functions fj on Yj , 1 � j � d . Then for every nonnegative
G 2 Lq

0

.X/ there exist nonnegative measurable functions gj on X such that

G.x/ �

dY
jD1

gj .x/ j̨ a.e. on X , (9)

and such that for each j ,Z
X

gj .x/Tjfj .x/ d�.x/ � AkGkLq0 kfj kpj (10)

for all simple functions fj on Yj .

Remark 1. Note that we have used the formulation (10) instead of one explicitly
involving T �j as we did in (8) because it is not immediately clear how T �j should be
defined in this context.

The special case of Theorem 1.3 corresponding to q D 1 and G � 1 can be singled
out:

Theorem 1.4. Suppose that X and Yj , for j D 1; : : : ; d , are measure spaces, with X
being � -finite. Suppose that the operators Tj W �.Yj / ! M.X/ are positive and that
each Tj saturates X . Suppose that pj � 1,

Pd
jD1 j̨ D 1 andZ

X

dY
jD1

.Tjfj / j̨ d� � A
dY
jD1

kfj k
j̨

L
pj .Yj /

for all nonnegative simple functions fj on Yj , 1 � j � d . Then there exist nonnegative
measurable functions gj on X such that

1 �

dY
jD1

gj .x/ j̨ a.e. on X ,
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and such that for each j , Z
X

gj .x/Tjfj .x/ d�.x/ � Akfj kpj (11)

for all simple functions fj on Yj .

In fact, Theorem 1.4 implies Theorem 1.3. Indeed, suppose that 1 < q � 1 and that dY
jD1

.Tjfj / j̨

Lq.X/

� A

dY
jD1

kfj k
j̨

L
pj .Yj /

for all nonnegative simple functions fj on Yj , 1 � j � d . Then, for all nonnegative
G 2 Lq

0

.X/ with kGkLq0 D 1, we haveZ
X

dY
jD1

.Tjfj / j̨G d� � A
dY
jD1

kfj k
j̨

L
pj .Yj /

for all nonnegative simple functions fj on Yj , 1 � j � d . It is easy to see that if Tj sat-
urates X with respect to the measure d�, then it also does so with respect to G d�. Now
the measure G d� is � -finite irrespective of whether d� is. Therefore, by Theorem 1.4
applied with the measure G d� in place of d�, there are nonnegative measurable func-
tions j such that

1 �

dY
jD1

j .x/ j̨ G d�-a.e. on X ,

and such that for each j ,Z
X

j .x/Tjfj .x/G.x/ d�.x/ � Akfj kpj

for all simple functions fj on Yj . Setting gj D jG gives the desired conclusion of The-
orem 1.3 when q > 1. When q D 1, factorisation of the function 1 as in Theorem 1.4
immediately yields a corresponding factorisation of each G 2 L1.

The results described here will follow from the more general Theorem 2.2 below.

1.5.1. An application to pointwise factorisation. As an application of Theorem 1.3, we
have the following sample result concerning pointwise factorisation of nonnegative func-
tions in L2.R2/:

Theorem 1.5. Let v1, v2 and v3 be unit vectors in R2 with angle 2�=3 between each
pair. Then, for every nonnegative G 2 L2.R2/, there exist nonnegative locally integrable
functions g1, g2 and g3 such that

G.x/ � g1.x/
1=3g2.x/

1=3g3.x/
1=3 a.e.
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and, for each j , for almost every line l in R2 which is parallel to vj ,Z
l

gj d� � kGk2

where d� denotes Lebesgue measure on l .

For further details, and many more results of this nature, see Section 10.1 below.

1.6. Multilinear Maurey-type factorisation: the regime 0 < q < 1

We now state a multilinear Maurey-type theorem.

Theorem 1.6. Suppose that X and Yj , for j D 1; : : : ; d , are measure spaces and that X
is � -finite. Suppose that the operators Tj W �.Yj /!M.X/ are positive and that each Tj
saturates X . Suppose that pj � 1, 0 < q < 1,

Pd
jD1 j̨ D 1 and that

 dY
jD1

.Tjfj / j̨

Lq.X/

� A

dY
jD1

kfj k
j̨

L
pj .Yj /

(12)

for all nonnegative simple functions fj 2 Yj , 1 � j � d . Then there exist nonnegative
measurable functions gj on X such that

 dY
jD1

gj .x/ j̨

Lq
0
.X/
D 1 (13)

and such that for each j ,Z
X

gj .x/Tjfj .x/ d�.x/ � Akfj kLpj .Yj / (14)

for all simple functions fj on Yj .

We shall give the proof of this result, as a consequence of Theorem 1.4, in Section 2.3
below. Conversely, it is easy to see using Hölder’s inequality that if there exist gj such
that (13) and (14) hold, then so does (12).

This result can be seen as a factorisation result in the spirit of Maurey: if we let
Sjfj .x/D gj .x/Tjfj .x/, �˛.f1; : : : ; fd /D

Qd
jD1.Sjfj /

j̨ and g.x/D
Qd
jD1 gj .x/

j̨ ,
then

T˛ DMg�1 ı �˛

where
kSj kLpj!L1 � A

for all j , and
kMg�1kL1!Lq D kgk

�1
q0 D 1:
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In fact, it has the rather strong conclusion that each Sj is bounded from Lpj .Yj / to
L1. d�/ with constant at most A (rather than the much weaker corresponding statement
for the geometric mean �˛ alone).

Other, different, versions of multilinear Maurey-type theorems have been studied. See
for example [24, 38].

Remark 2. One may use the classical linear Maurey–Nikishin–Stein factorisation theory
of positive operators [35, Proposition 9] to upgrade conclusions (10) of Theorem 1.3,
(11) of Theorem 1.4 and (14) of Theorem 1.6. Indeed, each of these conclusions states
that Tj maps into a weighted L1-space, and we can upgrade each to boundedness of Tj
into a suitable weighted Lpj -space. For example, in the context of Theorem 1.4, we may
conclude that there exist nonnegative measurable functions �j on X such thatZ

X

� dY
jD1

�j .x/ j̨
=pj

��1=.PdjD1 j̨ =pj
0/

d�.x/ � 1

and �Z
X

jTjfj j
pj �j d�

�1=pj
� Akfj kpj

for all simple fj on Yj . See also Remark 15 below. For stronger statements of this kind
see [20].

1.7. Structure of the paper

The paper is divided into three parts.
In Part I (Sections 2–5) we present the theory of multilinear duality and factorisation

and prove the main theorems.
In Section 2 we state and discuss the main results at some length. The principal result

is Theorem 2.2. Taken together with Proposition 2.1, Theorem 2.2 forms the statement of
the multilinear duality principle referred to in the abstract of the paper. (Theorem 1.3 and
Proposition 1.1 presented in this introduction are more readily digested versions of The-
orem 2.2 and Proposition 2.1 respectively.) The multilinear Maurey factorisation theorem,
Theorem 2.3, is proved as a consequence of Theorem 2.2. (A more digestible version of
Theorem 2.3 is found as Theorem 1.6 in this introduction.)

In Section 3 we give a proof of a finitistic case of Theorem 2.2 which recognises and
emphasises its structure as a convex optimisation or minimax problem. This perspective
sets the scene for the remainder of the theoretical part of the paper. In this case, none of the
functional-analytic and measure-theoretic difficulties that we encounter later are present.
However, Section 3 is not strictly speaking logically necessary for the development of the
theory.

In Section 4 we begin to address the proof of Theorem 2.2. Our strategy will be to first
consider the setting of finite measure spaces. Theorem 4.1 gives the main result in this
case, and it represents a crucial step in the proof of Theorem 2.2. Already in Theorem 4.1
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we are faced with substantial functional-analytic and measure-theoretic difficulties. These
derive from the need to establish certain compactness statements necessary for the applic-
ation of a minimax theorem. Briefly, they involve working with the dual space of L1.X/,
and dealing with various issues in the theory of finitely additive measures.

In Section 5 we give the details of the proofs of Theorems 4.1 and 2.2. We begin
with a couple of technical but important lemmas. Next, we pass to the proof of the finite-
measure result, Theorem 4.1, via the minimax theory. Finally, for general � -finite X , we
“glue together” factorisations obtained for subsets X of finite measure via Theorem 4.1,
and we obtain the factorisations needed for Theorem 2.2.

In a much shorter Part II, we begin to explore connections with other topics – in
particular the theory of interpolation in Sections 6 and 7, and the extent to which the
theory might apply in the context of more general multilinear operators in Section 8.

Finally, in Part III, we revisit the examples discussed earlier in this introduction in
the light of the multilinear duality theory which has been developed. In Section 9 we
give factorisation-based proofs of the affine-invariant Loomis–Whitney inequality (see
Section 9.2) and the sharp nonlinear Loomis–Whitney inequality (see Section 9.3). In
Section 10.1 we pose an interesting question related to the sharp Young convolution
inequality and geometric Brascamp–Lieb inequalities, while in Section 10.2 we describe
an algorithm for factorising the general Brascamp–Lieb inequality. In Section 11 we
revisit the multilinear Kakeya inequality which inspired the paper in the light of the find-
ings of Section 8, and make an observation about the size of the constant in the finite-field
version of the multilinear Kakeya inequality which is derived from our methods.

1.8. Future work

In a sequel [20] to this paper, we broaden the scope of the multilinear duality theory
from positive to potentially oscillatory multilinear inequalities. In particular, we extend
the multilinear duality and factorisation theorem (Theorem 2.2) to nonpositive operators,
and indeed refine it when the normed spaces have certain additional geometric proper-
ties (p-convexity in case of positive operators, Rademacher type in case of nonpositive
operators). Moreover, in [21], we will give an alternative proof of Theorem 2.2 which
bypasses the need to consider .L1/�.

Part I – Statements and proofs of the theorems

2. Statement and discussion of the main results

It turns out that the theory we shall develop is most naturally presented in a more general
setting. Moreover, limiting ourselves to the Lebesgue spaces Lpj and Lq in the multi-
linear duality theory is unnecessarily restrictive. For example, one may wish to consider
multilinear inequalities of the form (7) in which the Lpj and Lq spaces are replaced by
certain Lorentz spaces, Orlicz spaces or mixed-norm spaces, especially if the inequal-
ity under consideration is an endpoint inequality. We therefore introduce a more general
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framework in which we consider suitable spaces X and Yj corresponding to Lq.X/ and
Lpj .Yj / respectively. Thus, for

Pd
jD1 j̨ D 1, which we recall is a standing convention,

we now consider inequalities of the form

 dY
jD1

.Tjfj / j̨


X
� A

dY
jD1

kfj k
j̨

Yj
: (15)

Each Yj will be an (abstract) normed lattice – such as L1 or Lpj for pj � 1. On
the other hand, we will take X to be a Banach space of locally integrable4 functions
defined on X , which contains the simple functions, and is such that if f 2 M.X/ and
g 2X satisfy jf .x/j � jg.x/j a.e., then f 2X and kf kX � kgkX . We may as well also
assume thatX is a complete measure space. Our measure spaceX will also be assumed to
be � -finite; these properties together then identify X as a Köthe space [32, Vol. II, p. 28].
From now on we shall assume that X is a Köthe space without further mention. Natural
examples of Köthe spaces include Lq for 1 � q �1. We shall need a suitable primordial
dual of X, denoted by X0, and defined to be

X0 D

²
g 2M.X/ W kgkX0 D sup

kf kX�1

Z
jfgj d� <1

³
:

The space X0 is usually called the Köthe dual of X. If X D Lq for 1 � q � 1, then
X0 D Lq

0

where 1=q C 1=q0 D 1. It is clear that X0 is a linear space which contains
the simple functions (as X is contained in the class of locally integrable functions) and is
contained in the class of locally integrable functions (as X contains the simple functions).
The quantity kgkX0 defines a norm on X0. While by definition we always have the Hölder
inequality ˇ̌̌̌Z

fg d�
ˇ̌̌̌
� kf kXkgkX0 ;

it may or may not be the case that X0 is norming (for X), i.e. that

kf kX D sup
²ˇ̌̌̌Z

fg d�
ˇ̌̌̌
W kgkX0 � 1

³
(16)

holds for all f 2 X.5 The Köthe dual X0 is always isometrically embedded in the norm-
dual X�, but the two spaces may not coincide in general.

From now on, we shall adopt once and for all the convention that all named functions
.f; g; h; F;G, H;ˇ;G; S;  etc., often adorned with subscripts/ are assumed to be non-
negative. The two exceptions to this are the functions L and ƒ appearing in the proofs of
the main results.

4That is,
R
E jf j d� <1 whenever �.E/ <1.

5By a result of Lorentz and Luxemburg (see [32, Vol. II, p. 29]), if X is a Köthe space, X0 is
norming if and only if X has the so-called Fatou property, that is, whenever fn 2 X are such that
fn! f a.e., with fnC1 � fn � 0, then kfnkX ! kf kX . This is automatic when X is separable.
If X is L1 then (16) holds by inspection since X0 is simply L1. We shall need the notion of
norming only for Proposition 2.1.
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2.1. Duality theory: easy half

The easy half of our duality theory is expressed in the following simple observation, the
content of which is that if we have a certain factorisation property for the Köthe dual X0,
then the weighted geometric mean norm inequality (15) will hold.

Proposition 2.1. Suppose that X is a Köthe space whose Köthe dual X0 is norming, and
that Yj are normed lattices. Suppose that Tj W Yj !X are positive linear operators. Sup-
pose furthermore that for every nonnegative G 2 X0 there exist nonnegative measurable
functions gj on X such that

G.x/ �

dY
jD1

gj .x/ j̨ a.e. on X , and

kT �j gj kY�j
� AkGkX0 for all j .

(17)

Then, for all nonnegative fj 2 Yj , dY
jD1

.Tjfj / j̨


X
� A

dY
jD1

kfj k
j̨

Yj
:

That is, (15) holds for all nonnegative fj 2 Yj .

Proof. Take fj 2 Yj for j D 1; : : : ; d , and G 2 X0 with kGkX0 � 1. ThenZ
X

G.x/

dY
jD1

.Tjfj / j̨ d�.x/

�

Z
X

dY
jD1

gj .x/ j̨
dY
jD1

Tjfj .x/ j̨ d�.x/ D
Z
X

dY
jD1

.gj .x/Tjfj .x// j̨ d�.x/

�

dY
jD1

�Z
X

gj .x/Tjfj .x/ d�.x/
�

j̨

D

dY
jD1

..T �j gj /.fj //
j̨

�

dY
jD1

.kT �j gj kY�j
kfj kYj /

j̨ �

dY
jD1

.AkGkX0kfj kYj /
j̨ � A

dY
jD1

kfj k
j̨

Yj

where the inequalities follow in order from the first condition of (17), Hölder’s inequality,
the second condition of (17), and the assumption that kGkX0 � 1. The proposition now
follows by taking the supremum over all such G, using the fact that X0 is norming for X.

Remark 3. If the spaces Yj are complete, the assumption that Tj W Yj ! X is positive
automatically implies that Tj is bounded,6 and so the adjoint operator T �j is well-defined.

6Indeed, if not, we can find nonnegative fn with kfnk � 2�n but kTj fnk � 2n. So for each
n, 2n � kTj fnk � kTj .

P1
nD1 fn/k � C for some finite C since

P1
nD1 fn 2 Yj (because Yj is a

Banach space). This is a contradiction.
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If not, we interpret the second condition of (17) asZ
X

gj .x/Tjfj .x/ d�.x/ � AkGkX0kfj kYj (18)

for fj 2 Yj and j D 1; : : : ; d , and we can still conclude the validity of (15) for functions
fj 2 Yj , as the proof clearly demonstrates.

Remark 4. If the Tj are known to be bounded, it is immediate that (15) holds with A
replaced by

Qd
jD1 kTj k

j̨ .7 However, the best constant A in (17) will in general be much
smaller, and this assertion is the main content of Proposition 2.1.

Remark 5. Observe that Proposition 2.1 does not require any topological structure of the
space X , only its nature as a measure space.

Remark 6. Notice that in order for the proof to go through, we only require that the
factorisation property – i.e. the first condition of (17) – holds for those x which contrib-
ute to

R
X
G.x/

Qd
jD1.Tjfj /

j̨ d�.x/ for some functions fj 2 Yj . In other words, if a
set E � X with �.E/ > 0 has the property that for all choices fj of nonnegative func-
tions in Yj ,

Qd
jD1.Tjfj /.x/

j̨ D 0 a.e. on E, then E will play no role in the analysis.
There is therefore no loss of generality in assuming such sets do not exist. So we may
assume without loss of generality that for all E � X with �.E/ > 0, there exist nonneg-
ative fj 2 Yj such that “

Qd
jD1 Tjfj .x/

˛
j D 0 a.e. on E” fails – i.e. such that there exists

E 0 � E with �.E 0/ > 0 such that
Qd
jD1 Tjfj .x/

˛
j > 0 on E 0. That is, we may assume

that for all E � X with �.E/ > 0, there exists E 0 � E with �.E 0/ > 0, and, for each j ,
a nonnegative fj 2 Yj such that for all x 2 E 0, Tjfj .x/ > 0. This condition is equivalent
to the formally slightly weaker condition that for each j , for all E � X with �.E/ > 0,
there exists E 0 � E with �.E 0/ > 0 and nonnegative fj 2 Yj such that for all x 2 E 0,
Tjfj .x/ > 0.8 But this is simply the statement that each Tj saturates X , as in Defini-
tion 1.2. It is unsurprising that we will require saturation when it comes to formulating
and proving the converse statement.

Remark 7. Note that in place of

kT �j gj kY�j
� AkGkX0 for all j

we could have assumed the (formally weaker) condition

dY
jD1

kT �j gj k
j̨

Y�
j

� AkGkX0 :

(A homogeneity argument shows that the two conditions are indeed equivalent.)

7This follows since k
Qd
jD1 h

j̨

j k �
Qd
jD1 khj k

j̨ , which in turn follows from the case where
khj k is 1 for each j , which itself follows by Young’s numerical inequality and the triangle
inequality.

8If the latter condition holds, apply it to each j in turn to obtain the former condition.
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Remark 8. Similarly, it suffices to suppose a formally weaker hypothesis (“weak factor-
isation”), namely that for every G 2 X0, there exist measurable functions gjk on X such
that

G.x/ �
X
k

dY
jD1

gjk.x/ j̨

a.e. on X , and X
k

kT �j gjkkY�j
� AkGkX0

for all j . But if this holds, and if we define gj D
P
k gjk , Minkowski’s inequality and

Hölder’s inequality yield (17). So this observation does not represent a genuine broaden-
ing of the scope of Proposition 2.1.

Remark 9. The argument for Proposition 2.1 was effectively given by Guth, in a less
abstract form, in his proof of the endpoint multilinear Kakeya inequality [29]. However,
any strategy which includes an application Proposition 2.1 to establish an inequality of the
form (15) involves the potentially difficult matter of first finding a suitable factorisation.
Indeed, the main work of [29] consisted precisely in finding such. In this context see
also [23].

2.2. Duality theory: difficult half

As suggested above, the implication in Proposition 2.1 can be essentially reversed, and
a principal aim of this paper is to show that the factorisation property (17) enunciated in
Proposition 2.1 is in fact necessary as well as sufficient for (15) to hold under very mild
hypotheses. More precisely, we prove:

Theorem 2.2 (Multilinear duality and factorisation theorem). Suppose that .X; d�/ is a
� -finite measure space, X is a Köthe space of measurable functions onX , Yj are normed
lattices, and Tj WYj !M.X/ are positive linear maps. Suppose that each Tj saturatesX .
Suppose that  dY

jD1

.Tjfj / j̨


X
� A

dY
jD1

kfj k
j̨

Yj

for all nonnegative fj 2 Yj , 1 � j � d . Then there exists a weight function9 w on X
such that for every nonnegative G 2 X0, there exist nonnegative measurable functions
gj 2 L

1.X;w d�/ such that

G.x/ �

dY
jD1

gj .x/ j̨ a.e. on X , (19)

9That is, a measurable function w with w.x/ > 0 a.e.
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and such that for each j ,Z
X

gj .x/Tjfj .x/ d�.x/ � AkGkX0kfj kYj (20)

for all fj 2 Yj .

Remark 10. The hypothesis that each Tj saturates X is very natural as pointed out in
Remark 6 above. Indeed, for the reasons set out there, without this hypothesis we cannot
expect the conclusion to hold. Needless to say, it will play an important role in the proof
of Theorem 2.2. In particular, the weight function w arises as a consequence of the satur-
ation hypothesis. For its construction, see Section 5.3 below. If �.X/ is finite and the Tj
strongly saturateX , we can takew to be the constant function 1 (see Theorem 4.1 below).

Remark 11. In the case d D 1 the factorisation is trivial, and (20) is simply the usual
duality relation corresponding to (2).

Remark 12. If there exist gj satisfying (19) and (20), then by making one of the gj
smaller if necessary, we can find gj satisfying (19) with equality in addition to (20).

Remark 13. We emphasise that the constant A appearing in (20) is precisely the constant
A occurring in the hypothesis.

Remark 14. As in the case of Theorem 1.3, the general case of Theorem 2.2 follows from
the special case in which X D L1.X/. Indeed, placing ourselves under the assumptions
of the general case, let G 2 X0 have norm 1, and observe that by Hölder’s inequality we
have Z

X

dY
jD1

.Tjfj / j̨G.x/ d�.x/ � A
dY
jD1

kfj k
j̨

Yj

for all fj 2 Yj , 1� j � d . This is the main hypothesis of the special case, but with respect
to the measure G d� instead of d�. It is easily verified that G d� is a � -finite measure,
and that if Tj saturates X with respect to d�, it also does so likewise with respect to
G d�, and similarly for strong saturation. We may therefore conclude from the L1 case
of Theorem 2.2 that there exist nonnegative measurable j such that

dY
jD1

j .x/ j̨ � 1 G d�-a.e.

and such that Z
X

j .x/Tjfj .x/G.x/ d�.x/ � Akfj kYj

for all fj 2 Yj . Setting gj D Gj , the easy observation that

dY
jD1

gj .x/ j̨ � G.x/ d�-a.e.
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completes the argument. (This argument does not directly place the gj in a weighted L1-
space, but this feature can in any case be recovered from inequality (20).) However, this
observation does not simplify the proof of Theorem 2.2, and we therefore establish the
general case directly.

Remark 15. Following on from Remark 2 above, if the spaces Yj are additionally sup-
posed to be pj -convex for some pj � 1, we may use the classical linear Maurey–Nikishin–
Stein theory for positive operators to upgrade conclusion (20) of Theorem 2.2 to bounded-
ness of each Tj into a suitably weighted Lpj -space. A similar remark applies in the
context of Theorem 1.6 below. This perspective is further explored in [20].

The proof of Theorem 2.2 is highly nonconstructive and comes about as a result of
duality methods in the theory of convex optimisation which ultimately rely upon a form
of the minimax principle. For the details of the proof see Sections 3, 4 and 5 below.
Nevertheless, in some cases, constructive factorisations can be given, and in other cases,
the existence of the factorisation raises interesting questions and links with other areas of
analysis. See Sections 6, 8, 9.2, 9.3 and 10.

2.3. Multilinear Maurey-type theory

In this section we state and prove a slight generalisation of Theorem 1.6, using the case
X D L1.X/ of Theorem 2.2. Interestingly, the classical Maurey theorem follows easily
from Theorem 2.2 specialised to the bilinear case d D 2 in which one of the normed
lattices is one-dimensional. (Therefore, the case d D 1 of what follows is not trivial, in
contrast to the situation for Theorem 2.2.)

Theorem 2.3 (Multilinear Maurey-type theorem). Suppose .X; d�/ is a � -finite measure
space, Yj are normed lattices, and Tj W Yj !M.X/ are positive linear maps. Suppose
that each Tj saturates X . Let 0 < q < 1, and suppose dY

jD1

.Tjfj / j̨

Lq.X/

� A

dY
jD1

kfj k
j̨

Yj
(21)

for all nonnegative fj 2Yj , 1� j � d . Then there exist nonnegative measurable functions
gj on X such that  dY

jD1

gj .x/ j̨

Lq
0
.X/
D 1 (22)

and such that for each j , Z
X

gj .x/Tjfj .x/ d�.x/ � Akfj kYj (23)

for all fj 2 Yj .
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It is an easy exercise using Hölder’s inequality to show that if there exist gj such that
(22) and (23) hold, then (21) also holds. As in the case of Theorem 1.6, Theorem 2.3
admits an interpretation as a statement about factorisation of operators (see Section 1.6).

Proof of Theorem 2.3. The main hypothesis is thatZ
X

dY
jD1

.Tjfj / j̨
q d� � Aq

dY
jD1

kfj k
j̨ q

Yj

for all fj 2Yj . Let ǰ D j̨ q for 1� j � d and let ˇdC1D 1�
Pd
jD1 ǰ D 1� q > 0. Let

YdC1 D ¹0º and let YdC1 be the trivial normed lattice R defined on the singleton measure
space ¹0º. Let TdC1 W YdC1 ! M.X/ be the linear map � 7! �1 where 1 denotes the
constant function taking the value 1 on X . Then we haveZ

X

dC1Y
jD1

.Tjfj / ǰ d� � Aq
dC1Y
jD1

kfj k
ǰ

Yj

for all fj 2 Yj . So by Theorem 2.2 in the case X D L1.X/ (and with d C 1 in place
of d , see also Remark 12 above), we conclude that there exist measurable functions
G1; : : : ; GdC1 such that

dC1Y
jD1

Gj .x/ ǰ D 1 a.e. on X , (24)

and such that for each 1 � j � d C 1,Z
X

Gj .x/Tjfj .x/ d�.x/ � Aqkfj kYj (25)

for all fj 2 Yj .
For 1 � j � d , set gj .x/ D A1�qGj .x/; then (25) immediately gives (23) for 1 �

j � d . By (24) we have

dY
jD1

gj .x/ j̨ D A
1�qGdC1.x/

.q�1/=q a.e. on X ,

while (25) for j D d C 1 givesZ
X

GdC1.x/ d�.x/ � Aq :

Combining these last two relations gives (22) as desired.

3. Discrete case: a convex optimisation problem

3.1. Basic set-up

The idea behind the proof of Theorem 2.2 is to view problem (19) and (20) as a convex
optimisation problem. That is, we replace the number A in (20) by a variable K and seek



A. Carbery, T. S. Hänninen, S. I. Valdimarsson 2078

to minimise over K. To illustrate how this works, we first prove the theorem in a model
case when X and Yj are finite sets endowed with counting measure and Yj D L

1.Yj / for
j D 1; : : : ; d . One reason for doing this case first is that there are no measure-theoretic or
functional-analytical difficulties to be dealt with in this setting, and indeed X0 D X� is
simply the class of all functions defined onX with the norm dual to that of X. It therefore
allows us to emphasise the nature of the problem as one concerning convex optimisation.

The minimisation problem we propose to examine now reads as follows. FixG WX !
Œ0;1/ and consider

 D inf
K;gj

K such that

G.x/ �

dY
jD1

gj .x/ j̨ for all x 2 X , and

max
yj2Yj

T �j gj .yj / � KkGkX� for all j D 1; : : : ; d .

(26)

We note that this is a convex optimisation problem since we are minimising a convex,
in fact linear, function on the convex domain consisting of the .d C 1/-tuples .K; gj /
satisfying the constraints in (26). The convexity of this domain follows from the fact that
the second set of inequalities is linear in the arguments K and gj , and the operation of
taking the geometric mean on the right-hand side of the first set of inequalities is a concave
function. We note that the set of .K;gj / satisfying the constraints in (26) is not empty and
that we can in fact find .K;gj / satisfying these constraints with strict inequality by taking
each gj to be 2G C 1 and letting K be sufficiently large. Thus problem (26) satisfies
what is known as Slater’s condition. (We do not give full details here as the discussion
will eventually be subsumed into that of the next section.) In particular, we certainly have
 < C1.

We therefore follow a standard approach to convex optimisation problems, see for
example [17]. We introduce Lagrange multipliers  and hj , where  W X ! RC (for the
first set of constraints), and hj W Yj ! RC (for the second set). Note that we are only
interested in the case where these functions take nonnegative values since each of the
constraints is an inequality constraint. We then introduce the Lagrangian functional

L D K C
X
x2X

 .x/
�
G.x/ �

dY
jD1

gj .x/ j̨
�
C

dX
jD1

X
yj2Yj

hj .yj /.T
�
j gj .yj / �KkGkX�/:

(27)

We emphasise that this function and the corresponding one defined in the proof of the
general case are the only functions which we allow to take negative values.

For nonnegative K, gj ,  , and hj we now consider the two problems10

L D inf
K;gj

sup
 ;hj

L and � D sup
 ;hj

inf
K;gj

L

called the primal problem and the dual problem respectively. We shall show that (i) the

10The subscript L in L indicates that we are looking at the Lagrangian version of the problem
as opposed to the original version which has  without a subscript.
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problem for  is identical to the problem for L, (ii) � � A where A is any number such
that inequality (15) holds, and (iii) � D L (it is obvious that � � L). Finally, we show
that the infimum in the definition of  is attained, and this will complete the proof of the
theorem in the special case.

3.2. Identification of the problems for  and L

We begin by studying L. Fix K � 0 and gj and consider sup ;hj L. Suppose that any
of the conditions in (26) is not satisfied at some point. Then take the relevant function  
or hj for some j to have value t > 0 at a point where an inequality fails and let all of the
functions be zero everywhere else. Then let t !1 and notice that sup ;hj L goes toC1
since t is multiplied by a positive number. So if sup ;hj L < C1 the conditions of (26)
are necessarily satisfied. Conversely, if these conditions are satisfied then all factors mul-
tiplying  .x/ and hj .yj / for any x and yj are nonpositive so the supremum is attained by
taking them all to equal 0. So, for each fixed .K;gj /, we find that sup ;hj L <C1 if and
only if the conditions in (26) hold, in which case sup ;hj L D K. Thus we see that the
problem for L is identical to problem (26), yielding L D  . Moreover, the infimum in
the definition of  is attained if and only if the infimum in the definition of L is attained.

3.3. Proof that � � A

We rearrange L as follows:

L D
X
x2X

 .x/G.x/CK
�
1 � kGkX�

dX
jD1

X
yj2Yj

hj .yj /
�

C

X
x2X

� dX
jD1

gj .x/Tjhj .x/ �

dY
jD1

gj .x/ j̨ .x/
�
: (28)

Let us fix  and hj and consider infK;gj L. First of all, note that infK;gj L D �1 unless

kGkX�

dX
jD1

X
yj2Yj

hj .yj / � 1 (29)

since if this inequality fails then the term multiplying K in L is negative and so by
taking gj D 0 and letting K go to infinity we get infK;gj L D �1. Also note that
infK;gj L D �1 unless

 .x/ �

dY
jD1

.˛�1j Tjhj .x// j̨ (30)

for all x 2X . Seeing this is a matter of choosing gj .x/ to balance the arithmetic-geometric
mean inequality. Specifically, suppose that this condition (30) fails at a point x0. Then we
let K D 0 and gj .x/ D 0 for all x ¤ x0 and all j D 1; : : : ; d . There are now two cases
to consider. Firstly, if there exists an index j0 such that Tj0hj0.x0/ D 0 then we take
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gj .x0/ D 1 for all j ¤ j0 and gj0.x0/ D t > 1. Then

L D
X
x2X

 .x/G.x/C

dX
jD1
j¤j0

Tjhj .x0/ � t j̨0 .x0/:

Since j̨0 > 0 we can let t go to infinity and see that infK;gj L D �1. In the other case
we have Tjhj .x0/ > 0 for all j D 1; : : : ; d . Then we let

gj .x0/ D t j̨ .Tjhj .x0//
�1

dY
j 0D1

.˛�1j 0 Tj 0hj 0/.x0/
j̨ 0

and note that

L D
X
x2X

 .x/G.x/C t
� dY
jD1

.˛�1j Tjhj .x0// j̨ �  .x0/
�
:

So by the assumption of the failure of (30) at x0 we see that letting t ! 1 yields
infK;gj L D �1.

Conversely, if conditions (29) and (30) hold then the factor multiplying K is nonneg-
ative and an application of the arithmetic-geometric mean inequality gives that for any
choice of gj and for each x 2 X the term in the second bracket of (28) is nonnegative,
so we attain infK;gj L by letting K D 0 and gj .x/ D 0 for all x 2 X and j D 1; : : : ; d .
Hence, for each fixed . ; hj /, infK;gj L > �1 if and only if  and hj satisfy conditions
(29) and (30), in which case infK;gj LD

P
x2X  .x/G.x/. Noting that there always exist

 and hj satisfying conditions (29) and (30), we see that � is the solution to

� D sup
 ;hj

X
x2X

 .x/G.x/ such that

 .x/ �

dY
jD1

.˛�1j Tjhj .x// j̨ for all x 2 X , and

kGkX�

dX
jD1

X
yj2Yj

hj .yj / � 1:

(31)

For any  and hj satisfying the conditions in (31) we can calculateX
x2X

 .x/G.x/ �
X
x2X

dY
jD1

.˛�1j Tjhj .x// j̨G.x/ �
 dY
jD1

.˛�1j Tjhj / j̨


X
kGkX�

� A

dY
jD1

k˛�1j hj k
j̨

Yj
kGkX� � A

dX
jD1

khj k
j̨

Yj
kGkX� � A

where the inequalities follow in order from the first condition of (31), the definition of
the norm on X�, the inequality (15), the arithmetic-geometric mean inequality, and the
second condition of (31). Taking the supremum now yields � � A.



Multilinear duality and factorisation 2081

3.4. Proof that L D � and existence of minimisers

This is a minimax argument. As we have noted above, it is immediate that � � L and
this is referred to as weak duality. The other direction, giving L D �, is called strong
duality and does not hold in general. However, there are various conditions which guar-
antee strong duality, such as Slater’s condition which is the condition that the original
problem (26) is convex and there exists a point satisfying all of the constraints with strict
inequality. See [17, p. 226]. We have noted above that Slater’s condition holds in our set-
ting. Moreover, Slater’s condition guarantees the existence of a maximiser for the dual
problem. However, we need optimisers for the primal problem. If for all x 2 X we have
Tj 1.x/ > 0 – which is simply the saturation hypothesis in our present case – then the set
of gj ’s which satisfy the constraints of (26) with K D 2A will be compact, and therefore
a minimiser will exist.

4. General case: overview of the proof

Let us now turn to the argument for Theorem 2.2 in the general case. It will entail sub-
stantial measure-theoretic and functional-analytic considerations not present in the case
when X and Yj are finite sets. While it is an attractive idea to try to establish Theorem 2.2
by approximating the general case by the discrete case, this does not seem a feasible
route, even when X and Yj are Lq and Lpj spaces respectively, and a direct approach is
therefore required. The bulk of the proof of Theorem 2.2 will be devoted to establishing a
special case in whichX is a finite measure space11 and where we impose strong saturation
on the Tj instead of saturation. This leads to the crucial conclusion that we can take the
factors gj to lie in L1.X; d�/. The result reads as follows:

Theorem 4.1. Suppose X is a finite measure space, X is a Köthe space of functions
defined on X , Yj are normed lattices, and the linear operators Tj W Yj ! M.X/ are
positive. Suppose that each Tj strongly saturates X . Suppose that

 dY
jD1

.Tjfj / j̨


X
� A

dY
jD1

kfj k
j̨

Yj
(32)

for all nonnegative fj 2 Yj , 1 � j � d .12 Then for every nonnegative G 2X0 there exist
nonnegative functions gj 2 L1.X; d�/ such that

G.x/ �

dY
jD1

gj .x/ j̨ a.e. on X , (33)

11To be clear, a measure space .X; d�/with�.X/<1, not a finite setX with counting measure.
12Notice that a hypothesis of strong saturation is unrealistic in the presence of inequality (32)

unless X has finite measure.
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and such that for each j ,Z
X

gj .x/Tjfj .x/ d�.x/ � AkGkX0kfj kYj (34)

for all fj 2 Yj .

In the proof of this theorem we introduce an extended real-valued Lagrangian function
L.ˆ;‰/ (whereˆ corresponds to the variables .K;gj / and‰ corresponds to the variables
. ; hj / of the discrete model case discussed above). See Section 5.2 below for precise
details of the definition of L. As in the model case, we relate sup‰ infˆL (which we had
previously called �) to problem (33) and (34) and infˆ sup‰ L (which we had previously
called  ) to inequality (32). We then need to show that

min
ˆ

sup
‰

L.ˆ;‰/ D sup
‰

inf
ˆ

L.ˆ;‰/;

and for this we need to use the Lopsided Minimax Theorem (see [2, Chapter 6.2, The-
orem 7]):

Theorem 4.2. Suppose C and D are convex subsets of vector spaces and that C is
endowed with a topology for which the vector space operations are continuous. Further,
suppose that L W C �D ! R satisfies

(i) ˆ 7! L.ˆ;‰/ is convex for all ‰ 2 D;

(ii) ‰ 7! L.ˆ;‰/ is concave for all ˆ 2 C ;

(iii) ˆ 7! L.ˆ;‰/ is lower semicontinuous for all ‰ 2 D; and

(iv) there exists a‰0 2D such that the sublevel sets ¹ˆ2C WL.ˆ;‰0/��º are compact
for all sufficiently large � 2 R.

Then
min
ˆ2C

sup
‰2D

L.ˆ;‰/ D sup
‰2D

inf
ˆ2C

L.ˆ;‰/: (35)

Remark 16. The existence of the minimum on the left-hand side of (35) is part of the
conclusion: there exists a N̂ 2 C such that sup‰2D L. N̂ ; ‰/ D infˆ2C sup‰2D L.ˆ;‰/.
Once we know that inf sup D sup inf this is easy because (iii) tells us that the map ˆ 7!
sup‰2D L.ˆ;‰/ is lower semicontinuous, and (iv) then tells us that the sublevel sets°

ˆ 2 C W sup
‰2D

L.ˆ;‰/ � �
±
� ¹ˆ 2 C W L.ˆ;‰0/ � �º

are closed and compact, and hence ˆ 7! sup‰2D L.ˆ;‰/ achieves its minimum on any
such set. The fact that sup inf � inf sup is trivial, so the main content of the theorem is
that inf sup � sup inf.

Remark 17. There is nothing to stop both sides of (35) from being C1. Indeed, a non-
trivial conclusion of the theorem is that if the right-hand side is finite, so is the left-hand
side.
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Remark 18. Traditional versions of minimax theorems assume that C itself is compact,
rather than compactness of certain sublevel sets as condition (iv). However, in our case, we
cannot, for the reasons set out below, expect C to be compact. It is a remarkable feature
of our analysis that the saturation hypothesis we must impose corresponds precisely to
condition (iv) of the minimax theorem.

Remark 19. The observant reader will have noticed that we have indicated our intention
to introduce an extended real-valued LagrangianL, but the minimax theorem applies only
to real-valued Lagrangians. This mismatch necessitates a small detour which we wish to
suppress here.13 For details see Section 5.2.1 below.

It is a somewhat delicate matter to choose the vector space where we will locate the
variables ˆ featuring in the Lagrangian which we will use. Corresponding to the vari-
ables gj occurring in the discrete model case of Section 3, we will now have variables Sj ,
which we would like to take to be elements of L1.X/C. (It is the weighted geometric
mean of a particular collection of these which will ultimately furnish the desired factor-
isation.) However, it turns out to be helpful to instead allow, in the first instance, the Sj
to be elements of the larger space L1.X/�C, that is, the positive cone of the dual of
L1.X/.14 Thus we consider the vector space R � L1.X/� � � � � � L1.X/� and take C
to be a suitable subset of the positive cone in this space. Ideally we would like to take C
to be a norm bounded convex subset and then use the Banach–Alaoglu theorem to assert
compactness of C ; but since we are not expecting any quantitativeL1 bounds on the func-
tions Sj appearing in the factorisation, there is no natural norm bounded set with which to
work. Instead, we take C to be the whole positive cone RC �L1.X/�C � � � � �L

1.X/�C,
endowed with the weak-star topology. The price for this is the need to verify hypothesis
(iv) of Theorem 4.2. Fortunately, this turns out to be not so difficult, and in fact is rather
natural in our setting. Carrying out this process will yield some distinguished members of
L1.X/�C. However, working with the dual of L1.X/ presents its own difficulties since
some elements of L1.X/�C are quite exotic. Fortunately, the theory of finitely additive
measures comes to the rescue, and we will be able to show that elements satisfying the
properties we require can in fact be found in the smaller space L1.X/C. See Section 5.2
below for more details.

To set the scene for this, we recall three results of Yosida and Hewitt which can be
found in [43]. The setting for each of these results is a � -finite measure space .X; d�/.

13B. Ricceri has recently informed us (private communication) that Theorem 4.2 continues to
hold when the Lagrangian is permitted to take the value C1. The detour takes no longer than
establishing this more general minimax statement.

14Had we instead opted to work from the outset with Sj 2 L1.X/C, we would have been forced
to place unnatural topological conditions on X in order to identify L1.X/C with a subspace of
a dual space, and in any case we would have to work in the larger space of finite regular Borel
measures on X in order to exploit weak-star compactness.
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Theorem 4.3. There is an isometric isomorphism between the space of finitely additive
measures onX of finite total variation which are �-absolutely continuous15 and the space
of bounded linear functionals on L1.X; d�/. For a finitely additive measure � with these
properties the corresponding element ofL1.X; d�/� is given by �. /D

R
X
 d� .where

the integral is the so-called Radon integral/. Furthermore, L1.X; d�/ embeds isometric-
ally into L1.X; d�/� in such a way that the application of g 2 L1.X; d�/ to an element
of  2 L1.X; d�/ is given by

R
X
 g d� where the integral is now the Lebesgue integral.

Theorem 4.4. Any element S 2 L1.X; d�/� can be written uniquely as S D Sca C Spfa

where Sca is countably additive .and hence is given by integration against a function in
L1.X; d�// and Spfa is purely finitely additive. Furthermore, S � 0 if and only if Sca � 0

and Spfa � 0.

We need not concern ourselves here with the definition of purely finitely additive
measures, but, in order to be able to use these results, we do need a useful characterisation
of which measures are purely finitely additive.

Theorem 4.5. A nonnegative finitely additive measure � which is �-absolutely continu-
ous is purely finitely additive if and only if for every nonnegative countably additive
measure � which is �-absolutely continuous, every measurable set E and every pair
of positive numbers ı1 and ı2, there is a measurable subset E 0 of E such that �.E 0/ < ı1
and �.E nE 0/ < ı2.

We wish to remark that analysis related to the dual space of L1 has also been
employed in a number of other contexts recently. See for example [3, 39, 41] and, in the
financial mathematics literature, [34].

5. General case: details of the proof

5.1. Preliminaries

We shall first need two lemmas which will be useful for the proof of Theorem 4.1 and
also that of Theorem 2.2 itself. The first one is the key technical tool which, in the context
of Theorem 4.1, will allow us to deduce existence of suitable integrable functions from
existence of corresponding members of the dual of L1. We shall continue to assume that
j̨ > 0 and that

Pd
jD1 j̨ D 1.

Lemma 5.1. Let .X; d�/ be a � -finite measure space and suppose that Sj 2 L1.X/�C.
Suppose that G is a measurable function such thatZ

X

G.x/

dY
jD1

ǰ .x/ j̨ d�.x/ �
dX
jD1

j̨Sj . ǰ / for all simple functions ǰ on X . (36)

15This means that the finitely additive measure � satisfies �.E/ D 0 whenever �.E/ D 0.
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If .Sj rn/ denotes the Radon–Nikodym derivative with respect to � of the component of Sj
which is countably additive, then

G.x/ �

dY
jD1

Sj rn.x/ j̨ a.e. on X . (37)

Conversely, if G is such that (37) holds, then (36) holds.

Remark 20. This result extends the special case d D 1 which is implicit in Theorem 4.4.

Proof of Lemma 5.1. The converse statement follows immediately from the arithmetic-
geometric mean inequality, so we turn to the forward assertion. Suppose it does not hold.
Then there exists a set E0 with �.E0/ > 0 such that inequality (37) fails on E0 and we
can find an " > 0 and E1 � E0 with �.E1/ > 0 such that

G.x/ � " >

dY
jD1

Sj rn.x/ j̨

for all x 2 E1. Now take ǰ to be simple functions supported on E1. Then we get

Z
E1

dY
jD1

Sj rn.x/ j̨
dY
jD1

ǰ .x/ j̨ d�.x/C "
Z
E1

dY
jD1

ǰ .x/ j̨ d�.x/

�

Z
E1

G.x/

dY
jD1

ǰ .x/ j̨ d�.x/ �
dX
jD1

j̨Sj . ǰ /

D

dX
jD1

j̨

Z
E1

Sj rn.x/ ǰ .x/ d�.x/C
dX
jD1

j̨

Z
E1

ǰ .x/ d�j pfa (38)

where �jpfa is the purely finitely additive measure associated to the purely finitely additive
component Sj pfa of Sj .

We can find a subset E2 � E1 with �.E2/ > 0 and a C > 0 such that Sj rn.x/ � C

for all x 2 E2 and all j . There are now two cases to consider.
First, assume that there exists a subset E3 � E2 such that �.E3/ > 0 and an index j0

such that Sj0rn.x/ D 0 for all x 2 E3. Now let ı be small and positive (to be specified
later) and E4 a subset of E3 with 0 < �.E4/ <1 (also to be specified later16), and take

ǰ D ı�E4 for j ¤ j0 and ǰ0 D ı
1�˛�1

j0 �E4 . This implies that
Qd
jD1 ǰ .x/ j̨ D 1 for

all x 2 E4 and so the top line of (38) equals 0C "�.E4/. The first term on the bottom
line of (38) can be bounded by Cı�.E4/ since there is no contribution from the term

with index j0. The second term we can bound by ı1�˛
�1
j0 .

P
j �j pfa/.E4/. We have not

chosen E4 precisely yet. To do this we use Theorem 4.5 above.

16We are using � -finiteness of � to ensure that we can find such an E4 with �.E4/ finite.
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Indeed, applying Theorem 4.5 with � WD
P
j �j pfa, � WD �, E WD E3 and ı1 WD

�.E3/=2 gives that for all ı2 > 0 there is an E4 � E3 such that �.E3 nE4/ < �.E3/=2
and �.E4/ < ı2. So (38) implies

"�.E4/ � Cı�.E4/C ı
1�˛�1

j0 �.E4/ � Cı�.E4/C ı
1�˛�1

j0 ı2:

Now choose ı2 D "�.E3/=4ı
1�˛�1

j0 , so that for some E4 � E3 we have

"�.E4/ � Cı�.E4/C "�.E3/=4 � Cı�.E4/C "�.E4/=2:

Finally, choosing ı < "=.2C / yields a contradiction, since by construction �.E4/ > 0.
In the other case, we have Sj rn.x/ > 0 for a.e. x 2 E2 and all j . Then we can find a

subset E3 � E2 with 0 < �.E3/ <1 and a number c > 0 such that Sj rn.x/ � c for all
x 2 E3 and all j . We define uj on this set as

uj .x/ D Sj rn.x/
�1

dY
kD1

Skrn.x/
˛k

and note that uj .x/� c�1C and that
Q
j uj .x/

j̨ D 1. Since these functions are bounded,
if we are given ı > 0we can find simple functions Q̌j such that uj .x/� ı� Q̌j .x/� uj .x/
for all x 2E3. We may assume that Q̌j .x/� cC�1 for all x 2E3. Let us take ǰ D

Q̌
j�E4

where E4 is a subset of E3 to be chosen. Then for x 2 E4 we have

0 �

dY
jD1

uj .x/ j̨ �

dY
jD1

ǰ .x/ j̨

D

dX
kD1

� kY
jD1

uj .x/ j̨ .uk.x/
˛k � ˇk.x/

˛k /

dY
jDkC1

ǰ .x/ j̨
�

D

dX
kD1

� kY
jD1

uj .x/ j̨ ˛k
�k.x/

˛k

�k.x/
.uk.x/ � ˇk.x//

dY
jDkC1

ǰ .x/ j̨
�
� dC 2c�2ı:

Here �j0.x/ lies between ǰ0.x/ and uj0.x/ and we have used c=C � ǰ .x/; �j .x/; uj .x/

� C=c. Now we can estimate the first term on the top line of (38) from below by

Z
E4

dY
jD1

Sj rn.x/ j̨
� dY
jD1

uj .x/ j̨ � dC
2c�2ı

�
d�.x/

�

Z
E4

dY
jD1

Sj rn.x/ j̨ d�.x/ � �.E4/dC 3c�2ı;

and the second term on the top line of (38) we can estimate from below by
"�.E4/.1 � dC

2c�2ı/ since
Q
j uj .x/

j̨ D 1 on E4.
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The first term on the bottom line of (38) we can estimate from above using ǰ � uj
on E4 and the definition of uj , byZ

E4

dY
jD1

Sj rn.x/ j̨ d�.x/:

The second term we can bound by Cc�1.
P
j �j fa/.E4/.

Collecting this we see thatZ
E4

dY
jD1

Sj rn.x/ j̨ d�.x/ � �.E4/dC 3c�2ı C "�.E4/.1 � dC 2c�2ı/

�

Z
E4

dY
jD1

Sj rn.x/ j̨ d�.x/C Cc�1
�X
j

�jpfa

�
.E4/:

The integrals cancel17 and we get

"�.E4/ � �.E4/."dC
2c�2ı C dC 3c�2ı/C Cc�1�.E4/

where � D
P
j �j pfa. We can then choose E4 and ı in much the same way as before to

yield a contradiction. Note that ı will only depend on d , C , c and ".
Consequently, in both cases we have a contradiction to the existence of E0, and so

(37) must hold.

It turns out that we shall need to consider the action of S 2 L1.X; d�/�C not just on
L1.X/, but on general nonnegative measurable functions in M.X/. The reasons for this
are explained in Section 5.2 below. To this end, we extend S to M.X/C by declaring, for
F 2M.X/C,

S.F / WD sup ¹S.f / W 0 � f � F; f 2 L1.X/º D sup ¹S.�/ W 0 � � � F; � simpleº:

Of course S.F / will often now take the valueC1.
The second lemma concerns continuity properties of this extension. Consider the map

S 7! S.F / for fixed F 2M.X/C as S ranges over L1.X/�C. If F 2 L1.X/ this map is
weak-star continuous by definition. For F 2M.X/C we can assert less.

Lemma 5.2. Fix F 2M.X/C. Then the map S 7! S.F / from L1.X/�C to R [ ¹C1º
is weak-star lower semicontinuous.

We remark that we have to be cautious here since L1.X/�C with the weak-star topo-
logy is not a metric space; so we cannot simply concern ourselves with sequential lower
semicontinuity.

Proof of Lemma 5.2. Let S 2L1.X/�C. Either S.F /DC1 or S.F / <C1. Let us first
deal with the latter case. We need to show that for every � > 0 there is a weak-star open
neighbourhood U of S such that for R 2 U we have R.F / � S.F / � �.

17Since Sj 2 .L1/� we have Sj rn 2 L
1, and the terms we are cancelling are indeed finite.
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Since S.F / < C1 there is an f 2 L1.X/ with 0 � f � F such that S.f / >
S.F / � �. Let

U D ¹R 2 L1.X/�C W R.f / > S.F / � �º:

Then S 2 U , and U is weak-star open since for each f 2 L1.X/ the functional R 7!
R.f / is weak-star continuous. So for R 2 U we have

R.F / � R.f / > S.F / � �;

which is what we needed.
Now we look at the case S.F / D C1. We now need to show that for every N 2 N

there is a weak-star open neighbourhood U of S such that forR 2 U we haveR.F /�N .
Since S.F / D C1 there is an f 2 L1.X/ with 0 � f � F such that S.f / > N .

Let
U D ¹R 2 L1.X/�C W R.f / > N º:

Then again S 2 U , and U is weak-star open since for each f 2 L1.X/ the functional
R 7! R.f / is weak-star continuous. So for R 2 U we have

R.F / � R.f / > N;

which is what we needed.

5.2. Proof of Theorem 4.1

Suppose we are in the situation in the statement of Theorem 4.1. In particular, we assume
that G 2 X0, and we may clearly assume that kGkX0 ¤ 0.

We recall from Section 4 that we take C (in which we locate the variables ˆ D
.K; Sj /) to be the positive cone RC � .L1.X/�C/

d in the vector space R � .L1.X/�/d ,
and C is given the topology inherited from the product topology of the corresponding
weak-star topologies. We take D (in which we locate the variables ‰ D . ǰ ; hj /) to be
the positive cone in the vector space �.X/d � Y1 � � � � � Yd .

Therefore, for K 2 RC, Sj 2 L1.X/�C, ǰ simple functions on X and hj 2 Yj we
consider the functional

L D K C

�Z
X

G.x/

dY
jD1

ǰ .x/ j̨ d�.x/ �
dX
jD1

j̨Sj . ǰ /

�

C

dX
jD1

.Sj .Tjhj / �KkGkX0khj kYj /:

Note that the integral term is well-defined since G 2 X0 (which is contained in
L1.X; d�/ when � is a finite measure, as we have previously observed) and the ǰ are
simple functions, and that the terms Sj . ǰ / are also well-defined since the ǰ are bounded
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functions. The terms Sj .Tjhj / are well-defined via the extension of Sj to M.X/C as dis-
cussed in Section 5.1 above. Thus L W C � D ! R [ ¹C1º is well-defined, with the
possible valueC1 arising when Tjhj is not a bounded measurable function.

We next want to see how we can apply the minimax theorem, Theorem 4.2, to this
Lagrangian. Recall from Remark 19 above that we have a problem in so doing, since
our Lagrangian may take the valueC1, while Theorem 4.2 requires that the Lagrangian
be real-valued. To be clear, what we desire – and what we shall indeed obtain – is the
conclusion

min
ˆ2C

sup
‰2D

L.ˆ;‰/ D sup
‰2D

inf
ˆ2C

L.ˆ;‰/

of Theorem 4.2 in our case, but in order to achieve this we need to make a detour.

5.2.1. A detour. We now describe the necessary detour. This involves modifying the Lag-
rangian we have defined in order to make it real-valued, but without altering its essential
purpose. The main technical difference is that instead of allowing Sj to act on the possibly
unbounded Tjhj , we have it act on an arbitrary nonnegative simple function  j satisfying
 j � Tjhj ,

We therefore introduce a new Lagrangianƒ W C � QD! R, where C is as before, and
where

QD D ¹. ǰ ; hj ; j / 2 �.X/d �Y1 � � � � �Yd � �.X/d W ǰ � 0; hj � 0; 0�  j � Tjhj º:

Note that QD is convex.
For .K; Sj / 2 C and . ǰ ; hj ;  j / 2 QD we define

ƒ DK C

�Z
X

G.x/

dY
jD1

ǰ .x/ j̨ d�.x/ �
dX
jD1

j̨Sj . ǰ /

�

C

dX
jD1

.Sj j �KkGkX0khj kYj /:

Note that ƒ is real-valued since Sj j is real-valued. Moreover, by the definition of the
extension of Sj to M.X/C, we have

L..K; Sj /; . ǰ ; hj // D sup
¹ j W j�Tj hj º

ƒ..K; Sj /; . ǰ ; hj ;  j //: (39)

We will momentarily check that the Lagrangian ƒ satisfies the hypotheses of The-
orem 4.2, but taking this as read for now, we deduce using (39) that

min
.K;Sj /2C

sup
. ǰ ;hj /2D

L D min
.K;Sj /2C

sup
. ǰ ;hj ; j /2 QD

ƒ D sup
. ǰ ;hj ; j /2 QD

inf
.K;Sj /2C

ƒ:

But since trivially sup inf � inf sup, we have, using (39) once more,

sup
. ǰ ;hj ; j /2 QD

inf
.K;Sj /2C

ƒ � sup
. ǰ ;hj /2D

inf
.K;Sj /2C

sup
 j�Tj hj

ƒ D sup
. ǰ ;hj /2D

inf
.K;Sj /2C

L:
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Combining the last two displays we obtain

min
.K;Sj /2C

sup
. ǰ ;hj /2D

L � sup
. ǰ ;hj /2D

inf
.K;Sj /2C

L:

Since the reverse inequality is once again trivial we conclude that

min
ˆ2C

sup
‰2D

L.ˆ;‰/ D sup
‰2D

inf
ˆ2C

L.ˆ;‰/

as we needed.
Now we need to look at conditions (i)–(iv) of Theorem 4.2 in our case where ƒ

replaces L. Concerning (i), the map S 7! S.F / is linear on L1.X/� for each fixed
F 2 �.X/. Therefore, for each fixed Q‰ 2 QD, the mapˆ 7!ƒ.ˆ; Q‰/ is affine, thus convex
on C . Concerning (ii), the map F 7! S.F / is linear and hence concave on �.X/ for each
fixed S 2 L1.X/�C. Moreover the geometric mean is a concave operation and the map
h 7! khkYj is convex. Therefore, for each fixedˆ 2 C , the map Q‰ 7!ƒ.ˆ; Q‰/ is concave
on QD. Concerning (iii), this follows directly from the weak-star continuity of S 7! S.F /

on L1.X/� for each fixed F 2 �.X/.
Condition (iv) is more interesting, and it is in verification of this condition that we

use the crucial strong saturation hypothesis of Theorem 4.1. We need to see that for some
Q‰0 2 QD the sublevel sets ¹ˆ 2 C Wƒ.ˆ; Q‰0/� �º are compact for all sufficiently large �.
We will show that for a suitable choice of Q‰0 these sets are norm bounded, and from this
the Banach–Alaoglu theorem will give us compactness.

We take Q‰0 D . ǰ ; hj ;  j / to have ǰ D 0 for all j . We take hj 2 Yj such that
Tjhj � c0 > 0 a.e. onX , as guaranteed by the hypothesis of Theorem 4.1. By multiplying
by a suitable positive constant if necessary, we can certainly assume that

Pd
jD1 khj kYj <

.2kGkX0/
�1. Finally, we take  j D c01 which satisfies 0 �  j � Tjhj .

For such a choice of Q‰0 we have

ƒ..K; Sj /; Q‰0/ D K
�
1 � kGkX0

dX
jD1

khj kYj

�
C

dX
jD1

Sj j � K=2C c0

dX
jD1

Sj 1:

Therefore, for given � > 0,

¹.K; Sj / 2 C W ƒ..K; Sj /; Q‰0/ � �º � Œ0; 2�� � ¹S 2 L
1.X/�C W S.1/ � c

�1
0 �ºd :

But it is easy to see that for S � 0, S.1/ D kSkL1.X/� . Indeed, by definition we have

kSkL1.X/� D sup ¹jS.u/j W u 2 L1.X/; kuk1 � 1º:

So let us take such a function u with kuk1 � 1. Since S.�u/ D �S.u/ we may by
choosing either u or �u assume that S.u/ � 0. We have u � 1 a.e. and therefore the
nonnegativity of S gives us that S.u/ � S.1/, as needed.

Therefore

¹.K; Sj / 2 C W ƒ..K; Sj /; Q‰0/ � �º � Œ0; 2�� � ¹S W kSk � c
�1
0 �ºd
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is a norm bounded, weak-star closed, hence weak-star compact subset of R�.L1.X/�/d ,
by the Banach–Alaoglu theorem. This completes the verification of condition (iv) of The-
orem 4.2 in our case, and we conclude that

min
ˆ2C

sup
‰2D

L.ˆ;‰/ D sup
‰2D

inf
ˆ2C

L.ˆ;‰/:

5.2.2. Return to the main argument. We may therefore conclude, by Theorem 4.2, that if
for nonzero G 2 X0 fixed we define18

�L D inf
.K;Sj /2C

sup
. ǰ ;hj /2D

L and � D sup
. ǰ ;hj /2D

inf
.K;Sj /2C

L

then � D �
L

and the infimum in the problem for �
L

is achieved as a minimum. (It should
be noted that we are not yet in a position to assert the finiteness of either of these numbers.)

In order to progress further, we shall also consider the problem

 D infK such that

G.x/ �

dY
jD1

Sj .x/ j̨ a.e. on X , andZ
X

Sj .x/Tjhj .x/ d�.x/ � KkGkX0khj kYj for all j and all hj 2 Yj

(40)

where the Sj are taken to be in L1.X; d�/. We emphasise that this is the problem we
really want to solve: if we can prove that  � A and that minimisers exist, we will have
our desired factorisation. Nevertheless, we should point out that it is not yet even clear that
there exist .K;Sj / satisfying the constraints of (40). We shall be able to infer the existence
of such .K; Sj /, and hence the finiteness of  , only from the conclusion of Theorem 4.1.

Our strategy is to show that (i) �
L
D  and that if the problem for �

L
admits minim-

isers ˆ, then the problem for  also admits minimisers; and (ii) 0 � � � A. Combining
these with the minimax result �

L
D � and existence of minimisers for �

L
, we can con-

clude that the problem for  admits minimisers and that  � A, which will conclude the
proof of Theorem 4.1.

Proof that  D �
L

and that existence of minimisers for �
L

implies existence of minim-
isers for  . We begin by studying �

L
so let us consider for which .K; Sj / 2 C we have

18The notation here is perhaps confusing. We shall consider four problems:  , �, L and �
L

.
When there is no superscript we are dealing with the variant of the problem pertaining to L1, and
presence of the superscript � denotes that we are dealing with the variant of the problem which per-
tains to .L1/�; when there is no subscript we are dealing with the original version of the problem,
and presence of the subscript L denotes that we are dealing with the Lagrangian formulation. This
is consistent with the notation we adopted in the treatment of the finite discrete case above; in that
case there was no distinction between L1 and .L1/�. We do not adorn � with either a superscript �
or a subscript L since there is only one �-problem. Nevertheless we emphasise that the �-problem
does indeed deal with the Langrangian formulation in the form pertaining to .L1/�.
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sup
ǰ ;hj

L < 1. Fix .K; Sj /. First of all, suppose that Sj are such that there exists a
tuple . ǰ / such thatZ

X

G.x/

dY
jD1

ǰ .x/ j̨ d�.x/ �
dX
jD1

j̨Sj . ǰ / > 0:

Then by setting hj D 0 and substituting ǰ 7! t ǰ and letting t ! 1 we see that the
supremum is infinite. Therefore, if sup

ǰ ;hj
L <1, we must haveZ

X

G.x/

dY
jD1

ǰ .x/ j̨ d�.x/ �
dX
jD1

j̨Sj . ǰ / for all simple functions ǰ , (41)

which, by Lemma 5.1, is equivalent to

G.x/ �

dY
jD1

Sj rn.x/ j̨ a.e. on X . (42)

Now assume there exists a j0 and an hj0 2 Yj0 such that Sj0.Tj0hj0/ >

KkGkX0khj0kYj0
. Taking ǰ D 0, and hj D 0 for j ¤ j0 and multiplying hj0 by a

factor t which we send to infinity we again see that the supremum is infinite. Therefore,
if sup

ǰ ;hj
L <1, then we must also have

Sj .Tjhj / � KkGkX0khj kYj (43)

for all nonnegative hj and all j . From the positivity of Sj pfa we see that this impliesZ
X

Sj rn.x/Tjhj .x/ d�.x/ � KkGkX0khj kYj (44)

for all nonnegative hj and all j .
On the other hand, if for fixed .K; Sj / conditions (42) and (43) are satisfied, then

when we are looking for sup
ǰ ;hj

L, we can do no better than taking ǰ D 0 and hj D 0
for all j . So for fixed .K; Sj /, we have sup

ǰ ;hj
L <1 if and only if conditions (42)

and (43) hold, in which case sup
ǰ ;hj

L D K. So the problem for �
L

is identical with the
problem

� D infK such that

G.x/ �
Y
j

Sj rn.x/ j̨ a.e.;

Sj .Tjhj / � KkGkX0khj kYj for all j and all hj 2 Yj ,

where we emphasise that the inf is taken over .K; Sj / with Sj 2 L1.X/�C.
Likewise, the problem

L WD inf
.K;Sj /2RC�.L1.X/C/d

sup
ǰ ;hj

L

is identical with problem (40) for  .
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It is clear that �
L
� L as the infimum for the left-hand side is over a larger set than

for the right-hand side.

Claim. L � 
�
L

, and if minimisersˆD .K;Sj / exist for problem �
L

, they also exist for
problem L.

Indeed, assume that �
L
<1, let " > 0 and let .K; Sj / with Sj 2 L1.X/� and satis-

fying conditions (42) and (43) be such that K < �
L
C ". Then the absolutely continuous

component Sj rn satisfies (42) and (44), and so .K; Sj rn/ contributes to the infimum in
the problem for L. Thus L � 

�
L
C ". Letting "! 0 establishes the first part of the

claim. Now suppose that minimisersˆD .K;Sj / exist for problem �
L

. In particular, this
supposes that �

L
< 1. Let .K; Sj / with Sj 2 L1.X/� and satisfying conditions (42)

and (43) be such that K D �
L

. Then the absolutely continuous component Sj rn satis-
fies (42) and (44), and so .K; Sj rn/ contributes to and indeed achieves the infimum in the
problem for L (otherwise L would be strictly less than �

L
).

Summarising, the problems for  and L are equivalent; the problems for � and �
L

are equivalent; L D 
�
L

, and if extremisers exist for �
L

, they also exist for L, and hence
too for  .

Proof that 0 � � � A. We wish to carry out a similar analysis for infK;Sj L, and for that
we first of all rewrite L as

L D

Z
X

G.x/

dY
jD1

ǰ .x/ j̨ d�.x/CK
�
1 � kGkX0

dX
jD1

khj kYj

�
C

dX
jD1

Sj .Tjhj � j̨ ǰ /:

We consider for which . ǰ ; hj / 2 D we have infK;Sj L > �1.
First, by taking Sj D 0 for all j D 1; : : : ; d and letting K go to infinity we see that if

infK;Sj L > �1 then we must have

kGkX0

dX
jD1

khj kYj � 1: (45)

Secondly, assume that there exists an index j0 and a set E � X with �.E/ > 0 such
that Tj0hj0.x/ < j̨0 ǰ0.x/ for a.e. x 2 E. Then by taking Sj0 D t�E 2 L

1, Sj D 0

for j ¤ j0 and K D 0 and letting t ! 1, we see that infK;Sj L D �1. Thus if
infK;Sj L > �1, we must also have

j̨ ǰ .x/ � Tjhj .x/ a.e. on X for all j . (46)

If conditions (45) and (46) are both satisfied we can do no better than take K D 0

and Sj D 0 for all j . So, for fixed . ǰ ; hj /, infK;Sj L > �1 if and only if condi-
tions (45) and (46) hold, in which case infK;Sj L D

R
X
G.x/

Qd
jD1 ǰ .x/ j̨ d�.x/.
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We can always find . ǰ ; hj / such that conditions (45) and (46) hold, so � D

sup
ǰ ;hj

R
X
G.x/

Qd
jD1 ǰ .x/ j̨ d�.x/ subject to conditions (45) and (46). In particular

this tells us that � � 0.
Let us now derive an upper bound for �. Examining condition (46) on ǰ we see that

� � sup
hj

Z
X

G.x/

dY
jD1

�
˛�1j Tjhj .x/

�
j̨ d�.x/ such that

kGkX0

dX
jD1

khj kYj � 1:

Clearly there exist functions hj 2 Yj such that kGkX0
P
j khj kYj � 1, and for any such

we haveZ
X

G.x/

dY
jD1

�
˛�1j Tjhj .x/

�
j̨ d�.x/ � kGkX0

 dY
jD1

�
Tj .˛

�1
j hj /.x/

�
j̨


X

� kGkX0A

dY
jD1

k˛�1j hj k
j̨

Yj
� kGkX0A

dX
jD1

j̨ k˛
�1
j hj kYj D kGkX0A

dX
jD1

khj kYj � A

by Hölder’s inequality in the form
R
Gf � kGkX0kf kX , the multilinear inequality (15)

which is our main hypothesis, the arithmetic-geometric mean inequality and finally the
assumption on the hj . This clearly implies � � A, and thus concludes the proof of The-
orem 4.1.

5.3. Consequences of saturation

We give two lemmas needed for Theorem 2.2. These allow us to construct suitable
exhausting sequences of subsets of X of finite measure, in order that we might apply
Theorem 4.1. Then we construct the weight w of the statement of Theorem 2.2.

Lemma 5.3. Let .X; d�/ be a � -finite measure space, and suppose that P �M.X/C
has the property that for every measurable set E � X with �.E/ > 0, there exists an
f 2 P and a subset E 0 � E with �.E 0/ > 0 such that f > 0 a.e. on E 0. Then there exists
a countable subset ¹fnºn2N � P such that, with En WD ¹x 2 X W fn.x/ > 0º,

�
�
X n

1[
nD1

En

�
D 0:

Proof. By exhausting X by a countable sequence of subsets, each of finite measure, we
may assume that �.X/ is finite. We claim that for every � > 0 there is a finite subset
¹f1; : : : ; fN º � P such that

�
�
X n

N[
nD1

En

�
< �:



Multilinear duality and factorisation 2095

Once we have this claim, we take the union of the finite subsets of P obtained for each
� D 1=m, m 2 N, and we are finished.

Suppose, for a contradiction, that there is some � > 0 such that for all N , for all finite
subfamilies ¹f1; : : : ; fN º � P we have

�
�
X n

N[
nD1

En

�
� � > 0:

Let

t D inf
N

inf
¹f1;:::;fN º�P

�
�
X n

N[
nD1

En

�
:

Then t � � > 0 and also t <1 since �.X/ is finite. Form 2N let Pm D ¹f1; : : : ; fN.m/º

be such that

�
�
X n

N.m/[
nD1

En

�
� t C 1=mI

we may assume that Pm � PmC1 for all m. Letting m!1 we obtain

�
�
X n

1[
nD1

En

�
� t:

If �.X n
S1
nD1En/D 0we are done; otherwiseE DX n

S1
nD1En has positive measure,

and therefore, by hypothesis, there is a subset E 0 � E with �.E 0/ D ı > 0 such that for
some f0 2 P we have E 0 � E0. Then (with the union now starting at n D 0)

�
�
X n

N.m/[
nD0

En

�
� t C 1=m � ı:

If we choosem > ı�1, we then have �.X n
SN.m/
nD0 En/ < t , in contradiction to the defin-

ition of t .

Lemma 5.4. Let .X; d�/ be a � -finite measure space, Y a normed lattice, and suppose
that T W Y ! M.X/ is a positive linear operator which saturates X . Then there is an
increasing exhausting sequence .Gn/ of subsets of X , each of finite measure, such that T
strongly saturates each Gn. More precisely, there exists a sequence .hn/ � YC such that
hnC1 � hn for all n, such that khnkY � 1 for all n, and such that for all n, T hn.x/� 1=n
for x 2 Gn.

Proof. Let P D T .YC/ �M.X/C. The saturation hypothesis allows us to deduce from
the previous lemma that there exists a sequence hn 2 YC such that if En D ¹T hn > 0º,
then ¹Enºn2N covers X up to a set of measure zero. Letting

Qhn D 2
�1 h1

kh1kY
C 2�2

h2

kh2kY
C � � � C 2�n

hn

khnkY
;
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we see that we may additionally assume that khnkY � 1 for all n, and that hnC1 � hn.
Thus without loss of generality En � EnC1 for all n 2 N.

Since X is � -finite there is an increasing sequence of subsets Fn of finite measure
which exhausts X . Now we set

Gn WD ¹x W T hn > 1=nº \ Fn:

Clearly Gn � GnC1 for all n, and each Gn has finite measure. We check that ¹Gnº
is exhausting. Let x 2 X . Then x 2 Ek for some k, i.e. T hk.x/ > 0, and therefore
T hk.x/ > 1=l for some l 2 N. Since X is exhausted by ¹Fmº there is some m such
that x 2 Fm. Therefore, for n such that n � max ¹k; l; mº, we have x 2 Gn. Finally, it is
clear by definition that T strongly saturates Gn.

As an immediate consequence, we have:

Corollary 5.5. Let .X; d�/ be a � -finite measure space and let Yj be normed lattices for
1 � j � d . Assume that Tj W Yj !M.X/ for 1 � j � d are positive linear operators,
each of which saturates X . Then for each 1 � j � d there exists a sequence .hj;n/n �
Yj such that khj;nkYj � 1, hj;n � hj;m for m � n, and there exists an increasing and
exhausting sequence of subsets En � X , each of finite measure, such that for each j
and n, Tjhj;n.x/ � 1=n for x 2 En.

With this in hand, we can now define the weight w referred to in Remark 10 above.
Let wj .x/ for x 2 Em n Em�1 be Tjhj;m.x/, where we take E0 D ;. Define w.x/ D
minj wj .x/. Note that w is a.e. positive and a.e. finite. (If the sets Em stabilise in the
sense that for some M 2 N, EM D X up to a set of measure zero, then w � 1=M , and
we can simply take w to be 1).

5.4. Proof of Theorem 2.2

We will prove Theorem 2.2 by reducing it to Theorem 4.1. We will need the following
lemma whose proof is an easy exercise in elementary point-set topology, and which is
therefore omitted.

Lemma 5.6. Let Z be a compact topological space and suppose .zn/ is an infinite
sequence of distinct points in Z. Then there exists a point z 2 Z such that every open
neighbourhood of z contains infinitely many zn’s.

Proof of Theorem 2.2. We may assume that A <1 since otherwise there is nothing to
prove. Take a nonzero G 2X0, and take En as in Corollary 5.5. For eachm we can apply
Theorem 4.1, with X replaced by Em, to conclude that there exist gj;m 2 L1.Em; d�/
such that

G.x/ �

dY
jD1

gj;m.x/ j̨ a.e. on Em, (47)
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and such that for each j ,Z
Em

gj;m.x/Tjfj .x/ d�.x/ � AkGkX0kfj kYj (48)

for all fj 2 Yj .
If EM D X (up to a set of zero measure) for someM , we simply take gj D gj;M and

we are finished. So we may assume that the sets Em do not stabilise, and therefore that
there are infinitely many distinct gj;m for each j .

With w defined as in the previous subsection, let us now calculate

kgj;mkL1.w d�/ �

Z
Em

gj;m.x/wj .x/ d�.x/ D
mX
nD0

Z
EnnEn�1

gj;m.x/Tjhj;n.x/ d�.x/

�

Z
Em

gj;m.x/Tjhj;m.x/ d�.x/ � AkGkX0khj;mkYj � AkGkX0 :

Thus the functions gj;m all lie in a ball in L1.X; w d�/�, which, by the Banach–Alaoglu
theorem, is weak-star compact. It is therefore tempting to extract a weak-star conver-
gent subsequence. However, we must resist this temptation since L1.X; w d�/ is not
separable, and thus L1.X; w d�/� is not metrisable. We therefore proceed with some
caution. We will use Lemma 5.6 as a substitute for the existence of weak-star convergent
subsequences.

It is convenient to consider the vectors

gn D .g1;n; : : : ; gd;n/ 2 L1.X;w d�/ � � � � � L1.X;w d�/

� L1.X; w d�/� � � � � � L1.X; w d�/� D .L1.X; w d�/ � � � � � L1.X; w d�//�:

By Lemma 5.6 there is a point SD .S1; : : : ;Sd /2 .L1.X; w d�/� � � � �L1.X; w d�//�

such that every weak-star open neighbourhood of S contains infinitely many of the gn.

Lemma 5.7. Suppose .gn/ and S are as above.

(a) If for some q 2M.X;w d�/dC we have

gn.q/ D
dX
jD1

Z
X

gj;nqj w d� D
Z
X

gn � qw d� � K

for all sufficiently large n, then S.q/ � K.

(b) If for some q 2 L1.X;w d�/d we have

gn.q/ D
dX
jD1

Z
X

gj;nqjw d� D
Z
X

gn � qw d� � L

for all sufficiently large n, then S.q/ � L.
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Proof. (a) Suppose for a contradiction that S.q/ � K 0 > K for some finite K 0. Let

U D ¹R 2 ..L1.w d�//d /� W R.q/ > .K CK 0/=2º:

Then S 2 U , and U is weak-star open since for each q 2M.w d�/dC the functional R 7!
R.q/ is weak-star lower semicontinuous, by (a vector-valued version of) Lemma 5.2.
Thus U is an open neighbourhood of S in the weak-star topology. By the above remarks,
U must contain infinitely many of the .gn/. But for all n sufficiently large,

gn.q/ D
Z
X

gn � qw d� � K < .K CK 0/=2

and so none of these gn can be in U . This is a contradiction, and therefore S.q/ � K.
(b) Suppose for a contradiction that S.q/ D L0 < L. Let

U D ¹R 2 ..L1.w d�//d /� W R.q/ < .LC L0/=2º:

Then S 2 U , and U is weak-star open since for each q 2 L1.w d�/dC the functional
R 7! R.q/ is weak-star continuous. Thus U is an open neighbourhood of S in the weak-
star topology. By the above remarks, U must contain infinitely many of the .gn/. But for
all n sufficiently large,

gn.q/ D
Z
X

gn � qw d� � L > .LC L0/=2

and so none of these gn can be in U . This is a contradiction, and therefore S.q/ � L.

We now wish to verify that the absolutely continuous components .Sj rn/ (where the
Radon–Nikodym derivative is with respect to the measure w d�) of .Sj / satisfy

G.x/ �

dY
jD1

Sj rn.x/ j̨ a.e. on X , andZ
X

Sj rn.x/Tjfj .x/ d�.x/ � AkGkX0kfj kYj

(49)

for all j and for all fj 2 Yj . Since we know that Sj 2 .L1.X;w d�//�, we will therefore
have Sj rn 2 L

1.w d�/, and this will conclude the proof of Theorem 2.2.
We may suppose that kGkX0 D 1.
We look at the second inequality from (49) first. Fix m and considerZ
Em

Sjrn.x/Tjfj .x/ d�.x/ D
Z
X

Sjrn.x/w.x/
�1�Em.x/Tjfj .x/w.x/ d�.x/

� Sj .w
�1�EmTjfj /

by positivity of each component in the Yosida–Hewitt decomposition of Sj (recall The-
orem 4.4). Now, for n � m,Z
gjn.x/Œw.x/

�1Tjfj .x/�Em.x/�w.x/ d�.x/ �
Z
gjn.x/Tjfj .x/ d�.x/ � Akfj kYj ;
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so that by Lemma 5.7 (a) (in the scalar case),

Sj .w
�1Tjfj�Em/ � Akfj kYj :

Thus Z
Em

Sjrn.x/Tjfj .x/ d�.x/ � Akfj kYj

and we now let m!1 to get the second inequality of (49).
Now we look at the first inequality from (49). By Lemma 5.1 (using the measure

w d�/ and the fact that the Em exhaust X , it suffices to show that for each fixed m, and
all simple ǰ , Z

Em

G.x/

dY
jD1

ǰ .x/ j̨w.x/ d�.x/ �
dX
jD1

j̨Sj . ǰ /:

Take n � m. By (47) and the arithmetic-geometric mean inequality, the left-hand side is
at mostZ
Em

dY
jD1

Œgjn.x/ ǰ .x/� j̨w.x/ d�.x/ �
dX
jD1

j̨

Z
Em

gjn.x/ ǰ .x/w.x/ d�.x/

�

dX
jD1

j̨

Z
X

gjn.x/ ǰ .x/w.x/ d�.x/ D
dX
jD1

Z
X

gjn.x/Œ j̨ ǰ .x/�w.x/ d�.x/:

Thus for all n � m,

dX
jD1

Z
X

gjn.x/Œ j̨ ǰ .x/�w.x/ d�.x/ �
Z
Em

G.x/

dY
jD1

ǰ .x/ j̨w.x/ d�.x/:

Since the simple functions ǰ are bounded, Lemma 5.7 (b) gives

dX
jD1

Sj . j̨ ǰ / �

Z
Em

G.x/

dY
jD1

ǰ .x/ j̨w.x/ d�.x/;

which is what we want. This completes the proof of Theorem 2.2.

Part II – Connections with other topics

6. Complex interpolation and factorisation

We begin by observing that the trivial identity of Example 2,Z
R2
f1.x2/f2.x1/ dx1 dx2 D

Z
R
f1

Z
R
f2;
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immediately implies via Theorem 1.3 that, for every nonnegativeG 2 L2.R2/, there exist
nonnegative g1 and g2 such that

G.x/ �
p
g1.x/g2.x/ for almost every x 2 R2

and

ess sup
x2

Z
g1.x1; x2/ dx1 � kGk2 and ess sup

x1

Z
g2.x1; x2/ dx2 � kGk2:

While it is not perhaps entirely obvious how to do this explicitly (a point to which we
return in Sections 9.2, 9.3 and 10.2.1 below), for now we want to point out that this
example highlights the connection between our multilinear duality theory and the theory
of interpolation of Banach spaces. In particular, we consider the upper method of complex
interpolation of A. P. Calderón [19].

Suppose that Z0 and Z1 are Banach lattices of measurable functions defined on some
measure space. We define

Z1��0 Z�1 D ¹f W there exist fj 2 Zj such that jf j � jf0j1�� jf1j�º

with
kf kZ1��

0
Z�
1
D inf ¹kf0k1��Z0

kf1k
�
Z1
º;

the inf being taken over all possible decompositions of f . Under the assumption that the
unit ball of Z1��0 Z�1 is closed in Z0 CZ1, Calderón showed that

Z1��0 Z�1 D ŒZ0; Z1�
�

where ŒZ0; Z1�� is the interpolation space between Z0 and Z1 obtained by the upper
complex method.

With this in mind, the factorisation statement in our example is tantamount to the
statement

L2.R2/ ,! ŒL1x1.L
1
x2
/; L1x2.L

1
x1
/�1=2:

Many other special cases of our theory can be similarly expressed in the language of
interpolation. We leave it to the interested reader to pursue this point of view more sys-
tematically.

In this particular example, there is further structure (see for example Pisier [37], in
which some of the ideas are attributed to Lust-Piquard). There it is established that we
have

L2.R2/ D HS.L2.R// ,! Lreg.L
2/ D ŒL1x1.L

1
x2
/; L1x2.L

1
x1
/�1=2

where HS denotes the class of Hilbert–Schmidt operators and Lreg.L
2/ is the space of

regular bounded linear operators onL2. In rough terms, a regular bounded linear operator
on L2 is one such that if its kernel isK.s; t/, then jK.s; t/j is also the kernel of a bounded
linear operator.

The implicit factorisation arguments involved in establishing results of this type rely
on the Hahn–Banach theorem or the Perron–Frobenius theorem, and are thus related to
minimax theory; they are similarly nonconstructive.
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7. Factorisation and convexity

It is also natural to enquire about how factorisation and interpolation interact at the level
of particular families of inequalities. For the sake of concreteness, suppose we are in
the setting of multilinear generalised Radon transforms on euclidean spaces – so that
TjFj D Fj ı Bj for suitable Bj . We shall suppress consideration of any of the technical
hypotheses of Theorem 2.2 in what follows. Suppose that we have the pair of inequalities dY

jD1

TjFj


Lqk
� Ak

dY
jD1

kFj kLpjk (50)

for k D 0; 1, where qk ; pjk � 1.
Each of these has a family of corresponding equivalent factorisation statements,

according to Theorem 2.2 and the remarks in Section 1.3. See also Section 7.1 below.
After some changes of notation, one such equivalent pair of statements is as follows. For

kD 0;1, let sk WD qk
P
j p
�1
jk

. Then for all nonnegativeGk (kD 0;1) such that
R
G
s0
k

k
D 1,

there are nonnegative g10; : : : ; gd0 and g11; : : : ; gd1 such that

Gk.x/ �

dY
jD1

gjk.x/
qk=pjksk a.e. (51)

and such that for all fj with
R
fj � 1,Z
fj .Bjx/gjk.x/ dx � Aqk=sk

k
(52)

for k D 0; 1.
From (51) and (52) we shall deduce a factorisation statement which implies the natural

interpolation statement  dY
jD1

TjFj


Lq�
� A1��0 A�1

dY
jD1

kFj kLpj� (53)

for 0 < � < 1, where, as usual, 1=q� D .1 � �/=q0 C �=q1, and similarly for 1=pj� .
Indeed, given a nonnegative G with

R
G D 1, let Gk D G1=s

0
k . Taking convex com-

binations in (51) gives us

G.x/ �

dY
jD1

gj0.x/
q0s
0
0
.1��/=pj0s0gj1.x/

q1s
0
1
�=pj1s1 a.e. (54)

Next, we define

j .�/ WD
q0s
0
0

pj0s0
.1 � �/C

q1s
0
1

pj1s1
�
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and define gj� by

g
j .�/

j�
WD gj0.x/

q0s
0
0
.1��/=pj0s0gj1.x/

q1s
0
1
�=pj1s1 :

Then, by (52), we haveZ
fj .Bjx/gj� .x/ dx D

Z
fj .Bjx/gj0.x/

q0s
0
0
.1��/=pj0s0j .�/gj1.x/

q1s
0
1
�=pj1s1j .�/ dx

�

�Z
fj .Bjx/gj0.x/ dx

�q0s00.1��/=pj0s0j .�/�Z
fj .Bjx/gj1.x/ dx

�q1s01�=pj1s1j .�/
by Hölder’s inequality, since j .�/ is defined precisely to ensure the two exponents on
the right-hand side here add to 1.

Therefore, if
R
fj � 1,Z

fj .Bjx/gj� .x/ dx � ŒAq0=s00 �q0s
0
0
.1��/=pj0s0j .�/ŒA

q1=s1
1 �q1s

0
1
�=pj1s1j .�/:

Now let ǰ .�/ WD �.�/j .�/ where �.�/ is defined so that
Pd
jD1 ǰ .�/ D 1. By the

definition of s0 and s1 we have

dX
jD1

j .�/ D

dX
jD1

�
q0s
0
0

pj0s0
.1 � �/C

q1s
0
1

pj1s1
�

�
D .1 � �/s00 C �s

0
1:

So, we take

�.�/ WD
1

.1 � �/s00 C �s
0
1

:

Now, bearing in mind Remark 7, we conclude that

dY
jD1

�Z
fj .Bjx/gj� .x/ dx

�
ǰ .�/

� ŒA
q0=s0
0 �

P
j q0s

0
0
.1��/ ǰ .�/=pj0s0j .�/ŒA

q1=s1
1 �

P
j q1s

0
1
� ǰ .�/=pj1s1j .�/

D ŒA
q0=s0
0 ��.�/

P
j q0s

0
0
.1��/=pj0s0 ŒA

q1=s1
1 ��.�/

P
j q1s

0
1
�=pj1s1

D ŒA
q0=s0
0 ��.�/s

0
0
.1��/ŒA

q1=s1
1 ��.�/s

0
1
�

D A

s0
0
q0�.�/.1��/

s0

0 A

s0
1
q1�.�/�

s1

1 D
®�
A

s0
0
q0�.�/.1��/

s0

0 A

s0
1
q1�.�/�

s1

1

�S.�/=Q.�/¯Q.�/=S.�/
for a certain quantity S.�/=Q.�/ to which we turn our attention next. Indeed, we define
this quantity (not S.�/, Q.�/ separately), so that the exponents on A0 and A1 inside the
curly brackets sum to 1. That is,

Q.�/

S.�/
WD �.�/

�
s00q0.1 � �/

s0
C
s01q1�

s1

�
:
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Let us define these exponents of A0 and A1 as 1� ˛.�/ and ˛.�/ respectively; that is, we
define ˛.�/ by

˛.�/ WD
S.�/

Q.�/
�.�/

s01q1�

s1
:

Next, we want the ǰ D �j to be of the form ǰ .�/ D
Q.�/

Pj .�/S.�/
for certain Pj .�/;

that is, 1
Pj .�/

D
S.�/ ǰ .�/

Q.�/
D

S.�/�.�/j .�/

Q.�/
. So, bearing in mind the definitions of j and

S=Q, we define Pj .�/ by

1

Pj .�/
WD

q0s
0
0

pj0s0
.1 � �/C

q1s
0
1

pj1s1
�

s0
0
q0.1��/

s0
C

s0
1
q1�

s1

:

Finally, we define Q.�/ by

1

Q.�/
WD .1 � ˛.�//

1

q0
C ˛.�/

1

q1
:

It is not hard to check that with all these definitions in place, we have, for each j ,

1

Pj .�/
D .1 � ˛.�//

1

pj0
C ˛.�/

1

pj1
:

We therefore see that for each 0� � � 1, for allG� DG1=S
0.�/ such that

R
G
S 0.�/

�
D 1,

there exist gj� such that

G� .x/ �

dY
jD1

gj� .x/
Q.�/=Pj .�/S.�/

and, for fj such that
R
fj � 1,

dY
jD1

�Z
fj .Bjx/gj� .x/ dx

�Q.�/=Pj .�/S.�/
� .A

1�˛.�/
0 A

˛.�/
1 /Q.�/=S.�/:

Note in particular that the exponents Q.�/=Pj .�/S.�/ sum to 1 since
Pd
jD1 ǰ D 1.

Consequently, using the flexibility that Remark 7 affords us, dY
jD1

TjFj


LQ.�/

� A
1�˛.�/
0 A

˛.�/
1

dY
jD1

kFj kLPj .�/

for 0< � < 1. Noting that the map ˛ W Œ0;1�! Œ0;1� is a surjection completes the argument
proving (53).

The argument given here provides no insight into cases in which (53) might hold with
a smaller constant than A1��0 A�1 .
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7.1. Factorisation and multiple manifestations of generalised Radon transforms

As we have observed in Section 1.3, there may be multiple equivalent manifestations of
the same multilinear inequality. For concreteness, suppose that we are once again consid-
ering multilinear generalised Radon transforms on euclidean spaces so that Tjf D f ıBj
for suitable Bj . Then the two inequalities dY

jD1

.Tjfj / j̨

q
� A

dY
jD1

kfj k
j̨
pj

and  dY
jD1

.Tj Qfj /
Q̨j


Qq
� QA

dY
jD1

k Qfj k
Q̨j

Qpj

(where we are imposing
Pd
jD1 j̨ D 1 D

Pd
jD1 Q̨j ) are clearly equivalent provided that

Aq D QA Qq and j̨ Qpj = Q̨jpj D Qq=q for all j . The corresponding factorisation statements,

� for all nonnegativeG 2Lq
0

there exist nonnegative locally integrable functions gj such
that

G.x/ �

dY
jD1

gj .x/ j̨ a.e.

and such that for each j , for all fj 2 Lpj ,Z
gj .x/fj .Bjx/ dx � AkGkq0kfj kpj

and

� for all nonnegative QG 2L Qq
0

there exist nonnegative locally integrable functions Qgj such
that

QG.x/ �

dY
jD1

Qgj .x/
Q̨j a.e.

and such that for each j , for all Qfj 2 L Qpj ,Z
Qgj .x/ Qfj .Bjx/ dx � QAk QGkL Qq0 k Qfj k Qpj ;

are therefore also equivalent (subject to suitable hypotheses), by Proposition 1.1 and The-
orem 1.3. However, it is not immediately apparent whether this equivalence can be seen
directly via changes of notation coupled with simple convexity arguments. In this connec-
tion the remarks in [17, Section 5.7] may be helpful.

8. Factorisation and more general multilinear operators

The multilinear operators we have considered have a rather special form insofar as they
are built out of a collection of positive linear operators by taking a pointwise geometric
mean. One may ask to what extent the theory we have developed is valid for more general
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multilinear operators T W Y1 � � � � � Yd !X. In such a setting we will no longer be able
to attribute different “weights” j̨ to the different components Yj , and all of them will
need to be treated on an equal footing.

For a nonnegative kernelK, let us therefore consider multilinear operators of the form

T .f1; : : : ; fd /.x/ D

Z
Yd

� � �

Z
Y1

K.x; y1; : : : ; yd /f1.y1/ � � � fd .yd / d�1.y1/ � � � d�d .yd /

and inequalities of the form

kT .f1; : : : ; fd /
1=d
kX � A

dY
jD1

kfj k
1=d

Yj
: (55)

When K is of the form K.x; y1; : : : ; yd / D K1.x; y1/ : : : Kd .x; yd /, these are the
special cases of the inequalities (15) given by j̨ D 1=d for j D 1; : : : ; d . It is very
natural to ask whether there is a general duality/factorisation result along the same lines
as Proposition 2.1 and Theorem 2.2 which yields a necessary and sufficient condition for
the validity of inequality (55).

As the reader will readily verify by following the proof of Proposition 2.1, inequality
(55) does indeed hold (under hypotheses on X and Yj similar to those of Proposition 2.1),
if, for all G 2 X0 such that kGkX0 � 1, there exist nonnegative functions gj on X � Yj
such that

K.x; y1; : : : ; yd /
1=dG.x/ �

dY
jD1

gj .x; yj /
1=d a.e.; andZ

X

gj .x; �/ d�.x/


Y�
j

� A:

(56)

This observation has proved very useful in multilinear Kakeya theory (see Section 11).
However, the converse is not true, namely inequality (55) does not in general imply

the existence of Sj such that (56) holds even if we assume that the integral kernel K is
invariant under permutations of the y-variables:

Proposition 8.1. Let d D 2. LetX D Y1 D Y2 D ¹1;2º D� with counting measure, X D

L4.�/, and Y1 D Y2 D L
2.�/. There exists a bilinear T W L2.�/ � L2.�/! L4.�/

such that (55) holds with A D 21=4 but such that (56) can only hold with A � 21=2.

Proof. Let the integral kernel K of T satisfy

K.1; 1; 1/ D K.2; 1; 1/ D K.2; 2; 2/ D 1

and let K equal zero otherwise. Let f1 D .a1; a2/ and f2 D .b1; b2/ and we assume
a21 C a

2
2 D b

2
1 C b

2
2 D 1. Then

T .f1; f2/.1/ D a1b1 and T .f1; f2/.2/ D a1b1 C a2b2
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so Z
T .f1; f2/.x/

2 dx D .a1b1/2 C .a1b1 C a2b2/2:

This is clearly maximised, subject to the normalisation constraints, by taking a1D b1D 1,
a2 D b2 D 0 and the maximum is 2. So we see that the multilinear inequality (55) holds
for this operator with A D 21=4.

For problem (56), consider G D .0; 1/. Then the nontrivial constraints are

1 �
p
g1.2; 1/g2.2; 1/ and 1 �

p
g1.2; 2/g2.2; 2/

and p
.g1.1; 1/C g1.2; 1//2 C .g1.1; 2/C g1.2; 2//2 � A;p
.g2.1; 1/C g2.2; 1//2 C .g2.1; 2/C g2.2; 2//2 � A:

Using uv � .u2 C v2/=2 on the lower bounds gives

1 � .g1.2; 1/
2
C g2.2; 1/

2/=2 and 1 � .g1.2; 2/
2
C g2.2; 2/

2/=2;

so
2 � g1.2; 1/

2
C g2.2; 1/

2 and 2 � g1.2; 2/
2
C g2.2; 2/

2;

so
4 � g1.2; 1/

2
C g2.2; 1/

2
C g1.2; 2/

2
C g2.2; 2/

2;

and thus
2 � max ¹g1.2; 1/2 C g1.2; 2/2; g2.2; 1/2 C g2.2; 2/2º;

giving A � 21=2, which is strictly larger than 21=4. So while inequality (55) holds in this
case, there are G for which there are no gj satisfying (56) with the same value of A.

We invite the reader to use this idea to construct examples where (55) holds with
A D 1 but for which (56) holds for no finite A.

See [28] for a different approach to inequalities of the form (55), based upon consid-
erations related to Schur’s lemma rather than duality. For recent developments, including
a partial recovery of the desired duality, see [22].

Part III – Examples and illustrations of the theory

In this part we revisit the examples in the introduction which motivated our study. We
examine what insights our duality–factorisation results bring to, and have gained from,
each of them. In some cases we reap the benefits of more direct and streamlined factor-
isation-based proofs of known inequalities. In others, an interesting challenge is posed –
it can be argued that we cannot claim to have a full understanding of an inequality until
we can exhibit its equivalent factorisation statement.
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9. Classical inequalities revisited

9.1. Hölder’s inequality

We observed above that the multilinear form of Hölder’s inequality for nonnegative func-
tions is equivalent, for any fixed set of exponents j̨ > 0 with

Pd
jD1 j̨ D 1, to

kf
˛1
1 � � � f

˛d
d
kq � kf1k

˛1
q1
� � � kfdk

˛d
qd

for any choice of indices 1� qj <1 and 1� q <1which satisfies
Pd
jD1 j̨ q

�1
j D q

�1.
By Theorem 2.2, each instance of this inequality is equivalent to the existence of a

subfactorisation of any G 2 Lq
0

as

G.x/ �

dY
jD1

gj .x/ j̨ a.e.

where
kgj kqj 0 � kGkq0 :

Taking gj D �jGj for appropriate �j and j verifies this. In particular, if we take
qj D q � 1 for all j , then we can simply take gj D G for all j .

9.2. The affine-invariant Loomis–Whitney inequality

Recall that the Loomis–Whitney inequality isˇ̌̌̌Z
Rn
F1.�1x/ � � �Fn.�nx/ dx

ˇ̌̌̌
� kF1kLn�1.Rn�1/ � � � kFnkLn�1.Rn�1/;

where �jx D .x1; : : : ; bxj ; : : : ; xn/ is projection onto the hyperplane perpendicular to the
j th standard basis vector ej . For every 0 < p <1 this is equivalent to the inequality

kf1.�1x/
1=n
� � � fn.�nx/

1=n
kLnp=.n�1/.Rn/ � kf1k

1=n

Lp.Rn�1/
� � � kfnk

1=n

Lp.Rn�1/
:

Each of these inequalities with p � 1 falls under the scope of our theory.
For example when p D 1 we have the equivalent formulationZ

Rn

nY
jD1

fj .�jx/
1=.n�1/ dx �

nY
jD1

�Z
Rn�1

fj

�1=.n�1/
:

More generally, if �!? represents orthogonal projection onto the hyperplane perpen-
dicular to ! 2 Sn�1, we have the affine-invariant Loomis–Whitney inequalityZ

Rn

nY
jD1

fj .�!?
j
x/1=.n�1/ dx � .!1 ^ � � � ^ !n/�1=.n�1/

nY
jD1

�Z
Rn�1

fj

�1=.n�1/
; (57)
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where .!1 ^ � � � ^ !n/�1=.n�1/ is the best constant in the inequality. Here, !1 ^ � � � ^ !n
is the modulus of the determinant of the matrix whose columns are !1; : : : ; !n, and it is
the volume of the parallepiped whose sides are given by the vectors !j . (Clearly if we
choose all the !j to be the same we cannot expect a finite constant, and the constant in
general should reflect “quantitative linear independence” of the !j .)

We give a direct and elegant proof of (57) by explicitly establishing a suitable fac-
torisation. Indeed, according to Proposition 1.1, it is sufficient that for every nonnegative
G 2 Ln.Rn/ we can find g1; : : : ; gn such that

G.x/ D g1.x/
1=n
� � �gn.x/

1=n a.e.

and, for all j and almost every x,Z
gj .x C t!j / dt D .!1 ^ � � � ^ !n/�1=nkGkn:

This is because for any f W Rn�1! R and g W Rn! R, writing x 2 Rn as x D uC t!j
with u 2 !?j , we haveZ

f .�!?
j
x/g.x/ dx D

Z
Rn�1

Z
R
f .�!?

j
.uC t!j //g.uC t!j / dt du

D

Z
Rn�1

f .u/

�Z
R
g.uC t!j / dt

�
du:

Let G W Rn ! R be a nonnegative function which satisfies
R

Rn G.x/
n dx D 1. For

!1; : : : ; !n 2 Sn�1 and � 2 Rn let us first note that if we set, for s D .s1; : : : ; sn/ 2 Rn,

y.s/ D � C s1!1 C � � � C sn�1!n�1 C sn!n;

then the Jacobian map @y=@s satisfies

jdet.@y=@s/j D !1 ^ � � � ^ !n:

Therefore, for every � 2 Rn,Z
G.� C s1!1 C � � � C sn�1!n�1 C sn!n/

n ds1 : : : dsn D
Z
G.y.s//n ds

D

Z
G.y/n

1

jdet.@y=@s/j
dy D .!1 ^ � � � ^ !n/�1:

Secondly, G.x/n can be written (for a.e. x) as a telescoping product

G.x/nR
G.x C s1!1/n ds1

�

R
G.x C s1!1/

n ds1R
G.x C s1!1 C s2!2/n ds1 ds2

� � � �

�

R
G.x C s1!1 C � � � C sn�1!n�1/

n ds1 � � � dsn�1R
G.x C s1!1 C � � � C sn�1!n�1 C sn!n/n ds1 � � � dsn

� .!1 ^ � � � ^ !n/
�1

WD g1.x/ � � �gn.x/
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where

gj .x/ D

R
G.x C s1!1 C � � � C sj�1!j�1/

n ds1 � � � dsj�1R
G.x C s1!1 C � � � C sj�1!j�1 C sj!j /n ds1 � � � dsj

� .!1 ^ � � � ^ !n/
�1=n:

If we replace x by x C t!j in this formula, the denominator is unchanged, and so if
we then integrate with respect to t we immediately see thatZ

gj .x C t!j / dt D .!1 ^ � � � ^ !n/�1=n

identically for x 2 Rn, as we needed.
A similar approach works when we instead consider projections onto subspaces

whose codimensions sum to n. Indeed, suppose that we have subspaces Ej of Rn with
dimEj D kj and

Pd
jD1 kj D n and assume that Rn D E1 C � � � C Ed as an algebraic

direct sum.
We identify a quantity which measures lack of orthogonality of these subspaces in the

same way that the wedge product !1 ^ � � � ^!n measures the degeneracy in the directions
!1; : : : ; !n 2 Sn�1. Let ¹ej1; ej2; : : : ; ejkj º be an orthonormal basis for Ej and define

E1 ^ � � � ^Ed WD ^
d
jD1 ^

kj
kD1

ejk I

that is, E1 ^ � � � ^ Ed is the absolute value of the determinant of the n � n matrix whose
j th block of kj columns comprises an orthonormal basis for Ej . It is easily checked
that this quantity is independent of the particular orthonormal bases chosen, and it can of
course be defined in a more canonical and invariant way.

Proposition 9.1. For Ej as above, let �j be the projection whose kernel is Ej . Then we
have the affine-invariant kj -plane Loomis–Whitney inequality:Z

Rn
f1.�1x/

1=.d�1/
� � � fd .�dx/

1=.d�1/ dx

� .E1 ^ � � � ^Ed /
�1=.d�1/

�Z
f1

�1=.d�1/
� � �

�Z
fd

�1=.d�1/
: (58)

The proof via factorisation is formally the same as the case when kj D 1 for all j ,
where now the roles of the variables sj 2 R1 are replaced by copies of Rkj . We leave the
details to the reader.

In the special case of the trivial identityZ
R2
F1.x2/F2.x1/ dx1 dx2 D

Z
R
F1

Z
R
F2

(see Section 6), a suitable factorisation of G 2 L2.R2/ with kGk2 D 1 is given by
G.x/2 D g1.x/g2.x/ a.e. where

g1.x1; x2/ D
G.x1; x2/

2R
RG.s; x2/

2 ds
; g2.x1; x2/ D

Z
R
G.s; x2/

2 ds:
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Note that this factorisation depends upon the order we have assigned to ¹1; 2º. On the
other hand, given this ordering, the essentially unique way to write

G.x/2 D g1.x1; x2/g2.x2/

where kg1.�; x2/k1 D 1 for all x2 and kg2k1 D 1 is as we have given. See Section 10.2.1,
where this observation drives related issues.

There are many variants of the Loomis–Whitney inequality – for example Finner’s
inequalities [25] – which can likewise be established by the same factorisation method.

9.3. The nonlinear Loomis–Whitney inequality

Nonlinear Loomis–Whitney inequalities (and some multilinear generalised Radon trans-
forms) can likewise be established by similar methods. In fact, the first proof of the
nonlinear Loomis–Whitney inequality with essentially the sharp constant was obtained
via an explicit factorisation technique. We give the details.

Let V be an open neighbourhood of 0 in Rn and U an open neighbourhood of 0
in Rn�1. Let � W V ! U be a C 1 submersion onto U , and for x 2 V let !.x/ be the
wedge product of the rows of d�.x/. We assume that the fibres ��1.u/ for u 2 U can be
parametrised by C 1 curves t 7! .t; x/ in such a way that

� for all x 2 V , .0; x/ D x;

� for all x 2 V and all t , �.t; x/ D �x;

� (semigroup property) for all x 2 V , and all t and s,

.t; .s; x// D .s C t; x/I

� for all x and t , d
dt .t; x/ D !..t; x//.

The domain of each curve .�; x/ will be an open interval Ix containing 0 which we
largely suppress in what follows, but we stress that .Ix ; x/ is the entire fibre contain-
ing x. In all the t -integrals below it is assumed that we are integrating over such maximal
domains.

We note that under these assumptions, especially the last one, the co-area formula
gives Z

V

f .�x/g.x/ dx D
Z
U

f .u/

�Z
g..t; Qu// dt

�
du

for any reasonable functions f and g.
We now assume that we have n submersions �1; : : : ; �n as above, and we assume that

!1.0/ ^ � � � ^ !n.0/ ¤ 0. For each x 2 V we define the maps t 7! ˆx.t/ by

ˆx W .t1; : : : ; tn/ 7! 1.t1; 2.t2; : : : ; n.tn; x// : : : /

which satisfy ˆx.0/ D x and also

jdet.Dˆx/.0/j D .!1 ^ � � � ^ !n/.x/ ¤ 0

provided x is sufficiently close to 0.
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We shall assume that V is sufficiently small so that for each x 2 V , the map ˆx is
injective – as was pointed out in [11], even in two dimensions some global hypothesis of
this sort is needed.

With the set-up above, for x 2 V let

W.x/ WD inf
�2V
jdet.Dˆ�/.ˆ�1� .x//j: (59)

Note thatW.x/� !1.x/^ � � � ^!n.x/ (take � D x), and thatW.ˆx.t//� jdet.Dˆx/.t/j
for all x and t.

For 1 � j � n and suitable F let

Sj .x/ D

R
� � �
R
F.1.t1; 2.t2; : : : ; j�1.tj�1; x// : : : // dtj�1 � � � dt1R
� � �
R
F.1.t1; 2.t2; : : : ; j .tj ; x// : : : // dtj � � � dt1

(so that S1 has no integrals in the numerator). Then we have

Sj .j .�; x// D

R
� � �
R
F.1.t1; 2.t2; : : : ; j�1.tj�1; j .�; x/// : : : // dtj�1 � � � dt1R
� � �
R
F.1.t1; 2.t2; : : : ; j .tj ; j .�; x/// : : : // dtj � � � dt1

:

We claim that for each j and each x,Z
Sj .j .�; x// d� D 1:

Indeed, notice that the denominator in the previous expression,Z
� � �

Z
F.1.t1; 2.t2; : : : ; j .tj ; j .�; x/// : : : // dtj � � � dt1;

equalsZ
� � �

Z
F.1.t1; 2.t2; : : : ; j .tj C �; x// : : : // dtj � � � dt1

D

Z
� � �

Z
F.1.t1; 2.t2; : : : ; j .tj ; x// : : : // dtj � � � dt1

by the semigroup property, and is therefore independent of � . SoZ
Sj .j .�; x// d�

D

R
� � �
R
F.1.t1; 2.t2; : : : ; j�1.tj�1; j .�; x/// : : : // dtj�1 � � � dt1 d�R
� � �
R
F.1.t1; 2.t2; : : : ; j .tj ; x// : : : // dtj � � � dt1

which equals 1 by Fubini’s theorem.
On the other hand,

nY
jD1

Sj .x/ D
F.x/R

� � �
R
F.1.t1; 2.t2; : : : ; n.tn; x// : : : // dtn � � � dt1

;
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so that

F.x/ D

nY
jD1

Sj .x/

Z
F.ˆx.t// dt:

Taking F.x/ D S.x/nW.x/, we therefore have

S.x/nW.x/ D

nY
jD1

Sj .x/

Z
S.ˆx.t//nW.ˆx.t// dt

�

nY
jD1

Sj .x/

Z
S.ˆx.t//njdet.Dˆx/.t/j dt D

nY
jD1

Sj .x/

Z
V

S.y/n dy

sinceW.ˆx.t// � jdet.Dˆx/.t/j for all t and since each ˆx is injective. We also see that
for each j and each x,Z

V

f .�jx/Sj .x/ dx D
Z
Uj

f .u/

�Z
Sj .j .�; Qu// d�

�
du D

Z
Uj

f:

By the easy half of the duality argument, this shows that for all nonnegative fj 2 L1.Uj /
we have  nY

jD1

fj .�jx/
1=nW.x/1=n


Ln=.n�1/.V /

�

nY
jD1

�Z
Uj

fj

�1=n
:

Consequently, we have:

Proposition 9.2. Under the above assumptions, with W defined as in (59), we haveZ
V

nY
jD1

fj .�jx/
1=.n�1/W.x/1=.n�1/ dx �

nY
jD1

�Z
Uj

fj

�1=.n�1/
:

Noting that W.x/ � !1.x/ ^ � � � ^ !n.x/, one might ask whetherZ
V

nY
jD1

fj .�jx/
1=.n�1/.!1.x/ ^ � � � ^ !n.x//

1=.n�1/ dx �
nY

jD1

�Z
Uj

fj

�1=.n�1/
holds for sufficiently small V .

As an immediate corollary of Proposition 9.2, we obtain the sharp form of the nonlin-
ear Loomis–Whitney inequality of [11]:

Corollary 9.3. Let V be an open neighbourhood of 0 in Rn and U an open neighbour-
hood of 0 in Rn�1. For 1 � j � n, let �j W V ! U be C 1 submersions onto U , and for
x 2 V let !j .x/ be the wedge product of the rows of d�j . Assume that !1.0/ ^ � � � ^
!n.0/¤ 0. Then, for all � > 0, there is a neighbourhood V 0 � V of 0 such that for all fj ,Z
V 0

nY
jD1

fj .�jx/
1=.n�1/ dx � .1C �/.!1.0/^ � � � ^ !n.0//�1=.n�1/

nY
jD1

�Z
Uj

fj

�1=.n�1/
:
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Proof. Given � > 0 we can choose V 0 sufficiently small that !1.0/ ^ � � � ^ !n.0/ �
.1C �/n�1W.x/ for all x 2 V 0.

Since the work in this section was presented in various public fora, Bennett et al.
[7] have shown, using methods based on induction on scales, that any Brascamp–Lieb
inequality has a corresponding nonlinear counterpart with the same loss in the constant of
at most 1C �.

10. Brascamp–Lieb inequalities revisited

We shall discuss the Brascamp–Lieb inequalities under two headings. Firstly we shall
address geometric Brascamp–Lieb inequalities (where in particular we can identify the
sharp constant and existence of Gaussian extremisers), and secondly we will examine
general Brascamp–Lieb inequalities with a finite (but unquantified) constant.

10.1. Geometric Brascamp–Lieb inequalities

The next result is a direct application of Theorem 1.3 to the geometric Brascamp–Lieb
inequalities of Example 3.

Theorem 10.1. For 1 � j � d let Vj be a subspace of Rn. Let Bj W Rn ! Vj be ortho-
gonal projection. Suppose there exist pj with 0 < pj <1 such that

dX
jD1

pjB
�
j Bj D In:

Let 1 � qj < 1, and define q D
Pd
jD1 pj qj . Then for all G 2 Lq

0

.Rn/ there exist
g1; : : : ; gd such that

G.x/ � g1.x/
p1q1=q � � �gd .x/

pdqd =q a.e.

and, for all j , Z
V?
j

gj


L
qj
0
.Vj /

� kGkq0 :

One simply needs to note (see the discussion in Example 3) that under the hypothesis
of this theorem,  dY

jD1

.fj ı Bj /
pj qj =q


Lq.Rn/

�

dY
jD1

kfj k
pj qj =q

L
qj .Vj /

and
Pd
jD1 pj � 1, and thus q � 1. Therefore Theorem 1.3 applies.
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Except in some rather trivial cases19 we do not know any such explicit factorisations
with the sharp constant 1. For example, let v1; v2 and v3 be unit vectors in R2 with angle
2�=3 between each pair. Then, with Bj being orthogonal projection onto the span of vj ,
we have

2
3
.B�1B1 C B

�
2B2 C B

�
3B3/ D I2:

Take qj D 1 for each j so that q D 2. Consequently, for all G 2 L2.R2/, there exist
g1; g2; g3 such that

G.x/ � g1.x/
1=3g2.x/

1=3g3.x/
1=3 a.e.

and, for each j ,

ess sup
s

Z
R
gj .svj C tv

?
j / dt � kGk2:

Even in such simple cases as this the factorisation is not yet understood explicitly.

10.2. General Brascamp–Lieb inequalities

On the other hand, under the conditions

dX
jD1

pj dim imBj D n (60)

and

dimV �

dX
jD1

pj dimBjV (61)

for all V in the lattice of subspaces of Rn generated by ¹kerBj ºdjD1, we now indicate
how to construct semi-explicit factorisations yielding the finiteness of the constant C
in (4). We use the term “semi-explicit” because the construction is algorithmic in nature.
Notwithstanding, we give an informal discursive treatment rather than a collection of
flow-charts. We assume throughout the discussion that the Bj are nonzero mappings, that
is, nj D rank.Bj / � 1 for each j . (If some Bj is zero it plays no role in inequality (4),
nor in (60) or (61), and it can simply be dropped.) When n D 1 matters quickly reduce
to consideration of Hölder’s inequality, which is treated in Section 9.1 above, so we shall
focus on what happens when n � 2.

We now sketch how this is done, and we begin with a couple of definitions from [8,9].
Given a collection ¹Bj º of linear surjections, its Brascamp–Lieb polytope is defined by

P .¹Bj º/ D
°
.p1; : : : ; pd / 2 Œ0;1/

d
W dimV �

dX
jD1

pj dimBjV for all subspaces V
±
:

19For example when the Vj are mutually orthogonal and pj D 1 for all j .
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This is manifestly a closed convex set, and, as has been previously noted, is contained in
Œ0; 1�d , and is therefore the convex hull of its extreme points. Given data ¹Bj º and ¹pj º,
a critical subspace is a nontrivial proper subspace V of Rn for which

dimV D

dX
jD1

pj dimBjV: (62)

The construction of the factorisations hinges on the question of existence or non-
existence of critical subspaces for the problem with data ¹Bj ; pj º. Indeed, if there is a
critical subspace V for ¹Bj ; pj º, then the problem of factorising a function on Rn decom-
poses into two factorisation subproblems on the spaces V and V ?, each of which has
positive but strictly smaller dimension than n.20 This will allow us in effect to induct on
the parameter n. These subproblems inherit the same ¹pj º and have “new” Bj which are
related to the “old” Bj in a precise way. The two subproblems inherit the conditions cor-
responding to (60) and (61): indeed, (60) for each of the two subproblems holds precisely
because the subspace V is critical, and we shall make crucial use of this fact. We isolate
the details of how this works – in particular how factorisations for the two subproblems
combine to give a factorisation for the original problem – in Section 10.2.1 below.

On the other hand, if there is no critical subspace for the problem ¹Bj ; pj º, then
.p1; : : : ; pd / lies in the interior of P .¹Bj º/. To establish a factorisation for the prob-
lem in this case, it therefore suffices to (i) establish factorisations for the extreme points
of P .¹Bj º/ and (ii) to show, given factorisations at the extreme points, how to estab-
lish factorisations at all interior points of P .¹Bj º/. Point (ii) is tantamount to showing
that factorisations behave well under multilinear interpolation, and this we have already
successfully addressed separately in Section 7.

To deal with point (i), we consider the Brascamp–Lieb problems at the extreme points
. Qp1; : : : ; Qpd / of P .¹Bj º/,21 and, at each of them, ask the same question: does there exist a
critical subspace? Since . Qp1; : : : ; Qpd / is an extreme point of P .¹Bj º/, there will certainly
be subspaces V of Rn satisfying

dimV D

dX
jD1

Qpj dimBjV: (63)

If there is a nontrivial and proper such subspace, we have a critical subspace for the
problem ¹Bj ; Qpj º, and we can proceed as above, in effect going around the loop. The
only remaining possibility is that the only subspaces V of Rn satisfying (63) are ¹0º and
Rn itself.

We are thus left to deal with the special case of our original problem in which
.p1; : : : ;pd / is an extreme point of P .¹Bj º/, but for which the only subspaces of V of Rn

20To facilitate the discussion which follows we should strictly speaking replace the roles of Rn

and Rnj by those of abstract n- and nj -dimensional real Hilbert spaces respectively.
21An algorithm for locating these extreme points can be found in [42].
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satisfying (62) are ¹0º and Rn itself. Matters quickly reduce to rather trivial considera-
tions. Indeed, in this situation, P .¹Bj º/ consists precisely of those .p1; : : : ;pd /2 Œ0;1/d

lying on the hyperplane
Pd
jD1 pjnj D n, and its extreme points are precisely those of the

form .0; : : : ; 0; n=nj ; 0; : : : ; 0/. Since nj � n always, and since P .¹Bj º/ � Œ0; 1�
d , the

only circumstances in which this case arises is when nj D n for all j . In this case, our
Brascamp–Lieb problem at an extreme point of P .¹Bj º/ is necessarily of the form (mod-
ulo permutations of the coordinate axes)Z

Rn
f1.B1x/

1f2.B2x/
0
� � � fd .Bdx/

0 dx � C
�Z

Rn
f1

�1�Z
Rn
f2

�0
� � �

�Z
Rn
fd

�0
or, equivalently, Z

Rn
f1.B1x/ dx � C

Z
Rn
f1

where B1 is invertible. This of course holds with equality with C D .detB1/�1, and a
trivial factorisation applies.

Running the machine described above in reverse will thus eventually furnish a factor-
isation in the general case, and, indeed, the only possible loss in terms of sharp constants
occurs at steps where interpolation is employed.

10.2.1. Factorisation in the presence of a critical subspace. We give the details needed
to close the argument set out above in the presence of a critical subspace. The only place
we use criticality is that it implies that (60) and (61) hold for the two subproblems which
arise (see [8]). Since these are the necessary and sufficient conditions for finiteness of the
constant, we may assume that factorisations for the two subproblems exist. (Formally we
proceed by induction on n, and the case n D 1 is trivial.)

Let Bj W Rn ! Rnj be linear surjections. Suppose that U is a nontrivial proper sub-
space of Rn. (As indicated above, we do not assume that it is a critical subspace.) Define
QBj W U ! BjU and QQBj W U? ! .BjU/

? by

QBj .x/ D Bjx and QQBj .y/ D ….BjU/
?Bjy:

Here,…W denotes orthogonal projection onto a subspaceW . If some QBj or QQBj is zero we
can simply discard it. (It cannot be the case that every QBj is zero, for if this happened, we
would haveU �

Td
jD1 kerBj , and, as we have noted previously, a necessary condition for

finiteness of the Brascamp–Lieb constant is that
Td
jD1 kerBj D ¹0º. For similar reasons

it cannot be the case that every QQBj is zero.)
Also define �j W U? ! BjU by

�j .y/ D …BjUBjy:

So for x 2 U and y 2 U?,

Bj .x C y/ D QBjx C
QQBjy C �jy D . QBjx C �jy/C

QQBjy 2 BjU ˚ .BjU/
?:
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The two Brascamp–Lieb subproblems arising can be written in the formZ
U

dY
jD1

fj . QBjx/
pj =p dx � C

dY
jD1

�Z
fj

�pj =p
and Z

U?

dY
jD1

fj .
QQBjx/

pj =p dx � C
dY
jD1

�Z
fj

�pj =p
where p D

P
j pj � 1. With j̨ D pj =p, we are entitled to suppose that the following

two corresponding factorisation statements hold:

� for all H 2 Lp
0

.U / of norm 1 there exist H1; : : : ;Hd such that

H.x/ �

dY
jD1

Hj .x/ j̨

and, for all � 2 L1.BjU/ of norm at most 1,Z
U

�. QBjx/Hj .x/ dx � K1I

� for all M 2 Lp
0

.U?/ of norm 1 there exist M1; : : : ;Md such that

M.y/ �

dY
jD1

Mj .y/ j̨

and, for all  2 L1..BjU/?/ of norm at most 1,Z
U?

 . QQBjy/Mj .y/ dy � K2:

Given G 2 Lp
0

.Rn/ of norm 1, we want to subfactorise it as

G.z/ �

dY
jD1

Gj .z/ j̨

such that for all f 2 L1.Rnj / of norm at most 1,Z
Rn
f .Bj z/Gj .z/ dz � K1K2:

This is a factorisation statement corresponding to the problemZ
Rn

dY
jD1

fj .Bjx/
pj =p dx � C

dY
jD1

�Z
fj

�pj =p
:

If we can do this, then the procedure described above for factorising Brascamp–Lieb
problems closes.
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We begin by writing G 2 Lp
0

of norm 1 as

G.x; y/ D Hy.x/M.y/ (64)

where kHykp0 D 1 for all y and kMkp0 D 1. We will then factorise M and each Hy as
above, and combine the factorisations to obtain a suitable factorisation for G.

Indeed, defining Hy and M by

G.x; y/ D
G.x; y/

.
R
G.x; y/p

0 dx/1=p0

�Z
G.x; y/p

0

dx
�1=p0

DW Hy.x/M.y/

is essentially the unique way to achieve (64) with the desired conditions.22

Therefore,

G.x; y/ �

dY
jD1

ŒHjy.x/Mj .y/� j̨ WD

dY
jD1

Gj .x; y/ j̨

where for all y 2 U?, and all � 2 L1.BjU/ of norm at most 1,Z
U

�. QBjx/Hjy.x/ dx � K1;

and where for all  2 L1..BjU/?/ of norm at most 1,Z
U?

 . QQBjy/Mj .y/ dy � K2:

We want to show that for all f 2 L1.Rnj / of norm at most 1,Z
Rn
f .Bj z/Gj .z/ dz D

Z
U?

Z
U

f .Bj .x; y//Hjy.x/Mj .y/ dx dy � K1K2:

Fix y 2 U? and write the inner integral over U asZ
U

f .Bj .x; y//Hjy.x/ dx D
Z
U

f .Bjx C Bjy/Hjy.x/ dx:

Now f .Bjx C Bjy/ D f .. QBjx C �jy/ C
QQBjy/. For w 2 BjU and � 2 .BjU/? let

��.w/ WD f .wC�/. Therefore f .BjxCBjy/D � QQBj y
. QBjxC�jy/D .��j y� QQBj y

/. QBjx/,

where .���/.�/ D �.� C �/ denotes translation by �. So,Z
U

f .Bj .x; y//Hjy.x/ dx D
Z
U

.��j y� QQBj y
/. QBjx/Hjy.x/ dx � K1k��j y� QQBj y

k1

by what we are assuming.

22Indeed, suppose G is in the mixed-norm space Lrdy.L
s
dx/ and we want to write G.x; y/ D

H.x; y/M.y/ where kMkr D kGkLr .Ls/ and where kH.�; y/ks D 1 for all y. Integrating
G.x; y/s D H.x; y/sM.y/s with respect to x shows that the only way to do this is to take
M.y/ D kG.�; y/ks and H.x; y/ D G.x; y/=kG.�; y/ks . See the remarks at the end of Section 9.2.
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Now, by translation invariance, k��j y� QQBj y
k1 D k� QQBj y

k1. Therefore, letting  .�/ WD

k��k1 for � 2 .BjU/?,Z
Rn
f .Bj z/Gj .z/ dz � K1

Z
U?

 . QQBjy/Mj .y/ dy � K1K2k k1:

Finally,

k k1 D

Z
.BjU/

?

�Z
BjU

��.w/ dw
�

d� D
Z

Rnj
f .z/ dz D 1;

and this gives what we wanted.

11. Multilinear Kakeya inequalities revisited

Recall that we have families Pj of 1-tubes in Rn, and for every P 2 Pj , its direction
e.P / 2 Sn�1 satisfies je.P / � ej j � cn where cn is a small dimensional constant. The
multilinear Kakeya theorem of Guth [29] (see also [23]) states that nY

jD1

� X
Pj2Pj

aPj �Pj .x/
�1=n

Ln=.n�1/.Rn/
� Cn

nY
jD1

� X
Pj2Pj

aPj

�1=n
:

This inequality is of the form (7) with X D Rn, q D n=.n � 1/, Yj D Pj with counting
measure, pj D 1 for all j , j̨ D 1=n for all j , and T ..aPj //.x/ D

P
Pj2Pj

aPj �Pj .x/.
Guth proved this result essentially by establishing a suitable subfactorisation for each

nonnegative M 2 Ln.Rn/, and then applying Proposition 1.1. His subfactorisation is
described in terms of an auxiliary polynomial p of “low” degree dominated by kMkn,
whose zero set Zp has “large” visibility on each unit cube Q of Rn in the sense that
vis.Zp \ Q/ &

R
Q
M . We do not enter into the details of the definition of visibility,

nor into how this gives the desired subfactorisation, but instead refer the reader to [29]
and [23]. (In the latter paper the approach using Proposition 1.1 is explicit while in the
former it is implicit. And one should note that the definition of visibility used in [23] is
a power of the original one used in [29].) It was the shock of seeing such an unlikely
functional-analytic method succeed which inspired us to study the general question of
necessity of factorisation as taken up in this paper. In hindsight, our linkage of subfactor-
isation of functions with Maurey’s theory of factorisation of operators helps place Guth’s
method in perspective.

Bourgain and Guth [16] established an affine invariant form of the multilinear Kakeya
inequality, removing the hypothesis that je.P / � ej j � cn for P 2 Pj , at the price of
inserting a damping factor on the left-hand side which is consistent with the affine-
invariant Loomis–Whitney inequality of Section 9.2. That is, they proved that for Pj
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arbitrary families of 1-tubes,Z
Rn

� X
P12P1

aP1�P1.x/ � � �
X

Pn2Pn

aPn�Pn.x/e.P1/ ^ � � � ^ e.Pn/
�1=.n�1/

dx

� Cn

nY
jD1

� X
Pj2Pj

aPj

�1=.n�1/
:

As the reader will readily verify (using the same argument as in the proof of Proposi-
tion 1.1, see also Section 8 above), in order to establish this, it suffices to show that for
every nonnegative M 2 Ln.Rn/ which is constant on unit cubes in a standard lattice Q,
there exist nonnegative functions Sj W Q �Pj ! R such that

M.Q/ .
S1.Q;P1/

1=n � � �Sn.Q;Pn/
1=n

.e.P1/ ^ � � � ^ e.Pn//1=n

whenever the 1-tubes Pj meet at Q, and, for all j and all Pj 2 Pj ,X
Q2Q;Q\Pj¤;

Sj .Q;Pj / .
�X
Q2Q

M.Q/n
�1=n

:

And indeed this is what Bourgain and Guth essentially did (see also [23]). It is therefore
very tempting to ask whether, in analogy with the situation of Theorem 1.3, this method
is guaranteed to work in so far as the statement of the affine-invariant multilinear Kakeya
inequality automatically implies the existence of a subfactorisation as in the last two dis-
played inequalities. Unfortunately, as we have established above in Section 8, there is no
such general functional-analytic principle which guarantees this. (However, see [22] for
further developments in this regard.)

The recent multilinear Kakeya kj -plane inequalities, and indeed the even more general
perturbed Brascamp–Lieb inequalities, both recently established by Zhang [45], also fit
into the framework we consider, the latter as a generalisation of inequality (5).

11.1. The finite field multilinear Kakeya inequality

Zhang [46] has recently solved the discrete analogue of the multilinear Kakeya problem.
Let F be a field and let Lj be arbitrary families of lines in Fn. For lj 2 Lj declare
e.l1/ ^ � � � ^ e.ln/ to be 1 if the vectors ¹e.lj /º are linearly independent and to be 0
otherwise. Zhang has proved that for a certain Cn depending only on n,X

x2Fn

� X
l12L1

al1�l1.x/ � � �
X
ln2Ln

aln�ln.x/e.l1/ ^ � � � ^ e.ln/
�1=.n�1/

� Cn

nY
jD1

� X
lj2Lj

alj

�1=.n�1/
: (65)

When n D 2 the constant C2 is 1, as is readily verified using 1=.n � 1/ D 1 and
changing the order of summation on the left-hand side. Moreover, for general n, if all the
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lines in Lj are parallel to some fixed vector yj with ¹yj ºnjD1 linearly independent, the
constant is likewise 1, since matters can then be reduced to the classical Loomis–Whitney
inequality via an invertible linear transformation of Fn (or one can write down a suitable
factorisation as in Example 9.2).

The presence of the factor e.l1/ ^ � � � ^ e.ln/ in (65) precludes any assertion that (65)
is equivalent to a factorisation statement: see Section 8 above. If however the Lj are
presumed to satisfy the property that if .l1; : : : ; ln/ 2 L1 � � � � �Ln, then the directions
¹e.l1/; : : : ; e.ln/º are linearly independent, we see that the term e.l1/ ^ � � � ^ e.ln/ is
identically 1, and the result falls under the scope of Theorem 2.2.

In particular, when n D 2 and we have two finite families L1 and L2 of lines in F2

such that no line in L1 is parallel to any line in L2, this holds. Hence we obtain:

Proposition 11.1. Let L1 and L2 be finite families of lines in F2 such that no line in L1

is parallel to any line in L2. Let J � F2 be the set of points where some l1 2 L1 meets
an l2 2 L2. Suppose

P
x2J G.x/

2 D 1. Then there exist g1; g2 W J ! RC such that for
all x 2 J ,

G.x/ D
p
g1.x/g2.x/;

and moreover, for all lj 2 Lj , j D 1; 2,X
x2J\lj

gj .x/ � 1:

In spite of the extreme simplicity of the original problem, no procedure for coming to
an explicit such factorisation is currently known.

Jon Bennett had asked whether, even in higher dimensions, the constant Cn in the
finite field multilinear Kakeya inequality might still be 1. This is true in the case of F32 .
However, this turns out to have been over-optimistic, and we have:

Proposition 11.2. Suppose the discrete multilinear Kakeya inequality (65) holds in the
case n D 3 for F D F3. Then C3 > 1:04.

We remark that Tidor, Yu and Zhao [40] have very recently established numerical
values for the constants in Zhang’s theorem, and in particular they show that C3 �

p
6.

Proof of Proposition 11.2. We construct an example. In this example, for each jD 1;2;3,
we nominate two directions, and the family Lj will consist of all lines with one of these
directions. The two directions for each j will be chosen so that each of the eight choices
of one direction from each of the three families results in a linearly independent set of
directions, so that the terms e.l1/^ e.l2/^ e.l3/ are all 1. Each family of coefficients a –
as a function defined on Lj and more properly denoted by aj – is defined to be supported
on three lines from Lj in such a way that the x-summand on the left-hand side of (65)
is non-zero at five points. Each a will take nonzero values in ¹1; 2º and thus each line
under consideration will have a weight equal to 1 or 2. For each j , two of the three lines
pass through two of these five points and the remaining line passes through the remaining
point.
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More concretely, let

� L1 be the lines with direction .1; 1; 0/ or .2; 1; 1/,

� L2 be the lines with direction .0; 1; 0/ or .0; 1; 1/, and

� L3 be the lines with direction .1; 0; 1/ or .0; 0; 1/.

It is straightforward to verify that the directions of any three lines, one from each collec-
tion, span F33 .

We now proceed to properly define the coefficients a. We denote by aj the function
whose domain is Lj , and which is defined as follows:

� Let a1 be

– 2 on the line with direction .1; 1; 0/ passing through .0; 2; 2/ and .2; 1; 2/,

– 2 on the line with direction .2; 1; 1/ passing through .0; 2; 1/ and .2; 0; 2/,

– 1 on the line with direction .1; 1; 0/ through .0; 0; 0/, and

– 0 on other lines of L1.

� Let a2 be

– 2 on the line with direction .0; 1; 0/ passing through .2; 0; 2/ and .2; 1; 2/,

– 2 on the line with direction .0; 1; 1/ passing through .0; 0; 0/ and .0; 2; 2/,

– 1 on the line with direction .0; 1; 0/ through .0; 2; 1/, and

– 0 on other lines of L2.

� Let a3 be

– 2 on the line with direction .0; 0; 1/ passing through .0; 2; 1/ and .0; 2; 2/,

– 2 on the line with direction .1; 0; 1/ passing through .0; 0; 0/ and .2; 0; 2/,

– 1 on the line with direction .0; 0; 1/ through .2; 1; 2/, and

– 0 on other lines of L3.

Each Lj has two lines of a-value or weight 2 and one of weight 1.
We can see that the only points where lines from all three families intersect are the

five points mentioned, namely .0; 0; 0/, .0; 2; 1/, .0; 2; 2/, .2; 0; 2/ and .2; 1; 2/. At the
three points .0; 0; 0/, .0; 2; 1/ and .2; 1; 2/ we have two lines of weight 2 and one of
weight 1 meeting; at the two points .0; 2; 2/ and .2; 0; 2/ we have three lines of weight 2
meeting. So the value of the x-summand on the left-hand side of (65) is 2 at the three
points .0; 0; 0/, .0; 2; 1/ and .2; 1; 2/, and is 23=2 at the two points .0; 2; 2/ and .2; 0; 2/.
The left-hand side adds up to 3 � 2C 2 � 23=2 > 11:65. The value of the right-hand side
of (65) is C3 � 53=2 � C3 � 11:19. This shows that

C3 �
6C 23=2

53=2
> 11:65=11:19 > 1:04 > 1:

A counterexample to the conjecture that (65) holds with Cn D 1was first found by use
of the duality theory developed above, which, as we have mentioned, is valid under the
assumption that any n-tuple of lines taken from L1 � � � � �Ln has linearly independent
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directions. To explain why this route was taken, let us assume that we are considering a
finite field of size q. If we let Lj consist of all lines with directions in some given set of
size r then the input to (65), namely the tuple .a1; : : : ; an/, belongs to a real vector space
of dimension nqn�1r . The input to problem (17) is the functionG which belongs to a real
vector space of dimension qn. In our case we have nD q D 3 and r D 2 so the input to the
problem (17) belongs to a smaller vector space than the input to (65). The additional cost
of solving the convex optimisation problem compared with the cost of simply evaluating
each side of (65) does not significantly alter the balance of cost.

The solution to the convex optimisation problem was found using the software pack-
age CVXOPT [1], which yields the solution for both the primal and dual problems. The
solution to the dual problem was then slightly simplified by hand for neater exposition
and this is what is presented here.
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