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Abstract. Let ZN be a Ginibre ensemble and let AN be a Hermitian random matrix indepen-
dent of ZN such that AN converges in distribution to a self-adjoint random variable x0 in a
W �-probability space .A ; �/. For each t > 0, the random matrix AN C

p
t ZN converges in �-

distribution to x0 C ct , where ct is a circular variable of variance t , freely independent of x0. We
use the Hamilton–Jacobi method to compute the Brown measure �t of x0 C ct . The Brown mea-
sure has a density that is constant along the vertical direction inside the support. The support of the
Brown measure of x0 C ct is related to the subordination function of the free additive convolution
of x0 C st , where st is a semicircular variable of variance t , freely independent of x0. Furthermore,
the push-forward of �t by a natural map is the law of x0 C st .

LetGN .t/ be the Brownian motion on the general linear group and let UN be a unitary random
matrix independent of GN .t/ such that UN converges in distribution to a unitary random variable
u in .A ; �/. The random matrix UNGN .t/ converges in �-distribution to ubt where bt is the free
multiplicative Brownian motion, freely independent of u. We compute the Brown measure �t of
ubt , extending the recent work by Driver–Hall–Kemp, which corresponds to the case u D I . The
measure has a density of the special form

1

r2
wt .�/

in polar coordinates in its support. The support of �t is related to the subordination function of
the free multiplicative convolution of uut where ut is the free unitary Brownian motion, freely
independent of u. The push-forward of �t by a natural map is the law of uut .

In the special case that u is Haar unitary, the Brown measure �t follows the annulus law. The
support of the Brown measure of ubt is an annulus with inner radius e�t=2 and outer radius et=2.
In its support, the density in polar coordinates is given by

1

2�t

1

r2
:
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1. Introduction

It is a classical theorem by Wigner [43] that the eigenvalue distribution of a Gaussian
unitary ensemble (GUE) GN converges to the semicircle law. An operator a 2 A , where
A is a tracial von Neumann algebra, is said to be a limit in �-distribution of a sequence
of N �N self-adjoint random matrices AN if, for any polynomial in two noncommuting
variables,

lim
N!1

1

N
E TrŒp.AN ; A�N /� D �Œp.a; a

�/�: (1.1)

In other words, the GUE has the limit in �-distribution as an operator having the semicircle
law as its spectral distribution. The operators in A are called random variables.

Voiculescu [39] discovered that free probability can be used to study the large-N limit
of eigenvalue distributions of XN CGN , where XN is a sequence of self-adjoint random
matrices independent of GN , or a sequence of deterministic matrices that has a limit in
distribution.

Biane proved that the limit in �-distribution of the unitary Brownian motion UN .t/
on the unitary group U.N/ is the free unitary Brownian motion in a tracial von Neumann
algebra [9]. If VN is a sequence of unitary random matrices independent of UN or a
sequence of deterministic unitary matrices that has a limit in �-distribution, then free
probability can also be used to study the limit of the eigenvalue distribution of VNUN .t/.
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Given a self-adjoint random variable a 2 A , the spectral distribution, or the law, of
a is a probability measure on R defined to be the trace of the projection-valued spectral
measure, whose existence is guaranteed by the spectral theorem. The law of a can be
identified and computed by the Cauchy transform

Ga.z/ D �..z � a/
�1/; z 2 CC: (1.2)

The spectral distribution of a unitary operator in A is a probability measure on the unit
circle T . When we consider nonnormal random variables, the spectral theorem is no
longer valid. Instead, we look at the Brown measure [16], which has been called the
spectral distribution measure of a not-necessarily-normal random variable. The Brown
measure of free random variables provides a natural candidate for the limit of the eigen-
value distribution of nonnormal random matrices.

In this article, we calculate the density formulas for the Brown measure of the free
circular Brownian motion with self-adjoint initial condition, as well as the free multi-
plicative Brownian motion with unitary initial condition. The latter extends the recent
work of Driver, Hall and Kemp [20] concerning the case of the free multiplicative Brow-
nian motion starting at the identity operator. (See also the expository paper [27], which
provides a gentle introduction to the PDE methods used in this paper.) Our result indicates
that the Brown measure of the free circular Brownian motion with self-adjoint initial
condition is closely related to the free semicircular Brownian motion with the same self-
adjoint initial condition. Similarly, the free multiplicative Brownian motion with unitary
initial condition is closely related to the free unitary Brownian motion with the same
unitary initial condition.

After the first version of this paper was posted on arXiv, there appeared subsequent
works using a similar strategy to compute the Brown measure of free Brownian motions
with nontrivial initial conditions. Demni and Hamdi [19] analyze the free unitary Brown-
ian motion with projection initial condition. Hall and the first author compute the Brown
measure of the imaginary multiple of free semicircular Brownian motion with bounded
self-adjoint initial condition in [28] and the Brown measure of the three-parameter free
multiplicative Brownian motion with unitary initial condition in [29]. The second author
[46] extends the main results for additive Brownian motions to all elliptic operators using
a different approach based on free probability techniques.

1.1. Additive case

One of the fundamental nonnormal random matrix models is the Ginibre ensemble ZN ,
which is a sequence of N � N random matrices with i.i.d. complex Gaussian entries,
with variance 1=N . The limiting empirical eigenvalue distribution, which is a normalized
counting measure 1

N

PN
jD1 ı�j of the eigenvalues ¹�j º of ZN , converges to the uniform

probability measure on the unit disk [23]. The reader is referred to [15] for a survey on the
circular law. The limit random variable, in the sense of �-distribution, is called the circular
operator [38]. If we consider the process ZN .t/ of random matrices with i.i.d. entries of
complex Brownian motion at time t=N , the limiting empirical eigenvalue distribution
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at time t is the uniform probability measure on the disk of radius
p
t . The limit in �-

distribution of ZN .t/ is a “free stochastic process”, a one-parameter family of random
variables in A , which is called the free circular Brownian motion ct . At each t > 0,
ZN .t/ has the same distribution as

p
t ZN , and ct has the same distribution as

p
t c1.

The standard free circular Brownian motion starts with the condition c0 D 0. We
consider a more general free stochastic process: one that starts at an arbitrary random
variable x0 2 A and has the same increments as the standard free circular Brownian
motion. Such a process has the form x0 C ct where x0 and ct are freely independent.

The circular operator ct is an R-diagonal operator [36, Lecture 15]. Given a variable
x0 2A which may not be normal and r 2A which isR-diagonal and freely independent
of x0, Biane and Lehner [13, Section 3] studied the Brown measure of x0 C r . They
obtained an explicit density formula for particular x0 and r . In Section 5 of the same
paper, they studied, more specifically, the Brown measure of x0 C ct where x0 2 A may
not be normal; the density at � 62 �.x0/ is given by

1

�
@ N�

�Z t

t�

@�vs.�/

s2
ds �

vt�.�/
2

t2
�

@�t�

�
where

vs.�/ D inf
²
v � 0 W

Z
R

d�j��x0j.x/

x2 C v2
�
1

s

³
and t� D inf ¹t W vt .�/ > 0º. It is mentioned in their paper that vs.�/ and t� are related to
the subordination function of Qx0 C st with respect to Qx0, where Qx0 is the symmetrization
of j� � x0j, and st is the free semicircular Brownian motion, the real part of

p
2 ct . The

quantities are not very explicit; there is an integration in the time variable. Furthermore,
the formula is only valid outside the spectrum of x0.

Our method shows that the density formula for the special case when x0 is self-
adjoint can be computed more explicitly. Our results also illustrate unexpected connec-
tions between the Brown measure of x0 C ct and the subordination function for the free
convolution of x0 with st . In the rest of the paper we suppose x0 is self-adjoint. Denote
by � the spectral distribution of x0. In this case, the following function vt defined on R
is fundamental in our analysis:

vt .a/ D inf
²
b � 0 W

Z
R

d�.x/

.x � a/2 C b2
�
1

t

³
: (1.3)

This definition of vt also coincides with the definition of Biane and Lehner; the measure
�j��x0j is the push-forward of �x0 by the map x 7! j� � xj, for each �, because x0 is
self-adjoint.

Our main result in Section 3 gives an explicit description of the Brown measure of
x0 C ct , using the Hamilton–Jacobi method used in the recent paper [20]. In this paper,
the Brown measure of x0 C ct is computed as an absolutely continuous measure on R2.
The density is computed explicitly; the density is not given as an integral over the time
parameter.

The operator x0C ct is the limit in �-distribution (in the sense of (1.1)) of the random
matrix model XN C ZN .t/, by [39, Theorem 2.2], where XN is an N � N self-adjoint
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deterministic matrix or random matrix classically independent ofZN , with x0 in the limit
ofXN in �-distribution. On the level of Brown measure convergence, Śniady [37] showed
that the empirical eigenvalue distribution ofXN CZN .t/ almost surely converges weakly
to the Brown measure of x0 C ct , without computing the Brown measure of x0 C ct
explicitly. (Apply [37, Theorem 6] by taking the not-necessarily-normal random matrix
A.N/ as the XN here.) Consequently, the result in this paper gives a formula for the weak
limit of the empirical eigenvalue distribution of XN CZN .t/.

In physics literature, Burda et al. [17,18] studied the limiting eigenvalue distribution of
the sum of the Ginibre ensembleZN and a deterministic matrixAN (which is not assumed
to be normal) using PDE methods. The formal large-N limit of the PDE obtained in their
work [18, (31)] is the same as the PDE we obtain for the additive case. They transformed
the PDE into one that can be solved using the method of characteristics, whereas we
use the Hamilton–Jacobi method to solve the PDE in this paper. In [18, Section 6.2], they
computed explicitly the limiting eigenvalue distribution ofAN CZN when the eigenvalue
distribution of AN is the Bernoulli distribution. It can be checked that the domain where
the limiting eigenvalue distribution of AN C ZN is nonzero agrees with our result. The
density of the limiting eigenvalue distribution computed in their paper also agrees with the
Brown measure density computed in our paper, after correcting minor algebraic errors.
We note, however, that [17, 18] did not compute the limiting eigenvalue distribution of
AN C ZN for a general self-adjoint matrix AN , which is the main purpose of Section 3
of our paper.

Let Gx0.z/ be the Cauchy transform of x0 as defined in (1.2) and let

Ht .z/ D z C tGx0.z/; z 2 C n �.x0/:

It is known [10] that Ht maps the curves ¹.a;˙vt .a// W a 2 Rº, which are analytic at the
points where vt .a/ > 0, to R. The restriction ofHt to the set ¹aC ib 2 CC W b > vt .a/º
is the inverse of an analytic self-map Ft W CC ! CC on the upper half-plane such that

Gx0Cst .z/ D Gx0.Ft .z//

where st is a semicircular variable with variance t [10]. The map Ft is the subordination
function with respect to x0 and allows one to compute Gx0Cst from Gx0 . The following
theorem summarizes the results proved in Theorems 3.13, 3.14 and Proposition 3.16.

Theorem 1.1. The Brown measure �t of x0 C ct has the following properties.

(1) The support of �t is the closure of an open set. More precisely, supp �t D ƒt where

ƒt D ¹aC ib 2 C W jbj < vt .a/º;

where vt is defined in (1.3).

(2) The measure �t is absolutely continuous and its density is constant in the vertical
direction inside the support. That is, the density wt has the property wt .a C ib/ D
wt .a/ in the support of �t . Moreover,

wt .a/ �
1

�t
;

and the inequality is strict unless x0 is a scalar.
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(3) Define ‰t .aC ib/ D Ht .aC ivt .a// on supp �t agreeing with Ht on the boundary
of supp �t and constant along the vertical segments .the image of ‰ only depends
on a/. Then the push-forward of �t by ‰ is the law of x0 C st .

(4) The preceding properties uniquely define �t . That is, �t is the unique measure whose
support agrees with supp �t , the density is constant along the vertical segments and
the push-forward under ‰ is the distribution of x0 C st . This is because ‰ restricted
to R is a homeomorphism [10] and the density is constant along the vertical direction.

The support of the Brown measure is symmetric about the real line. Figure 1
shows a random matrix simulation to the Brown measure of x0 C ct where x0 has law
1
4
ı�0:8 C

3
4
ı0:8 and t D 1.

-1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

Fig. 1. Matrix simulation of eigenvalues for x0 C c1, where x0 has distribution 1
4 ı�0:8 C

3
4 ı0:8.

The graphs of vt .a/ (blue dashed) and �vt .a/ (red) are superimposed.

1.2. Multiplicative case

The process ZN .t/ can be viewed as a Brownian motion on the Lie algebra gl.N;C/ of
the general linear group GL.N;C/, under the Hilbert–Schmidt inner product such that the
real and imaginary parts are orthogonal. The Brownian motion on GL.N;C/ is defined to
be the solution of the matrix-valued stochastic differential equation

dGN .t/ D GN .t/ dZN .t/; GN .0/ D IN :

Kemp [32] proved that the limit ofGN .t/ in �-distribution is the free stochastic process bt
that can be obtained by solving the free stochastic differential equation (see, for example,
[14, 33])

dbt D bt dct ; b0 D I:

The process bt , starting at the identity I , is called the free multiplicative Brownian motion.
Hall and Kemp [30] showed that the Brown measure of bt is supported in a certain
compact set in C. Later the Brown measure of bt was computed by Driver, Hall and
Kemp [20].

In this paper, we consider the free multiplicative Brownian motion starting at a unitary
random variable u; such a process has the form ubt , where u is freely independent of bt .
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Before we state the results on the Brown measure of ubt , we need to introduce the free
unitary Brownian motion ut , the multiplicative analogue of the semicircular Brownian
motion. The free unitary Brownian motion is the solution of the free stochastic differential
equation

dut D iut dst �
1
2
ut dt; u0 D I:

The law �t of ut was computed by Biane [9]. The law of the free unitary Brownian motion
with an arbitrary unitary initial condition was computed by the second author [45].

Suppose that a 2 A is a unitary random variable with spectral distribution, or law, �.
Then � can be identified by the moment generating function

 a.z/ D

Z
T

�z

1 � �z
d�.�/; z 2 D:

Now, we consider the random variable ubt where u is any unitary random variable freely
independent of bt . Let N� be the spectral distribution of u� and set

ˆt .z/ D z exp
�
t

2

Z
T

1C �z

1 � �z
d N�.�/

�
; z 2 C n �.u/:

Consider the function rt W .��; ��! .0; 1� defined by

rt .�/ D sup
²
0 < r < 1 W

r2 � 1

2 log r

Z �

��

1

j1 � rei.�Cx/j2
d N�.eix/ <

1

t

³
: (1.4)

Because limr!0
r2�1
2 log r

R �
��

1

j1�rei.�Cx/j2
d N�.eix/ D 0, it follows that the set over which

the supremum is taken is nonempty. It is known [45] that the map ˆt maps the curve
¹rt .�/e

i� W � 2 .��; ��º, which is analytic whenever rt .�/ < 1, to the unit circle. The
restriction of ˆt to the set ¹z 2 D W jzj < rt .�/º is the inverse of the analytic self-map
!t W D ! D such that

 u�ut .z/ D  u�.!t .z//:

Analogous to the additive case, the map !t is the subordination function with respect
to u� and is of significance in the study of free probability. The regularity results of rt are
summarized in Proposition 2.9.

We establish the following results in Theorem 4.28 and Proposition 4.31.

Theorem 1.2. The Brown measure �t of ubt satisfies the following properties.

(1) The support of �t is the closure of an open set. More precisely, supp�t D �t , where

�t D ¹re
i�
W rt .�/ < r < 1=rt .�/º

where rt is defined in (1.4).

(2) The measure �t is absolutely continuous and, inside the support, its density in polar
coordinates has the form

Wt .r; �/ D
1

r2
wt .�/
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for some function wt depending on the argument only. That is, the density of �t
is inversely proportional to r2 along the radial direction, and the proportionality
constant depends only on the argument � . The Brown measure �t is invariant under
z 7! 1= Nz. Moreover,

wt .�/ <
1

�t
:

(3) For each � 2 supp�t , there exists a unique �� 2 D \ @.supp�t / such that �� and �
have the same argument mod 2� . Define �t .�/ D ˆt .�� / agreeing with ˆt on D \
@.supp�t /, constant along the radial segments. Then the push-forward of �t by �t
is the distribution of uut .

(4) The preceding properties uniquely define �t . That is, �t is the unique measure whose
support agrees with supp �t , the density has the form .1=r2/�.�/ in polar coor-
dinates and the push-forward under �t is the distribution of uut . This is because
�t restricted to D \ @.supp�t / is a homeomorphism [45] and the density of �t is
inversely proportional to r2 along the radial direction.

Denote a Haar unitary random variable by h; which means h is a unitary operator
whose spectral distribution is the Haar measure on the unit circle. In the special case
when u D h, the Brown measure of hbt is the annulus law. It is absolutely continuous,
supported in the annulusAt D ¹e�t=2 � jzj � et=2º, rotationally invariant, and the density
Wt .r; �/ is given by

Wt .r; �/ D
1

2�t

1

r2

on At . The density Wt is independent of � because the Brown measure is rotationally
invariant. We can also calculate the Brown measure of hbt using Haagerup–Larsen’s for-
mula for the Brown measures of R-diagonal operators [24]. Indeed, the random variable
hbt is R-diagonal [36, Proposition 15.8] and the Brown measure of hbt can be calculated
from the distribution of .b�t bt /

1=2 (see Appendix for details).
Figure 2 shows a random matrix simulation of the eigenvalue distribution of ub0:8

where u has distribution 1
3
ıei�=3 C

2
3
ıe4�i=5 . It should be noted that, in this multiplicative

case, it is an open problem to give a mathematical proof that even when the initial condi-
tion is the identity, the empirical eigenvalue distribution ofGN .t/ converges to the Brown
measure of bt .

The paper is organized as follows. Section 2 consists of some background and prelimi-
naries of free probability theory and the definition of the Brown measure. The distributions
of the sum of two self-adjoint free random variables and the product of two unitary free
random variables will be described using the subordination functions. In Section 3, we
compute the Brown measure of the random variable x0 C ct . The Brown measure is
closely related to the subordination function and the distribution of x0 C st . Section 4
is concerned with the Brown measure of the random variable ubt , for both cases when u
is and is not a Haar unitary, using the same Hamilton–Jacobi analysis but different initial
conditions from [20]. The support and the density of the Brown measure are again related
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Fig. 2. Matrix simulations of eigenvalues for ub0:8, where u has distribution 1
3 ıei�=3 C

2
3 ıe4�i=5 .

The curves rt .�/ei� (blue), 1
rt .�/

ei� (red), and the unit circle (black dashed) are superimposed.

to a subordination function; but the subordination function is the one for u�ut rather than
uut . The Brown measure of ubt is connected to the distribution of uut by a natural map.

2. Preliminaries

2.1. Free probability

A W �-probability space is a pair .A ; �/ where A is a finite von Neumann algebra and �
is a normal, faithful tracial state on A . The elements in A are called (noncommutative)
random variables.

Unital �-subalgebras A1; : : : ;An � A are said to be free or freely independent in the
sense of Voiculescu if, given any i1; : : : ; im 2 ¹1; : : : ; nº with ik 6D ikC1, and aij 2 Aij

satisfying �.aik /D 0 for all 1� k �m, we have �.ai1 � � �aim/D 0. The random variables
a1; : : : ; am are free or freely independent if the unital �-subalgebras generated by them
are free.

For any self-adjoint (resp. unitary) element a 2 A , the law or the distribution � of a
is a probability measure on R (resp. T ) such that whenever f is a bounded continuous
function on R (resp. T ), we have Z

f d� D �.f .a//:

For a measure � on the real line, the Cauchy transform of � is given by

G�.z/ WD

Z
R

1

z � x
d�.x/ D �..z � a/�1/; z 2 CC:
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The Cauchy transform G� maps the upper half-plane CC into the lower half-plane C�. It
satisfies the asymptotic property limy"C1 iyG�.iy/D�.R/. The reader is referred to [1]
for results about the Cauchy transform. The measure � can be recovered from its Cauchy
transform G� using the Stieltjes inversion formula, which expresses � as a weak limit:

d�.x/ D lim
y#0
�
1

�
ImG�.x C iy/ dx: (2.1)

The R-transform of � is defined by

R�.z/ D G
h�1i
� .z/ �

1

z
(2.2)

whereGh�1i� means the inverse function toG� in a truncated Stolz angle ¹z 2C W Imz >ˇ;
jRe zj < ˛ Im zº for some ˛; ˇ > 0.

For a measure � on the unit circle T , we consider the moment generating function on
the open unit disk D:

 �.z/ D

Z
T

�z

1 � �z
d�.�/ z 2 D:

The �-transform of � is defined as

��.z/ D
 �.z/

1C  �.z/
:

Then the measure � can be recovered using the Herglotz representation theorem, as a
weak limit

d�.e�i� / D lim
r"1

1

2�
Re
�
1C ��.re

i� /

1 � ��.rei� /

�
d�: (2.3)

When �0�.0/ ¤ 0 (which is equivalent to the condition that � has nonzero first moment),
the †-transform and S -transform of � are defined

†�.z/ D
�
h�1i
� .z/

z
and S�.z/ D †�

�
z

1C z

�
; (2.4)

where these functions are defined in a neighborhood of zero.

2.2. Free Brownian motions

In free probability, the semicircle law plays a similar role to the Gaussian distribution in
classical probability. The semicircle law �t with variance t is compactly supported in the
interval Œ�2

p
t ; 2
p
t � with density

d�t .x/ D
1

2�t

p

4t � x2:

Definition 2.1. (1) A free semicircular Brownian motion st in a W �-probability space
.A ; �/ is a weakly continuous free stochastic process .st /t�0 with free and stationary
semicircular increments.
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(2) A free circular Brownian motion ct has the form 1p
2
.st C is

0
t / where st and s0t are

two freely independent free semicircular Brownian motions.

In the unitary group U.N/, we can consider a Brownian motion Xt on the Lie algebra
gl.N /, after fixing an Ad-invariant inner product. Taking the exponential map gives us a
unitary Brownian motion. More precisely, the unitary Brownian motion Ut D Ut .N / can
be obtained by solving the Itô differential equation

dUt D iUt dXt �
1
2
Ut dt; U0 D I:

Definition 2.2. In free probability, the free unitary Brownian motion can be obtained by
solving the free Itô differential equation

dut D iut dst �
1
2
ut dt; u0 D I; (2.5)

where st is a free semicircular Brownian motion. The free multiplicative Brownian
motion bt is the solution of the free Itô stochastic differential equation

dbt D bt dct ; b0 D I: (2.6)

We note that the right increments of the free unitary Brownian motion ut are free. In
other words, for every 0 < t1 < t2 < � � � < tn in R, the elements

ut1 ; u
�1
t1
ut2 ; : : : ; u

�1
tn�1

utn

form a free family. Similarly, one can show that the process bt has free right increments.
These stochastic processes were introduced by Biane [9]. He proved that the large-N limit
in �-distribution of the unitary Brownian motionUt DUt .N / is the free unitary Brownian
motion, and conjectured that the large-N limit of the Brownian motion on GL.N;C/ is
the free multiplicative Brownian motion bt . Kemp [32] proved that bt is the limit in �-
distribution of the Brownian motion on GL.N;C/.

The connection between the Brownian motions on the Lie groups U.N/ and
GL.N;C/ is natural. The heat kernel function on GL.N;C/ is the analytic continua-
tion of that on U.N/ (see [26, 34] for instance). Consider now the free unitary Brownian
motion with initial condition uut where u is a unitary random variable freely independent
of .ut /t>0. The process uut is the solution of the free stochastic differential equation in
(2.5) with initial condition u. Similarly, the solution gt of the free stochastic differential
equation

dgt D gt dct ; g0 D u; (2.7)

has the form gt D ubt .

2.3. Free additive convolution

Our main results show that the Brown measure of the free circular Brownian motion
with self-adjoint initial condition has direct connections with the spectral distribution of
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the free additive Brownian motion with the same self-adjoint initial condition and some
related analytic functions. In this section, we review some relevant facts about the free
additive convolution to set up notation.

Suppose that self-adjoint random variables x; y 2 A are freely independent. It is
known that the distribution of x C y is determined by the distributions of x and y. The
free additive convolution of x and y is then defined to be the distribution of x C y. The
subordination relation in free convolution was first established by Voiculescu [40] for
free additive convolutions under some generic conditions, and was further extended by
Biane [12] to free multiplicative convolutions and again by Voiculescu [41] to a very gen-
eral setting (see also [5]). There exists a unique pair of analytic maps !1; !2 W CC! CC

such that

(1) Im!j .z/ � Im z for all z 2 CC, j D 1; 2;

(2) Gx.!1.z// D Gy.!2.z// D .!1.z/C !2.z/ � z/�1 for all z 2 CC;

(3) GxCy.z/ D Gx.!1.z// D Gy.!2.z// for all z 2 CC.

Point (3) tells us if we could compute (one of) the subordination functions !1 and !2,
we could compute the Cauchy transform of x C y in terms of the Cauchy transform
of x or y. The Cauchy transform of x C y then determines the law of x C y by (2.1).
Although the subordination functions, in general, cannot be computed explicitly, a lot of
regularity results can be deduced from the subordination relation (see [3, 8] or the survey
[42, Chapter 6]). Denote by � and � the spectral distributions of x and y respectively. The
free additive convolution of � and � is defined to be the spectral distribution of xC y and
is denoted as � � �. The R-transform (2.2) linearizes the free additive convolution in the
sense that R���.z/ D R�.z/CR�.z/ in the domain where all the three R-transforms
are defined.

In the special case when x is an arbitrary self-adjoint variable x0 with law �, and y is
the semicircular variable st , we denote !1 by Ft , the subordination function such that

Gx0Cst .z/ D Gx0.Ft .z//:

Biane [10] computed that

Ht .z/ D z C tGx0.z/; z 2 CC;

is the left inverse of Ft , that is, Ht .Ft .z// D z for z 2 CC.
Define the function

vt .a/ D inf
²
b > 0 W

Z
R

d�.x/

.a � x/2 C b2
�
1

t

³
; a 2 R: (2.8)

So, whenever vt .a/ > 0, vt .a/ is the unique positive b withZ
R

d�.x/

.a � x/2 C b2
D
1

t
: (2.9)

Therefore, vt satisfies the equality given in the following lemma.
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Lemma 2.3 ([10, Lemma 2]). If vt .a/ > 0, thenZ
R

d�.x/

.a � x/2 C vt .a/2
D
1

t
: (2.10)

The function vt is analytic at a whenever vt .a/ > 0. And Ht takes ¹a C ivt .a/ W
a 2 Rº to the real line, since, for each a 2 R, if there exists a b > 0 such that

ImHt .aC ib/ D b

�
1 � t

Z
R

1

.a � x/2 C b2
d�.x/

�
D 0;

then it is the unique b which satisfies (2.9).
We summarize Biane’s result as follows.

Proposition 2.4 ([10, Proposition 1]). The subordination function Ft satisfying

Gx0Cst .z/ D Gx0.Ft .z//

defined on CC is a one-to-one conformal mapping into CC. The inverse of Ft can be
computed explicitly as

Ht .z/ D z C tGx0.z/;

which is conformal from ¹a C ib 2 CC W b > vt .a/º to CC. The function Ht extends to
a homeomorphism from ¹aC ib 2 CC W b > vt .a/º to CC since the domain of Ht is a
Jordan domain.

When vt .a/ > 0, the point aC ivt .a/ 2 CC is mapped to the real line byHt . In fact,
the law of x0 C st at the point Ht .aC ivt .a// is computed and expressed in terms of vt .

Proposition 2.5 ([10, Corollary 3 and Lemma 5]). Let

 t .a/ D Ht .aC ivt .a// D aC t

Z
R

.a � x/ d�.x/

.a � x/2 C vt .a/2
:

Then  t W R! R is a homeomorphism and at the point  t .a/ the law �t of x0 C st has
the density given by

pt . t .a// D
vt .a/

�t
:

Moreover, the function  t satisfies

 0t .a/ �
2

t
vt .a/

2.1C v0t .a/
2/ > 0 for any a 2 Ut .

Proposition 2.6 ([10, Proposition 3]). The support of the law �t of x0 C st is the closure
of its interior, and the number of connected components of Ut is a nonincreasing function
of t .

2.4. Free multiplicative convolution

We will show that the Brown measure for the free multiplicative Brownian motion with
unitary initial condition can be described by certain analytic functions and their geometric
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properties related to the free unitary Brownian motion with the same unitary initial con-
dition. We review some basic facts about free multiplicative convolution in this section.

Let u; v 2 A be two freely independent unitary random variables, with spectral dis-
tributions � and � respectively. The distribution of uv is determined by � and � and
is denoted by � � �; it is called the free multiplicative convolution of � and �. The †-
transform (2.4) has the property that †���.z/ D †�.z/†�.z/ in the domain where all
these†-transforms are defined. We refer the readers to [4,7] for more details on free mul-
tiplicative convolution on T . The subordination relation for free additive convolution was
extended by Biane [12] to the multiplicative case.

Theorem 2.7 ([5,12]). Let .A ; �/ be a W �-probability space, and u; v 2 A two unitary
random variables that are freely independent of each other with distributions � and �,
respectively. If � is not the Haar measure on T and � has nonzero first moment, then
there exists a unique pair of analytic self-maps !1; !2 W D ! D such that

(1) for i D 1; 2, j!i .z/j � jzj for z 2 D; in particular, !i .0/ D 0;

(2) !1.z/!2.z/ D z����.z/ for all z 2 D;

(3) ��.!1.z// D ��.!2.z// D ����.z/;

The functions ��; �� are defined in Section 2.1.

As in the additive case, (3) tells us that if we could compute (one of) the subordination
functions !1 and !2, we could compute the function ���� of uv in terms of �u or �v .
The function �uv determines the law of uv by (2.3). The subordination functions are in
general impossible to compute explicitly in the multiplicative case.

When any one of unitaries u; v is a Haar unitary, one can check by the definition
of free independence that all moments of uv vanish and hence the distribution of uv is
always the Haar measure (uniform measure) on T . We denote by h a Haar unitary and
also by h the Haar measure on T . Note that �h.z/� 0. When uD h is a Haar unitary, the
subordination function of �h�� D �h with respect to �� D �h is not unique. However, we
shall see that there is a canonical choice in our study.

From now on, we fix a unitary operator u that is freely independent of the free unitary
Brownian motion ut ; we do not restrict u to be not a Haar unitary variable. The spectral
distribution of uut has been studied by the second author [44, 45]. This is the multiplica-
tive analogue of Biane’s work presented in Section 2.3. We shall now briefly review these
results. Let � be the distribution of u, and �t the distribution of ut . It is convenient for us
to use the subordination function with respect to u� but not u to describe our main results
(essentially due to how the measure is recovered by the �-transform as shown in (2.3)).
Then we define N� by

d N�.eix/ D d�.e�ix/;

which is the distribution of u�. When u is not a Haar unitary, denote by !t the subordi-
nation function of � N���t with respect to � N� as in Theorem 2.7. That is,

� N���t .z/ D � N�.!t .z//: (2.11)
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When u is a Haar unitary, the subordination function is chosen to be !t .z/D e�t=2z. The
subordination relation (2.11) also holds (since both sides are zero).

We now describe the left inverse function of !t (see [44, Lemma 3.4] and [45, Propo-
sition 2.3]). Set

†t; N�.z/ D exp
�
t

2

Z
T

1C �z

1 � �z
d N�.�/

�
D exp

�
t

2

Z
T

� C z

� � z
d�.�/

�
; z 2 C n �.u/:

(2.12)
It is known that †t; N�.z/ is the Lévy–Khinchin representation of a free infinitely divisible
distribution on the unit circle [7]. When u is a Haar unitary, (2.12) is reduced to

†t; Nh.z/ D †t;h.z/ � e
t=2:

By [45], the left inverse of !t is the function

ˆt; N�.z/ D z†t; N�.z/:

That is, ˆt; N�.!t .z// D z for all z 2 D.
Denote

�t; N� D ¹!t .z/ W z 2 Dº: (2.13)

The subordination function !t is a one-to-one conformal mapping from D onto �t; N� and
can be extended to a homeomorphism from D onto �t; N�. It is known [44, Lemma 3.2]
that

�t; N� D ¹z 2 D W jˆt; N�.z/j < 1º: (2.14)

We now describe the boundary of �t; N� and the density formula of � � �t . More
details can be found in Section 4.4. Following [45, p. 1361], we set

Ut; N� D

²
ei� 2 T W

Z �

��

1

j1 � ei.�Cx/j2
d N�.eix/ >

1

t

³
(2.15)

and U ct; N� D Œ��; �� n Ut; N�. We also define a function rt W Œ��; ��! .0; 1� by

rt .�/ D sup
²
0 < r < 1 W

r2 � 1

2 log r

Z �

��

1

j1 � rei.�Cx/j2
d N�.eix/ <

1

t

³
: (2.16)

Indeed, whenever rt .�/ < 1, rt .�/ is the unique r 2 .0; 1/ such that

r2 � 1

2 log r

Z �

��

1

j1 � rei.�Cx/j2
d N�.eix/ D

1

t
:

Remark 2.8. We can prove that the function rt is analytic when 0 < rt .�/ < 1 by the
implicit function theorem applied to the function F.r; �/ D log jˆt; N�.rei� /j. For each
fixed � such that 0 < rt .�/ < 1, rt .�/ is the unique solution in the unit disk such that
F.rt .�/; �/ D 0. By [45, p. 1360], we can write

log jˆt; N�.rei� /j D .log r/ht .r; �/
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for some function ht such that ht .rt .�/; 0/ D 0 and @ht=@r < 0 for all r < 1. (We will
revisit this factorization of log jˆt; N�.rei� /j in Section 4.4.) Then we can compute

@

@r

ˇ̌̌̌
rDrt .�/

log jˆt; N�.rei� /j D
ht .rt .�/; �/

rt .�/
C .log rt .�//

@ht

@r

ˇ̌̌̌
rDrt .�/

> 0

since ht .rt .�/;�/D 0 and @ht=@r < 0. Now, it follows from the implicit function theorem
that rt is an analytic function in � .

The following theorem summarizes the regularity of rt .

Proposition 2.9 ([45]). The function rt defined in (2.16) is continuous everywhere and
analytic at � whenever rt .�/ < 1. The sets �t; N� and @�t; N� can be characterized by the
function rt .�/ as follows:

(1) �t; N� D ¹rei� W 0 � r < rt .�/; � 2 Œ��; ��º.

(2) @�t; N� D ¹rt .�/ei� W � 2 Œ��; ��º and @�t; N� is a continuous closed curve which
encloses the origin. For � 2 Ut; N�, the value rt .�/ is the unique solution r 2 .0; 1/ of
the equation

r2 � 1

2 log r

Z �

��

1

j1 � rei.�Cx/j2
d N�.eix/ D

1

t
:

(3) The map ˆt; N�.rt .�/ei� / 7! rt .�/e
i� is a homeomorphism from T onto @�t; N�.

Proof. That rt is continuous follows from [45, Proposition 3.7]. The analyticity of rt
when rt .�/ < 1 follows from Remark 2.8.

Point (1) is [45, Theorem 3.2(1)]. The displayed equation in (2) is just Remark 2.8.
That @�t; N� D ¹rt .�/ei� W � 2 Œ��; ��º follows from [45, Corollary 3.3] since ˆt; N� is
the left inverse of !t (the function !t is called �t in [45]). The boundary curve @�t; N�
encloses the origin because we always have rt .�/ > 0. Point (3) also follows from [45,
Proposition 3.7]; by [45, Proposition 3.7] we know that the maps � 7! rt .�/e

i� and ei� 7!
ˆt; N�.rt .�/e

i� / are homeomorphisms.

Remark 2.10. The paper [45] did not include the Haar unitary case. However, when u is
a Haar unitary, the above description for the boundary set also holds. Indeed, in this case
�t; Nh is the disk centered at the origin with radius e�t=2. In fact, one can verify that, for
any 0 < r < 1,

r2 � 1

2 log r

Z �

��

1

j1 � rei.�Cx/j2
dh.eix/ D

1

2�

r2 � 1

2 log r

Z �

��

1

j1 � reixj2
dx D �

1

2 log r
:

Hence rt .�/ D e�t=2 for all � in this case by the definition (2.16), and the results in
Proposition 2.9 are also valid.

Being the inverse of !t , the restriction of the map ˆt; N� to �t; N� is a conformal map
and can be extended to a homeomorphism of �t; N� onto D. We can write

arg
�
ˆt; N�.rt .�/e

i� /
�
D � C t

Z �

��

rt .�/ sin.� C x/
j1 � rt .�/ei.�Cx/j2

d N�.eix/:
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We can now obtain the following result, which is a slight modification of [45, Theo-
rem 3.8].

Theorem 2.11. Let �t be the free multiplicative convolution of � and �t , the spectral
measure of uut . Then �t has a density pt with respect to the Haar measure given by

pt .ˆt; N�.rt .�/e
i� // D �

log rt .�/
�t

: (2.17)

Proof. When u is a Haar unitary, rt .�/ D e�t=2 for all � . The formula (2.17) is reduced
to the Haar measure on the unit circle T .

Next, consider u that is not a Haar unitary. Let qt be the density of u�ut . Directly
applying [45, Theorem 3.8] (in which u played the role of u� here) gives

qt .ˆt; N�.rt .�/ei� // D �
log rt .�/
�t

:

The spectral distribution �t of ut is symmetric about the x-axis; hence .uut /� D u�t u
�

has the same distribution as u�u�t and u�ut in the tracial W �-probability space .A ; �/.
We then have

pt .ˆt; N�.rt .�/e
i� // D qt .ˆt; N�.rt .�/ei� // D �

log rt .�/
�t

;

giving the desired result.

Proposition 2.12 ([45, Corollary 3.9]). The support of the law �t of uut is the closure of
its interior, and the number of connected components of Ut;� is a nonincreasing function
of t .

2.5. The Brown measure

If x 2 A is a normal random variable, then there exists a spectral measure Ex such that

x D

Z
�dEx.�/;

by the spectral theorem. The law �x of x is then computed as

�x.A/ D �.Ex.A//

for each Borel set A.
However, if x is not normal, then the spectral theorem does not apply. The Brown

measure was introduced by Brown [16] and is a natural candidate of the spectral distribu-
tion of a nonnormal operator.

Given x 2 A , the Fuglede–Kadison determinant [22] D.x/ of x is defined as

D.x/ D expŒ�.log jxj/� 2 Œ0;1/:
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Define a function Lx on C by

Lx.�/ D log D.x/ D �Œlog ja � �j�:

This function is subharmonic. For example, if A 2Mn.C/, then

LA.�/ D log jdet.A � �I/j1=n:

The Brown measure [16] of x is then defined to be the distributional Laplacian of Lx ,

�x D
1

2�
�Lx :

In this paper, we compute the Brown measures using the following strategy. We first
regularize the function Lx by looking at

� 7! �Œlog..� � x/�.� � x/C "/�

for " > 0. For any " > 0, the above quantity is always well-defined as a real number. We
then take the limit as " # 0 and attempt to take the Laplacian. In the cases we consider, the
function Lx is indeed analytic on an open set to which the Brown measure of x gives full
measure. The Brown measure of x is then the 1=.2�/ multiple of the ordinary Laplacian
of Lx ; that is,

d�x.�/ D
1

4�
�� lim

"#0
�Œlog..� � x/�.� � x/C "/� d2� (2.18)

where d2� denotes the Lebesgue measure on R2. See [35, Chapter 11] for more details
and [25] for a discussion of unbounded operators.

In this paper, we compute the Brown measures of a sum or a product of two freely
independent random variables. The paper [6] studied the Brown measure of polynomials
of several free random variables using operator-valued free probability and lineariza-
tion [2]; it does not appear to be easy to apply their framework to get analytic results
in our case.

3. Free circular Brownian motion

Let .ct /t�0 be a free circular Brownian motion. We write xt D x0C ct and xt;�D �� xt ,
where � 2 C. Define

S.t; �; "/ D �Œlog.x�t;�xt;� C "/� (3.1)

for " > 0. When t D 0, since x0 is self-adjoint,

S.0; �; "/ D �Œlog..x0 � �/�.x0 � �/C "/�

can be written as an integral, instead of a trace,

S.0; �; "/ D

Z
R

log.jx � �j2 C "/ d�.x/

where � is the spectral distribution of x0.
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In order to compute the Brown measure of x0C ct , we need to compute the Laplacian
��S.t; �; 0/ of S.t; �; 0/ with respect to �, where

S.t; �; 0/ D lim
"#0

S.t; �; "/: (3.2)

In Section 3.1, we compute a first-order, nonlinear partial differential equation of
Hamilton–Jacobi type satisfied by S . We then solve a system of ODEs that depends on �
and the initial condition "0. We try to choose, for each �, an initial condition "0 such that

(1) the lifetime of the solution is t , and

(2) lims"t ".s/ D 0:

Then we use the solution of the Hamilton–Jacobi equation to compute S.t; �; 0/, which
is in terms of � and the initial condition "0, and compute the Laplacian ��S.t; �; 0/.

3.1. The Hamilton–Jacobi equation

In this section, we find a first-order, nonlinear partial differential equation of Hamilton–
Jacobi type satisfied by the function S defined in (3.1):

@S

@t
D "

�
@S

@"

�2
:

The variable " is positive.
We remark that this PDE corresponds to the formal large-N limit of the PDE com-

puted in [18, (27)] by Nowak et al. after identifying " with jwj2.

3.1.1. The PDE of S . We first compute the time-derivative of S , using free Itô calculus.
Free stochastic calculus was developed in the 1990s by Biane, Kümmerer, Speicher, and
many others; see for example [9, 14, 33].

Suppose that ft and ht are processes adapted to ct . The “stochastic differentials”
below involving these processes can be computed and simplified as follows (see [14,
Theorem 4.1.2]):

dct ft dc
�
t D dc

�
t ft dct D �.ft / dt;

dct ft dct D dc
�
t ft dc

�
t D 0;

dct dt D dc
�
t dt D 0;

�.ft dct ht / D �.ft dc
�
t ht / D 0:

(3.3)

We can use the free Itô product rule for processes a.1/t ; : : : ; a
.n/
t adapted to ct :

d.a
.1/
t � � � a

.n/
t / D

nX
jD1

.a
.1/
t � � � a

.j�1/
t / da

.j /
t .a

.jC1/
t � � � a

.n/
t /

C

X
1�j<k�n

.a
.1/
t � � � a

.j�1/
t / da

.j /
t .a

.jC1/
t � � � a

.k�1/
t / da

.k/
t .a

.kC1/
t � � � a

.n/
t /: (3.4)
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Lemma 3.1. The time-derivative of S satisfies

@S

@t
.t; �; "/ D "�Œ.x�t;�xt;� C "/

�1�� Œ.x�t;�xt;� C "/
�1�: (3.5)

Proof. Fix t � 0 and � 2 C. For any " with Re."/ > 0, the operator x�
t;�
xt;� C " is

invertible. We can express the function S.t; �; �/ defined in (3.1) as a power series of "
and hence it can be analytically continued to the right half-plane.

For each j"j> kx�
t;�
xt;�k, we can expand S.t;�; "/D �.log.x�

t;�
xt;�C "// into power

series

�.log.x�t;�xt;� C "// D log "C
1X
nD1

.�1/n�1

n"n
�Œ.x�t;�xt;�/

n�: (3.6)

If we apply (3.4) to d..x�
t;�
xt;�/

n/, we get

@

@t
�Œ.x�t;�xt;�/

n� D n

nX
jD1

�Œ.x�t;�xt;�/
j �� Œ.x�t;�xt;�/

n�j�1�:

Thus, using (3.6), we have

@S

@t
.t; �; "/ D "

�
1

"

1X
kD0

.�1/k

"k
�Œ.x�t;�xt;�/

k �

��
1

"

1X
lD0

.�1/l

"l
�Œ.x�t;�xt�/

l �

�
D "�Œ.x�t;�xt;� C "/

�1�� Œ.x�t;�xt;� C "/
�1�:

Since all the quantities in (3.5) are analytic in ", it indeed holds for all " in the right
half-plane; in particular, it holds for all " > 0.

Proposition 3.2. For each � 2 C, the function S.�; �; �/ satisfies the first-order nonlinear
partial differential equation

@S

@t
D "

�
@S

@"

�2
with initial condition

S.0; �; "/ D �.log..x0 � �/�.x0 � �/C "//:

The PDE does not depend on the derivative of the real or imaginary parts of �. The
variables for the PDE are only t and ".

Proof. Applying the fact [16, Lemma 1.1] that

@S

@"
D �Œ.x�t;�xt;� C "/

�1�

to (3.5) concludes the proof.

The equation in Proposition 3.2 is a first-order, nonlinear PDE of Hamilton–Jacobi
type (see for example, [21, Section 3.3]). We will use the Hamilton–Jacobi method to
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analyze the function S . (The solution, which is the function S defined in (3.1), already
exists.) The Hamiltonian function

H."; p"/ D �"p
2
" (3.7)

satisfying
@S

@t
D �H

�
";
@S

@"

�
is obtained by replacing the partial derivative in Proposition 3.2 by the momentum vari-
able p" and adding a minus sign.

3.1.2. Solving the differential equations. We consider the Hamilton equations for the
Hamiltonian (3.7), which is the following system of two coupled ODEs:

d"

dt
D
@H

@p"
;

dp"

dt
D �

@H

@"
: (3.8)

To apply the Hamilton–Jacobi method, we take an arbitrary initial condition "0 > 0 for "
but choose an initial condition p0 for the momentum variable p" as

p0 D p".0/ D �..j� � x0j
2
C "0/

�1/:

The initial momentum p0 can be written as an integral:

p0 D

Z
1

j� � xj2 C "0
d�.x/; (3.9)

where � is the spectral distribution of x0. The momentum p0 cannot be chosen arbitrarily
and it depends on the initial condition "0, as seen in the above formula. The Hamiltonian
is a constant of motion and can be expressed as

H."; p"/ D H."0; p0/ D �"0p
2
0 : (3.10)

We first state the result from [20, Proposition 6.3].

Proposition 3.3. Fix a functionH.x;p/ defined for x in an open set U �Rn and p in Rn.
Consider a smooth function S.t; x/ on Œ0;1/ � U satisfying

@S

@t
D �H.x;rxS/:

Suppose the pair .x.t/;p.t// with values in U �Rn satisfies the Hamilton equations

dxj

dt
D
@H

@pj
.x.t/;p.t//;

dpj

dt
D �

@H

@xj
.x.t/;p.t//

with initial conditions x.0/ D x0 and p.0/ D .rxS/.0; x0/. Then

S.t; x.t// D S.0; x0/ �H.x0;p0/t C
Z t

0

p.s/ �
dx
ds
ds (3.11)
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and
.rxS/.t; x.t// D p.t/: (3.12)

These two formulas are valid only as long as the solution curve .x.t/; p.t// exists in
U �Rn.

We apply this result with n D 1 and U D .0;1/ in the system (3.8).

Proposition 3.4. In the system of coupled ODEs (3.8) with ".0/ D "0 and p".0/ D p0
given in (3.9), for any �, the first Hamilton–Jacobi formula (3.11) reads

S.t; �; ".t// D �.log.j� � x0j2 C "0// � "0�..j� � x0j2 C "0/�1/2t:

This formula is valid only as long as the solution .".t/; p".t// exists in .0;1/ � R; the
lifetime of the solution depends on the initial condition "0 of ".

Proof. Since the Hamiltonian H is given by (3.10), by (3.8) we have

p".s/ �
d

ds
".s/ D �2".s/p".s/

2
D 2H."; p".s//

D 2H."0; p0/ D �2"0�..j� � x0j
2
C "0/

�1/2:

The expression in the conclusion then follows from (3.11).

Proposition 3.5. Let p0 D �..j�� x0j2C "0/�1/ be the initial value of p". If the solution
to the Hamiltonian system exists up to time t�, then for all t 2 .0; t�/, the solution of p" is

p".t/ D
1

1=p0 � t
: (3.13)

Proof. This follows directly from solving one equation in the system of ODEs (3.8)

dp"

dt
D �

@H

@"
D p2"

with initial value p0 D �..j� � x0j2 C "0/�1/.

Since ".t/ D �H.t/=p".t/2 D �H0=p".t/2, we have the following corollary.

Corollary 3.6. Under the hypothesis of Proposition 3.5,

".t/ D �

�
1

p0
� t

�2
H0 D "0.1 � tp0/

2:

The pair .".t/; p".t// given by Proposition 3.5 and Corollary 3.6 gives a solution to
the Hamiltonian system (3.8) up to time

t�.�; "0/ D 1=p0;

when the denominator in (3.13) blows up. The value of p0 given in (3.9) and hence the
lifetime t� of the solution depends on � and the initial condition "0.
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3.1.3. Two regimes and the connection to the subordination map. To compute the Brown
measure �t of x0 C ct , we want to compute �S.t; �; 0/. Thus, we want to take ".t/ D 0
for the formula of S.t;�; ".t// in Proposition 3.4. By Corollary 3.6, the condition ".t/D 0
can be achieved by either letting "0 # 0, or considering .1� tp0/ # 0 by making a suitable
choice of the initial condition "0.

Write � D aC ib. As "0 decreases, the lifetime of the path

t�.�; "0/ D
1

p0
D

1R
R

d�.x/

.a�x/2Cb2C"0

decreases. Let
T .�/ D lim

"0#0
t�.�; "0/ D

1R
R

d�.x/

.a�x/2Cb2

(3.14)

be the lifetime of the path in the limit as "0 # 0, where the second equality comes from an
application of the monotone convergence theorem. The first regime, "0 # 0, only works if
the lifetime of the path is at least t when "0 is very small. Hence we study the set where
the lifetime of the path is at least t :

¹� 2 C W T .�/ � tº D

²
� D aC ib W

Z
R

d�.x/

.a � x/2 C b2
�
1

t

³
:

The second regime is the open set

ƒt D ¹� 2 C W T .�/ < tº D

²
� D aC ib W

Z
R

d�.x/

.a � x/2 C b2
>
1

t

³
; (3.15)

where we can use letting .1� tp0/ # 0, by taking a proper limit of the initial condition "0
in Section 3.2.2.

We note that the first regime, letting "0 # 0, will be used in Section 3.2.1; it can
be described using the subordination function Ft in Proposition 2.4 and the function vt
defined in (2.8). We note that T may not be continuous, depending on the choice of �.
For example, if � D 1Œ0;1�.x/ � 3x

2 dx, then T .0/ D 1
3

but T .a/ D 0 for all 0 < a < 1.
We now identify ƒt and draw a connection between the definition of ƒt and the free

additive convolution discussed in Section 2.3. Recall from (2.8) that

vt .a/ D inf
²
b > 0 W

Z
R

d�.x/

.a � x/2 C b2
�
1

t

³
; a 2 R: (3.16)

Using (3.14), by (3.15) we see that

ƒt D ¹aC ib 2 C W jbj < vt .a/º: (3.17)

Thus, ƒt agrees with the region defined in point (1) of Theorem 1.1. We will prove that
the Brown measure �t has support inside ƒt .

We recall from Section 2.3 that the subordination function Ft satisfying

Gx0.Ft .z// D Gx0Cst .z/; z 2 CC;
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has left inverse
Ht .z/ D z C tGx0.z/:

From Proposition 2.4, the function Ft can be continuously extended to CC [10, Lemmas 3
and 4] and

Ft .C
C
[R/ D ¹aC ib 2 CC W b � vt .a/º:

Its inverse Ht maps
¹aC ib 2 CC W b � vt .a/º

onto CC [R. Due to (3.17), the set ƒt can be written in terms of Ft as

ƒt D C n ¹Ft .z/; Ft .z/ W z 2 CC [Rº:

The boundary of ƒt is given by the closure of the set

¹z; z W z 2 Ft .R/ \CCº D ¹z; z W z 2 CC and Ht .z/ 2 Rº:

It is notable that the subordination function Ft for x0C st also plays a role in the analysis
of x0 C ct , where ct is the free circular Brownian motion.

3.2. Computation of the Laplacian of S

We now outline the strategy for the computation of the Brown measure in different
regimes as follows. (i) If T .�/ > t , then the lifetime of the solution to the Hamiltonian
system remains greater than t when "0 tends to zero. Hence, we could let "0 D 0 in (3.4).
(ii) If T .�/ < t , the value of "0 is chosen such that p0 D 1=t . This condition is equivalent
to b2 C "0 D vt .a/2 as in Lemma 3.9, which allows us to calculate the Brown measure
in this regime. (iii) Finally, we need to eliminate any mass on the set ¹� 2 C W T .�/ D tº.
We do this by showing that the restriction of the Brown measure �t to ƒt is a probability
measure; therefore, using the fact that the Brown measure is a probability measure, we
conclude that there is no mass on the boundary ¹� 2 C W T .�/D tº. Our approach for the
boundary ¹� 2 C W T .�/ D tº is different from the approach in [20], where the authors
showed directly that the Brown measure of the free multiplicative Brownian motion puts
no mass on the boundary by showing that the partial derivatives of the corresponding S
are continuous.

3.2.1. Outside ƒt . By Corollary 3.6,

".t/ D "0.1 � tp0/
2

depends on the initial condition "0 > 0. In the case when � 62 ƒt , we take "0 # 0 to make
".t/ # 0. When � 62 ƒt is fixed, by (3.17), we have

p0 D

Z
R

d�.x/

.a � x/2 C b2 C "0
�

Z
R

d�.x/

.a � x/2 C b2
<

Z
R

d�.x/

.a � x/2 C vt .a/2
�
1

t
;
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where the definition (2.8) of vt was used. In this case, by (3.14), the lifetime of the solution
is

t�.�; "/ > t for all "0 > 0:

The initial momentum p0 can then be extended continuously at "0 D 0 by the monotone
convergence theorem, and 1� tp0 � 0 for all "0 � 0. It is clear that for a fixed �D aC ib
such that jbj>vt .a/, p0 is a decreasing function of "0� 0 and hence 1� tp0 is increasing.
This proves the following lemma.

Lemma 3.7. For a fixed � 62 ƒt , " D "0.1 � tp0/2 is an increasing continuous function
of "0 > 0; " can be extended continuously as "0 # 0. We have

lim
"0#0

" D 0 and lim
"0!1

" D1:

Thus, for every " � 0, there is a unique "0 such that " D "0.1 � tp0/2.

Fix t and �. As " is an increasing function of "0, we can express "0 as a function "0."/
of " such that with initial condition "0."/, we have ".t/ D ". Hence, by Proposition 3.4,

S.t; �; ".t// D �.log.j� � x0j2 C "0// � "0�..j� � x0j2 C "0/�1/2t

D �.log.j� � x0j2 C "0."/// � "0."/�..j� � x0j2 C "0."//�1/2t: (3.18)

Using also the fact that "0."/ # 0 as " # 0 gives the main result of this section.

Theorem 3.8. For a fixed � 62 ƒt ,

S.t; �; 0/ D lim
"#0

S.t; �; "/ D

Z
R

log..a � x/2 C b2/ d�.x/ (3.19)

is real-valued. Thus, for all � 62 ƒt , S.t; �; 0/ is analytic and

��S.t; �; 0/ D 0:

In particular, the support of the Brown measure �t of x0 C ct is inside ƒt .

Proof. We first prove that the right hand side of (3.19) exists as a (finite) real number. It
suffices to consider � 2 Nƒct \R. Let I �R be an interval that is outside the closed set Nƒt .
Then, for any a 2 I , we have

0 � �
1

�
ImGx0.aC i"/ D

1

�

Z
"

.a � x/2 C "2
d�.x/ �

"

�t
:

Letting " # 0 in the above equation shows that � is 0 in Nƒct \ R. Indeed, as " # 0, the
measure �1I 1� ImGx0.aC i"/ da converges weakly to �jI for any interval I � Nƒt \R
by the Stieltjes inversion formula (2.1).

By letting " # 0 in (3.18), the fact that "0."/ # 0 as " # 0 gives (3.19). Now, since, for
all � 62 ƒt , .a � x/2 C b2 > 0, we can move the Laplacian into the integrand:

��S.t; �; 0/ D

Z
R
�� log..a � x/2 C b2/ d�.x/ D 0:
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Recall that the Brown measure �t is defined to be the distributional Laplacian of the
function S.t; �; 0/ with respect to �. The last assertion about the support of the Brown
measure �t follows from the fact that

��S.t; �; 0/ D 0

outside ƒt implies that the support of the distribution ��S.t; �; 0/ is inside ƒt .

3.2.2. Inside ƒt . By (3.15), if � 2 ƒt , we have T .�/ < t (see the definition (3.14)
of T .�/), showing thatZ

R

d�.x/

j� � xj2
D

Z
R

d�.x/

.a � x/2 C b2
>
1

t
; � 2 ƒt :

By the fact that
lim
"0#0

t�.�; "0/ D T .�/

for each � 2ƒt , if the initial condition "0 > 0 is small enough, the lifetime of the solution
path satisfies t�.�; "0/ < t . That means the solution does not exist up to time t . Since,
given any �, the function "0 7! t�.�;"0 / is strictly increasing, and lim"0"1 t�.�;"0/D1,
there exists a unique "0.�/ such that t�.�; "0.�// D t . In other words, with this choice of
"0 D "0.�/, for � D aC ib, we have, since t�.�; "0.�// D t ,Z

R

d�.x/

.a � x/2 C b2 C "0.�/
D

1

t�.�; "0.�//
D
1

t
: (3.20)

Lemma 3.9. With the choice of "0 D "0.�/ satisfying (3.20), "0 is a function of .a; b/
and is determined by

b2 C "0.�/ D vt .a/
2: (3.21)

Proof. This follows directly from the fact that such an "0.�/ is unique. The "0.�/ such
that b2 C "0.�/ D vt .a/2 satisfies (3.20) by (2.10).

If t�.�; "0.�// D t , then by (3.21) and Corollary 3.6, ".t/ D 0. This means that the
solution of the system (3.8) of ODEs does not exist at time t . For all "0 > "0.�/, the
lifetime of the system (3.8) is greater than t ; hence it makes sense to look at S.t; �; ".t//
with any initial condition "0 > "0.�/. Our strategy is to consider the solution of S by
solving the system of ODEs (3.8) at time t as the limit as "0 # "0.�/ so that ".t/ # 0.

Recall that
S.t; �; 0/ D lim

"#0
S.t; �; "/

is defined as in (3.2). We now compute ��S.t; �; 0/.

Theorem 3.10. For � D aC ib 2 ƒt with b2 C "0.�/ D vt .a/2, using Proposition 3.4,
we have

S.t; �; 0/ D lim
"#0

S.t; �; "/ D

Z
R

log..a � x/2 C vt .a/2/ d�.x/ �
vt .a/

2 � b2

t
:

In particular, S.t; �; 0/ is analytic inside ƒt .
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The Laplacian of S.t; �; 0/ with respect to � is computed as

��S.t; �; 0/ D
4

t

�
1 �

t

2

d

da

Z
R

x

.a � x/2 C vt .a/2
d�.x/

�
:

In particular, for � 2 ƒt , ��S.t; �; 0/ is independent of b D Im �.

Proof. If � 2 ƒt and " > "0.�/, the lifetime t�.�; "0/ is greater than t . Using Proposi-
tion 3.4, we can compute S.t; �; ".t//, for each initial condition "0 > "0.�/, in terms of
the initial condition "0 explicitly. By (3.18), at time t ,

S.t; �; ".t// D �.log..a � x0/2 C b2 C "0// � "0�...a � x0/2 C b2 C "0/�1/2t

D

Z
R

log..a � x/2 C b2 C "0/ d�.x/ � "0t
�Z

R

d�.x/

.a � x/2 C b2 C "0

�2
: (3.22)

Let "0 # "0.�/ D vt .a/2 � b2 as in (3.21). Then, in the limit, we have

lim
"0#"0.�/

".t/ D lim
"0#"0.�/

"0.1 � tp0/
2
D 0;

because

lim
"0#"0.�/

tp0 D t

Z
R

d�.x/

.a � x/2 C vt .a/2
D 1:

Therefore, using (3.22), we have

S.t; �; 0/ D lim
"#0

S.t; �; "/

D lim
"0#"0.�/

�Z
R

log..a � x/2 C b2 C "0/ d�.x/ � "0t
�Z

R

d�.x/

.a � x/2 C b2 C "0

�2�
D

Z
R

log..a � x/2 C vt .a/2/ d�.x/ � .vt .a/2 � b2/t
�Z

R

d�.x/

.a � x/2 C vt .a/2

�2
D

Z
R

log..a � x/2 C vt .a/2/ d�.x/C
b2 � vt .a/

2

t
; (3.23)

where the last equality comes from Lemma 2.3.
Now we compute the derivatives of S.t; �; 0/ using (3.23). The partial derivative with

respect to b is
@S

@b
.t; �; 0/ D

2b

t
: (3.24)

We note that, by [10, Lemma 2], vt is analytic at any point a such that vt .a/ > 0. If
� 2 ƒt , then vt .a/ > 0 and the partial derivative with respect to a is

@S

@a
D

Z
R

1

.a�x/2Cvt .a/2

�
2.a�x/C

@

@a
vt .a/

2

�
d�.x/�

1

t

@

@a
vt .a/

2

D

�
2aC

@

@a
vt .a/

2

�Z
R

d�.x/

.a�x/2Cvt .a/2
�

Z
2x d�.x/

.a�x/2Cvt .a/2
�
1

t

@

@a
vt .a/

2

D
2a

t
�

Z
R

2x d�.x/

.a�x/2Cvt .a/2
; (3.25)
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where the identity in Lemma 2.3 was used. Using (3.24) and (3.25), we can compute the
Laplacian

��S.t; �; 0/ D

�
@2S

@a2
C
@2S

@b2

�
.t; �; 0/ D

2

t
C
2

t
� 2

d

da

Z
R

x d�.x/

.a � x/2 C vt .a/2

D
4

t

�
1 �

t

2

d

da

Z
R

x d�.x/

.a � x/2 C vt .a/2

�
:

3.3. The Brown measure of x0 C ct

Lemma 3.11. We have

1

4�

Z
ƒt

��S.t; �; 0/ da db D 1I

hence, 1
4�
��S.t; �; 0/ da db defines a probability measure on ƒt .

Proof. Recall that, by Lemma 2.5,

 t .a/ D aC t

Z
R

.a � x/ d�.x/

.a � x/2 C vt .a/2
: (3.26)

This is a computation using Fubini’s theorem. Define

Vt D ¹a 2 R W vt .a/ > 0º:

By Theorem 3.10,

1

4�

Z
ƒt

��S.t; �; 0/ da db D

“
ƒt

1

�t

�
1�

t

2

d

da

Z
R

x

.a�x/2Cvt .a/2
d�.x/

�
db da

D

Z
Vt

2vt .a/

�t

�
1�

t

2

d

da

Z
R

x

.a� x/2C vt .a/2
d�.x/

�
da

D

Z
Vt

vt .a/

�t

d

da

�
2a � t

Z
R

x

.a � x/2 C vt .a/2
d�.x/

�
da

D

Z
Vt

vt .a/

�t

d

da

�
aC t

Z
R

a � x

.a � x/2 C vt .a/2
d�.x/

�
da

D

Z
Vt

vt .a/

�t
d t .a/ D

Z
R
d.� � �t / D 1;

where we used the definition of ƒt to deduce the second identity and Lemma 2.3 to
deduce the fourth identity. The last equality follows from Proposition 2.5.

Since the Brown measure is a probability measure, using the definition of the Brown
measure, the above lemma shows that the Brown measure �t of x0 C ct is supported
on ƒt and is absolutely continuous on the support. Lemma 3.11 yields the following:
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Corollary 3.12. We have Z
ƒt

d�t D 1:

Hence, the Brown measure �t has the form

d�t .�/ D
1

4�
1ƒt��S.t; �; 0/ da db:

Theorem 3.13. The Brown measure �t of x0 C ct has support ƒt and has the form

d�t .aC ib/ D 1ƒt .aC ib/wt .a/ db da (3.27)

where

wt .a/ D
1

�t

�
1 �

t

2

d

da

Z
R

x

.a � x/2 C vt .a/2
d�.x/

�
:

The function wt is strictly positive inside ƒt .
Let ‰.�/ D Ht .a C ivt .a//, where � D a C ib 2 ƒt .see Proposition 2.4 for the

definition of Ht /. Then the push-forward of the Brown measure to the real line by ‰ is
� � �t , where � is the distribution of x0.

When �D ı0, one can verify that vt .a/D 1a2�t

p
t � a2 and wt .a/D 1=.�t/. Then

the Brown measure is, as expected, the circular law.

Proof of Theorem 3.13. First note that (3.27) comes from Corollary 3.12 and Theorem
3.10. Define

Vt D ¹a 2 R W vt .a/ > 0º:

For the assertion about the push-forward, given any smooth function g, we have“
ƒt

g ı‰.a; b/
1

�t

�
1 �

t

2

d

da

Z
R

x d�.x/

.a � x/2 C vt .a/2

�
db da

D

Z
Vt

g. .a//
2vt .a/

�t

�
1 �

t

2

d

da

Z
R

x d�.x/

.a � x/2 C vt .a/2

�
da

D

Z
Vt

g. .a//
vt .a/

�t

d

da

�
2a � t

Z
R

x d�.x/

.a � x/2 C vt .a/2

�
da

D

Z
Vt

g. .a//
vt .a/

�t

d

da

�
aC t

Z
R

.a � x/ d�.x/

.a � x/2 C vt .a/2

�
da (by Lemma 2.3)

D

Z
Vt

g. .a//
vt .a/

�t
d t .a/ (by (3.26))

D

Z
R
g d.� � �t /:

The last equality follows from Proposition 2.5. The above computation also shows that
when .a; b/ 2 ƒt , we have

1

�t

�
1�

t

2

d

da

Z
R

x

.a � x/2 C vt .a/2
d�.x/

�
D

1

�t
 0t .a/ �

2

t2
vt .a/

2.1C v0t .a/
2/ > 0

by Proposition 2.5. This shows that the density of �t is strictly positive inside ƒt .
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Theorem 3.14. The density of the Brown measure of x0 C ct may be expressed as

wt .a/ D
1

2�t

d t .a/

da
; (3.28)

and is bounded:
wt .a/ �

1

�t
: (3.29)

The inequality is strict unless � is a Dirac mass.

Proof. Formula (3.28) was already obtained in the proof of Theorem 3.13; Theorem 4.6
in [4] can be used to prove (3.29) but we give a direct proof here.

Recall that  t .a/ DHt .aC ivt .a// andHt .z/ D z C tGx0.z/. Let z D aC ivt .a/.
If vt .a/ > 0, we have

j1 �H 0t .z/j D

ˇ̌̌̌
t
d

dz

Z
R

d�.x/

z � x

ˇ̌̌̌
D

ˇ̌̌̌
t

Z
R

d�.x/

.z � x/2

ˇ̌̌̌
� t

Z
R

d�.x/

jz � xj2
D 1; (3.30)

where we used the definition of vt .a/ in (2.8). If � is not a Dirac mass at 0, the inequality
in (3.30) must be strict, since 1=.z � x/2 does not have the same phase for �-almost
every x.

Since  t .a/ D Ht .aC ivt .a// is real-valued, by (3.30) we must have

0 �
 t .a/

da
� 2

and both inequalities are strict unless � is a Dirac mass.

Corollary 3.15. The support of the Brown measure �t of x0 C ct is the closure of the
open set ƒt . The number of connected components of ƒt is a nonincreasing function
of t .

Proof. That the support of �t is the closure of ƒt follows directly from the facts that �t
is strictly positive on ƒt and it has full measure on ƒt .

The number of connected components of the open set Vt D ¹a 2R W vt .a/ > 0º is non-
increasing, by Proposition 2.6. Sinceƒt has the same number of components as Vt by the
definition of ƒt , the number of connected components of ƒt is also nonincreasing.

Proposition 3.16. The Brown measure �t of xt D x0C ct is the unique measure � onƒt
with the following two properties: .1/ the push-forward of � by the map � 7! ‰t .�/ D

Ht .a C ivt .a// is the distribution of x0 C st , and .2/ � is absolutely continuous with
respect to the Lebesgue measure and its density is given by

W.a; b/ D h.a/

for some continuous function h.
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Proof. Define
Vt D ¹a 2 R W vt .a/ > 0º:

Let y D  t .a/. By Theorem 2.5, the law of x0 C st has the density given by

pt .y/ D
vt .a/

�t
:

We also recall, from Theorem 2.5, that  0t .a/ > 0 for all a 2 Vt . The push-forward by ‰
of �t can be computed, for any smooth function g, asZ

ƒt

.g ı‰/.a; b/h.a/ da db D

Z
Vt

.g ı  t /.a/ � 2vt .a/h.a/ da

D

Z
Vt

.g ı  t /.a/
2vt .a/h.a/

 0t .a/
dy:

By assumption, this means the measure 2vt .a/h.a/

 0t .a/
dy is the law of x0 C st . It follows that

2vt .a/h.a/

 0t .a/
D
vt .a/

�t
; a 2 Vt :

Then h can be solved explicitly, using the definition of  from Theorem 2.5:

h.a/ D
1

2�t
 0t .a/ D

1

2�t

d

da

�
aC t

Z
R

a � x

.a � x/2 C vt .a/2
d�.x/

�
D

1

2�t

d

da

�
2a � t

Z
R

x

.a � x/2 C vt .a/2
d�.x/

�
(using Lemma 2.3)

D
1

�t

�
1 �

t

2

d

da

Z
R

x

.a � x/2 C vt .a/2
d�.x/

�
;

which is wt .a/ in (3.27). This establishes uniqueness.

Before we move on to the multiplicative case, we show some computer simulations.
As indicated in Section 1.1, in this additive case, we can apply the result by Śniady [37,
Theorem 6]: if XN is a sequence of N �N self-adjoint deterministic matrices or random
matrices classically independent of the Ginibre ensemble ZN .t/ at time t , and if x0 is the
limit of XN in �-distribution, then the empirical eigenvalue distribution of XN CZN .t/
converges weakly to the Brown measure of x0 C ct .

The two figures below use computer simulations to compare the push-forward of the
Brown measure of x0 C ct under ‰ and the spectral distribution of x0 C st . The latter
distribution is stated in Proposition 2.5. In each of the figures, part (a) is the eigenvalue
plot of x0 C ct at t D 0:8, and t D 2; part (b) shows the histogram of the image of the
eigenvalues in part (a) pushed forward under‰, with the density of x0C st superimposed.
We can see that both histograms in part (b) follow the theoretical distribution – the spectral
distribution of x0 C st .
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1 2 3

-0.6

-0.4

-0.2

0.2

0.4

0.6

(a) Eigenvalue plot for x0 C c0:8 and the graphs v0:8.a/ (red) and
�v0:8.a/ (blue dashed)

-1 0 1 2 3 4

(b) Push-forward of eigenvalues of x0 C c0:8 by ‰0:8 and the
density of x0 C s0:8 superimposed

Fig. 3. 2 000 � 2 000 matrix simulations at t D 0:8 for x0 distributed as 15 ı�0:5 C
3
5 ı1:6 C

1
5 ı3.

-1 1 2 3

-1.0

-0.5

0.5

1.0

(a) Eigenvalue plot for x0 C c2 and the graphs v2.a/ (red) and
�v2.a/ (blue dashed)

-2 -1 0 1 2 3 4 5

(b) Push-forward of eigenvalues of x0C c2 by‰2 and the den-
sity of x0 C s2 superimposed

Fig. 4. 2 000 � 2 000 matrix simulations at t D 2 for x0 distributed as 15 ı�0:5 C
3
5 ı1:6 C

1
5 ı3.
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4. Free multiplicative Brownian motion

In this section, we compute the Brown measure of the random variable ubt where u is a
unitary random variable freely independent of the free multiplicative Brownian motion bt .
The strategy in the computation in the multiplicative case is similar to the additive
case. We first compute the PDE of the corresponding S which can be solved using the
Hamilton–Jacobi method. We then find all the constants of motion of the Hamilton equa-
tion and solve a system of ODEs. Because the PDE of S is the same as the one computed
in [20], the analysis is similar to the arguments there, with initial conditions for our case.

The analysis in this case is much more technical than in the additive case. Neverthe-
less, the idea is that given a point � on the complex plane, we want to find initial conditions
�0 and "0 such that

(1) the solution of the Hamiltonian system exists up to time t ;

(2) lims"t ".s/ D 0 and lims"t �.s/ D �.

In the process, we will see that for � 62�t;�, where�t;� is a certain open set described
in Section 4.4, the initial condition of "0 can be taken arbitrarily small and the above
properties still hold. Thus, when � 62 �t;�, we can make ".t/ arbitrarily close to 0 by
making "0 sufficiently close to 0. For � 62 �t;�, one can show that ��S.t; �; 0/ D 0 and
hence the Brown measure is supported in�t;�. In this paper, we use a different approach;
we show that the Brown measure is 0 outside �t;� by showing that the Brown measure
puts mass 1 on �t;�.

For � 2 �t;�, we take a proper limit of the initial condition "0 such that the lifetime
of the solution is at least t . Then we use the Hamilton–Jacobi formulas to compute the
Laplacian of S .

4.1. The differential equations

Let bt be the free multiplicative Brownian motion and u a unitary operator that is freely
independent of bt . Denote gt D ubt . We consider the function S defined by

S.t; �; "/ D �Œlog..gt � �/�.gt � �/C "/� (4.1)

and set
st .�/ D lim

"#0
S.t; �; "/:

Then (2.18) shows that the density W.t; �/ of the Brown measure of gt is computed in
terms of st .�/ as

W.t; �/ D
1

4�
��st .�/: (4.2)

By applying the free Itô formula, one can prove the following result. The PDE in the
following theorem is the same as the one in [20], except that it is written in logarith-
mic polar coordinates, and has a different initial condition. We refer the interested reader
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to [20] for the proof for u D I and the same argument works for every unitary operator
u, because gt satisfies the same free SDE, but a different initial condition than bt .

Theorem 4.1. The function S in (4.1) satisfies the following PDE in logarithmic polar
coordinates:

@S

@t
D "

@S

@"

�
1C .j�j2 � "/

@S

@"
�
@S

@�

�
; � D e�ei� ; (4.3)

with initial condition

S.0; �; "/ D �Œlog.u � �/�.u � �/C "� D
Z

T
log.j� � �j2 C "/ d�.�/; (4.4)

where � is the spectral distribution of u.

In [20], Driver, Hall and Kemp studied the properties of solutions of (4.3) with the
unitary initial condition uD I . Since we are solving the same PDE with a different initial
condition, the properties of the solution for (4.3) with the initial condition (4.4) are similar
to those obtained in their work.

The equation (4.3) is a first-order, nonlinear PDE of Hamilton–Jacobi type (see for
example [21, Section 3.3]). We will use polar coordinates and logarithmic polar coordi-
nates for �; we write �D e�ei� D rei� . We define the Hamiltonian corresponding to (4.3)
by

H.�; �; "; p�; p� ; p"/ D �"p".1C r
2p" � "p" � p�/: (4.5)

Although the right hand side of (4.5) is independent of � and p� , the function S does
depend on � . We consider � and p� as variables of H so that we can apply the second
Hamilton–Jacobi formula (3.12) to compute @S

@�
. We consider Hamilton’s equations for

this Hamiltonian; that is, we consider this system of six coupled ODEs:

d�

dt
D
@H

@p�
;

d�

dt
D
@H

@p�
;

d"

dt
D
@H

@p"
;

dp�

dt
D �

@H

@�
;
dp�

dt
D �

@H

@�
;
dp"

dt
D �

@H

@"
: (4.6)

Since the right hand side of (4.5) is independent of � and p� , it is clear that d�=dt D
dp�=dt D 0. Hence, � and p� are independent of t .

Here we require that ".t/ be positive, while all other quantities are real-valued. For
convenience, we write

�.t/ D r.t/ei� D e�.t/ei� :

Note that we have used, in the above equation, the fact that the Hamiltonian is independent
of p� . The initial conditions for � and " > 0 are arbitrary. Given

�.0/ D �0; ".0/ D "0; (4.7)

we write r.0/ D r0 D e�0 , and the initial condition (4.4) of S as



Brown measures of free circular and multiplicative Brownian motions 2197

S.0; �; "/ D

Z
T

log.j� � �j2 C "/ d�.�/

D

Z �

��

log.jei˛ � �j2 C "/ d�.ei˛/

D

Z �

��

log
�
1C r20 � 2r0 cos.� � ˛/C "

�
d�.ei˛/: (4.8)

The initial momenta p�;0 D p�.0/, p� and p0 D p".0/ are chosen as

p�;0 D p�.0/ D
@S.0; �0; "0/

@�0
; p� D

@S.0; �0; "0/

@�
; p0 D p".0/ D

@S.0; �0; "0/

@"0
:

With these choices of momenta, we will apply Proposition 3.3 to see that the momenta
correspond to the partial derivatives of S along the curve .�.t/; �; ".t//.

Recalling that � is the spectral distribution of u, we can write the above definitions
explicitly:

p�;0 D p�.0/ D
@S.0; �0; "0/

@�0

D

Z �

��

2r0.r0 � cos.� � ˛//
1C r20 � 2r0 cos.� � ˛/C "0

d�.ei˛/I (4.9)

p� D
@S.0; �0; "0/

@�

D

Z �

��

2r0 sin.� � ˛/
1C r20 � 2r0 cos.� � ˛/C "0

d�.ei˛/I (4.10)

p0 D p".0/ D
@S.0; �0; "0/

@"0

D

Z �

��

1

1C r20 � 2r0 cos.� � ˛/C "0
d�.ei˛/

D

Z
T

1

j� � �0j2 C "0
d�.�/; (4.11)

where �0 D r0ei� .
After a change of variable to rectangular coordinates, the Hamiltonian system (4.5)

is the same as the one studied in [20] because the PDE of S is the same. The solution
of the system of coupled ODEs (4.6), with given initial conditions, is very similar to that
in [20, Section 6]; if we do not write the initial momenta explicitly but leave as symbols
p�;0 and p0, the solutions look pretty much the same. With the new initial conditions, we
will see how the Laplacian of S changes and we will be able to analyze and identify the
Brown measure of ubt .

Lemma 4.2. The value of the Hamiltonian at t D 0 is

H0 D �"0p
2
0 : (4.12)
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Proof. We calculate

r20p0 � "0p0 � p�;0 D

Z �

��

�r20 C 2r0 cos.�0 � ˛/ � "0
1C r20 � 2r0 cos.�0 � ˛/C "0

d�.ei˛/

D �1C p0:

Hence, H0 D �"0p0.1C r20p0 � "0p0 � p�;0/ D �"0p
2
0 .

We record the following result which is modified from [20, Theorem 6.2] for our
choice of initial conditions.

Theorem 4.3. Assume �0 ¤ 0 and "0 > 0: Suppose a solution to the system (4.6) with
initial conditions (4.7), and (4.9)–(4.11) exists with ".t/ > 0 for 0 � t < T: Then

S.t; �.t/; ".t// D

Z
T

log.j� � �0j2 C "0/d�.�/ � "0t
�Z

T

1

j� � �0j2 C "0
d�.�/

�2
C log j�.t/j � log j�0j (4.13)

for all t 2 Œ0; T /: Furthermore, the derivatives of S with respect to � and " satisfy

@S

@"
.t; �.t/; ".t// D p".t/;

@S

@�
.t; �.t/; ".t// D p�.t/:

(4.14)

Proof. We compute

p�
d�

dt
C p"

d"

dt
D p�

@H

@p�
C p"

@H

@p"

D "p" � 2"p".1C r
2p" � "p" � p�/

D "p" C 2H D "p" C 2H0:

By Proposition 3.3, we have

S.t; �.t/; ".t// D S.0; �0; "0/C tH0 C

Z t

0

".s/p".s/ ds:

We also have
d�

dt
D
@H

@p�
D "p";

which yields Z t

0

".s/p".s/ ds D log j�.t/j � log j�0j: (4.15)

If we plug in the values of S.0; �0; "0/ in (4.4), and H0 and p0 in (4.12), we obtain
(4.13).

It is very important to understand the constants of motion of a Hamiltonian system.
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Proposition 4.4. The following quantities remain constant along any solution of (4.6):

(1) the Hamiltonian H ,

(2) the argument � of � if �0 ¤ 0,

(3) the momentum p� with respect to � ,

(4) the function ‰ WD "p" C 1
2
p�.

Proof. These are the same constants of motion in [20, Propositions 6.4, 6.5]. It can also
be checked directly using (4.6).

4.2. Solving the ODEs

We will need the following values to solve the coupled ODEs. Using the initial conditions
(4.9)–(4.11) and the fact that ‰ is a constant of motion, we have

‰ D "p" C
1

2
p� D

Z �

��

j�0j
2 � j�0j cos.�0 � ˛/C "0

1C j�0j2 � 2j�0j cos.�0 � ˛/C "0
d�.ei˛/: (4.16)

We set

C D 2‰ � 1

D

Z �

��

j�0j
2 � 1C "0

1C j�0j2 � 2j�0j cos.�0 � ˛/C "0
d�.ei˛/ (4.17)

D p0.r
2
0 � 1C "0/ (4.18)

and

ı D
r20 C 1C "0

r0
: (4.19)

Proposition 4.5. For all t , we have

".t/p".t/
2
D "0p

2
0e
�Ct ; (4.20)

where C is given by .4.18/.

Proof. This is established by solving the ODE that ".t/p".t/2 satisfies. See [20, Propo-
sition 6.6] for details. The difference in our initial conditions does not play a role in the
proof.

We now adapt the proof of [20, Proposition 6.9] (which is by solving a system of
coupled ODEs), under the initial conditions (4.7) and (4.9)–(4.11), to analyze the func-
tion S defined in (4.1). We calculate, by (4.5) and (4.6),

dp"

dt
D �

@H

@"
D �

H

".t/
� ".t/p".t/

2:
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The HamiltonianH is a constant of motion. By Lemma 4.2 and Proposition 4.5, the above
equation is expressed as

dp"

dt
D �

"0p
2
0

".t/
� "0p

2
0e
�Ct
D �p".t/

2eCt � "0p
2
0e
�Ct : (4.21)

The ODE (4.21) can be solved explicitly as the constants C , "0, and p0 have been given.
Following [20, Proposition 6.9], the solution of (4.21) is the p"-component of the solution
of the system (4.6), which is

p".t/ D p0

cosh.kt/C 2j�0j�ıp
ı2�4

sinh.kt/

cosh.kt/ � ıp
ı2�4

sinh.kt/
e�Ct (4.22)

where

k D
1

2
p0 � r0 �

p

ı2 � 4 (4.23)

for as long as the solution to the system (4.6) exists, where we use the same choice of
p
ı2 � 4 as in the definition of k in (4.23). If ı D 2; we interpret sinh.kt/=

p
ı2 � 4 as

1
2
p0r0t: In addition, if "0 � 0, the numerator cosh.kt/ � ıp

ı2�4
sinh.kt/ is positive for

all t . Hence, the function p".t/ is positive as long as the solution exists and its reciprocal
1=p".t/ is a real analytic function of t defined for all t 2 R. Moreover, the first time the
expression (4.22) blows up is when the denominator is zero, which is

t�.�0; "0/ D
2

p0r0

1
p
ı2 � 4

tanh�1
�p

ı2 � 4

ı

�
(4.24)

D
1

p0r0

1
p
ı2 � 4

log
�
ı C
p
ı2 � 4

ı �
p
ı2 � 4

�
: (4.25)

Here, the principal branch of the inverse hyperbolic tangent should be used in (4.24),
with branch cuts .�1;�1� and Œ1;1/ on the real axis, which corresponds to using the
principal branch of the logarithm in (4.25). When ı D 2; we interpret t�.�0; "0/ as having
its limiting value as ı approaches 2.

We now describe the limit behaviors of ".t/ and �.t/ by adapting the arguments in
[20, Section 6.3]. By (4.20), we have

".t/ D
"0p

2
0e
�Ct

p".t/2
: (4.26)

As t approaches t�.�0; "0/ from the left, p".t/ remains positive until it blows up and ".t/
approaches zero. That is, for any "0, we have

lim
t!t�.�0;"0/

".t/ D 0: (4.27)

If "0 D 0; from (4.26) we see that the solution has ".t/ � 0; and we deduce that
�.t/ � �0 from (4.15). By [20, Theorem 6.7] (our initial conditions are different from
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the system in [20], but it only uses (4.26) and the fact that H is a constant of motion), if
".t/! 0 as t ! t�.�0; "0/ with "0 > 0, then

lim
t!t�.�0;"0/

�.t/ D Ct�.�0; "0/=2: (4.28)

Proposition 4.6. We have

lim
t!t�.�0;"0/

p� D 2‰ D C C 1 D lim
t!t�.�0;"0/

2�.t/=t C 1: (4.29)

Proof. Note that limt!t�.�0;"0/ ".t/p".t/ D limt!t�.�0;"0/

p
".t/

p
".t/p".t/2 D 0 by

Proposition 4.5 and (4.27). We then use (4.16) to obtain

lim
t!t�.�0;"0/

p� D 2‰:

Then (4.18) and (4.28) yield the result.

4.3. Monotonicity of the lifetime

We will show first that the lifetime of the Hamiltonian system is an increasing function
of "0. To this end, let us recall the following elementary lemma from [20, proof of Propo-
sition 6.16].

Lemma 4.7. Given � 2 .��; ��, the function g� defined by

g� .x/ WD
x � 2 cos �
p
x2 � 4

log
�
x C
p
x2 � 4

x �
p
x2 � 4

�
(4.30)

is a strictly increasing, nonnegative, continuous function of x for x � 2 and tends to1
as x tends to infinity.

Proposition 4.8. For each �0; the function t�.�0; "0/ is a strictly increasing function of
"0 for "0 � 0 and

lim
"0!C1

t�.�0; "0/ D C1:

Proof. For �0 fixed, recalling the definition of ı in (4.19) and t�.�; "/ in (4.25), we define

f�0.ı/ D
1

t�.�0; "0/
D p0r0

p

ı2 � 4 log
�
ı �
p
ı2 � 4

ı C
p
ı2 � 4

�
: (4.31)

By the expression for p0 in (4.11), we obtain

p0r0 D

Z �

��

1

ı � 2 cos.�0 � ˛/
d�.ei˛/:

We can then rewrite f�0.ı/ as

f�0.ı/ D

Z �

��

1

g�0�˛.ı/
d�.ei˛/;
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where g�0�˛.ı/ is defined in (4.30). Hence, as t�.�0; "0/ is the reciprocal of f�0.ı/ as in
(4.31), it then follows from Lemma 4.7 that t�.�0; "0/ is a strictly increasing, nonnegative,
continuous function of ı for ı � 2 that tends to1 as ı!1. This finishes the proof.

Similar to the additive case, the complex plane C is naturally divided into two sets
when we calculate the Brown measure of the free multiplicative Brownian motion. The
following function T determines how we divide C into two sets. The analysis to achieve
".t/D 0 is different in these two sets. We will see that one of these two sets has full Brown
measure, and we omit the analysis of the other set in this paper. The interested readers can
find that analysis in [20] (for u D I ).

Define the function T W C ! Œ0;1/ by

T .�0/ D

8<: 1
p0

log r2
0

r2
0
�1

for �0 D r0ei�0 and r0 ¤ 1;
1
p0

for �0 D r0ei�0 and r0 D 1:
(4.32)

When � D ı1, the function T reduces to the function in [20]. The following result is
analogous to results in [20, Section 6.4]. Roughly speaking, it says that T is the lifetime
of the solution “when "0 D 0”.

Proposition 4.9. Recall that t�.�0; "0/ is defined by (4.25). Then for all nonzero �0,

t�.�0; 0/ WD lim
"0#0

t�.�0; "0/ D T .�0/; (4.33)

where the function T is defined in (4.32). Furthermore, when "0 D 0; we have

lim
t!t�.�0;"0/

�.t/ D �0: (4.34)

Proof. We first consider the case when j�0j D 1. In this case, we have lim"0!0 ı D 2 and
lim"0!0

p
ı2 � 4 D ˙ j�0j

2�1
j�0j

. We can then compute the limit

lim
ı#2

1
p
ı2 � 4

log
�
ı C
p
ı2 � 4

ı �
p
ı2 � 4

�
D 1 (4.35)

and obtain
lim
"0#0

t�.�0; "0/ D 1=p0;

where p0, given by (4.11), can also be written as

p0 D

Z
T

1

j� � �0j2
d�.�/ with � D arg�0:

Hence lim"0!0 t�.�0; "0/ D T .�0/ by (4.32).
For j�0j ¤ 1, we note that

lim
"0#0

ı C
p
ı2 � 4

ı �
p
ı2 � 4

D r20 and lim
"0#0

r0
p

ı2 � 4 D r20 � 1:
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Hence, from (4.25), we deduce that

lim
"0#0

t�.�0; "0/ D
1

p0

log r20
r20 � 1

D T .�0/; where � D arg�0;

due to the expressions of p".0/ as in (4.11).
The proof of (4.34) follows from a similar calculation using (4.28), and

p
ı2 � 4 D

˙
j�0j

2�1
j�0j

.

4.4. The domains �t;� and �t; N�, and their relations to the lifetime

Recall from Section 2.4 that the set �t;� D ¹!t .z/ W z 2 Dº defined in (2.13) is star-
like with respect to the origin, by Proposition 2.9. Moreover, the graph of the function rt
defined in (2.16) is exactly the boundary set @�t; N�. That is, by Proposition 2.9 (1),

�t; N� D ¹re
i�
W �� � � � �; 0 � r < rt .�/º:

See Figure 5 for an example. Define the open set

�t;� WD
®
z; 1=z W z 2 D n�t; N�

¯
:

We will prove in Theorem 4.28 that the closure �t;� of �t;� is the support of the Brown
measure of ubt ; thus, we call it �t;� instead of �t; N�. All other notations are related to
the subordination function of u�ut with respect to u� so we use N� as subscript in those
notations.

-1.0 1.0

-1.0

1.0

(a)�t; N�

-1.5 -1.0 1.0 1.5

-1.0

0.5

1.0

1.5

(b)�t; N� and�t;�

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

1.5

(c)�t;�

Fig. 5. The sets �t; N� and �t;� when u is distributed as 13 ıe�i=6 C
2
3 ıe3�i=4 and t D 0:8, plotted

with the unit circle (black-dashed).

In this section, we first establish the following theorem which gives the relation
between the domain �t;� and the function T (which is the lifetime of the solution when
"0 D 0).

Theorem 4.10. For any t > 0, the region �t;� is invariant under � 7! 1=� and we have

�t;� D ¹re
i�
W rt .�/ < r < 1=rt .�/; � 2 Ut; N�º; (4.36)
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where rt is the function defined in (2.16). Moreover, �t;� may be expressed as

�t;� D ¹� 2 C W T .�/ < tº:

For any � … �t;�, we have T .�/ > t , that is,

C n�t;� � ¹� 2 C W T .�/ > tº:

For any � 2 @�t;� \T , we have T .�/� t ; and for any � 2 @�t;� nT , we have T .�/D t .

Theorem 4.10 characterizes the complement of �t;� using the function T . With this
characterization, the strategy of letting "0 ! 0C could work on C n�t;�, using an argu-
ment parallel to that in [20], where the case � D ı1 was considered. We do not analyze
C n �t;� in this paper because we can show that �t;� has full Brown measure (see
Lemma 4.25).

We will prove Theorem 4.10 later. In the following, we establish a corollary of this
theorem.

Corollary 4.11. For �0 2 �t;�; we have t�.�0; 0/ < t; and for �0 … �t;�; we have
t�.�0; 0/ > t . For �0 2 @�t;� n T ; we have t�.�0; 0/ D t , and for �0 2 @�t;� \ T ,
we have t�.�0; 0/ � t .

Proof. Apply (4.33) and Proposition 4.9 and Theorem 4.10.

Remark 4.12. We can only conclude t�.�; 0/� t for � 2 @�t;� \T but not t�.�; 0/D t ,
because t�.�; 0/ D T .�/ may not be continuous at these points and T > t can occur on
@�t;� \ T . For example, if d�.eix/ D 1Œ0;1�3x

2 d.eix/, then, for all t < 1=3, T .ei / D
1=3 > t and ei 2 @�t;� \ T .

We now describe some important properties of the set�t; N� through the subordination
function. Recall that

ˆt; N�.z/ D z†t; N�.z/ D z exp
�
t

2

Z
T

1C �z

1 � �z
d N�.�/

�
: (4.37)

We define the function

� D �.�/ D � C t

Z �

��

rt .�/ sin.� � x/
j1 � rt .�/ei.��x/j2

d�.eix/; � 2 R: (4.38)

Recall that the function !t extends to a homeomorphism from D onto �t; N�; the func-
tion � is a strictly increasing continuous function from Œa; a C 2�/ onto some interval
Œb; b C 2�/. Then, given any a 2 R, � is a continuous version of arg.ˆt; N�.rt .�/ei� // for
any � 2 Œa; aC 2�/; that is, ei� D ˆt; N�.rt .�/ei� /.

We write

log jˆt; N�.rei� /j D log r C Re
�
t

2

Z
T

1C �rei�

1 � �rei�
d N�.�/

�
D .log r/ht .r; �/; (4.39)
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where

ht .r; �/ D 1 �
t

2

r2 � 1

log r

Z
T

1

j1 � rei��j2
d N�.�/:

For � 2 C with j�j ¤ 0; 1, we let

f .r; �/ D
1 � ht .r; �/

t
D
1

2

r2 � 1

log r

Z
T

1

j1 � rei��j2
d N�.�/

D
1

2

r2 � 1

log r

Z
T

1

j1 � rei.��x/j2
d�.eix/

D
1

2

r2 � 1

log r

Z �

��

1

1 � 2r cos.� � x/C r2
d�.eix/: (4.40)

We will need the following elementary fact.

Lemma 4.13 ([45, Lemma 3.1]). Given �1 � y � 1, define a function of r by

Ry.r/ D
r2 � 1

log r
1

1 � 2ry C r2

on the interval .0; 1/. Then R0y.r/ > 0 for all r 2 .0; 1/.

Corollary 4.14. For fixed � , the function r 7! f .r; �/ is increasing on .0; 1/ and decreas-
ing on .1;1/. We have

lim
r!0

f .r; �/ D lim
r!1

f .r; �/ D 0:

Moreover, f .r; �/ D f .1=r; �/.

Proof. By Lemma 4.13, we see directly that @f .r;�/
@r

> 0 for r 2 .0; 1/, so r 7! f .r; �/

is increasing for r 2 .0; 1/. It is straightforward to check that f .r; �/ D f .1=r; �/; thus,
r 7! f .r; �/ is decreasing on .1;1/. The limit assertion can be checked directly from the
definition of f .

Hence, it makes sense to define f .1�; �/ W Œ��; ��! .0;1� as follows:

f .1�; �/ D lim
r!1�

f .r; �/ D

Z �

��

1

j1 � ei.�Cx/j2
d N�.eix/ D

Z �

��

1

j1 � ei.��x/j2
d�.eix/:

(4.41)
Then the function T W C ! Œ0;1/ defined in (4.32) is expressed by f as follows:

T .�/ D

´
1=f .r; �/ for � D rei� and r ¤ 1;

1=f .1�; �/ for � D rei� and r D 1:
(4.42)

If f .1�; �/ D 1, we understand that, for this � , T .ei� / D 0. Analogous to the addi-
tive case (see (3.14)), the function T may not be continuous on T , as mentioned in
Remark 4.12. If �D ı1, one can use (4.42) to check that T reduces to the function defined
in [20].
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Lemma 4.15. For each � 2 Œ��; ��, the function r 7! T .rei� / is strictly decreasing for
0 < r < 1 and strictly increasing for r > 1. For each � , the minimum value of T .rei� / is
achieved at r D 1, which is 1=f .1�; �/, and we have

lim
r!0

T .rei� / D lim
r!1

T .rei� / D1:

Moreover, T .rei� / D T ..1=r/ei� /.

Proof. The claim follows from Corollary 4.14 and the reciprocal relation (4.42).

We now can use the functions rt defined in (2.16) and T to describe the set �t; N� and
its boundary.

Proposition 4.16. Let � 2 Œ��; ��.

(1) When rt .�/ < 1, we have T .rt .�/ei� / D t . Moreover,

(a) T .rei� / > t for r < rt ;

(b) T .rei� / < t for rt < r � 1.

(2) When rt .�/ D 1, we have T .rt .�/ei� / D T .ei� / � t , and T .rei� / > t for r < 1. If,
in addition, � 2 Œ��; �� n Ut; N�, then T .rei� / > t for all r > 0.

Proof. When rt .�/ < 1, by Proposition 2.9 (2) we have

rt .�/
2 � 1

2 log rt .�/

Z �

��

1

j1 � rt .�/ei.�Cx/j2
d N�.eix/ D

1

t
;

which implies that T .rt .�/ei� /D t by the definition (4.32) of T . For each � , the function
r 7! T .rei� / is strictly decreasing for 0 < r < 1 by Lemma 4.15. Items (1a) and (1b)
follow.

By the definition of rt in (2.16), when rt .�/ D 1, we have

r2 � 1

2 log r

Z �

��

1

j1 � rei.�Cx/j2
d N�.eix/ �

1

t

for all 0 � r � rt .�/ D 1. Hence T .rt .�/ei� / � t , and T .�/ > t when j�j < 1. If, in
addition, � 2 Œ��; �� n Ut; N�, then by (2.15),Z �

��

1

j1 � ei.�Cx/j2
d N�.eix/ <

1

t
;

which shows that T .ei� / > t due to (4.32). Therefore, T .rei� / > t for all 0 < r � 1 and
� 2 Œ��; �� n Ut; N�.

Proposition 4.17. The open set Ut; N� defined in (2.15) may be characterized by

Ut; N� D ¹�� � � � � W rt .�/ < 1º (4.43)

D ¹�� � � � � W T .ei� / < tº: (4.44)

Moreover, @�t; N� \ T D T n ¹ei� W � 2 Ut; N�º, where �t; N� is defined in (2.14).
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Proof. We rewrite the definition of Ut; N� in (2.15) in terms of the function f as

Ut; N� D ¹�� � � � � W f .1
�; �/ > 1=tº:

Hence, by Proposition 4.14, � 2 Ut; N� if and only if rt .�/ < 1. From Proposition 4.16, we
see that rt .�/ < 1 if and only if T .ei� / < t . Now, (4.43) and (4.44) hold.

Recall from Proposition 2.9 that

@�t; N� D ¹rt .�/e
i�
W �� � � � �º;

which yields

@�t; N� \ T D ¹ei� W rt .�/ D 1º D T n ¹ei� W � 2 Ut; N�º:

We are now ready to prove our main result in this section.

Proof of Theorem 4.10. Recall from Proposition 2.9 that �t; N� D ¹rei� W 0 � r < rt .�/,
� 2 Œ��; ��º. Hence, by (4.43) in Proposition 4.17,

D n�t; N� D ¹re
i�
W rt .�/ < r � 1; rt .�/ < 1º D ¹re

i�
W rt .�/ < r � 1; � 2 Ut; N�º;

which yields (4.36).
We discuss the function T .�/ according to the argument of � in the following cases:

(1) When � 2 Ut; N�, for � with arg.�/ D � and rt .�/ < j�j � 1, we know that T .�/ < t
from Proposition 4.16 (1b). Hence, �t;� � ¹� 2 C W T .�/ < tº by the definition
of �t;� and the symmetry property T .z/ D T .1=z/ as in Lemma 4.15. Since r 7!
T .rei� / is continuous and decreasing for 0 < r < 1, it follows that

rt .�/e
i�
2 @�t; N� \ @�t;�

and T .rt .�/ei� / D t by Proposition 4.16. Moreover, � … �t;� and T .�/ > t if j�j <
rt .�/ or j�j > 1=rt .�/.

(2) When � 2 Œ��;�� n Ut; N�, we know that T .�/ > t for all � in the ray with angle � by
Proposition 4.16. It is also clear that � … �t;� for such �.

(3) Finally, when � 2 @Ut; N�, we have rt .�/ D 1, ei� 2 @�t; N� \ @�t;� and T .ei� / � t .
Since r 7! T .rei� / is decreasing for 0 < r < 1, and increasing for r > 1, we have
� … �t;� and T .�/ > t for any other � that is in the ray with angle � except ei� .

By the above discussion, we see that T .�/ > t if � … �t;� for any � . In addition,
T .�/ � t if � 2 @�t;�, and T .�/ D t if � 2 @�t;� n T . Therefore, � 2 �t;� if and only
if T .�/ < t .

Remark 4.18. For � 2 @�t;� \ T (i.e., arg� 2 Œ��;�� n Ut; N�), it is not always true that
T .�/ D t as discussed in Remark 4.12 (recall that T .�/ D t�.�; 0/). When this is true,
then the boundary of �t;� may be expressed as

@�t;� D ¹� 2 C W T .�/ D tº:
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We end this section with the bound of d�=d� , where � is defined in (4.38), which will
be used to give a bound of the density of the Brown measure of ubt (see Theorem 4.28).
We first establish the following lemma that will be used in establishing the bounds.

Lemma 4.19. The function

r 7!
�r log r
1 � r2

is strictly increasing for 0 < r < 1.

Proof. We will prove that r 7! .1 � r2/=.�r log r/ for 0 < r < 1 is strictly decreasing,
which holds, by putting x D � log r , if and only if the function

x 7!
1 � e�2x

xe�x
D
2 sinh x
x

for x > 0 is strictly increasing. Since the Taylor coefficients of

2 sinh x
x

D

1X
nD0

x2n

.2nC 1/Š

are all nonnegative, the function x 7! 2 sinh x=x is strictly increasing.

Recall from Section 2.4 that !t is a function on D whose left inverse is ˆt; N�. The
function � defined in (4.38) is a function on R, and is differentiable at � where rt .�/ < 1.
The next lemma gives an upper and a lower bound for d�=d� .

Lemma 4.20. Given any a 2 R, the function � defined in (4.38) is a strictly increasing
continuous version of argˆt; N�.rt .�/ei� / for any � 2 Œa; a C 2�/ onto some interval of
the form Œb; b C 2�/ for some b 2 R. If rt .�/ < 1, then � is differentiable at � , and we
have

0 <
d�

d�
< 2:

Proof. The first assertion follows from the paragraph following (4.38). Clearly, � is dif-
ferentiable at � 2 R where rs.�/ < 1, since � is a measure on the unit circle.

Write w D rs.�/ei� . Recall from Remark 2.8 that rt is analytic at � where rt .�/ < 1.
We take the derivative with respect to � of the identity ei� D ˆt; N�.rt .�/ei� /; we have

iei�
d�

d�
D ˆ0t; N�.rt .�/e

i� /.r 0t .�/e
i�
C irt .�/e

i� /

D iˆ0t; N�.w/w

�
�i
r 0t .�/

rt .�/
C 1

�
:

If we divide both sides by iˆ0t; N�.w/w and recall that ei� D ˆt; N�.w/, we find that

ˆt; N�.w/

wˆ0t; N�.w/

d�

d�
D �i

r 0t .�/

rt .�/
C 1:
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Since d�=d� is real, we may take the real part of both sides to get

Re
�
ˆt; N�.w/

wˆ0t; N�.w/

�
d�

d�
D 1:

Therefore,
d�

d�
D

1

Re
� ˆt; N�.w/
wˆ0

t; N�
.w/

� : (4.45)

We will show that 0 < d�=d� < 2 by estimating ReŒ ˆt; N�.w/
wˆ0

t; N�
.w/
�.

We compute

wˆ0t; N�.w/

ˆt; N�.w/
D 1C

t

2

Z
2w�

.� � w/2
d�.�/;

so that if rt .�/ < 1, we haveˇ̌̌̌
1 �

wˆ0t; N�.w/

ˆt; N�.w/

ˇ̌̌̌
D

ˇ̌̌̌
t

2

Z
2w�

.� � w/2
d�.�/

ˇ̌̌̌
� t rt .�/

Z
1

j� � wj2
d�.�/

D
�2rt .�/ log.rt .�//

1 � rt .�/2
< 1; (4.46)

where the last inequality follows from rt .�/ < 1 and that r 7! �2.log r/=.1 � r2/ is
strictly increasing by Lemma 4.19.

The Möbius transform z 7! 1=z maps 2, 1C i , 1� i to the vertical line with real part
equal to 1=2; it also maps 1 to 1. Thus, it maps the unit disk centered at 1 to ¹z 2 C W
Re z > 1=2º. We conclude by (4.46) that

Re
�
ˆt; N�.w/

wˆ0t; N�.w/

�
>
1

2
:

By (4.45), this shows that 0 < d�=d� < 2.

4.5. Surjectivity

The goal of this subsection is to prove the following surjectivity result which extends the
result in [20, Theorem 6.17] to our general setting. This result allows us to find unique
initial conditions �0 2 �t;� and "0 > 0 for each � 2 �t;� such that limu"t �.u/ D � and
limu"t ".u/D 0. These initial conditions will help us apply the Hamilton–Jacobi formulas
to compute S and �S at " D 0.

Theorem 4.21. Given t > 0, for all � 2 �t;�; there exist unique �0 2 C and "0 > 0 such
that the solution to (4.6) with these initial conditions exists on Œ0; t/ where t D t�.�0; "0/,
with limu"t ".u/ D 0 and limu"t �.u/ D �: For all � 2 �t;�; the corresponding �0 also
belongs to �t;�:
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Define functions �t0 W�t;�!�t;� and "t0 W�t;�! .0;1/ by letting �t0.�/ and "t0.�/
be the corresponding values of �0 and "0 for � 2�t;� respectively. Then �t0 and "t0 extend
to continuous maps from �t;� into �t;� and Œ0;1/, respectively, with the continuous
extensions satisfying �t0.�/ D � and "t0.�/ D 0 for � in the boundary of �t;�:

Given �0 2 �t;�, we know from Corollary 4.11 that t�.�0; 0/ < t . On the
other hand, by Proposition 4.8, the function " 7! t�.�0; "0/ is strictly increasing
and lim"0!C1 t�.�0; "0/ D C1. Hence, there is a unique value "t0.�0/ such that
t�.�0; "

t
0.�0// D t . We set

�t .�0/ D lim
u"t

�.u/

where �.u/ is computed with initial conditions �.0/D �0 and ".0/D "t0.�0/. This defines
maps

"t0 W �t;� ! Œ0;1/; �0 7! "t0.�0/;

�t W �t;� ! �t;�; �0 7! �t .�0/:

Proposition 4.22. The function "t0 extends continuously from�t;� to�t;�. The extended
map satisfies "t0.�0/ D 0 for �0 2 @�t;�: Moreover, the function "t0 is expressed as

"t0.�0/ D r0

�
rt .�/

2 C 1

rt .�/
�
r20 C 1

r0

�
:

The formula for "t0.�0/ is similar to [20, (6.67)].

Proof. Our strategy is to find an explicit formula for "t0.�0/ in terms of r0 D j�0j and � .
Recall that � D arg�0, and that rt .�/ei� 2 @�t;� \D satisfies T .rt .�/ei� / D t by The-
orem 4.10. In light of Proposition 4.9, we have t�.rt .�/ei� ; 0/ D t . Thus, we have the
following relation between f�0 and frt .�/ei� :

f�0.ı1/ D

Z �

��

1

g�0�˛.ı1/
d�.ei˛/ D

1

t
D

Z �

��

1

g�0�˛.ı2/
d�.ei˛/ D frt .�/ei� .ı2/;

where

ı1 D
r20 C 1C "

t
0.�0/

r0
and ı2 D

rt .�/
2 C 1

rt .�/
:

This implies that we must have ı1 D ı2 thanks to Proposition 4.8. That is,

ı D
r20 C 1C "

t
0.�0/

r0
D
rt .�/

2 C 1

rt .�/
: (4.47)

Hence,

"t0.�0/ D r0

�
rt .�/

2 C 1

rt .�/
�
r20 C 1

r0

�
: (4.48)

The desired result then follows.
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Proposition 4.23. The function �t extends continuously from �t;� to �t;�, with the
extended map satisfying �t .�0/ D �0 for �0 2 @�t;�: The extended map �t is a homeo-
morphism of �t;� onto itself.

Proof. To find the formula for �t .�0/, we use the facts that t�.�0; "t0.�0// D t and that
the argument � of � remains unchanged along the path. We apply (4.28) to obtain

�t .�0/ D
�0

j�0j
eCt=2: (4.49)

By formula (4.18) for C and formula (4.25) for t�.�0; "0/, we have

Ct D Ct�.�0; "
t
0.�0// D

ı � 2=j�0j
p
ı2 � 4

log
�
ı C
p
ı2 � 4

ı �
p
ı2 � 4

�
; (4.50)

where ı D .rt .�/
2 C 1/=rt .�/ as in (4.47). We remark that the formula for �t .�0/ is

similar to [20, (6.64)].
By (4.47), ı only depends on � but not on r0; hence, Ct is strictly increasing in r0 by

(4.50). From the expression (4.49), we then deduce that, fixing a � 2 Ut;�, the function
j�0j 7! j�t .�0/j is strictly increasing for �0 2 ¹rei� W rt .�/ < r < 1=rt .�/º. Moreover,
when �0 D rt .�/ei� , we have

�t .rt .�/e
i� / D ei�eCt=2 D rt .�/e

i�

and �t .ei�=rt .�// D ei�=rt .�/ due to (4.28) and (4.34) (which can also be verified
directly). In other words, �t maps the interval ¹rei� W rt .�/ < r < 1=rt .�/º bijectively to
itself and fixes the endpoints. Since this holds for any � 2 Ut; N�, we conclude that �t maps
�t;� n .@�t;� \T / bijectively to itself and fixes any � 2 @�t;� nT . As �t is continuous
and rt .�/ ! 1 as ei� approaches @ƒt;� \ T , we then conclude that the inverse of �t
extends to a homeomorphism of �t;�.

Proof of Theorem 4.21. It is a direct consequence of Propositions 4.22 and 4.23.

4.6. The Brown measure of gt and its connection to uut

We will show in Theorem 4.28 that the Brown measure of ubt is supported on the clo-
sure �t;� by showing that the Brown measure puts mass 1 on �t;�. We prove this by
first showing that a certain measure on �t;� can be pushed forward to the spectral dis-
tribution of uut in Lemma 4.25; hence this measure is a probability measure. Then, in
Theorem 4.28, we show that the Brown measure has the same formula on �t;� as the
one defined in Lemma 4.25. It then follows that the Brown measure puts mass 1 on �t;�.
Thus, it suffices to focus on the computation for � 2 �t;� in the section.

Our first goal is to calculate the Laplacian of the function st .�/ defined in Section 4.1
for fixed t by using Hamilton–Jacobi analysis. Recall that

st .�/ WD lim
"#0

S.t; �; "/
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for t fixed. By Theorem 4.21, for each t > 0 and � 2 �t;�, we can choose "0 > 0 and
�0 2 �t;� such that limu!t ".u/ D 0, limu!t �.u/ D � where t D t�.�0; "0/. Moreover,
as the argument of � remains unchanged along the flow by Proposition 4.4, we have
arg� D arg�0. We note that the Laplacian in logarithmic polar coordinates has the form

� D �� D
1

r2

�
@2

@�2
C

@2

@�2

�
;

where we recall that r D j�j, � D log j�j, and � D arg�.
We consider the function on Ut; N� D �t;� \ T defined by

wt .�/ D
1

4�

�
2

t
C

d

d�
mt .�/

�
(4.51)

where

mt .�/ D

Z �

��

2rt .�/ sin.� � ˛/
rt .�/2 C 1 � 2rt .�/ cos.� � ˛/

d�.ei˛/: (4.52)

Recall that rt .�/ is defined in .2.16/, which is the smaller of the radii where the ray
with angle � intersects the boundary of �t;�, and � is the spectral distribution of u. The
functions wt and mt will play the main role in computing the Brown measure of ubt .

Proposition 4.24. For any � 2 �t;� \ T ,

wt .�/ D
1

2�t

d�

d�
; (4.53)

where � D arg.ˆt; N�.rt .�/ei� // is defined by (4.38).

Proof. Recall that by (4.38),

� D � C t

Z �

��

rt .�/ sin.� � x/
j1 � rt .�/ei.��x/j2

d�.eix/:

Hence,

d� D

�
1C t

d

d�

Z �

��

rt .�/ sin.� � x/
j1 � rt .�/ei.��x/j2

d�.eix/

�
d�

D

�
1C

t

2

d

d�
mt .�/

�
d� D 2�twt .�/ d�:

and the formula (4.53) follows.

We next show that the measure wt .�/=r2 puts mass 1 on �t;�. Later, we will show
that wt .�/=r2 is indeed the density of the Brown measure of ubt inside�t;�. That it puts
mass 1 on �t;� will be used to show that the Brown measure is 0 outside �t;�.

Lemma 4.25. We have Z
�t;�

1

r2
wt .�/r dr d� D 1:
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Proof. Using the characterization of �t;� in Theorem 4.10, we haveZ
�t;�

1

r2
wt .�/r dr d� D

Z
Ut; N�

Z 1=rt .�/

rt .�/

1

r2
wt .�/r dr d�

D

Z
Ut; N�

�2 log.rt .�//wt .�/ d�

D

Z
Ut; N�

�2 log.rt .�//
1

2�t

d�

d�
d� (by Proposition 4.24)

D

Z
T
�
1

�t
log.rt .�// d�

D

Z
T
pt .e

i�/ d� (by Theorem 2.11)

D 1:

Given any � 2 �t;�, by Theorem 4.21, there are unique �0 and "0 such that

lim
u!t

.u; �.u/; ".u// D .t; �; 0/:

We attempt to compute the Brown measure as the limit of 1
4�
�S.u; �.u/; ".u// as u " t .

However, the definition of the Brown measure of ubt is

1

4�
�
�

lim
"#0

S.t; �; "/
�
;

with t and � fixed in the limiting process. We want to show that this limit is the same as

lim
u"t

1

4�
�S.u; �.u/; ".u//:

To achieve this, we intend to show that the limit is independent of the path approach-
ing .t; �; "/. We will see that the analogue of [20, Theorem 7.4] holds for our S . More
precisely, given any .�; !/ 2 RC ��t;�, the function

QS.t; �; z/ D S.t; �; z2/; z > 0; (4.54)

extends to a real analytic function in a neighborhood of .�; �; 0/ inside R � C � R. The
key here is that the regularity holds even in the triple .t; �; z/, not just in the pair .�; z/;
the Laplacian of S at .t; �; 0/ is then equal to the limit of the Laplacian along the path
.u; �.u/; ".u// since there is no partial derivative with respect to " involved. We will
give the main lines below. For more details, the readers are encouraged to consult [20,
Section 7.4].

Theorem 4.26. The function QS extends to a real analytic function in a neighborhood of
.t; �; 0/ in RC ��t;�.
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Remark 4.27. The function S itself does not have a smooth extension of that sort. Indeed,
since

p
" p" is a constant of motion, the second Hamilton–Jacobi formula (3.12) tells us

that @S=@"must blow up like 1=
p
" as we approach .t;�;0/ along a solution of the ODEs.

The same reasoning tells us that the extended QS does not satisfy QS.t; �; z/ D S.t; �; z2/
for z < 0. Because

p
" p" is a constant of motion,

@ QS

@z
.t; �; z/ D 2

p
"
@S

@"
.t; �; z2/

has a nonzero limit as z ! 0. Thus, QS cannot have a smooth extension that is even in z.

Proof of Theorem 4.26. Denote by �.t I�0; "0/ �-component of the solution of the ODEs
at time t given initial conditions �0 and "0. Write z.t I �0; "0/ D

p
".t I�0; "0/ where

".t I�0; "0/ is "-component of the solution of the ODEs at time t given initial conditions
�0 and "0.

Define the map

V.t; �0; "0/ D .t; �.t I�0; "0/; z.t I�0; "0//:

We first show that V can be extended to t 2 R, given any �0; "0. The main observation
is that, given any "0 > 0, 1=p".t I�0; "0/ extends to a real analytic function for all t 2 R
(see (4.22) for the formula for p"). Given any �0 2 �t;� and "0 > 0, we can extend
z.t I�0; "0/ by the same formula

z.t I�0; "0/ D
p
"0 p0e

�Ct=2 1

p".t I�0; "0/
(4.55)

to all t 2 R. By (4.55), z.t I �0; "0/2 D ".t I �0; "0/ and so z.t I �; "0/ D 0 when t D
t�.�0; "0/. The function z.t I �0; "0/ is positive when t < t�.�0; "0/; it is negative when
t > t�.�0; "0/. Since, 1=p".t I�0; "0/ extends to a real analytic function for all t 2 R, by
(4.15) and Proposition 4.5 the function

�.t/ D �0 exp
�Z t

0

".s/p".s/ ds

�
D �0 exp

�Z t

0

"0p
2
0e
�Cs

p".s/
ds

�
also extends to an analytic function of t 2 R.

Fix any � 2 �t;�. Next, we show that we can extend QS to a neighborhood of .t; �; 0/,
where � 2 �t;�, by applying the inverse function theorem to the map

V.t; �0; "0/ D .t; �.t I�0; "0/; z.t I�0; "0//;

which was shown to be extendable to t 2 R in the preceding paragraph. Once we show
that the Jacobian matrix of V at .t; �t0.�/; "

t
0.�// is invertible (see Theorem 4.21 for the

definitions of �t0 and "t0), there exists a local inverse V �1 defined around a neighborhood
of .t; �; 0/ which satisfies

QS.�; !; z/ D HJ.V �1.�; !; z// (4.56)
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whereHJ is the right hand side of (4.13). Note that (4.56) gives a (real) analytic extension
of QS around a neighborhood of .t; �; 0/; recall that QS is originally defined only for z > 0
in (4.54).

Thus, it remains to show that the Jacobian matrix of V at .t;�t0.�/; "
t
0.�// is invertible.

The trick here is to do a change of variable to view the map V as a function of .t; �; �; ı/,
since, by (4.19), the map .t;�; "/ 7! .t; �;�; ı/ is smoothly invertible. Because the formula
for t�.�0; "0/ is independent of �0 D log r0 when ı and � are fixed, it follows that when
t�.�0; "0/D t , z.t I�0; "0/ remains 0 if r0 varies with ı and � fixed; this shows @z=@r0D 0.
Furthermore, by (4.49) and (4.50),

lim
t!t�.�0;"0/

�.t/ D
ı � 2=r0

2
p
ı2 � 4

log
�
ı C
p
ı2 � 4

ı �
p
ı2 � 4

�
whose partial derivative with respect to r0 is positive. Since @�

@r0
> 0 as shown in the proof

of Proposition 4.23, it remains to check @z
@ı
> 0 to prove that the Jacobian matrix0B@I2�2 0 0

�
@�
@r0

@�
@ı

�
@z
@r0

@z
@ı

1CA D
0B@I2�2 0 0

�
@�
@r0

@�
@ı

� 0 @z
@ı

1CA
is invertible. To this end, we write

@z

@ı
D

@z

@"0

@"0

@ı
D �r0

@z

@t

@t�.�0; "0/

@"0

where the last equality comes from differentiating z.t�.�0; "0/; �0; "0/ D 0 with respect
to "0 using the chain rule and @"0

@ı
D r0. Now, by (4.22) and (4.55), we have

z.t/ D

p
"0 e

Ct=2

cosh.kt/C 2r0�ıp
ı2�4

sinh.kt/

�
cosh.kt/ �

ı
p
ı2 � 4

sinh.kt/
�
:

Recall that t� given in (4.24) is chosen such that the denominator in (4.22) is zero. When
t D t�, we have

@z.t; �0; "0/

@t

ˇ̌̌̌
tDt�.�0;"0/

D

p
"0 e

Ct=2

cosh.kt/C 2r0�ıp
ı2�4

sinh.kt/
k

�
sinh.kt/ �

ı
p
ı2 � 4

cosh.kt/
�
< 0

because the denominator is positive (see discussion after (4.22) for the definition of p".t/)
and ı=

p
ı2 � 4 > 0. Finally, using t�.�0; "0/D 1=

R �
��

1
g�0�˛.ı/

d�.ei˛/, Proposition 4.8
and the definition (4.19) of ı, we obtain

@t�.�0; "0/

@"0
D
@t�.�0; "0/

@ı

@ı

@"0
> 0:

We conclude that @z
@ı
> 0 and our proof is complete.
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Recall that we want to compute the distributional Laplacian of the function

st .�/ D lim
"#0

S.t; �; "/:

Theorem 4.26 shows that st is indeed analytic on�t;� and hence the distributional Lapla-
cian of st is the ordinary Laplacian.

The following is our main theorem in the multiplicative case, which generalizes [20,
Theorem 2.2].

Theorem 4.28. Given any t > 0, for any � 2 �t;� with � D e�ei� D rei� , we have

@st

@�
.t; �/ D

2�

t
C 1: (4.57)

Furthermore, @st=@� is independent of � and can be expressed as

@st

@�
D mt .�/

where mt is defined in (4.52).
The Brown measure �gt of ubt is supported on �t;� and can be expressed as

Wt .r; �/ D
1

4�
�st .�/ D

1

r2
wt .�/: (4.58)

Moreover, in �t;�; the density Wt of �gt with respect to the Lebesgue measure is strictly
positive and real analytic. We also have

wt .�/ <
1

�t
: (4.59)

Proof. For any � 2 �t;�, choose �0 D �t0.�/ and "0 D "t0.�/ as in Theorem 4.21. Hence
t D t�.�0; "0/. Recall that S is a function of t; �; and � . Also recall that while the Hamil-
tonianH does not depend on � or p� , we can still regard � and p� as constants of motion.
Over the trajectory of S which solves the system (4.6) over the interval Œ0; t/, the momen-
tum p� remains unchanged by Proposition 4.4. Write �0 D r0ei� . Then

@S

@�
.u; �.u/; ".u// D p� D

Z �

��

2r0 sin.� � ˛/
1C r20 � 2r0 cos.� � ˛/C "0

d�.ei˛/

D 2

Z �

��

sin.�0 � ˛/
ı � 2 cos.�0 � ˛/

d�.ei˛/:

Using the fact that "0 is chosen so that ı D .rt .�/
2 C 1/=rt .�/ as in (4.47), the above

expression is independent of j�j and only depends on � . Hence, the function mt defined
in (4.52) can be written as

mt .�/ D2

Z �

��

rt .�/ sin.� � ˛/
rt .�/2 C 1 � 2 cos.� � ˛/

d�.ei˛/ D 2

Z �

��

sin.�0 � ˛/
ı � 2 cos.�0 � ˛/

d�.ei˛/;
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which shows
@2S

@�2
.u; �.u/; ".u// D

d

d�
mt .�/:

Because st .�/ D limz!0
QS.t; �; z/ (see (4.56) for the definition of QS ), Theorem 4.26

implies that taking the limit u! t of the above displayed equation gives us

@2st

@�2
D

d

d�
mt .�/: (4.60)

Similarly, we use (4.29) and Theorem 4.26 to get

@st

@�
D lim
u!t

2 log j�.t/j
t

C 1 D
2�

t
C 1:

It follows that
@2st

@�2
D
2

t
:

So, the restriction of the Brown measure �gt to �t;� is given by

d.�gt j�t;�/.�/ D
1

4�
�st .�/ D

1

4�

1

r2

�
@2

@�2
C

@2

@�2

�
st .�/ D

1

r2
wt .�/: (4.61)

As �gt is a probability measure, it then follows from Lemma 4.25 that �gt is supported
on �t;�. Recall that rt .�/ < 1 and is analytic for all � 2 Ut; N�. We conclude that Wt is
strictly positive (by Proposition 4.24 and d�

d�
> 0) and analytic for all � 2 �t;�. Finally,

the upper bound (4.59) follows from Lemma 4.20 and Proposition 4.24.

We point out that it is possible to express the formula (4.51) for wt in an alternative
way so that there is no derivative involved. Indeed, when � 2 Ut; N�, recall that rt .�/ < 1
and rt .�/ is analytic by Proposition 2.9. We first calculate

1

2

d

d�
mt .�/ D

drt .�/

d�
�

Z �

��

sin.� � x/.1 � rt .�/2/
.rt .�/2 C 1 � 2rt .�/ cos.� � x//2

d�.eix/

C

Z �

��

cos.� � x/.rt .�/3 C rt .�// � 2rt .�/2

.rt .�/2 C 1 � 2rt .�/ cos.� � x//2
d�.eix/: (4.62)

Next, we recall, from Proposition 2.9 and the definition of f .r; �/ given in (4.40), that
when rt .�/ < 1, rt .�/ satisfies the identity

f .rt .�/; �/ D
1 � rt .�/

2

�2 log rt .�/

Z �

��

1

j1 � rt .�/ei.�Cx/j2
d N�.eix/ D

1

t
: (4.63)

Then drt .�/
d�

can be calculated by the differential of the above implicit function:

drt .�/

d�
D �

@f .r; �/=@�

@f .r; �/=@r

ˇ̌̌̌
rDrt .�/

;
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where the denominator is strictly positive whenever rt .�/ < 1, by Corollary 4.14. The
expression in the above displayed equation is rather complicated. The numerator can be
computed as

@f .r; �/

@�
D

1 � r2

�2 log r

Z �

��

2r sin.� C x/
j1 � rt .�/ei.�Cx/j4

d N�.eix/;

while the denominator can be computed as

@f .r; �/

@r
D

�
1 � r2

2r.log r/2
C

r

log r

�Z �

��

1

j1 � rt .�/ei.�Cx/j2
d N�.eix/

�
1 � r2

�2 log r

Z �

��

2r C 2 cos.� C x/
j1 � rt .�/ei.�Cx/j4

d N�.eix/:

Plugging the above formulas for drt .�/
d�

into (4.62) and (4.51), we can obtain an alternative
expression for wt . We remark that in the special case when u D I , this expression is a
very elegant formula (see [20, Theorem 8.2]).

Corollary 4.29. The support of the Brown measure �gt of gt D ubt is the closure of the
open set �t;�. The number of connected components of �t;� is a nonincreasing function
of t .

Proof. The first assertion follows from �gt putting mass 1 on�t;�. The second assertion
follows from the fact that �t;� has the same number of connected components as Ut; N�.
(See (2.15) for the definition of Ut; N�.) Now, the number of connected components of Ut; N�
is nonincreasing by Proposition 2.12.

We now describe the connection between the Brown measure of gt D ubt with the
density function of the spectral distribution of uut obtained in [45] by the second author.
The following two results generalize [20, Propositions 2.5 and 2.6].

Corollary 4.30. The distribution of the argument of � with respect to �gt has a density
given by

at .�/ D �2 logŒrt .�/�wt .�/: (4.64)

Furthermore, the push-forward of �gt under the map � 7! ˆt; N�.rt .�/e
i� / is the distri-

bution of uut .

Proof. The Brown measure is computed in polar coordinates as .1=r2/wt .�/r dr d� in
the domain. Integrating with respect to r from rt .�/ to 1=rt .�/ then gives the claimed
density for � . The last assertion follows from a computation similar to Lemma 4.25.

Proposition 4.31. The Brown measure of ubt is the unique measure � on �t;� with the
following two properties: .1/ the push-forward of � by the map � 7! ˆt; N�.rt .�/e

i� / is
the distribution of uut where � D arg�, and .2/ � is absolutely continuous with respect
to the Lebesgue measure and its density is given by

W.r; �/ D
1

r2
g.�/

in polar coordinates, where g is a continuous function.
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Proof. Suppose � is a measure on �t;� satisfying the above two properties. We haveZ 1=rt .�/

rt .�/

1

r2
g.�/ dr D �2 logŒrt .�/�g.�/:

Hence, using (4.53), we deduce the density of the push-forward measure of � as

�2 logŒrt .�/�g.�/
d�

d�
d� D

� logŒrt .�/�
�t

g.�/

wt .�/
d�:

By comparing the density formula for uut in Theorem 2.11, and noticing that rt .�/ < 1
for � 2 Ut; N�, we must have g.�/ D wt .�/.

We include the matrix simulations of ubt at time t D 0:2 and t D 0:8 where u has
spectral distribution

� D 1
3
ıe�4�i=15 C

2
3
ıe4�i=15 :

We again emphasize that it is still an open problem to prove mathematically that the
Brown measure of ubt is the weak limit of the empirical eigenvalue distribution of
UNGN .t/ where GN .t/ is the Brownian motion on GL.N;C/ and UN is a determin-
istic (or random but independent of GN .t/) unitary matrix whose empirical eigenvalue
distribution has weak limit �.

In each of Figures 6 and 7, part (a) plots the eigenvalues of ubt against the unit circle,
and the curves !t .ei�/, 1=!t .ei�/. Part (b) of the figures shows the eigenvalues of ubt
and the curves !t .ei�/, 1=!t .ei�/ after pushing forward by the principal logarithm. We
can see that the density of the points is constant along the horizontal direction. Part (c)
shows the histogram of the argument of eigenvalues after pushing forward by the map � 7!
ˆt; N�.rt .�/e

i� / against the theoretical distribution—the spectral distribution of uut—in
argument. We remark that the spectral distribution of uut is established in Theorem 2.11.

4.7. The Brown measure of hbt

In this section, we calculate the Brown measure of hbt where h is Haar unitary as an
example. Recall from Section 2.4 that when u is a Haar unitary h, we have

†t; Nh.z/ D e
t=2 and ˆt; Nh.z/ D ze

t=2; (4.65)

and rt .�/ D e�t=2 for all � . Hence ˆt; Nh.rt .�/e
i� / D ei� and

� D �.�/ D arg
�
ˆt; Nh.rt .�/e

i� /
�
D �:

In addition,
�t; Nh D ¹z W jzj < e

�t=2
º;

and the set �t; Nh is the annulus

�t; Nh D ¹z W e
�t=2 < jzj < et=2º: (4.66)
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(a) Eigenvalue plot for ubt and the curves !t .ei�/
(blue), 1=!t .ei�/ (red) and the unit circle (dashed
black)

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

(b) Push-forward of eigenvalues ubt by principal loga-
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Fig. 6. 2100 � 2100 matrix simulations for uut at t D 0:3, where u is distributed as 13 ıe�4�i=15 C
2
3 ıe4�i=15 .

Therefore, by (4.53), we have

wt .�/ D
1

2�t
:

Finally, by Theorem 4.28, we have the following formula for the Brown measure of hbt .

Theorem 4.32. The Brown measure �hbt of hbt is the annulus law. It is supported in the
annulus At D ¹e�t=2 � jzj � et=2º, rotationally invariant, and the density Wt of �hbt in
polar coordinates is given by

Wt .r; �/ D
1

2�t

1

r2
; (4.67)

which is independent of � .
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Remark 4.33. The name annulus law was coined by Driver, Hall and Kemp. It is
expected that the solution of

dGN .t/ D GN .t/ dZN .t/

under the initial condition that GN .0/ is the Haar measure on the unitary group has the
limiting eigenvalue distribution equal to the Brown measure of hbt . One can run a com-
puter program to see that the eigenvalues of GN .t/ are distributed on an annulus At with
inner radius e�t=2 and outer radius et=2. The support At also occurs in the discussion of
the free Hall transform as s !1 [31, Corollary 4.26].
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(a) Eigenvalue plot for ubt and the curves !t .ei�/
(blue), 1=!t .ei�/ (red) and the unit circle (dashed
black)
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(c) Histogram of the argument of the eigenvalues ubt
pushed forward by� 7! ˆt; N�.rt .�/e
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tion of uut is superimposed.

Fig. 7. 2100 � 2100 matrix simulations for uut at t D 0:8, where u is distributed as 13 ıe�4�i=15 C
2
3 ıe4�i=15 .
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Appendix A. The Brown measure of hbt and R-diagonal operators

In this section, we provide an alternative way to calculate the Brown measure of hbt ,
the free multiplicative Brownian motion with the Haar unitary as the initial condition,
using Haagerup and Larsen’s formula. The operator hbt is an R-diagonal operator [36,
Corollary 15.9] and its Brown measure can be characterized by the S -transform of btb�t
[24, Theorem 4.4]. (See (2.4) for the definition of S -transform.) The S -transform of btb�t
has been calculated by Biane [11] using a different (but equivalent) normalization. We put
these work together to give an explicit formula for the Brown measure of hbt .

For every t 2 R, it is known by [7, Lemmas 6.3 and 7.1] that the functions

S.z/ D exp.t.z C 1=2//

are the S -transforms of probability measures t (see (2.4) for the definition of S -trans-
form). The corresponding probability measures are supported on the unit circle T for
t > 0, and the corresponding probability measures are supported on the positive half-line
RC for t < 0. For a probability measure � on T or on RC, the S -transform S� of � is
equivalent to the †-transform †�

†�.z/ D S�

�
z

1 � z

�
:

Converting the S -transform to the†-transform, we have a family of probability measures
t (t 2 R) such that

†t .z/ D exp
�
t

2

1C z

1 � z

�
: (A.1)

When t > 0, the measure t is known [9] to be the spectral distribution of the free unitary
Brownian motion ut defined in (2.5). When t D 0, the measure 0 is the Dirac measure
at x D 1. When t < 0, the measure is known as the positive Brownian motion on RC in
free probability literature. The formulas for the densities and moments of t can be found
in [9, 11, 45].

Let us recall Haagerup–Larsen’s formula [24] for the Brown measure of R-diagonal
operators reformulated in [6, Theorem 2].

Theorem A.1 (Haagerup–Larsen [24]). Let a be an operator that is �-free from the Haar
unitary h in a W �-probability space .A ; �/. The Brown measure �x of the R-diagonal
operator x D ha is the unique rotationally invariant probability measure such that

�x.¹z 2 C W jzj � rº/ D

8̂̂<̂
:̂
0 for r � Œ�.xx�/�1��1=2;

1C S
h�1i
xx� .r

�2/ for Œ�.xx�/�1��1=2 � r � Œ�.xx�/�1=2;

1 for r � Œ�.xx�/�1=2:

We then have to calculate the S -transform of btb�t . It is known from Biane’s work
[9, 11] (see also [32]) that the probability measures t that connect to the spectral distri-
bution of btb�t are the case t < 0. As the parametrizations in [9, 11] are slightly different
from ours, we provide details here for convenience.
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For t > 0, we denote Qt D e
�tbtb

�
t and set the generating function

 .t; z/ D

1X
nD1

zn�.Qn
t /:

The following result is essentially from [11, Lemma 13].

Lemma A.2. The generating function  .t; z/ satisfies

@ .t; z/

@t
D 2z .t; z/

@ .t; z/

@z
: (A.2)

Proof. Recalling that bt is the solution of (2.6), by the free Itô formula (3.3) we have

dQt D e
�tbt .dct C dc

�
t /b
�
t :

By induction, from the free Itô formula we obtain

dQn
t D

n�1X
kD0

Qk
t dQtQ

n�k�1
t C 2

n�1X
kD1

kQk
t �.Q

n�k
t /dt:

Integrating and take trace, we deduce

�.Qn
t / D 2

Z t

0

n�1X
kD1

k�.Qk
s /�.Q

n�k
s / ds C 1; (A.3)

which yields

 .t; z/ D 2

Z t

0

z .t; z/
@ .t; z/

@z
ds C

z

1 � z
:

The conclusion then follows by taking the derivative with respect to t .

The following result was mentioned implicitly in [9] and the proof can be adapted
from [9, proof of Lemma 1].

Proposition A.3. The spectral distribution of btb�t is the measure �2t defined in (A.1).
The S -transform of btb�t is given by

Sbtb�t .z/ D e
�t�2tz :

Proof. Let �.t; z/ D  �2t .e
�tz/; we shall prove that �.t; z/ D  .t; z/. Fix t > 0. By

(A.1) and the definition of †-transform, a simple calculation yields

 �2t .z/

1C  �2t .z/
exp.�t � 2t �2t .z// D z:

By replacing z by e�tz, we obtain

�.t; z/

1C �.t; z/
exp.�2t�.t; z// D z: (A.4)
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We next show that �.t; z/ satisfies the same differential equation (A.2) as  .t; z/. To
this end, from (A.4), we calculate the implicit differentials

@�.t; z/

@t
D

2z�.t; z/.1C �.t; z//e2t�.t;z/

1 � ze2t�.t;z/ � 2tz.1C �.t; z//e2t�.t;z/
;

and
@�.t; z/

@z
D

.1C �.t; z//e2t�.t;z/

1 � ze2t�.t;z/ � 2tz.1C �.t; z//e2t�.t;z/
;

which implies that �.t; z/ satisfies the same differential equation (A.2) as .t; z/. Since 
is a power series in z, the differential equation (A.2) is equivalent to the differential equa-
tions (A.3) for the coefficients ¹�.Qn

t /º
1
nD1 of  .t; z/. Because � is an analytic function

in z satisfying the same differential equation as  , the coefficients at;n of

�.t; z/ D

1X
nD1

at;nz
n

satisfy the same differential equations as �.Qn
t / in (A.3). Since �.0; z/ D z=.1 � z/ D

 .0;z/, we have the initial conditions �.Qn
0/D a0;n. The differential equations for �.Qn

t /

(and at;n) given in (A.3) have a unique solution. Consequently, �.Qn
t /D at;n and �D  .

Therefore,
Sbtb�t .z/ D S�2t .z/ D e

�t�2tz ;

which concludes the proof.

Remark A.4. Indeed, the moments �.Qn
t / can be computed explicitly. The interested

readers are referred to [9, Lemma 1 and Proposition 5].

We can calculate �.btb�t / directly from the S -transform of btb�t as

�.btb
�
t / D  

0

btb
�
t
.0/ D

1

Sbtb�t .0/
D et :

It is known [45] that supp.�2t / D Œr�.2t/; rC.2t/�, where

r˙.2t/ D
�
.1 � t /˙

p
t .t � 2/e�

p
t.t�2/

�
:

In particular, r�.2t/rC.2t/ D 1 and so btb�t is strictly positive. By the free Itô formula,
we can check that

db�1t D �dctb
�1
t :

Hence it is routine to check that .btb�t /
�1 has the same distribution as btb�t . Therefore,

�..btb
�
t /
�1/ D �.btb

�
t / D et . We are now ready to apply Theorem A.1 to deduce the

formula for the Brown measure of hbt . For any e�t=2 � r � et=2, we have

�hbt .¹jzj � rº/ D 1C S
h�1i

btb
�
t

�
1

r2

�
D
1

2
C

log r
t
: (A.5)

This leads to an alternative derivation of the density for the Brown measure of hbt com-
puted in Theorem 4.32.
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Theorem A.5. The Brown measure �hbt of hbt is the annulus law. It is supported in the
annulus At D ¹e�t=2 � jzj � et=2º, rotationally invariant, and the density Wt of �hbt in
polar coordinates is given by

Wt .r; �/ D
1

2�t

1

r2
; (A.6)

which is independent of � .

Proof. Since the density of the Brown measure of the R-diagonal operator hbt is rota-
tionally invariant, we assume that the density of the Brown measure is f .r/. Then (A.5)
shows that

1

2
C

log r
t
D �hbt .¹jzj � rº/ D

Z r

0

Z 2�

0

f .R/R dR d� D 2�

Z r

0

f .R/R dR:

Differentiating the above equation with respect to r gives 1=.rt/D 2�f .r/r . This proves

f .r/ D
1

2�t

1

r2
;

which is the claimed density (A.6) of the Brown measure of hbt .
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