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Abstract. A counterexample to uniqueness of global minimizers of semilinear optimal control
problems is given. The lack of uniqueness occurs for a special choice of the state-target in the
cost functional. Our arguments also show that, for some state-targets, there exist local minimizers
which are not global. When this occurs, gradient-type algorithms may be trapped by local minim-
izers, thus missing global ones. Furthermore, the issue of convexity of a quadratic functional in
optimal control is analyzed in an abstract setting.

As a corollary of nonuniqueness of minimizers, a nonuniqueness result for a coupled elliptic
system is deduced.

Numerical simulations have been performed illustrating the theoretical results.
We also discuss the possible impact of the multiplicity of minimizers on the turnpike property

in long time horizons.

Keywords. Semilinear elliptic equations, nonuniqueness, global minimizer, lack of convexity,
optimal control

1. Introduction

We produce a counterexample to uniqueness of optimal controls in semilinear control.
Both the case of internal control and boundary control are considered. To fix ideas, we
focus on the case of a quadratic functional and a semilinear governing state equation.
However, our techniques are applicable to a wide range of optimal control problems gov-
erned by a nonlinear state equation.

1.1. Lack of uniqueness of minimizers

In the context of boundary control, we consider the control problem

min
u2L1.@B.0;R//

J.u/; where

J.u/ D
1

2

Z
@B.0;R/

juj2 d�.x/C
ˇ

2

Z
B.0;R/

jy � zj2 dx;
(1.1)
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control domain

observation domain

Fig. 1. Control and observation domains. The control domain is the boundary of the ball.

where u D u.x/ is the control and y D y.x/ is the associated state, a solution to the
semilinear equation ´

��y C f .y/ D 0 in B.0;R/;

y D u on @B.0;R/:
(1.2)

Here B.0; R/ is the ball of Rn centered at the origin of radius R, with n D 1; 2; 3. The
nonlinearity f 2 C 1.R/ \ C 2.R n ¹0º/ is strictly increasing and f .0/ D 0. The target
z is in L1.B.0; R// and ˇ > 0 is a penalization parameter. As ˇ increases, the distance
between the optimal state and the target decreases.

In Appendix A we analyze the well-posedness of the state equation (1.2) and the
existence of a global minimizer u 2 L1.@B.0; R// for the functional J defined above.
As we shall see in the following result, for a special target, the global minimizer is not
unique.

Theorem 1.1. Consider the control problem (1.1)–(1.2). Assume, in addition,

f 00.y/ ¤ 0 8y ¤ 0: (1.3)

There exists a target z 2 L1.B.0; R// such that the functional J defined in (1.1) admits
.at least/ two global minimizers.

To give a first explanation of the above result, we introduce the control-to-state map

G W L1.@B.0;R//! L2.B.0;R//; u 7! yu; (1.4)

with yu the solution to (1.2) with control u. Then, for any control u 2 L1.@B.0;R//, the
functional (1.1) reads

J.u/ D
1

2

Z
@B.0;R/

juj2 d�.x/C
ˇ

2

Z
B.0;R/

jG.u/ � zj2 dx: (1.5)

We have two summands here. The first one is convex, being a squared norm. The second
one is a squared norm composed with u 7! G.u/ � z. Now, under the assumption (1.3),
the map u 7! G.u/ is nonlinear. Thus, the term

R
B.0;R/

jG.u/ � zj2 dx, for a special
target z, is not convex and generates the lack of uniqueness of minimizers.

The proof of Theorem 1.1 can be found in Section 3.1. The main steps of that proof
are:
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Step 1. Reduction to constant controls: by choosing radial targets and using the rota-
tional invariance of B.0;R/, we reduce to the case where the control set is made
up of constant controls.

Step 2. Existence of two local minimizers: we look for a target such that there exist
two local minimizers (u1 < 0 and u2 > 0) for the functional J (see Fig. 2).

Step 3. Existence of two global minimizers: by the former step and a bisection argu-
ment, we prove the existence of a target such that J admits two global minim-
izers.

u

(a) Nonuniqueness of local minimizers

u

(b) Nonuniqueness of global minimizers

Fig. 2. Functional versus control. This plot is obtained by drawing in MATLAB the graph of J
defined in (1.1), with R D 1 and nonlinearity f .y/ D y3.

The special target yielding nonuniqueness is a step function changing sign in the
observation domain, as in Fig. 3.

Fig. 3. Target yielding nonuniqueness in boundary control. The constructed target z (in blue) is a
step function, taking values z1 and z2.

The above techniques can be applied, with some modifications, to the internal control
problem

min
u2L2.B.0;r//

J.u/; where

J.u/ D
1

2

Z
B.0;r/

juj2 dx C
ˇ

2

Z
B.0;R/nB.0;r/

jy � zj2 dx;
(1.6)



D. Pighin 2130

control domain

observation domain

Fig. 4. Control and observation domains.

where ´
��y C f .y/ D u�B.0;r/ in B.0;R/;

y D 0 on @B.0;R/:
(1.7)

The nonlinearity f 2 C 1.R/ \ C 2.R n ¹0º/ is strictly increasing and f .0/ D 0. The
control acts in B.0; r/ with r 2 .0; R/. The observation set is in B.0; R/ n B.0; r/ (see
Fig. 4). The target z is in L2.B.0;R/ nB.0; r//, while ˇ > 0 is a penalization parameter.

The well-posedness of the state equation follows from [5, Theorem 4.7, p. 29], while
the existence of a global minimizer in L2.B.0; r// for (1.6)–(1.7) can be shown by the
direct method of the calculus of variations.

Theorem 1.2. Consider the control problem (1.6)–(1.7). Assume, in addition,

f 00.y/ ¤ 0 8y ¤ 0: (1.8)

There exists a target z 2 L1.B.0; R/ n B.0; r// such that the functional J defined in
(1.6) admits .at least/ two global minimizers.

The proof can be found in Section 3.2.
A by-product of our nonuniqueness results is the lack of uniqueness of solutions .y;q/

to the optimality system8̂̂̂̂
<̂
ˆ̂̂:
��y C f .y/ D �q�B.0;r/ in B.0;R/;

y D 0 on @B.0;R/;

��q C f 0.y/q D ˇ.y � z/�B.0;R/nB.0;r/ in B.0;R/;

q D 0 on @B.0;R/:

(1.9)

In the case of internal control, we can deduce the following corollary.

Corollary 1.3. Under the assumptions of Theorem 1.2, there exists a target z 2
L1.B.0; R/ n B.0; r// such that (1.9) admits .at least/ two distinguished solutions
.y1; q1/ and .y2; q2/.

This follows from Theorem 1.2, together with the first order optimality conditions for
the optimization problem (1.6)–(1.7) (see [10]).
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Similarly, in the context of boundary control, nonuniqueness for (1.1) leads to nonu-
niquness of solution to the optimality system8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

��y C f .y/ D 0 in B.0;R/;

y D
@

@n
q on @B.0;R/;

��q C f 0.y/q D ˇ.y � z/ in B.0;R/;

q D 0 on @B.0;R/:

(1.10)

To the best of our knowledge, the issue of uniqueness of minimizers has not been
addressed so far for large targets z. Indeed, the uniqueness of the optimal control has
been proved under smallness conditions on the target [26, Section 3.2] or on the adjoint
state [1, Theorem 3.2]. In particular, in [1, Theorem 3.2] the uniqueness holds provided
that the adjoint state is strictly smaller than an explicit constant [1, (3.6)].

The issue of uniqueness of minimizers for elliptic problems is of primary importance
when studying the turnpike property for the corresponding time-evolution control prob-
lem (see [26, 29–31]). Indeed, the existence of multiple global minimizers for the steady
problem generates multiple potential attractors for the time-evolution problem.

The control problems we are treating are classical. General surveys on the topic
are [10] by Eduardo Casas and Mariano Mateos and [31, Chapter 4] by Fredi Tröltzsch.
The interested reader is also referred to [2–4, 7–9, 12, 20, 23, 25, 27] and the references
therein.

1.2. Lack of convexity

Before proving our main result on nonuniqueness of global minimizers, we observe that,
for some targets, quadratic functionals of the optimal control governed by nonlinear state
equations are not convex.

Theorem 1.4. Consider the optimal control problem introduced in (1.6)–(1.7). Then we
have two possibilities:

(1) If f is linear, then J is convex for any target z 2 L2.B.0;R/ n B.0; r//.

(2) If f is not linear, then there exists a target z 2 L2.B.0; R/ n B.0; r// such that J is
not convex.

In the literature, it is well known that convexity cannot be proved by standard tech-
niques in case the state equation is nonlinear (see, for instance, [1] and [31, Section 4]).
However, to the best of our knowledge, no explicit counterexamples to convexity are
available. In this work, the lack of convexity can be deduced as a consequence of the lack
of uniqueness (Theorem 1.1). Anyway, we prefer to prove Theorem 1.4 in Section 2 as a
particular case of the following theorem, which holds in a general functional framework
and basically asserts that a quadratic functional of the optimal control is convex for any
target if and only if its control-to-state map is affine.
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Theorem 1.5. Let U and H be real Hilbert spaces. Let G W U ! H be a function. Set

J W U ! H; J.u/ WD 1
2
kuk2U C

1
2
kG.u/ � zk2H ; (1.11)

where z 2 H . Then the following are equivalent:

(1) for any target z 2 H , J is convex;

(2) G is affine.

In the application of Theorem 1.5 to optimal control,H is the observation space, U is
the control space and G is the control-to-state map. The vector z 2 H is the given target
for the state. Note that Theorem 1.5 applies both to steady and time-evolution control
problems. Furthermore, the map G is not required to be smooth.

We sketch the proof of .1/).2/: we prove the lack of convexity if the control-to-state
map G is not affine. For the time being, we assume that G is of class C 2. In the complete
proof in Section 2, the smoothness of G is not required.

We start by developing the functional (1.11), for any control u 2 U :

J.u/ D 1
2
kuk2U C

1
2
kG.u/ � zk2 D 1

2
kuk2U C

1
2
kG.u/k2H C

1
2
kzk2H � hG.u/; zi

D P.u/C 1
2
kzk2H � hG.u/; zi;

where h�; �i denotes the scalar product of H and

P.u/ WD 1
2
kuk2U C

1
2
kG.u/k2H :

Now, since G is not affine, there exists a control u1 2 U and a direction v1 2 U such
that the second directional derivative of G at u1 along v1 does not vanish:

D2G.u1/.v1; v1/ ¤ 0: (1.12)

Take as target zk WD kD2G.u1/.v1; v1/, with k > 0 to be made precise later, and compute
the second differential of the functional J at u1 along direction v1:

hD2J.u1/v1; v1i D
d2

dv21
P.u1/ � hD

2G.u1/.v1; v1/; z
k
i

D
d2

dv21
P.u1/ � kkD

2G.u1/.v1; v1/k
2
H < 0

if we choose k sufficiently large. This shows the lack of convexity in the smooth case.
The general nonsmooth case is handled in Section 2.

Theorem 1.5 can be applied to internal and boundary control, both in the elliptic and
parabolic contexts.

The lack of convexity and of uniqueness of minimizers is a serious warning for
numerics. Indeed, if the problem is not convex the convergence of gradient methods is
not guaranteed a priori. Furthermore, by employing our techniques, one can find several
counterexamples where there exist local minimizers which are not global. Thus, gradient
methods may converge to local minimizers, missing global ones.
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The rest of the manuscript is organized as follows. In Section 2, we prove Theorem 1.5
and we deduce Theorem 1.4. In Section 3, we provide a counterexample to uniqueness of
global minimizers, in the context of boundary control (Section 3.1) and internal control
(Section 3.2). In Section 4, we perform numerical simulations which explain and con-
firm our theoretical results. In the appendices, we prove some lemmas needed for our
construction.

2. Lack of convexity: proofs of Theorems 1.5 and 1.4

In the proof of Theorem 1.5, we need the following lemma from linear algebra.

Lemma 2.1. Let V1 and V2 be two real vector spaces. Then a function G W V1 ! V2 is
affine if and only if, for any � 2 Œ0; 1� and .v; w/ 2 V 21 ,

G..1 � �/v C �w/ D .1 � �/G.v/C �G.w/: (2.1)

Proof of Theorem 1.5. .2/).1/ If G is affine, by direct computations and convexity of
the square of Hilbert norms, J is convex for any z 2 H .

.1/).2/ Assume now G is not affine. We construct a target z 2H such that J is not
convex.

In what follows, we denote by h�; �i the scalar product of H .

Step 1: Proof of the existence of Q� 2 Œ0; 1�, . Qu1; Qu2/ 2 U 2 and z0 2 H such that

hz0; G..1 � Q�/ Qu1 C Q� Qu2/i < .1 � Q�/hz
0; G. Qu1/i C Q�hz

0; G. Qu2/i:

First of all, up to changing the sign of z0, it is sufficient to prove the existence of Q� 2 Œ0; 1�,
. Qu1; Qu2/ 2 U

2 and z0 2 H such that

hz0; G..1 � Q�/ Qu1 C Q� Qu2/i ¤ .1 � Q�/hz
0; G. Qu1/i C Q�hz

0; G. Qu2/i: (2.2)

Reasoning by contradiction, if (2.2) were not true, for any z 2 H , every .u1; u2/ 2 U 2

and each � 2 Œ0; 1�,

hz;G..1 � �/u1 C �u2/i D .1 � �/hz;G.u1/i C �hz;G.u2/i:

By the arbitrariness of z, this leads to

G..1 � �/u1 C �u2/ D .1 � �/G.u1/C �G.u2/

for any � 2 Œ0; 1� and .u1; u2/ 2 U 2. Then, by Lemma 2.1, G is affine, which contradicts
our hypothesis. This finishes this step.

Step 2: Conclusion. By the first step, there exist Q� 2 Œ0; 1�, . Qu1; Qu2/ 2 U 2 and z0 2 H
such that

hz0; G..1 � Q�/ Qu1 C Q� Qu2/i < .1 � Q�/hz
0; G. Qu1/i C Q�hz

0; G. Qu2/i:
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Now, arbitrarily fix k 2 N�. Set as target

zk WD kz0:

We develop J with target zk , getting for any u 2 U ,

J.u/ D 1
2
kuk2U C

1
2
kG.u/ � zkk2H D

1
2
kuk2U C

1
2
kG.u/k2H C

1
2
kzkk2H � hz

k ; G.u/i

D P.u/C 1
2
kzkk2H � hz

k ; G.u/i;

where
P W U ! R; u 7! 1

2
kuk2U C

1
2
kG.u/k2H :

At this point, we introduce

c1 WD .1 � Q�/P. Qu1/C Q�P. Qu2/ � P..1 � Q�/ Qu1 C Q� Qu2/;

c2 WD .1 � Q�/hz
0; G. Qu1/i C Q�hz

0; G. Qu2/i � hz
0; G..1 � Q�/ Qu1 C Q� Qu2/i:

Then, taking zk as target,

.1 � Q�/J. Qu1/C Q�J. Qu2/ � J..1 � Q�/ Qu1 C Q� Qu2/ D c1 � kc2:

By the first step, c2 > 0. Then, for k large enough,

.1 � Q�/J. Qu1/C Q�J. Qu2/ � J..1 � Q�/ Qu1 C Q� Qu2/ D c1 � kc2 < 0;

which yields
.1 � Q�/J. Qu1/C Q�J. Qu2/ < J..1 � Q�/ Qu1 C Q� Qu2/;

i.e. the desired lack of convexity of J .

Theorem 1.5 applies to semilinear control, both in the elliptic case and in the parabolic
case. We show how to apply Theorem 1.5 for the control problem (1.6)–(1.7), thus proving
Theorem 1.4.

Proof of Theorem 1.4. Take

� U D L2.B.0; r//;

� H D L2.B.0;R/ n B.0; r// with scalar product hv1; v2i WD ˇ
R
B.0;R/nB.0;r/

v1v2 dx;

� the map

G W L2.B.0; r//! L2.B.0;R/ n B.0; r//; u 7! yu�B.0;R/nB.0;r/;

where yu fulfills (1.7) with control u.

Then, by Theorem 1.5, we have two possibilities:

(1) If G is linear, then J is convex for any target z 2 L2.B.0;R/ n B.0; r//.

(2) If G is not linear, then there exists a target z 2 L2.B.0; R/ n B.0; r// such that J is
not convex.
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It remains to prove that G is linear if and only if f is. Now, if f is linear, the linearity
of G follows from linear PDE theory [17, Part I]. Suppose now G is linear. We have to
prove that for any ˛, ˇ, �1; �2 2 R,

f .˛�1 C ˇ�2/ D f̨ .�1/C f̌ .�2/:

To this end, let us introduce a cut-off function � 2 C1.Rn/ such that

� �.0/ D 1;

� supp.�/ �� B.0; r/.

For i D 1; 2, set y�i
WD �i� and u�i

WD Œ��y�i
C f .y�i

/��B.0;r/. Then, by the linearity
of G,

f .˛y�1
C ˇy�2

/ D f .˛G.u�1
/C ˇG.u�2

// D f .G.˛u�1
C ˇu�2

//

D �G.˛u�1
C ˇu�2

/C .˛u�1
C ˇu�2

/�B.0;r/

D ˛�G.u�1
/C ˇ�G.u�2

/C ˛u�1
�B.0;r/ C ˇu�2

�B.0;r/

D f̨ .y�1
/C f̌ .y�2

/;

whence

f .˛�1 C ˇ�2/ D f .˛y�1
.0/C ˇy�2

.0//

D f̨ .y�1
.0//C f̌ .y�2

.0//

D f̨ .�1/C f̌ .�2/;

as required.

3. Lack of uniqueness

In this section, we prove our nonuniqueness results. We start with boundary control (The-
orem 1.1), to later deal with internal control (Theorem 1.2).

3.1. Boundary control

Hereafter, we will work with radial targets, defined below.

Definition 3.1. A function z WB.0;R/!R is said to be radial if there exists � W Œ0;R�!R
such that, for any x 2 B.0;R/, we have z.x/ D �.kxk/.

We introduce the control-to-state map

G W L1.@B.0;R//! L2.B.0;R//; u 7! yu; (3.1)

where yu is the solution to (1.2) with control u. Then set

I W L1.@B.0;R// � L2.B.0;R//! R;

I.u; z/ WD
1

2

Z
@B.0;R/

juj2 d�.x/C
ˇ

2

Z
B.0;R/

jG.u/j2 dx � ˇ

Z
B.0;R/

G.u/z dx;
(3.2)
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u

Fig. 5. Functional versus control (nonuniqueness of local minimizers). The graph of J defined in
(1.1), with R D 1, f .y/ D y3 and z D 260000�.0;1=4/[.3=4;1/ � 10300000�.1=4;3=4/.

u

Fig. 6. Functional versus control (nonuniqueness of global minimizers). The graph of J defined in
(1.1) with R D 1, f .y/ D y3 and z D 410000�.0;1=4/[.3=4;1/ � 10300000�.1=4;3=4/.

whereG is the control-to-state map introduced in (3.1). One recognizes that, for any target
z 2 L1.B.0; R//, I.�; z/ C ˇ

2
kzk2

L2.B.0;R//
coincides with the functional J defined in

(1.1) with target z. Then, for any z 2 L1.B.0; R//, minimizing I.�; z/ is equivalent to
minimizing J with target z. This translation is convenient, because I.0; z/ D 0 for any
target z 2 L1.B.0;R//.

We establish some important properties of solutions of the state equation (1.2):
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� The unique constant solution of the equation ��y C f .y/ D 0 in any domain � �
B.0;R/ is y � 0 (Lemma A.2). In particular, G.u/ D 0 if and only if u D 0.

� By the comparison principle, if u � 0 on @B.0; R/ and u 6� 0, then G.u/.x/ > 0

in B.0;R/.

� By the comparison principle, if u � 0 on @B.0; R/ and u 6� 0, then G.u/.x/ < 0

in B.0;R/.

We introduce

h1 W L
1.B.0;R//! R; h1.z/ WD inf ¹I.u; z/ j u � k; k 2 .�1; 0�º; (3.3)

h2 W L
1.B.0;R//! R; h2.z/ WD inf ¹I.u; z/ j u � k; k 2 Œ0;C1/º: (3.4)

Lemma 3.2. Let C D .�1; 0� or C D Œ0;C1/.

(1) For any z 2 L1.B.0;R//, there exists uz 2 C such that

I.uz ; z/ D inf
C
I.�; z/:

Furthermore, for any minimizer uz ,

juzj �

s
ˇ

Rn�1n˛.n/
kzkL2 ;

where n˛.n/ is the surface area of @B.0; 1/ � Rn, the unit sphere.

(2) The map
h W L1.B.0;R//! R; h.z/ WD inf

C
I.�; z/;

is continuous.

We prove Lemma 3.2 in Appendix A. We now state the second lemma.

Lemma 3.3. Assume there exists z0 2 L1.B.0;R// such that

h1.z
0/ < 0 and h2.z

0/ < 0;

where h1 and h2 are defined in (3.3) and (3.4) resp. Then there exists a target Qz 2
L1.B.0;R// such that

h1. Qz/ D h2. Qz/ < 0:

The proof of Lemma 3.3 can also be found in Appendix A. The following lemma is
the key point for the proof of existence of two local minimizers for (1.1). At this point we
employ the nonlinearity of the state equation (1.2).

Lemma 3.4. Let� be a bounded open subset of Rn with @� 2 C1. Take f 2 C 1.R/\
C 2.R n ¹0º/ strictly increasing with

f 00.y/ ¤ 0 8y ¤ 0:
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Let u� < 0 < uC;1 < uC;2 be three constant controls. For any u 2 L1.@�/, let G.u/ be
the solution to ´

��y C f .y/ D 0 in �;

y D u on @�:
(3.5)

Set

� WD

R
�
G.uC;2/.x/ dxR

�
G.uC;1/.x/ dx

; (3.6)

!1 WD ¹x 2 � j G.uC;2/.x/ < �G.uC;1/.x/º; (3.7)

!2 WD ¹x 2 � j G.uC;2/.x/ > �G.uC;1/.x/º: (3.8)

There exists i 2 ¹1; 2º such that the matrix

� WD ˇ

24 R!1
G.u�/ dx

R
!2
G.u�/ dxR

!1
G.uC;i / dx

R
!2
G.uC;i / dx

35 (3.9)

is invertible.

Proof of Lemma 3.4. To simplify the notation, we set y1 WDG.uC;1/ and y2 WDG.uC;2/.

Step 1: For any � 2 R the set

E� WD ¹x 2 � j y2.x/ D �y1.x/º

has Lebesgue measure zero. We start with the case � � 1. By the strong maximum prin-
ciple [17, Theorem 8.19 p. 198], for any x 2 �, G.uC;2/.x/ > y1.x/. Hence, for any
� � 1, the set E� is empty.

For � > 1, suppose, for contradiction, that E� has strictly positive Lebesgue measure.
For any x 2 �, we have

��y1.x/C f .y1.x// D 0; (3.10)

��y2.x/C f .y2.x// D 0: (3.11)

By definition, for any x 2E�, y2.x/D �y1.x/, whence by (3.11) and Lemma A.4 applied
twice we get, a.e. in E�,

���y1.x/C f .�y1.x// D 0: (3.12)

Multiplying (3.10) by �, we have

���y1.x/C �f .y1.x// D 0: (3.13)

By subtracting (3.12) and (3.13), we obtain

f .�y1.x// D �f .y1.x// a.e. x 2 E�: (3.14)
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Now, we have supposed thatE� has a positive Lebesgue measure. Hence, by Lemma A.3,
there exists an accumulation point Ox 2 � and a corresponding sequence ¹xmºm2N � E�
such that

xm �����!
m!C1

Ox: (3.15)

Now, by (3.14), we have

f .�y1.xm// D �f .y1.xm//; 8m 2 N: (3.16)

Since ui 2 C 0.@�/, it follows that yi 2 H 1.�/\ C 0.�/ by Proposition 1. Then, taking
the limit as m!C1 in the above expression, we get

f .�y1. Ox// D �f .y1. Ox//: (3.17)

By (3.16) and (3.17), we have

f .�y1.xm// � f .�y1. Ox//

�y1.xm/ � �y1. Ox/
D
�f .y1.xm// � �f .y1. Ox//

�y1.xm/ � �y1. Ox/
: (3.18)

Taking the limit as m ! C1 on both sides and using the continuity of y1 we get
f 0.�y1. Ox// D f 0.y1. Ox//. Now, by [17, Theorem 8.19, p. 198], y1. Ox/ > 0. Hence by
the Rolle Theorem applied to f 0, there exists � > 0 such that

f 00.�/ D 0; (3.19)

contrary to assumption. This finishes Step 1.
Set now

ƒ WD

24R!1
G.uC;1/ dx

R
!2
G.uC;1/ dxR

!1
G.uC;2/ dx

R
!2
G.uC;2/ dx

35 :
Step 2: � n Œ!1 [ !2� has Lebesgue measure zero and the matrix ƒ is invertible. By the
above reasoning, the set E� D � n Œ!1 [ !2� has Lebesgue measure zero. Now, by the
strong maximum principle, y1 and y2 are strictly positive in � and � ¤ 0. Hence,

det.ƒ/ D
Z
!1

y1 dx

Z
!2

y2 dx �

Z
!1

y2 dx

Z
!2

y1 dx

> �

Z
!1

y1 dx

Z
!2

y1 dx � �

Z
!1

y1 dx

Z
!2

y1 dx D 0:

Step 3: Conclusion. Let us assume, for contradiction, that the matrix � is not invertible.
Then, for i D 1; 2, there exists �i 2 R such that24R!1

G.uC;i / dxR
!2
G.uC;i / dx

35 D �i
24R!1

G.u�/ dxR
!2
G.u�/ dx

35 : (3.20)
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Since the controls are nonzero constants, by [17, Theorem 8.19, p. 198], all the above
integrals are nonvanishing, whence �i ¤ 0. Then24R!1

G.uC;2/ dxR
!2
G.uC;2/ dx

35 D �2
24R!1

G.u�/ dxR
!2
G.u�/ dx

35 D �2

�1

24R!1
G.uC;1/ dxR

!2
G.uC;1/ dx

35 : (3.21)

By (3.21), the matrix ƒ is not invertible, contradicting Step 2.

Proof of Theorem 1.1. Step 1: Reduction to constant controls. Suppose that for some
radial target z, the optimal control is not constant. Then, by Lemma A.5, there exists an
orthogonal matrix M such that u ıM ¤ u. Now,

I.u ıM; z/ D
1

2

Z
@B.0;R/

ju ıM j2 d�.x/C
ˇ

2

Z
B.0;R/

jG.u ıM/j2 dx

� ˇ

Z
B.0;R/

G.u ıM/z dx

D
1

2

Z
@B.0;R/

juj2 d�.x/C
ˇ

2

Z
B.0;R/

jG.u/j2 dx � ˇ

Z
B.0;R/

G.u/z dx

D I.u; z/;

where we have employed the change of variable 
.x/ D Mx and Lemma A.7. Thus,
u and u ıM are two distinguished global minimizers for I.�; z/, as desired. It remains to
prove nonuniqueness when, for any radial targets, all the optimal controls are constants.

Step 2: Existence of a special target z0 2L1.B.0;R// such that I.�; z0/ admits .at least/
two local minimizers among constant controls. By Lemma 3.4, there exist two controls
u� < 0 < uC such that (3.9) is invertible. We start by proving the existence of a special
target z0 2 L1.B.0;R// such that I.u�; z0/ < 0 and I.uC; z0/ < 0.

For any z0 2 L1.B.0;R//, we have I.u�; z0/ < 0 and I.uC; z0/ < 0 if and only if8̂̂̂<̂
ˆ̂:
ˇ

Z
B.0;R/

G.u�/z
0 dx >

Rn�1n˛.n/

2
ju�j

2
C
ˇ

2

Z
B.0;R/

jG.u�/j
2 dx;

ˇ

Z
B.0;R/

G.uC/z
0 dx >

Rn�1n˛.n/

2
juCj

2
C
ˇ

2

Z
B.0;R/

jG.uC/j
2 dx;

(3.22)

where G is the control-to-state map introduced in (3.1) and ˛.n/ is the volume of the unit
ball in Rn. In what follows, we work with sign-changing targets

z0 WD

´
z01 in !1;

z02 in !2;

where .z01 ; z
0
2/ 2 R2 and !1 and !2 are defined in (3.7) and (3.8) respectively. .z01 ; z

0
2/

are degrees of freedom we need in the remainder of the proof. With the above choice of



Nonuniqueness of minimizers 2141

target, inequalities (3.22) are satisfied if .z01 ; z
0
2/ satisfies the linear system8̂̂<̂

:̂
z01ˇ

Z
!1

G.u�/ dx C z
0
2ˇ

Z
!2

G.u�/ dx D c1;

z01ˇ

Z
!1

G.uC/ dx C z
0
2ˇ

Z
!2

G.uC/ dx D c2;

(3.23)

with constant terms

c1 WD
Rn�1n˛.n/

2
ju�j

2
C
ˇ

2

Z
B.0;R/

jG.u�/j
2 dx C 1;

c2 WD
Rn�1n˛.n/

2
juCj

2
C
ˇ

2

Z
B.0;R/

jG.uC/j
2 dx C 1:

The 2 � 2 coefficient matrix of the above linear system reads

� D ˇ

24R!1
G.u�/ dx

R
!2
G.u�/ dxR

!1
G.uC/ dx

R
!2
G.uC/ dx

35 :
By (3.9), the matrix � is invertible. Therefore, by the Rouché–Capelli theorem, there

exists a solution to the linear system (3.23). The solution .z01 ; z
0
2/ defines a special target

z0 WD

´
z01 in !1;

z02 in !2;

such that I.u�; z0/ < 0 and I.uC; z0/ < 0.
We now show that I.�; z0/ admits (at least) two local minimizers. Indeed, by

Lemma 3.2 (1), there exist

u1 � 0 such that I.u1; z
0/ D inf ¹I.u; z/ j u � k; k � 0º;

u2 � 0 such that I.u2; z
0/ D inf ¹I.u; z/ j u � k; k � 0º:

Now,

I.u1; z
0/ D inf ¹I.u; z/ j u � k; k � 0º � I.u�; z0/ < 0 D I.0; z0/;

I.u2; z
0/ D inf ¹I.u; z/ j u � k; k � 0º � I.uC; z0/ < 0 D I.0; z0/:

Thus, the control u1 minimizes I.�; z0/ on the half-line .�1; 0/, while u2 minimizes
I.�; z0/ on the half-line .0;C1/. We have found two distinct local minimizers u1 and u2
for I.�; z0/ in R.

Step 3: Conclusion. Recall the definition of h1 and h2 given by (3.3) and (3.4) resp. In
Step 2, we have determined z0 2 L1.B.0;R// such that h1.z0/ < 0 and h2.z0/ < 0. To
finish our proof it suffices to find Qz 2 Rn such that h1. Qz/ D h2. Qz/ < 0. This follows from
Lemma 3.3.
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3.2. Internal control

We introduce the well-known concept of radial control.

Definition 3.5. A control u WB.0; r/!R is said to be radial if there exists W Œ0; r�!R
such that, for any x 2 B.0; r/, we have u.x/ D  .kxk/.

Our strategy to prove Theorem 1.2 resembles the one of Theorem 1.1, except for
Step 1, which consists now in reduction to radial controls instead of constant controls.

We define the control-to-state map

G W L2.B.0; r//! L2.B.0;R//; u 7! yu; (3.24)

where yu is the solution to (1.7) with control u. Then set

I W L2.B.0; r// � L1.B.0;R/ n B.0; r//! R;

I.u; z/ WD
1

2

Z
B.0;r/

juj2 dx C
ˇ

2

Z
B.0;R/nB.0;r/

jG.u/j2 dx

� ˇ

Z
B.0;R/nB.0;r/

G.u/z dx;

(3.25)

where G is the control-to-state map introduced in (3.24). One recognizes that, for any
z 2 L1.B.0;R/ nB.0; r//, I.�; z/C ˇ

2
kzk2

L2.B.0;R/nB.0;r//
coincides with the functional

J defined in (1.6) with target z. Then, for any z 2 L1.B.0; R/ n B.0; r//, minimizing
I.�; z/ is equivalent to minimizing J with target z. This translation is convenient, because
I.0; z/ D 0 for any target z 2 L1.B.0;R/ n B.0; r//.

We establish some important properties of the solutions of the state equation (1.7):

� The unique constant solution of the equation ��y C f .y/D 0 in B.0;R/, with y D 0
on @B.0;R/ is y � 0 (Lemma B.2). In particular, G.u/ D 0 if and only if u D 0.

� By the comparison principle, if u � 0 in B.0; r/ and u 6� 0, then G.u/.x/ > 0 in
B.0;R/; and if u � 0 in B.0; r/ and u 6� 0, then G.u/.x/ < 0 in B.0;R/.

We define
Ur WD ¹u 2 L

2.B.0; r// j u is radialº: (3.26)

We have
Ur D U �r [U �r (3.27)

with
U �r WD ¹u 2 Ur

ˇ̌
G.u/�@B.0;r/ � 0º;

U Cr WD ¹u 2 Ur

ˇ̌
G.u/�@B.0;r/ � 0º:

(3.28)

We introduce

h1 W L
1.B.0;R/ n B.0; r//! R; h1.z/ WD inf ¹I.u; z/ j u 2 U �r º; (3.29)

h2 W L
1.B.0;R/ n B.0; r//! R; h2.z/ WD inf ¹I.u; z/ j u 2 U Cr º: (3.30)

We formulate the first lemma.
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Lemma 3.6. Let C D U �r or C D U Cr .

(1) For any z 2 L1.B.0;R/ n B.0; r//, there exists uz 2 C such that

I.uz ; z/ D inf
C
I.�; z/:

Furthermore, for any minimizer uz ,

kuzkL2.B.0;r// �
p
ˇ kzkL2 :

(2) The map
h W L1.B.0;R/ n B.0; r//! R; z 7! inf

C
I.�; z/;

is continuous.

The proof of Lemma 3.6 resembles the one of Lemma 3.2, available in Appendix A.
We now state the second lemma needed to prove Theorem 1.2.

Lemma 3.7. Assume there exists z0 2 L1.B.0;R/ n B.0; r// such that

h1.z
0/ < 0 and h2.z

0/ < 0;

where h1 and h2 are defined in (3.29) and (3.30) resp. Then there exists Qz 2L1.B.0;R/ n
B.0; r// such that

h1. Qz/ D h2. Qz/ < 0:

The above lemma can be proved by following the arguments for Lemma 3.3 in
Appendix A. The next lemma is the foundation of the proof of the existence of two local
minimizers for (1.6). The nonlinearity of the state equation (1.7) will play a key role in
the proof.

Lemma 3.8. Let � be a bounded open subset of Rn with @� 2 C1, and ! ¨ � a
nonempty open subset. Take f 2 C 1.R/ \ C 2.R n ¹0º/ strictly increasing with

f 00.y/ ¤ 0 8y ¤ 0:

Let u� < 0 < uC;1 < uC;2 be three constant controls. For any u 2 L2.!/, let G.u/ be
the solution to ´

��y C f .y/ D u�! in �;

y D 0 on @�:
(3.31)

Set

� WD

R
�
G.uC;2/.x/ dxR

�
G.uC;1/.x/ dx

; (3.32)

!1 WD ¹x 2 � n ! j G.uC;2/.x/ < �G.uC;1/.x/º; (3.33)

!2 WD ¹x 2 � n ! j G.uC;2/.x/ > �G.uC;1/.x/º: (3.34)



D. Pighin 2144

There exists i 2 ¹1; 2º such that

� WD ˇ

24 R!1
G.u�/ dx

R
!2
G.u�/ dxR

!1
G.uC;i / dx

R
!2
G.uC;i / dx

35 (3.35)

is invertible.

The proof of the above lemma resembles the one of Lemma 3.4. A key point is that,
in the complement of the control region, for i D 1; 2 we have

��G.uC;i /C f .G.uC;i // D 0 in � n !: (3.36)

Proof of Theorem 1.2. Step 1: Reduction to radial controls. Suppose for some radial
target z, the optimal control u is not radial, that is, there exists an orthogonal matrix M
such that u ıM ¤ u. By Lemma B.3, we have G.u ıM/ D G.u/ ıM . Now,

I.u ıM; z/ D
1

2

Z
B.0;r/

ju ıM j2 dx C
ˇ

2

Z
B.0;R/nB.0;r/

jG.u ıM/j2 dx

� ˇ

Z
B.0;R/nB.0;r/

G.u ıM/z dx

D
1

2

Z
B.0;r/

juj2 dx C
ˇ

2

Z
B.0;R/nB.0;r/

jG.u/j2 dx

� ˇ

Z
B.0;R/nB.0;r/

G.u/z dx

D I.u; z/;

where we have employed the change of variable 
.x/ DMx. Thus, u and u ıM are two
distinguished global minimizers for I.�; z/, as desired. It remains to prove nonunique-
ness when, for any radial target, all the optimal controls are radial. Hereafter, for a radial
target z, we will consider the restriction of the functional I.�; z/ to Ur .

Step 2: Existence of a special target z0 2L1.B.0;R/ nB.0; r// such that I.�; z0/ admits
.at least/ two local minimizers, among radial controls. By Lemma 3.8, there exist two
controls u� < 0 < uC such that (3.35) is invertible. Proceeding as in Step 2 of the proof
of Theorem 1.1, one can prove the existence of a special target

z0 WD

´
z01 in !1;

z02 in !2;

such that I.u�; z0/ < 0 and I.uC; z0/ < 0. Note that in this case !1 and !2 are defined
in (3.33) and (3.34) respectively.

We now show that I.�; z0/ admits (at least) two local minimizers in Ur . Indeed, the
set Ur (introduced in (3.26)) splits as

Ur D U �r [U Cr ;
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with

U �r D ¹u 2 Ur j G.u/�@B.0;r/ � 0º; U Cr D ¹u 2 Ur j G.u/�@B.0;r/ � 0º;

where we have used the fact that for any radial control u, by Lemma B.3, G.u/ is radial
and (by elliptic regularity [13, Theorem 4, p. 334]) continuous, so that G.u/�@B.0;r/ is a
real number.

By Lemma 3.6 (1), there exist

u1 2 U �r such that I.u1; z
0/ D inf

U �r
I.�; z0/;

u2 2 U Cr such that I.u2; z
0/ D inf

UCr

I.�; z0/:

Now, for any control u 2 ¹u 2 Ur j G.u/�@B.0;r/ D 0º, we have

I.u1; z
0/ D inf

U �r
I.�; z0/ � I.u�; z

0/ < 0 � I.u; z0/;

I.u2; z
0/ D inf

UCr

I.�; z0/ � I.uC; z
0/ < 0 � I.u; z0/:

Then necessarily u1 is a local minimizer for I.�; z0/ in the open set ¹u 2 Ur j

G.u/�@B.0;r/ < 0º and u2 is a local minimizer for I.�; z0/ in the open set ¹u 2 Ur j

G.u/�@B.0;r/ > 0º. Hence, we have found two distinct local minimizers u1 and u2 for
I.�; z0/ in Ur .

Step 3: Conclusion. Recall the definitions of h1 and h2 in (3.29) and (3.30) resp. In
Step 2, we have determined z0 2 L1.B.0; R/ n B.0; r// such that h1.z0/ < 0 and
h2.z

0/ < 0. To finish our proof it suffices to find Qz 2 Rn such that h1. Qz/ D h2. Qz/ < 0.
This follows from Lemma 3.7.

4. Numerical simulations

We have performed a numerical simulation in the context of boundary control. We illus-
trate in Fig. 7 an example with step target

z.x/ WD

´
410000 for 0 < x < 1=4 and 3=4 < x < 1;

�10300000 for 1=4 < x < 3=4:
(4.1)

As we have seen in the proof of Theorem 1.1, we can reduce to the case of con-
stant controls on the boundary. In our case, the space dimension is n D 1. Thus, we have
reduced to the case where the same control acts on both endpoints x D 0 and x D 1.
Hence, we plot in Fig. 7 the restriction J�R W R ! R, the functional J being defined
in (1.1).

There exist two distinguished global minimizers:

� a negative one u1 Š �50;

� a positive one u2 Š 4298.

The corresponding optimal states are depicted in Fig. 8 and Fig. 9.
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u

Fig. 7. Functional versus control (nonuniqueness of global minimizers). The graph of J defined in
(1.1), with space dimension n D 1, R D 1, weighting parameter ˇ D 1 and target (4.1).

x

y

Fig. 8. State associated with control u D �50.

x

y

Fig. 9. State associated with control u D 4298.
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The idea behind this example is that two optimal strategies are available:

� take a large positive control u2 to better approximate the target in .0; 1=4/ [ .3=4; 1/;

� take a negative control u1 to keep the state closer to the target in .1=4; 3=4/.

Note that ju1j< ju2j. Indeed, the control acts at the endpoints xD 0 and xD 1 of the space
domain. Next, the effect of the control is stronger in .0; 1=4/[ .3=4;1/ than in .1=4;3=4/.
For this reason, it is worth to take a large positive control to better approximate the target
in .0; 1=4/ [ .3=4; 1/. On the other hand, it is less convenient to take a very negative
control to approximate the target in .1=4; 3=4/ (see the local estimates for semilinear
equations [21] and [15, proof of Theorem 1.3]).

In Fig. 7 we observe that the functional has a different behaviour close to zero and
away from zero. This can be explained by studying the behaviour of the control-to-state
map (3.1):

� close to zero, (3.1) is close to its linearization around zero;

� far from zero, (3.1) is strongly influenced by the nonlinearity f .y/ D y3, thus produ-
cing a drastic change in the shape of the functional.

Numerical simulations have been performed in MATLAB. We now explain the numer-
ical methods employed.

Firstly choose an interval of controls Œ�M;M�, where to study the functional J . Then
our goal is to plot J�Œ�M;M� W Œ�M;M�! R.

For the interval Œ�M;M�, we choose an equi-spaced grid vi D �M C .i � 1/ 2MNc�1

with i D 1; : : : ; Nc and Nc 2 N n ¹0º.
Now, for each control vi , we need to find numerically the corresponding state yi

solving the following PDE with cubic nonlinearity:´
�.yi /xx C .yi /

3
D 0; x 2 .0; 1/;

yi .0/ D yi .1/ D vi :
(4.2)

Following [6, Section 4.3.2], we solve (4.2) by a fixed-point type algorithm with relax-
ation. Namely, in any iteration k, we determine the solution yi;k to the linear PDE´

�.yi;k/xx C .�i;k�1/
2yi;k D 0; x 2 .0; 1/;

yi;k.0/ D yi;k.1/ D vi ;
(4.3)

and we set �k WD 1
2
�i;k�1C

1
2
yk . The initial guess �i;0 is taken to be yi�1, i.e. the solution

to (4.2) with control vi�1.
To compute the solution to the linear PDE (4.3), we choose a finite difference scheme

with uniform space grid xj D
j�1
�x

, where j D 1; : : : ;Nx ,Nx 2N n ¹0º and�x WD 1
Nx�1

.
Then yi;k D .yi;k;j /j is an Nx-dimensional discrete vector solution to8̂<̂

:
�yi;k;j�1 C 2yi;k;j � yi;k;jC1

.�x/2
C .�i;k�1;j /

2yi;k;j D 0; j D 2; : : : ; Nx � 1;

yi;k;1 D yi;k;Nx
D vi :
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Once we have determined the state yi , we evaluate the functional J at the control vi .
The integral appearing in (1.1) can be computed by quadrature methods. We are now in a
position to plot the functional J�Œ�M;M� W Œ�M;M�! R.

Note that, as far as we know, the actual convergence of the fixed-point method
described has not been proved. However, for any control vi , we are able to check that
the state computed solves the finite difference version of the nonlinear problem (4.2) up
to a small error.

An extensive literature is available on numerical approximation of solutions to (4.2)
(see, for instance, [18] for a survey). Let us mention two alternative numerical methods.

The first one is a finite difference-Newton method presented in [22, Section 2.16.1].
The idea is to discretize (4.2) directly. This leads to a nonlinear equation in finite dimen-
sions, solved by a Newton method.

Another option is to find the solution to (4.2) as the minimizer of the convex functional

K.y/ D
1

2

Z 1

0

jyxj
2 dx C

1

4

Z 1

0

y4 dx

over the affine space

A WD ¹y 2 H 1.0; 1/ j y.0/ D y.1/ D vº:

5. Conclusions and open problems

We have illustrated a general methodology to show lack of convexity for quadratic func-
tionals with nonlinear state equations (Theorem 1.5). Furthermore, we have exhibited
a counterexample to uniqueness of global minimizers in optimal control of semilinear
elliptic equations (Theorems 1.1 and 1.2).

We list some interesting problems, which, to the best of our knowledge, have not been
addressed in the literature so far.

5.1. General space domain

Our counterexample to uniqueness of minimizers in semilinear control relies on the rota-
tional invariance of the space domain B.0; R/ to reduce to constant/radial controls. It
would be interesting to enhance the techniques developed to more general space domains.

5.2. Relations to the turnpike property

Consider the time-evolution control problem associated to (1.6)–(1.7),

min
u2UT

JT .u/; where

JT .u/ D
1

2

Z T

0

Z
B.0;r/

juj2 dx dt C
ˇ

2

Z T

0

Z
B.0;R/nB.0;r/

jy � zj2 dx dt;
(5.1)
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where UT WD L
2..0; T /�B.0; r// and the state y associated to the control u is a solution

to the semilinear heat equation8̂<̂
:
yt ��y C f .y/ D u�B.0;r/ in .0; T / � B.0;R/;

y D 0 on .0; T / � @B.0;R/;

y.0; x/ D y0.x/ in B.0;R/:

(5.2)

The nonlinearity f is C 3 and nondecreasing, with f .0/D 0. The assumptions on the state
equation are the same as in [26, Section 3]. An optimal control for the above problem is
denoted by uT , while the corresponding optimal state by yT .

We rewrite (1.6)–(1.7) with an “s” subscript to stress the steady-state character of the
problem:

min
us2L2.B.0;r//

Js.us/; where

Js.us/ D
1

2

Z
B.0;r/

jusj
2 dx C

ˇ

2

Z
B.0;R/nB.0;r/

jys � zj
2 dx;

(5.3)

where ´
��ys C f .ys/ D us�B.0;r/ in B.0;R/;

ys D 0 on @B.0;R/:
(5.4)

We denote by .u; y/ an optimal pair, where u is an optimal control and y the correspond-
ing optimal state.

Consider a target z such that Js has two distinguished global minimizers, as in The-
orem 1.2. Choose any initial datum y0 2 L

1.B.0; R// for the evolution equation (5.2).
Let uT be a minimizer for (5.1). Then a question arises: if the turnpike property is
satisfied, which minimizer for (5.3)–(5.4) attracts the optimal solutions to (5.1)–(5.2)?
Namely, for which optimal pair .u; y/ for (5.3)–(5.4) do we have the estimate

kuT .t/� ukL1.B.0;r//Cky
T .t/� ykL1.B.0;R// �KŒe

��t
C e��.T�t/�; 8t 2 Œ0; T �;

where the constants K and � > 0 are independent of the time horizon T ?
According to [26, Theorem 1, Section 3], this depends on the sign of the second

differential of the functional Js computed at the minima, which in turn is linked to the
sign of the term ˇ�B.0;R/nB.0;r/ � f

00.y/q.

Appendix A. Preliminaries for boundary control

In this section, we present some results in boundary control. We accomplish them in a
general space domain �.

Let � be a bounded open subset of Rn, with boundary @� 2 C1. The nonlinearity
f 2 C 1.R/ is increasing and f .0/ D 0. We introduce the class of test functions

C WD ¹' 2 C 2.�/ j '.x/ D 0; 8x 2 @�º

and the following notion of solution.
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Definition A.1. Let u 2 L1.@�/. Then y 2 L1.�/ is said to be a solution to the bound-
ary value problem ´

��y C f .y/ D 0 in �;

y D u on @�;
(A.1)

if for any test function ' 2 C , we haveZ
�

Œ�y�' C f .y/'� dx C

Z
@�

u
@'

@n
d�.x/ D 0;

where n is the outward normal to @�.

We have the following existence and uniqueness result, inspired by [14, proof of Pro-
position 5.1].

Proposition 1. Let u 2 L1.@�/. There exists a unique solution y 2 L1.�/\H 1=2.�/

to (A.1), with
kykL2� .�/ � KkukL2.@�/; (A.2)

the constant K D K.�/ being independent of the nonlinearity f and 2� D 2n
n�1

. If the
boundary control u is in H 1=2.@�/ \ C 0.@�/, then in fact y 2 H 1.�/ \ C 0.�/.

One of the key points of the proof will be the increasing character of the nonlinearity.

Proof of Proposition 1. Step 1: Solving a nonhomogeneous linear problem. By [24,
Théorème 7.4, p. 202], there exists a unique solution y1 2 H

1=2.�/ to the non-
homogeneous boundary value problem´

��y1 D 0 in �;

y1 D u on @�:
(A.3)

The boundary value u is in L1.@�/. Hence, by a comparison argument, we have
y1 2 L

1.�/.

Step 2: Solving a homogeneous semilinear problem. Since the nonlinearity f is increas-
ing, by adapting the techniques of [5, Theorem 4.7, p. 29], there exists a unique
y2 2 H

1
0 .�/ solution to ´

��y2 C f .y1 C y2/ D 0 in �;

y2 D 0 on @�:
(A.4)

By a comparison argument, since y1 2L1.�/, we have y2 2L1.�/. Then y D y1C y2
2 L1.�/ \H 1=2.�/ is the unique solution to (A.1).

Step 3: Proof of the estimate (A.2). By a comparison argument, we have

jyj � Oy a.e. �; (A.5)
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with ´
�� Oy D 0 in �;

Oy D juj on @�:
(A.6)

Now, by [24, Théorème 7.4, p. 202] the solution Oy is in H 1=2.�/, with

k OykH1=2.�/ � KkukL2.@�/: (A.7)

The above inequality, together with the fractional Sobolev embedding H 1=2.�/ ,!

L2
�

.�/ (see e.g. [11, Theorem 6.7]), yields

k OykL2� .�/ � k OykH1=2.�/ � KkukL2.@�/;

whence by (A.5), we have

kykL2� .�/ � k OykL2� .�/ � KkukL2.@�/;

with K D K.�/, as required.

Step 4: Improved regularity. Since @� 2 C1, by [24, Théorème 7.4, p. 202] and [16,
Proposition 1.29, p. 14] the solution y1 to (A.3) is in H 1.�/ \ C 0.�/. Now, y2 solves
the linear problem ´

��y2 C cy2 D �f .y1/ in �;

y2 D 0 on @�
(A.8)

with bounded coefficient

c.x/ WD

8̂<̂
:
f .y1.x/C y2.x// � f .y1.x//

y2.x/
; y2.x/ ¤ 0;

f 0.y1.x//; y2.x/ D 0:

Then, by [24, Théorème 7.4, p. 202] and [17, Theorem 8.30, p. 206] applied to (A.8), y2
is in H 1.�/ \ C 0.�/. Hence, y D y1 C y2 2 H 1.�/ \ C 0.�/, as desired.

We now state and prove some lemmas needed in the main body of the article.

Lemma A.2. Let u 2 L1.@�/ be a control. Let y be the solution to (A.1) with control u.
Assume the nonlinearity f is strictly increasing and y is constant. Then y � 0 and u� 0.

Proof. Suppose there exists c 2 R such that y.x/ D c for any x 2 �. Then, by Defini-
tion A.1, for any test function ' 2 C1c .�/, we haveZ

�

Œ�c�' C f .c/'� dx D 0;

where n is the outward normal to @� and C1c .�/ denotes the class of infinitely differen-
tiable functions with compact support in �. Integrating by parts, we haveZ

�

f .c/' dx D 0
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for any ' 2 C1c .�/, which leads to f .c/D 0. Now, f .0/D 0 and f is strictly increasing.
Hence f .c/ D 0 if and only if c D 0, whence y � 0 and u � 0.

In the next lemma, xi and ei denote respectively the i th component of the vector
x 2 Rn and the i th element of the canonical base of Rn.

Lemma A.3. Let� be an open set. LetE �� be a Lebesgue measurable set with positive
Lebesgue measure. Then for a.e. Ox 2 � and for any i D 1; : : : ; n there exists a sequence
¹ximºm2N � R .with ximei C Ox ¤ Ox/ such that

ximei C Ox �����!
m!C1

Ox: (A.9)

Proof. Let us introduce the set of component-isolated points of E,

Eci WD
[

iD1;:::;n
r>0

¹x 2 E j Bi;r \E D ¹xºº; (A.10)

where

Bi;r WD ¹.x
1; : : : ; xi�1; y; xiC1; : : : ; xn/ j y 2 Œxi � r; xi C r�º: (A.11)

Step 1: Reduction to a single component and radius. By the the above definitions and
the density of rational numbers in the reals, we have

Eci D

[
iD1;:::;n

r>0 and r2Q

¹x 2 E j Bi;r \E D ¹xºº: (A.12)

By the countable additivity of the Lebesgue measure, we reduce the task to proving that,
for any i D 1; : : : ; n and any r > 0, the set

Eci;i;r WD ¹x 2 E j Bi;r \E D ¹xºº (A.13)

is Lebesgue measurable and has Lebesgue measure zero.

Step 2: Conclusion. The measurability of Eci;i;r follows from the continuity of the dis-
tance function. Let us compute its measure. For any .x1; : : : ; xi�1; xiC1; : : : ; xn/ 2Rn�1,
set

E.x1;:::;xi�1;xiC1;:::;xn/ WD ¹y 2 R j .x1; : : : ; xi�1; y; xiC1; : : : ; xn/ 2 Eci;i;rº; (A.14)

where we have dropped the subscript ci; i; r to avoid heavy notation.
Now, by definition of Eci;i;r , for any x 2 Eci;i;r , the set E.x1;:::;xi�1;xiC1;:::;xn/ is at

most countable, whence of null Lebesgue measure. Then, by Fubini’s theorem, we have

�Leb.Eci;i;r / D

Z
Rn�1

�Leb.E.x1;:::;xi�1;xiC1;:::;xn// d.x1; : : : ; xi�1; xiC1; : : : ; xn/ D 0;

as required.
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Lemma A.4. Let� be an open set. Let y1 and y2 be two functions of class C 2.�/. Then

�Leb.¹x 2E j y1.x/D y2.x/º/D�Leb.¹x 2E j y1.x/D y2.x/ andry1.x/Dry2.x/º/:

Proof. If �Leb.¹x 2 E j y1.x/D y2.x/º/, the conclusion follows. Otherwise, let us apply
Lemma A.3, getting for a.e. Ox 2 � and for any i D 1; : : : ; n a sequence ¹ximºm2N � R
(with ximei C Ox ¤ Ox) such that

ximei C Ox �����!
m!C1

Ox:

Then

@y2

@xi
. Ox/ D lim

m!C1

y2.x
i
mei C Ox/ � y2. Ox/
ximei C Ox � Ox

D lim
m!C1

y1.x
i
mei C Ox/ � y1. Ox/
ximei C Ox � Ox

D
@y1

@xi
. Ox/;

whence ry2. Ox/ D ry1. Ox/, as required.

Lemma A.5. Let u 2 L1.@B.0; R// be nonconstant. Then there exists an orthogonal
matrix M such that

u ıM ¤ u: (A.15)

Proof. In the present proof, we denote by Qu a representative of the equivalence class
u 2 L1.@B.0; R//. By [28, Theorem 7.7], a.e. x 2 @B.0; R/ is a Lebesgue point for Qu,
whence there exist Lebesgue points x1 ¤ x2 such that Qu.x1/ ¤ Qu.x2/. Let M be an
orthogonal matrix such thatMx1 D x2. Since x1 and x2 are Lebesgue points, there exists
r > 0 such thatZ

@B.0;R/\B.x1;r/

QuM .x/ dx D

Z
@B.0;R/\B.x2;r/

Qu.y/ dy ¤

Z
@B.0;R/\B.x1;r/

Qu.x/ dx;

where we have used the change of variable y WDMx and QuM .x/ WD Qu.Mx/. This shows
that u ıM ¤ u, as required.

We state and prove a well-known result: the rotational invariance of the Laplacian.

Lemma A.6. Let ' 2 C 2.�/ and let M be an n � n orthogonal matrix. Then, for any
x 2 �,

�.' ıM/ D �.'/ ıM in �: (A.16)

Proof. By the chain rule and the orthogonality of M , we have

Hess.' ıM/ DM�1ŒHess.'/ ıM�M;

whence, by the similarity invariance of the trace, for any x 2 �,

�.' ıM/ D Trace.Hess.' ıM// D Trace.M�1ŒHess.'/ ıM�M/ D �.'/ ıM;

as required.
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Lemma A.7. Consider a rotational invariant domain �. Let u 2 L1.@�/ be a control
and let y be the solution to (A.1), with control u. Let M be an orthogonal matrix. Set
uM .x/ WD u.M.x// and yM .x/ WD y.M.x//. Then yM is a solution to´

��yM C f .yM / D 0 in �;

yM D uM on @�;
(A.17)

in the sense of Definition A.1. If in addition uM D u for any orthogonal matrix M , then
yM D y, so y is a radial solution.

Proof. As per Definition A.1, let us check that for any test function ' 2 C , we haveZ
�

Œ�yM .x/�'.x/C f .yM .x//'.x/� dx C

Z
@�

uM .x/
@'.x/

@n
d�.x/ D 0: (A.18)

Set Qx WDMx. Since the matrix M is orthogonal, jdet.M/j D 1, whence by the change of
variables theorem, the definition of yM and Lemma A.6,Z

�

Œ�yM .x/�'.x/C f .yM .x//'.x/� dx

D

Z
�

Œ�y. Qx/�x'.M
�1
Qx/C f .y. Qx//'.M�1 Qx/� d Qx

D

Z
�

Œ�y. Qx/� Qx'.M
�1
Qx/C f .y. Qx//'.M�1 Qx/� d Qx

D

Z
@�

u. Qx/r Qx'.M
�1
Qx/ � n. Qx/ d�. Qx/; (A.19)

where in the last inequality we have used that y is a solution to (A.1) with control u. Now,
we change back variable x WDM�1 Qx in (A.19), gettingZ

@�

u. Qx/r Qx'.M
�1
Qx/ � n. Qx/ d�. Qx/ D

Z
@�

u.Mx/rx'.x/M
�1
�Mn.x/ d�. Qx/;

whence (A.18) follows. Therefore, if the control is radial, then for any orthogonal mat-
rix M , yM is the solution to the same boundary value problem. The uniqueness for (A.1)
yields yM D y.

We now prove the existence of a global minimizer for the functional J defined in
(1.1)–(1.2). This will be given by the coercivity in L2 of J , enhanced by employing the
regularity of the solutions to the optimality system. As we did in the former section, we
are going to accomplish this task in a general space domain �. Consider the optimal
control problem

min
u2L1.@�/

J.u/; where

J.u/ D
1

2

Z
@�

juj2 d�.x/C
ˇ

2

Z
�

jy � zj2 dx;
(A.20)
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where ´
��y C f .y/ D 0 in �;

y D u on @�:
(A.21)

Here � is a bounded open subset of Rn with n D 1; 2; 3 and @� 2 C1. The nonlinearity
f 2 C 1.R/\ C 2.R n ¹0º/ is strictly increasing and f .0/ D 0. The target z is in L1.�/
and ˇ > 0 is a penalization parameter.

Proposition 2. Let z 2 L1.�/ be a target for the state and let J be the corresponding
functional, defined in (A.20)–(A.21). There exists a global minimizer u 2 L1.@�/ for J .

Proof of Proposition 2. Step 1: Existence of a minimizer for a constrained problem.
Let a; b 2 R with a < 0 < b and consider the convex set

K WD ¹u 2 L1.@�/ j a � u � b; a.e. @�º:

Under the same assumptions of (A.20)–(A.21), we consider the constrained optimal con-
trol problem

min
u2K

J.u/; where

J.u/ D
1

2

Z
@�

juj2 d�.x/C
ˇ

2

Z
�

jy � zj2 dx;
(A.22)

where ´
��y C f .y/ D 0 in �;

y D u on @�:
(A.23)

By using the techniques in [10], we have the existence of an optimal control u.a;b/ 2 K,
and any optimal control is given by u.a;b/ D PŒa;b�.

@q.a;b/

@n
/ with8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

��y.a;b/ C f .y.a;b// D 0 in �;

y.a;b/ D PŒa;b�

�
@q.a;b/

@n

�
on @�;

��q.a;b/ C f
0.y.a;b//q.a;b/ D ˇ.y.a;b/ � z/ in �;

q.a;b/ D 0 on @�;

(A.24)

where PŒa;b� is the projector

PŒa;b�.�/ WD

8̂<̂
:
a if � � a;

� if a < � < b;

b if � � b:

(A.25)

Step 2: L1 bounds for optimal controls uniform on .a; b/ 2 R2 with a < 0 < b. Since
a < 0 < b, the null control 0 is in K. Then, for any optimal control u.a;b/ for (A.22)–
(A.23), we have

1

2

Z
@�

ju.a;b/j
2 d�.x/ � J.u.a;b// � J.0/ � K;
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whence
ku.a;b/kL2.@�/ � K; (A.26)

where K D K.�; f; ˇ; z/ is independent of .a; b/.
We now bootstrap in the optimality system (A.24), to get the desiredL1 bound, given

the above L2 bound.
First of all, by a comparison argument, we have

jy.a;b/j � Oy.a;b/; a.e. �; (A.27)

with ´
�� Oy.a;b/ D 0 in �;

Oy.a;b/ D ju.a;b/j on @�:
(A.28)

Comparison also gives

jq.a;b/j � Oq.a;b/ and
ˇ̌̌̌
@q.a;b/

@n

ˇ̌̌̌
�

ˇ̌̌̌
@ Oq.a;b/

@n

ˇ̌̌̌
; a.e. �; (A.29)

with ´
�� Oq.a;b/ D ˇjy.a;b/ � zj in �;

Oq.a;b/ D 0 on @�:
(A.30)

Now, by [24, Théorème 7.4, p. 202], the solution Oy.a;b/ is in H 1=2.�/ ,! L3.�/ and

k Oy.a;b/kL3.�/ � Kk Oy.a;b/kH1=2.�/ � Kku.a;b/kL2.@�/ � K;

where the first inequality is given by the Sobolev embedding H 1=2.�/ ,! L3.�/ valid
for space dimension n D 1; 2; 3 (see e.g. [11, Theorem 6.7]) and the last inequality is
justified by (A.26). By (A.27),

ky.a;b/kL3.�/ � k Oy.a;b/kL3.�/ � K:

We now concentrate on the adjoint equation. By [19, Theorem 2.4.2.5, p. 124] applied
to (A.30), we have Oq.a;b/ 2 W 2;3.�/ with

k Oq.a;b/kW 2;3.�/ � Kky.a;b/ � zkL3.�/ � KŒky.a;b/kL3.�/ C kzkL1.�/� � K:

By the trace theorem [19, Theorem 1.5.1.3, p. 38] applied to r Oq.a;b/,



@ Oq.a;b/@n






L4.@�/

� Kk Oq.a;b/kW 2;3.�/ � K:

By (A.29), we then have



@q.a;b/@n






L4.@�/

�





@ Oq.a;b/@n






L4.@�/

� K; (A.31)
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whence

ku.a;b/kL4.@�/ D





PŒa;b�

�
@q.a;b/

@n

�




L4.@�/

�





@q.a;b/@n






L4.@�/

� K:

By using the definition of solution by transposition for (A.28) and the above estimate, we
get

k Oy.a;b/kL4.�/ � Kku.a;b/kL4.@�/ � K;

whence, by (A.27),
ky.a;b/kL4.�/ � k Oy.a;b/kL4.�/ � K:

In conclusion, we employ the elliptic regularity [19, Theorem 2.4.2.5, p. 124] in
(A.30) to get

k Oq.a;b/kW 2;4.�/ � Kky.a;b/ � zkL4.�/ � K;

whence, by Sobolev embeddings in space dimension n D 1; 2; 3,

k Oq.a;b/kC1.�/ � kOq.a;b/kW 2;4.�/ � Kky � zkL4.�/ � K:

Now, (A.29) yields



@q.a;b/@n






C0.@�/

�





@ Oq.a;b/@n






C0.@�/

� kOq.a;b/kC1.�/ � K; (A.32)

which in turn implies

ku.a;b/kL1.@�/ D





PŒa;b�

�
@q.a;b/

@n

�




L1.@�/

�





@q.a;b/@n






L1.@�/

� K;

where the last inequality follows from (A.32). We then have the estimate

ku.a;b/kL1.@�/ � K; 8a; b 2 R with a < 0 < b; (A.33)

the constant K D K.�; f; ˇ; z/ being independent of .a; b/. This finishes this step.

Step 3: Conclusion. Let K be the upper bound appearing in (A.33). We want to show
that, for any control u 2 L1.@�/ with kukL1.@�/ > K,

J.u/ > inf
BL1 .0;K/

J;

Indeed, for any control u 2 L1.@�/ with kukL1.@�/ > K, set b WD kukL1.@�/ C 1,
a WD �b, and define accordingly the control set

K WD ¹u 2 L1.@�/ j a � u � b; a.e. @�º:

By definition of a and b, the control u is in K, and by (A.33),

J.u/ > inf
BL1 .0;K/

J; (A.34)

as desired. Now, by Step 1, there exists u 2 BL1.0;K/minimizing J in BL1.0;K/. By
(A.34), u is in fact a global minimizer for J in L1.@�/, concluding the proof.
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Proof of Proposition 3.2. Step 1: Proof of (1). Fix z 2 L1.B.0; R//. The existence
of a minimizer uz is a consequence of the direct methods in the calculus of variations.
Moreover, by (3.2), the definition of minimizer and G.0/ D 0,

1
2
Rn�1n˛.n/juzj

2
� I.uz ; z/C

ˇ

2

Z
B.0;R/

jzj2 dx

� I.0; z/C
ˇ

2

Z
B.0;R/

jzj2 dx D
ˇ

2

Z
B.0;R/

jzj2 dx;

which yields 1
2
juzj

2 �
ˇ

2Rn�1n˛.n/

R
B.0;R/

jzj2 dx, as required.

Step 2: Proof of (2). FixM 2 RC. For any pair of targets .z1; z2/ 2 L1.B.0;R//2 such
that

kz1kL2 �M and kz2kL2 �M;

and for each control u 2 C such that juj �
q

ˇ

Rn�1n˛.n/
M , we have

I.u; z2/ � I.uz1
; z1/ D I.u; z2/ � I.u; z1/C I.u; z1/ � I.uz1

; z1/

� �jI.u; z2/ � I.u; z1/j C 0 D �ˇ

ˇ̌̌̌Z
B.0;R/

G.u/.z1 � z2/ dx

ˇ̌̌̌
� �Kkz2 � z1kL1 ;

where the last inequality is justified by juj �
q

ˇ

Rn�1n˛.n/
M and the continuity of the

control-to-state map G.
Then for any " > 0 there exists ı" > 0 such that

I.u; z2/ � I.uz1
; z1/ > �"

whenever kz2 � z1kL1 < ı".
Now, by the first step, any minimizer uz2

for I.�; z2/ satisfies

juz2
j �

s
ˇ

Rn�1n˛.n/
kz2kL2 �

s
ˇ

Rn�1n˛.n/
M:

Thus, we have proved that

inf
C
I.�; z2/ � inf

C
I.�; z1/ D I.uz2

; z2/ � I.uz1
; z1/ > �":

Exchanging the roles of z1 and z2, one can get

inf
C
I.�; z1/ � inf

C
I.�; z2/ > �":

This yields the continuity of h.

Proof of Lemma 3.3. If h1.z0/ D h2.z0/, we take Qz WD z0, concluding the proof. Let us
now suppose h1.z0/ ¤ h2.z0/. We consider the case h1.z0/ < h2.z0/.



Nonuniqueness of minimizers 2159

Step 1: Proof of the existence of �0 � 0 such that

� 8� 2 Œ0; �0�, h2.z0 C �/ < 0,

� h1.z
0 C �0/ D 0:

First of all, we observe that h2.z0 C �/ < 0 for any � � 0. Indeed, since h2.z0/ < 0,
there exists u2 > 0 such that I.u2; z0/ < 0. Then

h2.z
0
C �/ � I.u2; z

0
C �/

D
Rn�1n˛.n/

2
ju2j

2
C
ˇ

2

Z
B.0;R/

jG.u2/j
2 dx � ˇ

Z
B.0;R/

.z0 C �/G.u2/ dx

D I.u2; z
0/ � �ˇ

Z
B.0;R/

G.u2/ dx � I.u2; z
0/ < 0;

where we have used the fact that G.u2/ � 0 a.e. in B.0;R/.
We now prove that h1.z0 C �0/ D 0 for �0 D kz0kL1 . Indeed, for any v � 0,

I.v; z0 C �0/

D
Rn�1n˛.n/

2
jvj2 C

ˇ

2

Z
B.0;R/

jG.v/j2 dx � ˇ

Z
B.0;R/

.z0 C �0/G.v/ dx � 0;

since z0 C �0 � 0 and G.v/ � 0 a.e. in B.0;R/. This finishes the first step.

Step 2: Conclusion. Set

g W Œ0; �0�! R; � 7! h2.z
0
C �/ � h1.z

0
C �/:

Since h1.z0/ < h2.z0/, we have g.0/ > 0, and by Step 1, g.�0/ < 0. Then, by continuity,
there exists �1 2 .0; �0/ such that g.�1/ D 0. Hence,

Qz WD z0 C �1

is the desired target. Indeed, by definition of g and �1, h1. Qz/D h2. Qz/. Furthermore, since
�1 2 .0; �0/, by Step 1, h2. Qz/ < 0. This concludes the proof for h1.z0/ < h2.z0/. The
proof for h1.z0/ > h2.z0/ is similar.

Appendix B. Preliminaries for internal control

We now consider the state equation (1.7) on a general domain. Let � be a bounded open
subset of Rn with @� 2 C 2 and n D 1; 2; 3. The nonlinearity f 2 C 1.R/\ C 2.R n ¹0º/
is strictly increasing and f .0/ D 0. The control acts in a nonempty open subset ! of �.

We introduce the concept of solution, following [5, Theorem 4.7, p. 29].

Definition B.1. Let u 2 L2.!/. Then y 2 H 1
0 .�/ is said to be a solution to´

��y C f .y/ D u�! in �;

y D 0 on @�:
(B.1)
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if f 2 L1.�/ and for any test function ' 2 H 1
0 .�/ \ L

1.�/, we haveZ
�

Œry � r' C f .y/'� dx D

Z
!

u' dx:

The well-posedness of (B.1) follows from [5, Theorem 4.7, p. 29].

Lemma B.2. Let u 2 L1.!/ be a control. Let y be the solution to (B.1) with control u.
Assume the nonlinearity f is strictly increasing and y is constant in � n !. Then y � 0
and u � 0.

Proof. Suppose there exists c 2R such that y.x/D c for any x 2� n !. Then, by Defin-
ition A.1, for any ' 2 C1c .� n !/, we haveZ

�

f .c/' dx D

Z
�

Œry � r' C f .y/'� dx D

Z
!

u' dx D 0:

The arbitrariness of ' 2 C1c .� n !/ leads to f .c/ D 0. Now, f .0/ D 0 and f is strictly
increasing. Hence f .c/ D 0 if and only if c D 0, whence y � 0 and u � 0.

Lemma B.3. In the notation of (B.1), consider rotational invariant domains � and !.
Let u 2 L1.!/ be a control and let y be the solution to (A.1) with control u. Let M be
an orthogonal matrix. Set uM .x/ WD u.M.x// and yM .x/ WD y.M.x//. Then yM is a
solution to ´

��yM C f .yM / D uM�! in �;

yM D 0 on @�;
(B.2)

in the sense of Definition B.1. If in addition uM D u for any orthogonal matrix M , then
yM D y, so y is a radial solution.

Proof. As per Definition B.1, let us check that for any test function ' 2H 1
0 .�/\L

1.�/,
we have Z

�

ŒryM � r' C f .yM /'� dx D

Z
!

uM' dx: (B.3)

Set Qx WDMx. Since the matrix M is orthogonal, jdet.M/j D 1, whence by the change of
variables theorem and the definition of yM ,Z

�

ŒryM � r' C f .yM /'� dx

D

Z
�

Œ.r Qxy.Mx/M/ � r' C f .yM /'� dx

D

Z
�

Œr Qxy.Mx/ � .rx'.x/M
�1/C f .yM /'� dx

D

Z
�

Œr Qxy. Qx/ � r Qx'.M
�1
Qx/C f .yM .M

�1
Qx//'.M�1 Qx/� d Qx

D

Z
�

Œr Qxy. Qx/ � r Qx'.M
�1
Qx/C f .y. Qx//'.M�1 Qx/� d Qx

D

Z
!

u. Qx/'.M�1 Qx/ d Qx; (B.4)
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where in the last inequality we have used that y is a solution to (A.1) with control u. Now,
we change back variable x WDM�1 Qx in (B.4), gettingZ

!

u. Qx/'.M�1 Qx/ d Qx D

Z
!

u.Mx/'.x/ dx D

Z
!

uM .x/'.x/ dx;

whence (B.3) follows. Therefore, if the control is radial, then for any orthogonal matrix
M , yM is the solution to the same boundary value problem. The uniqueness for (B.1)
yields yM D y.
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