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Abstract. Let � be a finitely generated group and X be a minimal compact �-space. We assume
that the �-action is micro-supported, i.e. for every non-empty open subset U � X , there is an
element of � acting non-trivially on U and trivially on the complement X n U . We show that,
under suitable assumptions, the existence of certain commensurated subgroups in � yields strong
restrictions on the dynamics of the �-action: the space X has compressible open subsets, and it is
an almost �-boundary. Those properties yield in turn restrictions on the structure of �: � is neither
amenable nor residually finite. Among the applications, we show that the (alternating subgroup
of the) topological full group associated to a minimal and expansive Cantor action of a finitely
generated amenable group has no commensurated subgroups other than the trivial ones. Similarly,
every commensurated subgroup of a finitely generated branch group is commensurate to a normal
subgroup; the latter assertion relies on an appendix by Dominik Francoeur, and generalizes a result
of Phillip Wesolek on finitely generated just-infinite branch groups. Other applications concern
discrete groups acting on the circle, and the centralizer lattice of non-discrete totally disconnected
locally compact (tdlc) groups. Our results rely, in an essential way, on recent results on the structure
of tdlc groups, on the dynamics of their micro-supported actions, and on the notion of uniformly
recurrent subgroups.

Keywords. Totally disconnected locally compact groups, commensurated subgroups, topological
dynamics of group actions, minimal actions, strongly proximal actions, uniformly recurrent
subgroups, topological full groups

1. Introduction

1.1. A simplified version of the main result

Let � be a group. Two subgroupsƒ;ƒ0 � � are commensurate ifƒ\ƒ0 has finite index
in ƒ and ƒ0. A subgroup ƒ � � is commensurated in � if all �-conjugates of ƒ are
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commensurate, or equivalently if the ƒ-action on the coset space �=ƒ has finite orbits.
Obviously, every normal subgroup of � is commensurated, and so is every subgroup
of � that is commensurate to a normal subgroup (e.g. the finite subgroups, and the sub-
groups of finite index). In general commensurated subgroups need not be commensurate
to a normal subgroup. For instance every normal subgroup of the group SL.n;ZŒ1=p�/
is finite or finite index, but SL.n;Z/ is an infinite and infinite index commensurated sub-
group. Moreover, the problems of understanding normal subgroups and of understanding
commensurated subgroups of a group � are generally rather independent, and a complete
understanding of normal subgroups does not necessarily provide a description of the com-
mensurated subgroups. This is for instance illustrated by the case of lattices in higher rank
semisimple Lie groups: while Margulis’ normal subgroup theorem says that every normal
subgroup of � is finite or finite index, the Margulis–Zimmer conjecture on the description
of commensurated subgroups of � remains open in general (see [42] for partial answers).
See also §6.1.4 below for another illustration.

The study of commensurated subgroups of a group � is well-known to be closely
related to the study of dense homomorphisms � ! G from � to a totally disconnected
locally compact group (tdlc group hereafter). Here we call a homomorphism dense if it
has dense image inG. Indeed, if �!G is such a homomorphism, then the preimage in �
of every compact open subgroup of G is a commensurated subgroup of � . Conversely, if
ƒ � � is a commensurated subgroup, then the Schlichting completion process provides
a tdlc group �==ƒ and a dense homomorphism � ! �==ƒ [41]. We refer to [42, Sec-
tion 3] for a detailed introduction to Schlichting completions (see also [38] for additional
properties).

Let � be a group acting by homeomorphisms on a topological space X . The rigid
stabilizer Rist�.U / of a subset U � X is the pointwise fixator in � of the complement
of U in X . We say that the action of � on X is micro-supported if Rist�.U / acts non-
trivially on X for every non-empty open subset U of X . The term “micro-supported” was
first coined in [12], although the notion it designates has frequently appeared in earlier
references, notably in the work of M. Rubin [40].

In this article we relate the existence of commensurated subgroups of a group � to the
topological dynamics of micro-supported actions of � on compact spaces. The following
is a simplified version of our main result (see Theorem 5.4 for a more comprehensive
statement).

Theorem 1.1. Let � be a finitely generated group such that every proper quotient of � is
virtually nilpotent. LetX be a compact �-space such that the action of � onX is faithful,
minimal and micro-supported. If � has a commensurated subgroup which is of infinite
index and which is not virtually contained in a normal subgroup of infinite index of � ,
then the following hold:

(i) X has a non-empty open subset which is compressible by � .

(ii) X is an almost �-boundary.

Conclusion (i) implies that � is monolithic, hence not residually finite; and (ii) implies
that � is not amenable.



Commensurated subgroups and micro-supported actions 2253

We recall some terminology. A subgroup ƒ � � is virtually contained in ƒ0 � �
if ƒ has a finite index subgroup that is contained in ƒ0. A group � is monolithic if the
intersection M of all non-trivial normal subgroups of � is non-trivial. When this holds,
M is called the monolith of � .

Let X be a compact �-space. A non-empty open subset U of X is compressible by �
if there exists x 2 X such that for every neighbourhood V of x, there exists 
 2 � such
that 
.U / � V . The action of � on X is strongly proximal if the orbit closure of every
probability measure on X contains a Dirac measure, and the action of � on X is a (topo-
logical) boundary if it is minimal and strongly proximal [14]. We will also say that the
action of � on X is almost strongly proximal if X admits a �-invariant clopen partition
X D X1 [ � � � [Xd such that for each i , the action of Stab�.Xi / on Xi is strongly prox-
imal; and X is an almost boundary if X is minimal and almost strongly proximal. When
this is the case, the clopen set Xi is a Stab�.Xi /-boundary for each i .

Theorem 1.1, as well as some intermediate results that we establish towards its proof,
have several types of applications. The rest of this introduction is aimed at describing
them.

1.2. Topological full groups

If ƒ is a group acting on a compact space X , the topological full group F.ƒ; X/ is the
group of homeomorphisms g of X such that for every x 2 X there exist a neighbour-
hood U of x and an element 
 2 ƒ such that g.y/ D 
.y/ for every y 2 U . Topological
full groups were first studied in detail by Giordano–Putnam–Skau [16] and Matui [31],
and more recently in [21,23,24,30] (see also the survey [13] for additional references and
historical remarks).

We denote by A.ƒ;X/ � F.ƒ;X/ the alternating full group introduced and studied
by Nekrashevych [34,35]. Ifƒ is a finitely generated group andƒ Õ X is a minimal and
expansive action on a Cantor space X , Nekrashevych showed that the group A.ƒ;X/ is
the monolith of F.ƒ; X/, and is a finitely generated and simple group (see Section 6.1
below for more details). WhenƒDZ the alternating full group coincides with the derived
subgroup of F.ƒ;X/, and in that case finite generation and simplicity of F.ƒ;X/0 were
previously obtained by Matui [31]. We refer to Section 6.1 for definitions and details.

Applying Theorem 1.1, we obtain the following result.

Theorem 1.2. Letƒ be a finitely generated group, andƒ Õ X a minimal and expansive
action on a Cantor space X such that A.ƒ; X/ Õ X does not admit any compressible
open subset. Then every proper commensurated subgroup of the alternating full group
A.ƒ;X/ is finite.

We recall that there exist examples of alternating full groups A.ƒ; X/ such that the
action of A.ƒ;X/ onX admits compressible open subsets, and such that A.ƒ;X/ admits
commensurated subgroups that are infinite and of infinite index. This is for instance the
case of the Higman–Thompson groups Vd;k from [22], which admit a commensurated
subgroup such that the associated Schlichting completion is a Neretin group of almost
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automorphisms of a tree [7]. Moreover, it was proven in [29] that Vd;k admits infinitely
many commensurated subgroups. Although Theorem 1.2 does not say anything about
such situations, we prove in Theorem 6.6 that for every Schlichting completion G of
A.ƒ;X/, the action of A.ƒ;X/ on X extends to a continuous action of G on X .

An important situation where Theorem 1.2 applies is when X admits a probabil-
ity measure that is invariant under the action of ƒ. Such a probability measure is also
invariant under the action of the full group F.ƒ; X/. Since the existence of an invariant
probability measure prevents the existence of a compressible open subset, we have the
following:

Corollary 1.3. Letƒ be a finitely generated group, andƒÕX be a minimal and expans-
ive action on a Cantor space X . If X carries a ƒ-invariant probability measure .e.g. if
ƒ is amenable/, then every proper commensurated subgroup of the alternating full group
A.ƒ;X/ is finite.

Corollary 1.3 implies that for every minimal and expansive action of Zd on a Can-
tor space, every proper commensurated subgroup of A.Zd ; X/ is finite. Recall that when
d D 1, Juschenko and Monod [23] showed that the group F.Z; X/ is amenable. One
motivation for studying specifically the commensurated subgroups of finitely generated
infinite simple amenable groups comes from the fact that, if such a group � were known
to admit an infinite proper commensurated subgroup ƒ, then by results of [9], the Sch-
lichting completion �==ƒ would admit as a quotient a compactly generated tdlc group
that is non-discrete, topologically simple and amenable (see [12, Proposition 3.6]). As of
now, no such example is available (see [12, Question 3]). Hence Corollary 1.3 implies
that the above strategy to build such a group cannot work by starting with groups such as
A.ƒ;X/. Corollary 1.3 also answers a question raised at the end of [6].

Remark 1.4. The assumptions that ƒ is finitely generated and that the action of ƒ on X
is expansive are both essential; see Example 6.5.

Remark 1.5. The conclusions of Theorem 1.2 and Corollary 1.3 hold more generally for
an arbitrary subgroup of F.ƒ;X/ that contains A.ƒ;X/, with appropriate modifications
in the conclusion. See Theorem 6.4.

1.3. Branch groups

As mentioned above, every subgroup of a group � that is commensurate to a normal
subgroup is commensurated. A group � in which every commensurated subgroup is
commensurate to a normal subgroup may thus be viewed as a group with as few commen-
surated subgroups as possible. That property was called ‘inner commensurator-normalizer
property’ in [42]. It is equivalent to the fact that every Schlichting completion of � is
compact-by-discrete (see Lemma 5.1). Recall that a group G is compact-by-discrete if G
admits a compact normal subgroup K such that G=K is discrete.

We refer the reader to Section 6.2 for basic definitions and to [3, 20] for a general
introduction to branch groups.
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Theorem 1.6. Let � be a finitely generated branch group. Then every commensurated
subgroup of � is commensurate to a normal subgroup of � .

Theorem 1.6 recovers and extends a result of Wesolek [45], who showed the same
result under the additional assumption that � is just-infinite (i.e. every non-trivial normal
subgroup of � is of finite index). The proof of Theorem 1.6 relies on Theorem 1.1. It also
uses the fact that every normal subgroup of a finitely generated branch group is finitely
generated; that property is established by D. Francoeur in the appendix.

1.4. Groups acting on the circle

We refer the reader to [15] for an introduction to group actions on the circle. The following
result does not formally follow from our main result. Its proof rather relies on intermediate
results that we obtain in the course of the proof of Theorem 5.4, suitably combined with
the Ghys–Margulis theorem about the topological dynamics of group actions on the circle
(see Theorem 6.9).

Theorem 1.7. Let � be a finitely generated group with a faithful, minimal, micro-sup-
ported action on the circle such that the subgroup of � generated by the elements that
fix pointwise an open interval has finite index in � . Then every commensurated subgroup
of � is commensurate to a normal subgroup of � .

See Example 6.12 for a family of groups to which this result applies. In particular, we
recover the fact, first established in [28], that every proper commensurated subgroup of
Thompson’s group T is finite.

1.5. Micro-supported actions of locally compact groups

Our results also have applications to the study of non-discrete locally compact groups.
We denote by Std the class of compactly generated tdlc groups that are non-discrete and
topologically simple. We refer to [12, Appendix A] for a description of various famil-
ies of examples of groups within this class. Recall from [11] that every group G in Std

(and more generally every tdlc group satisfying a condition called [A]-semisimplicity, see
Section 3.4) has an associated G-Boolean algebra LC.G/ called the centralizer lattice
of G, with the property that the action of G on the Stone space�G of LC.G/ is minimal
and micro-supported, and such that every minimal and micro-supported totally discon-
nected compact G-space is a factor of �G [11, Theorem 5.18]. In Section 7 we obtain
a strengthening of this universal property, by showing that �G is the maximal highly
proximal extension in the sense of Auslander and Glasner [1] of any minimal and micro-
supported compact G-space (Theorem 7.5). It follows that every (not necessarily totally
disconnected) faithful micro-supported compact G-space is a factor of �G , and is thus
minimal and strongly proximal (see Corollary 7.6). Those results hold for all groups in
the class R of robustly monolithic groups introduced in [10] (the definition is recalled in
Section 7 below). That class strictly contains Std.
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In Section 7 we also consider the situation of a pair of groups .H;G/ such that there
exists a continuous homomorphism 'WH ! G with dense image. Examples of such pairs
.H;G/ naturally arise in the study of the local structure of groups in the class Std (see [37,
Theorem 1.2] and [10]). In this situation, we study the relationship between the centralizer
lattice of H and that of G. The following is a simplified version of Theorem 7.7.

Theorem 1.8. Let G;H 2 Std and let 'WH ! G be a continuous injective homomor-
phism with dense image. If �H is non-trivial, then the H -action on �G is micro-sup-
ported, and there exists a H -map �H ! �G that is a highly proximal extension. In
particular, �G is non-trivial.

This result applies for instance whenH is the commensurator inG of an infinite pro-p
Sylow subgroup of a compact open subgroup of G (Corollary 7.8). We refer to Section 7
for details.

2. Preliminaries

2.1. Basic notions

Let G be a group acting by homeomorphisms on a Hausdorff space X . Recall that the
action of G on X is micro-supported if the rigid stabilizer RistG.U / acts non-trivially
on X for every non-empty open subset U � X (when G is clear from the context we
will also say that the G-space X is micro-supported). Note that for faithful actions this is
equivalent to saying that RistG.U / is non-trivial. Note also that if the G-action on X is
micro-supported, then X cannot have isolated points.

The following lemma is immediate from the definitions.

Lemma 2.1. Let G be a group, X; Y topological spaces on which G acts by homeo-
morphisms, and � WY ! X a continuous surjective G-equivariant map. Suppose that the
action on Y is micro-supported and the action on X is faithful. Then the action on X is
micro-supported.

Proof. If U is a non-empty open subset of X , then V D ��1.U / is also open and
non-empty, so it follows that RistG.V / is non-trivial since Y is micro-supported. Since
RistG.V / � RistG.U /, it follows that RistG.U / is non-trivial, and hence RistG.U / acts
non-trivially on X since the action on X is faithful.

If G is a topological group and X;Y are compact G-spaces, a continuous G-equivari-
ant map � W Y !X will be called aG-map. When � is onto, we say that Y is an extension
of X , and that X is a factor of Y . We will also say that � W Y ! X is an extension or
a factor map. A G-map � W Y ! X that is also a homeomorphism will be called an iso-
morphism.

A non-empty subset C � X is compressible if there exists x 2 X such that for every
neighbourhood U of x, there exists g 2 G such that g.C / � U . Note that by definition a
compressible subset is necessarily non-empty.
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2.2. Preliminaries on highly proximal extensions

We will make use of the notion of highly proximal extension [1]. Let G be a topological
group, and X; Y compact G-spaces. An extension � W Y ! X is highly proximal if for
every non-empty open subset U � Y , there exists x 2 X such that ��1.x/ � U . When
X; Y are minimal, this is equivalent to saying that for some (or every) x 2 X , ��1.x/ is
compressible in Y [1].

Auslander and Glasner showed that every minimal compact G-space X admits a
highly proximal extension � W X� ! X with the property that for any highly proximal
extension p W Y ! X there exists a G-map p0 W X� ! Y such that � D p ı p0, and
such that any highly proximal extension of X� is an isomorphism. Such a G-space X� is
necessarily unique up to isomorphism, and is called the maximal highly proximal exten-
sion of X [1].

Following [1], we say that X; Y are highly proximally equivalent, denoted X �hp Y ,
ifX and Y admit a common highly proximal extension. Since any highly proximal exten-
sion Z ! X gives rise to an isomorphism between Z� and X�, being highly proximally
equivalent is indeed an equivalence relation. We refer to [1] for details.

Lemma 2.2. Let X;Y be minimal compact G-spaces that are highly proximally equival-
ent. Then X is an almost G-boundary if and only if Y is an almost G-boundary.

Proof. By considering a common highly proximal extension, we see that it is enough to
prove the statement for every highly proximal extension � W Y ! X .

Suppose that the G-action on X is almost strongly proximal, and let X D X1 [

� � � [ Xd be a G-invariant clopen partition such that for each i , the action of Gi WD
StabG.Xi / on Xi is a boundary action. Let Yi D ��1.Xi /. Then Y D Y1 [ � � � [ Yd
is a G-invariant clopen partition of Y , and the restriction �jYi

WYi ! Xi is a highly prox-
imal extension between the Gi -spaces Yi and Xi . Therefore the minimality of Xi under
the action of Gi is inherited by Yi , and so is strong proximality by [18, Lemma 5.2] (the
proof is given there for almost one-to-one extensions, but the same argument applies to
highly proximal extensions).

Conversely, since minimality and strong proximality are inherited by factors, it is clear
that if Y admits a clopen partition as above, then the push-forward of this partition into X
via � provides a partition ofX (although distinct blocks might have the same image) with
the required properties.

The following shows that the properties of being micro-supported and of having com-
pressible open subsets behave nicely with respect to highly proximal extensions.

Proposition 2.3. Let � W Y ! X be a highly proximal extension between compact G-
spaces. Then the following hold:

(i) If A � X , then RistG.A/ � RistG.��1.A//.

(ii) X is micro-supported if and only if Y is micro-supported.

If in addition X; Y are minimal, then:
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(iii) If A � X is compressible, then ��1.A/ is compressible.

(iv) X admits a compressible open subset if and only if Y does.

Proof. (i) Let g 2 RistG.A/. Suppose for a contradiction that there exists y 2 Y such that
y … ��1.A/ and g.y/¤ y. Since ��1.A/ is closed, we may find an open neighbourhood
W of y such that W \ g.W / D ; and W \ ��1.A/ D ;. Since the extension is highly
proximal, there exists x 2 X such that ��1.x/ � W , and x … A because x belongs to
�.W /, which is disjoint from A. Moreover, g.x/ ¤ x because g.��1.x// \ ��1.x/ is
empty, so we deduce that g … RistG.A/, which is our contradiction.

(ii) Suppose X is micro-supported. Let U be a non-empty open subset of Y . Denote
by V the set of those points x 2 X such that ��1.x/ � U . The subset V is open, and
V is non-empty since the extension is highly proximal. Let now W be a non-empty open
subset of V such that W � V . We have ��1.W / � ��1.V / � U . According to (i), one
has RistG.W / � RistG.U /. Now since X is micro-supported, one can find x 2 W and
g 2 RistG.W / such that g.x/ ¤ x, and it follows that g.y/ ¤ y for every y 2 ��1.x/.
So we have shown that RistG.U / acts non-trivially on U , and since U was arbitrary, it
follows that Y is micro-supported.

For the converse implication, we let V be a non-empty open subset of X , and write
U D ��1.V /. If Y is micro-supported then one can find g 2 RistG.U / and W an
open subset of U such that W and g.W / are disjoint. Then any point x 2 V such that
��1.x/ � W is moved by g, and since g 2 RistG.V /, it follows that RistG.V / acts non-
trivially on V , and X is micro-supported.

(iii) Suppose that A � X is compressible, and write B D ��1.A/. Let U be a non-
empty open subset of Y , and let V be the set of points x 2 X such that ��1.x/ � U .
Again V is open and non-empty, so using that A is compressible in X and minimality,
we find g 2 G such that g.A/ � V . It follows that g.B/ � ��1.V / � U . Since U was
arbitrary, B is compressible.

(iv) If U is a compressible open subset of X , then V D ��1.U / is a compressible
open subset of Y by (iii). Conversely, if V is compressible and open in Y , then �.V / is a
compressible subset ofX . Now the image of an open subset by a factor map between min-
imal compact G-spaces always has non-empty interior, since the target space is covered
by finitely many translates of that image. So there exists a non-empty open subsetW ofX
in � 0.V /, and it follows that W is a compressible open subset of X .

Lemma 2.4. Let � W Y ! X be an extension between faithful micro-supported compact
G-spaces. Then � is highly proximal.

Proof. Let U be a non-empty open subset of Y . The subgroup RistG.U / is non-trivial,
and hence acts non-trivially on X since the G-action on X is faithful. If x is a point of X
that is moved by some element g of RistG.U /, then g sends ��1.x/ to a set disjoint from
itself. Since g is supported in U , this implies ��1.x/ � U . Since U was arbitrary, this
proves that � is highly proximal.
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When X is a compact G-space, we denote by 2X the set of all closed subsets of X ,
endowed with the Hausdorff topology. The space 2X is also a compact G-space. Recall
that the universal minimal flow of G is the unique minimal compact G-space M with the
property that every minimal compact G-space is a factor of M . We are grateful to Todor
Tsankov for pointing out the reference [36, Proposition 3.4].

Proposition 2.5. Let G be a tdlc group, and X a minimal compact G-space. Then the
maximal highly proximal extension X� of X is a totally disconnected space.

Proof. According to [1, Theorem I.1], the G-space X� is isomorphic to a subsystem
of 2M , where M is the universal minimal flow of G. Now since the group G is totally
disconnected, the compact open subgroups of G form a basis of neighbourhoods of the
identity by van Dantzig’s theorem, and hence it follows from [36, Proposition 3.4] that the
compact G-space M is totally disconnected. Therefore 2M is also totally disconnected,
and hence so is X� by the above property.

2.3. Rubin’s theorem

A given group � may very well admit minimal and micro-supported actions on compact
spaces X and Y that are not isomorphic. For example Thompson’s group T admits such
actions respectively on the circle and on a Cantor set [5]. More generally, if � admits
a minimal and micro-supported action on a Cantor set X , then by Proposition 2.3 the
action of � on the maximal highly proximal extension X� remains micro-supported, and
X and X� are never isomorphic, because X and X� are not even homeomorphic (see
the discussion following Theorem 2.6 below). However, we have the following theorem
of Rubin [40]. If X is a topological space, we denote by R.X/ the Boolean algebra of
regular open subsets of X .

Theorem 2.6. Suppose that a group � admits a faithful and micro-supported action on
topological spaces X;Y . Then there exists a �-equivariant isomorphism R.X/! R.Y /.

For a compact space X , we denote by zX DS.R.X// the Stone space of R.X/. Since
R.X/ is a complete Boolean algebra, zX is a compact extremally disconnected space (the
closure of every open subset is open). There is a natural map �X W zX ! X , which asso-
ciates to every ultrafilter on R.X/ its limit in the space X . This map is continuous and
surjective, and has the property that every non-empty open subset of zX contains a fibre
��1.x/ for some x 2 X [19]. Observe that every homeomorphism h of X induces a
homeomorphism of zX , which we still denote h, such that �X ı h D h ı �X .

If � is a discrete group and X a minimal compact �-space, the above discussion
says that zX is also a minimal compact �-space, and �X W zX ! X is a highly proximal
extension. Moreover, since zX is extremally disconnected, it is actually the maximal highly
proximal extension of X [19, Lemma 2.3]. (See [47] for a generalization to non-discrete
groups.) The following is a consequence of Rubin’s theorem and Proposition 2.3.



P.-E. Caprace, A. Le Boudec 2260

Theorem 2.7. Let � be a discrete group, and X a compact �-space that is faithful and
micro-supported. Then:

(i) The action of � on zX is faithful and micro-supported.

(ii) For every compact �-space Y that is faithful and micro-supported, there is a factor
map zX ! Y that is highly proximal.

(iii) If X is minimal then zX is minimal. Hence all compact �-spaces that are faithful and
micro-supported are minimal and highly proximally equivalent.

(iv) If X is minimal and admits a compressible open subset, then all compact �-spaces
that are faithful and micro-supported admit a compressible open subset.

Proof. The �-action on zX is faithful because the �-action on X is faithful. Since �X W
zX ! X is highly proximal and X is micro-supported, the action of � on zX is micro-

supported by Proposition 2.3. This shows (i).
Let Y be a compact �-space that is faithful and micro-supported, and let �Y W zY ! Y .

If ' W zX ! zY is an isomorphism that is provided by the conclusion of Rubin’s theorem,
then �Y ı ' is a factor map zX ! Y that is highly proximal. So statement (ii) holds, and
(iii) and (iv) follow from Proposition 2.3.

3. Structure theory of tdlc groups

3.1. The FC-radical

Definition 3.1. For a locally compact group G, we denote by B.G/ the characteristic
subgroup of G consisting of the elements with a relatively compact conjugacy class.

We will invoke the following result [44, Theorem 8].

Theorem 3.2. If G is compactly generated tdlc group and G D B.G/, then G has a
compact open normal subgroup K such that G=K is abelian and torsion-free.

We will also need the following (see [33]).

Theorem 3.3. If G is compactly generated tdlc group, then B.G/ is a closed subgroup
of G.

3.2. The quasi-centre

Given a tdlc group G, we denote by QZ.G/ the set of elements whose centralizer is
open. This is a (possibly non-closed) topologically characteristic subgroup of G called
the quasi-centre. It contains all discrete normal subgroups of G. Moreover, if H is an
open subgroup of G, we have QZ.H/ � QZ.G/.

Given a closed subgroup H of a tdlc group G, we denote by CG.H/ the centralizer
of H in G. We also denote by QCG.H/ the subgroup of G consisting of those g 2 G
such that CH .g/ is relatively open in H . In particular, if H is open we have QCH .H/ D
QZ.H/ and QCG.H/ D QZ.G/.
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3.3. The upper structure of compactly generated tdlc groups

We say that a locally compact groupG is just-non-compact ifG is not compact and every
proper quotient of G by a closed normal subgroup is compact. Just-non-compact groups
arise naturally as quotient groups of compactly generated non-compact tdlc groups.

Proposition 3.4. Let G be a non-compact, compactly generated tdlc group. Then G has
a closed normal subgroup N such that G=N is just-non-compact. If in addition G does
not have any non-trivial finite quotient, then the quotient G=N is compactly generated
and topologically simple.

Proof. The first assertion is [9, Proposition 5.2]. The second assertion follows from the
first, together with the description of the structure of compactly generated just-non-com-
pact tdlc groups from [9, Theorem E].

Note however that the just-non-compact quotient group afforded by Proposition 3.4
can in general be discrete. In fact, every compactly generated tdlc group with an infin-
ite discrete quotient admits a just-non-compact discrete quotient (because every finitely
generated infinite group admits a just-infinite quotient). In order to deal with discrete
quotients, we need additional terminology.

Given a locally compact group G, the discrete residual of G, denoted by Res.G/, is
defined as the intersection of all open normal subgroups of G. Notice that Res.G/ is a
closed topologically characteristic subgroup of G. We say that G is residually discrete if
Res.G/ D 1. The following result is due to G. Willis [46].

Proposition 3.5. Let G be a compactly generated tdlc group. If G is virtually nilpotent,
then G has a basis of identity neighbourhoods consisting of compact open normal sub-
groups. In particular, G is residually discrete and compact-by-discrete.

The goal for the rest of this section is to establish Theorem 3.13, which ensures the
existence of a specific kind of quotient groups for compactly generated tdlc groups whose
discrete residual is also compactly generated. This requires several intermediate results
that are of independent interest.

Proposition 3.6 ([9, Corollary 4.1]). A compactly generated tdlc group is residually
discrete if and only if its compact open normal subgroups form a basis of identity neigh-
bourhoods.

Recall that a locally compact group G is regionally elliptic if every compact subset
of G generates a compact subgroup of G (this property is sometimes also called ‘locally
elliptic’, or ‘topologically locally finite’; we refer to [10] for the motivation for the present
choice of terminology). The regionally elliptic radical (RE-radical) of G is the largest
closed normal subgroup of G that is regionally elliptic.

Proposition 3.7. Let G be a tdlc group. If G and Res.G/ are both compactly generated,
then the following assertions hold, where R0 D G and for all n � 0, the group RnC1 is
defined as RnC1 D Res.Rn/.
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(i) G=R1 is compact-by-discrete.

(ii) R1=R2 is compact. In particular, G=R2 is compact-by-discrete.

(iii) Rn D R2 for all n � 2.

(iv) Rn is compactly generated for all n.

Proof. By hypothesis, the groups R0 and R1 are compactly generated. Moreover, the
group R0=R1 is residually discrete, so that by Proposition 3.6, it is compact-by-discrete.
Hence there exists an open normal subgroupN1 ofG containingR1 and such thatN1=R1
is compact.

Since R1 is compactly generated, the group N1 is also compactly generated.
Moreover, the quotient R1=R2 is compactly generated and residually discrete. It then
follows from Proposition 3.6 that R1=R2 has a compact open normal subgroup. In partic-
ular, there exists a closed normal subgroupN2 ofG withR2 �N2 �R1 such thatN2=R2
is the RE-radical of R1=R2. Moreover, N2=R2 is open in R1=R2. Hence R1=N2 is dis-
crete, so that the quotient group N1=N2 is compactly generated and discrete-by-compact.
Therefore N1=N2 is compact-by-discrete (see [2, Lemma 4.4]). It follows that G=N2 is
compact-by-discrete. In particular, Res.G=N2/ is compact. SinceN2 � Res.G/DR1, we
have Res.G=N2/ D Res.G/=N2. Therefore R1=N2 is compact. Since R1 is compactly
generated, so is N2. It follows that the regionally elliptic group N2=R2 is compactly gen-
erated, hence compact. ThereforeR1=R2 is compact, andR2 is also compactly generated.

It remains to show that R3 D R2. We know that R2=R3 is compactly generated and
residually discrete. Repeating the arguments of the previous paragraph, we construct a
closed normal subgroup N3 of G with R3 � N3 � R2 and such that N3=R3 is the
RE-radical of R2=R3. Since R2=N3 is discrete and since N1=R1 and R1=R2 are both
compact, we infer that N1=N3 is compactly generated and discrete-by-compact. There-
fore N1=N3 is compact-by-discrete. As above, this implies that R1=N3 is compact, so
that R2=N3 is also compact, and N3 is compactly generated. This implies in turn that the
regionally elliptic group N3=R3 is compactly generated, hence compact. Finally, R2=R3
is compact. ThereforeR1=R3 is compact, hence profinite, so that Res.R1=R3/D 1. Since
R3 � R2 D Res.R1/, we deduce that Res.R1/=R3 D 1. In other words, R2 D R3, as
required.

A special situation where the hypotheses of Proposition 3.7 are satisfied is described
in the following.

Corollary 3.8. Let G be a tdlc group all of whose open normal subgroups are compactly
generated. Then G and Res.G/ are compactly generated; in particular, the conclusions
of Proposition 3.7 hold.

Proof. Clearly G is compactly generated by hypothesis. Since G=Res.G/ is residually
discrete, Proposition 3.6 ensures that there exists an open normal subgroup N of G con-
taining Res.G/ and such that N=Res.G/ is compact. In particular, Res.G/ is compactly
generated, since N has this property by hypothesis.
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We shall prove the following result, which is a slight strengthening of [9, Propos-
ition II.1]. A normal subgroup N of G is maximal if N is proper and every normal
subgroup M of G containing N is equal to N or G; and N is minimal if N is non-trivial
and every normal subgroup M of G contained in N is equal to 1 or N .

Proposition 3.9. Let G be a non-trivial compactly generated tdlc group with Res.G/
D G. Let Max .resp. Min/ be the collection of maximal .resp. minimal/ closed normal
subgroups of G. Assume that

T
Max D 1. Then:

(i) Min and Max are finite and non-empty.

(ii) The assignment N 7! CG.N / establishes a bijective correspondence from Min to
Max. Moreover, N is the unique element of Min that is not contained in CG.N /.

(iii) The product of all elements of Min is dense in G.

(iv) Every element of Min is a non-discrete compactly generated topologically simple
tdlc group.

Proof. The hypotheses imply that Max is non-empty. Moreover, for everyM 2Max, the
quotient G=M is topologically simple and non-discrete since G D Res.G/.

We claim that G has a trivial centre. Indeed, if z were a non-trivial element in Z.G/,
then there would exist M 2Max not containing z, because

T
Max D 1. The image of z

in G=M would be a non-trivial central element, contradicting that G=M is topologically
simple and non-discrete (in particular infinite, thus non-abelian).

All the hypotheses of [9, Proposition II.1] are thus fulfilled. We deduce that assertions
(i), (iii) and the first assertion of (ii) hold.

LetN 2Min. Notice first thatN is non-abelian. Indeed, since
T

MaxD 1 there exists
M 2Max with N 6�M . Then N \M D 1 since N is minimal, and henceM � CG.N /.
Therefore either M D CG.N / or G D CG.N /. The latter case is excluded, since G has
a trivial centre as remarked above. Thus M D CG.N /, and N is non-abelian, as claimed.
Moreover, CG.N / 2 Max, so that the projection map N ! G=CG.N / is an injective
homomorphism with dense image on a compactly generated non-discrete topologically
simple tdlc group. As in [9, proof of Proposition II.1], we deduce that N has trivial
quasi-centre and trivial RE-radical. In particular, the group N is non-compact and non-
discrete.

Any N 0 2 Min not contained in M D CG.N / commutes with M . If there existed
such a group N 0 distinct from N , it would also commute with N . Thus N and N 0 would
be two commuting subgroups of G, both of which embed as dense normal subgroups
ofG=M . This is impossible, because a Hausdorff group containing two commuting dense
subgroups must be abelian, whereasG=M is topologically simple and non-discrete, hence
non-abelian. This confirms that N is the unique element of Min that is not in CG.N /.

Let 'WG ! G=M be the canonical projection, let U be a compact open subgroup
of G and let V D N \ U . Then '.U / is a compact open subgroup of G=M , and '.V /
is a closed normal subgroup of '.U /. Since N is a minimal normal subgroup of G, it is
generated by the G-conjugacy class of V . Equivalently, the group '.N / is generated by
the .G=M/-conjugacy class of '.V /. By [12, Proposition 4.1 (ii)], there is a finite subset
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B � '.N / such that G=M D hBi'.U /. Since '.U / normalizes '.V /, it follows that the
group hBi acts transitively on the .G=M/-conjugacy class of '.V /. Therefore '.N / is
generated by B [ '.V /. Equivalently N is generated by V [ .'�1.B/ \ N/, which is
compact. Thus N is compactly generated since 'jN is injective.

SinceN 2Min, it is topologically characteristically simple. We may therefore invoke
[9, Corollary D], ensuring that N has closed normal subgroups S1; : : : ; Sk which are
topologically simple, and such that N D S1 : : : Sk . For each i , observe that '.Si / is a
non-trivial subgroup of G=M normalized by '.N /, which is dense. Since G=M is topo-
logically simple, we infer that '.Si / is dense. Since Si \ Sj D 1 for i ¤ j , we see that Si
and Sj commute. Since a Hausdorff group containing two commuting dense subgroups
must be abelian, we deduce that k D 1. Therefore N is topologically simple.

Remark 3.10. Let G be a compactly generated, topologically characteristically simple
tdlc group. If G is non-compact and non-discrete, then Proposition 3.6 implies Res.G/
D G. Moreover, [9, Theorem A] ensures that the set Max of maximal proper closed
normal subgroups of G is non-empty. Hence

T
Max is trivial since G is topologically

characteristically simple. Therefore Proposition 3.9 applies to G. This slightly refines the
description in [9, Corollary D (iv)] by ensuring that minimal normal subgroups of G are
compactly generated.

A locally compact group G is monolithic if the intersection M of all non-trivial
closed normal subgroups of G is non-trivial. In that case M is called the monolith of G.
We record the following consequence of Proposition 3.9. The fact that a non-discrete
compactly generated just-non-compact tdlc group is monolithic was established in [9,
Theorem E (i)]. The additional conclusions in Proposition 3.11 (ii) strengthen the latter
result.

Proposition 3.11. Let G be a compactly generated tdlc group.

(i) If G is monolithic and its monolith M of G is non-discrete, non-compact and com-
pactly generated, then M satisfies the conclusions of Proposition 3.9.

(ii) If G is non-discrete and just-non-compact, then it is monolithic, and its monolith
satisfies the conclusions of Proposition 3.9.

Proof. By definition, the monolith is topologically characteristically simple. Hence we
may invoke Proposition 3.9 (see Remark 3.10). This proves (i). Assume now that G is
non-discrete and just-non-compact. Then the assumptions of (i) are fulfilled by [9, The-
orem E (i)]. The conclusion follows.

The following observation shows that monolithic groups arise naturally as quotients
of groups admitting minimal normal subgroups.

Lemma 3.12. Let G be a locally compact group, and N a minimal non-trivial nor-
mal subgroup of G. If N is non-abelian, then G=CG.N / is monolithic, with monolith
CG.N /N=CG.N /.
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Proof (compare [12, proof of Corollary 3.3]/. Since N is non-abelian, it is not con-
tained in CG.N /, so that CG.N /N=CG.N / is a non-trivial closed normal subgroup of
G=CG.N /. In order to complete the proof, we must show that every closed normal sub-
group M of G containing CG.N / as a proper subgroup, also contains N . If the inclusion
CG.N / < M is strict, then M does not commute with N , and hence M \N ¤ 1. Since
N is minimal, it follows that N �M , as required.

Theorem 3.13. LetG be a compactly generated tdlc group such that Res.G/ is also com-
pactly generated. If G is not compact-by-discrete, then G has a closed normal subgroup
N such that the quotient H D G=N enjoys the following properties.

(i) H is monolithic, and its monolithM is compactly generated, non-compact and non-
discrete.

(ii) M has closed normal subgroups S1; : : : ; Sk which are compactly generated, topolo-
gically simple and non-discrete, and such that M D S1 : : : Sk .

(iii) H=M is compact-by-discrete.

Proof. We start by invoking Proposition 3.7. This ensures that R D Res.Res.G// is a
compactly generated closed normal subgroup of G such that G=R is compact-by-discrete
and Res.R/ D R. Since G is not compact-by-discrete, we deduce that R is non-trivial.

It follows from [9, Theorem A] that R admits a maximal proper closed normal sub-
groupMR. LetLD

T
g2G gMRg

�1. SetG0 DG=L,M 0 DMR=L andR0 DR=L. Then
R0 D Res.Res.G0// and Res.R0/D R0. Moreover,G0=R0 ŠG=R is compact-by-discrete.
Furthermore, by the definition of R0, the intersection of all maximal proper closed normal
subgroups ofR0 is trivial. It follows that the structure ofR0 is subjected to Proposition 3.9.
By the definition of G0, the intersection of all G0-conjugates of M 0 is trivial. From Pro-
position 3.9 (ii), every maximal proper closed normal subgroup of R0 is conjugate to M 0

in G0. Since every proper closed normal subgroup of R0 is contained in a maximal one
(by Zorn’s lemma, using that R0 is compactly generated), it follows that the only closed
normal subgroup of G0 that is properly contained in R0 is the trivial subgroup. In other
words, R0 is a minimal non-trivial closed normal subgroup of G0.

We finally set H D G0=CG0.R0/. Thus H is monolithic with monolith

M WD CG0.R0/R0=CG0.R0/

by Lemma 3.12. Since

H=M D G0=CG0.R0/
ı
CG0.R0/R0=CG0.R0/ Š G0=CG0.R0/R0;

H=M is isomorphic to a quotient of G0=R0. Since G0=R0 is compact-by-discrete, and
since every Hausdorff quotient of a compact-by-discrete group is itself compact-by-dis-
crete,H=M is compact-by-discrete. SinceR0 is a quotient ofR, it is compactly generated.
Since it maps onto a dense subgroup of M , it follows that M is compactly generated.
Since Res.R0/ D R0, we deduce that Res.M/ DM . In particular, M possesses maximal
proper closed normal subgroups by [9, Theorem A]. SinceM is minimal normal inH , the
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intersection of all its maximal proper closed normal subgroups is trivial, and the remain-
ing assertion follows from Proposition 3.9.

3.4. The centralizer lattice

LetG be a tdlc group. A subgroup ofG whose normalizer is open is called locally normal.
Following [11,12], we say that G is [A]-semisimple if QZ.G/ D ¹1º and the only abelian
locally normal subgroup of G is the trivial subgroup. The notation QCG.M/ has been
recalled in Section 3.2.

Proposition 3.14. Let G be a monolithic tdlc group, and assume that the monolith M is
compactly generated, non-compact and non-discrete. Then G are M are [A]-semisimple,
and QCG.M/ D 1.

Proof. Since M is a minimal normal subgroup of G, it is characteristically simple. Since
M is non-compact and non-discrete, it follows from [12, Proposition 5.6] that QZ.M/

D 1. We may then invoke [11, Proposition 6.17], which implies, together with [12, Pro-
position 5.6], that M is [A]-semisimple.

The rest of the proof follows [10, proof of Proposition 5.1.2]. By [10, Propos-
ition 4.4.3], we have QCG.M/ D CG.M/. Since M is the monolith of G, either
CG.M/D 1 orM �CG.M/. The latter case is excluded, because QZ.M/D 1. Therefore
QCG.M/ D 1. In particular, QZ.G/ D 1.

Let now A be an abelian compact locally normal subgroup of G. Let U be a compact
open subgroup of NG.A/. Upon replacing U by AU , we may assume that A is contained
in U . Since A\M is an abelian compact locally normal subgroup of M , and since M is
[A]-semisimple, we haveA\M D 1. In particular,A\M \U D 1. ThusA andM \U
are normal subgroups of U with trivial intersection, hence they commute. It follows that
A centralizes an open subgroup of M . Hence A � QCG.M/ D 1.

Two closed subgroupsK;L of a tdlc groupG are called locally equivalent ifK \L is
relatively open in both K and L. Following [11], we define the structure lattice LN .G/

of a tdlc group G as the set of local classes of closed locally normal subgroups of G. The
local class of a locally normal subgroup K will be denoted by ŒK�. Note that the group G
acts by conjugation on LN .G/. The structure lattice LN .G/ contains a canonical subset
LC.G/, called the centralizer lattice, consisting of the local classes of centralizers of
locally normal subgroups of G. It is shown in [11] that if G is [A]-semisimple, then the
map ? W LC.G/! LC.G/, ŒK�? D ŒCG.K/�, is well-defined and the operations

ŒK� ^ ŒL� D ŒK \ L� and ŒK� _ ŒL� D .ŒK�? ^ ŒL�?/?

turn LC.G/ into a Boolean algebra. In addition we have the following result. The Stone
space of a Boolean algebra A will be denoted by S.A/.

Theorem 3.15. If a tdlc group G is [A]-semisimple, then the centralizer lattice LC.G/

is a Boolean algebra, and the following hold:
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(i) If G acts faithfully on LC.G/, then theG-action on�G DS.LC.G// is continuous
and micro-supported.

(ii) Every totally disconnected compact G-space on which the G-action is faithful and
micro-supported is a G-factor of �G .

Proof. This follows from [11, Theorems 5.2 and 5.18] (see also [11, Theorem II]).

The following result addresses the case where the G-action on LC.G/ is not neces-
sarily faithful. We recall that every Boolean algebra A is naturally endowed with a partial
order �, defined by ˛ � ˇ if ˛ ^ ˇ D ˛ for all ˛; ˇ 2 A. The partial order � coincides
with the relation of inclusion of clopen subsets of the Stone space S.A/. Given a sub-
set H of a group G, we denote by C 2G.H/ the double centralizer of H in G, defined by
C 2G.H/ D CG.CG.H//.

Proposition 3.16. Let G be an [A]-semisimple tdlc group, D � G be a dense subgroup
and Y be a totally disconnected compact G-space. Assume that the D-action on Y is
micro-supported and faithful. Then the assignment ˛ 7! ŒC 2G.RistD.˛//� defines an inject-
ive order-preserving G-equivariant map from the Boolean algebra A of clopen subsets
of Y into the centralizer lattice LC.G/.

Proof. Let ˛ 2 A. Since the G-action on Y is continuous, the stabilizer G˛ is open in G.
In particular,D˛ DD \G˛ is dense in G˛ . SinceD˛ normalizes RistD.˛/, we infer that
RistD.˛/ is normalized by G˛ . In particular, it is a locally normal subgroup of G.

Therefore CG.RistD.˛// D CG.RistD.˛// is a closed locally normal subgroup as
well, and so is also C 2G.RistD.˛//. By the definition of LC.G/ (see [11, Definition 5.1]),
the local classes ŒCG.RistD.˛//� and ŒC 2G.RistD.˛//� both belong to LC.G/.

For ˛ 2 A, we set

f .˛/ WD ŒC 2G.RistD.˛//� 2 LC.G/:

We claim that if ˛ is non-empty, then f .˛/ is a non-zero element of LC.G/. If f .˛/D 0,
then C 2G.RistD.˛// is discrete, and thus contained in the quasi-centre QZ.G/, which is
trivial since G is [A]-semisimple by hypothesis. Since C 2G.RistD.˛// contains RistD.˛/,
we deduce that RistD.˛/ is trivial, hence ˛ D ; since the D-action on Y is micro-
supported. This proves the claim.

Let now ˛; ˇ 2 A with ˛ � ˇ. Then RistD.˛/ � RistD.ˇ/. Therefore we have
C 2G.RistD.˛//�C 2G.RistD.ˇ// and hence f .˛/� f .ˇ/. Hence the map f WA!LC.G/

is order-preserving. This implies in particular that f .ˇ \ 
/ � f .ˇ/ ^ f .
/ for all
ˇ; 
 2 A.

We next claim that if ˇ \ 
 D ;, then f .ˇ/ ^ f .
/ D 0. Indeed, if ˇ and 


are disjoint, then RistD.ˇ/ and RistD.
/ commute. Thus RistD.ˇ/ � CG.RistD.
//,
hence C 2G.RistD.ˇ// � CG.C 2G.RistD.
///. Thus the closed locally normal subgroups
C 2G.RistD.ˇ// and C 2G.RistD.
// commute. In view of [11, Theorem 3.19 (iii)], we
deduce that f .ˇ/ ^ f .
/ D 0.
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It remains to prove the injectivity of f . To this end, let ˛; ˇ 2 A with ˛ ¤ ˇ. Upon
swapping ˛ and ˇ, we may assume that ˛ 6� ˇ. Equivalently there exists a non-empty

 � ˛ in A which is disjoint from ˇ. Since ˇ \ 
 D ;, we have f .ˇ/ ^ f .
/ D 0 by
the previous claim. Since 
 � ˛ we have f .
/ � f .˛/. If we had f .˛/ D f .ˇ/, we
would have f .
/ D f .
/^ f .˛/ D f .
/^ f .ˇ/ D 0. Since 
 is non-empty, this would
contradict the claim established above. Thus f .˛/ ¤ f .ˇ/, as required.

3.5. Dynamical features of micro-supported actions of non-discrete groups

The dynamics of the action of a compactly generated [A]-semisimple group G on the
Stone space �G of the centralizer lattice of G has been studied in [12, Theorem 6.19]
under the assumption that the G-action on �G is faithful.

Recall from Proposition 3.14 that a compactly generated monolithic tdlc group G
whose monolith is compactly generated, non-compact and non-discrete is [A]-semi-
simple. In particular, the centralizer lattice LC.G/ is a Boolean algebra. Its Stone space,
denoted by �G , is thus a totally disconnected compact G-space.

Theorem 3.17. Let G be a compactly generated monolithic tdlc group, and assume that
the monolith M is compactly generated, non-compact and non-discrete. Let �G be the
Stone space of LC.G/.

(i) If LC.G/ is infinite, then the G-action on �G is faithful.

Moreover, any totally disconnected compact G-space X on which the G-action is faithful
and micro-supported is a factor of �G , and enjoys the following properties:

(ii) The M -action on X is micro-supported.

(iii) The G-action on X has a compressible clopen subset.

(iv) The G-action on X is minimal.

(v) Let S1; : : : ;Sd be the minimal non-trivial closed normal subgroups ofM . For each i ,
let Xi be the complement of the fixed-point-set of Si in X . Then Xi is clopen and
X D

Sd
iD1Xi is a clopen partition of X . Furthermore, the Si -action on Xi is min-

imal, strongly proximal, micro-supported, and has a compressible clopen subset. In
particular, M is not amenable.

Proof. Recall that the fact the Si exist and form a finite set is guaranteed by Proposi-
tion 3.11. Moreover, each Si is a non-discrete compactly generated topologically simple
group, and S1 : : : Sd is a dense subgroup of M .

We argue by contradiction and assume that the G-action on �G is not faithful. In
particular, M acts trivially on �G .

For each i , we define

!i WLC.G/! ¹0; 1º; ŒK� 7!

´
1 if Si \ CM .K/ D 1;

0 otherwise.
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SinceM acts trivially on LC.G/, for every ŒK�2LC.G/ the group QCM .K/ is equal
to CM .K/ and is a closed normal subgroup of M by [11, Theorem 3.19]. In particular,
since Si is a minimal normal subgroup ofM , either Si � CM .K/ or Si intersects CM .K/
trivially. So !i .ŒK�/ D 0 if and only if Si commutes with K, if and only if Si \K D 1
[11, Theorem 3.19].

We claim that !i is a homomorphism of Boolean algebras. The previous paragraph
implies that !i .ŒK�?/ D !i .ŒK�/?. Hence it is enough to check that for all ŒH �; ŒK� 2
LC.G/, !i .ŒH�^ ŒK�/D!i .ŒH \K�/ is equal to !i .ŒH�/^!i .ŒK�/. Clearly if !i .ŒH�/
D 0 or !i .ŒK�/ D 0, i.e. if Si commutes with H or Si commutes with K, then Si
commutes with H \ K and !i .ŒH \ K�/ D 0. Moreover, if !i .ŒH�/ D !i .ŒK�/ D 1,
then Si \H \K ¤ 1. Indeed, otherwise Si \H would commute with K by [11, The-
orem 3.19], and hence Si \ H would be abelian because by assumption Si commutes
with CG.K/ since !i .ŒK�/ D 1. Hence Si \H would be an abelian locally normal sub-
group of Si , which is non-trivial because!i .ŒH�/D 1. This contradicts [12, Theorem 5.3].
Hence Si \H \K ¤ 1, and !i .ŒH \K�/ D 1. This shows the claim.

The claim implies that !i represents a point in the Stone space of LC.G/, which
is�G . For ŒK�2LC.G/,K ¤ 1, the subgroupK cannot commute will all the Si , because
otherwise K would commute in M and M has trivial centralizer. Hence there exists i
such that !i .ŒK�/ D 1. This means that every non-empty clopen subset of �G contains
a point !i for some i . It follows that �G D ¹!1; : : : ; !d º. This implies that LC.G/ is
finite, a contradiction. Therefore, the G-action on �G is indeed faithful.

Let now X be a totally disconnected compactG-space on which theG-action is faith-
ful and micro-supported. By Theorem 3.15, the space X is a factor of �G . Equivalently,
the centralizer lattice LC.G/ contains a G-invariant Boolean subalgebra A whose Stone
dual is G-equivariantly homeomorphic to X . We may thus identify the clopen subsets
of X with the elements of A. Since the G-action on X is faithful, so is the action on A.

For every non-empty clopen ˛ of X , the rigid stabilizer RistG.˛/ is a non-discrete
closed locally normal subgroup of G. In view of Proposition 3.14, we may invoke [10,
Proposition 7.1.2 (i)] which ensures that RistG.˛/\M D RistM .˛/ is non-discrete. This
proves (ii).

By [10, Proposition 7.3.1], the G-action on X has a compressible clopen subset, thus
(iii) holds.

To prove (iv) and (v), we let Xi be the complement of the fixed-point-set of Si in X ,
for each i 2 ¹1; : : : ; dº. Since the G-action on X is faithful, so is the M -action, and
we deduce that Xi is non-empty. Moreover, M is [A]-semisimple by Proposition 3.14. In
view of (ii), we may therefore invoke [12, Theorem 6.19] for theM -action onX (the latter
result requires that M is locally C-stable, which is a consequence of [A]-semisimplicity
by [11, Proposition 6.17]). This ensures that the Xi are pairwise disjoint.

We next claim that for each i 2 ¹1; : : : ; dº, the Si -action on Xi is micro-supported
and has a compressible clopen subset. Indeed, applying [12, Lemma 6.11 and The-
orem 6.19 (i)] to the M -action on X , we obtain, for each i , a non-empty clopen ˛i � Xi
such that for every non-empty clopen ˇ in X , there exist i 2 ¹1; : : : ; dº and g 2M with
g˛i � ˇ.
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Let us now fix j 2 ¹1; : : : ; dº and a non-empty clopen ˇ contained in Xj . Notice that
ˇ \Xk D; for all k ¤ j . By the previous paragraph there exists an i 2 ¹1; : : : ; dº, a non-
empty clopen subset ˛i �Xi and g 2M with g˛i � ˇ. Since theM -action is continuous
and since the product S1 : : : Sd is dense in M , we may assume that g 2 S1 : : : Sd . Let
us write g D g1 : : : gd with gk 2 Sk . In particular, the elements gk pairwise commute.
Since ˇ \Xk D ; for all k ¤ j , it follows that ˇ is pointwise fixed by gk for all k ¤ j .
Therefore gj˛i � .

Q
k¤j g

�1
k
/ˇ D ˇ. This implies that i D j , thereby proving that j̨ is

a compressible clopen subset for the Sj -action on the closure Xj .
Notice that RistM .˛i / is a non-trivial closed locally normal subgroup of M . Using

[12, Theorem 6.19 (iii)], we deduce that RistSi
.˛i / is non-discrete. Since ˛i is a com-

pressible clopen subset for the Si -action on Xi , it follows that the Si -action on Xi is
micro-supported. This proves the claim.

Since Si is a compactly generated, non-discrete, topologically simple tdlc group, we
may invoke [12, Theorem J (ii)], which ensures that the Si -action on Xi is minimal and
strongly proximal. In particular, Si does not fix any point of Xi . Therefore Xi D Xi ,
confirming that Xi is clopen in X . Since the M -action on X is micro-supported by (iii),
and since M acts trivially on the open set X n

Sd
iD1 Xi , we deduce that X D

Sd
iD1 Xi .

Thus (v) holds.
We finally observe that the clopen subsetsXi are the minimal non-emptyM -invariant

closed subsets ofX . In particular, every non-emptyG-invariant closed subset containsXi
for some i . Since M is the monolith of G, the G-action by conjugation permutes the set
¹S1; : : : ; Sd º transitively. Therefore the G-action on X permutes the sets ¹X1; : : : ; Xd º
transitively. In view of (v), we deduce that (iv) holds.

Remark 3.18. We emphasize that the compact generation of the monolith is essential for
assertion (iv) in Theorem 3.17. A relevant example is provided by the groupGDNer.T /� ,
where T is the d -regular tree, d � 3, � is an end of T , and Ner.T / is the Neretin group
of T (which acts on @T ). The G-action on @T is faithful and micro-supported. Moreover,
the group G is monolithic, but its monolith is not compactly generated. The G-action
on @T has a compressible clopen subset, but it is not minimal as it fixes �.

4. Dense embeddings of groups with a micro-supported action

When � is a group acting on a topological space X , we will denote by �x the stabil-
izer of x 2 X in � , and by �0x the set of elements 
 2 � such that 
 fixes pointwise a
neighbourhood of x in X . Observe that �0x is a normal subgroup of �x .

4.1. The general setting

The setting of the current section will be the following:

� L is a locally compact group, and X is a compact L-space such that the action of L
on X is faithful, minimal and micro-supported.
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� ' W L! G is a continuous injective homomorphism from L into a second countable
tdlc group G such that '.L/ is dense in G.

We emphasize that while the groupG is typically non-discrete, the groupL is allowed
to be discrete. While the applications in §6.1–§6.3 only deal with the case where L is a
discrete group, the setting of §7 requires L to be non-discrete, whence this choice for the
current section. Notice that if L is generated by a subset S , then G is generated by '.S/
together with any neighbourhood of the identity because '.L/ is dense inG. In particular,
if L is compactly generated then so is G.

4.2. Construction of a URS in G

Let G be a locally compact group, and denote by Sub.G/ the space of closed subgroups
of G, endowed with the Chabauty topology. The space Sub.G/ is compact, and is met-
rizable if G is second countable. A closed minimal G-invariant subspace of Sub.G/ is
called a uniformly recurrent subgroup (URS) of G [17].

LetX be a compact space. Recall that a map WX! Sub.G/ is lower semicontinuous
if for every open subset U � G, the set of x 2 X such that  .x/ \ U ¤ ; is open in X .
This is equivalent to saying that for every net .xi / in X converging to x and such that the
net . .xi // converges to H , one has  .x/ � H .

In what follows we consider L; X; '; G as in the general setting. Observe that the
group L has a continuous conjugation action on Sub.G/ defined via '.

Lemma 4.1. For L; X; '; G as in the general setting, the map  W X ! Sub.G/,
x 7! '.L0x/, is lower semicontinuous and L-equivariant.

Proof. Let x 2 X and let U be an open subset of G such that  .x/ \ U ¤ ;. Then
'.L0x/\U ¤ ;, and if 
 2 L0x is such that '.
/ 2 U , then by definition of L0x there is an
open neighbourhood V of x in X on which 
 acts trivially. Then 
 2 L0y for every y 2 V ,
and it follows that '.L0y/ \ U ¤ ; for every y 2 V . This shows lower semicontinuity.
That  is L-equivariant follows from the definitions.

We denote by X' � X the set of points where the map x 7! '.L0x/ is continuous.
Since the groupG is second countable, the space Sub.G/ is metrizable, hence by a general
property of semicontinuity [25, Th. VII], it follows from Lemma 4.1 that X' is a dense
subset of X . Define

F'.X/ WD
®
.x; '.L0x// W x 2 X

¯
� X � Sub.G/;

E'.X/ WD
®
.x; '.L0x// W x 2 X'

¯
� F'.X/;

T';G.X/ WD
®
'.L0x/ W x 2 X

¯
and S';G.X/ WD

®
'.L0x/ W x 2 X'

¯
:

Note that L acts diagonally on X � Sub.G/, and F'.X/ and E'.X/ are closed and
L-invariant. In the following statement we denote by p1; p2 the projections from
X � Sub.G/ to the first and second factor. Recall that an extension � W Y ! X
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between minimal compact G-spaces is almost one-to-one if the set of y 2 Y such that
��1.�.y// D ¹yº is dense in Y . Note that every almost one-to-one extension is highly
proximal.

Proposition 4.2. The following hold:

(i) E'.X/ is the unique minimal closed L-invariant subset of F'.X/, and S';G.X/ is
the unique minimal closed G-invariant subset of T';G.X/. In particular, S';G.X/ is
a URS of G.

(ii) The extension p1 W E'.X/ ! X is almost one-to-one. Moreover, p2.E'.X// D
S';G.X/.

Proof. See [18, Theorem 2.3]. The only additional observation that is needed here is that
S';G.X/ is indeed G-invariant, but this is clear since S';G.X/ is L-invariant and L has
dense image in G.

4.3. Conditions ensuring that S';G.X/ is infinite

The goal of this section is to exhibit certain conditions ensuring that the space S';G.X/
constructed in Section 4.2 is not degenerate (i.e. not a finite set), and also conditions
ensuring that the G-action on S';G.X/ is faithful.

The following key lemma is the starting point of our discussion.

Lemma 4.3. Let � be a group with a faithful action on a Hausdorff space X . Let also
'W � ! G be an injective homomorphism to a locally compact group G. Let x 2 X
and let H be a subgroup of the centralizer CG.'.�0x//. If the closed subgroup J D
'.�0x/H � G is compactly generated, then there is a non-empty open subset V � X
such that '.Rist�.V // � B.J /.

Proof. Let Fx be the family of closed subsets of X not containing x. By definition,

�0x D
[
C2Fx

Rist�.C /:

Since '.�0x/H D J , we deduce that J belongs to the closure in Sub.J / of the set®
'.Rist�.C //H W C 2 Fx

¯
:

By hypothesis, the group J is compactly generated, and thus it admits a Chabauty neigh-
bourhood consisting of cocompact subgroups (see [4, VIII.5.3, Proposition 6]). Therefore
we may find C 2 Fx such that '.Rist�.C //H is cocompact in J . Let U be the comple-
ment of C in X . Since X is Hausdorff, we may find a non-empty open subset V � U
such that U n V is a neighbourhood of x. Then Rist�.V / centralizes Rist�.C / because
V and C are disjoint. Moreover, since H centralizes '.�0x/ by hypothesis, and since
'.Rist�.V // � '.�0x/, we deduce that '.Rist�.V // centralizes '.Rist�.C //H . Since the
latter is cocompact in J , it follows that '.Rist�.V // � B.J /.
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Proposition 4.4. Let L;X; '; G be as in the general setting, and assume that G is com-
pactly generated. Suppose also that the action of L on X has the property that for every
closed subgroup H � L such that the normalizer of H in L has finite index and there
exists x 2 X with L0x � H , the subgroup H must be cocompact in L.

If S';G.X/ is finite, then there exists a non-empty open subset V � X such that
'.RistL.V // � B.G/.

Proof. By assumption there exists a closed subgroup J � G such that NG.J / has finite
index in G and

S';G.X/ D ¹J; g1Jg
�1
1 ; : : : ; gnJg

�1
n º

is the conjugacy class of J inG. LetH D '�1.J /. By definition of S';G.X/we may find
x 2 X such that '.L0x/ D J , so in particular L0x � H . Moreover, the normalizer of H
in L has finite index in L, so it follows from our assumption that H must be cocompact
in L. Since L has dense image in G, this implies that '.H/ is cocompact in G. It follows
that J is also cocompact in G, so in particular J is compactly generated. The conclusion
follows from Lemma 4.3 using the fact that B.J / � B.G/ because J is cocompact in G.

Definition 4.5. A group L is just-non-virtually-nilpotent (j.n.v.n.) if L is not virtually
nilpotent and every proper quotient of L is virtually nilpotent.

Definition 4.6. The action of L on a minimal compact L-space X is strongly just-infinite
if for any distinct points x; y in X , the subgroup of L generated by L0x and L0y has finite
index in L.

Note that this condition implies that for every non-injective L-map X ! Y that is a
factor, the space Y must be finite. This explains the choice of terminology.

Proposition 4.7. LetL;X;';G be as in the general setting. Assume thatL is j.n.v.n., that
the action ofL onX is strongly just-infinite, and that the groupG is compactly generated.
If S';G.X/ is finite, then G is compact-by-discrete.

Proof. As L is j.n.v.n., it is infinite. Since the L-action on X is minimal and faithful,
everyL-orbit onX is infinite. Therefore, the hypothesis that theL-action onX is strongly
just-infinite implies that all the assumptions of Proposition 4.4 are satisfied. Therefore, if
S';G.X/ is finite, then Proposition 4.4 yields an element 
 2L such that '.
/2B.G/. Let
N Dhh'.
/iiG . ThusN is a compactly generated closed normal subgroup ofG contained
in B.G/. It follows from Theorem 3.2 that N admits a compact normal subgroup K such
that N=K is discrete and torsion-free abelian. In particular,K is characteristic, and hence
normal inG. SinceN \ '.L/ is non-trivial, the image of L inG=N is virtually nilpotent,
and hence G=N is residually discrete by Proposition 3.5. Using [8, Proposition 2.2], we
know that a compactly generated tdlc group that is discrete-by-¹residually discreteº must
be residually discrete, and hence compact-by-discrete by Proposition 3.6. Applying this
to G=K, we infer that G=K is compact-by-discrete. Therefore so is G, as desired.
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Proposition 4.8. Let L;X;';G be as in the general setting. Assume that L is j.n.v.n. and
that G is compactly generated, monolithic, with a non-discrete, non-compact, compactly
generated monolith M , and such that G=M is compact-by-discrete. Then the action of G
on S';G.X/ is faithful.

Proof. By Proposition 3.11, the set of minimal normal subgroups of M is finite and non-
empty. Its elements are denoted by S1; : : : ; Sd . Thus Si is a compactly generated, non-
discrete, topologically simple tdlc group. Moreover, we have B.M/ D 1.

Suppose the action ofG on S';G.X/ is not faithful. ThenM acts trivially on S';G.X/.
We fix a point x such that '.L0x/ belongs to S';G.X/. The subgroupM \ '.L0x/ is normal
in M because M normalizes '.L0x/. Therefore by minimality of S1; : : : ; Sd , for each i
we have either Si � '.L0x/ or Si \ '.L0x/ D 1. Let I be the set of those i 2 ¹1; : : : ; dº
such that Si \ '.L0x/ D 1, and set H D h

S
i2I Si i. Observe that H centralizes '.L0x/,

and M D S1 : : : Sd is entirely contained in J D '.L0x/H .
By hypothesis, the group G=M is compact-by-discrete. Since G is not discrete and

L has dense image in G, every discrete quotient of G is a proper quotient of L, and
hence is finitely generated virtually nilpotent. ThereforeG=M is compactly generated and
compact-by-¹discrete finitely generated virtually nilpotentº. It follows that every closed
subgroup of G=M is compactly generated. In particular, J=M is compactly generated,
and thus so is J sinceM is compactly generated. Lemma 4.3 therefore implies that B.J /
is non-trivial. Since B.M/ is trivial, we have B.J / \M D 1 so that B.J / � CG.M/.
It follows that CG.M/ is non-trivial. Since M is the monolith of G, we must have M �
CG.M/, so M is abelian. In particular, M is compact-by-discrete, and we have already
seen above that this is prevented by the hypotheses.

4.4. Existence of continuous extensions

The proof of the following proposition is inspired by [27, §4.1.3] (see also [30, Proposi-
tion 7.18]).

Proposition 4.9. Let L;X; '; G be as in the general setting, and assume that the action
of L on X is strongly just-infinite, and that S';G.X/ is infinite. Then the following hold:

(i) There exists an L-map  W S';G.X/! X , and  is almost one-to-one.

(ii) The action of L on X extends to a continuous G-action, and  W S';G.X/! X is a
G-map.

(iii) If the G-action on S';G.X/ is faithful then the G-action on X is faithful.

Proof. (i) For K 2 S';G.X/, we wish to define  .K/ to be the unique x 2 X such that
'.L0x/ � K. In order to see that  is well-defined, we have to show that such a point x
exists and is unique. Recall that there exists a dense subset of points K 2 S';G.X/ which
are of the form '.L0x/ for some x 2 X . So for these points the existence is clear, and the
general case where K is arbitrary follows by semicontinuity (Lemma 4.1). Suppose now
that there isK for which this point x is not unique. Then by the assumption that the action
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of L onX is strongly just-infinite and the fact that L has dense image inG, it follows that
K is actually a finite index subgroup of G. Hence K has a finite conjugacy class in G,
which contradicts the assumption that S';G.X/ is continuous. So x must be unique, and
 is well-defined.

By semicontinuity again, if .Kn/ converges to K in S';G.X/ and xn D  .Kn/ con-
verges to x, then '.L0x/�K. Since .K/ is the unique point with this property, it follows
that x D  .K/. Hence the map  is continuous. Note that  is clearly L-equivariant.

To show that  is almost one-to-one, denote by X' the dense Gı -set of points where
the map x 7! '.L0x/ is continuous (Proposition 4.2). Then we claim that  �1.¹xº/ D
¹'.L0x/º for all x in X' . Indeed, suppose that K is such that '.L0x/ � K. Since K is in
S';G.X/, we may find a net .xi / in X' such that '.L0xi

/ converges to K, and we may
assume that .xi / converges to some y in X . By semicontinuity '.L0y/ � K, so actually
y D x, and consequently K D '.L0x/ since x 2 X' . This proves the claim.

(ii) The Gelfand correspondence establishes a bijection between L-invariant C �-sub-
algebras of C.S';G.X// (the continuous complex valued functions on S';G.X/) and
L-equivariant factors of S';G.X/. The groupG acts on S';G.X/, and by density ofL inG
anyL-invariantC �-subalgebra ofC.S';G.X//must beG-invariant. Hence by duality, the
L-action onX extends to a continuousG-action, and  W S';G.X/!X isG-equivariant.

Finally, (iii) easily follows from the fact that  is almost one-to-one.

The following result follows from the combination of Propositions 4.8 and 4.9.

Corollary 4.10. Let L; X; '; G be as in the general setting. Assume that L is j.n.v.n.
and the action of L on X is strongly just-infinite. Assume also that G is compactly gen-
erated, monolithic, with a non-discrete, non-compact, compactly generated monolith M ,
and such thatG=M is compact-by-discrete. Then the L-action onX extends to a continu-
ous faithful G-action.

5. Commensurated subgroups and micro-supported actions

5.1. Schlichting completions

Let � be a group andƒ� � a commensurated subgroup. We denote by �==ƒ the Schlich-
ting completion of the pair .�; ƒ/, defined as the closure of the natural image of � in
the symmetric group Sym.�=ƒ/ endowed with the topology of pointwise convergence.
The Schlichting completion is a tdlc group. Notice moreover that if � is countable, then
Sym.�=ƒ/ is a Polish group, so that �==ƒ is Polish as well. Thus the Schlichting com-
pletion of any countable group is a second countable tdlc group. For more information on
this construction we refer to [38, 41, 42].

Clearly, every normal subgroup of � is commensurated. More generally, every sub-
group that is commensurate to a normal subgroup is commensurated. Such subgroups are
considered to be ‘trivial examples’ of commensurated subgroups. They are characterized
as follows.
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Lemma 5.1. Let � be a group and ƒ � � a commensurated subgroup. Then ƒ is com-
mensurate to a normal subgroup of � if and only if the Schlichting completion �==ƒ is
compact-by-discrete.

Proof. If �==ƒ is compact-by-discrete, i.e. �==ƒ has a compact open normal subgroup,
then the preimage of that subgroup in � is a normal subgroup that is commensurate
with ƒ.

Conversely, let N be a normal subgroup of � that is commensurate with ƒ. Denote
by 'W� ! �==ƒ the canonical homomorphism, whose image is dense. Then the closure
'.N / is a closed normal subgroup of �==ƒ that is commensurate with '.ƒ/. The latter
is a compact open subgroup, so that '.N / is compact and open as well. Thus �==ƒ is
compact-by-discrete.

Lemma 5.2. Let � be a finitely generated j.n.v.n. group. Let ƒ � � be a commensurated
subgroup which is not commensurate to a normal subgroup. Then the homomorphism
� ! �==ƒ is injective.

If in addition ƒ is not virtually contained in a normal subgroup of infinite index in � ,
then H D �==ƒ admits a non-discrete, compactly generated, just-non-compact quotient
group G, and the natural homomorphism 'W� ! G is injective with dense image.

Proof. By Lemma 5.1, the Schlichting completionH D�==ƒ is not compact-by-discrete.
Since � is finitely generated, H is compactly generated. If the canonical homomorphism
� ! H were not injective, then H would be virtually nilpotent, hence compact-by-
discrete in view of Proposition 3.5.

Since H is compactly generated, it has a closed normal subgroup N such that the
quotient G D H=N is just-non-compact (see [9, Proposition 5.2]). We denote by ' the
composite homomorphism � ! H ! G. By construction ' has dense image.

Assume now that ƒ is not virtually contained in a normal subgroup of infinite index
in � . We claim that G is non-discrete. Indeed, otherwise N would be open in H , and
hence its pre-image in � would be a normal subgroup of infinite index that contains a
finite index subgroup of ƒ.

Finally, we observe that the map ' is injective, because otherwise '.�/ would be
virtually nilpotent, and hence G would be virtually nilpotent as well. In view of Proposi-
tion 3.5, this implies that G is discrete, which is not the case.

Proposition 5.3. Let � be a j.n.v.n. group such that every normal subgroup of � is finitely
generated. Let ƒ � � be a commensurated subgroup which is not commensurate to a
normal subgroup of � .

Then H D �==ƒ has a closed normal subgroup such that the quotient group G satis-
fies all the conclusions of Theorem 3.13. Moreover, the natural homomorphism 'W�! G

is injective with dense image.

Proof. By Lemma 5.1, the Schlichting completionH D�==ƒ is not compact-by-discrete.
Since every normal subgroup of � is finitely generated, it follows that every open normal
subgroup of H is compactly generated. In particular, Res.H/ is compactly generated, by
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Corollary 3.8. Therefore, we may invoke Theorem 3.13 to build a monolithic quotient G
ofH with the required properties. The composite map 'W� !H ! G has dense image.
If ' were not injective, then G would be virtually nilpotent, hence compact-by-discrete,
which violates the conclusions of Theorem 3.13.

5.2. The main result

Theorem 1.1 from the introduction is a consequence of the following more comprehensive
statement.

Theorem 5.4. Let � be a finitely generated j.n.v.n. group, and let X be a compact �-
space such that the action of � on X is faithful, minimal and micro-supported. Assume
moreover that at least one of the following conditions holds:

(1) � has a commensurated subgroup ƒ that is of infinite index and that is not virtually
contained in a normal subgroup of infinite index of � .

(2) Every normal subgroup of � is finitely generated, and � has a commensurated sub-
group ƒ that is not commensurate to a normal subgroup.

Then the following assertions hold:

(i) The action of � on X is an almost boundary and has compressible open subsets.
Furthermore, � is monolithic, hence not residually finite.

(ii) There exists a compact �-space Y with Y �hp X such that the �-action on Y extends
to a continuous H -action, where H D �==ƒ, and the quotient group G D H=K of
H by the kernel of that action is monolithic with a non-discrete, non-amenable, com-
pactly generated monolithM . Furthermore,M coincides with Res.G/. In particular,
G=M is compact-by-discrete.

(iii) If in addition the �-action on X is strongly just-infinite, then one can take Y D X
in (ii).

Proof. We form the Schlichting completion H D �==ƒ, and we invoke Lemma 5.2 or
Proposition 5.3 depending on whether we are in situation (1) or (2). In either case, The-
orem 3.13 can be applied (in the just-non-compact case, see also Proposition 3.11), we
find a quotient G of H and an embedding 'W� ! G with dense image and such that G
is monolithic with a compactly generated, non-compact, non-discrete monolith M , and
G=M is compact-by-discrete.

Consider the space Y WD S';G.X/ constructed in Section 4.2. The group G satisfies
all the assumptions of Proposition 4.8, so the G-action on Y is faithful. Now consider
the �-action on E'.X/. The extension E'.X/ ! X is almost one-to-one by Proposi-
tion 4.2, and hence it is highly proximal. Since the �-action on X is micro-supported,
Proposition 2.3 implies that the �-action on E'.X/ is micro-supported. Since the �-
action on Y is also faithful (as the G-action is), it is micro-supported by Lemma 2.1.
Hence the G-action on Y is micro-supported. Since in addition G is monolithic with a
compactly generated, non-compact and non-discrete monolith, we have shown that all the
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assumptions of Theorem 3.17 are satisfied. The latter therefore implies that the action
of G on Y is an almost boundary and has compressible clopen subsets. Since � is dense
in G, it follows that the action of � on Y is also an almost boundary with compress-
ible clopen subsets. Now the �-spaces X and Y are highly proximally equivalent by
Theorem 2.7, and by Lemma 2.2 and Proposition 2.3 the property of being an almost
boundary with compressible open subsets is invariant under highly proximal equivalence.
Hence the space X also has this property. That the group � is monolithic then follows
from the double commutator lemma (see [12, Proposition I]). So we have shown that
(i) holds.

Since the action ofG on Y is faithful and micro-supported, by the double commutator
lemma again we see that for every non-trivial normal subgroup N , there exists a non-
empty clopen subset U � Y such that N � RistG.U /0. In particular, N has a non-trivial
intersection with the image of � . Therefore G=N is virtually nilpotent. In particular, if
N is closed, then G=N is residually discrete by Proposition 3.5, so that Res.G/ � N .
Since G is not residually discrete, we infer that the monolith M of G coincides with
Res.G/. In particular, G=M is compact-by-discrete in view of Proposition 3.7. ThatM is
not amenable follows from Theorem 3.17. So (ii) is proved.

Finally, if in addition the �-action on X is strongly just-infinite, then by Propos-
ition 4.9 the action of � on X extends to a G-action. Moreover, Proposition 4.9 (iii)
ensures that the G-action on X is faithful since the G-action on Y is faithful by (ii).
This shows (iii).

Theorem 5.4 has at least two possible directions of applications. The first one is when
the action of � on X is known not to satisfy conclusion (i). Then by the theorem, � does
not admit any commensurated subgroup as in (1) or (2). For example, we deduce the
following result. See §6.1 and §6.2 for other illustrations.

Corollary 5.5. Let � be a finitely generated j.n.v.n. group of intermediate growth, and
suppose that there exists a compact �-space X such that the action of � on X is faithful,
minimal and micro-supported. Then every commensurated subgroup of � is commensur-
ate to a normal subgroup.

Proof. By [39] every j.n.v.n. group � of intermediate growth has the property that all
normal subgroups of � are finitely generated. So the statement follows from the previous
theorem.

The second direction of application of Theorem 5.4 is when the group � does admit
commensurated subgroups as in the assumptions. Then conclusion (iii) of the theorem
tells us that the action of � on X extends to the associated Schlichting completions
(via a quotient satisfying additional properties). Examples where this happens are given
in §6.1.4.

Remark 5.6. In the setting of the above theorem, it is not true that all micro-supported
actions of � will extend to the Schlichting completion; see Remark 6.7. This illustrates
that the assumption in (iii) that the action is strongly just-infinite cannot be removed.
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6. Applications to discrete groups

In this section we apply the results of Sections 4 and 5 to several classes of groups admit-
ting a micro-supported action.

6.1. Topological full groups

6.1.1. Preliminaries. Ifƒ is a group acting on a compact spaceX , we denote by F.ƒ;X/
the associated topological full group. Recall that F.ƒ; X/ is the group of homeomorph-
isms g ofX such that for every x 2 X there exist a neighbourhood U of x and an element

 2 ƒ such that g.y/ D 
.y/ for every y 2 U .

Given a non-empty clopen subset U of X and elements 
1; : : : ; 
n 2 ƒ such that

1.U /; : : : ; 
n.U / are pairwise disjoint, there is an injective group homomorphism
Sym.n/! F.ƒ;X/, � 7! g� , where g� is defined by g� .x/D 
�.i/
�1i .x/ if x 2 
i .U /,
and g� .x/ D x if x …

S
i 
i .U /. The alternating full group A.ƒ; X/, introduced by

Nekrashevych [35], is the subgroup of F.ƒ; X/ generated by the images of the alternat-
ing groups Alt.n/ under all such homomorphisms.

The following is [35, Theorem 4.1] (see also [31]).

Theorem 6.1. Let ƒ Õ X be a minimal action on a Cantor space X . Then every non-
trivial subgroup of F.ƒ;X/ that is normalized by A.ƒ;X/ contains A.ƒ;X/. In particu-
lar, A.ƒ;X/ is simple and is contained in every non-trivial normal subgroup of F.ƒ;X/.

Recall that an action ƒ Õ X on a Cantor space X is expansive if there exist a com-
patible metric d and ı > 0 such that for every x ¤ y 2 X there exists 
 2 ƒ such that
d.
.x/; 
.y// � ı. For the following, see [35, Proposition 5.7 and Theorem 5.10].

Theorem 6.2. Letƒ be a finitely generated group, andƒ Õ X a minimal and expansive
action on a Cantor space X . Then the group A.ƒ;X/ is finitely generated.

6.1.2. Absence of commensurated subgroups. The goal of this subsection is to prove The-
orem 6.4. We will use the following lemma.

Lemma 6.3. LetƒÕX be a minimal action on a Cantor spaceX , and let � DA.ƒ;X/.
Then the �-action on X is minimal. Moreover, for all x; y 2 X with x ¤ y, we have˝
�0x ; �

0
y

˛
D � .

Proof. The minimality of the �-action follows from [35, Lemma 3.2]. For the second
statement, let H D

˝
�0x ; �

0
y

˛
, and let Ox be the �-orbit of x in X . We check that H

contains �0z for every z 2 Ox . That will imply that H contains the normal subgroup
generated by �0x , and hence that H D � because � is simple by Theorem 6.1.

So given z 2 Ox , we wish to show that H contains �0z . Clearly we may assume that
z is distinct from x and y, and it is enough to show that there exists g 2 H such that
g.x/ D z, because then �0z D g�

0
xg
�1 � H . If z0 is a point in Ox different from x; y; z,

one can find three disjoint clopen subsets Ux ; Uz ; Uz0 containing respectively x; z; z0 and
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not containing y, and elements 
1; 
2; 
3 2 ƒ such that 
1.Ux/ D Uz and 
1.x/ D z,

2.Uz/ D Uz0 and 
3.Uz0/ D Ux . The homeomorphism g of X that coincides on Ux ; Uz
and Uz0 respectively with 
1; 
2 and 
3 and which acts trivially outside Ux [ Uz [ Uz0

is an element of � by definition of the alternating full group, and by construction g acts
trivially on a neighbourhood of y. Hence g 2H , and g.x/D z, so the statement is proved.

Theorem 6.4. Letƒ be a finitely generated group, andƒ Õ X a minimal and expansive
action on a Cantor space X such that A.ƒ; X/ Õ X does not admit any compressible
open subset. Let � be a subgroup of F.ƒ; X/ that contains A.ƒ; X/. Then every com-
mensurated subgroup of � is either finite or contains A.ƒ;X/.

Proof. We first treat the case � D A.ƒ; X/. Recall that under the present assumptions,
� is a finitely generated simple group (Theorems 6.1 and 6.2), and the �-action on X
is minimal and strongly just-infinite by Lemma 6.3. Hence all the assumptions of The-
orem 5.4 are verified. Hence according to part (i) of that theorem, if � has a commensur-
ated subgroup that is of infinite index and not virtually contained in a normal subgroup of
infinite index, then � Õ X admits a compressible open subset. By our assumption this is
not the case. So � has no commensurated subgroup as above, and since � is simple this
is equivalent to saying that every commensurated subgroup of � is either finite or equal
to � .

We now consider an arbitrary subgroup � of F.ƒ; X/ that contains A.ƒ; X/. Sup-
pose that † is a commensurated subgroup of � that does not contain A.ƒ; X/. Then
†0 D †\A.ƒ;X/ is a proper commensurated subgroup of A.ƒ;X/, and hence is finite
according to the previous paragraph. Therefore since A.ƒ;X/ is normal in � , every ele-
ment of A.ƒ; X/ centralizes a finite index subgroup of †. Since A.ƒ; X/ is a finitely
generated group, it follows that the entire A.ƒ; X/ centralizes a finite index subgroup
of †. Since A.ƒ;X/ has trivial centralizer in F.ƒ;X/ by Theorem 6.1, the subgroup †
must be finite, as desired.

Note that Theorem 1.2 and Corollary 1.3 follow from Theorem 6.4. In the following
example we illustrate that these results fail if we remove one of the assumptions.

Example 6.5. Let ' denote the odometer on X WD Zp , i.e. the homeomorphism of Zp
defined by x 7! x C 1, and write ƒ D h'i. The topological full group F.ƒ; X/ is con-
sidered in detail in [21, Example 4.6]. It is an infinite group such that every finitely
generated subgroup is virtually abelian.

The action of ƒ on X is minimal but not expansive. If Tp is the p-regular rooted
tree naturally associated to Zp (the coset tree associated to the sequence of subgroups
.pZp; p2Zp; : : :/), then Aut.Tp/ is naturally a subgroup of Homeo.X/. The subgroup
† WD Aut.Tp/ \ F.ƒ; X/ of F.ƒ; X/ is easily seen to be infinite, of infinite index, and
commensurated in F.ƒ;X/; and†\A.ƒ;X/ is also infinite, of infinite index, and com-
mensurated in A.ƒ; X/. Hence this example shows that the expansivity of the action of
ƒ on X in Theorem 1.2 and Corollary 1.3 is an essential assumption.
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Now we remark that the action of F.ƒ; X/ is minimal and expansive, but the group
F.ƒ;X/ is not finitely generated. Since F.ƒ;X/ is equal to its own topological full group,
the previous paragraph also shows that Theorem 1.2 and Corollary 1.3 also fail without
the finite generation assumption on the original acting group.

6.1.3. Extension of the action to the ambient group. This subsection deals with the situ-
ation where there exist non-discrete tdlc groups into which the group A.ƒ; X/ embeds
densely. Examples of such groups are the Higman–Thompson groups, or the topological
full group associated with a one-sided shift of finite type (see Section 6.1.4).

Theorem 6.6. Letƒ be a finitely generated group, andƒ Õ X a minimal and expansive
action on a Cantor space X . Assume that G is a tdlc group into which A.ƒ;X/ embeds
as a dense subgroup. Then the action of A.ƒ;X/ on X extends to an action of G on X .

Proof. Clearly we may assume that G is not discrete. The group A.ƒ; X/ is finitely
generated by Theorem 6.2, soG is compactly generated. Moreover, A.ƒ;X/ is simple by
Theorem 6.1, hence G has no non-trivial discrete quotient. Therefore, by Proposition 3.4,
the group G has a topologically simple quotient Q, and A.ƒ; X/ embeds densely in Q.
Since the action of A.ƒ; X/ on X is strongly just-infinite by Lemma 6.3, we can apply
Corollary 4.10, which says that the action of A.ƒ;X/ extends to the groupQ. SinceQ is
a quotient of G, in particular we have shown that the action extends to an action of G.

6.1.4. Examples of dense embeddings of topological full groups. We denote by Vd;k the
Higman–Thompson group with parameters d � 2 and k � 1 acting on the Cantor space
Xd;k D¹1; : : : ;kº � ¹1; : : : ;dº

N by prefix replacement. We refer to [22] for a precise defin-
ition of these groups. Alternatively, Vd;k can be defined as the topological full group of a
certain one-sided shift of finite type [32]. In particular, Vd;k is equal to its own topological
full group.

The group Vd;k admits an embedding with dense image in a non-discrete tdlc group,
namely the group AAut.Td;k/ of almost-automorphisms of the quasi-regular rooted
tree Td;k [7]. In particular, Vd;k admits an infinite and infinite index commensurated sub-
group. This fact has been recently generalized by Waltraud Lederle [29], who showed that
more generally every topological full group associated with a one-sided shift of finite type
admits infinitely many pairwise non-commensurate commensurated subgroups.

The group Vd;k is well-known to be finitely generated and simple (see [22]), and it is
easy to see that its action on the Cantor Xd;k is strongly just-infinite. Hence Vd;k satisfies
all the assumptions of Theorem 5.4 (iii), so that for every dense embedding of Vd;k into a
tdlc group G, the action of Vd;k on Xd;k extends to G.

Remark 6.7. In the above situation, it is not true that every minimal and micro-supported
action of Vd;k extends to G, and hence the assumption in Theorem 5.4 (iii) that the action
is strongly just-infinite is necessary. For example, in the case of G D AAut.Td;2/ men-
tioned above (into which the group Vd;2 embeds densely), the group G admits a unique
minimal and micro-supported action. This follows from the fact that G and the group
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Aut.TdC1/ of automorphisms of the non-rooted regular tree of degree d C 1 have iso-
morphic open subgroups (and hence have the same centralizer lattice) together with the
fact that Aut.TdC1/ has a unique minimal and micro-supported action [12, Theorem B.2].
So the action of Vd;2 on Xd;2 is actually the unique minimal and micro-supported action
that extends to G.

6.2. Branch groups

Let T be a locally finite rooted tree, and � a group of automorphisms of T . We denote
by @T the boundary of T . Given a vertex v 2 T , we denote by Tv the subtree of T
that is, below v, and by @Tv the associated clopen subset in @T . Note that the �-action
on T extends to an action by homeomorphisms on @T . We will denote by Rist�.v/ WD
Rist�.@Tv/ the rigid stabilizer of v. For n � 1, we also denote by Rist�.n/ the rigid sta-
bilizer of level n, that is the subgroup generated by Rist�.v/ when v ranges over vertices
of level n. Recall that the action of � is branch if � acts transitively on each level of the
tree (or, equivalently, if � acts minimally on @T ) and if Rist�.n/ has finite index in � for
all n � 1.

We will invoke the following result of Grigorchuk [20].

Theorem 6.8. Let � � Aut.T / be a branch group, and N a non-trivial normal subgroup
of � . Then there exists a level n � 1 such that Rist�.n/0 � N . In particular, every proper
quotient of � is virtually abelian.

We now give the proof of Theorem 1.6 by applying Theorem 5.4.

Proof of Theorem 1.6. The group � is j.n.v.n. by Theorem 6.8. If T is a rooted tree on
which � has a faithful branch action, then the action of � on X D @T is faithful, minimal
and micro-supported. Since in addition every normal subgroup of � is finitely gener-
ated by Corollary A.5 of the appendix, it follows from part (2) of Theorem 5.4 that if
� had a commensurated subgroup that is not commensurate to a normal subgroup, then
conclusion (i) of the theorem would hold; which is clearly not the case here. So every
commensurated subgroup of � is commensurate to a normal subgroup, and the statement
is proved.

If � is a finitely generated just-infinite branch group, Theorem 1.6 says that every
commensurated subgroup of � is finite or of finite index. In this special case this result has
been proved by different means by Wesolek [45]. Hence Theorem 1.6 extends Wesolek’s
result to arbitrary finitely generated branch groups.

6.3. Groups acting on the circle

We denote by Homeo.S1/ the homeomorphism group of the circle S1, and by
HomeoC.S1/ the subgroup of index 2 consisting of orientation-preserving homeomor-
phisms. Given a subgroup � � Homeo.S1/, we denote by Aut�.S1/ the centralizer of �
in HomeoC.S1/. Recall the following well-known classification: either � has a finite orbit
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in S1; or � admits an exceptional minimal set (i.e. there exists a unique closed non-empty
minimal �-invariant subset K � S1, and K is homeomorphic to a Cantor set); or � acts
minimally on S1. See [15, Proposition 5.6]. Moreover, for minimal actions we have the
following result (see [15, §5.2]).

Theorem 6.9. Assume that � � HomeoC.S1/ acts minimally on S1. Then either
Aut�.S1/ is infinite and � is conjugate to a group of rotations, or Aut�.S1/ is a finite
cyclic group, and the action of � on the topological circle Aut�.S1/ n S1 is proximal.

We will use the following lemma.

Lemma 6.10. Let � be a subgroup of HomeoC.S1/ that is minimal and not conjugate
to a group of rotations, and let ƒ be an infinite commensurated subgroup of � . Then the
action of ƒ on S1 is minimal.

Proof. We have to show that ƒ cannot have a finite orbit or an exceptional minimal set.
Upon passing to the action on Aut�.S1/ n S1, by Theorem 6.9 we may assume that the
action of � on S1 is proximal. Note that here this is equivalent to saying that every proper
closed subset is compressible.

Suppose that ƒ has a finite orbit in S1. Then upon passing to a finite index subgroup,
we may assume that the set F of ƒ-fixed points is non-empty. Note that F is not the
entire circle since ƒ is infinite. Consider the action of ƒ on a ƒ-invariant open interval
in the complement of F . By considering powers of a suitable element, we see that there
exists a non-empty open interval I such that every finite index subgroup ofƒ contains an
element � such that �.I / and I are disjoint. Fix such an I . By minimality and proximality
of the �-action, there is 
 2 � such that 
.F / � I . It follows that ƒ \ 
ƒ
�1 is a finite
index subgroup ofƒ that fixes 
.F /� I , and we obtain a contradiction with the definition
of I .

Suppose now that ƒ has an exceptional minimal set K. Again by minimality and
proximality, we can find 
 2 � such that 
.K/ lies in a connected component J of the
complement of K in S1. Then the subgroup ƒ \ 
ƒ
�1 stabilizes K and 
.K/. Hence
ƒ\ 
ƒ
�1 stabilizes J , and therefore cannot be of finite index in � , a contradiction.

Whenever � is a subgroup of Homeo.S1/, we denote by �0 the subgroup of � gener-
ated by the �0x , x 2 S1. Equivalently, �0 is the subgroup of � generated by the elements
that fix pointwise an open interval in S1.

Proposition 6.11. Let � be a subgroup of HomeoC.S1/ that is minimal and micro-
supported. Then � is monolithic with monolith M D Œ�0; �0�, and M is simple.

Proof. Since the action of � on the circle is micro-supported, the group Aut�.S1/ must
be trivial, and hence the action of � is proximal by Theorem 6.9. Since here proximality
is equivalent to the fact that every proper closed subset is compressible, the statement
follows from a general result about such actions [26, Proposition 4.6].

We are now ready to prove Theorem 1.7 from the introduction.
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Proof of Theorem 1.7. First observe that since the action of � on the circle is micro-
supported, the group Aut�.S1/ must be trivial, and hence the action of � is proximal
by Theorem 6.9.

Suppose that ' W � ! G is a dense embedding of � into a tdlc group G. We aim to
show that G is discrete. Upon passing to a subgroup of index at most 2, we may assume
that � acts on S1 preserving orientation. We argue by contradiction and assume that G is
not discrete. Let U be a compact open subgroup ofG, andƒD '�1.U /. The subgroup U
is an infinite commensurated subgroup of � , and hence acts minimally on the circle by
Lemma 6.10. Consider the space E'.S1/ and S';G.S1/ constructed in Section 4.2. Since
the extension E'.S1/! S1 is almost one-to-one by Proposition 4.2, ƒ also acts minim-
ally on E'.S1/, and hence also on S';G.S1/. Therefore S';G.S1/ is a compact G-space
on which every compact open subgroup of G acts minimally. This is possible only if
S';G.S1/ is a point, so S';G.S1/ D ¹N º for some closed normal subgroup N of G. By
definition of S';G.S1/, there is a dense subset X' � S1 such that '.�0x/ D N for every
x 2 X' . Now if z 2 S1 is arbitrary and 
 2 �0z , then by density we can find x 2 X' such
that 
 2 �0x . Hence N contains '.�0/, and so N D '.�0/. Since �0 has finite index
in � by assumption, it follows that N has finite index in G, and N is compactly gen-
erated. According to Lemma 4.3 we can find an open interval I such that '.Rist�.I //
lies in B.G/. By proximality of the �-action and since B.G/ is a normal subgroup of G,
it follows that '.Rist�.J // lies in B.G/ for every open interval J , i.e. '.�0/ � B.G/.
Since in addition B.G/ is a closed subgroup of G by Theorem 3.3 since G is compactly
generated, it follows that B.G/ is a finite index open subgroup of G. So by Theorem 3.2,
G admits a compact open normal subgroup K. Consider the subgroup '�1.K/. It is a
non-trivial normal subgroup of � , and hence contains the monolith M of � , and M is
simple by Proposition 6.11. Since no simple group can embed into a profinite group, we
have obtained a contradiction.

Now let ƒ be a commensurated subgroup of � , and assume for a contradiction that
ƒ is not commensurate to a normal subgroup of � . Since �0 has finite index in � by
assumption, every proper quotient of � is virtually abelian by Proposition 6.11. Hence by
Lemma 5.2 the homomorphism � ! �==ƒ is injective. But we have seen in the previous
paragraph that this implies that �==ƒ is discrete, so we have obtained a contradiction. So
ƒ must be commensurate to a normal subgroup of � , and the statement is proved.

Example 6.12. Fix two integers `; k � 1. Consider some integers ni � 2, and write
n D .n1; : : : ; nk/. Let P be the multiplicative group of RC>0 generated by n1; : : : ; nk ,
and denote by A D ZŒ1=n1; : : : ; 1=nk � the ring of n-adic rationals, i.e. rational numbers
whose denominator is in P . Denote by T .`; A; P / the group of piecewise linear homeo-
morphisms of R=`Z with finitely many breakpoints, all in A, with slopes in P , and which
preserve the n-adic rationals. For ` D k D 1 and n1 D 2, the group T .1;ZŒ1=2�; 2Z/ is
Thompson’s group T .

If we write � D T .`; A; P /, the quotient �=�0 is finite, and was described in [43,
Theorem 5.2 and Lemma 5.4]. Hence Theorem 1.7 applies to this family of groups. In the
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case `D kD 1 and n1D 2, we recover the fact from [28] that every proper commensurated
subgroup of Thompson’s group T is finite.

7. Dense embeddings between tdlc groups

In this final section, we apply the results of this paper to the situation where 'WH ! G

is a continuous homomorphism with dense image and G;H are both non-discrete tdlc
groups. General results on dense embeddings into such topologically simple groups have
been established in [10]. We start by recalling some terminology.

7.1. Robustly monolithic groups

Following [10], we say that a tdlc group G is expansive if there exists a compact open
subgroup U � G such that

T
g2G gUg

�1 D 1. When G is compactly generated, this is
equivalent to asking that G admits a Cayley–Abels graph on which it acts faithfully. We
say thatG is regionally expansive ifG contains a compactly generated open subgroup that
is expansive. Notice that any such group is first countable. We will also use the following
terminology from [10].

Definition 7.1. We say that a tdlc group G is robustly monolithic if G is monolithic, and
its monolith is non-discrete, regionally expansive and topologically simple. The class of
robustly monolithic tdlc groups is denoted by R.

By definition a group in R is necessarily non-discrete. It turns out that a group in R is
itself regionally expansive [10, Proposition 5.1.2], and hence in particular first countable.

Notice the inclusion Std � R, where Std is the class of compactly generated tdlc
groups that are non-discrete and topologically simple. The main motivation to introduce
the class R is provided by [10, Theorem 1.1.2], which ensures the class R is stable under
taking dense locally compact subgroups. More precisely, given a continuous injective
homomorphism 'WH ! G of tdlc groups with dense image such that H is non-discrete
and G 2 R, we have H 2 R. In particular, every non-discrete dense locally compact
subgroup of a group in Std belongs to R (but it may fail to be in Std).

We recall the following result [10, Theorem 1.2.5].

Theorem 7.2. Every group G 2 R is [A]-semisimple.

The following observation will be used in the next subsections.

Proposition 7.3. Every group G 2 R satisfies B.G/ D 1.

Proof. Suppose first that G is compactly generated. In that case B.G/ is a closed sub-
group of G (Theorem 3.3). If B.G/ is non-trivial, then B.G/ contains the monolith M
of G, and it follows from Theorem 3.2 that every closed compactly generated subgroup
ofM is compact-by-discrete. But by the definition of the class R, we haveM 2R, so by
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[10, Theorem 1.1.3] the group M contains a compactly generated open subgroup O such
that O 2 R. Such a subgroup O cannot be compact-by-discrete, which is absurd.

In the general case, we invoke again [10, Theorem 1.1.3], which provides a compactly
generated open subgroup O of G such that O 2 R. By the previous paragraph, B.O/ is
trivial, so B.G/ intersects O trivially. Hence B.G/ is a discrete normal subgroup of G,
which must therefore be trivial since G has trivial quasi-centre by Theorem 7.2.

7.2. �G as a maximal highly proximal extension

As a consequence of Theorem 7.2, the centralizer lattice LC.G/ is a Boolean algebra, and
its Stone space �G satisfies the universal property from Theorem 3.15. That universal
property implies in particular that if X is a totally disconnected compact G-space on
which the G-action is faithful and micro-supported, then that G-action on X is minimal
and strongly proximal. In this section we highlight additional features of theG-space�G ,
showing in particular that its universal property holds among all faithful micro-supported
compact G-spaces, not only the totally disconnected ones. We start with the following.

Proposition 7.4. Let G 2 R and let X be a compact G-space. If the G-action on X is
faithful and micro-supported, then the Mon.G/-action is micro-supported and minimal.
In particular, the G-action is minimal.

Proof. We first claim that the action of the monolith M D Mon.G/ of G on X is also
micro-supported. Indeed, otherwise we can find a non-empty open subset V of X such
that M \ RistG.V / D RistM .V / is trivial. Let W � V be a non-empty open subset with
W � V . Then the set ¹g 2 G j gW � V º is an identity neighbourhood in G. Therefore,
it contains a compact open subgroup U of G. Set V 0 D

S
u2U uW . Hence V 0 is a U -

invariant non-empty open subset of X which is entirely contained in V . It follows that
RistG.V 0/ is normalized by U , hence it is a locally normal subgroup of G. Moreover, it
is non-trivial since the G-action is micro-supported, and the intersection M \ RistG.V 0/
is trivial since V 0 � V and RistM .V / is trivial. It follows that M and RistG.V 0/ are
two locally normal subgroups of G that intersect trivially. Hence they commute by [11,
Theorem 3.19 (iii)]. In particular, CG.M/ is a non-trivial normal subgroup of G, and
hence M � CG.M/. So M is abelian, contradicting the hypothesis that G 2 R. This
proves the claim.

In view of the claim, we may assume without loss of generality that M D G, i.e.
G is topologically simple. By [10, Theorem 1.1.3], we can find a compactly generated
open subgroup O of G such that O 2 R. As above, if the O-action on X were not
micro-supported, we could find a locally normal subgroup of G of the form RistG.V /
that intersects O trivially. In particular, RistG.V / would be discrete, and hence contained
in QZ.G/ by [11, Lemma 3.2]. Since QZ.G/ is trivial by Theorem 7.2, we infer that
RistG.V / is also trivial, a contradiction. Hence the O-action on X is micro-supported.

Suppose for a contradiction that there exists x 2 X such that the orbit closure Y of
x is a proper subset of X . Then RistG.X n Y / is a non-trivial closed normal subgroup
of G, and hence RistG.X n Y / D G. We infer that G acts trivially on Y , and hence G
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fixes x. The subgroup G0x is therefore a non-trivial normal subgroup of G, and hence G0x
is dense in G. Since O is open, it follows that O0x D G

0
x \ O is dense in O . Since O is

compactly generated and its action on X is micro-supported, we may apply Lemma 4.3
to the group O (with ' W O ! O the identity and H the trivial subgroup) to deduce in
particular that B.O/ is non-trivial. This contradicts Proposition 7.3, which finishes the
proof.

The following result refines the universal property of �G . The notions of maximal
highly proximal extension and highly proximal equivalence have been defined in Sec-
tion 2.

Theorem 7.5. LetG 2R. Then all faithful, micro-supported compactG-spaces are min-
imal and highly proximally equivalent. Their common maximal highly proximal extension
is �G .

Proof. Let X be a compact G-space on which the G-action is faithful and micro-suppor-
ted, and let X� be the maximal highly proximal extension of X . We shall prove that X�

is isomorphic to �G .
By Proposition 7.4, the G-action on X is minimal. Hence the the G-action on X� is

minimal, and it is micro-supported by Proposition 2.3. Moreover, X� is totally discon-
nected by Proposition 2.5. Since the G-action on X� is also faithful, we may apply The-
orem 3.15, which ensures that there exists a factorG-map � W�G ! X�. By Lemma 2.4,
� W �G ! X� is necessarily highly proximal. Since X� is by definition the maximal
highly proximal extension of X , the map � W �G ! X� must be an isomorphism.

Combining the results above with [10, Theorem 7.3.3], we obtain the following.

Corollary 7.6. Let G 2 R and let X be a compact G-space on which the G-action is
faithful and micro-supported. Then the Mon.G/-action .hence also the G-action/ on X
is micro-supported, minimal and strongly proximal. Moreover, it has a compressible open
set.

Proof. By Proposition 7.4, the Mon.G/-space X is minimal and micro-supported. By
Theorem 7.5, there is a factor G-map �G ! X which is highly proximal. By [10, The-
orem 7.3.3], the Mon.G/-action on �G is minimal, strongly proximal and has a com-
pressible open set. The required conclusions now follow from Proposition 2.3, keeping in
mind that strong proximality is inherited by factors.

7.3. Behavior of �G with respect to dense embeddings

Theorem 7.7. Let G;H 2 R and 'WH ! G be a continuous injective homomorphism
with dense image, and assume that G is compactly generated. Suppose in addition that
H=Mon.H/ is compact, or that G=Mon.G/ is compact. If �H is non-trivial, then the
H -action on �G is faithful and micro-supported, and there exists an H -map �H ! �G
that is a highly proximal extension.
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Proof. Since �H is non-trivial, it follows from [10, Proposition 7.2.3] that the H -action
on �H is faithful. Hence by Theorem 3.15 it is micro-supported, and by [10, The-
orem 1.2.6] it is minimal and strongly proximal. Since G is second countable, the
conditions from Section 4.1 are thus fulfilled.

Consider the spaces E'.�H / and Y WD S';G.�H / from Section 4.2. Recall that
E'.�H / is an almost one-to-one extension of �H by Proposition 4.2. Since �H admits
no non-trivial highly proximal extension by Theorem 7.5, it follows that the map from
E'.�H / to �H is actually an isomorphism and that Y is a factor of �H .

We claim that theH -action on Y is faithful. Suppose it is not. Then theG-action on Y
is not faithful either and the subgroupN D '.Mon.H//�G acts trivially. IfH=Mon.H/
is compact then G=N is compact since H is dense in G, and if G=Mon.G/ is compact
then G=N is also compact since N contains Mon.G/. Hence in both situations the G-
action on Y factors through a compact group. On the other hand, recall that the H -action
on �H is strongly proximal. Since strong proximality passes to factors, the H -action on
Y is strongly proximal. Since the only strongly proximal action of a compact group is the
trivial action, Y is a singleton. In other words, J D '.H 0

x / is a normal subgroup of G for
all x 2 �H .

In the case where G=Mon.G/ is compact, every non-trivial closed normal subgroup
of G is cocompact, so in particular compactly generated. Hence in this situation we can
apply Lemma 4.3, which ensures that B.J / � B.G/ is non-trivial. We derive a contra-
diction as the hypothesis that G 2 R implies that B.G/ is trivial (otherwise by the same
argument as in the proof of Proposition 4.7, we would obtain a closed normal subgroup
of G that is compact-by-discrete, which is impossible here). Hence it only remains to
obtain a contradiction when H=Mon.H/ is compact. Let T � H be a non-trivial closed
subgroup whose normalizer NH .T / is of finite index. Then NH .T / contains an open
normal subgroup of H , and hence Mon.H/ � NH .T /. Thus T and Mon.H/ normalize
each other. In particular, T \Mon.H/ is a closed normal subgroup of Mon.H/. Since
the latter is topologically simple, with a trivial centralizer inH , it follows that Mon.H/ is
contained in T , and hence T is cocompact in H . Hence we may invoke Proposition 4.4,
and again since B.G/ is trivial we have reached a contradiction. Consequently, the H -
action on Y is faithful, and by Lemma 2.1 it is also micro-supported. In particular, the
G-action on Y is micro-supported as well.

We claim that the G-action on Y is also faithful. According to the previous para-
graph, we are in a position to apply Proposition 3.16, which provides a G-equivariant
order-preserving injective map f WA ! LC.G/, where A is the Boolean algebra of
clopen subsets of Y . If the G-action on Y were not faithful, then Mon.G/ would act
trivially on Y , hence also on f .A/. On the other hand, by [10, Proposition 7.2.3], the
only Mon.G/-fixed points in LC.G/ are the trivial ones 0 and1, a contradiction. This
proves the claim.

We may now invoke Theorem 7.5 to deduce that there is a G-map �G ! Y that
is a highly proximal extension. Since the H -action on Y is micro-supported, by Pro-
position 2.3 the H -action on �G is also micro-supported, and the statement follows by
applying Theorem 7.5 again.
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Recall that if K is a compact subgroup of a tdlc group G, the commensurator
CommG.K/ carries a unique tdlc group topology such that the inclusion map K !
CommG.K/ is continuous and open (see for instance [12, Lemma 5.13]). We denote
by G.K/ the group CommG.K/ endowed with that topology.

Combining the above theorem with a result from [10], we derive the following con-
sequence.

Corollary 7.8. Let G 2 Std and K � G be an infinite compact subgroup. Assume that
one of the following conditions holds:

(1) K is locally normal and CommG.K/ D G.

(2) K is a pro-p Sylow subgroup of some compact open subgroup ofG, for some prime p.

Then there exists a G.K/-map �G.K/
! �G that is a highly proximal extension.

Proof. If (1) holds, we have CommG.K/ D G as abstract groups. If (2) holds, we know
from [37, Theorem 1.2] that CommG.K/ is dense in G. In either case by [10, The-
orem 1.1.2], we have G.K/ 2 R.

Observe that LC.K/ D LC.G.K//. Clearly there is nothing to prove if LC.G/ and
LC.G.K// are both trivial. Assume first that LC.G/ is non-trivial. If (1) holds, then the
action of G.K/ on �G is faithful and micro-supported because G.K/ D G as abstract
groups. If (2) holds then the same is true according to [10, Theorem 8.4.1]. Hence in
either case the statement follows from Theorem 7.5. Conversely, if LC.K/ is non-trivial,
then we are in a position to apply Theorem 7.7 since G lies in Std, which gives the
statement.

It follows in particular that if G 2 Std is of atomic type in the terminology of [12,
Theorem F], then every locally normal subgroup K of G has a trivial centralizer lattice.
Indeed, by [12, Theorem F], if the group G is of atomic type, then its action on the struc-
ture lattice LN .G/ is trivial. This implies that every compact locally normal subgroup
K is commensurated in G, and the centralizer lattice LC.G/ is trivial (since otherwise
G would act non-trivially, hence faithfully, on LC.G/ by [12, Theorem J]; its action on
LN .G/ is thus a fortiori faithful). Hence by the above theorem LC.K/ is trivial.

Dominik Francoeur
Appendix A. Normal subgroups of finitely generated branch groups are finitely

generated

Our goal is to prove that every normal subgroup of a finitely generated branch group is
finitely generated (see Corollary A.5). We begin with a lemma, which is a variation of
what is sometimes known as the double commutator lemma. This result has appeared
in various forms and degrees of generality over the years. It states that for every non-
trivial normal subgroup N of a group G of homeomorphisms of a Hausdorff space X ,
there exists a non-empty open subset U � X such that Rist0G.U / � N , where Rist0G.U /
is the derived subgroup of the rigid stabilizer RistG.U /. In the following lemma, we
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prove that under some stronger conditions on the action of G, we can find in N not only
Rist0G.U /, but a finitely generated subgroup containing it. As the proof involves taking
three commutators instead of the usual two, it was suggested to us to name it the triple
commutator lemma.

Lemma A.1 (Triple commutator lemma). LetG be a group with a micro-supported faith-
ful action by homeomorphisms on a Hausdorff spaceX . Suppose that there exists a baseB
for the topology onX such that for every open subsetU 2B , the rigid stabilizer RistG.U /
is finitely generated. Then, for every non-trivial normal subgroup N E G, there exists
a non-empty open subset U 2 B and a finitely generated subgroup H � N such that
Rist0G.U / � H � N .

Proof. Let g 2 N be a non-trivial element of N . Since the action of G on X is faithful,
there exists an open subset V � X such that gV ¤ V . Since X is Hausdorff, replacing V
by a smaller open subset if necessary, we can assume that gV \ V D ;.

As the action ofG onX is micro-supported, there must exist an element t2RistG.gV /
and an open subset W � gV such that tW \W D ;. Let us choose a non-empty basic
open subset U 2 B contained in g�1W . Then U; gU and tgU are three pairwise disjoint
open subsets of X .

By our hypothesis, RistG.U / is finitely generated. Let ¹r1; : : : ; rnº be a finite sym-
metric generating set for RistG.U /, and let H � G be the subgroup generated by

¹Œg; r�11 �; : : : ; Œg; r�1n �º [ ¹Œtgt�1; r�11 �; : : : ; Œtgt�1; r�1n �º:

The fact that N is normal implies directly that H � N . We will now show that Rist0G.U /
� H .

Let r 2 RistG.U / be arbitrary. Since ¹r1; : : : ; rnº is a symmetric generating set for
RistG.U /, there exist 1 � i1; : : : ; ik � n such that r D ri1 : : : rik . For 1 � i � n, we
have Œg; r�1i � D .gr�1i g�1/ri with ri 2 RistG.U / and gr�1i g�1 2 RistG.gU /. Since U
and gU are disjoint open subsets of X , the elements of RistG.U / commute with those of
RistG.gU /. Thus,

Œg; r�1� D gr�1g�1r D Œg; r�1i1 � : : : Œg; r
�1
ik
� 2 H:

Using the same notation, we also have, for 1 � i � n,

Œtgt�1; r�1i � D .tgt�1r�1i tg�1t�1/ri D ..tg/r
�1
i .tg/�1/ri ;

where the last equality comes from the fact that t and ri commute, since t 2 RistG.gV /
and ri 2RistG.U /�RistG.V /, with V \ gV D;. Note that .tg/r�1i .tg/�1 2RistG.tgU /
and ri 2RistG.U /. SinceU \ tgU D;, elements of RistG.U / and RistG.tgU / commute.
Therefore, as above, we have

Œtg; r�1� D .tg/r�1.tg/�1r D Œtgt�1; r�1i1 � : : : Œtgt
�1; r�1ik � 2 H:

It follows that for all r; s 2 RistG.U /, we have�
Œg; r�1�; Œtg; s�1�

�
D Œ.gr�1g�1/r; ..tg/s�1.tg/�1/s� 2 H:
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However, since gr�1g�1 2 RistG.gU / and .tg/s�1.tg/�1 2 RistG.tgU /, using the fact
that U; gU and tgU are pairwise disjoint sets we find that gr�1g�1 commutes with r , s
and .tg/s�1.tg/�1, and also .tg/s�1.tg/�1 commutes with r , s and gr�1g�1. It follows
that �

Œg; r�1�; Œtg; s�1�
�
D Œr; s�;

and so Œr; s� 2H . The result follows immediately from the fact that Rist0G.U / is generated
by elements of the form Œr; s� with r; s 2 RistG.U /.

Using this lemma, we can conclude that every normal subgroup of a finitely generated
branch group is itself finitely generated. In fact, we will prove a slightly more general
result. Let us first recall a few definitions.

Definition A.2. A group G is said to be Noetherian, or to satisfy the maximum condition
on subgroups, if every subgroup of G is finitely generated.

Definition A.3. Let T be a spherically homogeneous locally finite rooted tree T . A sub-
group G � Aut.T / of the group of automorphisms of T is said to be a weakly branch
group if it acts transitively on each level of the tree and if for every vertex v 2 T , the rigid
stabilizer RistG.v/ is non-trivial.

Theorem A.4. Let G be a finitely generated weakly branch group acting on a spher-
ically homogeneous locally finite rooted tree T . If RistG.n/ is finitely generated and if
G=Rist0G.n/ is Noetherian for all n 2 N, then every normal subgroup N E G is finitely
generated.

Proof. If N D 1, then it is obviously finitely generated. Let us now assume that N ¤ 1.
Since G is a weakly branch group, its action on the boundary of the rooted tree T ,

which is homeomorphic to the Cantor set, is micro-supported. If we assume that RistG.n/
is finitely generated for all n 2 N, then it satisfies the hypotheses of Lemma A.1. There-
fore, there must exist a vertex v 2 T on level n 2 N and a finitely generated subgroup
H � N such that Rist0G.v/ � H . Let ¹t1; : : : ; tkº be a transversal of StG.v/, so that
Rist0G.n/ D

Qk
iD1 Rist0G.tiv/. Then the subgroup generated by

Sk
iD1 tiHt

�1
i is a finitely

generated subgroup of N , since H is finitely generated and N is normal, and it contains
Rist0G.n/, since it contains ti Rist0G.v/t

�1
i D Rist0G.tiv/ for all 1 � i � k.

Let us consider the quotientG=Rist0G.n/. By assumption, every subgroup of this group
is finitely generated. In particular, N=Rist0G.n/ is finitely generated. Since Rist0G.n/ is
contained in a finitely generated subgroup of N , we conclude that N itself must also be
finitely generated.

Corollary A.5. Every normal subgroup of a finitely generated branch group is finitely
generated.

Proof. It suffices to check that a finitely generated branch group G satisfies all the hypo-
theses of Theorem A.4. Such a group is obviously weakly branch. Furthermore, for all
n 2 N, RistG.n/ is of finite index in G by definition, and thus is finitely generated. The
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only thing left to verify is that G=Rist0G.n/ is Noetherian for all n 2 N. However, since
RistG.n/ is of finite index in G, the group G=Rist0G.n/ is a finitely generated virtually
abelian group, and it is well-known that such a group is Noetherian.
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