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Abstract. This work establishes fast rates of convergence for empirical barycenters over a large
class of geodesic spaces with curvature bounds in the sense of Alexandrov. More specifically, we
show that parametric rates of convergence are achievable under natural conditions that character-
ize the bi-extendibility of geodesics emanating from a barycenter. These results largely advance
the state-of-the-art on the subject both in terms of rates of convergence and the variety of spaces
covered. In particular, our results apply to infinite-dimensional spaces such as the 2-Wasserstein
space, where bi-extendibility of geodesics translates into regularity of Kantorovich potentials.
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1. Introduction

The notion of average is paramount across all of statistics. It is fundamental not only
in theory but also in practice as it arises in nearly every known estimation method: the
method of moments, empirical risk minimization, and more. The law of large numbers,
sometimes dubbed the fundamental law of statistics, ensures that the average of inde-
pendent and identically distributed random variables converges to their common expected
value. While such results guarantee asymptotic validity of the average, modern statistics
and machine learning focuses on non-asymptotic performance guarantees that hold for
every sample size. The goal of this paper is to provide such non-asymptotic guarantees
for a generalized notion of average over metric spaces with the Wasserstein space as a
prime example.
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To illustrate our goal more precisely, consider the following example. Let X, X,
..., X, be ii.d. (independent and identically distributed) copies of X in a vector space
equipped with a distance d. Denote by E[X] and X the expectation of X and the aver-
age of the X;’s respectively. In many instances, X converges to E[X] at a dimension-
independent and parametric rate. Such convergence is characterized by the following
inequality:

E[d*(X.E[X])] < co?/n, (1.1)
where ¢ > 0 and 62 = E[d?(X,E[X])] denotes the variance of X. When the underlying
space is a Hilbert space, and d is the natural Hilbert metric, this inequality is in fact an
equality with ¢ = 1. More generally, the bound (1.1) holds in a Banach space if and only
if it is of type 2 [31], which is a property linked to the geometry of the Banach space [29].

Using a predominantly geometric approach, we tackle the question of extending these
statistical guarantees to metric spaces that are devoid of a linear structure. In recent years,
this problem has gone from a theoretical curiosity to a practical necessity. Indeed, data
such as images, shapes, networks, point clouds and even distributions are now routinely
collected and come with the need for new statistical methods with strong performance
guarantees.

1.1. Barycenters

The barycenter is a natural extension of the notion of expectation on an abstract metric
space, which we recall next. Let (S, d) be a metric space and J;(S) be the set of (Borel)
probability measures P on S such that the variance functional defined by

b /dZ(b,x) dP(x)
is finite on S. For P € $,(S), a barycenter of P is any b* € S such that

b* e argmin/ d?(b,x)dP(x).
besS

Throughout, we always implicitly assume the existence of at least one barycenter. The

question of existence has been largely addressed in the literature and shown to hold in

most reasonable scenarios [1,33].

Letting X1, ..., X, be n random variables drawn independently from P, an empirical
barycenter is defined as a barycenter of the empirical distribution P, = (1/n) Y_7_, 8x;,
i.e., |
b, € argmin — Z d?(b, X;).

bes T
The main motivation for this work is to study the statistical behavior of empirical bary-
centers in the context where (S, d) is the 2-Wasserstein space of probability measures
over RP that is defined by S = #5(RP) equipped with the 2-Wasserstein metric.

The Wasserstein space has recently played a central role in many applications includ-
ing machine learning [7,24], computer graphics [23,43], statistics [37,40] and computa-
tional biology [41].
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Barycenters in this setting are called Wasserstein barycenters and were first studied
in [2] who derive a dual formulation of the associated optimization problem and estab-
lish regularity properties of the solution. Despite computational advances [20, 44] and
asymptotic consistency results [3, 33, 53], little is known about the rates of convergence
of barycenters on Wasserstein spaces, let alone general metric spaces. Initial contribu-
tions have focused on the Wasserstein space over the real line which is isometric to
a convex subset of a Hilbert space [3] or finite-dimensional subspaces of the Wasser-
stein space [19,28]. The study of rates of convergence of Wasserstein barycenters in the
general case was triggered in [4], where the truly geometric nature of the question was
first brought forward. However, the rates obtained in that paper suffer from the curse of
dimensionality: the rate n =" in (1.1) is replaced with n~1/P whenever the probability dis-
tributions are defined on R?, D > 3, and their techniques yield the suboptimal rate n=2/3
in the flat case D = 1.

In this work, we aim to improve these results to optimality. To that end, we adopt a
general framework and establish dimension-independent and parametric rates for empir-
ical barycenters, of the form (1.1), for a large family of geodesic metric spaces with
curvature bounds in the sense of Alexandrov. In particular these spaces need not be
finite-dimensional. More specifically, our results apply to geodesic spaces with positive
curvature under a compelling synthetic geometric condition: the bi-extendibility of all
geodesics emanating from a barycenter.

The 2-Wasserstein space over R? is itself a geodesic space with positive curvature [6]
and parametric rates for this case follow as a simple consequence of our general result.
In addition, we show that the bi-extendibility condition translates into simple regularity
conditions on the Kantorovich potentials.

We end by mentioning references related to our work. General properties of bary-
centers in metric spaces with bounded curvature are studied in [36, 45,51, 52]. Specific
examples of spaces with negative curvature are studied in [26]. The asymptotic properties
of empirical barycenters, in the case where S is a Riemannian manifold, are addressed
in [9, 10,27]. The statistical properties of empirical barycenters in abstract metric spaces
have only been considered in [42] (for the case of negatively curved spaces) and [4].

1.2. Overview of main results

Our results rely on the notion of extendible geodesics. For Ay, Ay > 0 we say that a
constant-speed geodesic y : [0, 1] — S is (Ain, Aour)-extendible if there exists a constant-
speed geodesic yT: [~ Ain, 1 + Aou] — S such that y is the restriction of ™ to [0, 1]. We
now state our main result and refer the reader to Section 3 for omitted definitions. The
variance o? of a distribution P € £, (S) is given by

o? =l}r€1£/d2(b,x)dP(x) = /dz(b*,x)dP(x),

where b* is a barycenter of P.
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Our main theorem is stated below informally and follows directly from Theorems 3.3
and 4.2.

Theorem 1.1 (Main theorem, informal). Let (S, d) be a geodesic space of nonnegative
curvature. Let P € P»(S) be such that, for any x in the support of P, there exists a
geodesic from b* to x that is (Ain, Aour)-extendible. Define

A’ out 1

k= .
1+ )Lout /\in

If k > 0, then b* is unique and for any empirical barycenter by, we have

4 2
E[d?(by.b*)] < —.
kn

Note that the constant k is a geometric characteristic of the metric measure space
(S,d, P). Since the seminal work of Cheeger and Colding [15-18], and culminating with
the Lott—Sturm—Villani theory of Ricci curvature lower bounds for geodesic spaces [34,
46,47], such triples are central to modern geometry.

To illustrate the meaning of the condition k > 0, consider the canonical example of
the Euclidean unit sphere (in any dimension). In this setup, the (Ai,, Aoy )-extendibility
imposes that, for all x in the support of P,

d(b*»x)(l + A'in + lout) <.

In addition, the condition £ > 0 requires that

1+/Xin+kout22+kout+ 24,

out

so that the support of P is necessarily contained in the spherical ball of center »* and
radius 77/4. This bound aligns with known results, on the sphere, stating that we can-
not hope for 1/n rates when mass is allowed to accumulate around a point antipodal
to b* [21]. The above theorem thus requires stringent conditions on the support of P that
can be largely relaxed using a local notion of extendibility where A;, and A, may depend
on x, and k is only required to be positive on average (see Theorem 3.5).

It is known that extendibility of geodesics in the 2-Wasserstein space is related to the
regularity of Kantorovich potentials [4]. In this case, we get the following corollary.

Corollary 1.2. Let P € P>(P2(RP)) be a probability measure on the 2-Wasserstein
space and let 1* € P,(RP) be a barycenter of P. Let o, B > 0 and suppose that every
€ supp(P) is the pushforward of u* by the gradient of an a-strongly convex and f3-
smooth function @ *—,, i.e, L = (Vo )st™. If B —o < 1, then pu* is unique and
any empirical barycenter [, of P satisfies

N 402
EW G ) = 7 g
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While our results are resolutely focused on spaces with nonnegative curvature, we
obtain the following strong result about spaces of nonpositive curvature as a byproduct of
the techniques developed in this paper.

Theorem 1.3. Suppose (S, d) is a geodesic space satisfying k < curv(S) < 0 for some
k < 0. Then any distribution P € $P,(S) has a unique barycenter b* and any empirical

barycenter by, satisfies
Ed?(b,,b*) < o?/n.

The above parametric rate should be contrasted with the slower rates obtained in [4]
and [42] but that hold without curvature lower bounds.

2. Geometry and barycenters

2.1. Preliminaries

We gather important notation and standard facts from metric geometry for reference. We
refer the reader to [5, 13] for an introduction.

Throughout, let (S, d) be a (Polish) geodesic metric space (see Remark 2.3). For all
x,y € §, we define a (constant-speed) geodesic connecting x to y to be any continuous
path y : [a,b] — S such that y(a) = x, y(b) = y and, foralla <s <t < b,

d/6), Y1) = 5—d(x. ).

Given k € R, we denote by (M2, d,;) the complete and simply connected 2-dimensional
Riemannian manifold with constant sectional curvature . The diameter D, of M2 is
D, = +ooif k <0and D, = 7/+/k if k > 0. We define a triangle in S as any set of
three points {p, x, y} C S. For k € R, a comparison triangle for {p, x,y} C S in M? is
an isometric embedding {p, X, y} C M2 of {p, x, y} in M?2. Such a comparison triangle
always exists and is unique (up to isometry) provided peri{p,x,y} =d(p,x) +d(p,y) +
d(x,y) < 2D,. We recall the definition of curvature bounds for reference.

Definition 2.1. Let x € R. We say that curv(S) > « if for any triangle {p, x, y} C S
with peri{p, x, y} < 2D, any comparison triangle {p, ¥, y} C M2 and any geodesic
y :]0,1] — S connecting x to y in S, we have

forall 7 € [0, 1], where y : [0, 1] — M2 is the unique geodesic connecting ¥ to y in M2.
We say that curv(S) < « if the same holds with converse inequality in (2.1).

Comparison angles allow one to provide useful characterisations of curvature bounds.
Given p,x,y € S with p ¢ {x, y} and peri{p, x, y} < 2D, we define the comparison
angle < (x,y) € [0, 7] at p by
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d*(p.x) +d*(p.y) —d*(x,y)
2d(p,x)d(p,y)
ce(d(x,y)) — ce(d(p, x)) - ce(d(p, y))
K5 (d(p, x))se(d(p, )

ifk =0,
cos <, (x, y) 1=

ifk #£0,
where, for r > 0,

2.2)

5e(r) = sin(r/k)/ «/x if k>0,
7 sinh(r/=k) /=K ifKk <0,

and ¢, (r) = si.(r).
The next result can be found in [14].

Theorem 2.2. Let (S, d) be a geodesic space and k € R. Then the following statements
are equivalent.

(1) curv(S) > « in the sense of Definition 2.1.
(2) Forall p,x,y,z € S suchthat p & {x,y,z},

G x,y) + Gx,2) + Gy 2) <27

(3) Forany p,x,y € S with p ¢ {x,y} and any geodesics yx, yy : [0,1] — S from p
to x and from p to y respectively, the function

(s.1) = <G (yx(s), vy (1))
is nonincreasing in each variable when the other is fixed.

Tangent cones are fundamental objects around which revolve many ideas of the paper.
While they reduce to more familiar tangent spaces when S is a smooth manifold, tangent
cones provide a natural proxy for tangent spaces in the context of abstract metric struc-
tures. Given p € S, let I', be the set of all geodesics y : [0, 1] — S with y(0) = p. For
y.0 € I'p, the Alexandrov angle <(,(y, o) is given by

L(y.0) = lim G (y(s),a(1)).

Whenever curv(S) > « or curv(S) < k, for k € R, the angle <, : Fg — [0, 7] exists and
is a pseudo-metric on I',. Hence, it induces a metric, still denoted <, on the quotient
space I',/~ where y ~ o if and only if <(,(y, o) = 0. The completion (2,, <(;) of
(I'p/~, <p) is called the space of directions at p. The tangent cone T, S of (S,d) at p is
the Euclidean cone over the space of directions X, i.e., the quotient space £, x Rt/
where (y,5) & (0,1) ifand only if s = ¢ = 0 or (y,s) = (0,7). For (y,s) € £, x R*, we
denote by [y, s] the corresponding element in 7, S and we call 0, = [y, 0] the tip of the
cone. Forallu = [y, s],v = [0,t] € T, S, we set'

lu — v = s + 1> — 251 cos < (. 0).

Observe that we often denote paths and directions by the same letters. For any two directions
y,0 € Xp, the angle <, (y, 0) is defined without ambiguity as the Alexandrov angle between any
two representatives of these directions.
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We also use the notation ||u|, = |[u — 0, ||, and (u, v), = st cos <, (y,0) so that
2 2 2
e = vl = llull; + lvll; —2(u, v)p. (2.3)

The map (1, v) — ||u — v||, is a metric on 7,5 called the cone metric. The cone structure
of T, S is defined, foru = [y,s]and A > 0,by A - u = [y, As].

Let Cp C S denote the cut-locus of p and for all x € S\ Cp, let 17 € X, denote the
direction of the unique geodesic connecting p to x. Then the log map at p is the map from
S\ Cp to T, S that is defined by

log, (x) = [15.d(p, x)].
This definition can be extended to x € C,, by selecting an arbitrary direction from p to x.

Remark 2.3. In the rest of this paper, we integrate functionals of the log map and now
comment on its measurability. Note first that the map log, : S — TS can be chosen
to be measurable whenever the tangent cone 7,5 is equipped with the o-algebra Gp
generated by the closed balls. This observation follows from a straightforward adaptation
of [36, Lemmas 3.3 and 4.2] and implies Borel measurability of the log map if the tangent
cone T,S is separable, since, in that case, ©p coincides with the Borel o-algebra.

In particular, when S = $,(X) is the 2-Wasserstein space over a separable space X,
this condition follows from the characterization of 7,5, (X) in [6, Section 12.4]. It is
unclear whether general conditions on S imply separability of the tangent cone—in fact,
this question was raised in [36] in the case where S' is proper—or even Borel measurability
of the log map. Fortunately, it can be checked that our arguments require Borel measur-
ability not of log,, itself, but only of maps of the form (log,(-), b), for some b € T, S,
which in turn follows from the ©p-measurability of log,,.

A useful consequence of the monotonicity property, Theorem 2.2 (3), is the following.
If curv(S) > 0 (resp. < 0), then for any x, y, p € S the metric d and cone metric || - —- ||,
satisfy

d(x,y) < |log,(x) —log,(y)llp (resp.>), 2.4)
with equality if x = por y = p.

2.2. Tangent cone at a barycenter

The notation || - ||, and (-, -), suggests that the cone 7, S possesses a Hilbert-like struc-
ture. However, the tangent cone may fail to be even geodesic whenever S has only lower
bounded curvature (see [25]). To overcome this limitation, we gather facts on the structure
of T, S that are used in what follows, in particular when p is a barycenter.

Theorem 2.4. Let k € R and let (S, d) be a geodesic space with curv(S) > k. Then the
following holds:

(1) For any p € S, the tangent cone T,S can be isometrically embedded in a geodesic
space T, S such that curv(7,S) > 0.
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(2) Forany P € $,(S) and any barycenter b* € S of P,

// (logy+ (x). Iogys (1) dP(x) AP () = 0.

(3) Forany P € P>(S) and any barycenter b* of P, there exists a subset £pxS C Ty S
which is a Hilbert space when equipped with the restricted cone metric, and such that
logy« (supp(P)) C £p+S.

(4) Forany P € P»(S), any barycenter b* of P, any Q € P»(S) with logy« (supp(Q)) C
LpxS and any b € S, we have

[ (logy (x). logy+ (5)p+ A (x) = {1 10gs (b))

where u is the (Pettis) integral [ v dQ(v) with O = (logy« )4 0.

Proof. (1) This statement follows directly from [5, Claim 3.3.2, Theorem 3.4.1 and The-
orem 11.3.1]. Note that 7, S is formally described as the ultralimit of blowups of S at p
and called the ultratangent cone.

(2) Let Xy, ..., X, be ii.d. with distribution P and let P, = n~! Z?:l Ox;. Let
f 8% = R be defined by f(x,y) = (logy(x), log(y))p+ and observe that f €
L?(P ® P). Moreover, explicit computations show that

E|(P®P)f_(Pn®Pn)f|2m0,

so that there exists a subsequence (Py, ) such that (P,, ® Py, ) f converges almost surely
to (P ® P)f. Since Py, is finitely supported, it follows from [30, Proposition 3.2] that
(Pn ® Py, ) f = 0. Therefore, (P ® P)f > 0. Note that this first inequality holds even
when b* is not a barycenter.

To complete the proof, we prove the reverse inequality.

Without loss of generality, suppose that « < 0. Then, from [5, Claim 1.1.1.d and
Lemma 5.3.1], we deduce there exists a constant ¢ > 0 (depending only on «) such that,
forallx,y € S,

Gu(x,y) < <Gu(x, ) < <u(x,p) +cd(d*, x)d(b*, y). (2.5)

Now forall x, y € §, let y, and y,, be two geodesics connecting b* to x and y respectively
and with respective directions 17, and TZ*. Then, letting

(x, )9, = d(b*, x)d(b*, y) cos <0 (x, y),

we get

<10gb* (.X), logb* (y)>b* = d(b*’ X)d(b*, y) COS Tp* (T)bc* s ij/*)
= S}tiglod(b*, x)d(b*, y) cos hu (yx(5), (1))

< lim d(b*,X)d (5", ¥) c0s <. (x(5). 13 (1))
s, t—>

<d(b*,x)d(b*,y)cos 6. (x,y) < (x,y)0 + cd*(b*,x)d*(b*, y),
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according to Theorem 2.2 (3), inequality (2.5) and the Lipschitz continuity of cos(-). Now
observe that, for all x € S and all ¢t € (0, 1),

d?(x, yy (1) — d?(b*, x) = d>(b*, yy (1)) — 2(x, y)ps
< d*(b*, yy(1)) = 2{1ogys (x),10gps (vy (1)))o+ + cd?(b*, x)d>(b*, yy (1))
= 12d?(b*, y) — 2t (logys (x).10gp« ()= + ct?d*(b*, x)d*(b*. y).

Integrating with respect to dP(x), using the definition of a barycenter and letting ¢ go
to 0, we deduce that

[ o (). 1085 (- aPx) <0,

Since this holds for all y € S, integrating with respect to dP(y) gives the result.

(3) Given p € S and two elements u = [y, s],v = [0,t] € T, S, we write u +v =0
and say that u and v are opposite to each otherif (s =t = 0) or (s =t and <, (y,0) = 7).
Then we set

LS =WuelT,S :Fvel,S, u+v=0}

Given u € £,S, there is a unique vector opposite to u denoted —u. The fact that £,S
is a Hilbert space for the restricted cone metric follows from [5, Theorem 11.6.4]. The
inclusion logy« (supp(P)) C Lp+ S follows from statement (2) and [32].

(4) Fix a barycenter b* of P and some b € S. Note that if b is in the support of P, it
follows readily from (3) that (4) holds. The main purpose of this proof is to show that the
same holds for any b € S, not necessarily in supp(P). For brevity we use the following
notation:

|x — y| = [[logps (x) —1ogpe (V) llp=.  [x] = [logpx (x)lp=
and
{(x,y) = (logp« (x),logy+ (y))o~  Vx,y € S.

In addition, whenever u € Ty« S and y € S, the notation |u — y|, |u| and (u, y) should be
understood as || — logy« (¥)|p*, ||u]|p~ and (u,logy«(y))p+ respectively.

We first prove that £5+S > u — (u, b) is a convex function. To that end, fix € (0, 1)
and ug,u; € £p+S, and set u; = (1 — H)ug + tu; € £p»S. The path [0, 1] > ¢ > u,
defines a geodesic in Jp+ S according to (1) and (3). Since curv(Tp+S) > 0 we see from
Definition 2.1 that, forall y € S and z € [0, 1],

lug —yI> = (A =0)ug — yI> + tluy — y|> = t(1 — 1) |uo — uy |,
with equality if y = b* since u,, uy and u; belong to £,+S. Hence, by (2.3), we have

2ue.b) = |ue? + b1 — Jus —b?
< (L=0)(juol* + B> = Juo — b*) + t(lur|* + |b|* — lur — bJ)
= (1 =1)2(uo. b) + 12(uy,b),
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so that u + (u, b) is a convex function on the Hilbert space £~ S. Therefore, for all
u € Lp+ S, there exists g = g(u) such that for all v € supp Q,

(logys (v).5) = (u.b) + (logs (v) — u.g).

Choosing u to be the Pettis integral [ log,(v) dQ(v) and integrating v with respect to Q
yields

[t ©).5) 40 = (.5, 6

The same arguments apply to the map u +— (—u, b), so that
[ (1088100 w) = (-u.5). @)
To conclude the proof, it remains to show that (—v,b) = —(v, b) for all v € £+ S (in

particular, for u € £+ S). To that end, select v = [y, s] € £5+ S and let —v = [0, s]. Then
on the one hand, using the definition of opposite points and the triangle inequality on the
space of directions X, it follows that 7 = <(p= (¥, 0) < <+ (¥, TZ,) + <(px (TZ,,U). On
the other hand, the fact that curv(7,S) > 0 implies that

e (1.0) + < (1. 152) + <+ (150, 0) < 2m1,

according to Theorem 2.2 (2). Combining these inequalities we find that <(p«(y, TZ.)
+ <+ (TZ* ,0) = 7 so that, by definition of the bracket (-, -) and using elementary trigo-
nometry, we get (—v,b) = —(v, b). |

3. Main results

We now turn to the proof of our main result: parametric and dimension-free rates for
empirical barycenters on Alexandrov spaces with curvature bounded below. We study the
case of positively curved spaces in more detail, and in particular the 2-Wasserstein space.

3.1. Hugging

We begin with a useful identity that controls the average curvature of the square distance
around its minimum.

Given P € $,(S) and a barycenter b* of P, define for all x,b € S the hugging
function at b* by

[logy« (x) — log« (D)3 — d?(x,b)
d?(b.b*) '

Note that if S is a Hilbert space, then kg* (x) =1 for all x,b € S. The hugging func-
tion kl’;, measures the proximity of S to its tangent cone T~ .S. The next result is a gener-
alization of [4, Theorem 3.2] and demonstrates the central role of the hugging coefficient
in the context of barycenters: it precisely controls the quadratic growth of the variance
functional around its minimum.

kPo(x)=1-— (3.1)
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Theorem 3.1 (Variance equality). Letx € R and (S, d) be a geodesic space with curv(S)
> k. Let P € $2(S) and b* be a barycenter of P. Then, forallb € S,

dz(b,b*)fké’*(x)dP(x) = /(dz(x,b)—dz(x,b*))dP(x), (3.2)

where ké’, (x) is as in (3.1).

Proof. We adopt the same notation as in the proof of Theorem 2.4 (4). By definition of
the cone metric | - — - | and bracket (-, -) in Tp= S, we get

kb, (x)d?(b.b*) = d*(b.b*) + d*(x.b) — |b — x|?
= d?(x,b) — d*(x,b*) + 2(x.b).

The result follows by integrating both sides with respect to dP(x), in Theorem 2.4 (4)
with O = P and noticing that b* is the Pettis integral of (logy«)sP in the Hilbert
space Lp=S. |

Remark 3.2. By definition of a barycenter, the right-hand side of identity (3.2) is non-
negative. It follows that

/ k2. (x)dP(x) >0 (3.3)

forallb # b* € S.

Note also that for any triple x, b, b*, the curvature properties of S are directly reflec-
ted in kg* (x). Indeed, kb, (x) > 1if S is non-positively curved and k};* (x) <1if Sis
positively curved according to (2.4).

3.2. A master theorem for spaces with curvature lower bound

This section presents general statistical guarantees for empirical barycenters, in connec-
tion to lower bounds on the function kllj’,,.

Throughout, we fix a probability measure P with barycenter b* on a geodesic space
(S, d). Moreover, we denote by 02 the variance of P, which is defined by

0% = /dz(b*,x)dP(x).

Theorem 3.3. Suppose that curv(S) > k for some k € R. If there exists a constant ki,
> 0 such that kllj’,, (x) = kumin forall x,b € S, then b* is unique and any empirical bary-
center by, satisfies
402

>

min

Ed?(by,b*) <

Proof. Let k(x) := kZﬁ (x) and recall the convention introduced in the proof of The-
orem 2.4 concerning the use of the cone metric || - — - || = | - — - | and the associated
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bracket (-, )5« = (-, -). We also use the following standard notation:
1 n
Pfe = [ £aP and Puf) =130 F0X0.
i=1

On the one hand, from the variance equality we have
Pd?*(by., ) — Pd*(b*,*) = d*(bn.b*)Pk(-),
Pod?(b*, +) = Pud?(by, *) = d*(bp.b*) Pk} ().
Adding these two identities yields
(P = Po)(d*(bn. *) —d*(b*. +)) = d*(bn. b*)(Pk(+) + Puk} (+)). (3.4)
On the other hand, by the definition of k, we have

d? (b, ) = d?(b*. *) = (Iby =+ = |b* = +[*) + (@*(bn. *) = |ba — +I*)
= (Ibn =+ = b* = +1*) + (k(+) = Dd>(bn,b*).

Hence, it follows that

(P = Py)(d?(by, ») —d?(b*, +))
= (P = Pu)(|by — > = |b* = +|>) + d*(by, b*)(P — Pw)k(+).  (3.5)
Combining (3.4) and (3.5) yields
A2 by b*) Pulk(+) + kD" (D] = (P = P)(|by — <> = [b* —+[).  (3.6)
We now focus on the right-hand side of (3.6). By definition of (-, -),
by = <12 = 1b* = +|> = |bal® = 2{+, by).
Hence, by Theorem 2.4 (4) applied to Q = P and Q = P,, we get

(P — Pu)(|by — «|> = |b* — +|?) = 2Py (. by) = 2(b};. by)
< 2|by| - |bu| = 2|by|d(bn,b*), (3.7)

where b, stands for the barycenter of (logy«)#(P,) in the Hilbert space £p+S C Tpx S.
Combining (3.6) and (3.7) yields

d(bp, b*) Pulk(+) + k. (+)] < 2|by]. (3.8)
Hence, since Pnkll,’; (¢) > 0,if k(x) > kmi, > 0 for all x € S, we see by assumption that

k2, d* (b, b*) < 4b}*.

min
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Since (logy«)#(Pr) is the empirical distribution associated to (logy« )#(P), we infer
by properties of averages in Hilbert spaces that

Elby|* = o?/n, (3.9)

where we also use the fact that the variance of (log,«)#(P) is given by

/ [[logy« (x)||12,* dP(x) = /dz(x,b*)dP(x) = o2,

This completes the proof of the theorem. ]

As pointed out in Remark 3.2, the condition curv(S) < 0 implies that kZ’l (x) > 1and

ké’; (x) > 1 forall x € S. The next result therefore follows readily from (3.8) and (3.9).

Corollary 3.4. Suppose (S, d) is a geodesic space satisfying k < curv(S) < 0 for some
k < 0. Then any distribution P € $,(S) has a unique barycenter b* and any empirical
barycenter by, satisfies

Ed?(b,,b*) < 0%/n.

A careful inspection of our proof techniques reveals that the previous result extends as
well to complete and simply connected Riemannian manifolds with nonpositive sectional
curvature, also known as Hadamard manifolds. Indeed, the use of curvature lower bounds
in our results is twofold. First, it guarantees a Hilbert-like structure of the tangent cone
at a barycenter. Second, we made use of the fact that the pushforward of P under logy«
has the tip of the cone as its barycenter (i.e., the fact that any barycenter is a so-called
exponential barycenter [22]). The former is satisfied by the manifold assumption, and the
latter is the content of [9, Theorem 2.1(b, ¢)], at least when M is Hadamard.

Our proof technique does not extend, however, to the case of general geodesic spaces
with nonpositive curvature and no curvature lower bound. Indeed, it can be easily checked
that claim (2) in Theorem 2.4 is typically not satisfied by distributions supported on the
tripod (gluing of three line segments) for example.

3.3. Tail bound

We now provide an extension of Theorem 3.3 to the case of more general bounds on k2, .
The next result shows in particular that the requirement, made in Theorem 3.3, that
ké’* (x) > kmin > 0 for all x,b € S, can be relaxed to kb, (x) > kmip for all x,b € S
and ki, possibly negative, provided that Pkp«(+) > 0 where

kp+(x) = min kP (x).

For simplicity, we prove this extension under an additional integrability assumption
on P. We say that P (with barycenter b*) is subgaussian with variance proxy ¢2 > 0 if

2 (1 *
/exp (%) dP(x) < 2. (3.10)
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Such conditions are commonly used in high-dimensional probability and statist-
ics [39,49].

Theorem 3.5. Suppose that curv(S) > k for some k € R. Fix a subgaussian probability
distribution P on S with variance proxy ¢* > 0 and barycenter b*. Suppose that there
exists kuyin < O such that k?, (x) = kmin forall x,b € S and that Pkp«(+) > 0. Then b*
is unique and, for any empirical barycenter b, and any § € (0, 1), we have

(b, b") < c—llog(%)
n )

with probability at least 1 — § — e~ 2" where cq, ¢y > 0 are independent of n.
Proof. Denote k(x) = kp«(x) for brevity. For all ¢ € (0,1) and ¢ > 0,
P(d(by,b*) > 1) < ]P’(d(b,,,b*) >, P,k > cPk) + P(Prk < cPk)
< P(d(bp.b*)Puk > tcPk) +P((P — Py)k > (1 — ) Pk)
<PQlb;| > tcPk) +P((P — Py)k > (1 —c)Pk),

where the last inequality follows from inequality (3.8). Using a one-sided variant of Bern-
stein’s inequality [12, (2.10)], we get

n (1—c)Pk (1= c)kma| Pk 3
(“=FEA3))

]P’((P — Pk > (1 —c)Pk) < exp(—z T~

Using (3.10), and the classical properties of subgaussian variables, we get

t2¢2(Pk)?
PQlb}| > tcPk) < Zexp(—ncg#). 3.11)
S
The result then follows by considering, for any ¢ € (0, 1),
c2(Pk)? (1—=c)Pk (1 —O)|kmin| Pk 3
ci=———— and ¢ = A=) [
852 2|kmin| Pk2 2

To better appreciate the extent of this relaxation, recall the illustrative example of the
sphere used in Section 1.2. Theorem 3.5 covers distributions whose support may be almost
the entire sphere. However, note that the existence of a finite k,;, precludes a support that
includes the cut-locus of the barycenter, even if P puts arbitrarily small probability on
small neighborhoods of the cut-locus. While such cases are out of the scope of the present
paper, we anticipate that careful truncation arguments should suffice to derive parametric
rates of convergence in such favorable cases.

4. Positively curved spaces
Theorem 3.3 guarantees a dimension-free parametric rate of convergence of b, under a

uniform positive lower bound on the function (x, ) — ké’ « (x). Such a condition is closely
linked to the better known notion of k-convexity which is connected to positive curvature
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upper bounds [35]. In fact, it is not hard to check that assuming that ké’* (x) > kpin uni-
formly not only in b, x but also in b* € supp(P) is equivalent to k,-convexity of the
support of P. As a result, the condition of Theorem 3.3 is weaker than k;,-convexity of
the support of P since it only imposes control on geodesics emanating from b*. The rest
of this section is devoted to developing a suitable relaxation via the notion of geodesic
extendibility.

4.1. Extendible geodesics

We present a compelling synthetic geometric condition that implies this lower bound
in the context of positively curved spaces: the extendibility, by a given factor, of
all geodesics (emanating from and arriving at) the barycenter b*. To formalize the
notion of extendible geodesics, consider a (constant-speed) geodesic y: [0, 1] — S. For
(Ain, Aowt) € RZ, we say that y is (Ain, Aow)-extendible if there exists a (constant-speed)
geodesic Y i [=Ain, 1 + Aou] — S such that y is the restriction of y T to [0, 1]. Before we
state our sufficient condition we shall first need a fact given in [4].

Theorem 4.1. Suppose that curv(S) > 0. Let P € P»(S) with barycenter b*. Suppose
that, for each x € supp(P), there exists a geodesic yx : [0, 1] — S connecting b* to x
which is (0, A)-extendible. Suppose in addition that b* remains a barycenter of distribu-
tion Py, = (e))s P where e;(x) = y;F (1 + A). Then forall b € S,
A
e < [@ b - b ap) @.1)
According to the variance equality of Theorem 3.1, inequality (4.1) is equivalent to
the statement that, for all b € S,

A
/kl’;,(x)dp(x) =

We will use this observation next.

Theorem 4.2. Suppose that curv(S) > 0 and let x, b, b* € S. Suppose that, for some
Ains Aout > 0, there is a geodesic connecting b* to x which is (Ain, Aou)-extendible. Then

AOl,lt 1

I+ )Loul Ain '

kP (x) >

Proof. Lety :[0,1] — S be a (Aiy, Aow)-extendible geodesic connecting b* to x and let
YT i [=Ain, 1+ Aou] — S be its extension. Let z = yT(—=§) where £ = i, /(1 + Aou).
Then it may be easily checked that b* is a barycenter of the probability measure

§

1

1+& 7

Now, we wish to apply Theorem 4.1 to P. To this end, note that the geodesic y from b*
to x is (0, 1 + Aou)-extendible by assumption with e (x) = ¥ T (1 + Aou)- Similarly, we
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check that the geodesic o : [0, 1] — S connecting b* to z and defined by 6 (t) = y T (—t£)
is (0, 1 4+ Aou)-extendible by construction with e, (z) = y*(—Ai,). Finally, one checks
that b* remains a barycenter of the probability measure P, , = (ej,)#P. As a result,
Theorem 4.1 implies that

Aout b
< Pk «\*) =
1 + Aout - b ( )

& !
1+& 1+£

Finally, the fact that curv(S) > 0 implies that d(x, y) < ||logy+(x) —logy+«(y)|s* for all
x,y € S, which imposes that k2, (z) < 1 forall b, z € S. Hence, we obtain

1+§( AOut _ 1 ) Aoul 1
€ \U+2tw 1+§

B 1 +/\0ut B /xin7
which completes the proof. ]

k2. (x) + kP (2).

kP (x) >

4.2. The Wasserstein space

The case of geodesic spaces with lower curvature bound contains several spaces of interest
such as the space of metric measure spaces equipped with the Gromov—Wasserstein dis-
tance [48] or the Wasserstein space over a positively curved space. In this subsection,
we explore the extendible geodesics condition, described in the previous subsection, in
the context of the Wasserstein space over a separable Hilbert space. This space exhib-
its a very particular structure that allows for a simple and transparent formulation of the
extendibility of geodesics in terms of the regularity of Kantorovich potentials. Given a
separable Hilbert space H, with inner product (-, -) and norm | - |, recall that the subdiffer-
ential 3¢ C H? of a function ¢ : H — R is defined by dp = {(x,g) : Vy € H, ¢(y) >
o(x) + (g, y — x)}. We denote dp(x) = {g € H : (x,g) € d¢}. The function ¢ is called
a-strongly convex if, for all x € H, dp(x) # @ and

o
(g.x =) 2 9(x) =) + S lx =P
for all g € dp(x) and all y € H. We recall the following result.

Theorem 4.3 ([4, Theorem 3.5]). Let (S,d) = (P2(H), W>) be the Wasserstein space
over a separable Hilbert space H. Let ju,v € S and let y : [0, 1] — S be a geodesic
connecting i to v. Then y is (0, L)-extendible if, and only if, the support of the optimal
transport plan between |1 and v lies in the subdifferential 3¢, of a 1_)'L_—)L-strongly convex
map Qu—y : H — R.

In the above theorem, ¢,,—,, is defined as follows. Let f,,—., g§y—, be optimal Kan-
torovich potentials, i.e., solutions of the dual Kantorovich problem

W2(u.v) = sup{/fdu +/gdv  fg € Co(H), f(x) +g() < |x —y|2},
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where Cp(H ) denotes the set of real-valued bounded continuous functions on H. Then,
forallx € H,

Ju—sv(x) = 2|x|2 — Qusv(x), gup(x) = 2|x|2 — pvop(x),

and one checks that ¢y, = ¢;,_,, is the Fenchel-Legendre conjugate of ¢, [50,
Theorem 5.10]. Our next result is in the same spirit as Theorem 4.3 and characterizes the
(Ain, 1 + Aou)-extendibility of geodesics in the Wasserstein space in a specific scenario.
Recall that a convex function ¢ : H — R is called g-smooth if

(gex =3 = 000 —p0) + Bl —yP Ver o),

for all x, y € H. In fact, for 8 > 0, it is easy to check that convex S-smooth functions
are differentiable. Therefore, a convex function ¢ : H — R is B-smooth if and only if it
is differentiable and

(Vo). x — ) = 9(x) ~ 93) + B =y

It is known that a convex function is S-smooth if and only if its Fenchel-Legendre
transform is 1/B-strongly convex [8, Theorem 18.15]. Since ¢, = gol’:_)v, the next
result follows readily from Theorems 3.3, 4.2 and 4.3.

Corollary 4.4. Let (S,d) = (P2(H), W) be the Wasserstein space over a separable
Hilbert space H. Let P € $5(S) with barycenter u* € S. Let o, B > 0 and suppose that
every | € supp(P) is the pushforward of u* by the gradient of an a-strongly convex and
B-smooth function ¢y»—,, i.e., = (Vo5 )ap™. If B —a < 1, then any empirical
barycenter |, of P satisfies

402

EWZZ(I/Lna n*) < m~

4.3. Examples

We complete this section by two concrete examples in which we instantiate sufficient
conditions for the application of Corollary 4.4.

4.3.1. Gaussians. Consider first the metric space of Gaussian distributions over H = R?
equipped with the 2-Wasserstein distance.

Assume that P is supported on nondegenerate Gaussians N (m, X) ~ P.

It is a well-known fact that the optimal transport map between N (mg, X¢) and
MN(mq, 1) is given by (see [38])

x> S AP 2V Y25 2 (x — mo) + my. (4.2)

Using (4.2), the condition of geodesic extendibility translates, by Theorem 4.3, to con-
trol on the maximum and minimum eigenvalues of the matrix acting on x — m. A natural
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means of establishing this control uniformly for the distribution P is to assume that each
element N (m, X) of its support has covariance matrix ¥ with eigenvalues in [«o, k1]. In
terms of the space of positive definite matrices, this can be interpreted as ensuring that the
support of P lies away from the boundary while remaining bounded, respectively.

Under this assumption on the support of P, it can be shown [19, Prop. 15] that the
barycenter of P exists, and is the unique Gaussian N (m., £.) where m, := [‘mdP(m)
and X, solves the first-order optimality equation

Ip =[2:1/2(21/2221/2)1/22:”2dP(z).

Using this equation one can directly calculate that ¥, must also have eigenvalues
in [ko, k1]. By inspecting (4.2), it follows that the optimal transport maps between
N (m, =) and each element of the support of P are k~!-strongly convex and k-smooth,
where k := k1 /ko. Together, this yields the following application of our main result.

Corollary 4.5. Let (S, d) denote the space of Gaussians metrized by the 2-Wasserstein
distance. Fix k1 > ko > 0 and let P € $,(S, d) be any distribution supported solely
on Gaussians N (m, X) with eigenvalues in [kg, k1]. Denote k := k1/ko, and assume
k — k™' < 1. Then P has a unique barycenter u* = N (my, X,), and the empirical
barycenter u,, = N (m,, X,) satisfies

402

Esz(/Ln,p,*) = m
4.3.2. Template deformation model. Throughout this paper we have made minimal
assumptions on P, apart from those that ensure convergence of its barycenter. It is cus-
tomary to define models where the mean, and more generally the barycenter, of P is a
parameter of interest. Template deformation models were introduced as convenient mod-
els where the Wasserstein barycenter is the parameter of interest. As we will see below,
this model gives an equivalent but complementary perspective on Corollary 4.4.

Recall that since (£, (RP), W») is positively curved, the barycenter 1* of a measure
P € P>(P2(RP)) is also a barycenter of the measure P pushed forward to the tangent
space at u*; in other words, the barycenter is also an exponential barycenter [32, Corol-
lary 2]. Moreover, the tangent space at a measure u* can be identified with the closure in
L?(u*) of the set of maps T that can be written as the gradient of a function—this fol-
lows from identifying a tangent vector log,,« (1) with Vg, —id where Vg, »—, is
the optimal transport map from p* to u; see [6, §8.4]. In particular, u* is an exponential
barycenter for P if and only if

/ Vour—u(x)dP(n) = x  for u*-almost all x. 4.3)

Exponential barycenters correspond to critical points that are not necessarily global
minima of the variance functional. Hence, (4.3) does not imply that u* is a barycenter
of P. However, one can easily check that the variance equality (Theorem 3.1) holds also
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when p* is an exponential barycenter. It implies that if (4.3) holds and k;li* (n) = 0 forall
v € P»,(RP) and P-almost all , then u* is also a barycenter of P.

Wasserstein exponential barycenters as in (4.3) arise naturally as the parameter of
interest in the following template deformation model [11,53]. Let T € L2(RP?,R?, u*)
be a random function, often called a warping function. In a template deformation model,
one observes independent copies of

/,L = T#/,L*, T ~ Q, (44)

and the goal is to estimate u*. Under some conditions on the distribution Q of 7', pu*
is an exponential barycenter of the distribution of . For example, if T is linear and
identified to a positive semidefinite D x D matrix, it is sufficient to assume the E¢o[T] =
Ip. More generally, we can assume that 7' is the gradient of a convex function. Since
Typ* = p, by Brenier’s theorem we have T = Vo, .« In that case, Eg[T] = Ip is
replaced with (4.3). Additional regularity conditions on the warping functions ensure that
WX is, in fact, a barycenter.
The following result follows readily from Corollary 4.4.

Corollary 4.6. Fix a, 8 > 0 such that B — a < 1 and consider the template deforma-
tion model (4.4) where Q is supported on gradients of a-strongly convex and f3-smooth
Sfunctions @« .. Moreover, assume that

/T(x) dO(T) = x for u*-almost all x.

Let w,, denote the empirical barycenter of n independent copies of | from the template
deformation model (4.4). Then, for alln > 1,

’ (1 - /3 + O[) n ’
Whe’e

o = EWFGupt) = [ 176 = xIP d (1) Q)

Acknowledgements. The authors thank Sinho Chewi and anonymous reviewers for helpful remarks.
TLG, PR and QP acknowledge the hospitality of the Institute for Advanced Study where most of
this work was carried out.

Funding. TLG and QP were supported by the Russian Academic Excellence Project 5-100. PR was
supported by NSF awards I1S-1838071, DMS-1712596 and DMS-TRIPODS-1740751, grant 2018-
182642 from the Chan-Zuckerberg Initiative DAF and the Schmidt Foundation.

References

[1] Afsari, B.: Riemannian L? center of mass: existence, uniqueness, and convexity. Proc. Amer.
Math. Soc. 139, 655-673 (2011) Zbl 1220.53040 MR 2736346


https://zbmath.org/?q=an:1220.53040
https://mathscinet.ams.org/mathscinet-getitem?mr=2736346

T. Le Gouic, Q. Paris, P. Rigollet, A. J. Stromme 2248

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]
(10]
(1]
[12]
(13]
[14]
[15]
[16]
(17]
[18]
[19]
(20]

[21]

(22]

(23]

[24]

Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43, 904—
924 (2011) Zbl 1223.49045 MR 2801182

Agueh, M., Carlier, G.: Vers un théoreme de la limite centrale dans I’espace de Wasserstein?
C. R. Math. Acad. Sci. Paris 355, 812-818 (2017) Zbl 1388.60061 MR 3673057
Ahidar-Coutrix, A., Le Gouic, T., Paris, Q.: Convergence rates for empirical barycenters in
metric spaces: curvature, convexity and extendable geodesics. Probab. Theory Related Fields
177, 323-368 (2020) Zbl 1442.51004 MR 4095017

Alexander, S., Kapovitch, V., Petrunin, A.: Alexandrov geometry: preliminary version no. 1.
Book in preparation (2019)

Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of
Probability Measures. Lectures Math. ETH Ziirich, Birkhéuser, Basel (2005)

Zbl 1090.35002 MR 2129498

Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Inter-
national Conference on Machine Learning, 214-223 (2017)

Bauschke, H. H., Combettes, P. L.: Convex Analysis and Monotone Operator Theory in Hil-
bert Spaces. 2nd ed., CMS Books in Math./Ouvrages de Math. de la SMC, Springer, Cham
(2017) Zbl 1359.26003 MR 3616647

Bhattacharya, R., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample
means on manifolds. I. Ann. Statist. 31, 1-29 (2003) Zbl 1020.62026 MR 1962498
Bhattacharya, R., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample
means on manifolds. II. Ann. Statist. 33, 1225-1259 (2005) Zbl 1072.62033 MR 2195634

Boissard, E., Le Gouic, T., Loubes, J.-M.: Distribution’s template estimate with Wasserstein
metrics. Bernoulli 21, 740-759 (2015) Zbl 1320.62107 MR 3338645

Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities. Oxford Univ. Press,
Oxford (2013) Zbl 1279.60005 MR 3185193

Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Grad. Stud. Math. 33, Amer.
Math. Soc, Providence, RI (2001) Zbl 0981.51016 MR 1835418

Burago, Y., Gromov, M., Perelman, G.: A. D. Alexandrov spaces with curvature bounded
below. Russian Math. Surveys 47, no. 2, 1-58 (1992) Zbl 0802.53018 MR 1185284

Cheeger, J., Colding, T. H.: Lower bounds on Ricci curvature and the almost rigidity of warped
products. Ann. of Math. (2) 144, 189-237 (1996) Zbl 0865.53037 MR 1405949

Cheeger, J., Colding, T. H.: On the structure of spaces with Ricci curvature bounded below. 1.
J. Differential Geom. 46, 406-480 (1997) Zbl 0902.53034 MR 1484888

Cheeger, J., Colding, T. H.: On the structure of spaces with Ricci curvature bounded below.
II. J. Differential Geom. 54, 13-35 (2000) Zbl 1027.53042 MR 1815410

Cheeger, J., Colding, T. H.: On the structure of spaces with Ricci curvature bounded below.
II1. J. Differential Geom. 54, 37-74 (2000) Zbl 1027.53043 MR 1815411

Chewi, S., Maunu, T., Rigollet, P, Stromme, A. J.: Gradient descent algorithms for Bures—
Wasserstein barycenters. In: Conference on Learning Theory, PMLR, 1276-1304 (2020)
Cuturi, M., Doucet, A.: Fast computation of Wasserstein barycenters. In: International Con-
ference on Machine Learning, 685-693 (2014)

Eltzner, B., Huckemann, S. F.: A smeary central limit theorem for manifolds with application
to high-dimensional spheres. Ann. Statist. 47, 3360-3381 (2019) Zbl 1436.60032

MR 4025745

Emery, M., Mokobodzki, G.: Sur le barycentre d’une probabilité dans une variété. In: Sémi-
naire de Probabilités, XXV, Lecture Notes in Math. 1485, Springer, Berlin, 220-233 (1991)
Zbl 0753.60046 MR 1187782

Feydy, J., Charlier, B., Vialard, F., Peyré, G.: Optimal transport for diffeomorphic registration.
In: MICCAI 2017, Proceedings, Part I, 291-299 (2017)

Genevay, A., Peyré, G., Cuturi, M.: Learning generative models with Sinkhorn divergences.
In: International Conference on Artificial Intelligence and Statistics, 1608-1617 (2018)


https://zbmath.org/?q=an:1223.49045
https://mathscinet.ams.org/mathscinet-getitem?mr=2801182
https://zbmath.org/?q=an:1388.60061
https://mathscinet.ams.org/mathscinet-getitem?mr=3673057
https://zbmath.org/?q=an:1442.51004
https://mathscinet.ams.org/mathscinet-getitem?mr=4095017
https://zbmath.org/?q=an:1090.35002
https://mathscinet.ams.org/mathscinet-getitem?mr=2129498
https://zbmath.org/?q=an:1359.26003
https://mathscinet.ams.org/mathscinet-getitem?mr=3616647
https://zbmath.org/?q=an:1020.62026
https://mathscinet.ams.org/mathscinet-getitem?mr=1962498
https://zbmath.org/?q=an:1072.62033
https://mathscinet.ams.org/mathscinet-getitem?mr=2195634
https://zbmath.org/?q=an:1320.62107
https://mathscinet.ams.org/mathscinet-getitem?mr=3338645
https://zbmath.org/?q=an:1279.60005
https://mathscinet.ams.org/mathscinet-getitem?mr=3185193
https://zbmath.org/?q=an:0981.51016
https://mathscinet.ams.org/mathscinet-getitem?mr=1835418
https://zbmath.org/?q=an:0802.53018
https://mathscinet.ams.org/mathscinet-getitem?mr=1185284
https://zbmath.org/?q=an:0865.53037
https://mathscinet.ams.org/mathscinet-getitem?mr=1405949
https://zbmath.org/?q=an:0902.53034
https://mathscinet.ams.org/mathscinet-getitem?mr=1484888
https://zbmath.org/?q=an:1027.53042
https://mathscinet.ams.org/mathscinet-getitem?mr=1815410
https://zbmath.org/?q=an:1027.53043
https://mathscinet.ams.org/mathscinet-getitem?mr=1815411
https://zbmath.org/?q=an:1436.60032
https://mathscinet.ams.org/mathscinet-getitem?mr=4025745
https://zbmath.org/?q=an:0753.60046
https://mathscinet.ams.org/mathscinet-getitem?mr=1187782

Fast convergence of empirical barycenters 2249

[25]

[26]

(27]

(28]
[29]
(30]
(31]
(32]
(33]
(34]
(35]
(36]
(37]
(38]

(39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Halbeisen, S.: On tangent cones of Alexandrov spaces with curvature bounded below.
Manuscripta Math. 103, 169-182 (2000) Zbl 1021.53040 MR 1796313

Hotz, T., Huckemann, S., Le, H., Marron, J. S., Mattingly, J. C., Miller, E., Nolen, J.,
Owen, M., Patrangenaru, V., Skwerer, S.: Sticky central limit theorems on open books. Ann.
Appl. Probab. 23, 2238-2258 (2013) Zbl 1293.60006 MR 3127934

Kendall, W. S., Le, H.: Limit theorems for empirical Fréchet means of independent and non-
identically distributed manifold-valued random variables. Brazil. J. Probab. Statist. 25, 323—
352 (2011) Zbl 1234.60025 MR 2832889

Kroshnin, A., Spokoiny, V., Suvorikova, A.: Statistical inference for Bures—Wasserstein bary-
centers. Ann. Appl. Probab. 31, 1264-1298 (2021) Zbl 1476.60051 MR 4278784

Kwapien, S.: Isomorphic characterizations of inner product spaces by orthogonal series with
vector valued coefficients. Studia Math. 44, 583-595 (1972) Zbl 0256.46024 MR 341039
Lang, U., Schroeder, V.: Kirszbraun’s theorem and metric spaces of bounded curvature. Geom.
Funct. Anal. 7, 535-560 (1997) Zbl 0891.53046 MR 1466337

Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Ergeb. Math. Grenzgeb. (3) 23,
Springer, Berlin (1991) Zbl 0748.60004 MR 1102015

Le Gouic, T.: A note on flatness of non separable tangent cone at a barycenter. C. R. Math.
Acad. Sci. Paris 358, 489-495 (2020) Zbl 1452.60006 MR 4134259

Le Gouic, T., Loubes, J.-M.: Existence and consistency of Wasserstein barycenters. Probab.
Theory Related Fields 168, 901-917 (2017) Zbl 1406.60019 MR 3663634

Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. of
Math. (2) 169, 903-991 (2009) Zbl 1178.53038 MR 2480619

Ohta, S.-i.: Convexities of metric spaces. Geom. Dedicata 125, 225-250 (2007)

Zbl 1140.52001 MR 2322550

Ohta, S.-i.: Barycenters in Alexandrov spaces of curvature bounded below. Adv. Geom. 12,
571-587 (2012) Zbl 1276.53073 MR 3005101

Panaretos, V. M., Zemel, Y.: Statistical aspects of Wasserstein distances. Ann. Rev. Statist.
Appl. 6,405-431 (2019) MR 3939527

Peyré, G., Cuturi, M.: Computational optimal transport. Foundations and Trends in Machine
Learning 11, 355-607 (2019)

Rigollet, P., Hiitter, J.-C.: High-dimensional statistics. Lecture notes (2017)

Rigollet, P., Weed, J.: Entropic optimal transport is maximum-likelihood deconvolution. C. R.
Math. Acad. Sci. Paris 356, 1228-1235 (2018) Zbl 1407.62211 MR 3907589

Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subramanian, V., Solomon, A., Gould, J.,
Liu, S., Lin, S., Berube, P, Lee, L., Chen, J., Brumbaugh, J., Rigollet, P., Hochedlinger, K.,
Jaenisch, R., Regev, A., Lander, E. S.: Optimal-transport analysis of single-cell gene expres-
sion identifies developmental trajectories in reprogramming. Cell 176, 928-943.e22 (2019)
Schoétz, C.: Convergence rates for the generalized Fréchet mean via the quadruple inequality.
arXiv:1812.08037 (2018)

Solomon, J., de Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A., Du, T., Guibas, L.:
Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains.
ACM Trans. Graph. 34, art. 66, 11 pp. (2015) Zbl 1334.68267

Staib, M., Claici, S., Solomon, J. M., Jegelka, S.: Parallel streaming Wasserstein barycenters.
In: Advances in Neural Information Processing Systems, 2644-2655 (2017)

Sturm, K.-T.: Probability measures on metric spaces of nonpositive curvature. In: Heat Kernels
and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Contemp. Math. 338,
Amer. Math. Soc., Providence, RI, 357-390 (2003) Zbl 1040.60002 MR 2039961

Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196, 65-131 (2006)
Zbl 1105.53035 MR 2237206

Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196, 133-177 (2006)
Zbl 1106.53032 MR 2237207


https://zbmath.org/?q=an:1021.53040
https://mathscinet.ams.org/mathscinet-getitem?mr=1796313
https://zbmath.org/?q=an:1293.60006
https://mathscinet.ams.org/mathscinet-getitem?mr=3127934
https://zbmath.org/?q=an:1234.60025
https://mathscinet.ams.org/mathscinet-getitem?mr=2832889
https://zbmath.org/?q=an:1476.60051
https://mathscinet.ams.org/mathscinet-getitem?mr=4278784
https://zbmath.org/?q=an:0256.46024
https://mathscinet.ams.org/mathscinet-getitem?mr=341039
https://zbmath.org/?q=an:0891.53046
https://mathscinet.ams.org/mathscinet-getitem?mr=1466337
https://zbmath.org/?q=an:0748.60004
https://mathscinet.ams.org/mathscinet-getitem?mr=1102015
https://zbmath.org/?q=an:1452.60006
https://mathscinet.ams.org/mathscinet-getitem?mr=4134259
https://zbmath.org/?q=an:1406.60019
https://mathscinet.ams.org/mathscinet-getitem?mr=3663634
https://zbmath.org/?q=an:1178.53038
https://mathscinet.ams.org/mathscinet-getitem?mr=2480619
https://zbmath.org/?q=an:1140.52001
https://mathscinet.ams.org/mathscinet-getitem?mr=2322550
https://zbmath.org/?q=an:1276.53073
https://mathscinet.ams.org/mathscinet-getitem?mr=3005101
https://mathscinet.ams.org/mathscinet-getitem?mr=3939527
https://zbmath.org/?q=an:1407.62211
https://mathscinet.ams.org/mathscinet-getitem?mr=3907589
https://arxiv.org/abs/1812.08037
https://zbmath.org/?q=an:1334.68267
https://zbmath.org/?q=an:1040.60002
https://mathscinet.ams.org/mathscinet-getitem?mr=2039961
https://zbmath.org/?q=an:1105.53035
https://mathscinet.ams.org/mathscinet-getitem?mr=2237206
https://zbmath.org/?q=an:1106.53032
https://mathscinet.ams.org/mathscinet-getitem?mr=2237207

T. Le Gouic, Q. Paris, P. Rigollet, A. J. Stromme 2250

(48]

[49]

[50]

[51]

[52]

(53]

Sturm, K.-T.: The space of spaces: curvature bounds and gradient flows on the space of metric
measure spaces. arXiv:1208.0434 (2012)

Vershynin, R.: High-dimensional Probability. Cambridge Ser. Statist. Probab. Math. 47, Cam-
bridge Univ. Press, Cambridge (2018) Zbl 1430.60005 MR 3837109

Villani, C.: Optimal Transport. Grundlehren Math. Wiss. 338, Springer, Berlin (2009)
Zbl 1156.53003 MR 2459454

Yokota, T.: Convex functions and barycenter on CAT(1)-spaces of small radii. J. Math. Soc.
Japan 68, 1297-1323 (2016) Zbl 1351.53057 MR 3523548

Yokota, T.: Convex functions and p-barycenter on CAT(1)-spaces of small radii. Tsukuba J.
Math. 41, 43-80 (2017) Zbl 1378.53056 MR 3705774

Zemel, Y., Panaretos, V. M.: Fréchet means and Procrustes analysis in Wasserstein space.
Bernoulli 25, 932-976 (2019) Zbl 1431.62132 MR 3920362


https://arxiv.org/abs/1208.0434
https://zbmath.org/?q=an:1430.60005
https://mathscinet.ams.org/mathscinet-getitem?mr=3837109
https://zbmath.org/?q=an:1156.53003
https://mathscinet.ams.org/mathscinet-getitem?mr=2459454
https://zbmath.org/?q=an:1351.53057
https://mathscinet.ams.org/mathscinet-getitem?mr=3523548
https://zbmath.org/?q=an:1378.53056
https://mathscinet.ams.org/mathscinet-getitem?mr=3705774
https://zbmath.org/?q=an:1431.62132
https://mathscinet.ams.org/mathscinet-getitem?mr=3920362

	1. Introduction
	1.1. Barycenters
	1.2. Overview of main results

	2. Geometry and barycenters
	2.1. Preliminaries
	2.2. Tangent cone at a barycenter

	3. Main results
	3.1. Hugging
	3.2. A master theorem for spaces with curvature lower bound
	3.3. Tail bound

	4. Positively curved spaces
	4.1. Extendible geodesics
	4.2. The Wasserstein space
	4.3. Examples

	References

