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Abstract. We consider planar directed last-passage percolation on the square lattice with general
i.i.d. weights and study the geometry of the full set of semi-infinite geodesics in a typical realization
of the random environment. The structure of the geodesics is studied through the properties of the
Busemann functions viewed as a stochastic process indexed by the asymptotic direction. Our results
are further connected to the ergodic program for and stability properties of random Hamilton–Jacobi
equations. In the exactly solvable exponential model, our results specialize to give the first complete
characterization of the uniqueness and coalescence structure of the entire family of semi-infinite
geodesics for any model of this type. Furthermore, we compute statistics of locations of instability,
where we discover an unexpected connection to simple symmetric random walk.
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1. Introduction

1.1. Random growth models

Irregular or random growth is a ubiquitous phenomenon in nature, from the growth of
tumors, crystals, and bacterial colonies to the propagation of forest fires and the spread of
water through a porous medium. Models of random growth have been a driving force in
probability theory over the last sixty years and a wellspring of important ideas [2].

The mathematical analysis of such models began in the early 1960s with the introduc-
tion of the Eden model by Eden [21] and first-passage percolation (FPP) by Hammersley
and Welsh [31]. About two decades later, early forms of a directed variant of FPP, directed
last-passage percolation (LPP), appeared in a paper by Muth [42] in connection with
series of queues in tandem. Soon after, Rost [47] introduced a random growth model, now
known as the corner growth model (CGM), in connection with the totally asymmetric sim-
ple exclusion process (TASEP), a model of interacting particles. A decade later, the CGM
arose naturally from LPP in queueing theory in the work of Szczotka and Kelly [50] and
Glynn and Whitt [29]. Around the same time, the third author [48] connected the CGM
and LPP to Hamilton–Jacobi equations and Hopf–Lax–Oleinik semigroups.

Much of this early work was primarily concerned with the deterministic asymptotic
shape and large deviations of the randomly growing interface. The breakthrough of Baik,
Deift, and Johansson [3] showed that the fluctuations of the Poissonian LPP model have
the same limit as the fluctuations of the largest eigenvalue of the Gaussian unitary en-
semble derived by Tracy and Widom [51]. This result was extended to the exactly solvable



Geodesics in LPP 3

versions of the CGM by Johansson [37]. These results marked the CGM and the related
LPP and TASEP models as members of the Kardar–Parisi–Zhang (KPZ) universality
class. This universality class is conjectured to describe the statistics of a growing interface
observed when a rapidly mixing stable state invades a rapidly mixing metastable state.
This subject has been a major focus of probability theory and statistical physics over the
last three decades. Recent surveys appear in [14, 15, 30, 44, 45].

1.2. Geodesics

A common feature of many models of random growth is a natural metric-like interpreta-
tion in which there exist paths that can be thought of as geodesics. In these interpretations,
the growing interface can be viewed as a sequence of balls of increasing radius and cen-
tered at the origin. This connection is essentially exact in the case of FPP, which describes
a random pseudo-metric on Zd . Related models like the CGM and stochastic Hamilton–
Jacobi equations have natural extremizers through their Hopf–Lax–Oleinik semigroups,
which share many of the properties of geodesics. For this reason and following the con-
vention in the field, we will call all such paths geodesics.

Considerable effort has been devoted to understanding the geometric structure of
semi-infinite geodesics in models of random growth. In the mathematical literature, this
program was largely pioneered in the seminal work of Newman and co-authors [33, 34,
40, 43], beginning with his paper in the 1994 Proceedings of the ICM [43]. Under strong
hypotheses on the curvature of the limit shape, that early work showed that all such
geodesics must be asymptotically directed and that for Lebesgue-almost every fixed direc-
tion, from each site of the lattice, there exists a unique semi-infinite geodesic with that
asymptotic direction and all these geodesics coalesce. In special cases where the curvature
hypotheses are met, Newman’s program was subsequently implemented in LPP models
[11–13,26,52] and certain stochastic Hamilton–Jacobi equations [4,5,7]. In all the results
of the last twenty-five years, the obstruction of needing to work on direction-dependent
events of full probability has been a persistent issue. A description of the overall geomet-
ric structure of semi-infinite geodesics has remained elusive.

It is known that the picture described by these now-classical methods cannot be com-
plete, because uniqueness fails for countably infinitely many random directions [16, 25,
27]. In the CGM, these special directions are the asymptotic directions of competition
interfaces. These are dual lattice paths that separate geodesics rooted at a fixed site. Com-
petition interface directions are distinguished by the existence of (at least) two geodesics
that emanate from the same site, have the same asymptotic direction, but separate imme-
diately in their first step. Once these two geodesics separate they never intersect again. So
in these directions coalescence also fails.

Borrowing ideas from classical metric geometry, Newman [43] introduced the tool
of Busemann functions into the field. In Newman’s work, these Busemann functions are
defined as directional limits of differences of metric distances or passage times. Following
Newman’s work and the subsequent seminal work of Hoffman [32], Busemann functions
have become a principal tool for studying semi-infinite geodesics. The existence of the
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Busemann limits, however, relies on strong hypotheses on the limit shape. Modern work
primarily uses generalized Busemann functions, which exist without assumptions on the
limit shape [1, 17, 18, 27, 28].

1.3. Busemann measures

The present paper introduces a new framework that relates geometric properties of
geodesics to analytic properties of a measure-valued stochastic process called the Buse-
mann process or Busemann measures. These Busemann measures are Lebesgue–Stieltjes
measures of generalized Busemann functions on the space of spatial directions, and
the Busemann process is the associated family of distribution functions. This approach
enables a study of the entire family of semi-infinite geodesics on a single event of full
probability.

We describe, in terms of the supports of the Busemann measures, the random excep-
tional directions in which uniqueness or coalescence of geodesics fails. Many of these
results hold without further assumptions on the weight distribution. This work also identi-
fies key hypotheses that are equivalent to desirable coalescence and uniqueness properties
of geodesics. We expect that our methods will apply in related models including FPP and
stochastic Hamilton–Jacobi equations.

In the exactly solvable case with i.i.d. exponential weights, when the new results are
combined with previous work from [16,26,27], this yields a complete characterization of
the uniqueness and coalescence structure of all semi-infinite geodesics on a single event
of full probability. Here is a summary:

(i) Every semi-infinite geodesic has an asymptotic direction.

(ii) There exists a random countably infinite dense set of interior directions in which
there are exactly two geodesics from each lattice site, a left geodesic and a right
geodesic. These two families of left and right geodesics can be constructed from the
Busemann process. Each family forms a tree of coalescing geodesics.

(iii) In every other interior direction there is a unique geodesic from each lattice point,
which again can be constructed from the Busemann process. In each such direction
these geodesics coalesce to form a tree.

(iv) The countable set of directions of non-uniqueness is exactly the set of asymptotic
directions of competition interfaces from all lattice points, in addition to being the
set of discontinuity directions of the Busemann process.

(v) In a direction � of non-uniqueness, finite geodesics out of a site x with endpoints
going in direction � converge to the left (resp. right) semi-infinite geodesic out of x
with asymptotic direction � if and only if the endpoints eventually stay to the left
(resp. right) of the competition interface rooted at the point where the left and right
semi-infinite geodesics out of x split.

(vi) In a direction � of uniqueness, finite geodesics out of a site x with endpoints going
in direction � converge to the semi-infinite geodesic out of x with asymptotic direc-
tion �.
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This gives the first complete accounting of semi-infinite geodesics in a model which lies
in the KPZ class.

1.4. Instability points

Passage times in LPP solve a variational problem that is a discrete version of the stochas-
tic Burgers Hopf–Lax–Oleinik semigroup. Through this connection, this paper is also
related to the ergodic program for the stochastic Burgers equation initiated by Sinai [49].
As mentioned in point (iv) above, the exceptional directions in which coalescence fails
correspond to directions at which the Busemann process has jump discontinuities. This
means that the Cauchy problem at time �1 is not well-posed for certain initial condi-
tions that correspond to these exceptional directions. In this case, it is reasonable to expect
that solving the Cauchy problem with the initial condition given at time t0 and letting
t0 ! �1 gives multiple limits at the space-time locations where the Busemann process
has jump discontinuities. Thus we call these locations points of instability. In situations
where the Cauchy problem is well-posed, points of instability correspond to shock loca-
tions. The structure of shocks in connection with the Burgers program has been a major
line of research [4, 10, 20], with a conjectured relationship between shock statistics and
the KPZ universality phenomenon (Bakhtin and Khanin [6]). These conjectures are open.

Past works [4,6,10,20] considered shocks in fixed deterministic directions, where the
Cauchy problem at time �1 is shown to be well-posed almost surely and these shocks
are the only points of instability. Our model is in a non-compact space setting, where
these problems have been especially difficult to study. In exceptional directions, points
of instability turn out to have a markedly different structure from what has been seen
previously in fixed directions. Among the new phenomena are that points of instability
form bi-infinite paths that both branch and coalesce. Bi-infinite shock paths have previ-
ously been observed only when the space is compact and the asymptotic direction is fixed.
Branching shocks have not been observed.

In the exponential model we compute non-trivial statistics of points of instability.
Among our results is an unexpected connection with simple symmetric random walk:
conditional on a �-directed path of instability points passing through the origin, the dis-
tribution of the locations of �-points of instability on the x-axis has the same law as the
zero set of simple symmetric random walk sampled at even times.

1.5. Organization of the paper

Section 2 defines the model and summarizes the currently known results on Busemann
functions and existence, uniqueness, and coalescence of geodesics. Section 3 contains
our main results on Busemann measures and the geometry of geodesics for general weight
distributions. Section 4 connects our general results to dynamical systems and studies the
web of instability defined by the discontinuities of the Busemann process. Section 5 spe-
cializes to the exponential case to compute non-trivial statistics of the Busemann process.
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Proofs come in Sections 7–9, with some auxiliary results relegated to Appendices B–D.
Appendix A collects the inputs we need from previous work.

1.6. Setting and notation

Throughout this paper, .�;F ; P / is a Polish probability space equipped with a group
T D ¹Txºx2Z2 of F -measurable P -preserving bijections Tx W � ! � such that T0 D
identity and TxTy D TxCy , and E is expectation relative to P . A generic point in this
space is denoted by ! 2 �. We assume that there exists a family ¹!x.!/ W x 2 Z2º of
real-valued random variables called weights such that

¹!xº are i.i.d. with a continuous distribution under P ,
V ar.!0/ > 0, and 9p > 2 : EŒj!0jp� <1. (1.1)

We require further that !y.Tx!/ D !xCy.!/ for all x; y 2 Z2. Moreover, P0 denotes
the marginal distribution of ¹!x W x 2 Z2º under P . Continuous distribution means that
P0.X � r/ is a continuous function of r 2R.X � Exp.˛/means that the random variable
X satisfies P.X > t/ D e�˛t for t > 0 (rate ˛ exponential distribution).

The canonical setting is the one where � D RZ2 is endowed with the product topol-
ogy, Borel � -algebra F , and the natural shifts, !x are the coordinate projections, and
P D P0 is a product shift-invariant measure.

The standard basis vectors of R2 are e1 D eC D .1; 0/ and e2 D e� D .0; 1/. The
e˙ notation will conveniently shorten some statements. Additional special vectors are
ye1 D e1 C e2, ye �1 D ye1=2, ye2 D e2 � e1, and ye �2 D ye2=2. In the dynamical view of LPP,
ye1 is the time coordinate and ye2 the space coordinate. See Figure 1.1. The spatial level at
time t 2 Z is denoted by Lt D ¹x 2 Z2 W x � ye1 D tº. The half-vectors ye �1 and ye �2 connect
Z2 with its dual lattice Z2� D ye �1 C Z2.

e2 D e�

e1 D eC

ye1ye2

0

ye �1ye �2

0

U

0

e2

e1

Fig. 1.1. An illustration of the vectors e1, e2, e˙, ye1, ye2, ye �1 , ye �2 , and the set U. The dashed lines
in the middle plot are edges of the dual lattice Z2� D Z2 C ye �1 .

A statement with ˙ and possibly also � is a conjunction of two statements: one for
the top signs, and another one for the bottom signs. We employ � to represent an arbitrary
element of ¹�;Cº.

We use RC D Œ0;1/, ZC D Z\RC and N D ¹1; 2; 3; : : : º. For x; y 2 R2, inequal-
ities such as x � y and x < y, and operations such as x ^ y D min.x; y/ and x _ y D
max.x; y/ are understood coordinatewise. (In particular, x < y means x � ei < y � ei for
both i D 1; 2.) For x � y in Z2, Jx; yK denotes the rectangle ¹z 2 Z2 W x � z � yº. For
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integers i � j , Ji; j K denotes the interval Œi; j � \ Z. For m � n in Z [ ¹�1;1º we
denote a sequence ¹ai W m � i � nº by am;n.

A path �m;n in Z2 with �iC1 � �i 2 ¹e1; e2º for all i is called an up-right path.
Throughout, paths are indexed so that �k � ye1 D k.

For vectors �;�2R2, denote open and closed line segments by ��;�ŒD¹t�C .1� t /� W
0 < t < 1º and Œ�; �� D ¹t� C .1 � t /� W 0 � t � 1º, with the consistent definitions for
��; �� and Œ�; �Œ. Set U D Œe2; e1� with relative interior ri U D � e2; e1Œ. See Figure 1.1.
A left-to-right ordering of points �; � 2 R2 with � � ye1 D � � ye1 is defined by � � � if
� � e1 < � � e1 and � � � if � � e1 � � � e1. This leads to notions of left and right limits: if
�n ! � in U, then �n % � if �n � �nC1 for all n, while �n & � if �nC1 � �n for all n.

The support supp � of a signed Borel measure � is the smallest closed set whose
complement has zero measure under the total variation measure j�j.

2. Preliminaries on last-passage percolation

This section introduces the background required for the main results in Sections 3–5. To
avoid excessive technical detail at this point, precise statements of previous results needed
for the proofs later in the paper are deferred to Appendix A.

2.1. The shape function

Recall the assumption (1.1). For x � y in Z2 satisfying x � ye1 D k and y � ye1 Dm, denote
by …y

x the collection of up-right paths �k;m which satisfy �k D x and �m D y. The
last-passage time from x to y is defined by

Gx;y D G.x; y/ D max
�k;m2…

y
x

m�1X
iDk

!�i : (2.1)

A maximizing path is called a (point-to-point or finite) geodesic and denoted by x;y .
Under the i.i.d. continuous distribution assumption (1.1), x;y is almost surely unique.

The shape theorem [41] says there exists a non-random function g W R2C ! R such
that with probability 1,

lim
n!1

max
x 2Z2

C
W jxj1Dn

jG0;x � g.x/j

n
D 0: (2.2)

This shape function g is symmetric, concave, and homogeneous of degree one. By homo-
geneity, g is determined by its values on U. Concavity implies the existence of one-sided
derivatives:

rg.�˙/ � e1 D lim
"&0

g.� ˙ "e1/ � g.�/

˙"
; rg.�˙/ � e2 D lim

"&0

g.� � "e2/ � g.�/

�"
:



C. Janjigian, F. Rassoul-Agha, T. Seppäläinen 8

� � � � �

Fig. 2.1. In the first three graphs, g is not strictly concave at � while in the last two it is.

By [35, Lemma 4.7 (c)] differentiability of g at � 2 ri U is the same as rg.�C/ D
rg.��/. Denote the directions of differentiability by

D D ¹� 2 ri U W g is differentiable at �º: (2.3)

For � 2 ri U, define the maximal linear segments of g with slopes given by the right
.� D C/ and the left .� D �/ derivatives of g at � to be

U�� D ¹� 2 ri U W g.�/ � g.�/ D rg.��/ � .� � �/º; � 2 ¹�;Cº:

We say g is strictly concave at � 2 ri U if U�� D U�C D ¹�º. Geometrically this means
that � does not lie on a non-degenerate closed linear segment of g. The usual notion of
strict concavity on an open subinterval of U is the same as having this pointwise strict
concavity at all � in the interval.

For a given � 2 ri U, let � � � denote the endpoints of the (possibly degenerate)
interval

U� D U�� [U�C D Œ�; � �:

If � 2D then U�� DU�C DU� while if � …D then U�� \ U�C D ¹�º. Set Uei D ¹eiº

for i 2 ¹1; 2º.
Additional control over the geometry of geodesics is provided by this regularity con-

dition:

The shape function g is strictly concave at all � … D , or equivalently
g is differentiable at the endpoints of its linear segments. (2.4)

Condition (2.4) holds obviously if g is either differentiable or strictly concave. Both
of these latter properties are true for exponential weights and are conjectured to be valid
more generally for continuously distributed weights. Under (2.4), if both U�� and U�C

are non-degenerate intervals, then U�� D U�C D U� (leftmost graph in Figure 2.1).

2.2. The Busemann process

Under regularity condition (2.4), it is known that for each fixed � 2 D and x; y 2 Z2,
there is a �-dependent event of full probability on which the limit

B�.x; y/ D lim
n!1

.Gx;vn �Gy;vn/ (2.5)

exists and agrees for all sequences vn 2 Z2 such that jvnj ! 1 and vn=n! �. Similar
limits appear in metric geometry under the name of Busemann functions.
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The goal of this paper is to study the LPP model without a priori hypotheses on
the shape function. Hence the limit in (2.5) cannot serve as a starting point. Instead
we work with a stochastic process of generalized Busemann functions, indexed by
� 2 ri U, constructed through a weak limit procedure on an extended probability space.
See Remark A.2 for a brief discussion of the construction of this process in [36], which is
based in part on ideas from [17,28]. This process agrees with (2.5) when the limit in (2.5)
exists.

The construction in [36] produces a probability space .�;F ;P /with a group of shifts
T D ¹Tx W x 2 Z2º that satisfies the requirements of Section 1.6 and a stochastic process
¹B��.x;y/ W x;y 2Z2; � 2 riU; � 2 ¹�;Cºº on�, which we call the Busemann process.
We record here those properties of this process that are needed for Sections 3–5.

In general, there is a T -invariant full probability event on which the following hold.
For all � 2 ri U, x; y; z 2 Z2, and � 2 ¹�;Cº,

B��.x C z; y C z; !/ D B��.x; y; Tz!/; (2.6)

B��.x; y; !/C B��.y; z; !/ D B��.x; z; !/; (2.7)

min ¹B��.x; x C e1; !/; B��.x; x C e2; !/º D !x ; (2.8)

EŒB��.x; x C ei /� D rg.��/ � ei : (2.9)

Properties (2.6)–(2.7) express that eachB�� is a covariant cocycle. The weights recov-
ery property (2.8) is the key that relates these cocycles to the LPP process. (2.9) shows
that the Busemann process is naturally parametrized by the superdifferential of the shape
function g. The following monotonicity is inherited from the path structure: for all x 2Z2

and �; � 0 2 ri U with � � � 0,

B��.x; x C e1; !/ � B
�C.x; x C e1; !/ � B

�0�.x; x C e1; !/ � B
�0C.x; x C e1; !/;

B��.x; x C e2; !/ � B
�C.x; x C e2; !/ � B

�0�.x; x C e2; !/ � B
�0C.x; x C e2; !/:

(2.10)

As a consequence of monotonicity and the cocycle property (2.7), left and right limits
exist. The signs in B�˙ correspond to left and right continuity: for all x;y 2 Z2, � 2 ri U,
and � 2 ¹�;Cº,

B��.x; y; !/ D lim
ri U3 �%�

B��.x; y; !/; B�C.x; y; !/ D lim
ri U3 �&�

B��.x; y; !/:

(2.11)

When B�C.x; y;!/ D B��.x; y;!/ we drop theC=� distinction and write B�.x; y;!/.
Theorem A.1 in Appendix A contains the complete list of the properties of the Buse-

mann process that are used in the proofs in Sections 7–8.

2.3. Semi-infinite geodesics

A path �k;1 with �iC1 � �i 2 ¹e1; e2º for all i � k is called a semi-infinite geodesic
emanating from, or rooted at, x if �k D x and for any m; n 2 ZC with k � m � n, the
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restricted path �m;n is a geodesic between �m and �n. A path ��1;1 with �iC1 � �i 2
¹e1; e2º for all i is called a bi-infinite geodesic if �m;n is a geodesic for any m � n in Z.
Due to the fact that the set of admissible steps is ¹e1; e2º, from each site x, there are
always two trivial semi-infinite geodesics, namely x CZCe1, which we denote by  x;e1 ,
and x C ZCe2, which we denote by  x;e2 . There are two trivial bi-infinite geodesics
going through x, namely x C Ze1 and x C Ze2, which we do not introduce notation for.

A semi-infinite geodesic �k;1, or a bi-infinite geodesic ��1;1, is directed into a set
A � U if the limit points of �n=n as n!1 are all in A. When A D ¹�º the condition
becomes limn!1 �n=n D � and we say �k;1 is �-directed.

Using the Busemann process, we construct a semi-infinite path  x;�� for each � 2
ri U, both signs � 2 ¹�;Cº, and all x 2 Z2, via these rules: the initial point is 

x;��
m D x

where m D x � ye1, and for n � m,


x;��
nC1 D

8̂̂<̂
:̂


x;��
n C e1 if B��. x;��

n ;
x;��
n C e1/ < B

��.
x;��
n ;

x;��
n C e2/;


x;��
n C e2 if B��. x;��

n ;
x;��
n C e1/ > B

��.
x;��
n ;

x;��
n C e2/;


x;��
n C e� if B��. x;��

n ;
x;��
n C e1/ D B

��.
x;��
n ;

x;��
n C e2/:

(2.12)

As above, we dispense with the ˙ distinction when  x;�C D  x;��. These geodesics
inherit an ordering from (2.10): for all x 2 Z2, n � x � ye1, and � � � in ri U,

 x;��
n �  x;�C

n �  x;��
n �  x;�C

n : (2.13)

Similarly, the geodesics inherit one-sided continuity from (2.11) in the sense of con-
vergence of finite length segments: for all x 2 Z2, � 2 ri U and � 2 ¹�;Cº, if k D x � ye1
and m � k is an integer, then

lim
ri U3�&�


x;��
k;m
D 

x;�C

k;m
and lim

ri U3 �%�

x;��
k;m
D 

x;��

k;m
: (2.14)

An elementary argument given in [27, Lemma 4.1] shows that properties (2.7) and
(2.8) combine to imply that these paths are all semi-infinite geodesics and that moreover
for all choices of x 2 Z2, n � x � ye1, � 2 ¹�;Cº, and � 2 ri U, we have

G.x; x;��
n / D B��.x; x;��

n /: (2.15)

Below are the main properties of these Busemann geodesics  x;�� under assumption
(1.1), from article [27]. (Theorem A.4 provides a more precise accounting.)

(i) Every semi-infinite geodesic is U� -directed for some � 2 U.

(ii)  x;�� is U��-directed for each x 2 Z2 and each � 2 U.

(iii) If �; �; � 2D , then there is a �-dependent event of full probability on which  x;�� D

 x;�C for all x 2 Z2.

(iv) There is a �-dependent event of full probability on which  x;�� and  y;�� coalesce
for each � 2 ¹C;�º. That is, for each x;y 2 Z2, there exists an !-dependentK 2N
such that for all k � K, 

x;��
k;1
D 

y;��
k;1

.
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The regularity condition (2.4) guarantees that  x;�� and  x;�C are extreme among
the U� -directed geodesics out of x in the sense that for any x 2 Z2, � 2 ri U, and any
U� -directed semi-infinite geodesic � emanating from x, we have

 x;��
n � �n �  x;�C

n (2.16)

for all n � x � ye1. We record this fact as Theorem A.7.
Under the regularity condition (2.4) and �; �; � 2 D , part (iii) combined with (2.16)

implies that there is a �-dependent event of full probability on which there is a unique
U� -directed geodesic from each x 2 Z2. Moreover, by part (iv), all of these geodesics
coalesce. On the other hand, under the same condition, it is known that there are excep-
tional random directions at which both uniqueness and coalescence fail. We discuss these
directions in the next subsection.

2.4. Non-uniqueness of directed semi-infinite geodesics

For a fixed site x 2 Z2, a natural direction in which non-uniqueness occurs is the compe-
tition interface direction, which we denote by ��.Tx!/. At the origin, ��.!/ 2 ri U is the
unique direction such that

B�˙.e1; e2/ < 0 if � � ��.!/; B�˙.e1; e2/ > 0 if � � ��.!/: (2.17)

Theorem A.8 records the main properties of competition interface directions, including
the existence and uniqueness of such a direction.

Under the regularity condition (2.4), we also have the following alternative description
of ��.!/. Fix a site x 2 Z2. The uniqueness of finite geodesics implies that the collection
of geodesics from x to all points y 2 x C Z2C forms a tree Tx rooted at x and spanning
x C Z2C. The subtree rooted at x C e1 is separated from the subtree rooted at x C e2 by
a path ¹'xn W n � x � ye1º on the dual lattice ye �1 C Z2, known as the competition interface.
See Figure 2.2.

x

x C e2

x C e1

Fig. 2.2. The geodesic tree Tx rooted at x. The competition interface (solid line) emanates from
x C ye �1 and separates the subtrees of Tx rooted at x C e1 and at x C e2.
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Fig. 2.3. The competition interface (middle path) separating the two ��-directed geodesics. The
left picture is a small portion of the right one. In the picture on the right the x-axis appears to be
stretched, but the scales of the axes are in fact identical.

Under condition (2.4), the competition interface satisfies 'xn=n! ��.Tx!/, given by
(2.17). Moreover, each of these two trees contains at least one semi-infinite geodesic with
asymptotic direction ��.Tx!/. Indeed, ��.Tx!/ is the unique direction with the property
that there exist at least two semi-infinite geodesics rooted at x, with asymptotic direction
��.Tx!/, and which differ in their first step. See Figure 2.3. Theorem A.9 records the fact
that when the weights are exponentially distributed, there are no directions � with three
�-directed geodesics emanating from the same point.

3. Busemann measures, exceptional directions, and coalescence points

The central theme of this paper is the relationship between analytic properties of the
Busemann process and the geometric properties of the geodesics  �;�� for � 2 ri U and
� 2 ¹�;Cº. It will be convenient in what follows to have a bookkeeping tool for the loca-
tions at which the Busemann processes are not locally constant. A natural way to record
this information is through the supports of the associated Lebesgue–Stieltjes measures.

As functions of the direction parameter �, B��x;xCei and B�Cx;xCei are respectively left-
and right-continuous versions of the same monotone function and satisfy the cocycle
property (2.7). As a consequence, for each x; y 2 Z2, � 2 ¹�;Cº, � 7! B��.x; y/ has
locally bounded total variation. Hence on each compact subset K of ri U there exists
a signed Lebesgue–Stieltjes measure �Kx;y with the property that whenever � � � and
Œ�; �� � K,

�Kx;y.��; ��/ D B
�C
x;y � B

�C
x;y and �Kx;y.Œ�; �Œ/ D B

��
x;y � B

��
x;y : (3.1)

The restriction to compact sets is a technical point: in general, B�Cx;y and B��x;y are
signed sums of monotone functions and thus correspond to formal linear combinations of
positive measures. By the limit in (A.1), each of these positive measures assigns infinite
mass to the interval ri U and if any two of the measures come with different signs, the
formal linear combination will not define a signed measure on all of ri U. We will ignore
this technical point in what follows and write �x;y.�/ for the value of this measure and
j�x;y j.�/ for the value of the total variation measure whenever they are unambiguously



Geodesics in LPP 13

defined. In that vein, we define the support of the measure �x;y on ri U as

supp�x;y D
[

�;�2ri UW ���

supp�Œ�;��x;y ; (3.2)

where supp�Œ�;��x;y is, as usual, the support of the (well-defined) total variation measure
j�
Œ�;��
x;y j. Naturally, this definition agrees with the standard notion of the support of a mea-

sure when �x;y is a well-defined positive or negative measure on U.

3.1. Coalescence and the Busemann measures

The first result below relates membership in the support to the existence of disjoint Buse-
mann geodesics.

Theorem 3.1. With P -probability 1, for all x ¤ y in Z2 and � 2 ri U statements (i)
and (ii) below are equivalent:

(i) � 2 supp�x;y .

(ii) Either  x;�� \  y;�C D ; or  x;�C \  y;�� D ;.

Under the regularity condition (2.4), (i) and (ii) are equivalent to

(iii) There exist U� -directed semi-infinite geodesics �x and �y out of x and y, respec-
tively, such that �x \ �y D ;.

The difference between statements (ii) and (iii) is that if � 62 supp�x;y then (ii) leaves
open the possibility that even though  x;�� and  y;�C intersect and  x;�C and  y;��

intersect, there may be other U� -directed geodesics out of x and y that do not intersect.
This is because without the regularity condition (2.4), we currently do not know whether
(2.16) holds, that is, whether  x;�C is the rightmost and  x;�� the leftmost U� -directed
geodesic out of x.

The subsequent several results relate the support of Busemann measures to the coa-
lescence geometry of geodesics. For x; y 2 Z2, � 2 ri U, and signs � 2 ¹�;Cº, define
the coalescence point of the geodesics  x;�� and  y;�� by

z��.x; y/ D

´
first point in  x;�� \  y;�� if  x;�� \  y;�� ¤ ;;

1 if  x;�� \  y;�� D ;:
(3.3)

The first point z in  x;�� \  y;�� is identified uniquely by choosing the common point
z D 

x;��
k
D 

y;��
k

that minimizes k. In the expression above,1 is the point added in the
one-point compactification of Z2. If the two geodesics  x;�� and  y;�� ever meet, they
coalesce due to the local rule in (2.12). We write z�.x; y/ when z��.x; y/ D z�C.x; y/.

As Z2 [ ¹1º-valued functions, � 7! z�C.x;y/ is right-continuous and � 7! z��.x;y/
is left-continuous. Namely, a consequence of (2.14) is that for � 2 ri U and � 2 ¹�;Cº,

lim
ri U3�&�

z��.x; y/ D z�C.x; y/: (3.4)

If z�C.x; y/ D 1 this limit still holds in the sense that then jz��.x; y/j ! 1. The anal-
ogous statement holds for convergence from the left to z��.x; y/.
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The next theorem states that an interval of directions outside the support of a Buse-
mann measure corresponds to geodesics following common initial segments to a common
coalescence point.

Theorem 3.2. With probability 1, simultaneously for all � � � in ri U and all x; y 2 Z2,
statements (i)–(iii) below are equivalent:

(i) j�x;y j.��; �Œ/ D 0.

(ii) Letting k D x � ye1 and ` D y � ye1, there exist a point z with z � ye1 D m � k _ ` and
path segments �k;m and z�`;m with these properties: �k D x, z�` D y, �m D z�m D z,
and for all � 2 ��; �Œ and � 2 ¹�;Cº we have 

x;��
k;m
D �k;m and 

y;��
`;m
D z�`;m.

(iii) Letting k D x � ye1 and `D y � ye1, there exists a point z with z � ye1 D m � k _ ` such
that for all � 2 ��; �Œ and � 2 ¹�;Cº, z��.x; y/ D z.

The next lemma shows that intervals that satisfy statement (i) of Theorem 3.2 almost
surely make up a random dense open subset of ri U.

Lemma 3.3. Let U0 � ri U be a fixed countable dense set of points of differentiability
of g. Then with P -probability 1, for every x;y 2Z and every � 2U0, there exist � � � � �
in ri U such that j�x;y j.��; �Œ/ D 0.

A natural question is whether the measure is Cantor-like with no isolated points of
support, or if the support consists entirely of isolated points, or if both are possible. These
features also turn out to have counterparts in coalescence properties. For a set A � U,
say that � is a limit point of A from the right if A intersects ��; �Œ for each � � � , with a
similar definition for limit points from the left.

Theorem 3.4. With probability 1, for all x; y 2 Z2 and � 2 ri U:

(a) � … supp�x;y , z�C.x; y/ D z��.x; y/ 2 Z2.

(b) � is an isolated point of supp�x;y , z�C.x; y/ ¤ z��.x; y/ but both z�˙.x; y/ are
in Z2.

(c) � is a limit point of supp�x;y from the right, z�C.x; y/D1. Similarly, � is a limit
point of supp�x;y from the left, z��.x; y/ D1.

This motivates the following condition on the Busemann process which will be
invoked in some results in the sequel:

There exists a full P -probability event on which every point of supp�x;y
is isolated, for all x; y 2 Z2. (3.5)

Equivalently, condition (3.5) says that � 7! B�˙.x; y/ is a jump process whose jumps do
not accumulate on ri U. For this reason, we refer to (3.5) as the jump process condition. It
is shown in [22, Theorem 3.4] that (3.5) holds when the weights !x are i.i.d. exponential
random variables. In addition to Lemma 3.3, this is a further reason to expect that (3.5)
holds very generally.
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Under condition (3.5) Theorem 3.4 extends to a global coalescence statement.

Theorem 3.5. Statements (i) and (ii) below are equivalent:

(i) The jump process condition (3.5) holds.

(ii) With P -probability 1, for all x; y 2 Z2, all � 2 ri U, and both signs � 2 ¹�;Cº, the
geodesics  x;�� and  y;�� coalesce.

We introduce the random set of exceptional directions obtained by taking the union of
the supports of the Busemann measures:

V !
D

[
x; y2Z2

supp�x;y � ri U: (3.6)

It turns out that not all pairs x; y are necessary for the union. It suffices to take pairs
of adjacent points along horizontal or vertical lines, or along any bi-infinite path with
non-positive local slopes.

Lemma 3.6. The following holds for P -almost every !. Let x�1;1 be any bi-infinite
path in Z2 such that for all i 2 Z, .xiC1 � xi / � e1 � 0 and .xiC1 � xi / � e2 � 0 and are
not both zero. Then

V !
D

[
i2Z

supp�xi ;xiC1 :

The remainder of this section addresses (i) characterizations of V ! and (ii) its signif-
icance for uniqueness and coalescence of geodesics. The first item relates the exceptional
directions to asymptotic directions of competition interfaces.

Theorem 3.7. The following hold for P -almost every !:

(a) For all x 2 Z2, supp �x;xCe1 \ supp �x;xCe2 D ¹��.Tx!/º. In particular, V ! �

¹��.Tx!/ W x 2 Z2º.

(b) Under the jump process condition (3.5), V ! D ¹��.Tx!/ W x 2 Z2º.

The next issue is the relationship between V ! and regularity properties of g. Recall
the definition (2.3) of D as the set of differentiability points of g. Let H be the subset
of ri U that remains after removal of all open linear segments of g and removal of those
endpoints of linear segments that are differentiability points. Equivalently, H consists of
those � 2 ri U at which g is either non-differentiable or strictly concave.

Theorem 3.8. (a) Let � 2 ri U. Then � 2D if and only if P .� 2 V !/D 0. If � …D then

P .9x W ��.Tx!/ D �/ D P .� 2 V !/ D 1:

(b) For P -almost every !, the set ¹��.Tx!/ W x 2 Z2º and the set V ! are dense subsets
of H .

The next theorem identifies V ! as the set of directions with multiple semi-infinite
geodesics. As before, the regularity condition (2.4) allows us to talk about general U� -
directed semi-infinite geodesics, instead of only the Busemann geodesics  x;��.
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Theorem 3.9. The following hold for P -almost every !:

(a) � 2 .ri U/ n V ! if and only if the following is true:  x;�C D  x;�� for all x 2 Z2

and all these geodesics coalesce.

(b) Under the regularity condition (2.4), � 2 .ri U/ n V ! if and only if the following is
true: there exists a unique U� -directed semi-infinite geodesic out of every x 2Z2 and
all these geodesics coalesce.

(c) Under the jump process condition (3.5) the existence of x 2 Z2 such that  x;�C D

 x;�� implies that  y;�C D  y;�� for all y 2 Z2, all these geodesics coalesce, and
� 2 .ri U/ n V ! .

(d) Assume both the regularity condition (2.4) and the jump process condition (3.5).
Suppose there exists x 2 Z2 such that  x;�C D  x;��. Then there is a unique U� -
directed semi-infinite geodesic out of every x 2 Z2, all these geodesics coalesce, and
� 2 .ri U/ n V ! .

By the uniqueness of finite geodesics, two geodesics emanating from the same
site x cannot intersect after they separate. Consequently, non-uniqueness of semi-
infinite directed geodesics implies the existence of non-coalescing semi-infinite directed
geodesics. When both conditions (2.4) and (3.5) hold, Theorem 3.9 (d) shows the con-
verse: uniqueness implies coalescence.

We close this section with a theorem that collects those previously established prop-
erties of geodesics which hold when both the regularity condition (2.4) and the jump
process condition (3.5) are in force. Lemma 7.4 justifies that the geodesics in part (d) are
�-directed rather than merely U� -directed.

Theorem 3.10. Assume the regularity condition (2.4) and the jump process condition
(3.5). The following hold for P -almost every !:

(a) � 2 V ! if and only if there exist x; y 2 Z2 with B��.x; y/ ¤ B�C.x; y/.

(b) � 2 V ! if and only if there exists x 2 Z2 such that � D ��.Tx!/.

(c) If � 2 .ri U/nV ! , then for each x 2 Z2,  x;� D  x;�� D  x;�C and this is the
unique U� -directed semi-infinite geodesic out of x. For any x; y 2 Z2,  x;� and
 y;� coalesce.

(d) If � 2 V ! , then from each x 2 Z2 there exist at least two �-directed semi-infinite
geodesics that separate eventually, namely  x;�� and  x;�C. For each pair x;y 2Z2,
 x;�� and  y;�� coalesce and  x;�C and  y;�C coalesce.

3.2. Exponential case

We specialize to the case where

¹!x W x 2 Z2º are i.i.d. mean-1 exponential random variables. (3.7)

Rost’s classical result [47] gives the shape function

g.�/ D
�p
� � e1 C

p
� � e2

�2
; � 2 R2C: (3.8)
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The regularity condition (2.4) is satisfied as g is strictly concave and differentiable on
ri U. The supports supp�x;y are unions of inhomogeneous Poisson processes and hence
the jump process condition (3.5) is satisfied. This comes from [22, Theorem 3.4] and
is described in Section 9.1 below. These two observations imply that the conclusions of
Theorem 3.10 hold. With some additional work, we can go beyond the conclusions of
Theorem 3.10 in this solvable setting.

Let s�.x/ denote the location where the �C and �� geodesics out of x split:

s�.x/ D

´
last point in  x;�� \  x;�C if  x;�� ¤  x;�C;

1 if  x;�� D  x;�C:
(3.9)

For part (c) in the next theorem, recall the finite geodesic x;y defined below (2.1) and
the competition interface path 'x introduced in Section 2.4. Convergence of paths means
that any finite segments eventually coincide.

Theorem 3.11. Assume (3.7). Then the conclusions of Theorem 3.10 hold with U� D ¹�º

for all � 2 ri U. Additionally, the following hold P -almost surely:

(a) If � 2 V ! then from each x 2 Z2 there emanate exactly two semi-infinite �-directed
geodesics that eventually separate, namely  x;�� and  x;�C.

(b) For any � 2 ri U and any three �-directed semi-infinite geodesics rooted at any three
points, at least two of the geodesics coalesce.

(c) Let x 2Z2, � 2V ! , and let ¹vnºn�m be any sequence on Z2 such that vn � ye1D n and
vn=n! �. If vn � '

s� .x/
n for all sufficiently large n, then x;vn ! x;�� as n!1.

If 's� .x/n � vn for all sufficiently large n then x;vn ! x;�C as n!1.

(d) For each x 2 Z2, the entire collection of semi-infinite geodesics emanating from x is
exactly ¹ x;e1 ; x;e2 ; x;�� W � 2 ri U; � 2 ¹C;�ºº.

Theorem 3.11 resolves a number of previously open problems on the geometry of
geodesics in the exponential model. It shows that in all but countably many exceptional
directions, the collection of geodesics with that asymptotic direction coalesce and form
a tree. These exceptional directions are identified both with the directions of disconti-
nuity of the Busemann process and the asymptotic directions of competition interfaces.
Moreover, in each exceptional direction � 2 V ! , ahead of each lattice site x, there is a
�-directed competition interface at which the �� and �C geodesics out of x split. These
are the only two �-directed geodesics rooted at x. Strikingly, each of the two families
of �� and �C geodesics has the same structure as the collection of geodesics in a typical
direction: each family forms a tree of coalescing semi-infinite paths.

Theorem 3.11 utilizes Theorem A.9, due to Coupier [16], that rules out three geodesics
that have the same direction, emanate from a common vertex, and eventually separate.
It appears that the modification argument of [16] cannot rule out three non-coalescing
geodesics from distinct roots, and so Theorem 3.11 (b) significantly extends Theorem A.9.

Finally, Theorem 3.11 gives a complete description of the coalescence structure of
finite geodesics to semi-infinite geodesics in the exponential model. Part (c) says that if
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we consider a sequence of lattice sites vn with asymptotic direction �, then the geodesic
from x to vn will converge to the �� geodesic out of x if and only if vn eventually stays to
the left of the competition interface emanating from the site s�.x/ where the �� and �C
geodesics out of x separate. Similarly it will converge to the �C geodesic if and only if
it stays to the right of that path. The competition interface lives on the dual lattice, so for
large n every point vn is either to the left or to the right of the competition interface. The
coalescence structure of semi-infinite geodesics to arbitrary sequences vn with vn=n! �

then follows by passing to subsequences.
The results of Section 3 are proved in Section 7, except Lemma 3.6 which is proved

at the end of Section 8.1.

4. Last-passage percolation as a dynamical system

After the general description of uniqueness and coalescence of Section 3, we take a closer
look at the spatial structure of the set of lattice points where particular values or ranges of
values from the set V ! of exceptional directions appear. (Recall its definition (3.6).) As
mentioned in the introduction, there is a connection to instability in noise-driven conser-
vation laws. The next section explains this point of view.

4.1. Discrete Hamilton–Jacobi equations

We take a dynamical point of view of LPP. Time proceeds in the negative diagonal direc-
tion �ye1 D �e1 � e2 and the spatial axis is ye2 D e2 � e1. For each t 2 Z, the spatial level
at time t is Lt D ¹x 2 Z2 W x � ye1 D tº. For x 2 Z2 and A � Z2 let …A

x denote the set
of up-right paths �k;m such that �k D x and �m 2 A, where k D x � ye1 and m is any
integer� k such that A\Lm ¤ ;. For each � 2 ri U and sign � 2 ¹�;Cº, the Busemann
function B�� satisfies the following equation: for all t � t0 and x 2 Lt ,

B��.x; 0/ D max
°t0�1X
iDt

!�i C B
��.�t0 ; 0/ W � 2 …

Lt0
x

±
: (4.1)

The unique maximizing path in (4.1) is the geodesic segment 
x;��
t;t0

.
Equation (4.1) can be viewed as a discrete Hopf–Lax–Oleinik semigroup. For exam-

ple, equation (4.1) is an obvious discrete analogue of the variational formula (1.3) of [5].
At first blush the two formulas appear different because (1.3) of [5] contains a kinetic
energy term. However, this term is not needed in (4.1) above because all admissible steps
are of size 1 and all paths between levels Lt and Lt0 have equal length (number of steps).

Through this analogy with a Hopf–Lax–Oleinik semigroup we can regardB��.�; 0/ as
a global solution of a discrete stochastic Hamilton–Jacobi equation started in the infinite
past (t0 !1) and driven by the noise !. The spatial difference B��.x C e1; x C e2/ D
B��.x C e1; 0/�B

��.x C e2; 0/ can then be viewed as a global solution of a discretized
stochastic Burgers equation.
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By Lemma B.1, if g is differentiable on ri U, then B�C and B�� both satisfy, for each
x 2 Z2,

lim
jnj!1

B�˙ .x; x C nye2/

n
D rg.�/ � ye2:

Thus, B�˙ are two solutions with the same value of the conserved quantity. Under the
jump process condition (3.5), � 2 supp�xCe1;xCe2 if and only if B�C.x C e1; x C e2/¤
B��.x C e1; x C e2/. This means that the locations x where � 2 supp�xCe1;xCe2 are
precisely the space-time points at which the two solutions B�˙ differ. It is reasonable to
expect then that these points are locations of instability in the following sense. The spatial
difference of the solution to the stochastic Hamilton–Jacobi equation started at time t0
with a linear initial condition dual to �,

max ¹GxCe1;y � y � rg.�/ W y � ye1 D t0º �max ¹GxCe2;y � y � rg.�/ W y � ye1 D t0º;

has at least two limit points B�˙.x C e1; x C e2/C .e1 � e2/ � rg.�/ as t0 !1. This
is supported by simulations and is hinted at by Theorem 3.11 (c).

With these points in mind, we now define what we mean by instability points and then
turn to studying their geometric structure. Proofs of the results of this section appear in
Section 8.

4.2. Webs of instability

For a direction � 2 ri U and a sign � 2 ¹�;Cº, let G�� be the directed graph whose
vertex set is Z2 and whose edge set includes .x; x C ei / whenever 

x;��
mC1 D x C ei . Here

mD x � ye1 and we consider both i 2 ¹1; 2º. These are the directed graphs of �� geodesics
defined by (2.12). By construction, each G�� is a disjoint union of trees, i.e. a forest, and
for each x 2 Z2, the geodesic  x;�� follows the directed edges of G��.

Recall the vectors ye �1 D ye1=2 D .e1 C e2/=2 and ye �2 D ye2=2 D .e2 � e1/=2. Let G �
��

be the directed graph whose vertex set is the dual lattice Z2� D ye �1 CZ2 and whose edge
set is defined by this rule: for each x 2Z2, on the dual lattice xC ye �1 points to xC ye �1 � ei
in G �

��
if and only if on the original lattice x points to xC ei in G��. Pictorially this means

that G �
��

contains all the south and west directed nearest-neighbor edges of Z2� that do
not cross an edge of G��. See Figure 4.1 for an illustration.

For � � � in ri U let the graph G �
[Œ�;��

be the union of the graphs G �
��

over � 2 Œ�; ��
and � 2 ¹�;Cº. That is, the vertex set of G �

[Œ�;��
is Z2�, and the edge set of G �

[Œ�;��
is

the union of the edge sets of G �
�˙

over � 2 Œ�; ��. From each point x� 2 Z2� a directed
edge of G �

[Œ�;��
points to x� � e1 or x� � e2 or both. Due to the monotonicity (2.10)

of the Busemann functions, G �
[Œ�;��

is the union of just the two graphs G �
��

and G ��C. In
particular, x� points to x� � e2 in G �

[Œ�;��
if and only if x� � ye �1 points to x�C ye �2 in G��,

and x� points to x� � e1 in G �
[Œ�;��

if and only if x� � ye �1 points to x� � ye �2 in G�C.
Identify the space-time point x C ye �1 2 Z2� on the dual lattice with the diagonal edge

that connects xC e1 and xC e2 on the primal lattice (see Figure 4.2). Call the dual lattice



C. Janjigian, F. Rassoul-Agha, T. Seppäläinen 20

x

x� D x C ye �1

x

x� D x C ye �1

Fig. 4.1. Left plot: An illustration of the duality relation between the edges of G�� (black/thick)
and those of G�

��
(red/thin). Right plot: An illustration of a (blue/thick) north-east directed geodesic

graph G�� and its (red/thin) south-west directed dual G�
��

.

x

x�

x C e2

x C e1

Fig. 4.2. The edge .x C e1; x C e2/ is identified with the dual point x� D x C ye �1 .

point x� D xC ye �1 a Œ�; ��-instability point if Œ�; ��\ supp�xCe1;xCe2 ¤ ;. If � D �D �,
call x� a �-instability point. Denote the set of Œ�; ��-instability points by S�

Œ�;��
, with S�

�
D

S�
Œ�;��

. Then S�
Œ�;��

is the union of S�
�

over � 2 Œ�; ��. Theorem 3.1 and the ordering (2.13)
of geodesics give the following characterization in terms of disjoint geodesics, alluded to
in Section 4.1.

Lemma 4.1. The following holds for P -almost every !. Let � � �, including the case
� D � D �. Let x 2 Z2 and x� D x C ye �1 . Then x� 2 S�

Œ�;��
if and only if  xCe2;�� \

 xCe1;�C D ;.

Let the instability graph ��
Œ�;��

be the subgraph of G �
[Œ�;��

with vertex set S�
Œ�;��

and
those directed edges of G �

[Œ�;��
that point from some x� 2 S�

Œ�;��
to a point x� � ei 2 S�

Œ�;��
,

for either i 2 ¹1; 2º. (The proof of Theorem 4.3 in Section 8.1 shows that every edge of
G �
[Œ�;��

that emanates from a point of S�
Œ�;��

is in fact an edge of ��
Œ�;��

.)
In the case � D � D � write ��

�
for ��

Œ�;��
. Explicitly, the vertices of ��

�
are dual points

x C ye �1 such that � 2 supp�xCe1;xCe2 and the edges are those of G �
��
[ G �

�C
that connect

these points.
The graph ��

Œ�;��
is also the edge union of the graphs ��

�
over � 2 Œ�; ��. To see this, let

x� D x C ye �1 . If � D ��.Tx!/ 2 Œ�; �� then ��
�

contains both edges from x� to x� � e1
and x� � e2, as does ��

Œ�;��
. If ��.Tx!/ … Œ�; �� then in ��

�
and in ��

Œ�;��
, x� points to the

same vertex x� � ei .
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Remark 4.2. By the continuity (2.14) and the fact that the support of a measure is a closed
set we find that almost surely, for any � � � in ri U and for any finite box Œ�L;L�2 \Z2,
��
Œ� 0;�0�

D ��
Œ�;��

on the entire box, for �0 � � close enough to � and �0 � � close enough
to �. This explains why the two top graphs in Figure 4.4 are identical and are in fact equal
to ��

�
.

The message of the next theorem is that instability points exist for all exceptional
directions in V ! , and these instability points arrange themselves on bi-infinite directed
paths in the instability graphs.

Theorem 4.3. The following holds for P -almost every !. Pick any � � � in ri U such
that Œ�; �� \ V ! ¤ ;, including the case � D � D �. Then the instability graph ��

Œ�;��
is

an infinite directed graph. Furthermore, ��
Œ�;��

equals the union of the bi-infinite directed
paths of the graph G �

[Œ�;��
. In the backward (north and east) orientation, each such path

is Œ�; ��-directed.

In particular, if x� 2 S�
Œ�;��

andmD x� � ye1, there exists a bi-infinite sequence ¹x�nºn2Z

� S�
Œ�;��

such that x�m D x� and for each n, x�n � ye1 D n and x�n points to x�n�1 in the
graph ��

Œ�;��
. As n!1, the limit points of n�1x�n lie in Œ�; ��.

Next we describe the branching and coalescing of the bi-infinite directed paths that
make up the graph ��

Œ�;��
. If there is a directed path in the graph ��

Œ�;��
from y� to x�, then

y� is an ancestor of x� and equivalently x� is a descendant of y�. Let A�
Œ�;��

.x�/ denote
the set of ancestors of x� in the graph ��

Œ�;��
. Abbreviate again A�

�
.x�/ D A�

Œ�;��
.x�/.

A point x� 2 S�
Œ�;��

is a branch point in the graph ��
Œ�;��

if x� is an ancestor of both
x� � e1 and x� � e2. Branch points are dual to those where �� and �C geodesics separate.
Similarly, x� 2 S�

Œ�;��
is a coalescence point if both x� C e1 and x� C e2 are ancestors

of x�. Figures 4.3 and 4.4 display simulations that illustrate the branching and coalescing.
For the sharpest branching and coalescing properties in the next theorem, we invoke

again the regularity condition (2.4) and the jump process condition (3.5), and additionally
the non-existence of non-trivial bi-infinite geodesics:

There exists a full P -probability event on which the only bi-infinite
geodesics are the trivial ones: x C Zei for x 2 Z2 and i 2 ¹1; 2º. (4.2)

Condition (4.2) is known to hold in the exponential case [8, 9].

Theorem 4.4. The following hold for P -almost every ! and all � � � in ri U such that
Œ�; �� \ V ! ¤ ; .the case � D � D � is included unless otherwise stated/:

(a) x� is a branch point in ��
Œ�;��

if and only if ��.Tx��ye�
1
!/ 2 Œ�; ��.

(b) If � � �, then any x�; y� 2 S�
Œ�;��

have a common descendant: there isz� 2 S�
Œ�;��

such
that x�; y� 2 A�

Œ�;��
.z�/. If we assume the no bi-infinite geodesics condition (4.2),

then the same statement also holds for the case � D � D �.

(c) Assume the jump process condition (3.5). Then any x�; y� 2 S�
Œ�;��

have a common
ancestor z� 2 A�

Œ�;��
.x�/ \ A�

Œ�;��
.y�/.
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Fig. 4.3. Four nested down-left pointing ��
Œ�;��

graphs in the square Œ�100; 100�2. Top to bottom,
left to right, in reading order, Œ� � e1; � � e1� equals Œ0:096; 0:772�, Œ0:219; 0:595�, Œ0:318; 0:476�, and
Œ0:355; 0:436�. Two further nested subgraphs appear in Figure 4.4. In the simulation the weights
were exponentially distributed and we chose the direction � to be a jump point of the Busemann
process on the edge .0; e1/.

(d) Suppose � � � are such that ��; �Œ \ V ! ¤ ;. Then for any z 2 Z2 there is a coordi-
natewise strictly ordered infinite sequence z < z�1 < z

�
2 < � � � such that each z�n is a

branch point in ��
Œ�;��

. There are also infinitely many coalescence points in ��
Œ�;��

.

(e) If the jump process condition (3.5) holds and � 2 V ! , then for any z 2 Z2 there is
a coordinatewise strictly ordered infinite sequence z < z�1 < z

�
2 < � � � such that each

z�n is a branch point in ��
�

. If additionally the no bi-infinite geodesics condition (4.2)
holds, then there are infinitely many coalescence points in ��

�
.

Remark 4.5. If the regularity condition (2.4) holds, then part (d) holds for � � � with
Œ�; �� \ V ! ¤ ;. The proof of this is given right after that of Theorem 4.4 in Section 8.1.

Given that there are infinitely many instability points when instability points exist, it is
natural to wonder what their density on the lattice is. We identify the following trichotomy.

Proposition 4.6. Assume the regularity condition (2.4). Then for P -almost every ! and
all � 2 ri U, exactly one of the following three scenarios happens:

(a) � 62 V ! and hence there are no �-instability points.
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Fig. 4.4. Continuing with the simulation setting of Figure 4.3, the top two pictures are ��
Œ�;��

graphs

in Œ�100; 100�2 with Œ� � e1; � � e1�D Œ0:374; 0:417� (left) and Œ0:393; 0:397� (right). The two graphs
are in fact identical. The pictures on the second row zoom into the framed squares of the top
right picture, the left one into the square Œ�20; 20�2 and the right one into Œ�10; 10�2. Besides
the down-left pointing red ��

Œ�;��
graphs, the bottom pictures include the up-right pointing graphs

G�� (green/lighter) and G�C (purple/darker). Whenever G�� and G�C separate at x, green points
up and purple points right, and ��

Œ�;��
has a branch point at xC ye �1 . The blue/green trees that occupy

the islands surrounded by red paths are described in Section 4.3.

(b) � 2 V ! \ D and there are infinitely many �-instability points but they have zero
density.

(c) � 62 D and the �-instability points have positive density.

We return to this question in Section 5 in the solvable case of exponential weights,
where we can say significantly more.

4.3. Flow of Busemann measure

This section views the instability graph ��
Œ�;��

as a description of the south-west directed
flow of Busemann measure on the dual lattice. As discussed in Section 4.1, we can think of
the function B��.x C e1; x C e2/ as a global solution of a discretized stochastic Burgers
equation. We can assign the value B��.x C e1; x C e2/ to the dual point x� D x C ye �1
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x�

x

x � ye2

x C ye2 x C e2

x C e1

x C ye1

Fig. 4.5. The flow of Busemann measure follows the arrows. The antidiagonal edge .xC e1;xC e2/
is identified with the dual point x� D x C ye �1 . The Busemann measure �xCe1;xCe2 on this edge is
composed of the mass flowing from the north and east, and it in turns divides its mass between the
flows south and west.

that represents the diagonal edge .x C e1; x C e2/. Then the cocycle property (2.7) gives
us a flow of Busemann measure along the south and west pointing edges of the dual
lattice Z2�. First decompose the Busemann measure of the edge .x C e1; x C e2/ as a
sum �xCe1;xCe2 D �xCe1;x C �x;xCe2 of two positive measures. This is justified by the
cocycle property (2.7). Then stipulate that the measure �xCe1;x flows south from x� to
x� � e2 and contributes to the Busemann measure �x�ye2;x , while the measure �x;xCe2
flows west from the x� to x� � e1 and contributes to the Busemann measure �x;xCye2 .
See Figure 4.5.

The cocycle property also tells us that �xCe1;xCe2 D �xCe1;xCye1 C�xCye1;xCe2 . This
represents �xCe1;xCe2 as the sum of the contributions it receives from the next level up:
�xCe1;xCye1 comes from the east from the dual vertex x C e1 C ye �1 , while �xCye1;xCe2
comes from the north from the dual vertex x C e2 C ye �1 .

Now pick a pair of directions � � � in ri U, and consider the graph B�
Œ�;��

on
the dual lattice Z2� obtained as follows. Include the vertex x� D x C ye �1 if Œ�; �� \
supp�xCe1;xCe2 ¤;. For i 2 ¹1;2º, include the dual edge .x�; x� � ei / if Œ�; �� intersects
supp�x;xCe3�i , or somewhat pictorially, if some of the support in Œ�; �� flows along the
dual edge .x�; x� � ei /.

The results of this section hold P -almost surely simultaneously for all � � � in ri U,
including the case � D � D � .

Theorem 4.7. The graphs B�
Œ�;��

and ��
Œ�;��

are the same.

Under the jump condition (3.5), a closed set cannot intersect the support without
actually having non-zero measure. Thus under (3.5), Theorem 4.7 tells us that ��

Œ�;��
is

precisely the graph along which positive Busemann measure in the interval Œ�; �� flows.
Next we describe the “islands” on Z2 carved out by the paths of the graph ��

Œ�;��

(islands surrounded by red paths in Figures 4.3 and 4.4). These islands are trees, they are
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the connected components of an intersection of geodesic graphs, and they are the equiv-
alence classes of an equivalence relation defined in terms of the supports of Busemann
measures.

Define the graph G\Œ�;�� D
T
�2Œ�;��.G�� \ G�C/ on the vertex set Z2 by keeping only

those edges that lie in each geodesic graph G�� as � varies over Œ�; �� and � over ¹�;Cº.
Also, directly from the definitions it follows that an edge of Z2 lies in G\Œ�;�� if and only
if the dual edge it crosses does not lie in the graph G �

[Œ�;��
introduced in Section 4.2. Since

each G�� is a forest, G\Œ�;�� is a forest, that is, a union of disjoint trees.

Define an equivalence relation
Œ�;��
� on Z2 by x

Œ�;��
� y if and only if supp�x;y \ Œ�; ��

D;. It is an equivalence relation because�x;x is the identically zero measure, andB��x;z D

B
��
x;y C B

��
y;z implies that j�x;zj � j�x;y j C j�y;zj. In terms of coalescence, x

Œ�;��
� y if

and only if the coalescence points z��.x; y/ remain constant in Z2 as � varies across Œ�; ��
and � over ¹�;Cº. (This follows from Propositions 7.1 and 7.2 proved below.) As usual,

replace
Œ�;��
� with

�
� when Œ�; �� D Œ�; ��.

Proposition 4.8. The equivalence classes of the relation
Œ�;��
� are exactly the connected

components (subtrees) of G\Œ�;��.

Lemma 8.6 proved below shows that nearest-neighbor points of Z2 are in distinct
Œ�;��
�

equivalence classes if and only if the edge between them is bisected by an edge of the
instability graph ��

Œ�;��
. Together with Proposition 4.8 this tells us that the paths of ��

Œ�;��

are precisely the boundaries that separate distinct connected components of G\Œ�;�� and

the equivalence classes of
Œ�;��
� .

The next two lemmas indicate how the structure of the subtrees of G\Œ�;�� is con-
strained by the fact that they are intersections of geodesic trees. These properties are
clearly visible in the bottom pictures of Figure 4.4 where these subtrees are the blue/green
trees in the islands separated by red paths.

Lemma 4.9. Let K be a subtree of G\Œ�;�� and let x and y be two distinct vertices of K .
Assume that neither strictly dominates the other in the coordinatewise ordering, that is,
both coordinatewise strict inequalities x < y and y < x fail. Then the entire rectangle
Jx ^ y; x _ yK is a subset of the vertex set of K .

In particular, if for some integers ¹t; k; `º, level-t lattice points .k; t � k/ and .`; t � `/
are vertices of a subtree K , the entire discrete interval ¹.i; t � i/ W i 2 Jk; `Kº is a subset
of the vertex set of K . Similarly, points on horizontal and vertical line segments between
vertices of a subtree K are again vertices of K .

Lemma 4.10. Let K be a subtree of G\Œ�;��. There is at most one vertex x in K such that
¹x � e1; x � e2º \K D ;. Such a point x exists if and only if inf ¹t 2 Z WK \ Lt ¤ ;º
> �1. In that case K lies in ¹y W y � xº.

Note that Lemma 4.10 does not say that a subtree has a single leaf. Both x and x � ei
can be leaves of a subtree when the edge .x � ei ; x/ is not present in G\Œ�;��.
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For the remainder of this section assume the jump condition (3.5), in order to give a
sharper description of the subtrees of G\Œ�;��. Let DŒ�;�� D ¹z 2 Z2 W ��.Tz!/ 2 Œ�; ��º.
By Theorem 4.4 (a), z 2 DŒ�;�� if and only if z C ye �1 is a branch point of the instability
graph ��

Œ�;��
. It follows then that both z ˙ ye �2 are also Œ�; ��-instability points.

Assume for the moment that DŒ�;�� ¤ ;. By Theorem 3.8, under the jump condition
(3.5) this is equivalent to Œ�; �� \ V ! ¤ ;.

The graph G\Œ�;�� has no outgoing up or right edges from a point z 2 DŒ�;�� because
geodesics split:  z;��.Tz!/� and ¹ z;�˙ W � � � � ��.Tz!/º take the e2-step at z, while
 z;��.Tz!/C and ¹ z;�˙ W ��.Tz!/ � � � �º take the e1-step at z. For each z 2 DŒ�;��, let
the tree K.z/ consist of all directed paths in G\Œ�;�� that terminate at z. K.z/ can consist
of z alone.

These properties come from previously established facts:

� Each x 2 Z2 n DŒ�;�� lies in a unique K.z/ determined by following the common
path of the geodesics ¹ x;�� W � 2 Œ�; ��; � 2 ¹�;Cºº until the first point z at which
a split happens. A split must happen eventually because for any u 2 DŒ�;�� the two
geodesics  u;��.Tu!/˙ separate immediately at u, while by Theorem 3.5 the geodesic
 x;��.Tu!/� coalesces with  u;��.Tu!/� for both � 2 ¹�;Cº.

� If � � � then each tree K.z/ is finite. Same holds also for the case � D � D � under
the no bi-infinite geodesics condition (4.2). This follows from Theorem 4.4 (b) because
the Œ�; ��-instability points z ˙ ye �2 that flank z have a common descendant u� in the
graph ��

Œ�;��
. The two directed paths of ��

Œ�;��
that connect z C ye �1 to u� surround K.z/.

The final theorem of this section decomposes G\Œ�;�� into its connected components.

Theorem 4.11. Assume the jump condition (3.5).

(a) G\Œ�;�� is a single tree if and only if Œ�; �� \ V ! D ;.

(b) If Œ�; �� \ V ! ¤ ;, the connected components of G\Œ�;�� are the trees ¹K.z/ W

z 2 DŒ�;��º.

We finish by reminding the reader that all the hypotheses and hence all the conclusions
hold in the case of i.i.d. exponential weights. The results of Section 4.3 are proved in
Section 8.3.

5. Statistics of instability points in the exponential model

Under condition (3.7), i.e. when the weights are exponentially distributed, we derive
explicit statistics of the instability graphs. For � 2 ri U, k 2Z, and � 2 ¹�;Cº, abbreviate
B
��
k
D B��.ke1; .k C 1/e1/ and write B�

k
when there is no ˙ distinction. For � � � in

ri U let
� � � < ��;�.�1/ < 0 � ��;�.0/ < ��;�.1/ < � � �

be the ordered indices such that

B
��

k
> B

�C

k
if and only if k 2 ¹��;�.i/ W i 2 Zº: (5.1)
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If B��
k
> B

�C

k
happens for only finitely many indices k, then some ��;�.i/ are set equal

to �1 or1.
By Theorem 3.11, under condition (3.7), (5.1) is equivalent to

z��.ke1; .k C 1/e1/ ¤ z�C.ke1; .k C 1/e1/:

It is worth keeping this geometric implication of (5.1) in mind in this section to provide
some context for the results that follow.

It will be convenient in what follows to parametrize directions in ri U through the
increasing bijection

� D �.˛/D

�
˛2

.1 � ˛/2 C ˛2
;

.1 � ˛/2

.1 � ˛/2 C ˛2

�
” ˛D ˛.�/D

p
� � e1p

� � e1 C
p
1 � � � e1

(5.2)

between � 2 ri U and ˛ 2 .0; 1/. Recall the Catalan numbers Cn D 1
nC1

�
2n
n

�
for n � 0.

By (C.6) from Appendix C, the conditioning event in the theorem below has probability
P .B�0 > B

�
0 / D

˛.�/�˛.�/
˛.�/

. Since � � � are fixed, with probability 1 no ˙ distinction
appears in the Busemann functions.

Theorem 5.1. Assume (3.7). Fix � � � in ri U. Conditional on B�0 > B
�
0 ,

¹��;�.i C 1/ � ��;�.i/; B
�

��;�.i/
� B

�

��;�.i/
W i 2 Zº

is an i.i.d. sequence with marginal distribution

P¹��;�.i C 1/ � ��;�.i/ D n; B�
��;�.i/

� B
�

��;�.i/
> r j B

�
0 > B

�
0 º

D Cn�1
˛.�/n�1˛.�/n

.˛.�/C ˛.�//2n�1
e�˛.�/r ; 8 i 2 Z; n 2 N; r 2 RC: (5.3)

Abbreviate ��.i/ D ��;�.i/. Our next goal is to describe the joint distribution of the
process

¹��.i/; B
��

�� .i/
� B

�C

�� .i/
W i 2 Zº

of locations and sizes of jumps in direction �, conditional on ¹B��0 > B
�C
0 º. However, for

a fixed �, B�C D B�� almost surely and so this conditioning has to be understood in the
Palm sense. This is natural for conditioning on a jump of a point process at a particular
location.

In the theorem below, Lebesgue measure on U refers to one-dimensional Lebesgue
measure (length of a line segment). The Lebesgue-almost every qualifier is in the theo-
rem because the Palm kernel is defined only up to Lebesgue-null sets of the points � . We
denote Palm conditioning with two vertical lines k to distinguish it from ordinary condi-
tioning. The definition of the Palm conditioning used in (5.4) below appears in (9.5) at
the end of Section 9.1. For references, see [38, 39].
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Theorem 5.2. Assume (3.7). For Lebesgue-almost every � 2 ri U, under the Palm ker-
nel, conditional on B��0 > B

�C
0 , ¹��.i C 1/ � ��.i/; B��

�� .i/
� B

�C

�� .i/
W i 2 Zº is an i.i.d.

sequence with marginal distribution

P¹��.i C 1/ � ��.i/ D n; B��
�� .i/
� B

�C

�� .i/
> r kB

��
0 > B

�C
0 º

D Cn�1
1

22n�1
e�˛.�/r ; 8 i 2 Z; n 2 N; r 2 RC: (5.4)

Equation (5.4) connects the Palm distribution of the locations of jumps of the Buse-
mann process with the zero set of simple symmetric random walk (SSRW). Let Sn denote
a two-sided SSRW, that is, S0 D 0 and Sn � Sm D

Pn
iDmC1Zi for allm < n in Z where

¹Ziºi2Z are i.i.d. with P.Zi D ˙1/ D 1=2. Set �n D 1¹S2nD0º and let P be the distri-
bution of � D ¹�nºn2Z on the sequence space ¹0; 1ºZ. That is, P is the law of the zero
set of simple symmetric random walk sampled at even times. The classical inter-arrival
distribution of this renewal process is (Feller [23, III.3(3.7), p. 78])

P.�1 D 0; : : : ; �n�1 D 0; �n D 1/ D Cn�1
1

22n�1
: (5.5)

Comparison of (5.4) and (5.5) reveals that for Lebesgue-almost every �, the Palm distri-
bution of the locations of �-instability points on a line is the same as the law of the zero
set of SSRW sampled at even times. (We record this fact precisely as Lemma 9.2.) The
next result applies this to show that any translation invariant event which holds with prob-
ability 1 for the zero set of SSRW holds for all of the instability graphs simultaneously
almost surely.

Theorem 5.3. Assume (3.7). Suppose A is a translation-invariant Borel subset of ¹0; 1ºZ

that satisfies P.A/ D 1. Then

P
®
8� 2 V !

W .1¹B��
`
> B

�C

`
º W ` 2 Z/ 2 A

¯
D 1: (5.6)

From (5.6) and known facts about random walk, we can derive corollaries. From
[46, (10.8)], we deduce that

P

²
8� 2 V !

W lim
n!1

Pn
iD0 1¹B��i > B

�C
i º

p
8n log logn

D 1

³
D 1: (5.7)

From [46, Theorem 11.1] we also find that for a non-increasing ın,

P
°
8� 2 V !

W n�1=2
nX
iD0

1¹B��i > B
�C
i º � ın for all sufficiently large n

±
D 1 (5.8)

if
P
n ın=n <1, and

P
°
8� 2 V !

W n�1=2
nX
iD0

1¹B��i > B
�C
i º � ın infinitely often

±
D 1 (5.9)
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otherwise. Similar statements hold for the sums
P0
iD�n. This implies that for P -almost

every ! and any � 2 V ! , the number of horizontal edges .ke1; .k C 1/e1/ with � 2
supp�ke1;.kC1/e1 and �n � k � n is of order n1=2. It suggests that the number of such
horizontal edges (and thus also vertical edges and �-instability points) in an n � n box
should be of order n3=2. The next theorem gives an upper bound. The lower bound is left
for future work.

Theorem 5.4. Assume (3.7) and fix i 2 ¹1; 2º. Then for any � 2 ri U,

P
°
9n0 W 8� 2 Œ�; e2Œ;8n � n0 W

X
x2J0;nK2

1¹� 2 supp�x;xCei º � 2n
3=2
p

logn
±
D 1:

The same holds when J0; nK2 is replaced by any of J�n; 0K2, J0; nK � J�n; 0K, or
J�n; 0K � J0; nK.

This completes the presentation of the main results. After a list of open problems, the
remaining sections cover the proofs. The results of Section 5 are proved in Section 9.

6. Open problems

The list below contains some immediate open questions raised by the results of this paper.

1. Find tail estimates for the coalescence points z�.x; y/.
2. Theorem 3.7 (b) showed that the jump process condition (3.5) implies that V ! D

¹��.Tx!/ W x 2 Z2º. Is this implication an equivalence?

3. Prove the jump process condition (3.5) for any model other than the exactly solvable
exponential and geometric cases.

4. Does the web of instability have a scaling limit?

5. Does the web of instability, with branching and coalescing in exceptional directions,
have any analogue in stochastic equations in continuous space and/or continuous time?

6. Extend the statistics of instability points in the exponential model beyond a single line
on the lattice.

7. Busemann measures: proofs

The rest of the paper relies on Appendix A where prior results from the literature are
collected. The reader may wish to look through that appendix before proceeding; in par-
ticular, we will work on the T -invariant full-measure event �0 constructed in (A.7).

Fix a countable dense set U0 �D of points of differentiability of the shape function g
(recall (2.2)). These play a role in the definition of the event �0 in (A.7). Recall the
definition (3.3) of the coalescence point z��.x; y/. When z��.x; y/ 2 Z2, equation (2.15)
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leads to the following identity, which is fundamental to the analysis that follows:

B��.x; y/ D G.x; z��.x; y// �G.y; z��.x; y// D
n�1X
iDk

!

x;��

i

�

n�1X
iD`

!

y;��

i

; (7.1)

where k D x � ye1, `D y � ye1, and nD z��.x; y/ � ye1. By Theorem A.4 (b), for all ! 2�0,
all � 2 U0, and all x; y 2 Z2, both z�C.x; y/ and z��.x; y/ are in Z2.

We begin with results linking analytic properties of the Busemann process and coa-
lescence points.

Proposition 7.1. For all ! 2 �0, for any � � � in ri U, and any x; y 2 Z2, the following
statements are equivalent:

(i) j�x;y j.��; �Œ/ D 0.

(ii) B�C.x; y/ D B��.x; y/ and z�C.x; y/; z��.x; y/ 2 Z2.

(iii) z�C.x; y/ D z��.x; y/ 2 Z2.

(iv) There exists z 2 Z2 such that the following holds. For any � 2 ¹ x;�� W � 2 ��; �Œ;

� 2 ¹�;Cºº and any � 0 2 ¹ y;�� W � 2 ��; �Œ;� 2 ¹�;Cºº, � \ � 0 ¤ ; and z is the
first point where � and � 0 intersect: z � ye1 D min ¹z0 � ye1 W z0 2 � \ � 0º.

Proof. (i))(ii). Under (i) the functions � 7!B
��
x;y match for � 2 ¹�;Cº and are constant

on the open interval ��; �Œ. The equality B�C.x; y/ D B��.x; y/ follows by taking limits
� & � and � % �.

Since on ��; �Œ \U0, � 7!B
�
x;y is constant and z�.x;y/ 2Z2 (Theorem A.4 (b)), (7.1)

and condition (A.5) imply that z�.x; y/ is constant in Z2 for all � 2 ��; �Œ\U0. Since U0

is dense in ��; �Œ, limits (3.4) as � & � and � % � imply that z�C.x; y/; z��.x; y/ 2 Z2.
(ii))(iii). Set k D x � ye1 and ` D y � ye1. With both z�C.x; y/ and z��.x; y/ in Z2,

we also set m D z�C.x; y/ � ye1 and n D z��.x; y/ � ye1. By (7.1),

B�Cx;y D G.x; z
�C.x; y// �G.y; z�C.x; y// D

m�1X
iDk

!

x;�C

i

�

m�1X
iD`

!

y;�C

i

;

B��x;y D G.x; z
��.x; y// �G.y; z��.x; y// D

n�1X
iDk

!
x;��

i
�

n�1X
iD`

!
y;��

i
:

By condition (A.5), the vanishing of B�Cx;y � B
��
x;y forces m D n, 

x;�C

k;m
D 

x;��

k;m
, and


y;�C

`;m
D 

y;��

`;m
, and hence in particular z�C.x; y/ D z��.x; y/.

(iii))(iv). With m D z�C.x; y/ � ye1 D z��.x; y/ � ye1, uniqueness of finite geodesics
implies 

x;�C

k;m
D 

x;��

k;m
and 

y;�C

`;m
D 

y;��

`;m
. Then monotonicity (2.13) gives 

x;�C

k;m
D


x;��
k;m
D 

x;��

k;m
and 

y;�C

`;m
D 

y;��
`;m
D 

y;��

`;m
for all � 2 ��; �Œ and � 2 ¹�;Cº. The point

z is 
x;�C
m D 

y;�C
m D 

x;��
m D 

y;��
m .

(iv))(i). LetmD z � ye1. It follows from uniqueness of finite geodesics that all of the
paths 

x;�˙

k;m
must be the same, for all � 2 ��; �Œ, and similarly all of the paths 

y;�˙

`;m
must
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be the same. Letting � & � and � % �, we find that for all � 2 ��; �Œ, 
x;�C

k;m
D 

x;�˙

k;m
D


x;��

k;m
and 

y;�C

`;m
D 

y;�˙

`;m
D 

y;��

`;m
. Recall that (7.1) applies for any � 2 U0. Thus, the

functions � 7! B
�˙
x;y match and are constant when restricted to the dense set U0 \ ��; �Œ.

Combining this with the left-continuity of � 7!B
��
x;y and the right-continuity of � 7!B

�C
x;y ,

we see that the functions � 7! B
�˙
x;y match and are constant on ��; �Œ. This implies (i).

Proposition 7.1 has a counterpart in terms of fixed directions lying in the support
of �x;y .

Proposition 7.2. For all ! 2 �0 and all x; y 2 Z2, the following are equivalent:

(i) � 62 supp�x;y .

(ii) z��.x; y/ D z�C.x; y/ 2 Z2.

(iii) B��.x; y/ D B�C.x; y/ and z��.x; y/; z�C.x; y/ 2 Z2.

Proof. Let x � ye1 D k and y � ye1 D `. Take sequences �n; �n 2 U0 with �n % � and
�n & �. Since �n; �n 2 U0 we have z�n.x; y/; z�n.x; y/ 2 Z2 for all n. Furthermore,
B�n.x; y/! B��.x; y/ and B�n.x; y/! B�C.x; y/ as n!1.

(i))(ii). If � … supp�x;y , then � 7! B�˙.x; y/ is constant on some neighborhood
of �. Then (i))(iii) from Proposition 7.1 gives (ii).

(ii))(iii). Let m D z��.x; y/ � ye1 D z�C.x; y/ � ye1. Then uniqueness of finite
geodesics implies that 

x;��

k;m
D 

x;�C

k;m
and 

y;��

`;m
D 

y;�C

`;m
. (2.14) implies that for suf-

ficiently large n, 
x;��

k;m
D 

x;�n
k;m

, 
x;�C

k;m
D 

x;�n
k;m

, 
y;��

`;m
D 

y;�n
`;m

, and 
y;�C

`;m
D 

y;�n
`;m

.
For these large n,

B�n.x; y/ D G.x; z�n.x; y// �G.y; z�n.x; y//

D

m�1X
iDk

!

x;�n
i

�

m�1X
iD`

!

y;�n
i

D

m�1X
iDk

!

x;��

i

�

m�1X
iD`

!

y;��

i

D

m�1X
iDk

!

x;�C

i

�

m�1X
iD`

!

y;�C

i

D

m�1X
iDk

!
x;�n
i
�

m�1X
iD`

!xy;�n
i

D G.x; z�n.x; y// �G.y; z�n.x; y// D B�n.x; y/:

Taking n!1 gives B�C.x; y/ D B��.x; y/. Claim (iii) is proved.
(iii))(i). The assumption z��.x; y/; z�C.x; y/ 2 Z2 allows us to use (7.1). Together

with the convergence of geodesics (2.14), this implies that B�n.x; y/ D B��.x; y/ D

B�C.x; y/ D B�n.x; y/ for sufficiently large n. The equivalence between (ii) and (i) in
Proposition 7.1 implies that for such n, both processes are constant on the interval ��n; �nŒ.
Therefore � … supp�x;y .

With these results in hand, we next turn to the proofs of our main results.

Proof of Theorem 3.1. Fix ! 2 �0, x; y 2 Z2, and � 2 ri U. Suppose that (i) does not
hold, i.e. � … supp�x;y . By Proposition 7.2, we have z��.x; y/ D z�C.x; y/ 2 Z2, in
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which case both  x;�� \  y;�C and  x;�C \  y;�� include this common point and thus
(ii) is false. This proves that (ii) implies (i).

Now, suppose that � 2 supp�x;y and that  x;�� \ y;�C¤; and  x;�C \ y;��¤;.
Without loss of generality assume that x � ye1 D k � m D y � ye1. Let z1 denote the first
point at which  x;�� and  y;�C meet and let z2 be the first point at which  x;�C and
 y;�� meet. Let `1 D z1 � ye1 and `2 D z2 � ye1. We denote by u the leftmost (i.e. with
smallest e1 coordinates) of the three points 

x;�C
m ; y; 

x;��
m and by v the rightmost of

these three points. Note that if u D v, then z�C.x; y/ D z��.x; y/ D y, which would
imply that � … supp�x;y . Thus u ¤ v and there are two cases: either y 2 ¹u; vº or not.
We show a contradiction in both cases.

First, we work out the case y D v, with the case of y D u being similar. See the left
picture in Figure 7.1 for an illustration. In this case we have, for all n � m, 

x;��
n �


x;�C
n � 

y;�C
n and 

x;��
n � 

y;��
n � 

y;�C
n . In words,  y;�C is the rightmost geodesic

and  x;�� is the leftmost geodesic among the four geodesics  x;�˙,  y;�˙. By the path
ordering (2.13) and planarity, z1 must lie on all four geodesics. Then by the uniqueness of
finite geodesics, 

x;�C

k;`1
D 

x;��

k;`1
and 

y;�C

m;`1
D 

y;��

m;`1
. It follows that z1 D z�C.x; y/ D

z��.x; y/, contradicting � 2 supp�x;y .

x

y D v

u

z1

z2

x

y
u

v

z2
z1

Fig. 7.1. Proof of Theorem 3.1; �C geodesics are in purple with medium thickness, and ��

geodesics are in green and thin.

If y … ¹u; vº, then u D 
x;��
m � y � v D 

x;�C
m (right picture in Figure 7.1). The

geodesics  x;�C and  x;�� have already split and so cannot meet again by the unique-
ness of finite geodesics. For all n � m, 

x;��
n � 

y;��
n � 

y;�C
n � 

x;�C
n . Due to this

ordering, the meeting of 
x;��
n and 

y;�C
n at z1 implies that 

x;��
n and 

y;��
n coalesce

at or before z1. By the uniqueness of finite geodesics again,  y;�� and  y;�C agree from
y to z1. The same reasoning applies to z2 and gives that  y;�� and  y;�C agree from y

to z2 and that  y;�C and  x;�C coalesce at z2. Thus now  y;�� and  y;�C agree from
y through both z1 and z2. The coalescence of  x;�� with  y;�� and the coalescence of
 y;�C with  x;�C then force  x;�� and  x;�C to meet again, contradicting what was
said above. We have now shown that (i) implies (ii).
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(ii) implies (iii) by the directedness in Theorem A.4 (a). It remains to prove the reverse
implication under the regularity condition (2.4). Without loss of generality we can assume
that x � ye1 � y � ye1 D k. If �x

k
� y, then the extremality of the geodesics  �;�˙ in Theorem

A.7 and the fact that �x \ �y D ; imply that  x;�� \  y;�C D ;. Similarly, if �x
k
� y,

then we get  x;�C \  y;�� D ;.

Proof of Theorem 3.2. The equivalence (i),(iv) of Proposition 7.1, together with the
uniqueness of finite geodesics, gives Theorem 3.2.

Proof of Lemma 3.3. For � 2U0, almost surely z�C.x; y/D z��.x; y/D z�.x; y/ 2 Z2.
Proposition 7.2 implies that � lies in the complement of the closed set supp�x;y .

Next, we prove Theorem 3.4 about the relation between the coalescence points and
properties of the support of Busemann measures.

Proof of Theorem 3.4. Take ! 2 �0. Equivalence (a) follows from Proposition 7.2.
Equivalence (b) follows from the equivalences in (a) and (c).

The two equivalences of (c) are proved the same way. We prove the first equivalence
in this form: there exists � � � such that j�x;y j.��; �Œ/ D 0, z�C.x; y/ 2 Z2.

The implication) is contained in (i))(ii) of Proposition 7.1.
To prove (, let k D x � ye1 and ` D y � ye1, suppose z�C.x; y/ 2 Z2, and let m D

z�C.x; y/ � ye1. Take a sequence �n 2U0 with �n& � as n!1. For sufficiently large n,

x;�C

k;m
D 

x;�n
k;m

and 
y;�C

`;m
D 

y;�n
`;m

, and hence z�n.x; y/ D z�C.x; y/. The implication
(iii))(i) of Proposition 7.1 gives j�x;y j.��; �nŒ/ D 0.

When the jump process condition (3.5) holds, call the event in the statement of that
condition�50. As noted when it was introduced, Theorem 3.5, which gives the equivalence
between (3.5) and coalescence of �� geodesics, is essentially an immediate consequence
of Theorem 3.4.

Proof of Theorem 3.5. Assume the jump process condition (3.5). Fix ! 2 �0 \ �
5
0,

x; y 2 Z2, and � 2 ri U. If � 62 supp�x;y , then Proposition 7.2 says that z��.x; y/ D
z�C.x; y/ 2 Z2. In particular,  x;�C coalesces with  y;�C and  x;�� coalesces with
 y;��. If, on the other hand, � 2 supp�x;y , then it is an isolated point and now Theo-
rem 3.4 says that z�˙.x; y/ 2 Z2 (although now the two points are not equal). Again,
 x;�˙ coalesces with  y;�˙, respectively. Statement (ii) is proved.

Now, assume (ii) holds and let �60 be a full measure event on which the statement (ii)
holds. Let ! 2 �0 \�60, x; y 2 Z2, and � 2 supp�x;y . The fact that  x;�˙ and  y;�˙

coalesce, respectively, says that z�˙.x; y/ 2 Z2. Since we assumed � 2 supp�x;y , Propo-
sition 7.2 implies that the two coalescence points z�˙.x; y/ are not equal. Theorem 3.4
implies that � is isolated.

The proof of Lemma 3.6 is delayed to the end of Section 8.1. When the jump process
condition (3.5) holds, define

�
jump
0 D �0 \�

5
0: (7.2)
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Proof of Theorem 3.7. (a) Take ! 2 �0. Let x � ye1 D k and � D ��.Tx!/. Take Tx!
in place of ! in (2.17), let � ! ��.Tx!/, and use (2.6), (2.7), and (2.11), to get
B��.x; x C e2/ � B

��.x; x C e1/ and B�C.x; x C e1/ � B�C.x; x C e2/. Then by defi-
nition 

x;�C

k
D 

x;��

k
D x, 

x;�C

kC1
D x C e1, and 

x;��

kC1
D x C e2. Therefore we cannot

have z�C.x; x C ei / D z��.x; x C ei / 2 Z2 for either i 2 ¹1; 2º by uniqueness of finite
geodesics. By Proposition 7.2, � 2 supp�x;xCe1 \ supp�x;xCe2 .

For the converse, for � � ��.Tx!/ � � we see that B�˙.x; x C e2/ D !x D

B�˙.x; x C e1/. Thus

supp�x;xCe1 � �e2; ��.Tx!/� and supp�x;xCe2 � Œ��.Tx!/; e1Œ:

Consequently, supp�x;xCe1 \ supp�x;xCe2 � ¹��.Tx!/º.
(b) It remains to show V ! � ¹��.Tx!/ W x 2Z2º. Assume the jump process condition

(3.5) holds and ! 2 �jump
0 . Suppose � 2 supp�x;y . By Theorem 3.4 (b) the coalescence

points z�˙.x;y/ are distinct lattice points. Hence the geodesics  x;�C and  x;�� separate
at some point z where then ��.Tz!/ D �.

The next results relate V ! to regularity properties of the shape function g.

Lemma 7.3. The following holds for all ! 2 �0: for all � � � in ri U, ��; �Œ \ V ! ¤ ;

if and only if rg.�C/ ¤ rg.��/.

Proof. If rg.�C/ ¤ rg.��/, Theorem A.8 (c) says that ��; �Œ contains some ��.Tx!/,
which by Theorem 3.7 (a) is a member of V ! .

If rg.�C/ D rg.��/, then by concavity, rg.�C/ D rg.��/ D rg.��/ for all � 2
��; �Œ and � 2 ¹�;Cº. By Theorem A.1 (d), B��.x; y; !/ is constant over � 2 ��; �Œ and
� 2 ¹�;Cº, for any x; y 2 Z2 and ! 2 �. Consequently, for any given x, the geodesics
 x;�� match. By Theorem A.4 (b), all these geodesics coalesce on the event �0. Hence
the coalescence points z��.x; y/ also match. By Theorem 3.4 (a), no point � 2 ��; �Œ is a
member of V ! .

Proof of Theorem 3.8. (a) Let � 2 D . Theorem A.4 (b) says that almost surely
z�˙.x; x C ei / 2 Z2 for x 2 Z2 and i 2 ¹1; 2º. Theorem A.1 (k) says that there
is no ˙ distinction. Hence P .z��.x; x C ei / D z�C.x; x C ei / 2 Z2/ D 1 and
therefore P .� 2 supp �x;xCei / D 0 by Proposition 7.2. A union bound implies that
P .9x 2 Z2; i 2 ¹1; 2º W � 2 supp�x;xCei / D 0. The cocycle property (2.7) then implies
that P .� 2 V !/ D 0.

Let � 2 .ri U/ nD . Theorem A.8 (d) implies that � is among ¹��.Tx!/ W x 2 Z2º, and
these lie in V ! by Theorem 3.7 (a).

(b) By definition, the complement of H is the union of the (at most countably many)
maximal open intervals ��; �Œ such that rg.�C/ D rg.��/ and their differentiable end-
points. Lemma 7.3 together with part (a) proved above implies that P .V ! \H c ¤;/D 0.
Hence almost surely, ¹��.Tx!/ W x 2 Z2º � V ! � H .

For the density claim it is enough to prove that ¹��.Tx!/ W x 2 Z2º is dense in H .
Suppose first that � 2H \D . Then � is not on a closed linear segment of g, and hence for
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any � � � � � we have rg.�C/ ¤ rg.��/. By Theorem A.8 (c) the open interval ��; �Œ
contains a value ��.Tx!/. The other case is � 2H nD . Then � 2 ¹��.Tx!/ W x 2 Z2º by
Theorem A.8 (d).

The next proof, of Theorem 3.9, identifies UnV ! in terms of directions in which
(Busemann) geodesic uniqueness holds.

Proof of Theorem 3.9. (a) Fix ! 2 �0 and � 2 ri U. Suppose first that there exists an
x 2 Z2 with the property that  x;�C ¤  x;��. These geodesics separate at some point z
where then � D ��.Tz!/ 2 V ! . If, on the other hand,  x;�C D  x;�� for all x 2 Z2, but
there exist x and y for which  x;� and  y;� do not coalesce, then Proposition 7.2 implies
that � 2 supp�x;y � V ! .

Conversely, suppose � 2V ! and let x;y be such that � 2 supp�x;y . Then by Theorem
3.1, possibly after interchanging the roles of x and y, we have  x;�C \  y;�� D ;. In
particular, these two geodesics do not coalesce. Part (a) is proved.

(c) Assume the jump process condition (3.5) and let ! 2�jump
0 . Suppose that  x;�C D

 x;�� D  x;� . By Theorem 3.5,  y;�� coalesces with  x;� for all y 2 Z2 and both
signs � 2 ¹�;Cº. By the uniqueness of finite geodesics,  y;�C D  y;��. Now all these
geodesics coalesce. Part (a) implies � … V ! .

Parts (b) and (d) follow from (a) and (c), respectively, because under the regularity
condition (2.4), Theorem A.7 implies that the uniqueness of a U� -directed geodesic out
of x is equivalent to  x;�C D  x;��.

The next lemma completes the proof of Theorem 3.10. Recall the event �0 defined
in (A.7).

Lemma 7.4. Assume the regularity condition (2.4). If ! 2�0 and � 2V ! , then U�D¹�º.

Proof. Take ! 2 �0 and suppose U� ¤ ¹�º. Recall the dense set of differentiabil-
ity directions U0 introduced just before (A.7). Because U� is a line segment in U,
there exists a � 2 U0 \ U� . By its definition, �0 � �3� , where �3

�
was introduced

in Theorem A.4. Theorem A.4 (e) then implies that z��.x; y/ D z�C.x; y/ 2 Z2 for
each pair x; y. Since �; � 2 U� and we assumed (2.4), Theorem A.1 (d) implies that
for all x; y 2 Z2, B��.x; y/ D B�C.x; y/ D B��.x; y/ D B�C.x; y/. Consequently,
z��.x;y/D z�C.x;y/ 2Z2 for all x;y 2Z2 and Theorem 3.4 (a) shows that � … V ! .

Proof of Theorem 3.11. (a) Theorem A.9 implies that for � 2 V ! ,  x;�� and  x;�C are
the only �-directed geodesics out of x.

(b) Consider any three geodesics with the same asymptotic direction � 2 ri U. If
� 2 .ri U/ n V ! then by Theorem 3.10 (c) all three coalesce. If � 2 V ! then by part
(a) at least two of these three geodesics must have the same sign C or �. By Theorem
3.10 (d) these two coalesce.

(c) Consider a sequence vn as in the first part of the statement and set k D x � ye.
From an arbitrary subsequence, extract a further subsequence n` so that  x;vn` converges
to a semi-infinite geodesic �k;1 vertex-by-vertex. Let � � � � �. Using the fact that
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vn=n! � and directedness of  x;�C and  x;��, for all sufficiently large n we must have

x;�C
n � vn � 

x;��
n . By uniqueness of finite geodesics, we must then have 

x;�C
m �


x;vn
m � 

x;��
m for all m � x � ye and all such n. It then follows by letting �; �! � that �

must be �-directed. Therefore, by part (a), � 2 ¹ x;�C; x;��º. Let r D s�.x/ � ye and let
n` be sufficiently large that 

x;vn`
k;rC1

D �k;rC1. By definition of the competition interface,

since vn` � '
s� .x/
n` we must have �rC1 D s�.x/C e2, which identifies � as  x;��. As the

subsequence was arbitrary, the result follows. The second claim is similar.
(d) By Theorem A.4 (d), any semi-infinite geodesic emanating from x is �-directed for

some � 2 U. Combining part (a) and Theorem 3.10 (c), the only claim which remains to
be shown is that  x;ei is the only ei -directed geodesic. This comes from Lemma A.6.

8. Webs of instability: proofs

Recall again the event �0 constructed in (A.7) and fix ! 2 �0 throughout this section.
Unless otherwise indicated, an assumption of the form � � � includes the case � D �D � .

8.1. Instability points and graphs

Proof of Lemma 4.1. Suppose x� is a Œ�; ��-instability point. Then there exists a direction
� 2 Œ�; ��\ supp�xCe1;xCe2 , which by Theorem 3.1 implies  xCe1;�� \  xCe2;�C D ;.
Then the ordering of geodesics implies  xCe1;�� \  xCe2;�C D ;.

If x� is not a Œ�; ��-instability point, then combining Propositions 7.1 and 7.2 we have

z D z��.x C e1; x C e2/ D z�C.x C e1; x C e2/ D z��.x C e1; x C e2/
D z�C.x C e1; x C e2/ 2 Z2;

 xCe1;�˙ and  xCe1;�˙ all match until z is reached, and  xCe2;�˙ and  xCe2;�˙ also
all match until z is reached. In particular, z 2  xCe1;�� \  xCe2;�C.

The following is immediate from the definitions and monotonicity.

Lemma 8.1. Let � � � in ri U. A directed path in G �
[Œ�;��

can never cross a directed path
in G�C from right to left (i.e. along a dual edge in the �e1 direction) nor a directed path
in G�� from above to below (i.e. along a dual edge in the �e2 direction).

The next lemma characterizes the ancestors of an instability point in the graph G �
[Œ�;��

.

Lemma 8.2. Let � � � in ri U and x� 2 S�
Œ�;��

. The following statements (i) and (ii) are
equivalent for any point y� 2 Z2�:

(i) There is a directed path from y� to x� in the graph G �
[Œ�;��

.

(ii) y� � x� and y� is between the two geodesics  x�Cye�
2
;�� and  x��ye�

2
;�C, embedded

as paths on R2.
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Proof. (i))(ii). By Lemma 8.1 no directed path in G �
[Œ�;��

can go from y� to x� unless

y� lies between  x�Cye�
2
;�� and  x��ye�

2
;�C.

(ii))(i). We prove this by induction on jy� � x�j1. The claim is trivial if y� D x�.
Suppose y� � x� is such that y� ¤ x� and y� is between  x�Cye�

2
;�� and  x��ye�

2
;�C.

If y� points to both y� � e1 and y� � e2 in G �
[Œ�;��

, then since y� � ei is between the
two geodesics for at least one i 2 ¹1; 2º, the induction hypothesis implies that there is a
directed path from y� to x� through this y� � ei .

Suppose next that y� points to y� � e1 in G �
[Œ�;��

but y� � e1 is not between the
two geodesics. Then, on the one hand, y� � e2 must be between the geodesics and the
induction hypothesis implies that there is a path from y� � e2 to x�. On the other hand,
y� � ye �1 must point to y� C ye �2 in G�� to prevent y� � e1 from falling between the two
geodesics. This implies that y� points to y� � e2 in G �

[Œ�;��
. Now we have a path from y�

to x� through y� � e2. See the left plot in Figure 8.1. The case when y� points to y� � e2
and the latter is not between the two geodesics is similar.

The next lemma characterizes Œ�; ��-instability points as the endpoints of semi-infinite
directed paths in G �

[Œ�;��
. Furthermore, such paths consist entirely of instability points.

Lemma 8.3. Let � � � in ri U.

(a) Let ¹x�
k
ºk�m be any semi-infinite path on Z2� such that x�

kC1
points to x�

k
in G �

[Œ�;��

for each k � m. Then ¹x�
k
ºk�m � S�

Œ�;��
and as k !1, the limit points of x�

k
=k lie

in the interval Œ�; ��.

(b) Let x� 2 Z2� andmD x� � ye1. Then x� 2 S�
Œ�;��

if and only if there is a path ¹x�
k
ºk�m

on Z2� such that x�m D x
� and for each k � m, x�

k
� ye1 D k and x�

kC1
points to x�

k

in G �
[Œ�;��

. When this happens, the path ¹x�
k
ºk�m satisfies part (a) above.

Proof. (a) For each k, Lemma 8.1 implies that the geodesics  x�
k
Cye�
2
;�� and  x�

k
�ye�
2
;�C

are disjoint because they remain forever separated by the path ¹x�
k
ºk�m. Since the back-

ward path ¹x�
k
ºk�m is sandwiched between the geodesics  x�mCye

�
2
;�� and  x�m�ye

�
2
;�C,

Theorem A.4 (a) implies that as k !1 the limit points of x�
k
=k lie in the interval Œ�; ��.

(b) The “if” claim follows from part (a). To prove the “only if” claim, suppose
x� 2 S�

Œ�;��
. Then the geodesics  x�Cye�

2
;�� and  x��ye�

2
;�C are disjoint. At every level

k > x� � ye1 we can choose a point y�
k

between the geodesics  x�Cye�
2
;�� and  x��ye�

2
;�C,

that is, a point y�
k
2 Z2� such that y� � ye1 D k and 

x�Cye�
2
;��

k
� y�

k
� 

x��ye�
2
;�C

k
. By

Lemma 8.2 there is a directed path in G �
[Œ�;��

from each y�
k

to x�. Along some subse-
quence these directed paths converge to a semi-infinite directed path to x�.

Proof of Theorem 4.3. Step 1. We show that S�
�
¤; for any � 2V ! . Since � 2 supp�z;y

for some z; y 2 Z2, the cocycle property (2.7) implies that � 2 supp�x;xCei for some
nearest-neighbor edge .x; x C ei /. Since �xCe1;xCe2 D �xCe1;x C �x;xCe2 is a sum of
two positive measures there can be no cancellation, and hence � 2 supp�xCe1;xCe2 and
thereby x C ye �1 2 S�

�
.
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y�

x�

y� � e1

y� � e2

y� C ye �2

y� � ye �1

x�
x� � e1 C ye

�
2

x� � e1

x� � ye �2x� � ye �1

x� C ye �2

Fig. 8.1. The proofs of Lemma 8.2 (left) and Theorem 4.3 (right). �� geodesics are in green and
thin. �C geodesics are in purple with medium thickness. Directed edges in G�

[Œ�;��
are in red/thick.

White circles are points in Z2 while points in Z2� are filled in (red).

Step 2. We show that every edge of G �
[Œ�;��

that emanates from a point of S�
Œ�;��

is an

edge of ��
Œ�;��

. Take x� 2 S�
Œ�;��

. Then  x�Cye�
2
;�� and  x��ye�

2
;�C are disjoint. Suppose

x� points to x� � e1 in G �
[Œ�;��

. Then x� � ye �1 points to x� � ye �2 in G�C. The geodesic

 x��ye�
1
;�C takes first an e1 step and then follows  x��ye�

2
;�C. Since  x��e1Cye

�
2
;��

must always stay to the left of  x�Cye�
2
;��, it is prevented from touching  x��ye�

1
;�C D

 x��e1�ye
�
2
;�C and we see that x� � e1 2 S�

Œ�;��
. See the right plot in Figure 8.1. The case

when x� points to x� � e2 in G �
[Œ�;��

is similar.

Step 3. We conclude the proof. Combining Lemma 8.3 (a) with Step 2 implies that every
bi-infinite directed path of the graph G �

[Œ�;��
is in fact a directed path of the graph ��

Œ�;��
.

Conversely, let x� 2 S�
Œ�;��

. Lemma 8.3 together with Step 2 implies that x� is the
endpoint of a semi-infinite directed path in ��

Œ�;��
which is inherited from G �

[Œ�;��
. Step 2

implies that by following the edges of G �
[Œ�;��

from x� creates an infinite down-left
directed path in the graph G �

[Œ�;��
, and this path is a directed path also in ��

Œ�;��
. In

other words, every instability point x� 2 S�
Œ�;��

lies on a bi-infinite directed path of the
graph ��

Œ�;��
that was inherited from G �

[Œ�;��
.

The Œ�; ��-directedness of these paths comes from Lemma 8.3 (a).

Proof of Theorem 4.4. (a) Let x D x� � ye �1 . If x� is a branch point in ��
Œ�;��

, then
 x;�� goes from x to x C e2 and  x;�C goes from x to x C e1, which is equivalent
to B��.x C e1; x C e2/ � 0 � B�C.x C e1; x C e2/, which in turn is equivalent to
��.Tx!/ 2 Œ�; ��.

Conversely, suppose ��.Tx!/ 2 Œ�; ��. Reversing the above equivalences we see that
x� 2 S�

Œ�;��
and points to both x� � e1 and x� � e2 in G �

[Œ�;��
. By Step 2 of the proof of

Theorem 4.3 these edges are in ��
Œ�;��

, and hence x� is a branch point.
(b) Start with the case � � �. Let � 2 Œ�; ��\ U0. Then�3

�
��0 and parts (b) and (c)

of Theorem A.4 imply that G� is a tree that does not contain any bi-infinite up-right paths.
(Recall that for � 2 U0 there is no ˙ distinction.) This implies that G �

�
is a tree as well,
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i.e. all down-left paths of G �
�

coalesce. Since G �
�
� G �

[Œ�;��
, one can follow the edges e.g.

in G �
�

starting from x� and from y� to get to a coalescence point z� that will then be a
descendant of both points in ��

Œ�;��
. The same argument can be repeated if � D �D � 2V !

when condition (4.2) holds, since then both G �
�˙

are trees. Claim (b) is proved.
(c) Observe that for any x�; y� 2 S�

Œ�;��
, Theorem 3.5 says that under the jump pro-

cess condition (3.5), if ! 2 �jump
0 (defined in (7.2)), then the geodesics  x�Cye�

2
;�� and

 y�Cye�
2
;�� coalesce, as do  x��ye�

2
;�C and  y��ye�

2
;�C. By Lemma 8.2, any point in

S�
Œ�;��

that is between the two C and � coalesced geodesics is an ancestor to both x�

and y�. Such a point exists. For example, take a point z on  x�Cye�
2
;�� above the

coalescence levels, in other words, such that z � ye1 � .z��.x� C ye �2 ; y
� C ye �2 / � ye1/ _

.z�C.x� � ye �2 ; y
� � ye �2 / � ye1/. Since  z;�C coalesces with  x��ye�

2
;�C, which does not

touch  z;�� (because this latter is part of  x�Cye�
2
;��),  z;�C must separate from  z;��

at some point z0. The dual point z0 C ye �1 is then in S�
Œ�;��

and is an ancestor to both x�

and y�. Part (c) is proved.
(d) The assumption is that � � � and ��; �Œ \ V ! ¤ ;. By Lemma 7.3, rg.�C/ ¤

rg.��/. For any z 2 Z2, Theorem A.8 (c) gives a strictly increasing sequence z < z1 <
z2 < � � � such that ��.Tzk!/ 2 ��; �Œ for each k. Then by (2.17), B�C.zk C e1; zk C e2/ <
0 < B��.zk C e1; zk C e2/, which implies that z�

k
D zk C ye

�
1 is a Œ�; ��-instability point.

Each such point is a branch point in ��
Œ�;��

because zk points to zk C e2 in G�C, and hence
also in G��, and to zk C e1 in G��, and hence also in G�C.

The proof of the existence of infinitely many coalescence points in ��
Œ�;��

follows from
this and the first claim in part (b) in a way similar to the proof below for the case of ��

�

(but without the need for any extra conditions) and is therefore omitted.
(e) Fix � 2V ! for the duration of the proof. Assume the jump process condition (3.5).

By Theorem 3.1 there exist x;y 2Z2 such that  x;�� \  y;�C D; and then Theorem 3.5
says that for any z 2Z2, the two geodesics  z;�˙ must separate at some point z1 (in order
to coalesce with  x;�� and  y;�C, respectively). Uniqueness of finite geodesics implies
that  z1Cei ;�˙, i 2 ¹1; 2º, cannot touch. Thus, z1 C ye �1 2 S�

�
. Now define inductively

znC1 to be the point where the geodesics  znCye1;�˙ separate. Then for each n, znC1 > zn
coordinatewise and z�n D zn C ye

�
1 is a point in S�

�
.

Next, assume both the jump process condition (3.5) and the no bi-infinite geodesic
condition (4.2). We prove the second claim of part (e) about infinitely many coalescence
points by mapping branch points injectively to coalescence points as follows.

Given a branch point x�, let �� and N�� be the two innermost down-left paths out
of x� along the directed graph ��

�
, defined by these rules:

(i) �� starts with edge .x�; x� � e1/, follows the arrows of ��
�

, and at ver-
tices where both �e1 and �e2 steps are allowed, it takes the �e2 step;

(ii) N�� starts with edge .x�; x� � e2/, follows the arrows of ��
�

, and when-
ever both steps are available takes the �e1 step. (8.1)

By part (b), x� � e1 and x� � e2 have a common descendant (this is where assumption
(4.2) is used). By planarity, the paths �� and N�� must then meet at some point after x�.
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Let z� be their first common point after x�, that is, the point z� 2 .�� \ N��/ n ¹x�º that
maximizes z� � ye1. This z� is the coalescence point that the branch point x� is mapped to.

We argue that the map x� 7! z� thus defined is one-to-one. Two observations that
help:

� There cannot be any S�
�
-points strictly inside the region bounded by �� and N�� between

x� and z�. By Theorem 4.3 such a point would lie on an ��
�

path, which contradicts the
choice of �� and N�� as the innermost paths from x� to z�.

� The last step that �� takes to reach z� is �e2 and the last step of N�� is �e1. Otherwise
�� and N�� would have met before z�.

Suppose another branch point y� 2 S�
�

distinct from x� maps to the same coalescence
point z�. Let the innermost paths from y� to z� be � and N�, defined by the same rules
(8.1) but with x� replaced by y�. As observed, � and N� cannot enter the region strictly
between �� and N��.

��

N��

x�

y�

z�

�

�
N�

��

N��

x�

y�

z�

�

N�

Fig. 8.2. Illustration of the proof that the map x� 7! z� is one-to-one.

Since � uses the edge .z� C e2; z�/, it must coalesce at some point with ��. The
point x� itself cannot lie on � because otherwise (8.1) forces � to take the edge
.x�; x� � e2/ and � cannot follow �� to z�. This scenario is depicted by the left drawing
in Figure 8.2. Thus � meets �� after x�, at which point rule (8.1) forces them to coalesce
(right drawing in Figure 8.2).

Similarly, x� cannot lie on N�, and N� meets N�� after x� at which point these coalesce
(right drawing in Figure 8.2).

Paths from y� cannot meet both �� and N�� while avoiding x� unless y� > x� holds
coordinatewise. It follows now that x� must lie strictly inside the region bounded by
� and N� between y� and z�, as illustrated by the right drawing in Figure 8.2. But we
already ruled out such a possibility. These contradictions show that the map is one-to-one.

Since we have already proved that under the jump process condition (3.5) there are
infinitely many branch points in ��

�
, it now follows that there are also infinitely many

coalescence points and part (e) is proved.

Proof of the claim in Remark 4.5. It suffices to consider the case where ��; �Œ \ V ! D ;

but ¹�; �º \ V ! ¤ ;. By Theorem 3.8 (a), the differentiable endpoints of the (countably
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many) linear segments of g are all outside V ! . By Theorem 3.8 (b) we know ��; �Œ must
be inside a linear segment. Thus, it must be the case that ¹�; �º \ V ! nD ¤ ;. Suppose,
without loss of generality, that � is in this intersection. Then Theorem A.8 (d) implies
the existence of infinitely many x 2 Z2 with ��.Tx!/ D � 2 V ! , and Theorem 4.4 (a)
says that the corresponding dual points x� are all branch points in ��

�
� ��

Œ�;��
. The claim

about coalescence points follows from the just proved infinite number of branch points,
combined with the first claim in part (b), similarly to the way the corresponding claim is
proved in Theorem 4.4 (e).

In words, the next result says that there are no semi-infinite horizontal or vertical paths
in any of the instability graphs S�

Œ�;��
. The idea behind the proof is that the existence of

such a path would force the existence of a semi-infinite horizontal or vertical path in one
of the geodesic graphs G�� for some � 2 ¹C;�º and � 2 ri U. This is ruled out by the law
of large numbers behavior of the Busemann functions.

Lemma 8.4. For any! 2�0, � � �, and i 2 ¹1;2º, there does not exist an x� 2 S�
Œ�;��

such
that x� � nei 2 A�

Œ�;��
.x� � .nC 1/ei / for all n 2 ZC; nor does there exist an x� 2 S�

Œ�;��

such that x� C .nC 1/ei 2 A�
Œ�;��

.x� C nei / for all n 2 ZC.

Proof. We prove the result for i D 1, the case i D 2 being similar. We also only work
with paths of the first type; the other type can be treated similarly.

The existence of a path of the first type, with i D 1, implies that x� � ne1 � ye �1 points
to x� � .n � 1/e1 � ye �1 in G�C for all n 2 ZC. But this implies that

B�C.x� � ne1 � ye
�
1 ; x

�
� .n � 1/e1 � ye

�
1 / D !x��ne1�ye�1

for all n 2 ZC. Take any sequence �m 2 U0 such that �m & �. Then (2.10) and (2.7)
imply that

nX
kD1

!x��ke1�ye�1
D B�C.x� � ne1 � ye

�
1 ; x

�
� ye �1 / � B

�m.x� � ne1 � ye
�
1 ; x

�
� ye �1 /:

Divide by n and apply the ergodic theorem on the left-hand side and (A.3) on the right-
hand side to get EŒ!0�� e1 � rg.�m/ for allm. Takem!1 to get EŒ!0�� e1 � rg.�C/.
It follows from Martin’s estimate of the asymptotic behavior of the shape function near
the boundary of U, [41, Theorem 2.4], along with concavity that this cannot happen.

Proof of Lemma 3.6. A general step of the path can be decomposed as xiC1 � xi DP
k.ykC1 � yk/ where ykC1 � yk 2 ¹e1;�e2º for each k. Then each �yk ;ykC1 is a nega-

tive measure, and consequently supp�xi ;xiC1 D
S
k supp�yk ;ykC1 . Thus we may assume

that the path satisfies xiC1 � xi 2 ¹e1;�e2º for all i .
One direction is clear:

S
i2Z supp�xi ;xiC1 � V ! .

For the other direction, take � 2 V ! . By Theorem 4.3, there is a bi-infinite up-right
reverse-directed path x��1;1 through x� in ��

�
with increments in ¹e1; e2º. By Lemma

8.4 this path must cross any down-right lattice path x�1;1. This means that there exists
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an i 2 Z such that either xiC1 � xi D e1 and xi C ye �1 points to xi � ye �2 in ��
�

, i.e. xi
points to xi C e2 in G��, or xiC1 � xi D �e2 and xi � ye �2 points to xi � ye �1 in ��

�
, i.e.

xi points to xi C e1 in G�C. In the former case,  xi ;�� goes from xi to xi C e2 and from
there it never touches  xiC1;�C D  xiCe1;�C, since xi C ye �1 2 S�xi . Consequently, in this
case Theorem 3.1 says that � 2 supp�xi ;xiC1 . The other case is similar and again gives
� 2 supp�xi ;xiC1 . This proves Lemma 3.6.

8.2. Density of instability points on the lattice

For � � � in ri U, x 2 Z2, and i 2 ¹1; 2º let

�ix.�; �/ D 1¹Œ�; �� \ supp�x;xCei ¤ ;º: (8.2)

We write �ix.�/ for �ix.�; �/. By definition, x C ye �1 2 S�
Œ�;��

if and only if �1x.�; �/ and
�2x.�;�/ are not both 0. By Lemma 8.6 below, �ix.�;�/D 1 is equivalent to xCye �1 pointing
to x C ye �1 � e3�i in ��

Œ�;��
. Also, �1x.�/ D �

2
x.�/ D 1 if and only if ��.Tx!/ D �. Let

�i .�; �/ D P¹�i0.�; �/ D 1º:

Since supp�x;xCei is by definition closed, �i is left-continuous in � and right-continuous
in �. Furthermore, by Theorem 3.8 �i is continuous in each argument at points of differ-
entiability of g. Again, we write �i .�/ for �i .�; �/. We thus have

�i .�/ D lim
�%�; �&�

�i .�; �/:

By Theorem 3.8, � 2D if and only if �i .�/D 0 for some (and hence both) i 2 ¹1; 2º. Let

�12.�; �/ D P¹�10.�; �/ D �
2
0.�; �/ D 1º D P¹�� 2 Œ�; ��º

and write �12.�/ for �12.�; �/. The last equality above follows because if �� … Œ�; ��, then
by recovery (2.8) and by the Busemann characterization (2.17) of ��, one of the processes
� 7! B�˙.0; ei / for i 2 ¹1; 2º is constant for � 2 Œ�; ��.

The next result essentially follows from the ergodic theorem and gives the density of
horizontal and vertical edges, instability points, branch points, and coalescence points.

Lemma 8.5. Assume the regularity condition (2.4). There exists a T -invariant event
�00 � �0 with P .�00/ D 1 and such that for all ! 2 �00, i; j 2 ¹1; 2º, a; b; a0; b0 2 ¹0; 1º
with .b C a/.b0 C a0/ ¤ 0, and for all � � � in ri U, we have

lim
n!1

1

jb C ajn

bnX
kD�an

�
j

kei
.�; �/

D lim
n!1

1

j.b C a/.b0 C a0/jn2

X
x2Œ�an;bn��Œ�a0n;b0n�

�jx.�; �/ D �j .�; �/; .8:3/
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lim
n!1

1

jb C ajn

bnX
kD�an

1¹kei C ye �1 2 S�Œ�;��º

D lim
n!1

1

.b C a/.b0 C a0/n2

X
x2Œ�an;bn��Œ�a0n;b0n�

1¹x C ye �1 2 S�Œ�;��º

D �1.�; �/C �2.�; �/ � �12.�; �/; .8:4/

lim
n!1

1

jb C ajn

bnX
kD�an

�1kei .�; �/�
2
kei
.�; �/

D lim
n!1

1

j.b C a/.b0 C a0/jn2

�

X
x2Œ�an;bn��Œ�a0n;b0n�

�1x.�; �/�
2
x.�; �/ D �12.�; �/; .8:5/

and

lim
n!1

1

jb C ajn

bnX
kD�an

�1kei .�; �/�
2
.kC1/ei�e3�i

.�; �/

D lim
n!1

1

j.b C a/.b0 C a0/jn2

�

X
x2Œ�an;bn��Œ�a0n;b0n�

�1x�e1.�; �/�
2
x�e2

.�; �/ D �12.�; �/: .8:6/

All of the above limits are positive if and only if rg.�C/ ¤ rg.��/.

Proof. As explained in Remark A.3, under the regularity condition (2.4), the Busemann
process is a measurable function of ¹!x W x 2 Z2º. Thus, by the ergodic theorem, there
exists a T -invariant event �00 � �0 with P .�00/ D 1 and such that for ! 2 �00 the limits
(8.3)–(8.6) hold for all �; � 2 U0 [ ..ri U/ nD/.

To justify the equality of the limit in (8.6) with the one in (8.5) observe that since
every instability point must have at least one descendant and at least one ancestor, we
have

P¹�ye �1 2 S�Œ�;��º

D P¹�1�e1.�; �/ D 1º C P¹�2�e2.�; �/ D 1º � P¹�1�e1.�; �/ D �
2
�e2
.�; �/ D 1º

and

P¹ye �1 2 S�Œ�;��º D P¹�10.�; �/ D 1º C P¹�20.�; �/ D 1º � P¹�10.�; �/ D �
2
0.�; �/ D 1º:

By shift invariance, the first three probabilities in the first display match the corresponding
three probabilities in the second display. Thus,

P¹�1�e1.�; �/ D �
2
�e2
.�; �/ D 1º D �12.�; �/:
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We now prove the first limit in (8.3), the rest of the limits in the statement of the
lemma being similar. Take ! 2�00 and any � � � in ri U. Suppose first g is differentiable
at both � and �. Take sequences �0m � � � �m � �m � � � �

0
m with �0m; �m; �m; �

0
m 2U0

and use monotonicity and the continuity of �j to get

�j .�m; �m/ D lim
n!1

1

.b � a/n

bnX
kD�an

�
j

kei
.�m; �m/

� lim
n!1

1

.b � a/n

bnX
kD�an

�
j

kei
.�; �/ � lim

n!1

1

.b � a/n

bnX
kD�an

�
j

kei
.�; �/

� lim
n!1

1

.b � a/n

bnX
kD�an

�
j

kei
.�0m; �

0
m/ D �j .�

0
m; �

0
m/:

Taking m ! 1 and using continuity of �j at � and � gives that the above liminf and
limsup are equal to �j .�; �/. The same proof works if � D � is a point of differentiability
of g. In this case, we can use 0 as a lower bound and for the upper bound we have
�j .�/ D �j .�/ D 0.

Next, suppose � is a point of non-differentiability of g, but � is still a point of dif-
ferentiability. We can repeat the same argument as above, but this time only using the
sequences �m and �0m and the intervals Œ�; �m� and Œ�; �0m� for the upper and lower bounds,
because � has been included in the set U0 [ ..ri U/ nD/. A similar argument works if �
is a point of differentiability but � is not. When g is not differentiable at both � and �, the
claimed limits follow from the choice of �00.

Proof of Proposition 4.6. The claim follows from Lemma 8.5.

8.3. Flow of Busemann measure

Proof of Theorem 4.7. The vertex set of B�
Œ�;��

is by definition the same as that of ��
Œ�;��

.
That the edges also agree follows from Lemma 8.6 below.

Lemma 8.6. For i 2 ¹1; 2º, Œ�; �� \ supp�x;xCei ¤ ; if and only if .x C ye �1 ; x C ye
�
1

� e3�i / is a directed edge in the graph ��
Œ�;��

.

Proof. We prove the case of i D 1. Assume first that Œ�; �� \ supp�x;xCe1 ¤ ;. From
�xCe1;xCe2 D �xCe1;x C �x;xCe2 and �x�ye2;x D �x�ye2;xCe1 C �xCe1;x (sums of pos-
itive measures) we see that both x C ye �1 ; x C ye

�
1 � e2 2 S�

Œ�;��
.

Suppose � 2 Œ�; �� \ supp�x;xCe1 . By Theorem 3.1, x must point to x C e2 in G��,
which forces the same in G��. Thus x C ye �1 points to x C ye �1 � e2 in G �

��
and hence also

in G �
[Œ�;��

.
Conversely, if x C ye �1 2 S�

Œ�;��
then  xCe2;�� and  xCe1;�C do not intersect. If fur-

thermore x C ye �1 points to x C ye �1 � e2 in G �
[Œ�;��

, then x points to x C e2 in G�� and
hence  x;�� joins  xCe2;�� and does not intersect  xCe1;�C.
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Let �0 � � and �0 � �. By geodesic ordering (2.13),  x;� 0C and  xCe1;�
0� are disjoint.

In particular, the coalescence points z� 0C.x; x C e1/ and z�0�.x; x C e1/ cannot coincide
on Z2. By Proposition 7.1, ��0; �0Œ intersects supp �x;xCe1 . Since this holds for every
choice of ��0; �0Œ � Œ�; ��, it follows that also Œ�; �� intersects supp�x;xCe1 .

Proof of Proposition 4.8. Suppose x
Œ�;��
� y. Since supp�x;y is a closed subset of riU and

Œ�; �� a compact set, we can find �0 � � and �0 � � such that j�x;y j.��0; �0Œ/ D 0. Then by
Proposition 7.1, there exists z 2 Z2 such that all geodesics  x;�� and  y;�� for � 2 Œ�; ��
and � 2 ¹�;Cº meet at z. Thus x and y are in the same subtree of the graph G\Œ�;��.

Conversely, suppose x and y are two distinct points in the same subtree K of the
graph G\Œ�;��. In this tree the following holds.

In K there is a point z and a path � from x to z and a path � 0 from y to z
such that z is the first common point of � and � 0. For each � 2 Œ�; �� and
both signs � 2 ¹�;Cº, all the geodesics  x;�� follow � from x to z,
and all the geodesics  y;�� follow � 0 from y to z. (8.7)

Consequently, each � 2 Œ�; �� satisfies z��.x;y/D z�C.x;y/D z. By Proposition 7.2 each
� 2 Œ�; �� lies outside supp�x;y .

x

�

y

� 0

u
� 00

z

Fig. 8.3. Proof of Lemma 4.9.

Proof of Lemma 4.9. The hypotheses imply that, by switching x and y around if neces-
sary, x � e1 � y � e1 and x � e2 � y � e2. Let z; �; � 0 be as in (8.7). Let u be any point
of Jx ^ y; x _ yK. By planarity, each geodesic  u;�� for � 2 Œ�; �� and � 2 ¹�;Cº must
eventually intersect � or � 0 and then follow this to z. See Figure 8.3. By uniqueness of
finite geodesics, all these geodesics  u;�� follow the same path � 00 from u to z. Thus � 00

is part of the graph G\Œ�;��, and since it comes together with � and � 0 at z, it is part of the
same subtree K .

Proof of Lemma 4.10. Suppose x is such a vertex but K �¹y W y � xº fails. We claim that
then there necessarily exists a vertex y 2 K such that x and y satisfy the hypotheses of
Lemma 4.9 and one of ¹x � e1;x � e2º lies in Jx ^ y;x _ yK. This leads to a contradiction.

To verify the claim, pick y 2 K such that y � x fails. If y < x also fails, there are
two possible cases:

(i) y � e1 < x � e1 and y � e2 � x � e2, in which case x � e1 2 Jx ^ y; x _ yK �K;

(ii) y � e1 � x � e1 and y � e2 < x � e2, in which case x � e2 2 Jx ^ y; x _ yK �K .
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If y < x does not fail, follow the geodesics ¹ y;�˙ W � 2 Œ�; ��º until they hit the
level Lx�ye1 at some point y0. The assumption that neither x � e1 nor x � e2 lies in K

implies that y0 ¤ x. Thus y0 is a point of K that fails both y0 � x and y0 < x. Replace y
with y0 and apply the previous argument.

We have shown that the existence of x 2 K such that ¹x � e1; x � e2º \K D ;

implies that K � ¹y W y � xº. That such an x must be unique follows since x lies outside
¹y W y � x0º for any x0 ¤ x that satisfies x0 � x.

Assuming that inf ¹t 2 Z W K \ Lt ¤ ;º > �1, pick x 2 K to minimize the level
x � ye1.

Proof of Theorem 4.11. (a) If Œ�;��\ V ! D; then the interval Œ�;�� is strictly on one side
of ��.Tx!/ at every x. Hence the graphs ¹G�� W � 2 Œ�; ��; � 2 ¹�;Cºº are all identical.
This common graph is a tree by Theorem 3.5.

Conversely, if � 2 Œ�; �� \ V ! , then there exist x; y such that � 2 supp�x;y and by
Theorem 3.1 there are disjoint geodesics in G\Œ�;��.

(b) It follows from what was already said that ¹K.z/ W z 2 DŒ�;��º are disjoint subtrees
of G\Œ�;�� and their vertex sets cover Z2. Suppose .x; x C ei / is an edge in G\Œ�;��. Then
all geodesics ¹ x;�� W � 2 Œ�; ��; � 2 ¹�;Cºº go through this edge. Thus this edge must
be an edge of the tree K.z/ that contains both x and x C ei . Hence each edge of G\Œ�;��
is an edge of one of the trees K.z/, and no such edge can connect two trees K.z/ and
K.z0/ for distinct z and z0.

9. Instability points in the exponential model: proofs

We turn to the proofs of the results in Section 5, beginning with a discussion of Palm
kernels, which are needed in order to prove Theorems 5.2 and 5.3.

9.1. Palm kernels

Let MZ�ri U denote the space of locally bounded positive Borel measures on the locally
compact space Z � ri U. Consider Z � ri U as the disjoint union of copies of ri U,
one copy for each horizontal edge .ke1; .k C 1/e1/ on the x-axis. Recall that B��

k
D

B��.ke1; .k C 1/e1/. We define two random measures � and n on Z � ri U in terms of
the Busemann functions � 7! B

�˙

k
attached to these edges.

On each subset ¹kº � ri U of Z � ri U we (slightly abuse notation and) define the
measure �k by

�k.¹kº � ��; ��/ D �k.��; ��/ D B
�C

k
� B

�C

k

for � � � in ri U. In terms of definition (3.1), �k D �.kC1/e1;ke1 is a positive measure due
to monotonicity (2.10). On Z � ri U, define the measure � D

P
k �k . In other words, for

Borel sets Ak � ri U, �.
S
k¹kº � Ak/ D

P
k �k.Ak/.
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Let nk denote the simple point process on ¹kº � ri U that records the locations of the
jumps of the Busemann function � 7! B

�˙

k
: for Borel A � ri U,

nk.¹kº � A/ D nk.A/ D
X
�2A

1¹B��
k
> B

�C

k
º:

We describe the probability distributions of the component measures �k and nk , given
in [22, Theorem 3.4]. Marginally, for each k, nk is a Poisson point process on ri U with
intensity measure

�.��; ��/ D �k.��; ��/ D EŒnk.��; ��/� D
Z ˛.�/

˛.�/

ds

s
D log

˛.�/

˛.�/
: (9.1)

In particular, almost every realization of nk satisfies nk Œ�; �� <1 for all � � � in ri U.
Create a marked Poisson process by attaching an independent Exp.˛.�//-distributed

weight Y� to each point � in the support of nk . Then the distribution of �k is that of the
purely atomic measure defined by

�k.��; �� / D
X

�2ri UWnk.�/D1

Y� 1��;��.�/ for � � � in ri U: (9.2)

The random variable �k.��; ��/ has distribution Ber.1 � ˛.�/
˛.�/

/˝ Exp.˛.�// (product of a
Bernoulli and an independent exponential) and expectation

EŒ�k.��; ��/� D
1

˛.�/
�

1

˛.�/
: (9.3)

Note the following technical point. The jumps ofB�˙
k

concentrate at e2 andBe2�
k
D1.

To define � and n as locally finite measures, the standard Euclidean topology of ri U has
to be metrized so that �e2; �� is an unbounded set for any � � e2. This point makes no
difference to our calculations and we already encountered this issue around definition
(3.1) of the Busemann measures. With this convention we can regard n D

P
k nk as a

simple point process on Z � ri U with mean measure z� D .counting measure on Z/˝ �.
For .k; �/ 2 Z � ri U, let Q.k;�/ be the Palm kernel of � with respect to n. That is,

Q.k;�/ is the stochastic kernel from Z� ri U into MZ�ri U that gives the distribution of �,
conditional on n having a point at .k; �/, understood in the Palm sense. Rigorously, the
kernel is defined by disintegrating the Campbell measure of the pair .n; �/ with respect
to the mean measure z� of n (this is developed in [39, Section 6.1]): for any non-negative
Borel function f W .Z � ri U/ �MZ�ri U ! RC,

E

�Z
Z�ri U

f .k; �; �/n.dk ˝ d�/
�

D

Z
Z�ri U

Z
MZ�ri U

f .k; �; �/Q.k;�/.d�/ z�.dk ˝ d�/: (9.4)
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Now we consider the indices ��.i/ D ��;�.i/ of jumps at �, defined in (5.1). In terms
of the random measures introduced above, for .k; �/ 2 Z � ri U,

�¹.k; �/º > 0 ” n¹.k; �/º D 1 ” B
��

k
> B

�C

k
” k 2 ¹��.i/ W i 2 Zº:

We condition on the event ¹n.0; �/ D 1º, in other words, consider the distribution of
¹��.i/º under Q.0;�/. For this to be well-defined, we define these functions also on the
space MZ�ri U in the obvious way: for � 2 MZ�ri U, the Z [ ¹˙1º-valued functions
��.i/ D ��.i; �/ are defined by the order requirement

� � � < ��.�1; �/ < 0 � ��.0; �/ < ��.1; �/ < � � �

and the condition

for k 2 Z, �¹.k; �/º > 0 if and only if k 2 ¹��.i; �/ W i 2 Zº:

Since � is P -almost surely a purely atomic measure, it follows from general theory that
Q.0;�/ is also supported on such measures. Furthermore, the conditioning itself forces
Q.0;�/¹� W �

�.0; �/ D 0º D 1. Thus the random integer points ��.i; �/ are not all trivially
˙1 underQ.0;�/. Connecting back to the notation of Section 5, for each k 2 Z, � 2 ri U,
each finite A � Z and ni 2 ZC; ri 2 RC with i 2 A, the Palm kernel introduced in that
section is defined by

P¹��.i C 1/ � ��.i/ D ni ; B
��

�� .i/
� B

�C

�� .i/
> ri 8i 2 A kB

��

k
> B

�C

k
º

D Q.k;�/
®
� W ��.i C 1; �/ � ��.i; �/ D ni ; �¹.�

�.i; �/; �/º > ri 8i 2 A
¯
: (9.5)

9.2. Statistics of instability points

We turn to the proofs of the theorems of Section 5. These proofs make use of results from
Appendices C and D.

Proof of Theorem 5.1. By Corollary C.2, the process ¹B�
k
� B

�

k
ºk2Z has the same distri-

bution as ¹W C
k
ºk2Z defined in (D.6). An application of the appropriate mapping to these

sequences produces the sequence ¹B�0 � B
�
0 ; �

�;�.i C 1/ � ��;�.i/; B
�

��;�.i/
� B

�

��;�.i/
W

i 2 Zº that appears in Theorem 5.1 and the sequence ¹W C0 ; �iC1 � �i ; W
C
�i
W i 2 Zº

that appears in Theorem D.2. Hence these sequences also have identical distribution. (We
have W C�i D W�i by (D.9).) The distributions remain equal when these sequences are

conditioned on the positive probability events B�0 � B
�
0 > 0 and W C0 > 0.

It will be convenient to have notation for the conditional joint distribution that appears
in (5.3) in Theorem 5.1. For 0 < ˛ � ˇ � 1 define probability distributions q˛;ˇ on the
product space ZZ � Œ0;1/Z as follows. Denote the generic variables on this product
space by .¹�iºi2Z; ¹�kºk2Z/ with �i 2 Z and 0 � �k < 1. Given an integer L > 0,



Geodesics in LPP 49

integers n�L < � � � < n�2 < n�1 < n0 D 0 < n1 < n2 < � � � < nL, and positive reals
r�L; : : : ; rL, abbreviate bi D niC1 � ni . The measure q˛;ˇ is defined by

q˛;ˇ
®
�i D ni and �ni > ri for i 2 J�L;LK; �k D 0 for k 2 Jn�L; nLK n ¹nj ºj2J�L;LK

¯
D

� L�1Y
iD�L

Cbi�1
˛bi�1ˇbi

.˛ C ˇ/2bi�1

�
�

� LY
iD�L

e�˛ri
�
: (9.6)

To paraphrase the definition, the following holds under q˛;ˇ : �0 D 0, �k D 0 for k …
¹�iºi2Z, and the variables ¹�iC1 � �i ; ��i ºi2Z are mutually independent with marginal
distribution

q˛;ˇ ¹�iC1 � �iDn;��i >rºDCn�1
˛n�1ˇn

.˛ C ˇ/2n�1
e�˛r for i 2Z; n�1; r�0: (9.7)

Abbreviate q˛Dq˛;˛ which has marginal q˛¹�iC1��iDn;��i >rºDCn�1.
1
2
/2n�1e�˛r .

As ˇ ! ˛, q˛;ˇ converges weakly to q˛ .
Theorem 5.1 can now be restated by saying that, conditional onB�0 >B

�
0 , the variables

.¹��;�.i/ºi2Z; ¹B
�

k
� B

�

k
ºk2Z/

have joint distribution q˛.�/;˛.�/. Consequently, for a measurable set A � ZZ � Œ0;1/Z,

P ŒB�0 > B
�
0 ; .¹�

�;�.i/ºi2Z; ¹B
�

k
� B

�

k
ºk2Z/ 2 A�

D P .B�0 > B
�
0 /P Œ.¹��;�.i/ºi2Z; ¹B

�

k
� B

�

k
ºk2Z/ 2 A j B

�
0 > B

�
0 �

D
˛.�/ � ˛.�/

˛.�/
� q˛.�/;˛.�/.A/: (9.8)

The first probability on the last line came from (C.6) and the second from Theorem 5.1.

Proof of Theorem 5.2. Define Z[ ¹˙1º-valued ordered indices � � �< ��;��1 < 0� �
�;�
0 <

�
�;�
1 < � � � as measurable functions of a locally finite measure � 2MZ�ri U by the rule

�.¹kº � Œ�; ��/ > 0 ” k 2 ¹�
�;�
i W i 2 Zº: (9.9)

If �.¹kº � Œ�; ��/ > 0 does not hold for infinitely many k > 0 then ��;�i D 1 for large
enough i , and analogously for k < 0. Definition (9.9) applied to the random measure
� D

P
k �k reproduces (5.1).

Fix integers K;N 2 N and `�N � � � � � `�1 � `0 D 0 � `1 � � � � � `N and strictly
positive reals r�K ; : : : ; rK . Define the event

H �;�
D H.�; �/ D

\
1�i�N

¹� W �
�;�
�i � `�i and ��;�i � `iº

\

\
�K�k�K

¹� W �.¹kº � ��; ��/ < rkº (9.10)
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on the space MZ�ri U. Note the monotonicity

H �;�
� H � 0;�0 for Œ�0; �0� � Œ�; ��: (9.11)

Abbreviate H � D H �;� . Recall the measures q˛;ˇ defined in (9.6). The analogous event
under the measures q˛;ˇ on the space ZZ � Œ0;1/Z is denoted by

Hq D
®
.¹�iºi2Z; ¹�kºk2Z/ 2 ZZ

� Œ0;1/Z W ��i � `�i and �i � `i for i 2 J1;N K;

�k < rk for k 2 J�K;KK
¯
: (9.12)

Fix � � � in ri U. We prove the theorem by showing that

Q.0;�/.H
�/ D q˛.�/.Hq/ for Lebesgue-almost every � 2 ��; ��. (9.13)

This equality comes from separate arguments for upper and lower bounds.

Upper bound proof. Define a sequence of nested partitions � D �n0 � �
n
1 � � � � � �

n
n D �.

For each n and � 2 ��; ��, let ��n.�/; �n.�/� denote the unique interval ��ni ; �
n
iC1� that con-

tains �. Assume that, as n%1, the mesh size maxi j�niC1 � �
n
i j tends to 0. Consequently,

for each � 2 ��; ��, the intervals ��n.�/; �n.�/� decrease to the singleton ¹�º.
The key step of this upper bound proof is that for all m and i and Lebesgue-a.e.

� 2 ��; ��,

Q.0;�/.H
�m
i
;�m
iC1/ D lim

n!1
P¹� 2 H �m

i
;�m
iC1 j n0.��n.�/; �n.�/�/ � 1º: (9.14)

This limit is a special case of Theorem 6.32 (iii) in Kallenberg [39], for the simple point
process n and the sets Bn D ¹0º � .�n.�/; �n.�/�& ¹.0; �/º. The proof of [38, Theorem
12.8] can also be used to establish this limit; the result of [38] by itself is not quite suitable
because we use the Palm kernel for the measure � which is not the same as n.

If we take � 2 ��mi ; �
m
iC1�, then for n�m, ��n.�/;�n.�/�� ��m.�/;�m.�/�D ��mi ; �

m
iC1�.

Considering all � in the union ��; �� D
S
i ��

m
i ; �

m
iC1�, for any fixed m and Lebesgue-a.e.

� 2 ��; �� we have

Q.0;�/.H
�m.�/;�m.�// D lim

n!1
P¹� 2 H �m.�/;�m.�/

j n0.��n.�/; �n.�/�/ � 1º

� lim
n!1

P¹� 2 H �n.�/;�n.�/
j n0.��n.�/; �n.�/�/ � 1º:

The inequality is due to (9.11).
Interpreting (9.8) in terms of the random measures � and n and referring to (9.10) and

(9.12) gives the identity

P¹� 2 H �n.�/;�n.�/
j n0.��n.�/; �n.�/�/ � 1º D q˛.�

n.�//;˛.�n.�//.Hq/:

As .�n.�/; �n.�/�& ¹�º, the parameters converge: ˛.�n.�//; ˛.�n.�//! ˛.�/. Conse-
quently, the distribution q˛.�

n.�//; ˛.�n.�// converges to q˛.�/. Hence

lim
n!1

P¹� 2 H �n.�/;�n.�/
j n0.��n.�/; �n.�/�/ � 1º D q˛.�/.Hq/:
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In summary, for all m and Lebesgue-a.e. � 2 ��; �� we have

Q.0;�/.H
�m.�/;�m.�// � q˛.�/.Hq/:

Let m%1 so that H �m.�/;�m.�/ % H � , to obtain the upper bound

Q.0;�/.H
�/ � q˛.�/.Hq/ (9.15)

for Lebesgue-a.e. � 2 ��; ��.

Lower bound proof. Let � D �0 � �1 � � � � � �` D � be a partition of the interval Œ�; ��
and set j̨ D ˛.�j /.

In order to get an estimate below, let m D .mi /1�ji j�N be a 2N -vector of integers
such that mi < `i for �N � i � �1 and mi > `i for 1 � i � N . Define the subset Hm

q

of Hq from (9.12) by truncating the coordinates �i :

Hm
q D

®
.¹�iºi2Z; ¹�kºk2Z/ 2 ZZ

� Œ0;1/Z W m�i � ��i � `�i and `i � �i � mi

for i 2 J1;N K; �k < rk for k 2 J�K;KK
¯
: (9.16)

On the last line in the following computation, c1 is a constant that depends on the
parameters ˛.�/ and ˛.�/ and on the quantities in (9.16):Z
��;��

Q.0;�/.H
�/ �0.d�/ D

`�1X
jD0

Z
��j ;�jC1�

Q.0;�/.H
�/ �0.d�/

�

`�1X
jD0

Z
��j ;�jC1�

Q.0;�/.H
�j ;�jC1/ �0.d�/ D

`�1X
jD0

EŒn0.��j ; �jC1�/ � 1H�j ;�jC1 .�/�

�

`�1X
jD0

P¹n0.��j ; �jC1�/ � 1; � 2 H �j ;�jC1º

D

`�1X
jD0

j̨C1 � j̨

j̨C1

q j̨ ; j̨C1.Hq/ �

`�1X
jD0

j̨C1 � j̨

j̨C1

q j̨ ; j̨C1.Hm
q /

�

`�1X
jD0

j̨C1 � j̨

j̨C1

q j̨C1.Hm
q / � .1 � c1. j̨C1 � j̨ //:

The steps above come as follows. The second equality uses the characterization (9.4) of
the kernel Q.0;�/. The third equality is from (9.8). The second last inequality is from
Hm
q � Hq . The last inequality is from Lemma 9.1 below, which is valid once the mesh

size max. j̨C1 � j̨ / is small enough relative to the numbers ¹mi ; `iº.
The function ˛ 7! q˛.Hm

q / is continuous in the Riemann sum approximation on the
last line of the calculation above. Let max. j̨C1 � j̨ /! 0 to obtain the inequalityZ

��;��

Q.0;�/.H
�/ �0.d�/ �

Z ˛.�/

˛.�/

q˛.Hm
q /

d˛

˛
D

Z
��;��

q˛.�/.Hm
q / �0.d�/:
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Let mi & �1 for �N � i � �1 and mi %1 for 1 � i � N . The above turns intoZ
��;��

Q.0;�/.H
�/ �0.d�/ �

Z
��;��

q˛.�/.Hq/ �0.d�/: (9.17)

The upper bound (9.15) and the lower bound (9.17) together imply (9.13).

The proof of Theorem 5.2 is complete once we verify the auxiliary lemma used in the
calculation above.

Lemma 9.1. Let the event Hm
q be as defined in (9.16). Fix 0 < ˛ < ˛ < 1. Then there

exist constants "; c1 2 .0;1/ such that

q˛;ˇ .Hm
q / � q

ˇ .Hm
q / � .1 � c1.ˇ � ˛//

for all ˛; ˇ 2 Œ˛; ˛� such that ˛ � ˇ � ˛ C ". The constants "; c1 2 .0;1/ depend on ˛,
˛, and the parameters `i ; mi and rk in (9.16).

Proof. Let

A D
®
p D .pi /�N�i�N 2 Z2NC1 W p0 D 0; pi < pj for i < j;

m�i � p�i � `�i and `i � pi � mi 8i 2 J1;N K
¯

be the relevant finite set of integer-valued .2N C 1/-vectors for the decomposition below.
For each p 2 A let K.p/ D ¹pi W i 2 J�N; N K; pi 2 J�K; KKº be the set of coordi-
nates of p in J�K;KK. Abbreviate bi D piC1 � pi . Recall that, under q˛;ˇ , �0 D 0 and
�k < rk holds with probability 1 if k … ¹�iº; recall also the independence in (9.7). The
factors dk > 0 below that satisfy 1� e�˛rk � .1� e�ˇrk /.1� dk.ˇ � ˛// can be chosen
uniformly for ˛ � ˇ in Œ˛; ˛�, as functions of ˛, ˛, and ¹rkº. Now compute:

q˛;ˇ .Hm
q /

D q˛;ˇ ¹mi � ��i � `�i and `i � �i � mi for i 2 J1;N K; �k < rk for k 2 J�K;KKº

D

X
p2A

q˛;ˇ ¹�i D pi for i 2 J�N;N K; �k < rk for k 2 J�K;KKº

D

X
p2A

q˛;ˇ ¹�iC1 � �i D bi for i 2 J�N;N � 1Kº �
Y

k2K.p/

.1 � e�˛rk /

�

X
p2A

� N�1Y
iD�N

Cbi�1
˛bi�1ˇbi

.˛ C ˇ/2bi�1

�
�

Y
k2K.p/

.1 � e�ˇrk /.1 � dk.ˇ � ˛//

�

X
p2A

� N�1Y
iD�N

Cbi�1

�
1

2

�2bi�1�� Y
k2K.p/

.1 � e�ˇrk /

�
� .1 � c1.ˇ � ˛//

D

X
p2A

qˇ ¹�iC1 � �i D bi for i 2 J�N;N � 1K; �k < rk for k 2 J�K;KKº

� .1 � c1.ˇ � ˛//

D qˇ .Hm
q / � .1 � c1.ˇ � ˛//:
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To get the inequality above, (i) apply Lemma B.2 to the first factor in parentheses with "
chosen so that 0 < " < ˛=bi for all p 2 A, and (ii) set c1 D

PK
kD�K dk .

In the proofs that follow, we denote the indicators of the locations of the positive atoms
of a measure � 2MZ�ri U by uk.�; �/ D uk.�/ D 1Œ�¹.k; �/º > 0� for .k; �/ 2 Z � ri U.
Applied to the random measure �, this gives uk.�; �/ D nk.�/.

Lemma 9.2. For Lebesgue-almost every � 2 ri U and all m 2 Z,

Q.m;�/Œ� W ¹umCk.�; �/ºk2Z 2 A� D P.A/ (9.18)

for all Borel sets A � ¹0; 1ºZ.

Proof. For m D 0, (9.18) comes from a comparison of (5.4) and (5.5). For general m it
then follows from the shift-invariance of the weights !.

Proof of Theorem 5.3. Take A � ¹0; 1ºZ as in the statement of Theorem 5.3. Fix � � �
in ri U and let N 2 N. We restrict the integrals below to the compact set Œ�N;N � � Œ�; ��
with the indicator

g.k; �; �/ D 1Œ�N;N��Œ�;��.k; �/

and then define on Z � ri U �MZ�ri U,

f .k; �; �/ D g.k; �; �/ � 1¹.u`¹�ºW `2Z/2Aº.�; �/:

By the definition (9.4) of the Palm kernel,

E

�Z
Z�ri U

f .k; �; �/n.dk ˝ d�/
�

D

Z
Œ�N;N��Œ�;��

Q.k;�/¹.u`¹�º W ` 2 Z/ 2 Aº z�.dk ˝ d�/

D

Z
Œ�N;N��Œ�;��

Q.k;�/¹.ukC`¹�º W ` 2 Z/ 2 Aº z�.dk ˝ d�/

D

Z
Œ�N;N��Œ�;��

z�.dk ˝ d�/ D E

�Z
Z�ri U

g.k; �; �/n.dk ˝ d�/
�
:

The second equality uses shift-invariance of A and the third equality uses (9.18) and
P.A/ D 1. The left-hand side and the right-hand side are both finite because the integrals
are restricted to the compact set Œ�N;N � � Œ�; ��. Since n is a positive random measure,
it follows that

P

�Z
Z�ri U

f .k; �; �/n.dk ˝ d�/ D
Z

Z�ri U

g.k; �; �/n.dk ˝ d�/
�
D 1:

As �; �; and N were arbitrary, we conclude that P -almost surely .n`¹�º W ` 2 Z/ 2 A for
all .k; �/ 2 Z � ri U such that n¹.k; �/º D 1. Lemma 3.6 applied to the x-axis (xi D ie1)
then shows that � 2 V ! if and only if n¹.k; �/º D 1 for some k.
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Lemma 9.3. Assume (3.7). Then for any ı 2 .0; 1/, n 2 N, and � 2 ri U we have

P
®
9� 2 Œ�; e1Œ W n.J0; nK � ¹�º/ > 2ınC 1

¯
� 2.nC 1/

�
.1 � ı=2/2�ı

.1 � ı/1�ı

�n
log˛.�/�1:

Proof. Let ¹�j ºj2N be i.i.d. random variables with probability mass function p.n/ D
Cn�12

1�2n for n 2 N. For k 2 J0; nK and � 2 ri U use a union bound, translation, and
(5.4) to write

Q.k;�/

° nX
iD0

ui .�/ > 2ınC 1
±
� Q.k;�/

° kCnX
iDk�n

ui .�/ > 2ınC 1
±

D Q.0;�/

° nX
iD�n

ui .�/ > 2ınC 1
±

� Q.0;�/

° nX
iD1

ui .�/ > ın
±
CQ.0;�/

° �1X
iD�n

ui .�/ > ın
±
� 2P

°dıneX
jD1

�j � n
±
:

Using the generating function f .s/D
P
n�0Cns

nD
1
2
.1�
p
1 � 4s / of Catalan numbers

we obtain, for 0 < s < 1,

P
°dıneX
jD1

�j � n
±
� s�nEŒs��ın D s�n

�
2

1X
nD1

Cn�1 .s=4/
n
�ın

D s�n
�
s

2

1X
kD0

Ck .s=4/
k

�ın
D s�n.1 �

p
1 � s/ın:

Take s D 4.1�ı/

.2�ı/2
< 1 in the upper bound above to get

Q.k;�/

° nX
iD0

ui .�/ > 2ınC 1
±
� 2

�
.1 � ı=2/2�ı

.1 � ı/1�ı

�n
:

Apply (9.4) to write

E

�Z
ri U

1¹� 2 Œ�; e1Œº � 1
®
n.J0; nK � ¹�º/ > 2ınC 1

¯
nk.d�/

�
D

Z
ri U

1¹� 2 Œ�; e1ŒºQ.k;�/
° nX
iD0

ui .�/ > 2ınC 1
±
�k.d�/

� 2
� .1 � ı=2/2�ı
.1 � ı/1�ı

�n Z
ri U

1¹� 2 Œ�; e1Œº�k.d�/

(9.1)
D 2

� .1 � ı=2/2�ı
.1 � ı/1�ı

�n
log˛.�/�1:
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To complete the proof, sum over k 2 J0; nK and observe thatZ
ri U

1¹� 2 Œ�; e1Œº1
®
n.J0; nK � ¹�º/ > 2ınC 1

¯ nX
kD0

nk.d�/

� 1
®
9� 2 Œ�; e1Œ W n.J0; nK � ¹�º/ > 2ınC 1

¯
:

Proof of Theorem 5.4. The result follows from Theorem 9.4 below and the observation
that for any " > 0, ın D 2

p
n�1 logn satisfies the summability condition in that theorem.

Theorem 9.4. Assume (3.7) and fix i 2 ¹1; 2º. Consider a sequence ın 2 .0; 1/ withP
n2e�nı

2
n <1. Then for any � 2 ri U,

P
°
9n0 W 8� 2 Œ�; e2Œ; 8n � n0 W

X
x2J0;nK2

1¹� 2 supp�x;xCei º � n
2ın

±
D 1: (9.19)

The same result holds when J0; nK2 is replaced by any one of J�n; 0K2, J0; nK � J�n; 0K,
or J�n; 0K � J0; nK.

Proof. Apply Lemma 9.3 and a union bound to deduce that for any j 2 ¹1; 2º, ı 2 .0; 1/,
n 2 N, and � 2 ri U,

P
°
9� 2 Œ�; e1Œ W

X
x2J0;nK2

�jx.�/ � .2ınC 1/.nC 1/
±

� 2.nC 1/2
�
.1 � ı=2/2�ı

.1 � ı/1�ı

�n
log˛.�/�1:

A Taylor expansion gives

log
�
.1 � ı=2/2�ı

.1 � ı/1�ı

�
D �ı2=4CO.ı3/:

Thus, we see that for any � 2 riU, and any sequence ın 2 .0;1/ such that
P
n2e�nı

2
n <1,

P
°
9n0 2 N W 8� 2 Œ�; e1Œ; 8n � n0 W

X
x2J0;nK2

�jx.�/ � n
2ın

±
D 1:

The result for the other three sums comes similarly.

Appendix A. The geometry of geodesics: previously known results

This appendix states the properties of Busemann functions, geodesics, and competition
interfaces which were discussed informally in Section 2.2. Theorem A.1 introduces the
Busemann process with its main properties. It combines results that follow from [36,
Theorems 4.4 and 4.7, Lemmas 4.5 (c) and 4.6 (c), and Remark 4.11] and [27, Lemmas
4.7 and 5.1].
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Theorem A.1 ([27, 36]). Let P0 be a probability measure on RZ2 under which the coor-
dinate projections are i.i.d., have positive variance, and have p > 2 finite moments. There
exists a Polish probability space .�;F ;P / with

(1) a group T D ¹Txºx2Z2 of F -measurable P -preserving bijections Tx W �! �,

(2) a family ¹!x.!/ W x 2 Z2º of real-valued random variables !x W �! R such that
!y.Tx!/ D !xCy.!/ for all x; y 2 Z2,

(3) real-valued measurable functions B�C.x; y; !/ D B
�C
x;y.!/ and B��.x; y; !/ D

B
��
x;y.!/ of .x; y; !; �/ 2 Z2 � Z2 �� � ri U,

(4) and T -invariant events �10 � � and �1
�
� �10 for each � 2 ri U, with P .�10/ D

P .�1
�
/ D 1,

such that properties (a)–(k) listed below hold:

(a) ¹!x W x 2 Z2º has distribution P0 under P .

(b) For any I � Z2; the variables

¹.!x ; B
��.x; y; !// W x 2 I; y � x; � 2 ¹�;Cº; � 2 ri Uº

are independent of ¹!x W x 2 I<º where I< D ¹x 2 Z2 W x 6� z 8z 2 I º.

(c) For each � 2 ri U, x; y 2 Z2, and � 2 ¹�;Cº, B��.x; y/ are integrable and (2.9)
holds.

(d) For each ! 2 �, x; y 2 Z2, and � 2 ¹�;Cº, if �; � 2 ri U are such that rg.��/ D
rg.��/, then B��.x; y; !/ D B��.x; y; !/.

(e) For each ! 2�10, x; y; z 2 Z2, � 2 ri U, and � 2 ¹�;Cº properties (2.6)–(2.8) hold.

(f) For each ! 2 �10, monotonicity (2.10) holds.

(g) For each ! 2 �10, one-sided limits (2.11) hold.

(h) For each ! 2 �10 and each x 2 Z2,

B��.x; x C ei /!1 as � ! e3�i ; for i 2 ¹1; 2º: (A.1)

(i) If P .!0 � r/ is continuous in r , then for all � 2 riU, ! 2�1
�
, x 2Z2, and�2 ¹�;Cº,

B��.x; x C e1/ ¤ B
��.x; x C e2/: (A.2)

(j) For all � 2 ri U, ! 2 �1
�
, and � 2 ¹�;Cº,

lim
n!1

max
x2nU\Z2

C

n�1jB��.0; x/ � x � rg.��/j D 0: (A.3)

(k) For all � 2 D , ! 2 �1
�
, and x; y 2 Z2,

B�C.x; y; !/ D B��.x; y; !/ D B�.x; y; !/: (A.4)

(l) If �; �; � 2 D then for all ! 2 �1
�
, the Busemann limit (2.5) holds.



Geodesics in LPP 57

Remark A.2 (Weak limit construction of the Busemann process). Both articles [27, 36]
on which we rely for Theorem A.1 construct the process B as a weak limit point of
Cesàro averages of probability distributions of pre-limit objects. This gives existence of
the process on a probability space � that is larger than the product space RZ2 of the i.i.d.
weights ¹!xº. Article [27] takes the outcome of the weak limit from existing literature
in the form of a queueing fixed point, while [36] builds the weak limit from scratch by
considering the distribution of increments of point-to-line passage times, following the
approach introduced in [17].

To appeal to queueing literature, [27] assumes that P .!0 � c/ D 1 for some real c.
A payoff is that each process ¹B��.x; y/ W x; y 2 Z2º is ergodic under either shift Tei
[27, Theorem 5.2(i)]. The construction in [36] does not need the lower bound assumption
but gives only the T -invariance stated above in Theorem A.1 (a).

Theorem A.4 below quotes results from [27] that were proved with the help of ergod-
icity. Remark A.5 explains how the required properties can be obtained without ergodicity.

Remark A.3 (Strong existence and ergodicity of the Busemann process). The regular-
ity condition (2.4) is equivalent to the existence of a countable dense set D0 � D such
that �; � 2 D for each � 2 D0. When (2.4) holds, [28, Theorem 3.1] shows that for �
in D0, B� .x; y/ D B�˙.x; y/ can be realized as an almost sure limit of Gx;vn � Gy;vn
when vn=n! � . The remaining values B��.x; y/ can be obtained as left and right lim-
its from ¹B� .x; y/º�2D0 as � ! �. This way the entire process ¹B��.x; y/ W x; y 2 Z2;
� 2 ri U;� 2 ¹�;Cºº becomes a measurable function of the i.i.d. weights ¹!x W x 2 Z2º.
We can take�D RZ2 and the Busemann process is ergodic under any shift Tx for x ¤ 0.

We record a simple observation here, valid under the continuous i.i.d. weights assump-
tion (1.1): there exists an event �20 with P .�20/ D 1 such that for all ! 2 �20,

for every non-empty finite subset I � Z2 and non-zero
integer coefficients ¹axºx2I , we have

P
x2I ax!x ¤ 0. (A.5)

This condition implies the uniqueness of point-to-point geodesics mentioned under (2.1).
The following theorem summarizes previous knowledge of the structure of semi-

infinite geodesics under assumption (1.1). These results were partly summarized in Sec-
tion 2.3.

Theorem A.4 ([27, Theorems 2.1, 4.3, 4.5, and 4.6]). There exist T -invariant events �30
and�3

�
��30 for each � 2 riU, with P .�30/D 1, P .�3

�
/D 1, and such that the following

hold:

(a) For every ! 2 �30 and all x 2 Z2, � 2 ¹�;Cº, and � 2 ri U,  x;�� is U��-directed,
and every semi-infinite geodesic is U� -directed for some � 2 U.

(b) For every � 2 ri U and all ! 2 �3
�
, x; y 2 Z2, and � 2 ¹�;Cº,  x;�� and  y;��

coalesce, i.e. there exists an integer k � x � ye1 _ y � ye1 such that 
x;��
k;1
D 

y;��
k;1

.

(c) For all � 2 ri U, ! 2 �3
�
, x 2 Z2, and � 2 ¹�;Cº, there exist at most finitely many

z 2 Z2 such that  z;�� goes through x.
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(d) If g is strictly concave, then for any ! 2�30 every semi-infinite geodesic is �-directed
for some � 2 U.

(e) If � 2 ri U is such that U� D Œ�; � � satisfies �; �; � 2 D , then for any ! 2 �3
�

and
x 2Z2 we have  x;�CD  x;��. This is the unique U� -directed semi-infinite geodesic
out of x and, by part (b), all these geodesics coalesce. By part (c), there are no bi-
infinite U� -directed geodesics.

Remark A.5 (Ergodicity in the proof of Theorem A.4). As mentioned in Remark A.2,
[27] uses ergodicity of cocycles. But the results quoted above in Theorem A.4 can be
obtained with stationarity, which comes from [36] without the restrictive assumption
!x � c.

The proof of directedness (Theorem A.4 (a) above) given in [27, Theorem 4.3] uses the
shape theorem of ergodic cocycles stated in [27, Theorem A.1]. This shape theorem also
holds in the stationary setting, as stated above in (A.3). This result comes from [36, Theo-
rem 4.4] and it is proved in detail in [35, Appendix B]. Now the proof of [27, Theorem 4.3]
goes through line-by-line after switching its references and applying [36, Lemma 4.5 (c)]
to identify the correct centering for the cocycle.

Similarly, the non-existence of directed bi-infinite geodesics (Theorem A.4 (c) above)
proved in [27, Theorem 4.6] needs only stationarity after minor changes. Essentially the
same argument is given in [36, Lemma 6.1] in positive temperature, assuming only sta-
tionarity.

We next record an easy consequence of the previous results, ruling out the existence
of non-trivial semi-infinite geodesics which are either e1- or e2-directed.

Lemma A.6. For ! 2 �10 \�
2
0 \�

3
0, if x is a semi-infinite geodesic emanating from

x with xn =n! ei for some i 2 ¹1; 2º, then x D  x;ei .

Proof. We consider the case of i D 1, with the case of i D 2 being similar. Set x � ye D k
and fix a sequence �n 2 ri U with �n ! e1 as n ! 1. By Theorem A.4 (a),  x;�n is
U�n -directed. [41, Theorem 2.4] implies that e1 … U�n . Then, by (A.5), if x is as in the
statement, we must have 

x;�n
`
� x

`
� x C .k � `/e1 D 

x;e1
`

for all n 2 N and ` � k.
But Theorem A.1 (h) implies that for each fixed ` � k, 

x;�n
`
D x C .k � `/e1 D 

x;e1
`

holds for all large enough n. The result follows.

Under the assumption that g is differentiable on ri U, Theorem A.4 (e) holds for all
� 2 ri U. An application of the Fubini–Tonelli theorem gives that the claims in Theorem
A.4 (b, c) in fact hold on a single full P -measure event simultaneously for Lebesgue-
almost all directions � 2 ri U. It is conjectured that the claim in part (c) holds in fact on a
single full-measure event, simultaneously, for all � 2 ri U.

The next result is a small extension of [27, Lemma 4.4], achieved by an application of
the monotonicity in (2.13).

Theorem A.7. Assume the regularity condition (2.4). Then for any ! 2 �10 \�
2
0, condi-

tion (2.16) holds.
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The next theorem says that there are multiple geodesics that are directed in the same
asymptotic direction �� as the competition interface, which itself can be characterized
using the Busemann process. See Figure 2.3.

Theorem A.8 ([27, (5.2) and Theorems 2.6, 2.8, and 5.3]). There exists a T -invariant
event �40 such that P .�40/ D 1 and the following hold for all ! 2 �40:

(a) There exists a unique point ��.!/ 2 ri U such that (2.17) holds.

(b) For any � 2 ri U, P .�� D �/ > 0 if and only if � 2 .ri U/ nD .

(c) For any � � � in ri U with rg.�C/ ¤ rg.��/, and any x 2 Z2, there exists y � x
such that ��.Ty!/ 2 ��; �Œ. Consequently, any open interval outside the closed linear
segments of g contains �� with positive probability.

(d) For any � 2 .ri U/ nD and for any x 2Z2, there exists y � x such that ��.Ty!/D � .

If the regularity condition (2.4) holds then the following also hold:

(e) We have the limit

��.!/ D lim
n!1

n�1'0n.!/: (A.6)

(f) ��.Tx!/ is the unique direction � such that there are at least two U� -directed semi-
infinite geodesics from x, namely  x;�˙, that separate at x and never intersect there-
after.

Remark A.5 applies here as well. Ergodicity is invoked in the proofs of parts (b),
(c) and (d) in [27, Theorem 5.3 (iii)–(iv)] to apply the cocycle shape theorem. In our
stationary setting this can be replaced with the combination of [36, Theorem 4.4 and
Lemma 4.5 (c)].

The following result for exponential weights, due to Coupier, states that there are no
directions � with three �-directed geodesics emanating from the same site.

Theorem A.9 ([16, Theorem 1 (2)]). Assume that under P , the weights ¹!x W x 2Z2º are
exponentially distributed i.i.d. random variables. Then there exists a T -invariant event
�

no3geo
0 with P .�no3geo

0 / D 1 and such that for any ! 2 �no3geo
0 , any � 2 ri U, and any

x 2 Z2, there exist at most two �-directed semi-infinite geodesics out of x.

Fix a countable dense set U0 � D . The following event of full P -probability is the
basic setting for the proofs in Sections 7–8:

�0 D �
1
0 \�

2
0 \�

4
0 \

� \
�2U0

Œ�1� \�
3
� �
�
\

� \
�2.ri U/nD

�3�

�
: (A.7)

When additional assumptions are needed, �0 will be further restricted.

Appendix B. Auxiliary lemmas

The next lemma follows from the shape theorem for cocycles (A.3).
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Lemma B.1. Suppose g is differentiable on ri U. For any ! 2 �0, � 2 ri U, and any
v 2 R2, n�1B�˙.0; bnvc/ both converge to v � rg.�/ as n!1.

Proof. The claim is obvious for v D 0. Suppose that v 2 R2C n ¹0º, the other cases being
similar. Take ! 2 �0 and �; � 2 U0 with � � e1 < � � e1 < � � e1. Let xn D bnvc D
mne1 C `ne2. Then

B�C.0; xn/ D B
�C.0;mne1/C B

�C.mne1; xn/

� B�.0;mne1/C B
� .mne1; xn/

� B�.0;mne1/C B
� .0; xn/ � B

� .0;mne1/:

Divide by n, take it to1, and apply (A.3) to B� and B� to get

lim
n!1

n�1B�C.0; xn/ � .v � e1/e1 � rg.�/C v � rg.�/ � .v � e1/e1 � rg.�/:

Take � and � to � to get

lim
n!1

n�1B�C.0; xn/ � v � rg.�/:

The lower bound on the liminf holds similarly and so we have proved the claim for B�C.
The same argument works for B��.

The lemma below is proved by calculus.

Lemma B.2. Fix c > 0. Then for all n � 1 and all a; b such that c � a � b � aC c
n

,

an�1bn

.aC b/2n�1
�

�
1

2

�2n�1
: (B.1)

Appendix C. M/M/1 queues and Busemann functions

This appendix summarizes results from [22] that are needed for the proofs of the results
of Section 5. Fix parameters 0 < ˛ < ˇ. We formulate a stationary M/M/1 queue in a
particular way. The inputs are two independent i.i.d. sequences: an inter-arrival process
I D .Ii /i2Z with marginal distribution Ii � Exp.˛/ and a service process Y D .Yi /i2Z

with marginal distribution Yi � Exp.ˇ/. Out of these inputs are produced two outputs:
an inter-departure process zI D . zIk/k2Z and a sojourn process J D .Jk/k2Z, through
the following formulas. Let G D .Gk/k2Z be any function on Z with Ik D Gk �GkC1.
Define the function zG D . zGk/k2Z by

zGk D sup
mWm�k

°
Gm C

mX
iDk

Yi

±
D Gk C Yk C sup

mWm�k

m�1X
iDk

.YiC1 � Ii /: (C.1)
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The convention for the empty sum is
Pk�1
iDk D 0. Under the assumption on I and Y , the

supremum in (C.1) is almost surely assumed at some finite m. Then define the outputs by

zIk D zGk � zGkC1; (C.2)

Jk D zGk �Gk D Yk C sup
mWm�k

m�1X
iDk

.YiC1 � Ii /: (C.3)

The outputs satisfy the useful iterative equations

zIk D Yk C .Ik � JkC1/
C and Jk D Yk C .JkC1 � Ik/

C: (C.4)

In particular, this implies the inequality zIk � Yk .
It is a basic fact about M/M/1 queues that zI and J are i.i.d. sequences with marginals

zIk � Exp.˛/ and Jk � Exp.ˇ � ˛/. Furthermore, the three variables .Yk ; Ik ;JkC1/ on the
right-hand sides of equations (C.4) are independent. (See for example [22, Appendix A].)
But zI and J are not independent of each other.

The queueing interpretation goes as follows. A service station processes a bi-infinite
sequence of customers. Queueing time runs backwards on the lattice Z. Further, Ii is the
time between the arrivals of customers i C 1 and i (i C 1 arrived before i ) and Yi is the
service time required by customer i ; zIk is the time between the departures of customers
k C 1 and k, with k C 1 departing before k; and Jk is the sojourn time of customer k,
that is, the total time customer k spent in the system from arrival to departure. Then Jk
is the sum of the service time Yk and the waiting time of customer k, represented by the
last member of (C.3). Because of our unusual convention with backward indexing, even
if Gk is the arrival time of customer k, zGk is not the time of departure. The definition
of zG in (C.1) is natural in the present setting because it immediately ties in with LPP.
The convention in [22] is different because in [22] geodesics go south and west instead of
north and east.

The joint distribution of successive nearest-neighbor increments of two Busemann
functions on a horizontal or vertical line can now be described as follows. This is a special
case of [22, Theorem 3.2].

Theorem C.1. Let � � � in riU with parameters ˛D ˛.�/ < ˛.�/D ˇ given by (5.2). Let
I D .Ii /i2Z and Y D .Yi /i2Z be two independent i.i.d. sequences and define zI D . zIk/k2Z

as above through (C.1)–(C.2).

(a) Let Ii�Exp.˛/ and Yi�Exp.ˇ/. Then the sequence .B�
ke1;.kC1/e1

; B
�

ke1;.kC1/e1
/k2Z

has the same joint distribution as the pair . zI ; Y /.

(b) Let Ii � Exp.1 � ˇ/ and Yi � Exp.1 � ˛/. Then .B�
ke2;.kC1/e2

; B
�

ke2;.kC1/e2
/k2Z

has the same joint distribution as .Y; zI /.

Next we derive a random walk representation for the sequence ¹B�
ke1;.kC1/e1

�

B
�

ke1;.kC1/e1
ºk2Z of (non-negative) differences. By Theorem C.1 this sequence is equal
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in distribution to ¹ zIk � Ykºk2Z. Define a two-sided randon walk S with positive drift
EŒIi�1 � Yi � D ˛

�1 � ˇ�1 by

Sn D

8̂̂<̂
:̂
�
P0
iDnC1.Ii�1 � Yi /; n < 0;

0; n D 0;Pn
iD1.Ii�1 � Yi /; n > 0:

(C.5)

Then from (C.4) and (C.3),

zIk � Yk D .Ik � JkC1/
C
D

°
inf

nWn>k

nX
iDkC1

.Ii�1 � Yi /
±C
D

°
inf

nWn>k
.Sn � Sk/

±C
:

From the above we can record that for r > 0,

P .B�0;e1 > B
�
0;e1

/ D P.Ik > JkC1/ D
ˇ � ˛

ˇ
: (C.6)

Corollary C.2. Let � � � in ri U with parameters ˛ D ˛.�/ < ˛.�/ D ˇ given by (5.2).
Let S be the random walk in (C.5) with step distribution Exp.˛/ � Exp.ˇ/. Then the
sequence ¹B�

ke1;.kC1/e1
� B

�

ke1;.kC1/e1
ºk2Z has the same distribution as the sequence

¹.infnWn>k Sn � Sk/Cºk2Z.

Appendix D. Random walk

Let 0<˛ <ˇ and let ¹Xiºi2Z be a doubly infinite sequence of i.i.d. random variables with
marginal distribution Xi � Exp.˛/� Exp.ˇ/ (difference of two independent exponential
random variables). Let � denote the shift on the underlying canonical sequence space so
that Xj D Xk ı �j�k . Let ¹Snºn2Z be the two-sided random walk such that S0 D 0 and
Sn � Sm D

Pn
iDmC1 Xi for all m < n in Z. Let .�i /i�1 be the strict ascending ladder

epochs of the forward walk. That is, begin with �0 D 0, and for i � 1 let

�i D inf ¹n > �i�1 W Sn > S�i�1º:

The positive drift of Sn ensures that these variables are finite almost surely. For i � 1
define the increments Li D �i � �i�1 andHi D S�i � S�i�1 . The variables ¹Li ;Hiºi�1
are mutually independent with marginal distribution

P.L1 D n;H1 > r/ D Cn�1
˛n�1ˇn

.˛ C ˇ/2n�1
e�˛r ; n 2 N; r � 0: (D.1)

Above Cn D 1
nC1

�
2n
n

�
for n � 0 are the Catalan numbers. A small extension of the proof

of [22, Lemma B.3] yields (D.1).
Let

W0 D inf
m>0

Sm: (D.2)
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Note that W0 ı �n > 0 if and only if Sn < infm>n Sm, that is, n is a last exit time for the
random walk. Define successive last exit times (in the language of Doney [19]) by

�0 D inf ¹n � 0 W Sn < inf
m>n

Smº;

�i D inf ¹n > �i�1 W Sn < inf
m>n

Smº for i � 1:
(D.3)

Proposition D.1. Conditionally on W0 > 0 (equivalently, on �0 D 0), the pairs ¹.�i �
�i�1; S�i � S�i�1/ºi�1 are i.i.d. with marginal distribution

P.�i � �i�1 D n; S�i � S�i�1 > r j W0 > 0/ D Cn�1
˛n�1ˇn

.˛ C ˇ/2n�1
e�˛r (D.4)

for all i 2 N, n 2 N, and r � 0.

Proof. Let 0 D n0 < n1 < � � � < n` and r1; : : : ; r` > 0. The dual random walk

S�k D Sn` � Sn`�k for 0 � k � n`

(Feller [24, p. 394]) satisfies .S�
k
/0�k�n`

d
D .Sk/0�k�n` and is independent of W0 ı �n` .

We have

P.8i 2 J1; `K W �i � �i�1 D ni � ni�1 and S�i � S�i�1 > ri ; W0 > 0/

DP.8i 2 J1; `K W �i Dni and S�i�S�i�1 >ri ; W0>0/

DP.8i 2 J1; `K WSk >Sni >Sni�1Cri for k 2 Kni�1; niJ ; W0ı�n` >0/

DP.8i 2 J1; `K WS�j <S
�
n`�ni

<S�n`�ni�1�ri for j 2 Kn`�ni ; n`�ni�1J; W0ı�n` >0/

DP.8k 2 J1; `K W�k Dn`�n`�k and Hk >r`�kC1/P.W0>0/

DP.8k 2 J1; `K WLk Dn`�kC1�n`�k and Hk >r`�kC1/P.W0>0/:

The claim follows from the independence of ¹Lk ;Hkº and (D.1).

From �0 as defined in (D.3), extend �i to negative indices by defining, for i D
�1;�2;�3; : : : ,

�i D max ¹k < �iC1 W Sk < S�iC1º: (D.5)

For each k 2 Z set
Wk D inf

nWn>k
Sn � Sk : (D.6)

Then one can check that ��1 < 0 � �0, and for all i; k 2 Z,

S�i D inf
nWn>�i�1

Sn; (D.7)

W�i D inf
nWn>�i

Sn � S�i D S�iC1 � S�i ; (D.8)

and
Wk > 0 ” k 2 ¹�i W i 2 Zº: (D.9)
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Theorem D.2. Conditionally on �0D 0, equivalently, onW0>0, ¹�iC1 � �i ;W�i W i 2Zº
is an i.i.d. sequence with marginal distribution

P.�iC1 � �i D n; W�i > r j W0 > 0/ D Cn�1
˛n�1ˇn

.ˇ C ˛/2n�1
e�˛r (D.10)

for all i 2 N, n 2 N, and r � 0.

Proof. Define the processes ‰C D ¹�iC1 � �i ;W�i W i � 0º and ‰� D ¹�iC1 � �i ;W�i W
i � �1º. Then ‰C and the conditioning event W0 > 0 depend only on .Sn/n�1, while
W0 > 0 implies for n < 0 that infmWm>n Sm D infmWn<m�0 Sm. Thus ‰C and ‰� have
been decoupled.

Define another forward walk with the same step distribution by zSk D�S�k for k � 0.
Let �0 D 0, .�i /i�1 be the successive ladder epochs andHi D zS�i � zS�i�1 the successive
ladder height increments for the zS walk.

We claim that on the event �0 D 0,

��i D ��i and W�i D H�i for i � �1. (D.11)

First by definition, �0 D 0 D ��0. By the definitions and by induction, for i � �1,

��i D min ¹k > ��i�1 W zSk > zS��i�1º D min ¹k > ��iC1 W S�k < S�iC1º

D �max ¹n < �iC1 W Sn < S�iC1º D ��i

where the last equality came from (D.5). Then from (D.8),

W�i D S�iC1 � S�i D �
zS��iC1 C

zS��i D �
zS��i�1 C

zS��i D H�i :

Claim (D.11) has been verified.
Let‰0 D ¹��i � ��i�1;H�i W i � �1º, a function of .Sn/n��1. By (D.11), ‰� D ‰0

on the event �0 D 0.
Let A and B be suitable measurable sets of infinite sequences.

P.‰C 2 A; ‰� 2 B jW0 > 0/ D
1

P.W0 > 0/
P.‰C 2 A; ‰

0
2 B; W0 > 0/

D
P.‰C 2 A; W0 > 0/

P.W0 > 0/
P.‰0 2 B/ D P.‰C 2 A j W0 > 0/P.‰

0
2 B/:

The conclusion follows. By Proposition D.1, conditional on W0 > 0, ‰C has the i.i.d.
distribution (D.10), which is the same as the i.i.d. distribution (D.1) of ‰0.
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