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Abstract. We study the multiplier algebras A.H / obtained as the closure of the polynomials on
certain reproducing kernel Hilbert spaces H on the ball Bd of Cd . Our results apply, in particular,
to the Drury–Arveson space, the Dirichlet space and the Hardy space on the ball. We first obtain a
complete description of the dual and second dual spaces of A.H / in terms of the complementary
bands of Henkin and totally singular measures for Mult.H /. This is applied to obtain several defin-
itive results in interpolation. In particular, we establish a sharp peak interpolation result for compact
Mult.H /-totally null sets as well as a Pick and peak interpolation theorem. Conversely, we show
that a mere interpolation set is Mult.H /-totally null.

Keywords. Reproducing kernel Hilbert spaces, multiplier algebra, Henkin measure, totally null
sets, peak interpolation, Pick-peak interpolation, zero sets

1. Introduction

Classical peak interpolation is concerned with finding a disc algebra function that solves
an interpolation problem on the boundary of the unit disc D in the complex plane. In this
setting, the Rudin–Carleson theorem [16, 46] says that given any compact set E � @D of
linear Lebesgue measure 0 and any continuous function h 2 C.E/ with khk1 � 1, there
exists f 2 A.D/ with f jE D h and kf k1 � khk1. Moreover, if h is not identically zero
one may achieve that jf .z/j < khk1 for z 2 D n E, explaining the term peak interpola-
tion. For a discussion of the Rudin–Carleson theorem, we refer the reader to [31, Chapter
II]. For the ball algebra A.Bd / in dimension d � 2, the notion of Lebesgue measure zero
is replaced by the smallness property of being a null set with respect to every representing
measure for the origin, known as a totally null set. A general result of Bishop [11] (see
[49, Chapter 10]) shows that one can obtain peak interpolation on any compact totally
null set.
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A different interpolation problem for the disc algebra is the classical Pick interpolation
problem. It is about finding a function in the disc algebra that solves an interpolation
problem with interpolation nodes in the open unit disc. The solution is given by Pick’s
theorem [44], which can be stated as follows. Given interpolation nodes z1; : : : ; zn 2 D
and targets �1; : : : ; �n 2 C, there exists a function f belonging to the disc algebra A.D/
with f .zi / D �i for 1 � i � n and kf k1 � 1 if and only if the Pick matrix�

1 � �i�j

1 � zizj

�
(1)

is positive semidefinite. Pick’s theorem, and a subsequent reformulation due to Sarason
[50], have had a profound influence on operator theory. This result has been extended to
a large class of reproducing kernel Hilbert spaces; see [1].

Recently, Izzo [37] studied the problem of simultaneous Pick and peak interpolation
in the context of uniform algebras; in particular, this includes the disc algebra. Given Pick
and peak interpolation data that are solvable individually, it is not always possible to find
one function of norm 1 that solves both problems simultaneously. Indeed, if the Pick mat-
rix (1) is positive and singular, then the Pick interpolation problem has a unique solution;
and generally this will differ from the boundary datum. Nevertheless, the problem can be
solved with an arbitrarily small increase in norm.

We will establish sharp analogues of both the peak interpolation results and the sim-
ultaneous Pick and peak interpolation result for certain algebras of multipliers of a large
class of reproducing kernel Hilbert spaces on the ball. There are added complications due
to the fact that the multiplier norm is larger than the supremum norm. Duality methods
are the key to controlling the multiplier norm of the interpolating functions. The dual-
ity approach to interpolation theorems is classical; see for instance [48, Theorem 5.9].
Roughly speaking, the idea is that an interpolation theorem asserts that a particular restric-
tion mapping is surjective (or even a quotient mapping). By duality, this is equivalent to
saying that the adjoint mapping is bounded below (or even an isometry).

In [19], Clouâtre and the first author established a functional calculus for absolutely
continuous row contractions. The arguments were based on a duality theory for the Drury–
Arveson space developed in [20]. In [10], Bickel, McCarthy and the second author estab-
lished the analogous functional calculus for a broad range of reproducing kernel Hilbert
spaces on the ball. Their methods avoided the use of duality for these spaces. However, in
the course of our work on the present paper, we began by considering the Pick and peak
interpolation problem proposed in [21]. The solution for the Drury–Arveson space again
required duality. We decided to develop the duality theory for the larger class of spaces
studied in [10].

A reproducing kernel Hilbert space on the Euclidean open unit ball Bd � Cd is said
to be a regular unitarily invariant space if its reproducing kernel is of the form

K.z;w/ D

1X
nD0

anhz; wi
n;
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where a0 D 1, an > 0 for all n 2 N and limn!1 an=anC1 D 1. Throughout this paper,
we will assume that d <1. Examples are the Hardy space on the disc H 2.D/ and on
the ball H 2.Bd /, the Drury–Arveson space H 2

d
and the Dirichlet space. More discussion

and examples can be found in Section 2.1. If, in addition, H satisfies a version of Pick’s
interpolation theorem, then we call it a regular unitarily invariant Pick space. This class
includes the Hardy space H 2.D/, the Dirichlet space and the Drury–Arveson space H 2

d
,

but not the Hardy space H 2.Bd / for d � 2. A precise definition will also be given in
Section 2.1. Given a regular unitarily invariant space H , the polynomials are multipliers
of H , so we may define

A.H / D CŒz1; : : : ; zd �
k�k
� Mult.H /:

If H D H 2.D/, then A.H / is the disc algebra. More generally, if H is the Hardy space
on Bd , then A.H /D A.Bd /, the ball algebra. We remark, however, that in many cases of
interest, such as the Dirichlet space and the Drury–Arveson spaceH 2

d
for d � 2, A.H / is

not a uniform algebra, and the multiplier norm is not comparable to the supremum norm.
Since the multiplier norm dominates the supremum norm,

A.H / � A.Bd / \Mult.H / � A.Bd / \H ;

but these inclusions are often strict.

Definition 1.1. Let H be a regular unitarily invariant space on Bd .

(1) A regular Borel measure � on @Bd is called Mult.H /-Henkin if the integration func-
tional

CŒz1; : : : ; zd �! C; p 7!

Z
@Bd

p d�;

extends to a weak-� continuous functional on Mult.H /.

(2) A Borel setE � @Bd is called Mult.H /-totally null if j�j.E/D 0 for every Mult.H /-
Henkin measure �.

(3) A regular Borel measure � on Bd is called Mult.H /-totally singular if � is singular
with respect to every Mult.H /-Henkin measure.

Let TS.Mult.H // �M.@Bd / be the space of all Mult.H /-totally singular measures.
If H D H 2.D/, then the F. and M. Riesz theorem implies that a measure is H1.D/-
Henkin if and only if it is absolutely continuous with respect to Lebesgue measure. Hence
a Borel set is H1.D/-totally null if and only if it is a Lebesgue null set. The totally
singular measures are just the measures singular to Lebesgue measure.

If H is the Hardy space on Bd , then the corresponding Henkin measures are clas-
sical Henkin measures, and theorems of Henkin and Cole–Range imply that a measure is
H1.Bd /-Henkin if and only if it is absolutely continuous with respect to some repres-
enting measure of the origin [49, Chapter 9]. The measures singular to all representing
measures are the classical totally singular measures. The Glicksberg–König–Seever the-
orem and the theorems of Henkin and Cole–Range show that the dual of the ball algebra
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is given by
A.Bd /

�
D H1.Bd /� ˚1 TS.H1.Bd //;

where H1.Bd /� is the standard predual of H1.Bd / and ˚1 denotes the direct sum
of two normed spaces, equipped with the sum of the norms; see also Section 2.2 for
background on direct sums. This material can be found in [49, Chapter 9].

Henkin measures and totally null sets for the Drury–Arveson space were studied by
Clouâtre and the first author in [20], also in the context of peak interpolation. They showed
that for the Drury–Arveson space,

A.H 2
d /
�
D Mult.H 2

d /� ˚1 TS.Mult.H 2
d //:

This theorem was proved using results from the theory of free semigroup algebras.
Our description of the dual space ofA.H / contains these three results as special cases.

Theorem 1.2. Let H be a regular unitarily invariant space on Bd . Then

A.H /� D Mult.H /� ˚1 TS.Mult.H // :

A refinement of this result will be proved in Theorem 3.2. Our proof is ultimately
dilation-theoretic and related to the methods in [10].

This leads to a nice description of the second dual as well:

Theorem 1.3. Let H be a regular unitarily invariant space on Bd . Then there is an
abelian von Neumann algebra Ws such that

A.H /�� D Mult.H /˚1 Ws :

Here,˚1 denotes the direct sum of two normed spaces, equipped with the maximum
of the two norms; see also Section 2.2. A more refined version of this result, including a
precise description of Ws , is found in Theorem 5.1.

We now turn to our interpolation results.
In the theory of uniform algebras, the notion of a peak interpolation set is stronger than

being an interpolation set. That is, given a function algebra A � C.X/, a closed subset
E � X is an interpolation set if for every h 2 C.E/, there is an element f 2 A such
that f jE D h. When this happens, the open mapping theorem yields some norm control.
It is a peak interpolation set if in addition, one can arrange that jf .x/j < khk1 for all
x 2 X n E, provided that h is not identically zero. It is a peak set if there is a function
g 2 A such that gjK D 1 and jg.x/j < 1 for all x 2 X n E. It is routine in the uniform
algebra context to show that a set which is both a peak set and an interpolation set is a
peak interpolation set [52, Lemma 20.1].

In the special case of the ball algebra, Rudin [49, Chapter 10] explains that these
three notions coincide and are also equivalent to being totally null and to being the zero
set of a function in A.Bd /. In the case of the Drury–Arveson space, it was shown with
considerable effort in [20, Theorem 9.5] that a closed Mult.H 2

d
/-totally null set E admits

peak interpolation in weaker sense. This provided the classical pointwise inequality but



Interpolation and duality 2395

required kf kMult.H2
d
/ � .1 C "/kgk1 for some " > 0. We obtain a sharper version of

Bishop’s theorem that compact Mult.H /-totally null sets are peak interpolation sets in
our setting. The sharp norm control is obtained by using the theory of M -ideals.

Theorem 1.4. Let H be a regular unitarily invariant space on Bd and let E � @Bd be
compact and Mult.H /-totally null. Let g 2C.E/ be not identically zero. Then there exists
an f 2 A.H / with

(1) f jE D g,

(2) jf .z/j < kgk1 for every z 2 Bd nE, and

(3) kf kMult.H/ D kgk1.

A slight improvement of this result, which also applies to matrices of multipliers, will
be proved in Theorem 8.1. In Theorem 8.3, we will show that there even exists a linear
operator of peak interpolation, meaning f can be chosen to depend linearly on g.

We mention that a somewhat different boundary interpolation result for Besov–So-
bolev spaces on the ball was previously obtained by Cohn and Verbitsky; see [22, The-
orem 3] and also the references therein. They consider interpolation in the larger space
H \A.Bd /, but impose a capacitary condition on the interpolation set. Peak interpolation
theorems in a non-commutative setting were proved by Blecher, Hay and Read; see for
instance [13] for an overview. While these results are in a similar spirit to Theorem 1.4,
it seems that we need to develop our full theory here before we can fit Theorem 1.4 into
their framework.

Before obtaining the sharp peak interpolation result, we first establish simultaneous
Pick and peak interpolation. The reason for doing this first is that for the special case of
empty Pick component, one obtains important information that is a step towards the sharp
peak interpolation result.

Theorem 1.5. Let H be a regular unitarily invariant Pick space on Bd with kernel K.
Let F D ¹z1; : : : ; znº � Bd and �1; : : : ; �n 2 C with�

K.zi ; zj /.1 � �i�j /
�
� 0:

Let E � @Bd be compact and Mult.H /-totally null, and let h 2 C.E/ with khk1 � 1.
Then for each " > 0, there exists f 2 A.H / with

(1) f .zi / D �i for 1 � i � n,

(2) f jE D h, and

(3) kf kMult.H/ � 1C ".

Our result shows that the restriction map to the set F [E is a complete quotient map
of A.H / onto Mult.H /jF ˚1 C.E/. Theorem 1.5 will be obtained in Corollary 6.3.
Taking H D H 2.D/, we recover Izzo’s theorem in the case of the disc algebra. The case
of the Drury–Arveson space and of a single point in Bd (i.e. n D 1) was established by
Clouâtre and the first author in [21, Corollary 3.8]. It turns out that the Pick property of
H is only needed to have a concise criterion for the solvability of the Pick problem. In
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Theorem 6.2, we will provide a more general result that does not require the Pick property
and for instance also applies to the Hardy space on the ball. Our proof is different from
Izzo’s proof, as A.H / is typically not a uniform algebra in our setting.

In Section 7, we establish a few results about ideals inspired by [21]. In particular, we
provide an analogue of a theorem of Rudin and Carleson [16, 47] describing ideals of the
disc algebra. This was generalized in a somewhat less precise way for the ball algebra by
Hedenmalm [36] and by Clouâtre and the first author [21] for multipliers on the Drury–
Arveson space. Our result is in the same spirit. We let Z.J/ denote the set of common
zeros of functions in J. IfE is a closed subset of Bd , let I.E/D ¹f 2 A.H / W f jE D 0º.

Theorem 1.6. Let H be a regular unitarily invariant space on Bd , and let J be a closed
ideal in A.H /. Let E D Z.J/ \ @Bd , and let QJ be the weak-� closure of J in Mult.H /.
Then

J D QJ \ I.E/:

After establishing our peak interpolation theorem, we investigate when there are non-
empty Mult.H /-totally null sets. We show that either singleton sets on the boundary are
not totally null, in which case all multipliers extend to be continuous on the closed ball, or
boundary points are totally null and there are interpolating sequences for Mult.H /. When
the kernel is bounded (i.e.

P
n�0 an <1), it is easy to see that the first case applies. We

construct an unbounded kernel with no totally null sets as well.
In Section 10, we establish a very strong converse to our various interpolation theor-

ems.

Theorem 1.7. Let H be a regular unitarily invariant space and suppose that there exist
non-empty Mult.H /-totally null sets. Let E � @Bd be a compact set. If the restriction
map from A.H / into C.E/ is surjective, then E is Mult.H /-totally null.

We also show that if there are no non-empty Mult.H / totally null sets, then there are
no infinite compact interpolation sets; see Proposition 10.4.

In Section 11, we answer a question from [21] about zero sets of A.H 2
d
/. It is shown

there that every closed totally null subset of @Bd is the zero set of a function in A.H 2
d
/.

This is also the case in our setting. It was asked whether the converse was true. The second
author showed in [35] that there are Mult.H 2

d
/-Henkin measures which are not Henkin

measures in the classical sense. This is used to demonstrate that there are zero sets of
A.H 2

d
/ which are not Mult.H 2

d
/-totally null.

Finally in the last section, we show that the following properties coincide on these
spaces. We say that E � @Bd is a peak set if there is a function f 2 A.H / such that
f jE D 1 D kf kMult.H/ and jf .z/j < 1 on Bd nE.

Theorem 1.8. Let H be a regular unitarily invariant space on Bd , and let E � @Bd be
compact. The following are equivalent:

(TN) E is Mult.H /-totally null.

(PI) E is a peak interpolation set.

(P) E is a peak set.
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(PPI) E is a Pick-peak interpolation set.

Moreover, these properties imply the corresponding complete versions of (PI) and (PPI)
for matrix valued functions. Furthermore, if there exist non-empty Mult.H /-totally null
sets, then this is also equivalent to

(I) E is an interpolation set.

2. Preliminaries

2.1. Reproducing kernel Hilbert spaces on Bd

We refer the reader to the books [1] and [42] for background on reproducing kernel Hilbert
spaces. Let H be a reproducing kernel Hilbert space on Bd , where d 2 N, and let K
denote the reproducing kernel of H . We say that H is unitarily invariant if K is of the
form

K.z;w/ D

1X
nD0

anhz; wi
n;

where a0 D 1 and an > 0 for all n 2N. If in addition limn!1 an=anC1 D 1, then we call
H a regular unitarily invariant space. We think of this condition as a regularity condition
because of the following principle. If H is a reproducing kernel Hilbert space on Bd , it is
natural to assume that the radius of convergence of the power series

P1
nD0 ant

n is 1. In
this case, if the limit limn!1 an=anC1 exists, then it equals 1.

The class of regular unitarily invariant spaces is a frequently studied class of Hilbert
function spaces on the ball. It includes in particular the classical Hardy spaceH 2.D/, the
Dirichlet space, the Bergman space, their counterparts on the ball, as well as the Drury–
Arveson space H 2

d
, which plays a key role in multivariable operator theory [8, 26]. More

generally, for each a 2 .0;1/, the reproducing kernel Hilbert space Ka.Bd / with kernel

1

.1 � hz; wi/a

belongs to this class. The Drury–Arveson space is obtained at a D 1, the Hardy space at
a D d and the Bergman space at a D d C 1. Closely related are the spaces Hs.Bd / with
reproducing kernel

K.z;w/ D

1X
nD0

.nC 1/shz; win

for s 2 R. Here, s D 0 corresponds to the Drury–Arveson space and s D �1 yields the
Dirichlet space. It is known that if s D a� 1 >�1, then Hs.Bd /DKa.Bd /with equival-
ence of norms; this can be seen by expanding the kernel of Ka.Bd / into a power series.

Let H be a regular unitarily invariant Hilbert space with multiplier algebra Mult.H /.
Then the coordinate functions are multipliers of H . Let A.H / denote the norm closure
of the polynomials inside of Mult.H /. If H is the Hardy space on the disc or on the ball,
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then A.H / is the disc algebra or the ball algebra, respectively. If H is the Drury–Arveson
space, then A.H / is Arveson’s algebra Ad ; see [8].

The monomials zk D zk1

1 : : : z
kd

d
for k 2Nd

0 form an orthogonal basis for H , and thus
one can show that elements of H are holomorphic functions on Bd [32, Proposition 4.1].
Since the multiplier norm dominates the supremum norm, A.H / is contained in the ball
algebra A.Bd /. In particular, every function in A.H / extends uniquely to a continuous
function on Bd . Conversely,A.H / contains every function that is holomorphic in a neigh-
borhood of Bd . For instance, this can be seen from the fact that the Taylor spectrum of the
tuple .Mz1

; : : : ;Mzd
/ on H is equal to Bd (see [32, Theorem 4.5]) by an application of

the Taylor functional calculus; see [40]. Indeed, .Mz1
; : : : ;Mzd

/ is an essentially normal
d -variable weighted shift. Moreover, we obtain an exact sequence [32, Theorem 4.6]

0! K.H /! C �.A.H //! C.@Bd /! 0: (2)

Here, K.H / denotes the ideal of compact operators on H , the first map is the inclusion
map, and the second map sends Mf CK to f j@Bd

for f 2 A.H / and K 2 K.H /.
We may identify an element of the multiplier algebra Mult.H / with its multiplication

operator on H and thus regard Mult.H / as a subalgebra ofB.H /. Then Mult.H / is WOT
closed. Therefore by trace duality,

Mult.H / D .T .H /=Mult.H /?/
�:

We write Mult.H /� D T .H /=Mult.H /? and call this space the standard predual of
Mult.H /. On bounded subsets of Mult.H /, the corresponding weak-� topology coincides
with the topology of pointwise convergence on Bd . One direction follows because

f .w/ D hMf kw ; kwkkwk
�2
i for w 2 Bd ;

where kw D K.�; w/ denotes the reproducing kernel at w. The converse follows because
the kernel functions span H .

A reproducing kernel Hilbert space H on Bd with kernel K is said to be a Pick
space if the analogue of Pick’s interpolation theorem holds; see [1] for background. More
precisely, we say that H satisfies the k-point Pick property if whenever z1; : : : ; zk 2 Bd
and w1; : : : ; wk 2 C with �

K.zi ; zj /.1 � wiwj /
�k
i;jD1

� 0;

then there exists a multiplier f 2 Mult.H / of norm at most 1 such that f .zi / D �i for
1 � i � k. If H satisfies the k-point Pick property for all k 2 N, we say that H is a Pick
space.

It is frequently useful to allow matrix valued targets. In this setting, H is said to satisfy
the Mn-Pick property if whenever k 2 N, z1; : : : ; zk 2 Bd and W1; : : : ; Wk 2Mn.C/�

K.zi ; zj /.In �WiW
�
j /
�k
i;jD1

� 0;

then there exists F 2 Mn.Mult.H // of multiplier norm at most 1 such that F.zi / D Wi
for 1 � i � k. If H satisfies the Mn-Pick property for all n 2 N, then H is said to be
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a complete Pick space. The prototypical example of a complete Pick space is H 2.D/.
Other examples include the Drury–Arveson space H 2

d
, the classical Dirichlet space, and

more generally the spaces Hs.Bd / for s � 0.

2.2. Operator space basics

By definition, A.H / is a non-selfadjoint operator algebra, hence it is natural to consider
the sequence of matrix norms on A.H / and prove that identifications involving A.H / are
not just isometric isomorphisms, but completely isometric isomorphisms. For our con-
crete interpolation problem, this will translate into interpolating matrix valued targets.
Indeed, in the theory of Pick interpolation, it is customary and sometimes necessary to
consider matrix valued multipliers; see [1].

We therefore recall the necessary basics from the theory of operator spaces. Our
standard reference will be [14]. A concrete operator space is a subspace X � B.H /.
The identification Mn.X/ � Mn.B.H // D B.Hn/ endows each space Mn.X/ with a
norm. An abstract operator space is a vector space V , together with a sequence of norms
on Mn.V /, satisfying certain axioms. We will not require the axioms themselves and
simply refer to [14, §1.2.12].

If X and Y are abstract operator spaces, then each linear map ˆ W X ! Y induces
linear maps ˆ.n/ W Mn.X/! Mn.Y / by applying ˆ to each matrix entry. One says that
ˆ is completely bounded if

kˆkcb D sup
n�1

kˆ.n/k <1;

and completely contractive if kˆkcb � 1. We write CB.X; Y / for the space of completely
bounded maps from X to Y , endowed with k � kcb. Moreover,ˆ is completely isometric if
eachˆ.n/ is an isometry. Similarly,ˆ is a complete quotient map if eachˆ.n/ is a quotient
map, meaning ˆ.n/ maps the open unit ball of Mn.X/ onto the open unit ball of Mn.Y /.
More generally,ˆ is completely surjective if there exists a constant C > 0 such that for all
n 2 N and all y 2Mn.Y /, there exists x 2Mn.X/ with ˆ.n/.x/ D y and kxk � Ckyk.

If X is an abstract operator space, then the dual space X� carries a natural operator
space structure, obtained by the identification Mn.X

�/ D CB.X;Mn/; see [14, §1.2.20].
We will frequently use the fact that a linear mapˆ W X ! Y is a complete isometry if and
only if the adjoint ˆ� W Y � ! X� is a complete quotient map. Moreover, if X and Y are
complete, then ˆ W X ! Y is a complete quotient map if and only if ˆ� W Y � ! X� is a
complete isometry; see [14, §1.4.3].

IfX and Y are operator spaces,X ˚1 Y denotes the direct sum ofX and Y , equipped
with the operator space structure defined by

k.x; y/kMn.X˚Y / D max.kxkMn.X/; kykMn.Y //I

see [14, §1.2.17]. We also require the 1-direct sum X ˚1 Y ; see [14, §1.4.13] or [45,
Section 2.6]. The norm onX ˚1 Y itself is simply the usual 1-norm given by k.x;y/k1 D
kxkC kyk. The operator space structure on X ˚1 Y is slightly more difficult to describe.
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It is characterized by the following universal property: For any operator space Z and any
pair of complete contractions ˆ W X ! Z and ‰ W Y ! Z, the map

X ˚1 Y ! Z; .x; y/ 7! ˆ.x/C‰.y/;

is a complete contraction. Moreover, the completely isometric identities

.X ˚1 Y /
�
D X� ˚1 Y

� and .X ˚1 Y /
�
D X� ˚1 Y

�

hold. It also follows from this duality that for any pair of complete isometriesˆ WX1!X2
and ‰ W Y1 ! Y2, the direct sum

ˆ˚‰ W X1 ˚1 Y1 ! X2 ˚1 Y2

is also a complete isometry.
We will apply these considerations to A.H / and C.X/, the space of continuous func-

tions on a compact metric space X . By definition, A.H / carries an operator space struc-
ture by identifying a function in A.H / with the corresponding multiplication operator
on H . We will endowA.H /� with the dual operator space structure. Similarly, Mult.H /�

carries the dual operator space structure, which also gives Mult.H /� � Mult.H /� the
structure of an operator space. We claim that with this definition, the operator space dual
of Mult.H /� is Mult.H /. Indeed, since the inclusion of an operator space into its second
dual is a complete isometry (see [14, Proposition 1.4.1]), it suffices to observe that there
exists an operator space structure on Mult.H /� whose operator space dual is Mult.H /.
But this follows from the concrete description Mult.H /� D T .H /=Mult.H /?, which
allows us to endow Mult.H /� with the quotient operator space structure of T .H /; see
[14, Lemma 1.4.6].

Moreover, if X is a compact metric space, then C.X/ is endowed with the operator
space structure given by the identification Mn.C.X// D C.X;Mn/. Finally, by the Riesz
representation theorem, M.X/ D C.X/�, which allows us to equip M.X/ with the dual
operator space structure.

2.3. Henkin measures, totally singular measures and totally null sets

Throughout, let H be a regular unitarily invariant space on Bd . Recall from Section 2.1
that Mult.H / is the dual space of Mult.H /� D T .H /=Mult.H /?, and that on bounded
subsets of Mult.H /, the corresponding weak-� topology coincides with the topology of
pointwise convergence on Bd . A linear functional ' 2 A.H /� is said to be a Mult.H /-
Henkin functional if it extends to a weak-� continuous functional on Mult.H /. The
following characterization of Henkin functionals is a special case of [10, Lemma 3.1].

Lemma 2.1. Let H be a regular unitarily invariant space. Then the following assertions
are equivalent for a functional ' 2 A.H /�.

(i) ' is Mult.H /-Henkin.

(ii) Whenever .pn/ is a sequence of polynomials such that kpnkMult.H/ � 1 for all n 2N
and limn!1 pn.z/ D 0 for all z 2 Bd , then also limn!1 '.pn/ D 0.
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In particular, examples of Henkin functionals are evaluations at points in Bd . We will
use the following lemma in a few places. It is entirely routine, but since we do not have
an explicit reference for the exact statement, we provide the proof.

Let Ud denote the group of d � d complex unitary matrices acting on the ball Bd in
the usual manner. If F W Bd !Mn, 0 � r � 1 and U 2 Ud , define Fr;U .z/ D F.rUz/.

Lemma 2.2. Let H be a regular unitarily invariant space.

(a) For each U 2 Ud , the map

Mult.H /! Mult.H /; f 7! fr;U ;

is a complete isometry if r D 1 and a complete contraction when 0� r < 1. Moreover,
it is weak-�–weak-� continuous and maps A.H / into A.H /.

(b) For each f 2 Mult.H /, the map

Œ0; 1� �Ud ! Mult.H /; .r; U / 7! fr;U ;

is weak-� continuous.

Proof. (a) Since H is unitarily invariant, there exists an SOT continuous unitary repres-
entation

� W Ud ! B.H /; �.U /.g/ D g1;U :

If f 2 Mult.H /, then Mf1;U
D �.U /Mf �.U

�/, which proves that the map f 7! f1;U
is a complete isometry.

To prove that the map is a complete contraction if r < 1, it suffices to show that for
each r 2 Œ0; 1/, the map f 7! fr;Id

is completely contractive on Mult.H /. From the above
argument, we see that the map

Ud ! Mult.H /; U 7! f1;U ;

is SOT continuous for each f 2Mult.H /. If Pr .�/D 1�r2

j1�r�j2
denotes the Poisson kernel,

and if F 2Mn.Mult.H //, then the integralZ
T
F1;�Id

Pr .�/ dm.�/;

wherem denotes the normalized Lebesgue measure on T , converges in the strong operator
topology. Evaluating at z 2 Bd , we find that the integral equals Fr;Id

. Thus, standard
properties of the Poisson kernel yield

kFr;Id
kMn.Mult.H// � kF kMn.Mult.H//:

To establish weak-�–weak-� continuity, an application of the Krein–Šmulian the-
orem shows that it suffices to establish weak-�–weak-� continuity on bounded subsets
of Mult.H /. But since the map f 7! fr;U is bounded, this follows from the fact that on
bounded subsets of Mult.H /, the weak-� topology agrees with the topology of pointwise
convergence on Bd .
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Finally, the map takes polynomials to polynomials, so by continuity, it maps A.H /

into A.H /.
(b) From (a), it follows that the set

¹fr;U W 0 � r � 1; U 2 Ud º

is a bounded subset of Mult.H /. Therefore the statement follows once again from the
fact that on bounded subsets of Mult.H /, the weak-� topology agrees with the topology
of pointwise convergence on Bd .

The following lemma shows that the space of Henkin functionals on A.H / can be
identified with Mult.H /�. Without the statement about complete isometry, it is contained
in [10, Lemma 3.1 and its proof]. The proof carries over with minimal changes.

Lemma 2.3. Let H be a regular unitarily invariant space. The map

Mult.H /� ! A.H /�; ' 7! 'jA.H/;

is a complete isometry whose range is the space of Mult.H /-Henkin functionals. In par-
ticular, the space of Mult.H /-Henkin functionals is norm closed in A.H /�.

Proof. It is clear from the definition of Henkin functionals that the restriction map takes
Mult.H /� onto the set of Henkin functionals. Since the inclusion A.H / � Mult.H / is a
complete isometry, the restriction map

Mult.H /� � Mult.H /� ! A.H /�; ' 7! 'jA.H/;

is a complete contraction. To see that it is completely isometric, it suffices to observe
that for each n 2 N, the unit ball of Mn.A.H // is weak-� dense in the unit ball of
Mn.Mult.H //. To see this, note that if F 2 Mn.Mult.H //, then kF1;�Id

kMn.Mult.H// D

kF kMn.Mult.H// for all � 2 T , and the map � 7! F1;�Id
is continuous in the weak-�

topology by Lemma 2.2. In this setting, standard properties of the Fejér kernel (cf. [38,
Lemma I 2.5]) imply that the Fejér means .Fn/ of F are matrices of polynomials, sat-
isfy kFnkMn.Mult.H// � kF kMn.Mult.H// for all n 2 N and converge to F in the weak-�
topology.

In what follows, we will therefore identify Mult.H /� with a subset of A.H /�.
As explained in the introduction, a regular Borel measure � on @Bd is said to be

Mult.H /-Henkin if the associated integration functional

�� W A.H /! C; f 7!

Z
@Bd

f d�;

is Mult.H /-Henkin. We write Hen.Mult.H // for the space of all Mult.H /-Henkin meas-
ures on @Bd . We say that � is Mult.H /-totally singular if it is singular with respect to
every Mult.H /-Henkin measure. The space of all Mult.H /-totally singular measures is
denoted by TS.Mult.H //.
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If X is a compact metric space, a norm closed subspace † � M.X/ is called a band
if whenever � 2 † and � 2M.X/ is absolutely continuous with respect to �, then � 2 †.
In particular, � 2 † if and only if j�j 2 †. The sets Hen.Mult.H // and TS.Mult.H //

form complementary bands in M.@Bd /. In particular:

Lemma 2.4. Hen.Mult.H // and TS.Mult.H // are bands inM.@Bd /. Every�2M.@Bd /
has a unique decomposition

� D �a C �s; where �a 2 Hen.Mult.H // and �s 2 TS.Mult.H // :

Proof. Since A.H / is contractively contained in C.@Bd /, the map

M.@Bd /! A.H /�; � 7! ��;

is contractive. Lemma 2.3 shows that the space of Henkin functionals is closed
in A.H /�, so it follows that Hen.Mult.H // is closed in M.@Bd /. The band property
of Hen.Mult.H // was shown in [10, Lemma 3.3] (see also [20, Theorem 5.4] for the case
of the Drury–Arveson space). It is a general fact that for every non-empty subset A of
measures on a compact metric space, the set

A? D ¹� 2M.X/ W � ? � for all � 2 Aº

is a norm closed band; see [9, Remark II 2.3]. In particular, the set TS.Mult.H // D

Hen.Mult.H //? is a band. The statement about the decomposition then follows from the
F. Riesz decomposition theorem for bands; see [39] or [9, Section II.2].

In the theory of classical Henkin measures on the ball (see [49, Chapter 9]), one
obtains an a priori stronger notion of singularity in the decomposition by applying the
Glicksberg–König–Seever decomposition theorem. This theorem is applied to the weak-�
compact convex set of representing measures of the origin. The key points are theorems
of Henkin and Cole–Range, which show that a measure is a classical Henkin measure if
and only if it is absolutely continuous with respect to some representing measure of the
origin.

For more general reproducing kernel Hilbert spaces H , we do not know if there exists
a similar characterization of Mult.H /-Henkin measures. Nevertheless, we will show in
Proposition 4.4 as a consequence of Theorem 1.2 that Mult.H /-totally singular measures
satisfy a similar strong singularity property.

A Borel subset E � @Bd is said to be Mult.H /-totally null if j�j.E/ D 0 for all
Mult.H /-Henkin measures �. The following equivalent characterizations follow from
the fact that Mult.H /-Henkin measures form a band.

Lemma 2.5. Let E � @Bd be a Borel set. The following assertions are equivalent:

(i) E is Mult.H /-totally null, that is, j�j.E/ D 0 for all Mult.H /-Henkin measures �.

(ii) If � 2M.@Bd / is concentrated on E, then � 2 TS.Mult.H //.

(iii) If � is a positive Mult.H /-Henkin measure that is concentrated on E, then � D 0.
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Proof. (i))(ii) If � is concentrated on E and � is Mult.H /-Henkin, then � ? � by (i),
so � 2 TS.Mult.H //.

(ii))(iii) Let � be a Mult.H /-Henkin measure that is concentrated on E. Then � 2
TS.Mult.H // by (ii), so � ? � D 0 and hence � D 0.

(iii))(i) Let � be Mult.H /-Henkin. We wish to show that j�j.E/ D 0. Since the
Mult.H /-Henkin measures form a band by Lemma 2.4, the measure j�j is Mult.H /-
Henkin as well, so we may assume that � is a positive measure. Define �jE 2 M.@Bd /
by �jE .A/D �.A\E/ for Borel sets A� @Bd . Then �jE is absolutely continuous with
respect to �, so using again the fact that the Mult.H /-Henkin measures form a band, we
see that �jE is Mult.H /-Henkin. By (iii), we obtain �.E/ D �jE .E/ D 0.

In concrete examples of spaces H , there may be other notions of smallness on @Bd .
For instance, in the Dirichlet space D , a classical notion of smallness is that of logarithmic
capacity zero; see [30, Chapter 2]. A positive measure � 2 M.T / is said to have finite
energy if the functional

CŒz�! C; p 7!

Z
T
p d�;

is continuous with respect to the norm of D . (This is not the usual potential-theoretic
definition, but it is an equivalent one; see [30, Theorem 2.4.4].) A compact subset E � T
has logarithmic capacity zero if and only if it does not support a non-zero positive measure
of finite energy. Thus, we obtain the following implication between the two notions of
smallness.

Proposition 2.6. Let E � T be compact. If E is Mult.D/-totally null, then E has logar-
ithmic capacity zero.

Proof. If E has non-zero logarithmic capacity, then it supports a non-zero positive meas-
ure� of finite energy. Clearly,� is in particular Mult.D/-Henkin, and�.E/D�.T /¤ 0,
so E is not Mult.D/-totally null.

While the present paper was being refereed, it was shown by Chalmoukis and the
second author that in certain Dirichlet type spaces on the ball, the totally null condition
is equivalent to a suitable capacity zero condition [17]. In particular, this provides the
converse of Proposition 2.6.

3. The dual space of A.H /

We require a version of the F. Riesz decomposition theorem for representations of C.X/.
Let X be a compact metric space, let † � M.X/ be a norm closed band of measures
and let †? be the complementary band. Thus, � 2 †? if and only if � is singular with
respect to every measure in †. We say that a unital �-representation � W C.X/! B.H /

is †-absolutely continuous if for all x; y 2H , the representing measure of the functional
f 7! h�.f /x; yi belongs to †.
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Lemma 3.1. Let X be a compact metric space, let † � M.X/ be a norm closed band
of measures and let � W C.X/! B.H / be a unital �-representation. Then � is unitarily
equivalent to a direct sum of representations �a ˚ �s , where �a is †-absolutely continu-
ous and �s is †?-absolutely continuous.

Proof. There exists a set S of regular Borel probability measures on X such that � is
unitarily equivalent to

L
�2S ��, where

�� W C.X/! B.L2.�//; f 7!M
�

f
;

andM�

f
denotes the operator of multiplication by f on L2.�/; see [24, Section II.1]. For

each � 2 S , we apply the decomposition theorem of F. Riesz (see [39] or [9, Section II.2])
to write � D �a C �s , where �a 2 † and �s 2 †?. Since �a ? �s , the representation
�� decomposes as a direct sum ��a

˚ ��s
. Let �a D

L
�2S ��a

and �s D
L
�2S ��s

.
Then � is unitarily equivalent to �a ˚ �s .

To see that �a is†-absolutely continuous, note that if g D .g�/ and hD .h�/ belong
to
L
�2S L

2.�a/, then

h�a.f /g; hi D
X
�2S

Z
X

fg�h� d�a for all f 2 C.X/:

For each � 2 S , the measure g�h�d�a belongs to † since † is a band. Moreover, the
Cauchy–Schwarz inequality implies that the series

P
�2S g�h�d�a converges absolutely

to a measure � in the Banach spaceM.@Bd /. Since† is norm closed, we have � 2†, and

h�a.f /g; hi D

Z
X

f d�I

whence �a is †-absolutely continuous. The same argument shows that �s is †?-abso-
lutely continuous.

We now prove a more precise version of Theorem 1.2. Recall from Section 2.2 that
Mult.H /�; A.H /� and TS.Mult.H // �M.@Bd / are equipped with their respective dual
operator space structures.

Theorem 3.2. Let H be a regular unitarily invariant space on Bd . Then the natural map

Mult.H /� ˚1 TS.Mult.H //! A.H /�; .'; �/ 7! 'jA.H/ C �� ;

is a completely isometric isomorphism.

Proof. Letˆ denote the linear map in the statement. Since the inclusionA.H /�C.@Bd /
is completely contractive, the map TS.Mult.H //! A.H /�; � 7! �� , is completely con-
tractive. We already saw in Lemma 2.3 that the map

Mult.H /� � Mult.H /� ! A.H /�; ' 7! 'jA.H/;
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is a complete isometry. Thus, ˆ is completely contractive by the universal property of
the 1-direct sum. To see thatˆ is injective, let ' 2Mult.H /� and � 2 TS.Mult.H // with
'C �� D 0 2A.H /�. Then �� D�' 2Mult.H /�, so the measure � is Mult.H /-Henkin.
By definition of TS.Mult.H //, it follows that � ? �, so that � D 0 and hence also ' D 0.

It remains to show that if ' 2Mn.A.H /�/ has norm 1, then it has a preimage underˆ
of norm at most 1. We first sketch the idea of the proof, assuming for simplicity that
nD 1. If ' 2 A.H /�, then by the Hahn–Banach theorem, ' extends to a functional on the
Toeplitz C �-algebra C �.A.H // � B.H /. Since H is regular, [32, Theorem 4.6] shows
that there exists a short exact sequence

0! K.H /! C �.A.H //! C.@Bd /! 0; (3)

where the first map is the inclusion and the second map sends Mf C K to f j@Bd
for

f 2 A.H / and K 2 K.H /. This short exact sequence will imply that ' decomposes as
' D '1 C '2, where '1 extends to a weak-� continuous functional on B.H /, and '2 is
induced by a functional on C.@Bd /, so '2 D �� is an integration functional for some
measure � 2 M.@Bd /. Further decomposing the measure � into its Mult.H /-Henkin
part �a and its Mult.H /-totally singular part �s , we find that ' D .'1 C ��a

/C ��s
is

a sum of a functional in Mult.H /� and a functional given by a Mult.H /-totally singular
measure. To adapt this idea to elements of Mn.A.H //�, we will use dilation theory.

Let now ' 2 Mn.A.H /�/ D CB.A.H /; Mn/ with k'kcb D 1. By the Haagerup–
Paulsen–Wittstock dilation theorem [41, Theorems 8.2 and 8.4], there exist a unital �-
representation � W C �.A.H //! B.K/ on a separable Hilbert space K and contractions
V;W W Cn ! K such that '.f / D W ��.f /V for all f 2 A.H /. From the short exact
sequence (3) and from a well known result about representations of C �-algebras, it fol-
lows that � splits as an orthogonal direct sum � D �1 ˚ �2, where �1 is unitarily
equivalent to a multiple of the identity representation and �2jK.H/ D 0. Thus �2 factors
through the quotient map onto C.@Bd /, and so it can be regarded as a representation of
C.@Bd /; see, for instance, [7, discussion preceding Theorem 1.3.4]. Lemmas 2.4 and 3.1
show that the representation �2 of C.@Bd / further splits as �a ˚ �s acting on La ˚Ls ,
where �a is Hen.Mult.H //-absolutely continuous and �s is TS.Mult.H //-absolutely
continuous.

Thus, there exist a countable cardinal � and contractions24V1V2
V3

35 ;24W1W2
W3

35 W Cn
! H �

˚La ˚Ls

such that

'.f / D W �1 M
�
f V1 CW

�
2 �a.f /V2 CW

�
3 �s.f /V3 .f 2 A.H //:

Define

'a W A.H /!Mn; f 7! W �1 M
�
f V1 CW

�
2 �a.f /V2;

's W C.@Bd /!Mn; f 7! W �3 �s.f /V3:
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Then for all x; y 2 Cn, the functional f 7! h'a.f /x; yi belongs to Mult.H /� and
the representing measure of f 7! h's.f /x; yi belongs to TS.Mult.H //. Consequently,
'a 2 Mn.Mult.H /�/ and 's is an n � n matrix of integration functionals given by ele-
ments of TS.Mult.H //.

We finish the proof by showing that .'a; 's/ has norm at most 1 inMn.Mult.H /� ˚1
TS.Mult.H ///. To see this, observe that by Lemma 2.4, we have the isometric inclusion

Mn.Mult.H /� ˚1 TS.Mult.H /// �Mn.A.H /� ˚1 C.@Bd /
�/

D CB.A.H /˚1 C.@Bd /;Mn/;

so we have to show that the map

A.H /˚1 C.@Bd /!Mn; .f; g/ 7! 'a.f /C 's.g/;

is completely contractive. But this is immediate from the description

'a.f /C 's.g/ D
�
W �1 W �2 W �3

�264M �
f

0 0

0 �a.f / 0

0 0 �s.g/

375
24V1V2
V3

35
for all f 2 A.H / and g 2 C.@Bd /.

As explained in the introduction, the preceding result applies in particular to the Hardy
spaceH 2.Bd /, yielding the decomposition of the dual of the ball algebra explained in [49,
Chapter 9], and to the Drury–Arveson space, thus providing another proof of [20, Corol-
lary 4.3 and Theorem 4.4]. But it also applies to the Dirichlet space, and more generally
to the spaces Hs.Bd /.

Remark 3.3. If the coefficients .an/ in the reproducing kernelK.z;w/D
P1
nD0 anhz;wi

n

are summable, then H is continuously contained in C.Bd /. Hence every measure in
M.@Bd / is Mult.H /-Henkin and TS.Mult.H //D ¹0º. Thus, by Theorem 3.2, A.H /� D

Mult.H /�, and every functional on A.H / extends to a weak-� continuous functional on
Mult.H / in this setting.

Such examples occur among the spaces Hs.D/, namely if s < �1. In fact, in this
case, we find that Hs.D/ D Mult.Hs.D// with equivalence of norms for s < �1 (see
[51, Proposition 31 and Example 1, p. 99]). Hence also A.Hs.D// D Mult.Hs.D// and
Mult.Hs.D// is a reflexive Banach space. So in this case, weak-� continuous functionals
on Mult.H / and functionals on A.H / agree, and in fact every functional on Mult.H / is
weak-� continuous.

There are cases where Mult.H /� D A.H /�, but not every functional on Mult.H / is
weak-� continuous. The Salas space H , which was constructed in [3], is a regular unitarily
invariant complete Pick space on D for which the corona theorem fails. In this space,P1
nD0 an < 1, so H � C.D/ and A.H /� D Mult.H /�, but there are functionals on

Mult.H / that are not weak-� continuous. For instance, there is a character � on Mult.H /

such that �.p/D p.1/ for all polynomials p, but � is not given by evaluation at 1. Indeed,
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the equality A.H /� DMult.H /� merely implies that for every functional ' on Mult.H /,
there exists a weak-� continuous functional on Mult.H / that agrees with ' on A.H /. In
the case of the character �, that functional is the functional of point evaluation at 1.

4. Totally singular measures

The decomposition of Theorem 3.2 implies the following functional-analytic characteriz-
ation of TS.Mult.H //. This is a special case of a general principle that is contained in a
forthcoming paper of the second author with R. Clouâtre.

Lemma 4.1. Let ' 2A.H /�. Then ' D �� for some � 2 TS.Mult.H // if and only if there
exists a sequence .fn/ in the unit ball of A.H / that tends to zero in the weak-� topology
of Mult.H / such that limn!1 '.fn/ D k'k.

Proof. Suppose first that there exists a sequence .fn/ in the unit ball of A.H / that
tends to zero in the weak-� topology of Mult.H / with limn!1 '.fn/ D k'k. By The-
orem 3.2, there exist 'a 2 Mult.H /� and � 2 TS.Mult.H // such that ' D 'a C �� and
k'k D k'ak C k��k. Then limn!1 'a.fn/ D 0, so

k'ak C k��k D k'k D lim
n!1

'.fn/ � lim sup
n!1

j��.fn/j � k��k;

so 'a D 0 and hence ' D �� .
Conversely, let ' D �� for some � 2 TS.Mult.H //. By Theorem 3.2,

A.H /�� Š Mult.H /˚1 TS.Mult.H //�;

and with this identification, TS.Mult.H //� D .Mult.H /�/
?. Thus, by the Hahn–Banach

theorem, there exists ƒ 2 .Mult.H /�/
? � A.H /�� of norm 1 such that ƒ.'/ D k'k.

Applying Goldstine’s theorem (see [23, Proposition V.4.1] or [54, II.A.13]), we find
a net .g˛/ in the unit ball ofA.H / that converges toƒ in the weak-� topology ofA.H /��.
In particular, k'k D ƒ.'/ D lim˛ '.g˛/. Moreover, since ƒ 2 .Mult.H /�/

?, it follows
that if  2 Mult.H /�, then lim˛  .g˛/ D ƒ. / D 0, so the net .g˛/ converges to zero
in the weak-� topology of Mult.H /.

We finish the proof by using separability of H to replace the net .g˛/with a sequence.
To this end, note that since H is separable, so is Mult.H /�, hence there exists a metric d
on the unit ball of Mult.H / that induces the weak-� topology there. For each n 2 N, the
preceding paragraph shows that there exists an index ˛.n/ such that d.g˛.n/; 0/ < 1=n

and j'.g˛.n//� k'k j < 1=n. We set fn D g˛.n/. Then the sequence .fn/ tends to zero in
the weak-� topology of Mult.H / and satisfies limn!1 '.fn/ D k'k.

Remark 4.2. We wish to point out a subtlety in the previous argument. Note that Gold-
stine’s theorem is applied toA.H /��, butA.H /� is typically not separable, so the weak-*
topology on the unit ball of A.H /�� is not metrizable. Indeed, if there are Mult.H /-
totally null sets, then each point mass ız for z 2 @Bd provides an uncountable family of
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functionals which are distance 2 apart. The argument of the last paragraph only uses the
separability of Mult.H /�.

We record the following consequence.

Corollary 4.3. Let � 2 TS.Mult.H //. Then there is a sequence .fn/ in the unit ball of
A.H / that tends to zero in the weak-� topology of Mult.H / and converges to 1 �-almost
everywhere.

Proof. The definition of TS.Mult.H // implies that if � 2 TS.Mult.H //, then so is j�j,
hence we may assume that � is a positive probability measure. Theorem 3.2 implies that
k��k D 1, so by Lemma 4.1, there exists a sequence .fn/ in the unit ball of A.H / that
tends to zero in the weak-� topology of Mult.H / such that

1 D lim
n!1

Z
@Bd

fn d�: (4)

Since the multiplier norm dominates the supremum norm, jfnj � 1 on @Bd , so (4) implies
that .fn/ converges to 1 in L2.�/. Indeed,

kfn � 1k
2
L2.�/

D 1C kfnk
2
L2.�/

� 2Re
Z
@Bd

fn d� � 2 � 2Re
Z
@Bd

fn d�:

Hence, by passing to a subsequence, we may achieve that .fn/ converges to 1 pointwise
�-almost everywhere on @Bd .

Classically, an H1.Bd /-totally singular measure is not just singular with respect to
each Henkin measure, but it is in fact concentrated on an F� set that is totally null, i.e.
a set that is null simultaneously for each Henkin measure; see [49, Chapter 9]. We can
now generalize this fact. The proof of the following result is modeled after the proof of
[20, Proposition 5.7].

Proposition 4.4. Let � 2 TS.Mult.H //. Then � is concentrated on an F� set that is
Mult.H /-totally null.

Proof. We may again assume that � is a positive probability measure. By Corollary 4.3,
there exists a sequence .fn/ in the unit ball of A.H / that tends to zero in the weak-�
topology of Mult.H / and converges to 1 �-almost everywhere. In other words, if we
define

E D
°
� 2 @Bd W lim

n!1
fn.�/ D 1

±
;

then E is Borel and �.E/ D 1. We claim that E is Mult.H /-totally singular. To see this,
let � be a positive Mult.H /-Henkin measure that is concentrated on E. Then by the
dominated convergence theorem,

�.E/ D lim
n!1

Z
E

fn d� D lim
n!1

Z
@Bd

fn d� D 0;
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as � is Mult.H /-Henkin and fn tends to zero in the weak-� topology of Mult.H /. Con-
sequently, Lemma 2.5 implies that E is Mult.H /-totally null. Finally, regularity of �
implies that E admits an F� subset F with �.F / D 1. Then � is concentrated on the
Mult.H /-totally null set F , as desired.

5. The second dual

We can now obtain a description of the second dual ofA.H /. As explained in Section 2.2,
.Mult.H /�/

�DMult.H / completely isometrically. Thus, by Theorem 3.2, we have, com-
pletely isometrically,

A.H /�� Š
�
Mult.H /� ˚1 TS.Mult.H //

��
D .Mult.H /�/

�
˚1 TS.Mult.H //�

D Mult.H /˚1 TS.Mult.H //� :

It remains to get a better handle on TS.Mult.H //�.
By Lemma 2.4, every measure in M.@Bd / decomposes uniquely as the `1-sum of a

Hen.Mult.H // measure and a TS.Mult.H // measure. Hence

M.@Bd / D Hen.Mult.H //˚1 TS.Mult.H //

isometrically. Therefore, we obtain the isometric decomposition

M.@Bd /
�
D Hen.Mult.H //�˚1 TS.Mult.H //�;

which is in fact completely isometric since the map from the left to the right is completely
contractive and isometric, so it is completely isometric because M.@Bd /� D C.@Bd /��

is a commutative von Neumann algebra; see [14, §1.2.6]. Moreover, we see that

TS.Mult.H //� D Hen.Mult.H //?; Hen.Mult.H //� D TS.Mult.H //? :

The double dual of any C �-algebra A is �-isomorphic and weak-� homeomorphic
to the universal enveloping von Neumann algebra W of A; see [53, Theorem III.2.4].
The universal representation �u of C.@Bd / is equivalent to the direct sum of the standard
representations �� on L2.�/ as � runs over all Borel probability measures on @Bd . By
Lemma 3.1, we obtain a decomposition �u ' �ua ˚ �us where �ua is Hen.Mult.H //-
absolutely continuous and �us is TS.Mult.H //-absolutely continuous. Indeed, �ua is
equivalent to the direct sum of all �� as � runs over all Hen.Mult.H // probability meas-
ures; and �us is equivalent to the direct sum of all �� as � runs over all TS.Mult.H //

probability measures. Moreover, Lemma 3.1 shows that �ua and �us are mutually ortho-
gonal. This yields a decomposition

W D �u.C.@Bd //
w�

D �ua.C.@Bd //
w�

˚1 �us.C.@Bd //
w�

DWWa ˚1 Ws :
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We claim that Wa D Hen.Mult.H //� and Ws D TS.Mult.H //�. By Goldstine’s the-
orem (see [23, Proposition V.4.1] or [54, II.A.13]), there is a net .f˛/ in the unit ball of
C.@Bd / that converges to

0˚ I 2 C.@Bd /
��
D Hen.Mult.H //�˚1 TS.Mult.H //� :

Since Hen.Mult.H //�DTS.Mult.H //? and TS.Mult.H //�DHen.Mult.H //?, we see
that .f˛/ converges to 0 weak-� in L1.�/ for every � 2 Hen.Mult.H // and converges

to 1 weak-� inL1.�/ for all � 2TS.Mult.H //. It follows that in �u.C.@Bd //
w�

, we have
�ua.f˛/! 0 and �us.f˛/! I in the weak-� topology. Thus �u.f˛/! 0˚ I DW P in
W DWa ˚1 Ws . Now if � 2 Hen.Mult.H //, then

h�;P i D lim̨ h�; f˛i D 0:

If�� 0, then� annihilates every 0�A�P in W. It follows that Ws �Hen.Mult.H //?.
Similarly, Wa � TS.Mult.H //?. However, as noted above,

Hen.Mult.H //?\TS.Mult.H //?DTS.Mult.H //�\Hen.Mult.H //�D¹0º:

Therefore
TS.Mult.H //� D Hen.Mult.H //? DWs :

Putting everything together, we obtain a useful description of the second dual.

Theorem 5.1. Let H be a regular unitarily invariant space on Bd . Let WDWa˚Ws be
the decomposition of the universal enveloping von Neumann algebra of C.@Bd / into its
Henkin and totally singular summands. Then there is a completely isometric isomorphism

A.H /�� Š Mult.H /˚1 Ws :

6. Pick and peak interpolation in A.H /

Before we are able to prove our result regarding Pick and peak interpolation, we require
the following generalization of Tietze’s extension theorem. If X is metrizable (which
is sufficient for our purposes), this is a special case of Dugundji’s extension of Tietze’s
theorem [27, Theorem 4.1]. The existence of the extension can also be deduced from a
classical theorem of Borsuk that asserts the existence of a contractive linear operator of
extension; see for instance [2, Theorem 4.4.4]. Instead, we argue in a more elementary
way.

Lemma 6.1. Let X be a compact Hausdorff space and let K � X be a closed subset.
Then the restriction map

R W C.X/! C.K/; f 7! f jK ;

is a complete quotient map. In fact, R.n/ maps the closed unit ball ofMn.C.X// onto the
closed unit ball of Mn.C.K// for all n 2 N.
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Proof. This result is just a complete version of Tietze’s extension theorem. Let f W
K !Mn be continuous with kf .x/k � 1 for all x 2 K. We show that there exists a con-
tinuous extension F W X ! Mn of f that satisfies kF.x/k � 1 for all x 2 X . Applying
Tietze’s extension theorem to each matrix entry of f , we obtain a continuous extension
G W X !Mn of f . We now modify G so that it satisfies the norm constraint. To this end,
consider the continuous function

˛ W Œ0;1/! Œ0; 1�; t 7!

´
1 if t � 1;

t�1=2 if t > 1;

and define
F W X !Mn; x 7! G.x/˛

�
G.x/�G.x/

�
:

Standard properties of the continuous functional calculus (see, for instance, [12, II.2.3.3])
show that F is continuous. If x 2 K, then G.x/�G.x/ � I , hence F.x/ D G.x/ D f .x/
for x 2 K. Finally, for any x 2 X , we find that

F.x/�F.x/ D ˛
�
G.x/�G.x/

�
G.x/�G.x/˛

�
G.x/�G.x/

�
D ˇ

�
G.x/�G.x/

�
;

where ˇ.t/ D t˛.t/2. Since ˇ.t/ � 1 for all t � 0, we obtain F.x/�F.x/ � I ; whence
kF.x/k � 1.

Let H be a regular unitarily invariant space on Bd . If F � Bd is a finite subset, we let

Mult.H /jF D ¹f jF W f 2 Mult.H /º:

Then Mult.H /jF is the quotient of Mult.H / by the subspace of all multipliers vanishing
on F . We endow Mult.H /jF with the corresponding quotient norm, and indeed with the
corresponding quotient operator space structure. Thus if g 2Mn.Mult.H /jF /, then

kgkMn.Mult.H/jF / D inf ¹kf kMn.Mult.H// W f jF D gº:

We are now ready to prove a result about Pick and peak interpolation for spaces on
the ball.

Theorem 6.2. Let H be a regular unitarily invariant space on Bd . Let E � @Bd be
compact and Mult.H /-totally null and let F � Bd be finite. Then

ˆ W A.H /! Mult.H /jF ˚1 C.E/; f 7! .f jF ; f jE /;

is a complete quotient mapping.

Proof. It suffices to show that the adjoint map

ˆ� W .Mult.H /jF /
�
˚1M.E/! A.H /�

is a complete isometry. By Theorem 3.2, A.H /� D Mult.H /� ˚1 TS.Mult.H // com-
pletely isometrically, so we may regard ˆ� as a map

.Mult.H /jF /
�
˚1M.E/! Mult.H /� ˚1 TS.Mult.H // :
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We will show that ˆ� respects this direct sum decomposition and is completely isometric
on each summand. It then follows that ˆ� is a complete isometry. (This can be seen, for
instance, by noticing that ˆ��, being the1-direct sum of two complete quotient maps, is
a complete quotient map.)

First, we show that ˆ� maps .Mult.H /jF /
� completely isometrically into Mult.H /�

� A.H /�. Let F D ¹z1; : : : ; znº and let �zi
2 .Mult.H /jF /

� and ızi
2Mult.H /� denote

the functionals of evaluation at zi on Mult.H /jF and on Mult.H /, respectively. Since F
is finite, .Mult.H /jF /

� is spanned by the �zi
, and clearly ˆ�.�zi

/ D ızi
. In particular,

ˆ� maps Mult.H jF /� into Mult.H /�. By definition,

R W Mult.H /! Mult.H /jF ; f 7! f jF ;

is a complete quotient mapping, hence its adjoint R� W .Mult.H /jF /
� ! Mult.H /� is a

complete isometry. Since R�.�zi
/ D ızi

, it follows that ˆ� is completely isometric on
Mult.H jF /�.

We finish the proof by showing that ˆ� maps M.E/ completely isometrically into
TS.Mult.H //. Let � 2 M.E/. We may trivially extend � to a measure on @Bd , which
we continue to denote by �. Then ˆ�.�/ 2 A.H /� is simply the integration func-
tional ��. Since E is Mult.H /-totally null, � 2 TS.Mult.H //. Thus, ˆ� maps M.E/
into TS.Mult.H //. To show that ˆ� is a complete isometry on M.E/, it suffices to
observe that the inclusionM.E/ �M.@Bd / is completely isometric, which follows from
Lemma 6.1 and duality.

The Pick property makes it possible to explicitly compute the norm in Mult.H /jF
with the help of Pick matrices. In this setting, we therefore obtain a more concrete version
of the last result. In particular, Theorem 1.5 is the special case n D 1 in the following
corollary.

Corollary 6.3. Let H be a regular unitarily invariant space on Bd with kernel K that
has the Mn-Pick property. Let z1; : : : ; zk 2 Bd and W1; : : : ; Wk 2Mn with�

K.zi ; zj /.In �WiW
�
j /
�
� 0:

LetE � @Bd be compact and Mult.H /-totally null and let h2Mn.C.E//with khk1� 1.
Then for each " > 0, there exists f 2Mn.A.H // with

(1) f .zi / D Wi for 1 � i � k,

(2) f jE D h, and

(3) kf kMn.Mult.H// � 1C ".

Proof. The Mn-Pick property implies that there exists g 2 Mn.Mult.H // such that
kgkMn.Mult.H// � 1 and g.zi / D Wi for 1 � i � k. Then Theorem 6.2, applied with
F D¹z1; : : : ; zkº, yields f 2Mn.A.H //with f jE D h, f .zi /D g.zi /DWi for 1� i � k
and kf kMn.Mult.H// � 1C ".
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Remark 6.4. As explained in the introduction, one cannot eliminate the " in this theorem
and the corollary in general.

For the ball algebra, it follows from a theorem of Bishop [11] that with a totally null set
E � @Bd alone, one can interpolate any function h 2 C.E/ with a function f in the ball
algebraA.@Bd / of the same norm and even make jf .z/j< khk1 for z 2Bd nE, provided
that h is not identically zero. In [20], in the case of the Drury–Arveson space, the authors
were unable to get kf kMult.H2

d
/ D khk1, but were able to arrange that jf .z/j < khk for

z 2 Bd n E. They asked whether one can remove the ". This question will be resolved
positively in Section 8.

The condition that the set E � @Bd in Theorem 6.2 and Corollary 6.3 be Mult.H /-
totally null is necessary.

Proposition 6.5. Let H be a regular unitarily invariant space on Bd . Let E � @Bd be a
compact set with the property that for every finite set F � Bd , the map

A.H /! Mult.H /jF ˚1 C.E/; f 7! .f jF ; f jE /;

is a quotient mapping. Then E is Mult.H /-totally null.

Proof. Let .Fn/1nD0 be an increasing sequence of finite sets whose union is dense in Bd .
By assumption, there exists for each n 2 N a function fn 2 A.H / with

fnjFn
D 0; fnjE D 1 � 1=n and kfnkMult.H/ � 1:

Then .fn/ is a bounded sequence in Mult.H / that tends to zero pointwise on a dense
subset of Bd , from which it follows that .fn/ tends to zero in the weak-� topology of
Mult.H /. Clearly, .fn/ tends to 1 pointwise on E.

To show that E is Mult.H /-totally null, let � be a positive Mult.H /-Henkin measure
that is concentrated on E. Then by the dominated convergence theorem,

�.E/ D lim
n!1

Z
E

fn d� D lim
n!1

Z
@Bd

fn d� D 0:

Therefore, Lemma 2.5 implies that E is Mult.H /-totally null.

In the case when H admits non-empty Mult.H /-totally null sets, we will establish a
significant strengthening of the preceding result in Theorem 10.3.

We can also prove a version of Theorem 6.2 in which the finite set F � Bd is replaced
with an interpolating sequence. Recall that a sequence .zn/ in Bd is said to be interpolat-
ing for Mult.H / if the map

ˆ W Mult.H /! `1; f 7! .f .zn//;

is surjective. Interpolating sequences in complete Pick spaces were characterized by Ale-
man, McCarthy, Richter and the second author in [4], which also contains more back-
ground on this topic. The following result generalizes [21, Theorem 5.12], with a some-
what simpler proof.
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Theorem 6.6. Let H be a regular unitarily invariant space on Bd . Let K � Bd be a
compact set satisfying

(1) K \ Bd is an interpolating sequence for Mult.H /, and

(2) K \ @Bd is Mult.H /-totally null.

Then the restriction map R W A.H /! C.K/ is surjective.

Proof. By duality, it suffices to show that the adjoint map R� W M.K/ ! A.H /� is
bounded below. Setƒ D K \ Bd and E D K \ @Bd . There is an isometric isomorphism

M.K/!M.ƒ/˚1M.E/; � 7! .�jƒ; �jE /;

where �jA.B/ D �.A \ B/ for Borel sets A;B � Bd . On the other hand, Theorem 3.2
shows that A.H /� D Mult.H /� ˚1 TS.Mult.H //, hence we may regard R� as a map

R� WM.ƒ/˚1M.E/! Mult.H /� ˚1 TS.Mult.H // :

We will show that R� respects the direct sum and is bounded below on each summand.
SinceE is Mult.H /-totally null by assumption, we see exactly as in the last paragraph

of the proof of Theorem 6.2 that R� maps M.E/ isometrically into TS.Mult.H //. Since
ƒ D .zn/

1
nD0 is a sequence, we may identify M.ƒ/ D `1.ƒ/ D `1.N/, and under this

identification,R� maps en to ızn
, the character of evaluation at zn 2 Bd . Hence,R� maps

M.ƒ/ into Mult.H /�. Finally, to see that R� is bounded below on M.ƒ/, we use the
assumption that ƒ is an interpolating sequence. This means that the map

ˆ W Mult.H /! `1; f 7! .f .zn//;

is surjective, hence the adjoint ˆ� is bounded below. Moreover, ˆ is weak-�–weak-�
continuous, hence ˆ� maps `1.N/ into Mult.H /�. Observe that ˆ�.en/ D ızn

for all
n 2 N, that is, R� agrees with ˆ� on M.ƒ/. In particular, R� is bounded below, as
desired.

Remark 6.7. If .zn/ is an interpolating sequence with corresponding surjection
ˆ W Mult.H / ! `1, then the norm of the inverse of the induced isomorphism
Mult.H /=ker.ˆ/ ! `1 is called the interpolation constant 
 . Since ˆ is contractive,

 � 1. For H 2

d
, it was observed in [21] that in the setting of Theorem 6.6, the norm of

the inverse of the induced isomorphism A.H /=ker.R/! C.K/ is at most 2
 C 1. The
above proof shows that this norm is in fact equal to 
 .

Remark 6.8. Lemma 10.1 below shows that R is in fact completely surjective.

7. Ideals

In [21], a detailed analysis was made of the ideals in A.H 2
d
/ and their zero sets. Here we

will establish a few of these results which require additional work.
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The first thing one needs is an analogue of the F. and M. Riesz Theorem. This was
established for the Drury–Arveson space in [20, Theorem 4.7], but the proof was quite
different.

Proposition 7.1. Let H be a regular unitarily invariant space on Bd . Let J be a closed
ideal in A.H /, and let  be a linear functional in J?. Decompose  D  a C  s where
 a 2 Mult.H /� and  s 2 TS.Mult.H //. Then  a and  s both annihilate J.

Proof. Observe that A.H /�� � B.H /�� is an algebra. Moreover, since multiplication in
A.H /�� is separately weak-� continuous, J�� D J?? is an ideal in A.H /��. By The-
orem 5.1, A.H /�� ŠMult.H /˚1Ws . In particular, the element 0˚ I lies in A.H /��.
It follows that

J?? D J??.I ˚ 0/˚ J??.0˚ I / DW Ja ˚1 Js

decomposes as a direct sum. Let  2 J?, and suppose that ƒ D ƒa C ƒs belongs
to J??. Then ƒa; ƒs 2 J??, so ƒ. a/ D ƒa. / D 0. Thus,  a 2 J?. Hence also
 s D  �  a 2 J?.

Remark 7.2. With notation as in the last proof, it follows that if  2 A.H /�, then

 a.f / D O ..I ˚ 0/f / and  s.f / D O ..0˚ I /f /;

where O is the canonical extension of  to an element of A.H /���.

Suppose that J is an ideal in A.H /. Define the zero set

Z.J/ WD ¹z 2 Bd W f .z/ D 0 for all f 2 Jº:

Conversely, if E is a closed subset of Bd , let

I.E/ D ¹f 2 A.H / W f jE D 0º:

For E � @Bd , we also write

TS.E/ D ¹� 2 TS.Mult.H // W � is supported on Eº:

Set QJ to be the weak-� closure of J in Mult.H /.
The following is a consequence of the previous result.

Corollary 7.3. Let J be a closed ideal in A.H /, and let E D Z.J/ \ @Bd . Then

J? D QJ? ˚1 TS.E/:

Proof. It is clear that J? � QJ?˚1 TS.E/. Conversely, let  2 J? have a decomposition

 D ' C � 2 Mult.H /� ˚1 TS.Mult.H // :

Then '; � 2 J? by Proposition 7.1. Since ' extends to a weak-� continuous functional
on Mult.H /, it belongs to QJ?.
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It remains to show that � is supported on E. If f 2 J, then f � annihilates A.H /; and
so is the zero functional. Since f � � �, this measure is totally singular by Lemma 2.4.
Thus by Theorem 3.2, f � D 0. That means that the support of � is contained in Z.f /.
Since this is true for all f 2 J, it follows that the support of � is contained in E, as
desired.

This allows us to obtain an analogue of the Rudin–Carleson theorem describing the
ideals of the disc algebra [16, 47]. In the case of A.D/, we know that the weak-� closed
ideals of H1.D/ are of the form !H1.D/ for all inner functions !, which yields a pre-
cise description of ideals of A.D/. The somewhat less precise analogues were established
for the ball algebra by Hedenmalm [36] and for the Drury–Arveson space in [21, The-
orem 4.1].

Theorem 7.4. Let H be a regular unitarily invariant space on Bd , and let J be a closed
ideal in A.H /. Let E D Z.J/ \ @Bd , and let QJ be the weak-� closure of J in Mult.H /.
Then

J D QJ \ I.E/:

Proof. Clearly, J � QJ \ I.E/. Conversely, by Corollary 7.3,

J? D QJ? ˚1 TS.E/ � . QJ \ I.E//?;

hence J D QJ \ I.E/ by the Hahn–Banach theorem.

The following result about ideals of A.H / can be established in exactly the same
manner as in [21]. We provide a different argument.

Theorem 7.5. Let H be a regular unitarily invariant space on Bd . Suppose that E is a
closed subset of @Bd . Then I.E/ is weak-� dense in Mult.H / if and only ifE is Mult.H /-
totally null. In this case, the unit ball of I.E/ is weak-� dense in the unit ball of Mult.H /.

Proof. Assume first that I.E/ is weak-� dense in Mult.H / and let � be a positive
Mult.H /-Henkin measure supported on E. The integration functional �� on A.H / anni-
hilates I.E/ and extends to a weak-� continuous functional on Mult.H /. Hence by
weak-� density of I.E/, �� is the zero functional. In particular, �.E/ D ��.1/ D 0,
so that E is Mult.H /-totally null by Lemma 2.5.

Conversely, suppose that E is Mult.H /-totally null, and let f belong to the open unit
ball of Mult.H /. Theorem 6.2 implies that for every finite set F � Bd , there exists g in
the unit ball of A.H / with gjE D 0 and gjF D f jF ; whence g 2 I.E/. Since the weak-�
topology on the unit ball of Mult.H / agrees with the topology of pointwise convergence
on Bd , we see that the unit ball of I.E/ is weak-� dense in the unit ball of Mult.H /.

Combining Theorem 7.5 with Corollary 7.3 immediately yields the following.

Corollary 7.6. Let H be a regular unitarily invariant space on Bd . Suppose that E is a
closed Mult.H /-totally null subset of @Bd . Then I.E/? D TS.E/.
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8. Peak interpolation

Our results of Section 6 show that a closed Mult.H /-totally null set is an interpolation set
for A.H /. In this section, we will show that it is in fact a peak interpolation set. This in
turn implies that it is a zero set. Our proof is modeled on a proof of the Rudin–Carleson
Theorem from [54, III.E.2]. Not only is this argument simpler than the proof due to Bishop
[11] (see [49, Section 10.3]), but it also provides sharp control of the multiplier norm. This
is stronger than the result for the Drury–Arveson space in [20], and also considerably
easier.

Recall that anM -ideal in a Banach space X is a subspace J such that X� decomposes
as X� D J? ˚1 Z. These subspaces of X� are called L-summands, and there is the
identification Z Š J�. Generalizing a result for C �-algebras, Effros and Ruan [28] show
that theM -ideals of an (approximately) unital operator algebra A are precisely the closed
two-sided ideals with a contractive approximate unit. From this, it is immediate that anM -
ideal J is a completeM -ideal, meaning thatMn.J/ is anM -ideal inMn.A/ for all n� 1
(see [14, Theorem 4.8.5]). One important elementary property of an M -ideal J is that it
is proximinal, meaning that if a 2A, there is an element j 2 J with ka� j k D dist.a;J/
(see [54, III.D.4] or [33, Proposition II.2.1]). See [33] for more background on this topic.

Theorem 8.1. Let H be a regular unitarily invariant space on Bd , and let E � @Bd be
compact and Mult.H /-totally null. Let g 2Mn.C.E// be not identically zero. Then there
exists f 2Mn.A.H // such that

(1) f jE D g,

(2) kf .z/k < kgk1 for every z 2 Bd nE, and

(3) kf kMn.Mult.H// D kgk1.

Proof. Consider the restriction map

R W A.H /! C.E/; f 7! f jE :

By Theorem 6.2, R is a complete quotient map with kernel I.E/. By Corollary 7.6,
I.E/? D TS.E/. Alternatively, since R has closed range, I.E/? D ran.R�/ D TS.E/.
Observe that by Theorem 3.2, we have

A.H /� D Mult.H /� ˚1 TS.Mult.H //

D
�
Mult.H /� ˚1 TS.@Bd nE/

�
˚1 TS.E/:

The second decomposition merely splits a totally singular measure � as � D �Ec C �E
where �F .X/ D �.X \ F /. It is evident that this is a decomposition into L-summands.
It follows that I.E/ is a complete M -ideal.

Since M -ideals are proximinal, it then follows that R.n/ maps the closed unit ball
of Mn.A.H // onto the closed unit ball of Mn.C.E//. In particular, given g as in the
statement of the theorem, there exists F 2 Mn.A.H // with F jE D g and kF kMn.A.H//

� kgk1. Since the multiplier norm dominates the supremum norm also for matrices, it
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follows that kF.z/k � kgk1 for all z 2 Bd . To obtain the strict pointwise inequality, it
suffices to construct h in the closed unit ball of A.H / with hjE D 1 and jh.z/j < 1 for
z 2 @Bd nE. It then follows from the maximum modulus principle that jh.z/j < 1 for all
z 2 Bd nE. Therefore f D hF satisfies all requirements.

We now construct h. Notice that since E is a non-empty Mult.H /-totally null set,
the singleton ¹zº is Mult.H /-totally null for every z 2 E. Unitary invariance of H then
implies that all singleton sets in @Bd are Mult.H /-totally null. For each z 2 @Bd n E,
the union E [ ¹zº is totally null. By the previous paragraph, there is a function hz in the
closed unit ball of A.H / with hzjE D 1 and hz.z/ D 0. By continuity of hz , there exists
an open neighborhood Uz of z in @Bd with jhz.w/j < 1=2 for all w 2 Uz . Since @Bd nE
is second countable, the open cover .Uz/z2@Bd nE has a countable subcover .Uzk

/1
kD1

. Set

h D

1X
kD1

2�khzk
:

Then h belongs to the closed unit ball of A.H /, hjE D 1 and jh.z/j < 1 for z 2 @Bd nE,
as desired.

This readily yields the fact that every closed Mult.H /-totally null set is a zero set.

Corollary 8.2. Let E � @Bd be compact and Mult.H /-totally null. Then there exists
f 2 A.H / with E D ¹z 2 Bd W f .z/ D 0º.

Proof. By Theorem 8.1, there exists g 2 A.H / with gjE D 1 and jg.z/j < 1 for all
z 2 Bd nE. Set f D 1 � g.

Using more sophisticated results from the theory of M -ideals, we can even obtain a
linear operator of peak interpolation, i.e. we can achieve that in Theorem 8.1, the func-
tion f depends linearly on g. In the case of the disc algebra and the ball algebra, this was
first proved by Pełczyński [43].

It is a theorem of Andô [6] and Choi–Effros [18] that if J � X is an M -ideal so
that X=J is isometrically isomorphic to C.K/ for a compact metric space K, then there
exists a linear contractive lifting L W X=J ! X, i.e. L is a right-inverse of the quotient
mapping. More generally, a contractive lifting exists whenever J is an M -ideal so that
X=J is a separable Banach space that satisfies the metric approximation property. This
result can be found in [33, Theorem II.2.1]; see also [33, Section II.6] for a discussion
of the history and special cases of this result. From this, one obtains a linear operator of
peak interpolation in the scalar case. To deal with the matrix case, we will use an operator
space version of the lifting theorem due to Effros and Ruan [29].

Theorem 8.3. Let H be a regular unitarily invariant space on Bd and let E � @Bd
be compact and Mult.H /-totally null. Then there exists a linear complete isometry L W
C.E/! A.H / such that

(1) L.g/jE D g for all g 2 C.E/, and

(2) kL.n/.g/.z/k < kgk1 for all g 2Mn.C.E// n ¹0º and every z 2 Bd nE.
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Proof. We first construct a linear complete contraction L0 W C.E/! A.H / that satis-
fies (1). Recall from the first paragraph of the proof of Theorem 8.1 that the restriction
map

R W A.H /! C.E/; f 7! f jE ;

is a complete quotient mapping whose kernel is a complete M -ideal. In this setting,
[29, Theorem 5.2] implies there exists a linear complete contraction L0 W C.E/! A.H /

such that R ı L0 is the identity, i.e. (1) holds.
To see that [29, Theorem 5.2] is applicable, one has to observe that C.E/ satisfies

the operator metric approximation property, and that A.H / is locally reflexive. The first
assertion is a standard partition of unity argument; see [15, Proposition 2.4.2]. The second
assertion follows from the fact that C �.A.H //, thanks to the short exact sequence (2) in
Section 2.1, is a nuclear C �-algebra [15, Exercise 3.8.1]. Hence it is locally reflexive (see
[45, Proposition 18.19] or [15, Corollary 9.4.1]), and local reflexivity passes to subspaces
[29, p. 185].

To obtain property (2), we apply Theorem 8.1 to get a function h in the closed unit
ball of A.H / with hjE D 1 and jh.z/j < 1 for z 2 Bd nE. Define

L W C.E/! A.H /; g 7! hL0.g/:

Then L is a linear complete contraction that satisfies (1) and (2), using once more the fact
that the multiplier norm dominates the supremum norm. From (1), we deduce that L is in
fact a complete isometry, which finishes the proof.

9. Existence of totally null sets

In this section, we study when a regular unitarily invariant space admits non-empty
Mult.H /-totally null sets. We begin with an easy lemma.

Lemma 9.1. Let H be a regular unitarily invariant space. The following assertions are
equivalent:

(i) There exists a non-empty Mult.H /-totally null set.

(ii) For each z 2 @Bd , the singleton set ¹zº is Mult.H /-totally null.

(iii) For each z 2 @Bd , the Dirac measure ız is Mult.H /-totally singular.

(iv) Hen.Mult.H // ¨ M.@Bd /.

Proof. (i))(ii) Let E be a non-empty Mult.H /-totally null set. Then for each z 2 E,
the singleton ¹zº is Mult.H /-totally null. Unitary invariance of H then implies that all
singleton subsets of @Bd are Mult.H /-totally null.

(ii))(iii) Since the Dirac measure ız is concentrated on ¹zº, it is Mult.H /-totally
singular by Lemma 2.5.

(iii))(iv) is trivial.
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(iv))(i) By Lemma 2.4, there exists a non-zero positive Mult.H /-totally singular
measure �. Proposition 4.4 implies that � is concentrated on a Mult.H /-totally null setE.
Since � ¤ 0, E ¤ ;, so (i) holds.

In Remark 3.3, we observed that if the kernelK.z;w/D
P1
nD0 anhz;wi

n of a regular
unitarily invariant space satisfies

P1
nD0 an <1, i.e. ifK is bounded, then Hen.Mult.H //

DM.@Bd / and hence there are no non-empty Mult.H /-totally null sets. In the presence
of the 2-point Pick property, the converse holds as well.

Proposition 9.2. Let H be a regular unitarily invariant space on Bd satisfying the 2-point
Pick property. If the reproducing kernel of H is unbounded, then each singleton subset of
@Bd is Mult.H /-totally null.

Proof. By Lemma 9.1, it suffices to show that the Dirac measure ıe1
is not Mult.H /-

Henkin. The 2-point Pick property of H allows us to solve, for each 0 < r < 1, the
extremal problem

sup ¹Re.f .re1// W f 2 Mult.H /; kf kMult.H/ � 1; f .0/ D 0º:

The unique multiplier that achieves the supremum is given by

fr .z/ D
1 � 1

K.z;re1/q
1 � 1

K.re1;re1/

(see [34, Proposition 3.1]). Notice that fr is holomorphic in a neighborhood of Bd , hence
fr 2 A.H / for all 0 < r < 1; see the discussion in Section 2.1. Since

P1
nD0 an D1, we

see that limr!1K.re1; re1/ D1, so fr converges pointwise on Bd to

f .z/ D 1 �
1

K.z; e1/
:

Note that K.z; e1/ is defined since jhz; e1ij < 1 even though e1 is not in the open ball.
In fact, since kfrkMult.H/ � 1 for all 0 < r < 1, it follows that fr converges to f in the
weak-� topology of Mult.H /, and therefore kf kMult.H/ � 1.

Suppose now for a contradiction that the Dirac measure ıe1
is Mult.H /-Henkin, and

let ' 2 Mult.H /� be the unique weak-� continuous extension of the functional of evalu-
ation at e1. Then ' is multiplicative. Moreover,

'.f / D lim
r!1

'.fr / D lim
r!1

fr .1/ D 1;

hence '.f n/D 1 for all n 2 N. On the other hand, jf .z/j < 1 for all z 2 Bd by the max-
imum modulus principle. Hence .f n/ tends to zero in the weak-� topology of Mult.H /,
so '.f n/ tends to zero, a contradiction.

The following basic observation is sometimes useful to show that singleton sets are
totally null.
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Lemma 9.3. Let H ;K be two regular unitarily invariant spaces on Bd with Mult.H / �

Mult.K/. Then

(a) Hen.Mult.K// � Hen.Mult.H //, and

(b) each Mult.H /-totally null set is Mult.K/-totally null.

Proof. (a) The closed graph theorem implies that the inclusion Mult.H / � Mult.K/

is bounded. Hence Lemma 2.1 implies that every Mult.K/-Henkin measure is also
Mult.H /-Henkin.

(b) This is immediate from (a).

Example 9.4. Consider the spaces Hs.Bd /, defined in Section 2.1. We claim that
singleton sets are Mult.Hs/-totally null if and only if s � �1.

To see this, note that for s < �1, the coefficients .an/ in the kernel are summable,
hence there are no non-empty totally null sets. If s 2 Œ�1; 0�, then Hs.Bd / is a com-
plete Pick space by a straightforward extension of [1, Corollary 7.41]. Hence Proposition
9.2 shows that singleton sets are totally null if s 2 Œ�1; 0�. Finally, it is well known that
Mult.Hs.Bd // � Mult.Ht .Bd // for s � t . Indeed, this is a special case of [5, Corol-
lary 3.4]. In the present setting, it is also an elementary consequence of the fact that for
s > �1, the space Hs.Bd / admits an equivalent norm for which the reproducing kernel is
given by

Ks.z; w/ D
1

.1 � hz; wi/sC1
:

AsKt=Ks is positive semidefinite if s � t , it follows that Mult.Hs.Bd //�Mult.Ht .Bd //
for s � t ; see for instance [35, Corollary 3.5]. Lemma 9.3 therefore implies that singleton
sets are Mult.H /-totally null if s � �1.

Next, we will construct an example to show that Proposition 9.2 may fail without the
Pick property. This will be accomplished with the help of the following lemma. Recall
from the discussion in Section 2.1 that if H is a regular unitarily invariant space on D,
then the spectrum ofMz on H is D. In particular, the spectral radius formula implies that
limn!1 kz

nk
1=n

Mult.H/
D 1. This is essentially the only restriction on the rate of growth of

kznkMult.H/, even if we insist that the kernel be unbounded.

Lemma 9.5. Let .˛n/1nD1 be a sequence in Œ1;1/ satisfying limn!1 ˛
1=n
n D 1. Then

there exists a regular unitarily invariant space H on D with unbounded kernel and
kznkMult.H/ � ˛n for all n � 1.

Proof. Let S be the unilateral weighted shift whose weight sequence .wn/ is given by

.˛1; 1; : : : ; 1; ˛
1=2
2 ; ˛

1=2
2 ; 1; : : : ; 1; ˛

1=3
3 ; ˛

1=3
3 ; ˛

1=3
3 ; 1; : : :/;

where the block of ones following k copies of ˛1=k
k

consists of nk ones, and we require
that nk � .˛1˛2 : : : ˛k/2. Then S is unitarily equivalent to Mz on the reproducing kernel
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Hilbert space H with reproducing kernel

K.z;w/ D

1X
nD0

an.zw/
n;

where a0 D 1, and .wn/ and .an/ are related by

w2n D
an

anC1
.n � 0/;

an D

n�1Y
kD0

w�2k .n � 1/

(5)

(see [51, Section 3]). The assumption on .˛n/ implies that

lim
n!1

an

anC1
D lim
n!1

w2n D 1;

so H is regular. Moreover,

kznkMult.H/ D kS
n
k D sup

k�0

wkwkC1 : : : wkCn�1 � ˛n

for all n � 1. Finally, to see that
P1
nD0 an D 1, notice that (5) implies that for each

k � 1, the sequence .an/ equals .˛1˛2 : : : ˛k/�2 at least nk times, so
P1
nD0 an diverges

by choice of nk .

This lemma allows us to construct spaces whose multipliers are very regular close to
the boundary of D, which in turn implies that there are no non-empty totally null sets.

Proposition 9.6. There exists a regular unitarily invariant space H on D with unbounded
kernel that admits no non-empty Mult.H /-totally null sets.

Proof. By Lemma 9.5, there exists a regular unitarily invariant space H on D with
unbounded kernel so that kznkMult.H/ � .n C 1/

3 for all n � 0. We claim that if f 2
Mult.H /, then f 2 A.D/ and f 0 2 A.D/. To see this, notice that if f 2 Mult.H / has a
Taylor series f .z/ D

P1
nD0
yf .n/zn, then

yf .n/zn D
1

2�

Z 2�

0

f .eitz/e�int dt:

This integral actually converges in the weak-� topology by Lemma 2.2. Thus unitary
invariance of H implies that

k yf .n/znkMult.H/ � kf kMult.H/:

Therefore

j yf .n/j �
kf kMult.H/

.nC 1/3
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for all n 2N. It follows that the Taylor series of f and of f 0 converge absolutely inA.D/.
Moreover, there exists a constant C > 0 such that

kf 0k1 � Ckf kMult.H/

for all f 2 Mult.H /.
We finish the proof by showing that for each z 2 @D, the Dirac measure ız is Mult.H /-

Henkin. For w 2D, let �w 2 A.H /� denote the functional of evaluation at w. If r 2 .0; 1/
and z 2 @D, then for each f 2 A.H /,

jf .rz/ � f .z/j � .1 � r/kf 0k1 � .1 � r/Ckf kMult.H/:

Hence �rz converges to �z in the norm of A.H /�. Since �rz is Mult.H /-Henkin and since
the Mult.H /-Henkin functionals form a norm closed subspace of A.H /�, we conclude
that ız is a Mult.H /-Henkin measure, as desired.

The existence of non-empty Mult.H /-totally null sets leads to a dichotomy in the
boundary behavior of multipliers.

Proposition 9.7. Let H be a regular unitarily invariant space on Bd .

(a) If singleton sets are not Mult.H /-totally null, then Mult.H /�A.Bd /, and evaluation
at each point in Bd is weak-� continuous on Mult.H /.

(b) If singleton sets are Mult.H /-totally null, then every sequence .zn/ in Bd with
limn!1 kznk D 1 has a subsequence that is interpolating for Mult.H /.

Proof. (a) If singleton sets are not Mult.H /-totally null, then Lemma 9.1 implies that for
each � 2 @Bd , the Dirac measure ı� is Mult.H /-Henkin. Thus, for each � 2 @Bd , there
exists a unique weak-� continuous functional �� on Mult.H / that agrees with evaluation
at � on A.H /. We also write �z for the weak-� continuous functional of evaluation at
z 2 Bd on Mult.H /. Let f 2 Mult.H / and define

g W Bd ! C; z 7! �z.f /:

Clearly g agrees with f on Bd . We claim that g is continuous. It suffices to show that g
is continuous at each � 2 @Bd .

Let fr;U .z/ D f .rUz/ for 0 � r � 1, U 2 Ud and z 2 Bd . We claim that

�rU� .f / D �� .fr;U /: (6)

Indeed, Lemma 2.2 (a) shows that the map

Mult.H /! Mult.H /; f 7! fr;U ;

is weak-�–weak-� continuous and maps A.H / into A.H /. So (6) holds for all f 2 A.H /

by definition of �� . Both sides of the equation are weak-� continuous in f , so it holds for
all f 2 Mult.H /.
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To show that g is continuous at � 2 @Bd , let .zn/ be a sequence in Bd that converges
to z. An elementary linear algebra argument shows that there exist a sequence .rn/ in
Œ0; 1� tending to 1 and a sequence .Un/ in Ud tending to I such that zn D rnUn� for all n.
Lemma 2.2 (b) implies that frn;Un

tends to f in the weak-� topology of Mult.H /. Hence
using (6) and weak-� continuity of �� , we find that

g.zn/ D �zn
.f / D �� .frn;Un

/
n!1
����! �� .f / D g.�/:

Thus, g is continuous at every point of @Bd , and hence is continuous on Bd .
It is clear from the definition of the extension g of f that evaluation at each point

in Bd is weak-� continuous.
(b) By passing to a subsequence, we may assume that .zn/ tends to � 2 @Bd . The-

orem 8.1 shows that there exists a function f 2 A.H / that peaks at �, i.e. f .�/ D 1,
jf .�/j < 1 for all z 2 Bd n ¹�º and kf kMult.H/ D 1. In this setting, a result of Douglas
and Eschmeier [25, Lemma 12 and the discussion preceding Corollary 14] shows .zn/
admits a subsequence that is interpolating for Mult.H /. Explicitly, let wn D f .zn/. Then
.wn/ is a sequence in D that tends to 1, hence by passing to a subsequence, we may
achieve that .wn/ is interpolating forH1.D/. By testing on kernel functions, one checks
that .M �

f
/n tends to zero in the strong operator topology, so the contractionMf admits an

H1-functional calculus. This means that h ı f 2 Mult.H / for all h 2 H1, from which
it follows that .zn/ is interpolating for Mult.H /.

Remark 9.8. Proposition 9.7 shows that in the proof of Proposition 9.6, it would have
been sufficient to arrange that Mult.H / � A.D/. But the proof Proposition 9.6 is more
elementary as it does not rely on the H1-functional calculus or on Theorem 8.1.

The following consequence about existence of interpolating sequences is immediate
from Proposition 9.7.

Corollary 9.9. Let H be a regular unitarily invariant space on Bd and suppose that
Mult.H / 6� A.Bd /. Then there exist infinite interpolating sequences for Mult.H /.

10. Interpolation sets

Let H be a regular unitarily invariant space. We say that a compact set E � @Bd is an
interpolation set for A.H / if the restriction map A.H /! C.E/ is surjective. Theorem
8.1, or already Theorem 6.2, implies in particular that every Mult.H /-totally null set is
an interpolation set for A.H /. We will establish the converse under the assumption that
there exist non-empty Mult.H /-totally null sets at all.

Recall that a linear map ˆ W X ! Y between operator spaces is said to be completely
surjective if there exists a constant C > 0 such that for all n 2 N and for all y 2Mn.Y /,
there exists x 2Mn.X/ with ˆ.n/.x/ D y and kxk � Ckyk.
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Lemma 10.1. Let A be a complete unital operator algebra, letX be a compact Hausdorff
space and let ˆ W A! C.X/ be a unital homomorphism.

(a) If ˆ is surjective, then ˆ is completely surjective.

(b) If ˆ is a quotient map, then ˆ is a complete quotient map.

Proof. Since characters on unital Banach algebras are contractive, ˆ is contractive, and
since C.X/ is a commutative C �-algebra, ˆ is in fact completely contractive. In each
case, ˆ is surjective, so the open mapping theorem implies that the induced mapê W A=ker.ˆ/! C.X/

has a bounded inverse ‰, which clearly is a unital homomorphism. Using again the fact
that C.X/ is a commutative C �-algebra, we find that ‰ is completely bounded with
k‰kcb � k‰k

2; see [41, Theorem 9.7]. This proves (a). Moreover, if ˆ is a quotient
map, then k‰k � 1, hence k‰kcb � 1, which proves (b).

Remark 10.2. This provides another proof of the first part of Lemma 6.1. It is a bit
shorter, but relies on more machinery about completely bounded maps.

We are now ready to show that interpolation sets are totally null. Our proof is inspired
by the proof in [49, Theorem 10.2.2] of a theorem of Varopoulos. The main difference
is that we replace pointwise arguments involving a clever choice of roots of unity with
arguments involving matrices of multipliers.

Theorem 10.3. Let H be a regular unitarily invariant space and let E � @Bd be com-
pact. Suppose that there exist non-empty Mult.H /-totally null sets. If E is an interpola-
tion set for A.H /, then E is Mult.H /-totally null.

Proof. Let � be a positive Mult.H /-Henkin measure concentrated on E. We have to
show that �.E/ D 0; see Lemma 2.5. Since E is an interpolation set, an application of
Lemma 10.1 shows that the restriction map A.H /! C.E/ is completely surjective, say
with constant C > 0.

In the first step, we will show that for each " > 0 and for each compact set K � Bd ,
there exists f 2 A.H / with

(a) �.¹j1 � f j � "º/ < ",

(b) jf j � "C 2 on K, and

(c) kf kMult.H/ � C
2.

Since there exist non-empty Mult.H /-totally null sets, each singleton set is totally
null by unitary invariance of H . Hence Theorem 8.1 implies that for each z 2 E, there
exists fz 2 A.H / with fz.z/ D 1, jfz.w/j < 1 for w 2 Bd n ¹zº and kfzkMult.H/ D 1.
By replacing fz with a sufficiently large power of fz , we may achieve in addition that
jfzj � " on K. Compactness of E allows us to find finitely many fi D fzi

, 1 � i � n,
such that the open sets ¹j1 � fi j < "º cover E. By regularity of �, there exist disjoint
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compact sets E1; : : : ; En such that

Ei � E \ ¹j1 � fi j < "º (7)

for each i and

�
�
@Bd n

n[
iD1

Ei

�
< "; (8)

as� is concentrated onE. Since the restriction mapA.H /!C.E/ is completely surject-
ive with constant C , Tietze’s extension theorem (Lemma 6.1) implies that the restriction
map A.H /! C.

S
i Ei / is also completely surjective with constant C . Therefore, since

theEi are disjoint, there exist g1; : : : ;gn 2A.H / such that gi D ıij onEj for 1� i; j � n,
and 

�g1 � � � gn

�


Mult.H˝Cn;H/

� C:

By the same token, there exist h1; : : : ; hn 2 A.H / with hi D ıij on Ej for 1 � i; j � n,
and 








264h1:::
hn

375









Mult.H ;H˝Cn/

� C:

Let

f D

nX
iD1

gifihi D
�
g1 � � � gn

�
26664
f1 0 � � � 0

0 f2 � � � 0
:::

: : :
: : :

:::

0 0 � � � fn

37775
264h1:::
hn

375 :
Since kfikMult.H/ � 1 for each i , the matrix representation shows that kf kMult.H/ � C

2,
i.e. (c) holds. If z 2K, then jfi .z/j � " for each i , hence using the fact that the supremum
norm is dominated by the multiplier norm also for matrices, we find that jf .z/j � "C 2,
i.e. (b) holds. To show (a), notice that if z 2 Ei , then f .z/D fi .z/, hence j1� f .z/j < "
by (7). In conjunction with (8), this yields �¹j1� f j � "º < ", i.e. (a) holds. This finishes
the construction of f .

Applying the first step to a sequence ."n/ decreasing to zero and to the compact sets
K D rnBd , where rn 2 .0; 1/ increases to 1, we obtain a bounded sequence .fn/ in A.H /

that converges to 0 uniformly on compact subsets of Bd and to 1 in �-measure. Thus,
.fn/ tends to zero in the weak-� topology of Mult.H /. From the dominated convergence
theorem and the fact that � is Mult.H /-Henkin, we infer that

�.E/ D lim
n!1

Z
@Bd

fn d� D 0:

This shows that E is Mult.H /-totally null, as desired.

If there do not exist non-empty Mult.H /-totally null sets, then there are no non-trivial
interpolation sets for A.H /.
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Proposition 10.4. Let H be a regular unitarily invariant space on Bd that does not admit
non-empty Mult.H /-totally null sets. Then a compact setE � @Bd is an interpolation set
for A.H / if and only if E is finite.

Proof. Clearly, finite sets are interpolation sets since A.H / contains the polynomials.
Conversely, assume for a contradiction thatE is an infinite interpolation set forA.H /.

Then E contains a sequence .zn/ of distinct points that converges to some z 2 E. Apply-
ing the open mapping theorem to the restriction map A.H /! C.E/ and using Tietze’s
extension theorem, we obtain a constant C > 0 such that for each n 2 N, there exists a
function fn 2 A.H / with fn.zk/ D .�1/k for k � n and kfnkA.H/ � C .

Weak-� compactness of the unit ball of Mult.H / shows that the sequence .fn/ has a
weak-� cluster point f 2Mult.H /. Since H does not admit non-empty Mult.H /-totally
null sets, Proposition 9.7 (a) shows that every function in Mult.H / has a unique exten-
sion to a continuous function on Bd and that evaluation at each point in @Bd is weak-�
continuous. It follows that f .zk/ D .�1/k for all k 2 N. This contradicts the fact that
limk!1 zk D z and that f is continuous at z.

11. Zero sets

It is known that a compact setE � @Bd isH1.Bd /-totally null if and only if it is the zero
set of a function in the ball algebra; see [49, Chapter 10]. In the Drury–Arveson space, a
theorem of Clouâtre and the first author [21, Proposition 5.1] shows that every compact
Mult.H 2

d
/-totally null subset of @Bd is the zero set of a function in A.H 2

d
/. We have gen-

eralized this by establishing that compact Mult.H /-totally null sets are zero sets forA.H /

in Corollary 8.2. The authors of [21] also ask in [21, Questions 5.2 and 5.3] whether the
converse holds. We take this opportunity to point out that the example constructed in [35]
provides a negative answer to this question.

Theorem 11.1. For each d � 2, there exists a function f 2 A.H 2
d
/ whose zero set

¹z 2 Bd W f .z/ D 0º is contained in @Bd and supports a Mult.H 2
d
/-Henkin probabil-

ity measure. In particular, the zero set of f is not Mult.H 2
d
/-totally null.

In [35], a probability measure � on @Bd was constructed such that � is Mult.H 2
d
/-

Henkin, but the support E of � is H1.Bd /-totally null. We will show that E is the zero
set of a function in A.H 2

d
/.

It is easy to see that if f 2 A.H 2
d
/ satisfies the conclusion of Theorem 11.1, then for

any d 0 � d , the trivial extension f ıP of f to Bd 0 , where P is the orthogonal projection
onto the first d coordinates, satisfies the conclusion of the theorem as well. To see this,
one has to observe that the map

A.H 2
d /! A.H 2

d 0/; f 7! f ı P;

is continuous (in fact a complete isometry), which follows from an explicit computation
with the reproducing kernels or from the von Neumann inequality for H 2

d 0
. Moreover,
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one has to check that the trivial extension of a Mult.H 2
d
/-Henkin measure to @Bd 0 is

Mult.H 2
d 0
/-Henkin; see [35, Lemma 2.3].

It therefore suffices to establish Theorem 11.1 for d D 2. In fact, the construction
in [35] was significantly easier for d D 4, so we will consider that case first.

Proof of Theorem 11.1 for d D 4. We use the construction of [35, Section 3]. Let

r W B4 ! D; z 7! 16z1z2z3z4;

and let E D r�1.1/. The arithmetic mean–geometric mean inequality implies that r
maps B4 onto D and B4 onto D. In particular, E � @B4. In [35, Section 3], a Mult.H 2

4 /-
Henkin measure � supported on E was constructed as follows. Let

h W T3
! @B4; .�1; �2; �3/ 7!

1
2
.�1; �2; �3; �1�2�3/;

let m be the normalized Lebesgue measure on T3, and let � be the pushforward of m
by h:

�.A/ D m.h�1.A//

for Borel subsets A � @B4. Since the range of h is contained in E, the measure � is
supported on E. Moreover, by [35, Lemma 3.3], � is Mult.H 2

4 /-Henkin. Let f D 1 � r .
Then the zero set of f is E; and since f is a polynomial, f 2 A.H 2

4 /.

We remark that the use of the arithmetic mean–geometric mean inequality on the
monomials z1z2 : : : zd in order to construct counterexamples in the Drury–Arveson space
already appears in Arveson’s work; see [8, proof of Theorem 3.3].

The basic idea behind the proof in the case d D 2 is the same, but as in [35], the con-
struction becomes more involved in dimension 2. The following argument will establish
Theorem 11.1 in full.

Proof of Theorem 11.1 for d D 2. We use the construction in [35, Section 4]. Let F � T
be the circular middle-thirds Cantor set, let

r W B2 ! D; z 7! 2z1z2;

and let E D r�1.F /. Once again, E � @B2 by the arithmetic mean–geometric mean
inequality. In [35, Section 4], a Mult.H 2

2 /-Henkin measure supported on E was construc-
ted as follows. Let � be the Cantor measure on F , let

h W T � F ! @B2; .�1; �2/ 7!
1
p
2
.�1; �1�2/;

and let � be the pushforward of m � � by h. Since the range of h is contained E, the
measure � is supported on E. Moreover, by [35, Lemma 4.6] (see also [35, Remark 4.4]),
� is Mult.H 2

2 /-Henkin.
It remains to show that E is the zero set of a function in A.H 2

2 /. To this end,
notice that the middle-thirds Cantor set F is a Carleson set, meaning that jF j D 0 and



K. R. Davidson, M. Hartz 2430

P
k jIkj log.1=jIkj/ < 1, where Ik are the connected components of T n F and jI j

denotes the linear Lebesgue measure of jI j. By a theorem of Carleson (see, for instance,
[30, Theorem 4.4.3 and Exercise 4.4.2]), there exists h 2 A.D/ such that h00 2 A.D/ and
F D ¹� 2 T W h.�/ D 0º. Let f D h ı r . Then the zero set of f is E.

We finish the proof by showing that f 2A.H 2
2 /. Let h.z/D

P1
nD0 anz

n be the Taylor
series of h, so that

f .z/ D

1X
nD0

anr.z/
n:

Since h00 2 A.D/, there exists a constant C > 0 such that janj � C
.nC1/2

for all n 2 N.
Moreover, since rn is a homogeneous polynomial for all n 2 N, it follows for instance
from [35, Proposition 6.4] and the usual formula of the norm of a monomial in H 2

d
that

krnk2
Mult.H2

2
/
D krnk2

H2
2

D 4n
.nŠ/2

.2n/Š
�
p
�
p
nC 1;

where the last approximation is a consequence of Stirling’s formula. Thus,

1X
nD0

janj kr
n
kMult.H2

2
/ � C

0

1X
nD0

.nC 1/�7=4 <1

for some constant C 0 > 0. This shows that the series defining f converges absolutely in
the Banach algebra A.H 2

2 /, hence f 2 A.H 2
2 /.

The same principle, but in an easier fashion, also applies to the Dirichlet space D .

Proposition 11.2. The Cantor middle-thirds set E � T is the zero set of a function
in A.D/, but is not Mult.D/-totally null.

Proof. As in the proof of Theorem 11.1, there exists f 2 A.D/ with f 00 2 A.D/ whose
zero set is E. One checks that the Taylor series of f converges absolutely in Mult.D/,
hence f 2 A.D/. On the other hand, E has positive logarithmic capacity (see, for
instance, [30, end of Section 2.4]), hence E is not Mult.D/-totally null by Proposi-
tion 2.6.

The following is an immediate consequence of the proof of Theorem 11.1 for the case
d � 4.

Corollary 11.3. For each d � 4, there is a compact subset E � @Bd which is not
Mult.H 2

d
/-totally null for which, for any " > 0, there is a function f 2 A.H 2

d
/ such

that f jE D 1, jf .z/j < 1 for all z 2 Bd nE and kf kMult.H/ � 1C ".

Proof. Once again, it suffices to consider the case d D 4. Let r.z/ D 16z1z2z3z4 and
E D r�1.1/ as in the proof of Theorem 11.1. As observed there, krk1 D 1. Let

f .z/ D nCr.z/
nC1

for n sufficiently large.
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Of course, these results and examples raise the question about how to characterize zero
sets of A.H /. In the case of the Drury–Arveson space, we see that they are intermediate
between the Mult.H 2

d
/-totally null sets and the classical H1.Bd /-totally null sets, but

not the same as the former. The latter are known to characterize the zero sets of A.Bd /.

12. Relations among various interpolation properties

Let us introduce a bit of terminology to facilitate discussion.

Definition 12.1. A compact subset E of @Bd is said to be

(PI) a peak interpolation set if the conclusion of Theorem 8.1 holds for scalar valued
functions;

(I) an interpolation set if the restriction map of A.H / into C.E/ is surjective;

(P) a peak set if there exists a function f 2 A.H / such that f jE D 1, jf .z/j < 1 for
every z 2 Bd nE, and kf kMult.H/ D 1;

(PPI) a Pick-peak interpolation set if for every finite set F � Bd , the restriction map
from A.H / to Mult.H /jF ˚1 C.E/ is a quotient map.

We also write (TN) to mean that E is Mult.H /-totally null.
Clearly (PI) implies both (P) and (I); and (PPI) implies (I). Also (P) implies that E is

a zero set, and it implies the weaker notion that there is an f 2 A.H / such that f jE D 1,
jf .z/j < 1 for every z 2 Bd n E without the sharp norm control on f . However, the
results of the previous section show that a set E with these weaker properties need not be
totally null.

We can now summarize some of our main results as follows.

Theorem 12.2. Let H be a regular unitarily invariant space on Bd , and let E � @Bd be
compact. The following are equivalent:

(TN) E is Mult.H /-totally null.

(PI) E is a peak interpolation set.

(P) E is a peak set.

(PPI) E is a Pick-peak interpolation set.

Moreover, these properties imply the corresponding complete versions of (PI) and (PPI)
for matrix valued functions. Furthermore, if there exist non-empty Mult.H /-totally null
sets, then this is also equivalent to

(I) E is an interpolation set.

Proof. Theorem 8.1 shows that (TN) implies the complete version of (PI), which trivially
implies (P). Suppose thatE is a (P) set, and let f 2A.H / satisfy f jE D 1, jf .z/j< 1 for
every z 2 Bd nE, and kf kMult.H/ D 1. Let � be a positive Henkin measure concentrated
on E. We show that �.E/ D 0. The sequence .f n/ is bounded in A.H / and converges
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to 0 pointwise on Bd . Hence it converges to 0 in the weak-� topology of Mult.H /. Thus,

�.E/ D

Z
@Bd

f n d�
n!1
����! 0;

as desired. So E is Mult.H /-totally null.
Theorem 6.2 shows that (TN) implies the complete version of (PPI). The converse is

Proposition 6.5.
The implication that (PPI) or (PI) implies (I) is trivial. Finally, if there are Mult.H /-

totally null sets, then Theorem 10.3 shows that (I) implies (TN).
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