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Abstract. We provide a new construction of rationality for cubic fourfolds via Mori’s theory and
the minimal model program. As an application we present the solution of the Kuznetsov conjecture
for d D 42 (the first open case). Our methods also show an explicit connection between the ratio-
nality of cubic fourfolds belonging to the first four admissible families Cd with d D 14; 26; 38, and
42 and some birational models of K3 surfaces of degree d contained in well known rational Fano
fourfolds.
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Introduction

The study of the rationality of higher-dimensional Fano manifolds is a very active area
of research. Many new and interesting contributions and conjectures appeared in the last
decades, mostly concerning the irrationality of very general Fano complete intersections
(see for example [28, 36, 45], and also [21] and references therein). Deep recent contri-
butions in [22] imply that the locus of geometrically rational fibres in a smooth family
of projective manifolds is closed under specialization, improving substantially our under-
standing of the loci of rational objects in the corresponding moduli spaces (see [17] for
very significant examples in dimension four). Notwithstanding, the irrationality of the
very general cubic fourfold and the complete description of the rational ones remain two
of the most challenging open problems.

A great amount of recent theoretical work on cubic fourfolds (see for example the
surveys [16, 23]) led to the expectation that the very general ones might be irrational
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and to the specification of infinitely many irreducible divisors Cd of special admissible
cubic fourfolds of discriminant d in the moduli space C , whose union should be the
locus of rational cubic fourfolds (Kuznetsov Conjecture). According to this conjecture,
the rationality of cubics in Cd depends on the existence of an associated K3 surface in the
sense of Hassett/Kuznetsov [16, 23].

The first admissible values are d D 14; 26; 38; 42; 62; 74; 78; 86. Our main applica-
tions of the new methods developed here will be the theoretical explanation of the role of
(non-minimal) K3 surfaces in determining the rationality for d D 14; 26; 38; 42 together
with the proof of the rationality of every cubic fourfold in C42 (the first open case of
the conjecture) via the construction of a surface of degree 9 and genus 2 with five nodes
admitting a congruence of 8-secant twisted cubics and contained in a general cubic four-
fold in C42 (see Theorem 5.12). Let us recall that Fano showed the rationality of a general
cubic fourfold in C14 (see [5, 8]), while every cubic fourfold in the irreducible divisors
C26 and C38 is rational by the main results of [34] (see also [35] and Section 3 here). The
proofs in [34] were achieved by constructing surfaces Sd � P5, contained in a general
cubic fourfold of Cd and admitting a four-dimensional family of .3e � 1/-secant curves
of degree e � 2 parametrized by a rational variety with the property that through a general
point of P5 there passes a unique curve of the family. Then the cubics through Sd become
rational sections of the universal family and hence are birational to the rational parameter
space (see also Theorem 1.1 here).

This approach did not clarify the relation with the associated K3 surfaces, and even
the construction of explicit birational maps from general cubicsX � P5 in C26 and in C38
to P4 (or to other notable rational smooth fourfoldsW ) in [35] apparently did not provide
a birational incarnation in P4 (or in W ) of a K3 surface of genus 14, respectively of
genus 20, determining the linear system of the inverse map. Indeed, the base loci of the
linear systems of hypersurfaces of degree 3e � 1 having points of multiplicity e along
the corresponding Sd ’s giving the birational maps � W X Ü P4 are intractable reducible
schemes, while the base loci of the inverse maps ��1 W P4 Ü X � P5 are even worse
(see [35, Table 2]).

Here we study all these phenomena via Mori theory and via the Minimal Model Pro-
gram to explain the birational nature of the maps � W X Ü W introduced above and of
their inverses, which allowed us to produce a suitable birational factorization described
in diagram (0.1) below. This approach provides a geometric description of the support
of the base loci, and finally illustrates the relations of these explicit birational maps to
the K3 surfaces associated to X (see Sections 3.4 and 5.5). Last but not least, computer-
aided methods play a central role in some key points, also due to the complexity of the
geometry involved.

Our method starts with the observation that many of the known examples of surfaces
Sd � P5 used to describe the special divisors Cd for small d (not only the admissible
ones) have ideal generated by cubic forms defining a map ' W P5 Ü Z � PN which is
birational onto its image. The restriction to a general cubic X through Sd defines a bira-
tional map ' WX Ü Y � PN�1 with Y a general hyperplane section ofZ. In many cases,
the birational morphism Q' W X 0 D BlSd

X ! Y is a small contraction, whose exceptional
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locus consists of a (union of) smooth surface(s) T 0 � X 0 ruled by the strict transforms of
trisecant lines to Sd . Since KX 0 is zero on the strict transforms of trisecant lines, the map
Q' is a flop small contraction. In Theorem 2.6 we show that under the previous hypothesis
there exists a flop Q W W 0! Y of the surface T 0 � X 0 withW 0 a smooth projective four-
fold. This trisecant flop � W X 0 Ü W 0 is constructed by analyzing the splitting of N �

T 0=X 0

restricted to a general strict transform of a trisecant line to Sd � P5 (see Remark 2.4).
The existence of a congruence of .3e � 1/-secant rational curves to Sd of degree e � 2
produces an extremal ray on W 0 with divisorial locus, giving a birational morphism
� WW 0!W withW a Q-factorial Fano variety having Pic.W /' Z (see Theorem 2.10).
The birational morphism � is (generically) the blow-up of an irreducible surface U � W ,
which for the admissible cases d D 14; 26; 38; 42 is a birational incarnation of the asso-
ciated K3 surface to X . Moreover, the map � D � ı � ı ��1 W X Ü W is given by a
linear system of forms of degree 3e � 1 with points of multiplicity at least e along Sd ,
while ��1 W W Ü X is given by a linear system of divisors in jOW .e � i.W / � 1/j hav-
ing points of multiplicity at least e along U , where i.W / is the index of W . Everything
is captured by the following diagram, where R0 � W 0 is the strict transform on W 0 of the
locus R � W of i.W /-secant lines to U :

BlT 0 X 0 D BlR0 W 0

�

ww

!

''
X 0

� //

Q'

''

�

��

W 0

Q 

ww

�

��

X
'

//

�

55Y W
 

oo

(0.1)

In the explicit examples with d D 14; 26; 38; 42 considered here, diagram (0.1) together
with some standard computations of the middle cohomology of fourfolds under the blow-
up of smooth surfaces (see for example the discussion in [16, pp. 45–46]) shows that the
(possibly singular non-minimal) K3 surface U � W is a birational incarnation of the K3
surface associated toX via Hodge theory, or equivalently via derived category theory (see
Section 3.4 for the complete analysis of the case d D 38).

The above theoretical results (and all the examples we have constructed) point out that,
for low values of the discriminant d , the birational association between admissible cubic
fourfolds and K3 surfaces passes through the construction of very special (and in many
cases also singular) non-minimal birational models of these surfaces in the fourfolds W
by means of peculiar linear systems of hyperplane sections (often with base points of high
multiplicities) on the associated K3 surfaces, exactly as in the case d D 14 considered by
Fano. In particular, we are able to prove the rationality of every cubic fourfold in Cd for
d D 14; 26; 38; 42 via trisecant flops and to show that their inverses are determined by
linear systems having a prescribed multiplicity along (non-minimal) birational models of
the associated K3 surfaces.



F. Russo, G. Staglianò 2438

Some of these examples of non-minimal K3 surfaces have also been studied by Voisin
[48, §4] to prove vanishing results related to Lehn’s Conjecture and have been later con-
sidered by Fontanari and Sernesi [10, Theorem 10]. Our constructions of K3 surfaces
are based on a different geometric method developed in Section 4 and on computations,
which among other things also provide explicit equations for the general K3 surfaces of
genera 8, 14, 20, and 22.

A description of Cd via surfaces Sd with at least two cubics containing them as those
considered here (and also in [29, 34, 35]) is related to the uniruledness of Cd (see the
argument in the proof of Theorem 5.9). Since the Kodaira dimension of Cd is non-negative
for d � 86 admissible (see [43] and also [29, Proposition 1.3]), the admissible values
d D 62; 74; 78 might be the last ones for which the elements in Cd can be arranged
into (homaloidal) linear systems of cubics through an irreducible surface Sd , simplifying
the construction of U and W via a trisecant flop. For d � 86 admissible one might be
forced to consider suitable generalizations of this approach (see Remark 2.8), increasing
substantially the difficulty of the solution of other cases of the conjecture.

The techniques introduced here open the way to further applications of this circle
of ideas to prove the rationality of other classes of Fano fourfolds (see [35, Section 4]
and [18]).

1. Preliminaries

1.1. Congruences of .3e � 1/-secant curves of degree e to surfaces in P5

The following definitions have been introduced in [34, Section 1]. Let H be an irreducible
proper family of (rational or of fixed arithmetic genus) curves of degree e in P5 whose
general element is irreducible. We have a diagram

D

p

  

�

��

H P5

(1.1)

where � WD !H is the universal family over H and where p WD ! P5 is the tautolog-
ical morphism. Suppose moreover that p is birational and that a general member ŒC � 2H

is (re � 1)-secant to an irreducible surface S � P5, that is, C \ S is a length re � 1
scheme, r 2 N. We shall call such a family H (or D or � W D ! H ) a congruence of
(re � 1)-secant curves of degree e to S . Let us remark that necessarily dim.H / D 4.

An irreducible hypersurface X 2 jH 0.IS .r//j is said to be transversal to the congru-
ence H if the unique curve of the congruence passing through a general point p 2 X is
not contained in X . A crucial result is the following.

Theorem 1.1 ([34, Theorem 1]). Let S � P5 be a surface admitting a congruence of
.re � 1/-secant curves of degree e parametrized by H . If X 2 jH 0.IS .r//j is an irre-
ducible hypersurface transversal to H , then X is birational to H .



Trisecant flops and rationality 2439

If the mapˆDˆjH0.IS .r//j
W P5 Ü P .H 0.IS .r/// is birational onto its image, then

a general hypersurface X 2 jH 0.IS .r//j is birational to H .
Moreover, under the previous hypothesis on ˆ, if a general element in jH 0.IS .r//j

is smooth, then every X 2 jH 0.IS .r//j with at worst rational singularities is birational
to H .

Since p W D ! P5 is birational, we also have a rational map

' D � ı p�1 W P5 Ü H ;

whose fibre through a general p 2 P5, F D '�1.'.p//, is the unique curve of the con-
gruence passing through p.

It is natural to ask what linear systems on P5 give the abstract birational maps ' W
P5 Ü H as above or their restrictions to a general X 2 jH 0.IS .r//j. The linear system
jH 0.IeS .re � 1//j, when not empty, contracts the fibres of ' and in [35] we showed
that, quite surprisingly, in many cases this kind of linear systems can provide a birational
geometric realization of ' for r D 3, yielding birational maps from cubic hypersurfaces
through S to H with H D P4 or with H a Fano fourfold. We shall develop a theoretical
framework for these phenomena in order to be able to understand also the birational maps
defined by the previous linear systems.

1.2. Divisorial contractions, small contractions and flops

We introduce some general definitions of the Minimal Model Program (MMP for short),
adapting them to our setting.

Let X be a smooth projective irreducible fourfold defined over the complex field with
�.X/D 1 (here �.X/ denotes the Picard number ofX ) and let ' WX ÜW be a birational
map onto a smooth (or at least Q-factorial) irreducible projective fourfold, whose base
locus scheme contains a surface S with at most a finite number of nodes.

Let � W X 0 D BlS X ! X be the blow-up of S and consider the diagram

BlS X

�

��

Q'

''
X

'
// W

(1.2)

When W is smooth, the complexity of the birational map ' W X Ü W depends on
the base locus scheme of Q' W BlS X Ü W . Surely the easiest case to consider is when
Q' W BlS X ! W is a morphism, that is, ' is a special birational map in the sense of
Semple and Tyrrell [38] (solved by a single blow-up along a smooth irreducible variety).

If X � P5 is a cubic fourfold and if S � X is smooth, few examples of special
birational maps of the above type exist. Two examples of maps of this kind were first
considered by Fano [8], revisited in modern terms in [1,5], and played a fundamental role
in the formulation of the Kuznetsov Conjecture.
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Example 1.2. Letting ' W X Ü W be a special birational map with X � P5 a cubic
fourfold, letting B � W be the base locus scheme of '�1 and letting U D Bred, Fano’s
examples are the following:

(i) S � P5 is a smooth quintic del Pezzo surface, W D P4, ' is given by jH 0.IS .2//j

and U � P4 is a surface of degree 9 and sectional genus 8 having at most a finite
number of singular points corresponding to planes in X spanned by conics in S . If
non-singular, the surface U is the projection from a 5-secant P3 � P8 of a smooth
K3 surface of degree 14 and genus 8, and '�1 is given by jH 0.IU .4//j.

(ii) S � P5 is a smooth quartic rational normal scroll,W DQ � P5 is a smooth quadric
hypersurface, ' is given by jH 0.IS .2//j, and U � P5 is a surface of degree 10 and
sectional genus 8 having at most a finite number of singular points corresponding to
planes in X spanned by conics in S . If non-singular, the surface U is the projection
from the tangent plane of a smooth K3 surface of degree 14 and genus 8, and '�1 is
given by jH 0.IU .3//jjQ.

Remark 1.3. The two surfaces S � P5 appearing in Example 1.2 are the only smooth
surfaces in P5 admitting a congruence of secant lines (r D 3 and e D 1 in the definition)
(see for example [32]). The lines of the congruence contained in X describe the excep-
tional locus E of Q' (or equivalently the exceptional locus �.E/ of ' W X Ü W ) and are
birationally parametrized by the surfaces U � W .

The general MMP philosophy suggests that meaningful birational properties of (ratio-
nal) cubic fourfolds might be related to small contractions from X 0. So one can start to
investigate birational properties of cubic fourfolds from the point of view of the MMP
and to consider the most elementary links in the Sarkisov Program associated to small
contractions, i.e. flops and flips (one may consult [15] for results about this program in
arbitrary dimension).

Definition 1.4. Let X be a smooth irreducible projective variety (from now on, a pro-
jective manifold) and let Q' W X ! Y be a small contraction, i.e. Q' is a birational mor-
phism onto a normal variety Y inducing an isomorphism in codimension 1 and such that
�.X=Y / D 1.

IfKX �C D 0 for every irreducible curve contracted by Q', then Q' W X ! Y is called a
small flop contraction. A small flop contraction Q WW ! Y withW a projective manifold
is called a flop of Q'.

The resulting birational map � D Q �1 ı Q' W X Ü W is usually called a flop if it is
not an isomorphism. Since we assume �.X=Y / D 1 D �.W=Y /, given Q' one can prove
that the morphism Q , if it exists, is unique as long as � is not an isomorphism.

One can flop the small contraction Q' WX! Y by constructing a projective manifold V
and two birational morphisms � W V !X and ! W V !W such that ��.KX /D !�.KW /.
This means that the exceptional locus of � , which is divisorial by the smoothness of X , is
contracted by ! and that we have a commutative diagram
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V

�

~~

!

  

X
�

//

Q'
  

W

Q ~~

Y

(1.3)

First of all one may ask if there exist flops of this kind on the fourfolds X 0 D BlS X
obtained from cubic fourfoldsX � P5 by blowing up a mildly singular surface S �X . As
we shall see, this is the case under some hypothesis and this occurrence is deeply related
to the rationality of some special cubic fourfolds (or of other special fourfolds).

1.3. Condition K3 and examples of small contractions on cubic fourfolds

Let us recall that, given homogeneous forms fi of degree di � 1, i D 0; : : : ;M , a vec-
tor .g0; : : : ; gM / of homogeneous forms is a syzygy if

PM
iD0 figi D 0. If d1 D � � � D

dM D d and if deg.gi / D h for every i D 0; : : : ; M , then we say that .g0; : : : ; gM / is
a syzygy of degree h and for h D 1 we shall say that the syzygy is linear. For i < j

the syzygies .0; : : : ; 0; fj ; 0; : : : ; 0;�fi ; 0; : : : ; 0/, corresponding to the trivial identity
fifj C fj .�fi / D 0, are called Koszul syzygies. We say that the Koszul syzygies are
generated by the linear ones if they belong to the submodule generated by the linear syzy-
gies. This is condition Kd introduced by Vermeire [46].

The next result provides a wide class of examples of rational maps with linear
fibres (hence birational under mildly natural geometrical assumptions on their base locus
scheme).

Proposition 1.5 ([46, Proposition 2.8]1). Let f0; : : : ;fM be homogeneous forms inN C 1
variables of degree d � 2 satisfying condition Kd . Then the closure of each fibre of the
rational map

' D .f0 W � � � W fM / W P
N Ü PM

is a linear space P s . For s > 0 the closure of the fibre intersects scheme-theoretically the
base locus scheme of ' along a hypersurface of degree d .

Remark 1.6. Suppose that an irreducible surface S � P5 is scheme-theoretically defined
by cubic equations satisfying condition K3. Then, by Proposition 1.5, every positive-
dimensional fibre of ' W P5 Ü Z is a linear space P s cutting S in a cubic hypersurface
S \ P s if s > 0. In particular, 0 � s � 2 (except some trivial cases) and s D 2 occurs only
for planes spanned by cubic curves contained in S , which are mapped to a point by '.
Hence if condition K3 for S � P5 holds and if a general cubic X � P5 through S does

1The hypothesis on the absence of lines in the base locus scheme of ' appearing in the original
version is not necessary (see the first arXiv version of [5] for a proof).
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not contain any plane spanned by cubic curves on S , the exceptional locus T � X of the
restriction of ' to X is ruled by proper trisecant lines. As we shall see in Section 2.1, the
expected dimension of T is 2 so that surfaces in P5 defined by cubic equations satisfying
condition K3 may naturally produce examples of small contractions on X 0 D BlS X .

2. The trisecant flop and the extremal congruence contraction

We first introduce and study the behaviour of trisecant lines to a general non-degenerate
irreducible projective surface S � P5.

2.1. The Hilbert scheme of trisecant lines to S � P5

For the generalities we shall follow the treatment in [4]. Let Hilbr P5 (respectively
Hilbr S ) be the Hilbert scheme of zero-dimensional length r � 2 subschemes of P5

(respectively of S � P5) and let Hilbrc P5 � Hilbr P5 be the open non-singular sub-
scheme consisting of curvilinear length r subschemes, that is, length r subschemes which,
locally around every point of their support, are contained in a smooth curve of P5. We can
define Hilbrc S as the scheme-theoretic intersection between Hilbr S and Hilbrc P5 inside
Hilbr P5.

Let Alr P5 � Hilbrc P5 denote the subscheme consisting of aligned subschemes of
length r , that is, subschemes of length r contained in a line. Finally, the Hilbert scheme of
length r aligned subschemes of S , denoted by Alr S , is the scheme-theoretic intersection
of Alr P5 with Hilbrc S:

The schemes Hilbrc P5 and Alr P5 are smooth of dimension 5r and 8C r , respectively.
Moreover, if S � P5 is smooth, then Hilbrc S is smooth of dimension 2r . In particular,
either Al3 S is empty or every irreducible component of Al3 S has dimension at least

dim.Al3 P5/C dim.Hilb3c S/ � dim.Hilb3c P5/ D 2;

which is therefore the expected dimension of Al3 S . So, for an irreducible projective sur-
face S � P5, one might expect that, with few exceptions, the Hilbert scheme Al3 S of
trisecant lines is of pure dimension 2.

There exists a natural morphism of schemes

axis W Alr S ! G.1; 5/;

sending each length r � 2 aligned subscheme of S to the unique line containing its sup-
port, that is, to the multisecant line to S determined by the subscheme of points (counted
with multiplicity). Let q W L! G.1; 5/ be the universal family and let p W L! P5 be
the tautological morphism. Then

Trisec.S/ WD p.q�1.axis.Al3 S/// � P5

is called the trisecant locus of S � P5. The previous count of parameters and analysis
show that the expected dimension of Trisec.S/ is 3; that every irreducible component of
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Trisec.S/ has dimension at least 2; and that the irreducible components of dimension 2 of
Trisec.S/ are either S (in this case S is ruled by lines) or planes cutting S along a plane
curve of degree at least 3 (see [4]).

By the Trisecant Lemma (see [33, Proposition 1.4.3]), a general secant line to an
irreducible non-degenerate surface S � P5 is not a trisecant line. So dim.Al3 S/ � 3 and
dim.Trisec.S// � 4. Very few examples of irreducible non-degenerate surfaces S � P5

having dim.Trisec.S// D 4 are known, most of them are very singular (see [31] for a
description) but a complete classification is still lacking. The smooth irreducible non-
degenerate surfaces S � P5 with dim.Trisec.S// � 2 are classified in [4].

In our analysis we shall always consider the most general case dim.Trisec.S// D 3.
While the condition on the dimension is expected by the above parameter count, the
generic smoothness of an irreducible component of Al3 S is related to the dimension
of the corresponding locus and to the tangential behaviour of S � P5 at the points of
intersection of a general trisecant line by [14, Proposition 4.3] (see also [6, Section 1]
and [30] for spectacular generalizations). We shall specialize this general result to our
setting.

Proposition 2.1. Let S � P5 be an irreducible projective surface and let L � P5 be
a proper trisecant line to S such that L \ S D ¹p1; p2; p3º, with p1; p2; p3 distinct
smooth points of S , and with ŒL� belonging to an irreducible component A of Al3 S
of dimension 2. Then Al3 S is smooth at ŒL� if and only if the tangent planes to S at
the points pi are in general linear position, that is, Tpj

S \ Tpk
S D ; for any distinct

pj ; pk 2 L \ S . In particular, if this condition holds at the point ŒL� 2 A, then A is
generically smooth and for a general ŒL� 2 A the tangent planes at the points pi are in
general linear position.

Moreover, in this case the irreducible component of Trisec.S/ corresponding to A
has dimension 3 and through a general point q of this irreducible component there pass
a finite number of trisecant lines to S , which are smooth points of the zero-dimensional
Hilbert scheme of trisecant lines to S passing through q.

This result and the previous analysis motivate the next definition.

Definition 2.2 (Expected trisecant behaviour). Let S �P5 be an irreducible non-degener-
ate projective surface. If dim.Trisec.S//D 3 and if every irreducible component of Al3 S
of dimension 2, whose trisecant lines describe an irreducible component of Trisec.S/ of
dimension 3, is generically reduced (and hence generically smooth), then S � P5 is said
to have the expected trisecant behaviour.

A trisecant line to an irreducible surface S � P5 having the expected trisecant
behaviour is said to be general if it is the general element of an irreducible component of
Al3 S whose locus has dimension 3.

We now start to study the consequences of this natural condition.

Lemma 2.3. Let S � P5 be an irreducible non-degenerate projective surface with the
expected trisecant behaviour and with at most a finite number of singular points, let



F. Russo, G. Staglianò 2444

L � P5 be a general trisecant line and let L0 � BlS P5 denote the strict transform of L.
Then

NL0=BlS P5 ' OP1 ˚OP1 ˚OP1.�1/˚OP1.�1/:

If QT � P5 denotes the unique irreducible component of Trisec.S/ containing L and if
QT 0 denotes the strict transform of QT on BlS P5, then

NL0= QT 0 ' OP1 ˚OP1 :

Furthermore, if QT 0 is smooth along L0, then

N QT 0=BlS P5
jL0
' OP1.�1/˚OP1.�1/:

Proof. Let Sreg D S n Sing.S/ be the locus of smooth points of an irreducible non-
degenerate surface S � P5 and let � W BlS P5 ! P5 be the blow-up of P5 along S .
Then ��1.P5 n Sing.S// is a smooth variety. Since Sing.S/ is zero-dimensional, a gen-
eral ŒL� 2 Al3 S will cut S in three smooth distinct points and L0 will be contained in
the smooth locus of BlS P5. In particular, the normal bundle NL0=BlS P5 is locally free of
rank 4.

The strict transforms of general trisecant lines to S determine a proper family of
dimension 2 of smooth rational curves on BlS P5 and the curve L0 represents a smooth
point of this family by hypothesis, yielding NL0=BlS P5 ' OP1 ˚ OP1 ˚ OP1.�1/ ˚

OP1.�1/. Indeed, deg.NL0=BlS P5/D �2 by the adjunction formula, h0.NL0=BlS P5/D 2

by the generic smoothness hypothesis of the irreducible component to which L0 belongs,
and h0.NL0=BlS P5.�1//D 0 since through a general point of QT 0 there pass a finite number
of curves of the family by the last part of Proposition 2.1. Then the exact sequence

0! NL0= QT 0 ! NL0=BlS P5 ! N QT 0=BlS P5
jL0

(2.1)

ensures that NL0= QT 0 is torsion free and hence locally free of rank 2. Moreover, letting
NL0= QT 0 ' OP1.a1/˚OP1.a2/, we deduce ai � 0 for i D 1; 2. Since the curve L0 moves
in a family of dimension 2 inside QT 0, we have h0.NL0= QT 0/ � 2 and hence a1 D a2 D 0.
Finally, if QT 0 is smooth along L0, then the exact sequence (2.1) is also exact on the right
and N QT 0=BlS P5

jL0
' OP1.�1/˚OP1.�1/.

Remark 2.4. We are interested in studying the birational properties of smooth cubic
hypersurfaces X � P5 passing through an irreducible projective surface S � P5 hav-
ing the expected trisecant behaviour and with at most a finite number of singular points.
Retain the notation of Lemma 2.3 and suppose L � X � P5 is a general proper trisecant
line to S contained inX . SinceNBlS X=BlS P5

jL0
'OP1 , sinceNL0=BlS P5 'OP1 ˚OP1 ˚

OP1.�1/˚OP1.�1/ and since we have the exact sequence

0! NL0=BlS X ! NL0=BlS P5 ! NBlS X=BlS P5
jL0
! 0;

we deduce that either NL0=BlS X ' OP1 ˚OP1.�1/˚OP1.�1/ or NL0=BlS X ' OP1 ˚

OP1 ˚ OP1.�2/. If the last splitting holds, then either the family of strict transforms
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of trisecant lines to S contained in X to which L0 belongs is two-dimensional (that is,
Trisec.S/�X ) and is generically smooth, or this family is one-dimensional but not gener-
ically reduced. If X � P5 does not contain Trisec.S/ and if S has the expected trisecant
behaviour, then the family of trisecant lines to S contained in X is one-dimensional and
the corresponding locus has dimension 2.

Thus when X is sufficiently general, when S has the expected trisecant behaviour and
at most a finite number of singular points, the locus of trisecant lines to S contained in X
is of pure dimension 2 and one expects that the one-dimensional families of trisecant lines
to S contained inX are generically smooth as subschemes of the corresponding parameter
space.

The previous natural expectation/hypothesis translates into the following conditions,
letting notation be as above:

NL0=BlS X ' OP1 ˚OP1.�1/˚OP1.�1/:

If T � X denotes the unique two-dimensional irreducible component of the locus of
trisecant lines to S contained in X to which L belongs, then

NL0=T 0 ' OP1 :

Furthermore, if T 0 is smooth along L0, then

NT 0=BlS XjL0 ' OP1.�1/˚OP1.�1/: (2.2)

Condition (2.2) is crucial. Indeed, as we shall see in the next section, it essentially says
that T 0 can be flopped producing another four-dimensional variety birational to BlS X and
hence to X in a very natural way.

If an irreducible projective surface S � P5 has the expected trisecant behaviour and
if S satisfies condition K3, then, for a general cubic through S , the expected splittings
listed above hold for a general proper trisecant line to S contained in the cubic (see the
proof of Theorem 2.6). There are also many other examples of different flavour for which
the above conditions naturally hold and which naturally lead to flops of the trisecant locus
contained in the cubic fourfold.

2.2. Assumptions and main definitions

Assumption 1. Suppose we have a smooth irreducible projective surface (the treatment
can be extended to surfaces with a finite number of singular points) S � P5, scheme-
theoretically defined by cubic hypersurfaces and such that the associated rational map

' W P5 Ü P .H 0.IS .3/// D PN

is birational onto the closure of its image Z D '.P5/ � PN :

Then the restriction of ' to a general X 2 jH 0.IS .3//j induces a birational map

' W X Ü Y � PN�1
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with Y the corresponding hyperplane section of Z � PN . On X 0 D BlS X we have

�KX 0 D ��.�KX / �E D 3H
0
�E

and our hypothesis on the defining equations of S and on the birational map ' W P5 ÜZ

can be reformulated by saying that �KX 0 is a big divisor generated by its global sections.
In particular, �KX 0 is nef and big.

The induced morphism
Q' W BlS X ! Y

is a small contraction (with very few exceptions). Indeed, the base locus scheme of ' is the
surface S and ' contracts any irreducible (rational) curve C � X of degree e � 1 which
is 3e-secant to S , i.e. such that length.C \ S/ D 3e ( proper 3e-secant curve to S ). Let
us indicate by T � X the closure of the locus of proper 3e-secant curves to S contained
in X . If L0 � X 0 is the strict transform of a proper trisecant line to S contained in X , let
ŒL0� denote its numerical class in N1.X 0/.

The strict transform C 0 � X 0 of a proper 3e-secant curve C � X to S of degree e � 1
satisfies ŒC 0� D ŒeL0�. Therefore on X 0 D BlS X we have

KX 0 � C 0 D .E � 3H 0/ � C 0 D 3e � 3e D 0

for curves C 0 � X 0 as above.

Definition 2.5 (Trisecant flop). Let notation and assumptions be as above. If Q' W X 0! Y

is a small contraction of curves in RŒL0�, then it is called a trisecant flop contraction. If
Q' W X 0 ! Y is a trisecant flop contraction and if there exists a flop Q W W 0 ! Y of Q'
with W 0 a projective fourfold, then the resulting birational map � W X 0 Ü W 0 will be
called a trisecant flop (of Q' W X 0 ! Y ).

Let us remark that, by definition, if Q' W X 0! Y is a trisecant flop contraction, then its
exceptional locus has dimension at most 2 and the irreducible components of dimension 2
are covered by proper 3e-secant (rational) curves (in most cases they are ruled by these
curves). By Zariski’s Main Theorem, a positive-dimensional fibre is connected so that a
general positive-dimensional fibre is smooth and irreducible.

During our study of birational maps ' W P5 Ü Z of the type described above, we
constructed many surfaces S � P5 inducing trisecant flop contractions on a general cubic
fourfold X through S ; for example, surfaces satisfying condition K3 but not only such
(see Table 1).

2.3. Existence of a trisecant flop

For simplicity we shall now assume as above that S is smooth. As always, let � W X 0 D
BlS X ! X be the blow-up of X along S , let E � X 0 be the exceptional divisor and let
H 0 D ��.H/, where H � X is a hyperplane section.

The results in Section 2.1 and in Remarks 1.6 and 2.4 suggest that, under some mild
assumptions, trisecant flop contractions might exist.
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We shall now construct explicitly a flop of the two-dimensional irreducible compo-
nents of T ruled by trisecant lines to S via ' as long as S � P5 has the expected trisecant
behaviour and Q' is a small contraction. When these loci exhaust the exceptional locus of a
trisecant flop contraction we shall obtain a trisecant flop of Q' WX 0! Y . Flops of this kind
have also been considered in [25] in arbitrary dimension under the stronger assumption
that the splitting (2.2) holds for every line of the ruling of T 0.

Theorem 2.6 (Trisecant flop). Let notation be as above, suppose that S � P5 satisfies
Assumption 1 and that it has the expected trisecant behaviour. If T 0 � X 0 denotes the
exceptional locus of the associated small contraction

Q' W X 0 D BlS X ! Y;

then any irreducible smooth surface T � T 0, which is ruled via Q' by the strict transforms
of trisecant lines to S .that is, through a general point of T 0 there passes a unique curve
of this kind/, can be flopped to produce a small contraction Q WW 0! Y withW 0 a smooth
projective fourfold.

In particular, under the previous assumptions, if Q' W X 0 ! Y is a trisecant flop con-
traction and if T 0 � X 0 is a smooth irreducible surface ruled via Q' by trisecant lines,
then a trisecant flop � W X 0 Ü W 0 exists.

Proof. First we shall prove the second part, that is, suppose that T D T 0 is a smooth
irreducible surface ruled via Q' by trisecant lines and such that Q'.T 0/D C � Y is a curve.
At the end we shall consider the general case in which T 0 is a finite union of such surfaces.
The general fibre of Q' W T 0!C is smooth and irreducible so that C generically coincides,
as a scheme, with the parameter space of trisecant lines to S contained inX . In particular,
this parameter space is generically smooth of dimension 1. Let L0 � T 0 be a general fibre
of the restriction of Q' to T 0. By Lemma 2.3 (see also Remark 2.4),

N �
T 0=X 0

jL0
' OP1.1/˚OP1.1/: (2.3)

Let � W X 00 D BlT 0 X 0 ! X 0 be the blow-up of X 0 along T 0, let E 0 � X 00 be the
exceptional divisor and let C1 ' P1 � E 0 be a positive-dimensional fibre of � . By (2.3)
we deduce that †L0 D ��1.L0/ ' P1 � P1 and we can suppose that the restriction of �
to †L0 is identified with the projection onto the first factor of P1 � P1. Since †L0 is also
the general fibre of Q' ı �jE 0 W E 0! C ; we have N†L0=E 0 ' O†L0 . Let C2 ' P1 � E 0 be
a fibre of the projection onto the second factor of †L0 : Since NC2=†L0 ' OP1 and since
N �
E 0=X 00

jC2

' OP1.1/ by (2.3), the exact sequence

0! NC2=†L0 ! NC2=E 0 ! N†L0=E 0
jL0
' OP1 ! 0

yields
NC2=E 0 ' OP1 ˚OP1 (2.4)

and hence �KE 0 � C2 D 2 by the adjunction formula. From �.C2/ D L0 and from the
projection formula we get ��.H 0/ �C2D 1. The Hilbert scheme of curves contained in the
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smooth projective varietyE 0 is smooth and of dimension 2 at the point ŒC2� corresponding
to C2 � E 0 by (2.4). So ŒC2� belongs to a unique irreducible component C of the Hilbert
scheme with dim.C/ D 2. Since ��.H 0/ � C2 D 1 and since �KE 0 � C2 D 2, the possible
deformations ofC2 insideE 0 are either irreducible and isomorphic to P1, or consist of two
distinct smooth irreducible rational curves F1; F2 � E 0 intersecting in one point and such
thatNFi=E

0 'OP1 ˚OP1.�1/ (see [26, Sections 3.24, 3.25, 3.25.2]). Since 1D ��.H 0/ �
.F1CF2/, we can suppose ��.H 0/ �F1D 1 (yieldingE 0 �F1D�1) and ��.H 0/ �F2D 0.
The last condition means that either F2 is contracted to a point by � and hence E 0 � F2 D
�1 by (2.3), or �.F2/ is a curve contracted to a point by �, that is, a positive-dimensional
fibre of the blow-up �. The first case is excluded because it would implyE 0 � .F1CF2/D
�2, contradicting E 0 �C2 D �1. If �.F2/' P1 � T 0, then it is a .�1/ curve on T 0. From
.3H 0 � E/ � �.F2/ D �E � �.F2/ D 1 we would deduce that C D Q'.�.F2// is a line
and the projections via � of all the fibres of T 0 ! C pass through the smooth point
�.�.F2// D p 2 T \ S . Then T � X would be a plane because it would coincide with
its tangent plane at p. The intersection T \ S would contain a cubic curve since S is
scheme-theoretically defined by cubics and every line contained in T would be trisecant
to S . The plane T would be contracted to a point by ' (and a fortiori by Q') so that T would
not be ruled by trisecant lines to S . In conclusion, the deformations of C2 insideE 0 are all
smooth, irreducible and isomorphic to P1, parametrized by a smooth projective surface
(the splitting (2.4) necessarily holds for all deformations of C2) and the locus of these
curves is E 0. The extremal ray RCŒC2� determines a contraction !0 W E 0 ! R0 with R0 a
smooth surface and such that every fibre of !0 is isomorphic to P1 [26, Theorem 3.5.1].

By the above analysis the surface R0 is ruled by the curves L00 D !0.†L0/. There
exists a morphism ! W X 00!W 0 withW 0 a smooth irreducible projective fourfold, which
is the blow-up of W 0 along the smooth surface R0 with exceptional divisor E 0 and whose
restriction to E 0 is !0 (see for example [11, 27] and also [3]).

The smooth rational curves L00 � R0 are disjoint and contracted to C by the nef, big
and base point free linear system j�KW 0 j, yielding a morphism Q W W 0 ! Y such that
C D Q .R0/ and the surface R0 is ruled by Q W R0 ! C .

Suppose now that T 0 D T1 [ � � � [ Tr , r � 2, with Ti a smooth irreducible projec-
tive surface ruled via Q' by trisecant lines to S . After applying the previous construction
to T1 we produce W1 and we change T1 to R01. The strict transforms T 0j � W1 of Tj ,
j D 2; : : : ; r , are smooth irreducible surfaces which are ruled by the strict transforms
of trisecant lines to S and such that the restriction of N �

T 0
j
=W1

to a general fibre of Q W

T 0j ! Cj satisfies (2.3). Then we can flop T 02 and produce a smooth fourfold W2. After r
steps we get a smooth fourfold Wr birational to X 0 in which the smooth irreducible ruled
surfaces Tj have been changed to the corresponding R0j . The birational map X 0 ÜWr is
an isomorphism in codimension 1 but not an isomorphism and it has been factorized into
a sequence of elementary flops (see also [15] for the general program of factorization of
birational maps into elementary links according to Sarkisov).

We now state a useful corollary, helpful for our applications and showing that the
phenomenon described above really occurs.
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Corollary 2.7. Let S � P5 be a smooth surface satisfying Assumption 1, condition K3

and having the expected trisecant behaviour. IfX � P5 is a cubic hypersurface through S
not containing any plane spanned by cubic curves on S and if T 0 � X 0 denotes the
exceptional locus of the associated small contraction Q' W X 0 D BlS X ! Y; then there
exists a trisecant flop Q W W 0 ! Y of any irreducible component of T 0.

Remark 2.8. Obviously, one might only assume that j�KX 0 j D j3H 0 � Ej is generated
by global sections and big (or only nef and big but not generated by global sections)
without requiring that the trisecant flop contraction is necessarily given by j�KX 0 j. It is
not difficult to see that in any case, for some m � 1, the linear system j�mKX 0 j gives a
trisecant flop contraction. We avoided this more general approach to simplify the exposi-
tion but there are examples of trisecant flops appearing also in more general settings; see
Section 3.6 of the first arXiv version of this paper and also example (xv) of Table 1.

2.4. Trisecant flop and congruences of .3e � 1/-secant rational curves of degree e � 2

The aim of this section is to relate the trisecant flop to (congruences of) .3e � 1/-secant
curves to S . We start by an easy but very useful result.

Proposition 2.9 (Extremal ray generated by .3e � 1/-secant curves). Let notation be as
above. Suppose that S � P5 satisfies Assumption 1 and that there exists a trisecant flop
Q WW 0! Y of a trisecant flop contraction Q' W X 0 D BlS X ! Y with X a general cubic

fourfold through S .
If C 0 � X 0 is the strict transform on X 0 of a .3e � 1/-secant curve to S of degree e

contained inX , then the strict transformC 0 ofC 0 onW 0 generates an extremal ray onW 0.

Proof. By hypothesis there exists a trisecant flop of the trisecant flop contraction Q' WX 0 D
BlS X ! Y and hence a commutative diagram

BlT X 0 D BlRW 0

�

ww

!

''
X 0

�
//

Q'
''

�

��

W 0

Q 
ww

X Y

(2.5)

By definition C 0 is the strict transform of a curve of degree e, which is .3e � 1/-secant
to S . Thus

KX 0 � C 0 D .E � 3H 0/ � C 0 D 3e � 1 � 3e D �1:

Consider the possible degenerations C 00 of C 0 � X 0 as sums of effective 1-cycles in-
side X 0:

C 00 D C1 C C2:
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The cycles C1 and C2 have degree ei D H 0 � Ci and are ˇi D E � Ci -secant to S . In
particular, e1 C e2 D e and ˇ1 C ˇ2 D 3e � 1. Since �KX 0 is nef and since

1 D �KX 0 � C 0 D �KX 0 � .C1 C C2/;

eitherKX 0 � C1 D 0 orKX 0 � C2 D 0. In conclusion, either ŒC2�D Œe2L0� or ŒC1�D Œe1L0�
with L0 the strict transform of a trisecant line to S contained in X . Let C 0 � W 0 be the
strict transform of C 0 �X 0. Then ŒC 0� generates an extremal ray because Q' has contracted
all the rational curves in RCŒL0�.

The locus of the extremal ray RCŒC 0� will determine the type of the associated ele-
mentary Mori contraction fromW 0 onto a Q-factorial Fano variety. Here we shall consider
only the most relevant case for our applications. Examples of fibre type contractions can
be constructed as long as j.3e � 1/H 0 � eEj ¤ ; and S � P5 has a finite number � � 2
of .3e � 1/-secant curves of degree e � 2 passing through a general point of P5. The
dimension of the general fibre of the contraction will be � � 1 D 4 � dim.�.X//, where
� is the rational map on X defined by the linear system of hypersurfaces of degree 3e � 1
having points of multiplicity at least e on S .

Theorem 2.10 (Extremal contraction of the congruence). Let notation be as above. Sup-
pose that S � P5 satisfies Assumption 1, that it has the expected trisecant behaviour and
that there exists a trisecant flop Q W W 0 ! Y of a trisecant flop contraction Q' W X 0 D
BlS X ! Y with X a general cubic fourfold through S and with T 0 irreducible.

If S � P5 admits a congruence � W D ! H of .3e � 1/-secant rational curves of
degree e � 2, then the locus of curves of the congruence contained in X � P5 is an
irreducible divisor D � X and the following hold:

(1) There exists a divisorial contraction � W W 0! W , with W a locally Q-factorial pro-
jective Fano variety, whose exceptional locus E is the strict transform of D on W 0

and such that �.D/ D U is an irreducible surface supporting the base locus scheme
B of ��1. The base locus scheme B is generically smooth, irreducible and � is gener-
ically the blow-up of the surface U .

(2) The induced birational map �0 W X 0 Ü W .or � W X Ü W / is given by a linear
system in j.3e � 1/H 0 � eEj.

(3) Let H 0 D ��.H/ with H � W a generator of Pic.W / and let �KW D i.W /H .
The induced birational morphism Q W W 0 ! Y is given by a linear system in
ji.W /H 0 � Ej, while the birational map W 0 Ü X is given by a linear system in
j.i.W / � e � 1/H 0 � eEj. The strict transform D0 � W of E via �0 is a locus of
.i.W / � e � 1/-secant curves to U of degree e such that through a general point ofD0

there passes a unique curve of the family.

(4) The irreducible components of T are contained in the base locus scheme of � and
their flopped images onW are contained in the base locus scheme of��1. The flopped
images of the scrolls in T are scrolls R � W ruled by lines in W , which are i.W /-
secant to U .
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Proof. Let notation be as above, let p W D ! P5 be the tautological morphism of the
congruence and let H be its parameter space. Since p is birational, the locus E � P5

of points through which there pass more than one curve of the congruence has codimen-
sion at least 2 in P5 by Zariski’s Main Theorem. Since the curves of the congruence are
.3e � 1/-secant to S and hence to X , for them to be contained in X imposes two condi-
tions in H by the Bézout Theorem. Putting these two facts together we deduce thatD is a
divisor inside X , whose irreducibility will be proved below. By hypothesis there exists a
trisecant flop of the trisecant flop contraction Q' WX 0 D BlS X! Y and hence the commu-
tative diagram (2.5). Let D0 � X 0 be the strict transform of D on X 0 and let C 0 � D0 be
the strict transform of a general curve C of the congruence � W D ! H contained in X .
By definition C 0 is the strict transform of a smooth rational curve of degree e � 2 which
is .3e � 1/-secant to S .

Let C 0 � W 0 be the strict transform of a general curve of the congruence C 0 � D0

and let E � W 0 be the strict transform of D. Then KW 0 � C 0 D �1 and ŒC 0� generates an
extremal ray by Proposition 2.9. By construction the locus of the extremal ray RCŒC 0� is
the divisor E and NC 0=W 0 ' OP1 ˚OP1 ˚OP1.�1/ (see for example [2, Lemma 2.5]).
By [2, Theorem 2.1] there exists a birational divisorial contraction � W W 0 ! W of the
extremal ray RCŒC 0� with W a locally Q-factorial projective variety of dimension 4
with Pic.W / D ZhH i and with H ample. If i.W / is defined by �KW D i.W /H , then
i.W / > 0 since W is birational to X . Moreover, the divisor E (and hence the divisor D)
is irreducible, being the exceptional locus of � (recall that Pic.W 0/ ' Z˚ Z).

Let U D �.E/ � W . Since the .3e � 1/-secant curves to S belong to a congruence,
through a general point of D there passes a unique curve of the congruence, as recalled
at the beginning of the proof. So the same holds for E, and the restriction of � to E
has general fibre isomorphic to a curve C 0, giving dim.U / D 2. In particular, NC 0=E '

OP1 ˚ OP1 for a general C 0 so that the previous splitting of the normal bundle NC 0=W 0

yields E � C 0 D �1. Therefore, there exists an open subset U0 � U consisting of smooth
points of U and such that the fibre of � W E ! U over a point of U0 is isomorphic to P1.
Then E0 D ��1.U0/ � E is smooth and, letting W0 � W be an open subset such that
W0 \U D U0, ��1.W0/!W0 is the blow-up ofW0 along U0 (see for example [11, 27]).
In particular, the base locus scheme of ��1, which is supported on U , coincides generi-
cally with U and hence it is generically smooth. All the assertions in (1) are now proved.

The birational map �0 D � ı � W X 0 Ü W is given by a linear system in
jaŒ.3e � 1/H 0 � eE�j, a � 1. Indeed, Pic.X 0/ ' ZhH 0i ˚ ZhEi and such a divisor is
of the form ˛H 0 � ˇE with ˛ > 0 and ˇ > 0. From

0 D .˛H 0 � ˇE/ � C 0 D ˛e � ˇ.3e � 1/

and from e � 2, we get ˛D a.3e � 1/ and ˇD ae with a� 1. The irreducible components
of T are contained in the base locus scheme of this linear system because

aŒ.3e � 1/H 0 � eE� � L0 D �a < 0

for every strict transform of a general 3-secant line L to S contained in X . Since the
map �0 is compatible with the trisecant flop, necessarily a D 1. Indeed, after the blow-up
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of T the birational map �0 becomes a morphism so that

ŒN �T 0=X 0 ˝OX 0.aŒ.3e � 1/H 0 � eE�/�jL0 ' OP1.1 � a/˚OP1.1 � a/ (2.6)

is generated by global sections, yielding a � 1 and hence a D 1, concluding the proof
of (2).

We have a commutative diagram

BlT 0 X 0 D BlR0 W 0

�

ww

!

''
X 0

�
//

�

�� �0

++

W 0

�

��

X
�

// W

(2.7)

LetH � W be as above, letH 0 be its strict transform onW 0 and, keeping notation as
in the proof of Theorem 2.6, let L00 D !.†L0/ �W 0 be a general fibre of the ruling of the
smooth surface R0 D !.E 0/ � W . Since � W W 0 ! W is generically the blow-up of U ,
we have �KW 0 D i.W /H 0 �E. The morphism � ı ! W BlRW 0!W is given by a linear
system in j.3e � 1/��.H 0/� e QE �E 0j with QE the strict transform of E on BlT X 0. Then

�.L00/ �H D F1 � ..3e � 1/�
�.H 0/ � e QE �E 0/ D �.F1 �E

0/ D 1;

that is, �.L00/ � W is a line with respect to H . By the projection formula we deduce
L00 �H 0 D 1 and 0D�KW 0 �L00 D i.W /�E � F 0 yields i.W /D E �L00, that is the lines
�.L00/ are i.W /-secant to U � W . We also have C 0 � E D 1 and H 0 � C 0 D 0. Since the
birational morphism Q W W 0 ! Y is given by a linear system in ji.W /H 0 �Ej as shown
above, the birational map  D Q ı ��1 W W Ü Y is given by a linear system of divisors
in jOW .i.W //j vanishing on U .

We have Pic.W 0/'ZhH 0i ˚ZhEi so that the map �0 D ��1 ı � WW 0ÜX is given
by a linear system in j˛0H 0 � ˇ0Ej with ˛0 > 0 and ˇ0 > 0. Since the general fibre C 0 of
� W E ! U is sent to a curve of the congruence D , which by definition has degree e � 2,
we deduce

e D .˛H 0 � ˇE/ � C 0 D ˇ:

Moreover, reasoning as above, the compatibility with the trisecant flop yields

�1 D .˛H 0 � eE/ � L00 D ˛ � e � i.W /;

that is, ˛D i.W / � e � 1: In conclusion, the birational map �0 is given by a linear system in
j.i.W / � e � 1/H 0 � eEj of dimension 5, and ��1 is given by a linear system of dimen-
sion 5 of divisors in jH 0.OW ..i.W / � e � 1///j having points of multiplicity at least e
along U � W . The previous analysis shows that the base locus of ��1 contains U and
�.R/, which is a locus of i.W /-secant lines to U contained in W , concluding the proof
of (4).
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Let D0 � W be the strict transform of E � X 0 via �, which is an irreducible divisor.
Let F � E be a positive-dimensional fibre of � W X 0 ! X . Then D0 is ruled by the strict
transforms of the curves F and through a general point of D0 there passes a unique curve
of this family. Moreover, F � Œ.3e � 1/H 0 � eE� D e and, letting F D �.F / � W and
recalling that �0.F / is a point, we have

0 D F � Œ.i.W / � e � 1/H 0 � eE� D eŒ.i.W / � e � 1/ � F �E�;

yielding F � E D i.W / � e � 1. In conclusion, �0.F / � W is a curve of degree e with
respect to H which is .i.W / � e � 1/-secant to U � W . This proves the last assertion
in (3).

Remark 2.11. Obviously, one can also reverse the construction in Theorem 2.10 starting
from suitable U � W and then producing the congruences of .3e � 1/-secant curves
of degree e to a surface S � X � P5 by taking the image of E in X and by taking S �
X � P5 as the surface describing the linear system defining the inverse map � WX ÜW .
In practice, as long as the trisecant flop exists, the existence of a congruence of .3e � 1/-
secant lines to S is equivalent to the existence of the surface U � W , which should be an
incarnation of the associated K3 surface (see the end of Section 3.1 for the analysis of the
case d D 38 to see one such explicit incarnation). From this point of view one associates
to the pair .X;S/ a pair .W;U /, whereW is the image ofX and the surface U is naturally
the parameter space of the curves of the congruence D contained in X .

3. Associated K3 surfaces to cubic fourfolds in C38 via the trisecant flop

In this section, as an application of previous theoretical results, we describe birational
incarnations of the K3 surfaces associated to the cubic fourfolds in C38 via Hodge theory
or via derived category theory. For the sake of brevity, we omit a similar analysis of the
cases of cubic fourfolds in C14 and C26, which has been outlined in the first arXiv version
of this paper. The case of cubic fourfolds in C42 will be considered in Section 5.5.

3.1. General properties of degree 10 smooth surfaces S38 � P5 of sectional genus 6

Let us consider the smooth surfaces S38 � P5 obtained as the image of P2 by the linear
system of plane curves of degree 10 having ten fixed triple points in general position.
These surfaces are contained in a general cubic fourfold in the admissible divisor C38,
as shown in [29]. They were also studied in [34, 35] and it was proved that every cubic
fourfold in C38 is rational.

The Hilbert scheme �38 parametrizing such surfaces is explicitly unirational, that is,
we can write out equations for the general member ŒS38� 2 �38 over a pure transcendental
extension of the base field. From this, one can deduce that the homogeneous ideal of S38
is generated by ten cubic forms, whose first syzygies are generated by the linear ones.
In particular, the general S38 � P5 satisfies condition K3. By Proposition 1.5 the linear
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system jH 0.IS38
.3//j defines a birational map ' W P5 Ü Z � P9 onto its image Z.

Through a general point '.p/ 2 Z there pass eight lines contained inZ. The pullbacks of
these lines are seven secant lines to S38 passing through p and a 5-secant conic to S38. In
particular, a general S38 � P5 admits a congruence of 5-secant conics (see [34, Section 5]
for the details of this computation, and also Section 6.1).

Moreover, we have jH 0.I2S38
.5//j D P4 for a general S38 � P5 and the coeffi-

cients of the multidegree of the graph of the associated rational map � W P5 Ü P4 are
.1; 5; 19; 13; 2/ (see Section 6.1). From this one deduces that � is dominant since the last
entry is equal to 2 (this means that the closure of a general fibre of �, F D ��1.�.p//
with p 2 P5 general, has degree 2 and dimension 1); its base locus scheme B � P5 has
degree 6 D 52 � 19 and dimension 3. Since the unique 5-secant conic Cp to S38 passing
through p is contracted by � to the point �.p/ (5 � 2 � 2 � 5 D 0), the fibre F coincides
with Cp and it is irreducible (otherwise one can argue as in Section 6.1, prove that F is
an irreducible conic and verify that it is 5-secant to S38, which yields a different proof of
the existence of the congruence of 5-secant conics).

The rationality of a general X through a general S38 follows by restricting � to X .
Indeed, through a general q 2 X there passes a unique conic Cq of the congruence, which
is not contained in X by the generality of q. The conic Cq cuts X in q and in five points
on S38, implying that the general fibre of map � D �jX W X Ü P4 is a point by the
Bézout Theorem.

3.2. Small contraction defined by cubics through a general S38 � P5

The (closures of the) fibres of ' WP5 ÜZ are linear spaces of dimension s with 0� s� 2.
The two-dimensional fibres of

Q' W BlS38
P5 ! Z � P9

are the strict transforms of planes in P5 cutting S38 along plane cubic curves by Propo-
sition 1.5. Let C � S38 ' Bl¹p1;:::;p10º

P2 � P5 be such a cubic and recall that the
embedding is given by j10H �

P10
iD1 3Ei j, using the standard notation. Since the curve C

is contained in a plane, it cuts each line Ei � S38 in at most one point so C � ˛H �P10
iD1 aiEi with 0 � ai � 1 and ˛ � 1. From

3 D C �
�
10H �

10X
iD1

3Ei

�
D 10˛ � 3

10X
iD1

ai ;

we deduce ˛ D 3 and ai D 1 for nine of the ten indices. Hence C is the image of a
plane cubic curve passing through nine of the ten general base points on P2. In conclu-
sion, there are ten two-dimensional fibres of Q'. The other positive-dimensional fibres of Q'
are the strict transforms of trisecant lines to S38. From the equations of the base locus
scheme B of �, we deduce that B has a unique irreducible component QB of dimension 3
and degree 6, which contains S38. In particular, B is generically reduced along QB . An
explicit computation shows that the variety QB is mapped by ' onto an irreducible surface
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V � Z � P9, which is a Veronese surface generating a P5 � P9. The general fibre of the
restriction of ' to QB has dimension 1 and hence it is a trisecant line to S38. A trisecant line
to S38 is contained in the base locus scheme B of � because it intersects a quintic with
double points along S38 in at least six points counted with multiplicity. Hence QB is the
unique irreducible component of Trisec.S38/ of dimension 3, and S38 has the expected
trisecant behaviour because the irreducible component of Al3 S38 corresponding to QB is
birational to the smooth irreducible surface V . From this analysis and from the previous
computations, we deduce that Trisec.S38/ consists of QB and of the ten planes cutting S38
along cubic curves.

Since the ten planes in Trisec.S38/ are mapped to ten points inZ, a general hyperplane
section of Z does not pass through these ten points. Hence a general cubic hypersurface
X � P5 through S38 does not contain any of the ten planes in Trisec.S38/. The restriction
of Q' to X 0 D BlS38

X induces a small contraction

Q' W X 0 D BlS38
X ! Y � P8;

with Y D Z \H the corresponding hyperplane section of Z. From the previous descrip-
tion we deduce that QB \X D T [S38 with T �X an irreducible surface by the generality
ofX . Moreover, deg.T /D 3� 6� 10D 8 and '.T /D C D V \H � Y DZ \H � P8

is a smooth rational normal quartic curve (a general hyperplane section of the Veronese
surface V � Z). Hence T is ruled by the trisecant lines to S38 contained in X via the
restriction of '. The double point formula implies that the singular locus of the rational
scroll T , projection of a smooth rational normal scroll of degree 8 in P9, consists of six
singular points. Its strict transform T 0 � X 0 is smooth and Q'jT 0 W T 0! C is a P1-bundle.
The birational morphism Q' is an isomorphism between X 0 n T 0 and Y n C and hence it is
a trisecant flop contraction.

3.3. The trisecant flop determined by S38 � P5

Theorems 2.6 and 2.10 ensure the existence of a trisecant flop Q W W 0 ! Y and of a
divisorial contraction � WW 0! P4 giving a factorization of the birational map � W X Ü
P4 (see the commutative diagram (2.7) also for recalling the notation).

The scrollRD �.R0/�P4 has degree 6 (recall that we tensor with OP1.�1/ perform-
ing the flop, see (2.6)) and ��1 W P4 Ü X is given by a linear system in jH 0.I2U .9//j

by Theorem 2.10 (3), where U � P4 is the support of the base locus B of ��1 (recall that
B is generically reduced so that it coincides with U generically). By Theorem 2.10 (4),
the lines of the scroll R are 5-secant to U , the map  is given by a linear system in
jH 0.IU .5//j and  .R/ D Q .R0/ D C .

The cubics through S38 restricted to X are mapped by � onto quintics defining B as
a scheme by Theorem 2.10 (3). Taking a basis of cubics Xi through S38 restricted to X ,
i D 1; : : : ; 9, their images Vi D �.Xi / � P4 determine the ideal of B . In Section 6.1 and
in the ancillary file code_section_6.m2 (see the arXiv version of the paper) we verified
that B is a smooth surface of degree 12 and sectional genus 14 so that it coincides with U
as scheme. Hence U � P4 is a smooth surface of degree 12 and sectional genus 14, whose
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ideal is generated by nine forms of degree 5. Since ��1.B/ D E, the universal property
of the blow-up yields a birational projective morphism ı WW 0! BlU P4 between smooth
projective fourfolds. Since rk.Pic.W 0// D 2 D rk.Pic.BlU P4//, we have W 0 ' BlU P4

by Zariski’s Main Theorem. Moreover,

��1 W P4 Ü X � P9

is given by the linear system jH 0.I2U .9//j by Theorem 2.10 (3).
LetADCŒt0; : : : ; t4�. Using the explicit equations constructed above, we can compute

the resolution of the homogeneous ideal of U :

0 IU  A.�5/˚9  A.�6/˚11  A.�7/˚3  0

and also verify that pg.U / D 1 and q.U / D 0 (see Section 6.1). To conclude the analysis
of U � P4 we shall follow the arguments in [7, Section 2.7], where the authors gave a
different construction of the above surface via Beilinson spectral sequence methods.

The intersection matrix for the sublattice hH;KU i of Num.U / is�
H 2 H �KU

H �KU K2U

�
D

�
12 14

14 �11

�
;

where K2U D �11 is deduced from the double point formula for a smooth surface in P4.
The number N6 of proper 6-secant lines to U (if finite) plus the number of exceptional
lines, that is, .�1/-curves Li � U such that H � Li D 1 and L2i D �1, is equal to 10
by the Le Barz formulas (see loc. cit.). There are no proper 6-secant lines since IU is
generated by quintic forms. Let U 0 � P14 be the first adjunction surface of U , that is, the
image of the birational morphism 
 W U ! U 0 defined by the base point free linear system
jKU CH j (see [7, Introduction] for a summary of the basic results of adjunction theory on
surfaces). Since the above morphism contracts the exceptional lines on U , the morphism

 realizes U as the blow-up of U 0 in ten distinct points andK2U 0 DK

2
U C 10D�1. Since

H D 
�.H 0/ �
P10
iD1Li , we also have H 0 �KU 0 D H �KU � 10 D 4.

Since pg.U 0/Dpg.U /D 1 and sinceK2U 0 D�1, the canonical divisor is effective but
not nef and the surfaceU 0 is non-minimal. LetE �U 0 be a .�1/-curve, letKU 0 DDCE

(D � 0) and let QE � U be an irreducible curve such that 
. QE/DE. Then QE2 �E2 D�1
and

0 < .KU CH/ � QE D .KU 0 CH 0/ �E D H 0 �E � 1

yields H 0 � E � 2. From 4 D H 0 � .D C E/ we deduce H 0 � D � 2 and that E is not
contained in the support of D (otherwise KU 0 D 2E and K2U 0 D �4). Then D � E D 0,
D2 D 0 and KU 0 �D D 0. If H 0 � E D 2, then H 0 �D D 2. From .KU 0 CD/ �D D 0,
we deduce that D cannot be an irreducible conic. If D D 2 � QL, then H 0 � QL D 1 would
be a line such .KU 0 C QL/ � QL D 0, which is impossible. In the same way we can exclude
that H 0 � E D 3, conclude that H 0 � E D 4 and finally that KU 0 D E. Let � W U 0 ! U 00

be the contraction of E to a point of the smooth surface U 00. Since KU 00 D 0 and since
q.U 00/ D q.U / D 0, the surface U 00 is a K3. The curve QE � U is a smooth rational
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normal curve of degree 4, proving that the distinct points pi D 
.Li / do not belong to E.
In the next section we shall develop an alternative geometric method to obtain the whole
configuration of the .�1/-curves on U in explicit examples.

Let � W U ! U 00 be the blow-up of U 00 at the eleven distinct points described above
and let H 00 D ��.H/. Then H 00 is an ample divisor on U 00 with a point of multiplicity 4
at p11 and passing simply through p1; : : : ;p10 and the linear systemH on U is thus given
by j��.H 00/�

P10
iD1Li � 4Ej. Hence .H 00/2 D .H 0/2C 10C 16D 12C 10C 16D 38

and pa.H 00/ D pa.H 0/C 6 D 20. The generality of X through S38 ensures that the K3
surface has general moduli and that Pic.U 00/ ' Z (a direct proof of this fact will be given
below). Hence the divisor H 00 is very ample and gives an embedding U 00 � P20.

3.4. The associated K3 surface to a general cubic in C38 via the trisecant flop

Via the trisecant flop and via the contraction of the curves of the congruence contained
in X , we proved that the associated surface U � P4 to a general pair .X; S38/ is a bira-
tional incarnation of a general smooth K3 surface U 00 � P20 of degree 38 and genus 20.
We now want to show that the surface U 00 (or U ) is associated to X in the sense of
Hodge theory (or, equivalently, of derived category theory) following the treatment by
Hassett [16, Section 3].

Let us recall that for an arbitrary cubic fourfoldX �P5, letting hp;q denote the Hodge
numbers of X , we have h0;4 D h4;0 D 0, h1;3 D h3;1 D 1, h2;2 D 21. Let h denote the
class of a hyperplane section of X and let

H 4
prim.X;Z/ ' hh

2
i
?
� H 4.X;Z/

be the primitive cohomology of X . This cohomology reminds the H 2 cohomology of
a K3 surface S , modulo a Tate twist by �1, since S has Hodge numbers h1;0 D h0;1 D 1,
h1;1 D 20. The intersection forms have signatures .20; 2/ for H 4

prim.X;Z/ by the Hodge–
Riemann bilinear relations and .19; 3/ for H 2.S;Z/.�1/. They become compatible as
long as one can find a common codimension 1 Hodge substructure of signature .19; 2/.

The definition of C38 (see [16, Section 2.3] for the general theory) and the fact that a
general ŒX� 2 C38 contains a surface S38 � P5 (see [29]) yield

H 2;2.X;Z/ D H 4.X;Z/ \H 1.�1X / ' Zhh2; ŒS38�i

for such an X . Let TX � H
4.X;Z/ denote the transcendental part of the cohomology of

a cubic fourfold X � P5. Then in our setting

TX D hh
2; ŒS38�i

?
� H 4.X;Z/

has rank 21 and signature .19; 2/. Clearly H 2.S38; Z/ ' Z11, H 2.T 0; Z/ ' Z2 '
H 2.R0;Z/ andH 2.U;Z/'H 2.U 00;Z/˚Z11 because we blow up eleven points on U 00:

LetM be a smooth projective fourfold and let S �M be a smooth projective surface.
Then

H 4.BlS M;Z/ ' H 4.M;Z/˚? H
2.S;Z/.�1/: (3.1)
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The homomorphism H 4.M;Z/ ! H 4.BlS M;Z/ is induced by the pull-back of � W
BlSM !M . Letting E D P .N �

S=M
/! S (Grothendieck notation), the homomorphism

H 2.S;Z/.�1/! H 4.BlS M;Z/ is the pull-back from S to E � BlS M followed by
push-forward via the inclusion of E.

We have a commutative diagram

BlT 0 X 0 D BlR0 W 0

�

vv

!

((

X 0 D BlS38
X

� //

�

��

W 0 D BlU P4

�

��

X
�

// P4

(3.2)

inducing an isomorphism between

ŒH 4.X;Z/˚? H
2.S38;Z/.�1/�˚? H

2.T 0;Z/.�1/

and
ŒH 4.P4;Z/˚? H

2.U;Z/.�1/�˚? H
2.R0;Z/.�1/

respecting the Hodge structures.
For a smooth projective surface S let TS � H

2.S;Z/ denote the trascendental part
of the cohomology of S . Then TR0 D TT 0 D TS38

D 0, while TU ' TU 00 and rk.TU 00/ D

22 � rk.Pic.U 00//. On the one hand,

TBlT 0 X 0 ' TBlS38
X ' TX D hh

2; ŒS38�i
?
� H 4.X;Z/

implies rk.TBlT 0 X 0/ D 21. On the other hand

TBlR0 W 0 ' TBlU P4 ' TU ' TU 00

yields

rk.Pic.U 00// D 22 � rk.TU 00/ D 22 � rk.TBlR0 W 0/ D 22 � 21 D 1:

If H 00 � U 00, let h00 D ŒH 00� 2 H 2.U 00;Z/. Then h00? D TU 00 � H 2.U 00;Z/.�1/ and the
previous isomorphisms defined via (3.2) induce an isomorphism

H 4.X;Z/ � hh2; ŒS38�i
? '
�! hh00i? � H 4.U 00;Z/.�1/

respecting Hodge structures. Therefore the K3 surface U 00 is associated to X in the sense
of Hodge theory according to Hassett [16, Section 3.2].

The isomorphism between H 4.BlT 0 X 0;Z/ and H 4.BlR0 W 0;Z/ sends the classes
corresponding to the ten exceptional lines on S38 to the classes corresponding to the ten
exceptional lines onU �P4, while the rational normal curve of degree 4 onU correspond
to the class of H 2.T 0;Z/.�1/, T 0 ' P .OP1.4/˚ OP1.4//! P1, not contracted by !.
This gives an interpretation of the fact that Q'.T 0/D C D Q .R0/ is a rational normal curve
of degree 4 (or equivalently that T 0 admits a section which is a rational normal curve of
degree 4) and shows that the exceptional curve QE � U of degree 4 is exactly �.R0/ \ U .
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4. A geometric method for detecting the exceptional .�1/-curves on some
non-minimal K3 surfaces

We shall now consider the problem of finding the non-minimal K3 surface U � W in the
base locus scheme of the birational map � W X Ü W defined in the previous sections
for a general cubic ŒX� 2 Cd with d D 14; 38 in order to develop a method to be applied
later in the more difficult case d D 42. The detection of the .�1/-curves on the (smooth
non-minimal K3) surface U (or on its linear normalization if U has nodes) is a delicate
and intriguing problem, which in some cases can lead to the explicit construction of the
general K3 surface of degree 2g � 2 and genus g. When this is possible, one usually gets
a direct proof that the corresponding moduli space of polarized K3 surfaces is unirational.
In the previous section to analyse the case d D 38, following the traditional approach
of [7], we used the smoothness of U � P4 D W and appealed to the Le Barz formulas
together with adjunction theory in order to find the ten exceptional lines on U . Then, after
the contraction of these ten .�1/-curves, there appeared a last exceptional curve, which is
a quartic rational normal curve already contained in U .

It is very difficult to try to adapt these arguments to surfaces U � W with W a Fano
fourfold lying in spaces of higher dimension. So we elaborated an entirely new geometric
method, which works efficiently in the cases d D 14; 26; 38; 42 to prove that U is the
blow-up of a K3 surface of degree d and genus g D .d C 2/=2 associated to X 2 Cd .
Our analysis is based on the existence of the congruence, of the map � W P5 Ü W , and
on a careful study of the known examples studied by Fano [8] (see also [5]).

Recall that by definition of congruence of .3e � 1/-secant curves of degree e � 1
to S � P5, we have a diagram (1.1), where � W D ! H is the universal family over
the parameter space H and where p W D ! P5 is the tautological morphism, which by
definition is birational (see Section 1.1). The fundamental locus of the congruence,

E D ¹q 2 P5 W dim.p�1.q// > 0º � P5;

is the base locus of p�1 by Zariski’s Main Theorem, which also implies that E is the
image of the ramification locus of p. The locus E has codimension at least 2. Let
E1; : : : ; Er , r � 1, be the irreducible components of dimension 3 of E, if any. Sup-
pose there exists an associated rational map � W P5 Ü W defined by the linear system
jH 0.IeS .3e � 1//j such that a general fibre of � is a curve of the congruence and let
Ci D �.Ei / � W , i D 1; : : : ; r . These are special curves in W , defined via the congru-
ence but without any apparent relation to cubic fourfolds through S .

Let us start by describing the surfaces considered in Example 1.2 from this perspec-
tive.

Example 4.1. Let S D Bl¹p1;:::;p4º
P2 � P5 be a smooth quintic del Pezzo surface.

The embedding is given by the linear system of cubics passing through the four points
p1; : : : ;p4, denoted as usual by j3L�E1 �E2 �E3 �E4j D j�KS j. The pencil of lines
through one of the points pi , i D 1; : : : ; 4, and the pencil of conics through p1; : : : ; p4
produce five base point free pencils of conics on S . Moreover, by considering a Cremona
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transformation centred at three of the four base points we can always find a representation
of S as the blow-up at four points in which any of the five pencil of conics is represented
by the pencil of conics through the four base points.

Let C � S be an irreducible conic and … D hC i D P2 be its linear span. Since S is
defined by quadratic equations, … \ Ei is either empty or consists of a point (otherwise
… \ S would contain C and the line Ei ). Let � W S ! P2 be the blow-up morphism.
Then C D dL �

P4
iD1 aiEi with 0 � ai � 1. From 2 D 3d �

P4
iD1 ai , we get 3d D

2C
P4
iD1 ai � 6, yielding either d D 1 and ai D 1 for only one i , or d D 2 and ai D 1

for every i . In conclusion, C belongs to one of the five pencils described above.
Let � W P5 Ü P4 be the map associated to the congruence of secant lines to S . By

Proposition 1.5 the closures of the fibres of � are either secant lines to S or planes cutting
S along a conic. Hence the fundamental locus E of the congruence of secant lines to S
is the locus of planes spanned by conics through S (through a point of the plane there
pass infinitely many secant lines to S and if through a point of a secant line there passes
another secant line, these lines span a plane by the analysis of the fibres of �).

Let �1 W S! P1 be a morphism induced by one of the five pencils of conics and let � W
S ! P2 be a blow-up morphism in which the pencil is represented by conics through the
four base points. Then ��1 .OP1.1//DOS .2L�E1 �E2 �E3 �E4/ and ��.OP2.1//D

O.L/ so that ��1 .OP1.1//˝ ��.OP2.1// D OS .3L�E1 �E2 �E3 �E4/. By the uni-
versal property of the product, ˛ D �1 � � W S ! E1 D P1 � P2 � P5 is such that
˛�.OP5.1// D OS .1/. Hence ˛ is an embedding and S � E1 is a divisor of type .1; 2/.
In conclusion, we have five Segre threefolds Ei ' P1 � P2, i D 1; : : : ; 5, containing S
as a divisor of type .1; 2/ and E D E1 [ � � � [E5. Then Ci D �.Ei / � P4 are five lines
because � is defined by the linear system of quadrics through S (note that by restricting
� to Ei we have .2; 2/ � .1; 2/ D .1; 0/ on Ei ).

Example 4.2. If S � P5 is a general quartic rational normal scroll, the fundamental
locus E of the congruence of secant lines to S consists of the unique Segre threefold
† ' P1 � P2 containing S as a divisor of type .0; 2/. Indeed, S ' P1 � P1 embedded
in P5 by OP1�P1.1; 2/ so that, reasoning as above, S ' P1 � C � P1 � P2 D † � P5

with C � P2 a conic. The conics on S are precisely the fibres of the first projection
P1 � C ! P1. The fibres of � W P5 ÜW withW � P5 a smooth quadric hypersurface
are all linear by Proposition 1.5. Let E � P5 be the fundamental locus of the congruence
of secant lines to S . If q 2 E, then through E there pass at least two secant lines to S . So
…q D ��1.�.q// is a plane cutting S along a conic, yielding E � † and hence E D †.
Then C D �.E/ � W is a smooth conic because on E we have .2; 2/ � .0; 2/ D .2; 0/.

In general it is not easy to determine theEi ’s and then calculate their images (although
possible in all the examples treated here). We shall now present a key remark, which
allows us to determine the Ci ’s without necessarily computing the Ei ’s in all the known
examples we have studied until now.

Geometric method. Suppose there exists a congruence of .3e � 1/-secant curves of
degree e � 1 to S � P5 with fundamental locus E D E1 [ � � � [ Er with Ei � E the
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irreducible components of dimension 3 of E, if any. Suppose there exists an associated
rational map � W P5 Ü W defined by the linear system jH 0.IeS .3e � 1//j such that a
general fibre of � is a curve of the congruence and let Ci D �.Ei / � W , i D 1; : : : ; r .
Since through a general point of Ei the fibre of � has dimension at least 2, we expect that
Ci � W is a curve (see Examples 4.1 and 4.2).

LetXj � P5, j D 1;2, be a general cubic through S and let Uj �W be the associated
surface contained in the base locus of the inverse of the restriction of � to Xj . Then
Ci D �.Xj \Ei / � Uj for every i D 1; : : : ; r and for j D 1; 2, so that

C1 [ � � � [ Cr � U1 \ U2:

Since U1 and U2 are moving surfaces in the fourfold W , one expects that C1 [ � � � [ Cr
is exactly the one-dimensional component C of U1 \ U2.

From the equations ofU1 andU2 we immediately derive those definingC . In the cases
under consideration this allows us to verify the smoothness of C , that C D C1 [ � � � [

Cr and that all the disjoint irreducible components Ci are rational (many components
are lines) and that h1.NC=U / D 0. The knowledge of the equations of the Uj ’s yields
pg.Uj /D 1 and q.Uj /D 0 (at least in the smooth cases) by direct computation. Collecting
all the information one proves that U is the blow-up of a K3 surface as shown by the next
crucial remark.

Lemma 4.3. Let U be a smooth projective surface with pg.U / D 1 and with q.U / D 0.
Let C D C1 [ � � � [Cr , r � 1, be a smooth curve on U with Ci a rational curve for every
i D 1; : : : ; r . Then:

(1) C 2i < 0 for every i D 1; : : : ; r .

(2) Every Ci is a .�1/-curve on U if and only if h1.NC=U / D 0.

(3) If h1.NC=U / D 0 and if there exists an ample divisor H on U such that H �KU D
H � C , then KU D C1 C � � � C Cr and U is the blow-up at r distinct points of a K3
surface U 0.

(4) Under the hypotheses in .3/, if � W U ! U 0 is the blow-up and H 0 D �.H/, then

H D ��.H 0/ �

rX
iD1

.H � Ci /Ci :

Proof. From q.U /Dh1.OU /D0we deduce h0.OU .Ci //Dh0.OP1.C 2i //C1. IfC 2i � 0,
then the rational curves in jH 0.OU .Ci //j would cover U and U would be uniruled, con-
tradicting pg.U / D 1. So C 2i < 0 for every i D 1; : : : ; r .

The Ci ’s are disjoint smooth rational curves, OC .C /jCi
' OP1.C 2i / and

h1.NC=Uj
/ D

rX
iD1

h0.OP1.�2 � C 2i //

is equal to 0 if and only if C 2i D �1 for each i D 1; : : : ; r , proving (2).
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Since pg.U / D 1, the canonical class is effective. From KU � Cj D �1 we deduce
KU D C CD with D � 0. Then H � C D H �KU D H � C CH �D yields H �D D 0
and hence D D 0. Since the Ci ’s are disjoint .�1/-curves, the contraction of the curves
in C produces a smooth surface U 0 and a morphism � W U ! U 0 which is the blow-up of
r � 1 distinct points on U . Then KU 0 D 0 and q.U 0/ D q.U / D 0 imply that U 0 is a K3
surface. The last claim about the expression ofH via pull-back ofH 0 is now obvious.

Example 4.4 (Application to smooth quintic del Pezzo surfaces in P5). Suppose S � P5

is a smooth del Pezzo surface of degree 5. Then Uj � P4, j D 1; 2, are smooth surfaces
of degree 9 and sectional genus 8 with pg.Uj / D 1 and q.Uj / D 0 (the invariants are
determined via the explicit equations obtained via the restriction of � W P5 Ü P4). The
one-dimensional component C of U1 \ U2 is a smooth curve of degree 5 and arithmetic
genus �4, from which it immediately follows that C has five irreducible components and
hence is the union of five distinct lines C1; : : : ; C5, as we already know.

Let U D U1. After verifying that h1.NC=U / D 0, we deduce that every Ci is a .�1/-
curve on U . Since H � KU D �H 2 C 2g.H/ � 2 D �9 C 16 � 2 D 5 D H � C we
conclude by Lemma 4.3 that � W U ! U 0 is the blow-up at five distinct points p1; : : : ; p5
of the K3 surface U 0 and that H 0 D ��.H/ � U 0 is a very ample divisor on U 0 such that
.H 0/2 D 9C 5 D 14, g.H 0/ D 8. Indeed, H 0 is ample and the generality of X1 and of
U D U1 implies that rk.Pic.U 0// D 1 (see the argument used at the end of Section 3.1 or
compute the moduli of the K3’s). Hence U 0 � P8 is a K3 surface of degree 14 and genus
8 and the linear system jH j on U corresponds to the hyperplane sections of U 0 passing
through p1; : : : ; p5. In particular, we see that these points impose only four independent
conditions to hyperplane sections.

Example 4.5 (Application to general quartic rational normal scrolls in P5). For S � P5

a general rational normal scroll, the corresponding surfaces Uj � W are smooth, have
degree 10, sectional genus 7, pg.Uj / D 1 and q.Uj / D 0. The one-dimensional compo-
nent C of U1 \ U2 is a smooth conic, which is a .�1/-curve on Uj because h1.NC=Uj

/

D 0. SinceH �KUj
D 2DH �C , we deduceKUj

DC and we can apply Lemma 4.3. We
conclude that Uj � P5 is obtained by blowing up a K3 surface U 0 � P8 of degree 14 and
genus 8 at one point p 2 U 0 and that jH j corresponds to the linear system of hyperplane
sections having a point of multiplicity at least 2 at p.

Example 4.6 (Application to degree 10 surfaces S38 � P5). The surfaces Uj � P4,
j D 1; 2, are smooth, have degree 12, sectional genus 14, pg.Uj / D 1 and q.Uj / D 0

(see Section 3.1). The one-dimensional component C of U1 \ U2 is a smooth curve of
degree 14, of arithmetic genus �10 with eleven irreducible components. By projecting C
generically to P3 (to speed computations) and to P2 (to read more efficiently the decom-
position), we get a smooth curve of degree 14, respectively a plane curve QC of degree 14.
The lines in QC disappear by taking duality, that is, the image of QC via the Gauss map
of QC . Then, by reflexivity, the bidual curves of QC are precisely the irreducible curves in QC
different from lines. It turns out that the bidual curve of QC is a quartic curve with three
nodes from which it follows that C is the disjoint union of ten lines and of a quartic ratio-
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nal normal curve (see also the ancillary file code_section_6.m2). In conclusion, C is
the union of eleven smooth rational curves.

The eleven curves Ci are .�1/-curves on Uj because h1.NC=Uj
/ D 0 (see

code_section_6.m2 for the computation and then apply Lemma 4.3). Since H �KU D
�H 2 C 2g.H/ � 2 D �12C 28 � 2 D 14 D H � C , we deduce from Lemma 4.3 that
there exists a contraction � W U ! U 0 of the eleven .�1/-curves Ci to the eleven dis-
tinct points p1; : : : ; p11 on the smooth K3 surface U 0. Then H 0 D ��.H/ � U

0 is an
ample divisor on U 0 such that .H 0/2 D 12C 16C 10 D 38 and g.H 0/ D 14C 6 D 20.
For a general X through S38 we have that U 0 is a K3 surface of degree 38 and genus 20
with rk.Pic.U 0// D 1 (see the argument at the end of Section 3.1 or compute the moduli
of the K3’s) so that jH 0j gives an embedding U 0 � P20. The linear system jH j on U
corresponds to the hyperplane section of U 0 passing through p1; : : : ; p10 and having a
point of multiplicity at least 4 at p11. In particular, we see that these points do not impose
independent conditions on hyperplane sections of U 0.

5. Rationality of cubics in C42 via congruences of 8-secant twisted cubics

In this section, we first construct a family of surfaces in P5 to describe the divisor C42 as
the locus of cubic fourfolds containing these surfaces. This family is related to an example
of a surface of degree 9 and sectional genus 2 contained in a del Pezzo fivefold, which has
been discovered (computationally) for the first time in [18]. Here we give an explicit and
geometric description of the complete family of these surfaces inside a del Pezzo fivefold
and then use them to construct surfaces in P5 of degree 9 and sectional genus 2 with five
nodes. Finally, we use this new description of C42 to show that C42 is unirational (see
Corollary 5.10) and that every cubic fourfold in C42 is rational (see Theorem 5.12).

5.1. Birational representations of del Pezzo fivefolds

A del Pezzo fivefold V � P8 is a smooth hyperplane section of G.1; 4/ � P9. The
following result is well known in classical algebraic geometry (see e.g. [44] and [37, Sec-
tion 10]).

Proposition 5.1. Let V D G.1; 4/ \ P8 � P8 be a del Pezzo fivefold and let … � V be
a plane with class �2;2 in G.1; 4/. Then:

(i) The projection from … restricted to V induces a birational map V Ü P5 whose
base locus scheme is ….

(ii) The inverse map P5 Ü V � P8 is given by the linear system of quadric hypersur-
faces through a rational normal cubic scroll contained in a hyperplane in P5.

Remark 5.2. A del Pezzo fivefold V DG.1; 4/\ P8 � P8 contains two distinct families
of planes, F1 and F2, which in the Chow ring of G.1; 4/ have Schubert classes given by
�2;2 and �3;1. The family F1 has dimension 3 and through a point of V there passes
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a unique plane of the family. The family F2 has dimension 4 and through a general point
of V there passes a one-dimensional family of these planes.

If ˛ W P5 Ü V � P8 denotes the birational map defined by the quadrics through a
rational normal cubic scroll � � H ' P4 � P5 as in Proposition 5.1, then the planes
through a point q D ˛.p/, p 2 P5 n H , correspond, respectively, to the unique plane
generated by p and the directrix line of � and to the planes generated by p and by a line
of the ruling of �.

Since NC=V ' OP1.1/˚2 ˚ OP1.2/˚2 (see for example [20, p. 403]) for an irre-
ducible conic C � V � P8, the Hilbert scheme Con of conics contained in V has dimen-
sion 10D h0.NC=V /, a fact that can also be deduced from a simple parameter count using
the previous birational representation of V .

The next result is also classical and well-known. It can also be easily verified via an
explicit computation.

Proposition 5.3. Let V D G.1; 4/ \ P8 � P8 be a del Pezzo fivefold and let C � V be
an irreducible conic whose linear span … D hC i is not contained in V: Then:

(i) The projection from … restricted to V induces a birational map V Ü P5 whose
base locus scheme is C .

(ii) The inverse map P5 Ü V � P8 is given by the linear system of cubic hypersurfaces
vanishing on a rational scroll in P5 of dimension 3 and degree 4, which is a projection
of a smooth quartic rational normal scroll in P6.

5.2. Curves of degree 8 in P5 with a node and with geometric genus 2 contained in a
projected rational scroll of degree 4

Now we prove some geometrical properties about irreducible curves of degree 8 and arith-
metic genus 3 in P5. We shall restrict ourselves to the case of curves with a node, used in
what follows, although the same proof works also for smooth curves (this case has been
considered in [38]).

Proposition 5.4. Let C � P5 be a non-degenerate curve of degree 8 and arithmetic
genus 3 with a node. Then:

(i) The curve C � P5 is the complete intersection of a pencil of quintic del Pezzo sur-
faces on a Segre threefold † D P1 � P2 � P5 such that the general element of the
pencil is smooth.

(ii) The curve C � P5 has ideal generated by seven quadratic forms, defining a bira-
tional map  W P5 Ü W � P6 onto a quartic hypersurface and such that  .†/ D
Q � W � P6 is a smooth quadric surface contained in the base locus scheme
of  �1.

(iii) The preimages on † of the lines of the two rulings of Q are, respectively, the planes
of the ruling of † and the pencil of del Pezzo surfaces through C .
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(iv) The map  is an isomorphism outside † [ Sec.C / and Sec.C / is mapped onto
a degree 24 surface T . The quartic hypersurface W has double points along Q
and T , and  �1 W W Ü P5 is given by the restriction of a linear system of quartic
hypersurfaces in P6 passing simply through T and having double points along Q.

Proof. Let C � P5 be an irreducible curve of degree 8 and geometric genus 2 with a
node. Let � W C 0 ! C be its normalization and let L D ��.OC .1//. The linear system
jH 0.L/j has dimension 6 by Riemann–Roch, it is very ample and it embeds C 0 in P6 as
a smooth curve of degree 8 and genus 2. The curve C � P5 is the projection of C 0 from
a point q on the secant variety Sec.C 0/ � P6 of C 0 but not belonging to the tangential
surface Tan.C 0/.

Let P 0 D hp01; : : : ; p
0
4i, p

0
i 2 C

0, be a 4-secant P3 passing through q and let P D
hp1; : : : ; p4i, with pi 2 C the projection from q of p0i . Then P is a 4-secant plane
to C and, letting D D p1 C � � � C p4 be the corresponding Cartier divisor on C , a gen-
eral hyperplane through P cuts C in D and in other four points p5; : : : ; p8 such that
… D hp5; : : : ; p8i D P3. Letting E D p5 C � � � C p8, from the previous definitions and
from Riemann–Roch we deduce h0.OC .D// D 2 and h0.OC .E// D 3. The linear sys-
tem jH 0.OC .D//j defines a morphism � W C ! P1 of degree 4, while jH 0.OC .E//j

defines a morphism � W C ! P2 birational onto its image. By the universal property
of the product we have a morphism � � � W C ! P1 � P2 which composed with the
Segre embedding P1 � P2 � P5 gives a morphism � W C ! P5 such that ��.OP5.1// D

OC .D/˝OC .E/DOC .1/. This means that the embeddingC � P5 factors through†'
P1 �P2�P5 in such a way that � is the composition of � with the projection onto the first
factor and that � is the composition of � with projection onto the second factor. In particu-
lar, P D p � P2 � † for some p 2 P1: By Riemann–Roch we deduce h0.IC .2// � 7 so
that h0.IC[P .2//� 5 (from P \C D ¹p1; : : : ;p4ºwe deduce that containing P imposes
only two conditions on quadrics vanishing on C ). Since h0.I†.2// D 3, there exists at
least a pencil ¹Q�º�2P1 of quadrics vanishing on C [ P but not on †. This pencil of
quadrics cuts † along P and along a residual pencil ¹S�º�2P1 of divisors of type .1; 2/
containing C . The projection from P maps † onto a plane…, and C onto a plane quartic
curve. Hence C is not contained in any divisor of type .0; 2/ on † (they project from P

onto a conic) and being non-degenerate in P5 is not contained in any divisor of type .1; 1/
or .1; 0/ or .0; 1/, proving that every S� is irreducible. Since the complete intersection
of two distinct divisors of type .1; 2/ on † without common irreducible components is a
curve of degree 8 and arithmetic genus 3, we conclude that C is the complete intersection
of two surfaces in the pencil ¹S�º�2P1 : The projection from P restricted to S� resolves to
a birational morphism �� W S�!…. The planes in† cuts on S� a pencil of conics, whose
image by �� is a pencil of conics having a base locus scheme Z� � … of length 4. The
inverse map ��1

�
W … Ü S� is given by the linear system of cubics vanishing at Z�. Let

QC � … denote the projection of C from P . Clearly Z� � QC and the divisors ¹Z�º�2P1

vary in a g14 on QC . Moreover, the pencil of conics through a fixed Z� cuts on QC the
g14 D jH

0.O QC ..��/�.D///j. On the other hand, for a fixed general divisor QD� in the last
g14 , the pencil of conics through QD� cuts on QC the g14 D ¹Z�º�2P1 . Hence for general
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� 2 P1 the schemeZ� is smooth by the Bertini Theorem and the corresponding S� � P5

is a smooth quintic del Pezzo surface. Thus, part (i) is proved.
Let C D S \ S 0 � † be a curve of degree 8 and arithmetic genus 3, complete inter-

section of a pencil ¹S�º�2P1 of divisors of type .1; 2/ on †, whose general member is
smooth. Arguing as in [19, pp. 435–436], an iterated use of the mapping cone and the
knowledge of the resolution of a S� � P5 show that C � P5 has ideal generated by seven
quadratic equations (more precisely, we can obtain the complete free resolution of the
ideal of C � P5, see loc. cit.). Let  W P5 Ü P6 be the map defined by jH 0.IC .2//j:

The image W D  .P5/ � P6 is a quartic hypersurface (see [38] and [19]). The restric-
tion of  to † is a linear system of dimension 3 because † is defined by three quadratic
equations vanishing on C . Let S � † be a quintic del Pezzo surface through C and let
� W S ' Bl¹q1;:::;q4º

P2! P2 be a birational representation such that the pencil of conics
on S given by the restriction of the projection onto the first factor of † is mapped on P2

to the pencil of conics through q1; : : : ; q4. Then �.C / is a quartic curve passing through
q1; : : : ; q4. Hence the free part of the restriction of jH 0.IC .2//j to S is given by the pen-
cil of strict transforms of conics passing through q1; : : : ; q4, and  .S/ is a line contained
in Q D  .†/ � W . In particular, Q � P3 � P6 is a surface. Since each plane … � †
cuts C in four points,  maps… onto a line inQ cutting  .S/ in the point corresponding
to  .…\ S/. In conclusion,Q � P3 is a smooth quadric surface and all the claims in (ii)
and (iii) are proved. A finer analysis of the map  , as in [38, Section 4] or in [19, Sec-
tion 3, Lemmas 3.3, 3.4], leads to the description of all the positive-dimensional fibres
of  and of all the properties listed in part (iv). We refer to [38, p. 208] for the details of
these computations.

The following result will play a crucial role in our geometric constructions together
with the description of the map  defined above.

Proposition 5.5. Let B � P5 be a rational scroll of dimension 3 and degree 4 which is a
general projection of a smooth quartic rational normal scroll B 0 � P6. Then:

(i) There exists an irreducible family F of dimension 15 of curves of degree 8 and geo-
metric genus 2 on B whose general member is nodal.

(ii) There exists an irreducible family D of dimension 16 of quintic del Pezzo surfaces
in P5 whose general member is smooth and cuts B along a general curve of the
family F .

Proof. Let C 0 � P6 be a smooth curve of degree 8 and genus 2. The projection of
C 0 � P6 from four general points p01; : : : ; p

0
4 on it is a quartic plane curve QC � P2

with a node Qp5. Let Qp1; : : : ; Qp4 2 QC be the images of p01; : : : ; p
0
4. The linear system of

quartic curves through Qp1; : : : ; Qp4 and having double points at Qp5 embeds the blow-up
of P2 at Qp1; : : : ; Qp5 as a smooth surface S � P7 of degree 8 and genus 2 having C 0 � P6

as a hyperplane section. The linear system jH 0.I¹ Qp1; Qp2; Qp3; Qp5º
.2//j yields a morphism

'1 W S ! P1, while jH 0.I¹ Qp4; Qp5º
.2//j yields a morphism '2 W S ! P3. The composi-

tion of the morphism '1 � '2 W S ! P1 � P3 with the Segre embedding is given by the
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linear system embedding S in P7. Hence S � P1 � P3 � P7 and C 0 � P6 is contained
in a smooth quartic rational normal scroll B 0 � P6, which is a hyperplane section of
P1 � P3.

Let C 0 � B 0 be a curve of degree 8 and genus 2. Then �KB0 � C 0 D 18, deg.NC 0=B0/

D 20 by the adjunction formula and �.NC 0=B0/ D 20C 2.1 � g.C 0// D 18. Since in an
explicit example we verified that h0.NC 0=B0/ D 18 and that h1.NC 0=B0/ D 0, the gen-
eral curve of degree 8 and genus 2 contained in B 0 belongs to a unique irreducible and
generically smooth component of dimension 18 of the corresponding Hilbert scheme.
The family of the secant varieties Sec.C 0/ with C 0 � B 0 has dimension 21 D 18 C 3,
so through a general point q 2 P6 there passes a family of dimension 15 of such secant
varieties. The projection from q of the corresponding curves produces a 15-dimensional
family of nodal curves of degree 8 and geometric genus 2 on the scroll B , projection
of B 0 from q. Since one verifies that h0.NC=B/ D 15 (a fact which can be easily com-
puted with Macaulay2), the family F of such curves is irreducible, generically smooth
and of dimension 15.

By Proposition 5.4, a nodal curve C � B � P5 of degree 8 and geometric genus 2
with a node is the complete intersection of a pencil of del Pezzo surfaces on a Segre three-
fold † ' P1 � P2 � P5. Let C � S D S� � † with � 2 P1 general and let � W S D
Bl¹q1;:::;q4º

P2!P2 be the blow-up morphism. Then we can assume that �.C /D QC �P2

is a plane quartic curve with a node passing simply through q1; : : : ; q4 (see the proof
of Proposition 5.4). The irreducible threefold B has ideal generated by one quadratic
form and by three cubic forms so that it is scheme-theoretically defined by nine cubic
forms. To study the scheme-theoretic intersection B \ S we restrict to S the linear sys-
tem jH 0.IB.3//j. Each cubic in this linear system cuts S along a curve D containing
C and such that �.D/ D QD is a curve of degree nine having triple points at q1; : : : ; q4.
Hence QD D QC C QA with QA a quintic curve with double points at q1; : : : ; q4. The linear
system j QAj has dimension 8, it is base point free and very ample, proving that B \ S D C
as schemes for ŒC � 2 F general. The linear system j QAj is equivalent via a quadratic stan-
dard Cremona transformation centred at q2; q3; q4 to the linear system of quartic curves
having a double point at q1 and simple base points at q2; q3; q4.

By varying C and recalling that any C is a complete intersection of a pencil of quintic
del Pezzo surfaces inside †, we get a family D of dimension 16 of quintic del Pezzo
surfaces cutting B scheme-theoretically along a nodal curve of degree 8 and genus 2 as
above.

5.3. A rational surface of degree 9 and sectional genus 2 with five nodes contained in a
general cubic fourfold of C42

We can now construct a 25-dimensional family of smooth surfaces of degree 9 and sec-
tional genus 2 on a del Pezzo fivefold V � P8. This was also achieved in [18, Lemma 3.1]
via a different construction of an explicit example that corresponds to a smooth point in
HilbV and which is related to a K3 surface of genus 11 in P11.
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Proposition 5.6. Let V � P8 be a del Pezzo fivefold.

(i) There exists an irreducible and generically smooth family � � HilbV of dimension
25 of surfaces S � V of degree 9 and sectional genus 2 whose general member is
smooth.

(ii) There exists an irreducible and generically smooth family �42 � HilbP5 of dimen-
sion 48 of surfaces in P5 of degree 9 and sectional genus 2 with five nodes whose
general member is obtained as the projection from a general plane of the family
F1 � HilbV of a general surface of the family � � HilbV .

Proof. Let C � V be an irreducible conic whose linear span … D hC i is not contained
in V , and let

˛ W P5 Ü V � P8 (5.1)

be the inverse of the projection from… (see Proposition 5.3). Let D be the family of quin-
tic del Pezzo surfaces described in Proposition 5.5, and let D 2 D be a general member.
The smooth surfaces S D ˛.D/ � V � P8 have degree 9 and sectional genus 2 and are
obtained from P2 via the linear system of quintics having four double points (or equiva-
lently via the linear system of quartics with a double point and three simple base points)
as shown in the proof of Proposition 5.5. Since the Hilbert scheme Con of conics in V
has dimension 10 (see Remark 5.2) and since the conics on such a surface S � P8 belong
to the unique pencil of conics on S (represented on the plane by the conics through the
four base points of the linear system), we deduce that the above surfaces describe a family
� � HilbV of dimension at least dim.Con/ � 1C dim.D/ D 10 � 1C 16 D 25. Since
we have verified in a specific example of surface ŒS� 2 � that h0.NS=V /D 25, we deduce
that the family � is generically smooth of dimension 25.

Let ˇ W V Ü P5 be the birational map induced by the projection from a plane P � V
of the family F1 (see Proposition 5.3). The image via ˇ of a general S 2 � is a surface
of degree 9, sectional genus 2, cut out by nine cubics and having five nodes produced
by the intersection of P with the secant variety to S , a fact which can be verified by a
direct computation via Macaulay2 by following the first steps of the algorithm described
in Remark 5.8 below (see also Section 6.2).

A surface in P5 of degree 9, sectional genus 2 and with five nodes of the type con-
structed above will be denoted by S42. Since the cubic rational normal scrolls in P4

depend on 18 parameters, we deduce that the cubic rational normal scrolls in P5 depend
on 23 parameters. Each rational normal scroll in P5 determines a map ˇ and hence a
plane P � V � P8. The projection from P of the 25-dimensional family of surfaces of
degree 9 and sectional genus 2 contained in V gives a 25-dimensional family of S42. By
varying the scroll we deduce that the surfaces S42 � P5 describe a family of dimension
at least 48=23+25. Since we have verified in a specific example of surface S42 � P5 that
h0.NS42=P5/ D 48, we can deduce that h0.NS42=P5/ D 48 for a general S42 � P5 as
above. Since we previously proved that these surfaces depend on at least 48 parameters,
we conclude that there exists a unique irreducible component �42 of the corresponding
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Hilbert scheme containing the surfaces S42 � P5, which is generically smooth of dimen-
sion 48 and such that the general element of �42 is of the kind described above.

Remark 5.7. Let V D G.1; 4/ \ P8 � P8 be a del Pezzo fivefold, let F1 � HilbV be
the three-dimensional family of planes in V with class �2;2, and let � � HilbV and �42 �

HilbP5 be, respectively, the 25-dimensional family of smooth surfaces in V of degree 9
and sectional genus 2, and the 48-dimensional family of 5-nodal surfaces in P5 of degree 9
and sectional genus 2 constructed in Proposition 5.6. To a general pair .ŒS�; ŒP �/2 � �F1,
we associate a general ŒS42� 2 �42 defined by S42D ˇP .S/, where ˇP W V Ü P5 denotes
the projection from P . The inverse map ˛� D ˇ�1P W P

5 Ü V is defined by the quadrics
through a rational normal cubic scroll�� P4 � P5, which intersects S42 � P5 in a curve
C � P5 of degree 9 and arithmetic genus 7. We now illustrate how one can determine this
scroll � from the surface S42, and thus determine the pair .S; P / via S D ˛�.S42/ and
P D Bs.˛�1� /. Let ' W P5 Ü Z � P8 be the rational map defined by the linear system
jH 0.IS42

.3//j of cubic hypersurfaces through the surface S42�P5. Then ' is a birational
map onto its image Z � P8, and the base locus of the inverse map '�1 W Z Ü P8 is an
irreducible surface T with an immersed point q 2 T . Then '�1.T / is a threefold ruled
by trisecant lines to S42 while '�1.q/ coincides with the scroll � intersecting S42 along
a curve of degree 9 and arithmetic genus 7.2 The previous description of ' ensures that
a general S42 � P5 satisfies Assumption 1 in Section 2.2 and that it has the expected
trisecant behaviour.

Remark 5.8. Our construction of the surface S42 can be easily implemented and executed
in a computer program such as Macaulay2. For the convenience of the reader, we now
summarize the algorithm for the construction of the general surface in the family �42 (see
also Section 6.2).

� Let p1; : : : ; p5 2 P2 be general points. The image of the rational map defined by the
linear system jH 0.I

¹p2
1
;p2;p3;p4;p5º

.4//j of plane quartic curves having a double point
at p1 and simple base points at p2; p3; p4; p5 is a smooth surface T � P7 of degree 8
and sectional genus 2. The surface T can be embedded into P1 � P3 � P7 via the
product of linear systems jH 0.I¹p1;p3;p4;p5º

.2//j � jH 0.I¹p1;p2º
.2//j.

� Let L be a general secant line to T ,H � L a general hyperplane through L, and p 2 L
a general point. Then the projection of C 0 D H \ T � H D P6 to P5 from p yields
a one-nodal curve C � P5 of degree 8 and arithmetic genus 3 contained in a singular
quartic scroll threefold B � P5, projection from p of B 0 D P1 � P3 \H .

� The quadrics through C define a birational map  from P5 into a quartic hypersurface
W � P6. The exceptional locus of  contains a Segre threefold † ' P1 � P2 � P5,
which is sent into a smooth quadric surface Q � P6. The quadric Q � W can be

2The idea of gluing a cubic scroll � � P5 with another surface B � P5 along some curve
� \ B and then of considering the image ˛�.B/ � V has been systematically applied in [41] to
construct other types of surfaces in a del Pezzo fivefold.
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detected as the unique irreducible component of the base locus scheme of  �1 along
which the base locus scheme is not generically reduced.

� The inverse images via  of the two lines of Q passing through a general point of Q
are a plane of the ruling of Z and a smooth quintic del Pezzo surface D � P5, which
intersects B along C . (Note that † and the quadric Q D  .†/ are rational over their
field of definition. Indeed, the syzygy matrix of the three quadrics defining a Segre
threefold † � P5K is a 2 � 3 matrix of linearly independent linear forms on P5K . These
six linear forms can be used to define an automorphism of P5K that sends † into the
Segre embedding of P1K � P2K in P5K .)

� Finally, the map ˛ W P5 Ü V defined in (5.1) induces an isomorphism betweenD and
a smooth surface S of degree 9 and sectional genus 2. The map ˇ W V Ü P5 defined
in Proposition 5.1 induces a birational morphism from S to our surface S42.

We are now ready to prove that a general cubic in C42 contains a general surface
S42 � P5 of degree 9 and genus 2 with five nodes in the irreducible family �42 described
above.

Theorem 5.9. The irreducible divisor C42 parametrizing cubic fourfolds of discrimi-
nant 42 coincides with the closure of the locus of cubic fourfolds containing a rational
surface S42 of degree 9 and sectional genus 2 with five nodes of the irreducible family �42
constructed above.

Proof. Let h be the class of a hyperplane section of X , let h2 be the class of 2-cycles h � h
and remark that h2 � h2 D h4 D 3 and h2 � S42 D 9. The double point formula for S42 �X
(see [12, Theorem 9.3]) yields S242 D 41 and shows that the restriction of the intersection
form to hh2; S42i has discriminant 3 � 41� 81D 42. Let V � jH 0.OP5.3//j D P55 be the
open set corresponding to smooth cubic hypersurfaces. We verified that h0.IS42

.3// D 9

for a general ŒS42� 2 �42 and that there exists a smooth cubic hypersurface through S42.
Therefore the locus

C42 D ¹.ŒS�; ŒX�/ W S � Xº � �42 � V

has dimension 48 C 8 D 56. The image of �2 W C42 ! V has dimension at most 54
because the general cubic fourfold does not contain any surface belonging to �42. For
every ŒX� 2 �2.C42/ we have

dim.��12 .ŒX�// � dim.C42/ � dim.�2.C42// D 56 � dim.�2.C42// � 56 � 54 D 2:

Since h0.NS=X /� dimŒS�.�
�1
2 .ŒX�// for every ŒS� 2 ��12 .ŒX�/, where dimŒS�.�

�1
2 .ŒX�//

denotes the dimension of ��12 .ŒX�/ at the point ŒS�, to show that a general ŒX� 2 C42
contains a surface S42 it is sufficient to verify that h0.NS42=X / D 2 for a fixed S42 and
for a smooth X 2 jH 0.IS42

.3//j (see also [29, pp. 284–285] for a similar argument). We
verified this via Macaulay2 in an explicit example and we can conclude that a general
ŒX� 2 C42 contains a surface S42 as above.
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Since at each step of the algorithm summarized in Remark 5.8 we need to introduce
only new independent variables, we deduce that the family �42 is unirational. In other
words, our construction yields an explicit dominant rational map PN Ü �42. As an
immediate consequence of this and of Theorem 5.9, we have the following:

Corollary 5.10. The irreducible divisor C42 is unirational.

Remark 5.11. A different description of the divisor C42 was given in [24] as the locus
of cubic fourfolds containing a rational scroll of degree 9 with eight nodes. From this
Lai deduces that C42 is uniruled. This has been substantially refined in [9, Theorem 1.1],
where the authors prove that the universal K3 surface of genus 22 is unirational. This
implies the unirationality of the 19-dimensional moduli space F22 of polarized K3 sur-
faces of genus 22 and hence the unirationality of C42 by a result of Hassett (see for
example [16, Corollary 25]).

5.4. Rationality of cubics fourfolds in C42

The new description of the general cubic fourfolds in C42 as those containing a general
ŒS42� 2 �42 allows us to deduce the rationality of a general element of C42 and then, by
applying [22, Theorem 1], of all cubics in C42. In the next subsection we shall also put in
evidence, via the trisecant flop, the birational connection between a general pair .X; S42/
with S42 � X and its associated K3 surface of degree 42 and of genus 22.

Theorem 5.12. Every cubic fourfold in C42 is rational.

Proof. Since we have given an algorithm for computing the general surface S42 � P5

of the family �42 (see Remark 5.8), we can explicitly construct it using Macaulay2 and
study its geometrical properties. So let ' W P5 Ü Z � P8 be the rational map defined
by the linear system jH 0.IS42

.3//j of cubic hypersurfaces through a general surface
S42 � P5 of the family �42. One can calculate that the map ' is birational onto its
image Z � P8, which has degree 14, sectional genus 15 and ideal generated by seven
cubic forms. Through a general point q D '.p/ there pass 17 lines contained inZ, whose
preimages via ' provide nine secant lines to S42 through p, seven 5-secant conics to S42
through p and one 8-secant twisted cubic to S42 through p. Hence S42 admits a congru-
ence of 8-secant twisted cubics. Once we have determined the congruence we also have
another way of detecting it. Indeed, the linear system jH 0.I3S42

.8//j of octic hypersur-
faces with triple points along S42 defines a dominant rational map � W P5 Ü W � P7

onto a smooth linear sectionW of G.1; 4/ � P9. The general fibre of � is a twisted cubic
8-secant to S42 so that the restriction of � to a general cubic fourfold X through S42
induces a birational map �jX WX ÜW . Since a general cubic fourfold in jH 0.IS42

.3//j

through a general surface in �42 is rational, we conclude that every cubic fourfold of dis-
criminant 42 is rational by the main result in [22]. We refer to Section 6.2 for more details
on the above calculations.
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5.5. Birational model of the associated K3 surface of degree 42 and genus 22 via the
trisecant flop

A general surface S42 � P5 satisfies Assumption 1 in Section 2.2 and it has the expected
trisecant behaviour (see the end of Remark 5.7). By Theorem 2.6 the map � restricted to
a general cubicX � P5 through S42 determines a trisecant flop � WX 0 D BlS42

X ÜW 0

with W 0 a smooth fourfold. By Theorems 5.12 and 2.10, the congruence of 8-secant
twisted cubics to S42 induces a birational morphism � W W 0 ! W , which is the blow-
up of a surface B � W � P7.

By studying the birational map � W X Ü W (see Section 6.2), we find that B �
W � P7 is a smooth surface of degree 21 and sectional genus 18. Then B coincides with
its support U , which is thus a smooth surface of degree 21 and sectional genus 18 with
pg.U / D 1 and q.U / D 0. We now apply the geometric method developed in Section 4
to deduce that U is the blow-up of a K3 surface at nine distinct points and to describe the
linear system giving the embedding.

Consider two surfaces Uj � W , j D 1; 2, associated via � to two general Xj ’s
through S42. The one-dimensional component C of U1 \ U2 is a smooth curve of
degree 13, of arithmetic genus �8 with nine irreducible components (a general pro-
jection of C to P3 allows a quick verification of all these properties), implying that
C D C1 [ � � � [ C9 is the disjoint union of nine smooth rational curves. More pre-
cisely, the curve C � P7 consists of five distinct lines, say C1; : : : ; C5, and of four
conics C6; : : : ; C9 (see Section 6.2 and code_section_6.m2). Since h1.NC=Uj

/ D 0,
the Ci ’s are .�1/-curves on Uj for every i D 1; : : : ; 9 and for j D 1; 2 by Lemma 4.3. Let
U D U1 and letH � U be a hyperplane section. SinceH �KU D �H 2 C 2g.H/� 2D

�21C 36� 2D 13DH �C we deduce from Lemma 4.3 the existence of the contraction
� W U ! U 0 of the Ci ’s to nine distinct points p1; : : : ; p9 on a smooth K3 surface U 0.
The divisor H 0 D ��.H/ � U

0 is ample and such that .H 0/2 D 21 C 16 C 5 D 42,
g.H 0/ D 18C 4 D 22, proving that U 0 is a K3 surface of degree 42 and genus 22. For
a general X through S42 we find that U 0 is a K3 surface of degree 42 and genus 22 with
rk.Pic.U 0// D 1 (one can argue as at the end of Section 3.1 or remark that U 0 necessarily
has 19 moduli equal to the moduli of a general X 2 C42) so that jH 0j gives an embedding
U 0 � P22. The linear system jH j on U corresponds to the hyperplane sections of U 0

passing through p1; : : : ; p5 and having a point of multiplicity at least 2 at p6; : : : ; p9. In
particular, we see that these points do not impose independent conditions on hyperplane
sections of U 0 � P22.

By considering the map associated to the linear system jH CC1C � � � CC5C 2.C6C
� � � C C9/j on U , we construct its image U 0 � P22, which is thus a general K3 surface of
degree 42 and genus 22 (see code_section_6.m2). From this one deduces an alternative
proof of one of the main results in [9], according to which the moduli space of polarized
K3 surfaces of degree 42 and genus 22 is unirational; see also [42].
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6. Explicit examples of trisecant flops in Macaulay2

We mostly used the computer algebra system Macaulay2 [13] with the packages Cremona
[40] and SpecialFanoFourfolds [39] to study surfaces in P5 admitting congruences of
.3e � 1/-secant curves of degree e, the rational maps given by hypersurfaces of degree
3e � 1 having points of multiplicity e along these surfaces and also the lines contained in
the images of P5 via the linear system of cubics through these surfaces. We refer to the
documentations of these two packages for technical computational details. In particular,
the first one provides tools for working with rational maps, such as determining the inverse
of a birational map and computing fibres

The validity of these computations relies on the fact that the irreducible compo-
nents �d of the Hilbert schemes considered here are explicitly unirational. Therefore,
by introducing a finite number of free parameters, one can explicitly construct the generic
surface in �d as a function of the specified parameters and adding more parameters one
can also take the generic point of P5. Then one can, for instance, compute the generic
fibre of the map defined by the cubics through the generic ŒSd � 2 �d , which will depend
on all these parameters. In practice this is far beyond what computers can do today. Any-
way, the answer we get is equivalent to the one obtained on the original field via a generic
specialization of the parameters and, above all, the generic specialization commutes with
this type of computation. So, using a common computer one can get an experimental
proof that a certain property holds or not for the generic ŒSd �. In the affirmative case, one
can try to apply some semicontinuity arguments to get a rigorous proof.

6.1. Rationality of cubic fourfolds in C38

Here, we consider a specific example related to Section 3.1 (row (iii) of Table 1).
In the following code, we produce a surface S D S38 � P5 obtained as the image

of P2 by the linear system of plane curves of degree 10 having ten randomly chosen triple
points. We work over the finite field K D F10000019 for speed reasons.

Macaulay2, version 1.19
i1 : needsPackage "SpecialFanoFourfolds"; -- v2.5
i2 : K = ZZ/10000019;
i3 : S = surface({10,0,0,10},K);
o3 : ProjectiveVariety, surface in PP^5

We now compute the rational map � defined by the linear system of quintic hypersur-
faces of P5 which are singular along S .3 From the information obtained by its projective
degrees we deduce that � is a dominant rational map onto P4 with generic fibre of dimen-
sion 1 and degree 2 and with base locus of dimension 3 and degree 52 � 19 D 6.

3More generally, the command rationalMap(S,d,e) returns the rational map defined by a
basis of the linear system jH0.Ie

S
.d//j of hypersurfaces of degree d having points of multiplicity

e along S .

https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Cremona/html/index.html
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/SpecialFanoFourfolds/html/index.html
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i4 : mu = rationalMap(S,5,2);
o4 : RationalMap (rational map from PP^5 to PP^4)
i5 : projectiveDegrees mu
o5 = {1, 5, 19, 13, 2, 0}

Next we compute a special random fibre F of the map �.

i6 : p = point source mu; -- a random point on P^5
i7 : F = mu^* mu p;

It is easy to verify directly that F is an irreducible 5-secant conic to S passing through p.
Letting ' W P5 Ü P9 be the rational map defined by the linear system of cubics
through S , one can also see that F coincides with the pull-back '�1.L/ of the unique
line L � '.P5/ � P9 passing through '.p/ that is not the image of a secant line to S
passing through p (see [34, Section 5] for the details of this computation). Finally, the
following lines of code tell us that the restriction �0 of � to a randomly chosen cubic
fourfold X containing S is a birational map whose inverse map is defined by forms of
degree 9 and whose base locus scheme has dimension 2 and degree 92 � 27 D 54.

i8 : X = random(3,S);
o8 : ProjectiveVariety, hypersurface in PP^5
i9 : mu’ = mu|X;
o9 : RationalMap (rational map from X to PP^4)
i10 : projectiveDegrees mu’
o10 = {3, 15, 27, 9, 1}

The smooth surface U � P4 of degree 12 and sectional genus 14 determining the inverse
map of �0 W X Ü P4 can be calculated as the non-reduced part of the base locus scheme
of �0�1. Alternatively, one can use the method described in the next subsection. The full
code to determine U , the exceptional curves on U , and the map U Ü U 0 � P20 onto
the K3 surface U 0 � P20 of degree 38 and genus 20 is included in code_section_6.m2.

6.2. Rationality of cubic fourfolds in C42

Here, we perform similar calculations as above, but considering a specific example related
to Section 5.3 (row (0) of Table 1).

Using the algorithm given in Remark 5.8, one can calculate the homogeneous ideal
of a randomly chosen surface S D S42 in the 48-dimensional family �42 constructed in
Proposition 5.6. This has been implemented in the Macaulay2 package SpecialFanoFour-
folds. So, to get the ideal of such a surface S and of a randomly chosen (smooth) cubic
fourfold X containing it, it is enough to run the following code:

i11 : X = specialCubicFourfold("general cubic 4-fold of discriminant 42",K);
o11 : ProjectiveVariety, cubic fourfold containing a surface

of degree 9 and sectional genus 2
i12 : S = ideal surface X;

The following is one of the ways to compute relatively quickly the rational map � defined
by the linear system of octic hypersurfaces of P5 having triple points along S . This cal-
culation takes about one minute.
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i13 : mu = rationalMap(S^3 : first gens ring S,8);
o13 : RationalMap (rational map from PP^5 to PP^7)

Now, with the same code, we compute a special random fibre F of the map �.

i14 : p = point source mu;
i15 : F = mu^* mu p;

Here is a practical way to infer that F is a twisted cubic curve which is 8-secant to S .

i16 : ? F
o16 = smooth cubic curve of genus 0 in PP^5 cut out by 5 hypersurfaces

of degrees (1,1,2,2,2)
i17 : ? (F + S)
o17 = 0-dimensional subscheme of degree 8 in PP^5

The code above also tells us that the (closure of the) image of � is a subvariety W � P7

of dimension 4. To get the equations of W , one can use the command image mu, but this
takes a while. A faster way is to calculate the scheme of quadrics containingW , as shown
below. Then, since one verifies easily that it is a smooth connected fourfold, we deduce
that W coincides with this fourfold.

i18 : W = image(2,mu);

The surface U �W � P7 determining the inverse map of the restriction of � to the cubic
fourfold X can be found without computing the inverse map. Indeed, the intersection
ofW with a general cubic hypersurface throughU is given by the image�.X \X 0/�W ,
whereX 0 is a general cubic hypersurface through S . For efficiency, we suggest calculating
�.X \X 0/ by interpolating the images via � of several points on X \X 0. The following
is a possible implementation. It gives the homogeneous ideal of U � P7 and takes about
5 minutes.

i19 : U = trim sum(8,j->(X’ = random(3,surface X);
ideal take((intersect apply(90,i->mu ideal point(X * X’)))_*,6)));

The exceptional curves in the surface U can be determined by taking another randomly
chosen cubic fourfold QX through S (for instance, as in line i8), and then by calculating
the corresponding surface QU (for instance, by re-executing the line i19). One expects that
the exceptional curves in QU are the same as those in U (see Section 4), so one tries to
determine them as the top-dimensional components of the intersection U \ QU (this can
be done quickly after taking generic projections in P3 and P2). In the cases under con-
sideration, the one-dimensional components of this intersection are nine disjoint curves:
five lines C1; : : : ; C5 and four conics C6; : : : ; C9, which are all the .�1/-curves on U
(see also Section 5.5). Having determined these curves, one can also calculate the map
f WU !U 0 � P22 onto the K3 surface U 0 � P22 of degree 42 and genus 22, given by the
linear system jH C

P5
iD1 Ci C 2

P4
iD1 C5Ci j, where H denotes the hyperplane section

of U . For the sake of brevity, the full code to get the map f and the equations of its image
is omitted here and it is included in code_section_6.m2 together with all the lines of
code given in this section. Note also that this kind of calculations can be automated using
the function associatedK3surface provided by the package SpecialFanoFourfolds.

https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.html
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6.3. Other worked out examples of trisecant flops

We provide a Macaulay2 package named TrisecantFlops,4 which produces explicit ex-
amples of trisecant flops in accordance to Table 1 in the next section. This package can be
downloaded automatically from SpecialFanoFourfolds. So, by typing trisecantFlop i
(where i is an integer between 0 and 17) will yield a birational map � W X Ü W as in
the i -th row of Table 1. For instance, we now consider the third example:

i20 : mu = trisecantFlop 3;
o20 : RationalMap (birational map from cubic fourfold containing

a surface of degree 10 and sectional genus 6 to PP^4)
i21 : projectiveDegrees inverse mu
o21 = {1, 9, 27, 15, 3}

We can obtain the smooth surface S � P5 of degree 10 and sectional genus 6 by giving
the following command:

i22 : S = surface source mu;
o22 : ProjectiveVariety, surface in PP^5
i23 : (degree S, sectionalGenus S)
o23 = (10, 6)

Analogously, the non-minimal K3 surface U � P4 is obtained as follows:

i24 : U = surface target mu;
o24 : ProjectiveVariety, surface in PP^4
i25 : (degree U, sectionalGenus U)
o25 = (12, 14)

Finally, the following command yields an extension to P5 of the map � W X ÜW D P4

whose general fibre is a 5-secant conic to the surface S :

i26 : extend mu;
o26 : RationalMap (dominant rational map from PP^5 to PP^4)

7. Summary table of examples of trisecant flops

We provide in Table 1 a list of 18 examples of maps � W X Ü W as in diagram (0.1),
where X is a cubic fourfold in Cd which contains a surface S � P5 admitting a congru-
ence of .3e � 1/-secant rational curves of degree e. There are some different behaviours:

� ŒX� 2 Cd is general except in (xi) and (xii);

� S � P5 is cut out by cubics except in (xii), (xiii), (xiv), and (xvii);

� the map X Ü Y defined by the cubics through S is birational except in (xv);

� the cubics through S satisfy condition K3 except in (0), (v), (viii), (x)–(xvii).

4It is available at https://github.com/giovannistagliano/TrisecantFlops.

https://github.com/giovannistagliano/TrisecantFlops
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In Table 2, we give some additional information on the examples of surfaces S �X � P5

considered in Table 1. Most of this was achieved using the functions detectCongruence
and parameterCount from the package SpecialFanoFourfolds (see also Section 6.3).

When the corresponding surfaceU �W is smooth, the proof that it is a (non-minimal)
K3 surfaces follows the paths used in Section 4 (see also Section 5.5) by determining
explicitly the exceptional curves on U . Once these exceptional curves are determined,
one finds the description of the linear system on U in terms of the hyperplane sections of
the K3 surface U 0. When U � W is singular, one first determines the exceptional curves
as above; then one takes a linear normalization to obtain a smooth surface and finally, if
necessary, one follows the previous path.
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