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Abstract. We prove the Fargues—Rapoport conjecture for p-adic period domains in the non-basic
case with minuscule cocharacter. More precisely, we give a group-theoretical criterion for the cases
when the admissible locus and weakly admissible locus coincide. This generalizes the result of
Hartl (2013) for the group GL;. In the last section, we also give a conjecture about the intersection
of weakly admissible locus and the Newton strata in the flag variety.
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Introduction

Let F be a finite extension of Q,, and let F be the p-adic completion of the maxi-
mal unramified extension of F' with Frobenius . We consider the flag variety ¥ (G, u)
associated to a pair (G, ), where G is a reductive group over F, and u a minuscule
cocharacter of G. It is a projective variety over the local reflex field £ = E(G, {u}), the
field of definition of the geometric conjugacy class {u} of w. We still denote by ¥ (G, u)
the associated adic space over E. For any b € G(F ) satisfying certain conditions with
respect to u (cf. Section 2.2), we are interested in two open adic subspaces

F (G, 1, b)* C F(G, ju,b)™

of ¥ (G, n), where ¥ (G, v, b)™* is the weakly admissible locus, defined by Rapoport and
Zink [33] by removing a profinite number of Schubert varieties from ¥ (G, i) which con-
tradict the weak admissibility condition defined by Fontaine (cf. Section 2.2), and where
F (G, n, b)* is the admissible locus, also called the p-adic period domain. The latter
is much more mysterious. The existence of the admissible locus has been conjectured by
Rapoport and Zink. It is characterized by the properties that it has the same classical points
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as the weakly admissible locus (see [9], in which the weakly admissible locus is also con-
sidered as its algebraic approximation) and there exists a local system with G-structures
on it which interpret the crystalline representations on all classical points. When the triple
(G, 1, b) is of PEL type, the admissible locus ¥ (G, u, b)* is the image of the p-adic
period mapping from the Rapoport-Zink space associated to (G, i, b) to the flag variety
F (G, ). There is also a direct construction of ¥ (G, u, b)* in special cases by Hartl [21]
and Faltings [12]. In the most general case, the existence of the admissible locus equipped
with the étale local system is known due to the work of Fargues—Fontaine [18], Kedlaya—
Liu [23] and Scholze [35]. In fact, the admissible locus is defined by semistable conditions
on the modification of the G-bundle associated to b of type pu on the Fargues—Fontaine
curve. Moreover, it can also be considered as the image of the p-adic period mapping from
the local Shimura variety associated to (G, i, b) to the flag variety ¥ (G, ) [30,36].

We want to understand the structure of the p-adic period domain. As the structure of
its approximation, the weakly admissible locus, is well known, it is natural to ask when the
p-adic period domain coincides with the weakly admissible locus. Hartl [21] classified all
such cases for G = GL,,. For a general group G, Rapoport and Fargues have conjectured a
group-theoretic criterion when b is basic, which has now become the following theorem.

Theorem (Fargues—Rapoport conjecture, [6, Theorem 6.1]). Suppose b is basic. The
equality ¥ (G, u,b)™ = F (G, u, b)* holds if and only if (G, ) is fully Hodge—Newton-
decomposable.

Recently, Shen [40] also generalized the Fargues—Rapoport conjecture to non-minus-
cule cocharacters. Here the full Hodge—Newton-decomposability condition is purely
group-theoretic. This notion is first introduced and systematically studied by Gortz, He
and Nie [19], who classified all the fully Hodge—Newton-decomposable pairs and gave
more conditions equivalent to full Hodge—Newton-decomposability. When G is a general
linear group, the triple (G, u, b) is Hodge—Newton-indecomposable if no breakpoints of
the Newton polygon defined by b touch the Hodge polygon defined by p. Otherwise,
the triple is called Hodge—Newton-decomposable. Let B(G) be the set of o-conjugacy
classes of G(F). For b € G(F), let [b] € B(G) be the o-conjugacy class of b. An element
[b] € B(G) is called basic if the Newton polygon of b is central. Kottwitz defined a subset
B(G, 1) in B(G). When G is the general linear group, [b] € B(G, ) if and only if the
Newton polygon of [b] lies on or above the Hodge polygon of p and they have the same
endpoint. The pair (G, w) is fully Hodge—Newton-decomposable if for any non-basic [']
in the Kottwitz set B(G, u), the triple (G, u, b’) is Hodge-Newton-decomposable. We
refer to Section 3 for the details of these notions.

The main result of this article is a generalized version of the Fargues—Rapoport con-
jecture which works for any b. It is inspired by the Fargues—Rapoport conjecture for basic
elements and Hartl’s result for GL,,. For simplicity, we assume that G is quasi-split in this
introduction. There is also a similar description for the non-quasi-split case in Section 4
(Theorem 4.3).



Fargues—Rapoport conjecture for p-adic period domains in the non-basic case 2881

Theorem (Theorem 4.1). Suppose M is the standard Levi subgroup of G such that
[p] € B(M, n) and (M, b, u) is Hodge—Newton-indecomposable. Then the equality
F(G, u, b)Y = F(G, n, b)* holds if and only if (M, {u}) is fully Hodge—Newton-
decomposable and [b] is basic in B(M).

The key ingredients of the proof of the main theorem are Proposition 3.7 which
describes the relation of the (weakly) admissible locus for different groups G and its
Levi subgroup M and the following proposition.

Proposition (Proposition 4.5). Suppose (G, i, b) is Hodge—Newton-indecomposable. If
b is not basic, then ¥ (G, u, b)* # ¥ (G, u, b)™.

Indeed, we know that on the flag variety there is a group action of Jy. We prove that
the group action preserves the admissible locus but not the weakly admissible locus by
producing a point which is weakly admissible but not admissible. Such a point exists in
the Jj-orbit of a non-weakly-admissible point.

We briefly describe the structure of this article. In Section 1, we review the basic
facts about the Kottwitz set and G-bundles on the Fargues—Fontaine curve. In Section 2,
we review the reduction of G-bundles and introduce the weakly admissible locus and
admissible locus in the flag variety in terms of (weakly) semistable condition on the
modification of G-bundles. In Section 3, we review the Hodge—Newton-decomposability
condition and prove Proposition 3.7, which is one of the main ingredients for the proof
of the main theorems. In Section 4, we prove Proposition 4.5 and the main theorems 4.1
and 4.3 by using the Jp-action on the flag variety. In Section 5, we discuss the relation
between the Newton strata and the weakly admissible locus. We introduce a conjecture
predicting which Newton strata contain weakly admissible points in the basic case. We
prove this conjecture in a very special case in Proposition 5.4. The full conjecture has
been proved by Viehmann [41] very recently.

Notations

We use the following notations:

e [ is afinite degree extension of Q, with residue field F; and a uniformizer 7.

e F is an algebraic closure of F and I' = Gal(F|F).

o = Fuisthe completion of the maximal unramified extension with Frobenius o.

e G is a connected reductive group over F, and H is a quasi-split inner form of G
equipped with an inner twisting Gz — H .

e ACT C B, where A is amaximal split torus, T = Z g (A) is the centralizer of Ain T,
and B is a Borel subgroup in H.

(X*(T), ®, X4 (T), ®V) is the absolute root datum with positive roots ®* and simple
roots A with respect to the choice of B.
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o W = Ng(T)/T is the absolute Weyl group of T in H, and wy is the maximal length
element in W.

o (X*(A), Do, X«(A), y) is the relative root datum with positive roots QJJ and simple
(reduced) roots Ay.

e If M is a standard Levi subgroup in H we denote by ®js the corresponding roots or
coroots showing up in Lie M, and by Wy, the Weyl group of M. If P is the stan-
dard parabolic subgroup of H with Levi component M, sometimes we also write Wp
for Wyy.

1. Kottwitz set and G -bundles on the Fargues—-Fontaine curve

In this section, we will recall some basic facts about G-bundles on the Fargues—Fontaine
curve which will be the main tool for our study of p-adic period domains.

1.1. The Fargues—Fontaine curve

Let K be a perfectoid field over [, with wg € K satisfying 0 < |wg| < 1. Let
Yk = Spa(Wo . (Ox)\V (rF[wk])

be an adic space over F' equipped with an automorphism ¢ induced from the Frobe-
nius K|F,. The Fargues—Fontaine curve over F associated to K is the scheme

_d
X = X = Proj( P BY)
d>0

where By = H O(ZyK, Oy, ). The scheme X is a curve (which means it is a one-dimen-
sional noetherian regular scheme) over F' [18, Theorems 6.5.2, 7.3.3].

If we replace K by an affinoid perfectoid space S = Spa(R, R™) over F,, we can
similarly construct ¥g and Xg over F; the latter is called the relative Fargues—Fontaine
curve (cf. [23]).

1.2. G-bundles

From now on, suppose K = C” is the tilt of a complete algebraically closed field C
over F. Then the curve X is equipped with a closed point co with residue field k(c0) = C.
Let Buny be the category of vector bundles on X. The classification of vector bundles
on X is well known due to the work of Fargues—Fontaine.

Theorem 1.1 ([18, Theorem 8.2.10]). Every vector bundle on X is a direct sum of
stable vector subbundles, and the isomorphism classes of stable vector bundles on X
are parametrized by the slope in Q.
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For A € Q, let O (L) be a stable vector bundle on X of slope A € Q.
By [18], {co} = VT (¢) witht € H°(X, O(1)). Then

X \ {oo} = Spec(B,) and Xoo = Spec(Bg]Q

where B, = Bg[1/t]*=! is a principal ideal domain, and Bg{{ is a complete discrete
valuation ring with residue field C. Let Bgg be the fraction field of B;ﬁ. The following
proposition tells us that a vector bundle on X is determined by its restrictions to X \{oco}
and Xo with a gluing datum.

Proposition 1.2 ([18, Corollary 5.3.2]). Let € be the category of triples (M, Mgr, 1)
where

e M, is a free B.-module of finite rank;

o Mgy is a free Bd+R—m0dule of finite rank;

o u:M,®p, Bir = Mg ® B Bar is an isomorphism of Bar-modules.

Then there is an equivalence of categories
Buny — €, & > (I'(X \ {00}, &), Eu, Id).

Let Isoc s be the category of isocrystals relative to F | F. By [18, Theorem 8.2.10],
there is an essentially surjective functor

&E(—): Isocz p — Buny

where for any (D, ¢) € Isoc #|F» the vector bundle &(D, ¢) on X is associated to the

p=nf
graded P, Bx " -module

P ® Bx)*®* "¢
d>0

In fact, it maps a simple isocrystal of slope A to @ (—A1).
To any b € G(F), we can associate an isocrystal with G-structures:

Fp :Rep G — Isoc};lF, Vi (Vi bo).

Its isomorphism class only depends on the o-conjugacy class [b] € B(G) of b, where
B(G) is the set of o-conjugacy classes in G(F). In this way, B(G) parametrizes the set
of isomorphism classes of F-isocrystals with G-structure (cf. [31, Remarks 3.4 (1)]).

Recall that a G-bundle on X is a G-torsor on X which is locally trivial for the étale
topology. Equivalently, a G-bundle on X can also be viewed as an exact functor Rep G —
Buny where Rep G is the category of rational algebraic representations of G. The étale
cohomology set H} (X, G) classifies the isomorphism classes of G-bundles on X .

For b € G(F), we can associate to b a G-bundle on X,

. Fp &)
& =86(—)oFp :RepG — Isoc g p —> Buny.
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By [15, Theorem 5.1], there is a bijection of sets
B(G) = HAM(X.G). [b]+ [Es].

In this way, the set B(G) also classifies G-bundles on X.

1.3. Kottwitz set

There are two invariants on the set B(G), the Newton map and the Kottwitz map. For any
b € G(F), there is a composed functor

Fi
F :RepG RN Isocp p — Q-grVecty,

where Q-grVect is the category of Q-graded vector spaces over F and the second func-
tor is given by the Dieudonné—Manin classification of isocrystals which decomposes an
isocrystal into isocline subisocrystals parametrized by Q. We can attach to ¥ a slope
morphism

vp :Dp = Aut®(@) - Aut®(wo F) = Gy,

where @ : Q-grVect — Vecty is the natural forgetful functor and D is the pro-algebraic
torus over F with X*(D) = Q.

The conjugacy class of the slope morphism vy, is defined over F and it only depends
on the o-conjugacy class of b. We thus obtain the Newton map

v:B(G) = N(G), [b]+> [vp],

where N (G) = N(H) = X, (A)QS is the Newton chamber. The o-conjugacy class [b] €
B(G) is called basic if vy, is central. Denote by B(G )pasic the subset of basic o-conjugacy
classes in B(G).

The other invariant is the Kottwitz map ([25, §4.9, §7.5], [31, Theorem 1.15]):

kG : B(G) » m1(G)r.  [b] = ka([b)),

where 71(G) = m1(H) = X«(T)/(®V) is the algebraic fundamental group of G,
and 7 (G)r is the Galois coinvariants. For G = GL,, kgL, ([0]) = vp(det(b)) € Z =
m1(GL,)r where v, denotes the p-adic valuation on F . For general G, the Kottwitz map
is characterized by the unique natural transformation «(—y : B(—) — 71 (—)r of set valued
functors on the category of connected reductive groups over F such that kg, is defined as
above. Let B(G )pasic be the subset of basic elements in B(G). Then the restriction of kg
to B(G)pasic induces a bijection

KG - B(G)basic ; T (G)I'

Moreover, if [b] € B(G )pasic With kg ([p]) = u* € 71 (G)r with € X (T)*, then [vp] =
AvrAvy (1) where Avyy (resp. Avr) denotes the W -average (resp. ['-average).
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The elements in B(G) are determined by the Newton map and the Kottwitz map.
Namely, the map

(v,kg) : B(G) > N(G) x m1(G)r (1.3.1)
is injective [25, §4.13].

Definition 1.3. (1) Let [b] € B(G) and p € X.(T)*. We define the Kottwitz sets

B(G. ) == {[b] € B(G) | [vs] < u°. kG (b) = u*},
A(G. ) := {[b] € B(G) | [vp] = 1},
which are finite subsets in B(G), where
e 1% := Avr(u) € N(G) is the Galois average of p,
o u* € 71 (G)r is the image of y via the natural quotient map X4 (7') — m1(G)r,
e the order < on N (G) is the usual order: v; < v, if and only if v, — V] € QEOCD(T.
(2) We define a partial order on A(G, w): for [b1], [b2] € A(G, i), we write [b1] < [by] if
[ve,] < [vp,].
We will also need the following generalized Kottwitz set defined in [6].

Definition 1.4. For ¢ € 7;(G)r and § € X, (A)a we set
B(G.¢,8) = {[b] € B(G) | kg(b) = & and [vp] < &}.

Remark 1.5. (1) We follow the notations in [6]. For the generalized Kottwitz set
B(G, ¢, 8), the term ¢ is written in an additive way while the term § is written in a multi-
plicative way.

(2) We have

B(G, 1) = B(G, b, 1n°),
AG.w =[] BG.u +eu).

EEM] (G)T.Lor
where 71 (G)r,or denotes subgroup of torsion elements in 73 (G)r.

Definition 1.6. Suppose G is quasi-split. Let M be a standard Levi subgroup of G. We
define a partial order <7 in 7 (M) and in 71 (M )r g as follows: for yq, y2 in w1 (M)r
(resp. w1 (M)r,q), we write y1 <ps y2 if and only if y, — y; is a non-negative integral
linear combination of images in 71 (M )r (resp. w1 (M)r,q) of coroots corresponding to
the simple roots of T in N with N the unipotent radical of the standard parabolic subgroup
of G with Levi component M.

We have the following characterization of the generalized Kottwitz set.
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Lemma 1.7. Suppose G is quasi-split. Let M be a standard Levi subgroup of G. Let
b € M(F) be such that [bly € B(M) is basic. Then [b] € B(G, ¢, 6) if and only if

kc(b) =¢ and Kkp(b) <pr 8% inm (M)ro,

where §* denotes the image of § via the natural map X (A)go — m1(M)r,g by abuse of
notation.

Moreover, for elements in the Kottwitz set B(G, i), we can have a simpler charac-
terization: [b] € B(G, w) if and only if kpr (b) <pr ¥ in w1 (M) where ¥ denotes the
image of i in w1 (M)t by abuse of notation.

Proof. The proof is the same as that of [26, Proposition 4.10]. We repeat the proof for
the generalized Kottwitz set here, while the proof for B(G, ) is similar. The necessity is
obvious. For the sufficiency, the inequality ks (b) <37 8% in 771 (M)r,q implies

[vb] = AVFAVWM (KM (b)) < AVFAVWM (8) <34,

where k7 (b) denotes a preimage of «pz(b) via the natural map X« (7)) — 71 (M)r and
the second inequality is due to the fact that § is dominant. |

The following lemma will be used in the proof of the main theorem.

Lemma 1.8. Suppose G is quasi-split and ;v € X(T)" is minuscule. Let M be a stan-

dard Levi subgroup of G and b € M(F).

(1) Then the natural map w1 (M)7 0o = 71(G)T or IS injective.

(2) Suppose [b] € B(G, ). Then there exists i’ € X«(T) such that [b]ps € B(M, /') and
' is conjugate to 1 in G.

(3) Suppose [b] € B(G, u* + &, u°) with & € 71(G)Tor- Then

e € Im(my (M)r,00r = 71(G)Ttor)

and there exists w € W such that [b] € B(M, (wn)»M + ¢, (wi)>M) where we
view € as an element in w1 (M)T tor-

Proof. For (1), the map 71 (M)rwr — 71(G)rwr can be identified with the map
HY(F,M) — H'(F,G), which is injective (cf. [38, Exercise 1 in III §2.1]).

Part (2) of the lemma is proved in [32, Lemma 8.1 (2)] when G is unramified. For
the general case, we want to reduce to the unramified case. Without loss of generality, we
may assume that G is adjoint and simple by [25, §6.5]. Moreover, after replacing M by a
smaller Levi subgroup, we may assume that [b]ps € B(M )pasic- Then by Lemma 1.7,

[b] € B(G, 1) < kp(b) <pr u¥ in 71 (M)rp.

We want to show that there exists /1’ € X (T') which is conjugate to  with ks (b) = (u/)*
in mq (M)]"
Let Q := Ker(m1 (M) — m1(G)).
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Claim. Qr = Ker(7;(M)r — 71(G)r).

Let A :=Ker(sr;(M)r — 71(G)r), which is torsion free by [6, proof of Lemma 4.11].
As the functor (—)r is right exact, there exists a natural surjection Qr — A. We need to
show it is injective. Therefore it suffices to show rankg Ag = rankg Or,@. Since the
functor (—)r,q@ is canonically isomorphic to (—)(5, we have

Ag > Ker(m1 (M) — m(G)g) = 0§.

The Claim follows.
By the Claim, u — ka7 (b) € Qr. We need to show there exists i’ € X« (T') which is
conjugate to u such that

p—tkm(b) =p—p' inQr.

This is a question only about a root system with Galois action. Indeed, by the classification
of k-forms of G, we can construct an unramified group G over F which is a form of G
and they both have the same Tits indices. More precisely, we can find T c B c G over
F where T is a maximal torus and B is a Borel subgroup such that

e X*(T) ~ X*(T) and via this identification Ag = Ag;
e Ag and A have the same Galois orbits.

Then the absolute Weyl groups of (G, T) and (G, T') are isomorphic. Let M be the stan-
dard Levi subgroup of G such that A i1 = Am. The isomorphism between the character
groups induces an identification 7 (M)r = 71 (M)r. Let ji € X+(T) be the cocharac-
ter corresponding to w via the identification X, (7T) ~ X«(T). Let [15] € B(M )pasic be
such that « y; (l;) € 71(M)r maps to kar(b) € 71 (M)r via the identification 71 (M)r =
71(M)r. As G is unramified, we can find i’ for [5] € B(G, j1). Then 1’ is the cocharacter
of G corresponding to .

For (3), as before, we may assume [b] € B(M )y, after replacing M by a smaller
group. Then [vp] < u® implies that

M

k(b)) <pm 1 in 1 (M)r,@.

Hence there exists ¢’ € 71 (M)ror such that
ke (b) — € =p p*M - in (M)

Let [b'] € B(M )pasic be such that «ps (b') = kps(b) — &’. Then [b'] € B(G, ). By (2),
there exists w € W such that [b'] € B(M, wi). Therefore [vplpr = [vpr Iy < (wp)®M
and
ph=ke() =rcb)—& = pt+e—¢ inm(Gr,
where ¢’ is considered to be an element in 71 (G)r o via the natural map in (1). Hence
& =¢ and
k(b)) = kp (b)) + & = (wp) + & in 7y (M)r. .
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1.4. Classification of G-bundles in terms of ¢-modules over B

Let
BY" = W, (Ok)[1/nF), B := (B"V/[wk])rea-

Here B is a local F-algebra with residue field W rlkx)o.

The Frobenius on O induces an automorphism ¢ on B>+ and on B.

Let ¢-Modg (resp. (p-ModW(gF (kx)g) be the category of free B-modules (resp.
Wo - (kk )g-vector spaces) of finite rank equipped with a semilinear isomorphism.

Theorem 1.9 ([18, Theorems 11.1.7 and 11.1.9]). There is an equivalence of additive
tensor categories
Buny — ¢-Modj.

For (M, ¢) € ¢-Mod 3, the Harder—Narasimham filtration of the corresponding vector
bundle gives a Q-filtration (M =% )req of M which is called the Harder—Narasimham
filtration of M (cf. [15, §5.4.1]).

For any 8 € G(B), we define

&g :RepG — ¢-Mod S Bung, (V.p)— (V ®F B, p(B)o).

Proposition 1.10 ([15, Proposition 5.111). The functor B — &g induces a bijection
between the set of ¢-conjugacy classes in G(B) and the set of isomorphism classes of
G-bundles on X .

We also define a functor red ;3 » as composition of two functors:

®zWorkk)o ~
redéj cp-Modg ———— ‘P'MOdW@F(kK)@ — Isoc};lF,

where the second functor is a quasi-inverse of the functor

=) ®p Wo,(kk)o : ISOCI:-‘F = (p'MOdWOF(kK)@

which is an equivalence of categories due to Dieudonné—Manin’s theorem of classification
of isocrystals.

1.5. The automorphism group Jp

For [b] € B(G), let J, = Aut(&) be the pro-étale sheaf of automorphisms of & on the
category of affinoid perfectoid spaces Perfﬁq over Fq. More precisely, for any affinoid
perfectoid space S over Fq, one has Jj,(S) = Aut(Ep|x)-

In this subsection, we review the structure of the group fb(K ) studied in [15, §5.4.2].
Suppose &, corresponds to the ¢-conjugacy class of B € G(B) as in Proposition 1.10.
Then

Jp(K) >~ {g € G(B) | gB = Py(g)}.
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We will identify these two groups via this isomorphism. In order to study the structure
of J,(K), we need to use a parabolic subgroup of G ® B that contains J;(K).
Consider the functor

Rep G — ¢-Modz; — Q-filtered B-modules,
(V.p) = (V ®F B, p(B)p).

where the second functor is given by the Harder—Narasimham filtration. By [43, The-
orem 4.40), this functor corresponds to a parabolic subgroup  C G ®f B satisfying
Jy(K) C P (B). The structure of £ is well understood. Let

Ad: G — GL(q)

be the adjomt representation with g := Lie G. Then (g ® r B, Ad(B)¢) is the ¢-module
over B corresponding to the Vector bundle Ad(Ep) := &5 x9Ad g. Hence it has the
Harder-Narasimham filtration (g= 3 ) e In particular, for A # 0, the dimension of grt gz B
equals the number of roots & € ® such that (o, v,) = A. Then

P =1{g€Gy|Ad@)(a3") = a5}, LieP = g3’
Moreover, the parabolic subgroup P is filtered by (:7)>A)Ae@>0 such that
P70 =R,P.
VA>0, PP 5 et g5 @G,
Pt ={g e Gy | (Ad(g) —1d)(g3") = o3 ).

Let JE’l (K) = Jp(K) N PZ*(B) forall A € Q@Qs0. Then we can understand the graded
pieces:

To(K)/J;°(K) ~ Jy = {g € G(F) | bo(g) = gb},

VA>0, JPMK)/ITHK) ~ (gt g 5Bl
where (grt gB)Ad(ﬂ)“’:Id is (dim gr* a3)/h copies of H°(X,Ox())) if A = d/h with

(d, h) = 1. In particular beA(K) 2 fb>’1(K) if there exists @ € ® such that {(«, vp) =
A > 0.

1.6. Modifications of a G-bundle on X

Definition 1.11. Let & be a G-bundle on X. A modification of G-bundles of & (on 00) is
a pair (€', u), where &’ is a G-bundle on X and

U E1x\{oo} = &(x\{o0}

is an isomorphism of G-bundles on X \ {co}. Two modifications (&', u) and (&', i)
of & are said to be equivalent if there exists an isomorphism f : &’ = &’ such that
U= fiX\{oo} © U
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Consider the Bgr-affine Grassmannian GrgdR attached to G (cf. [36]). We only need
its C-points,

GrR(C) := G(Bw)/G(BL).

For any b € B(G), let &, be the associated G-bundle on X. For any x € Gr‘g (C), we
can construct a modification &  of & a la Beauville-Laszlo given by gluing &x\ {0}
and the trivial bundle on Spec(Bd’]L{) via the gluing datum given by x (cf. [5, Theo-
rem 3.4.5] and [13, §4.2], [14, Proposition 3.20]). Moreover, by [14, Proposition 3.20],
there is a bijection

Gr‘g2 (C) = {equivalence classes of modifications of &}, (1.6.1)

x +— equivalence class of (& x, Id).
For it € X«(T)™, the corresponding affine Schubert cell is
Grg® (C) = G(Bfu(t) ' G(BR)/G(BR) C Grg™(C).

Here we use the non-standard notion of affine Schubert cell associated to anti-domi-
nant p~ . This affine Schubert cell is closely related to the modification of G-bundles of
type u as in the following definition.

Definition 1.12. A modification of & is of rype w if its equivalence class falls in the
affine Schubert cell Grg® (C) via (1.6.1).

The natural action of J,(K) = Aut(&3) on the set of modifications of &) induces via
(1.6.1) an action of J5(K) on Grng(C).

Let éboo be the local completion of & at co. It is canonically trivialized. Hence there
is a natural morphism

w6 : Jp(K) = Aut(€p) — Aut(Epo) = G(BR).
The action of Jj(K) on GrgGIR (C) is given by left multiplication via ap .

Lemma 1.13. Let y € Jy(K). For any x € GrgdR (C), the automorphism y : &p 56
induces an automorphism

Ve gb,x = 8b,y(x)

such that the following diagram is commutative:

Y
Eb|x\foo} — Eb|x\{c0}

ml ~ lm

Y
Eb,x|X\{oo} — €b,y(x)| X \{oo}

Proof. By Tannakian formalism, it suffices to deal with the case when G = GL,. Then
G-bundles on X are the same thing as vector bundles of rank n. Suppose & corresponds
to the triple (M., Mgr, u) as in Proposition 1.2. Then x € Grg“‘R (C) corresponds to a
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B;l;-lattice M, in Mg ®p+ Bgr and & corresponds to the triple (M., My, u). The

dR
automorphism y : &p 56 corresponds to a pair (e, Yar) Of automorphisms compatible
with u, where

Ye: Me —> M.,  Yar : Mgr — Mgr.
Then &}, ,(x) corresponds to the triple (M., yar(My), u) where yqr (M) is the image of
M, via ygr ®B:l_{ Bar : Mgr ®Bd41_{ Bar ; Mar ®B;§ Bgr. We define y : gb,x :> 8b,y(x)
to be the automorphism corresponding to
Ye:Me— Me, yar: Mx — yar(My).
The commutativity of the diagram can be verified directly. ]
Recall that we have the Biatynicki-Birula map (cf. [5, Proposition 3.4.3])

TG Grg® (C) = F(G. p)(C).
By Tannakian formalism, we may reduce the construction to the case when G = GL,,. In
this case, GrgdZ(C ) parametrizes the lattices in B]j; that has relative position ! with the
standard lattice BJ{". Write i = (ky,...,k,) withk; >--->k,. Suppose A € Grg‘jz (C).
We define an increasing filtration Fil}, of C" as follows: for any m € Z,

Filf C" := (B)" Nt™™A/((tBR)" Nt™™A) C (BR)"/(tBR)" = C".
It is easy to check that
dimc Fil} C" = max {1 <i <n | k; > —m}.

Therefore 7g,, (A) := Fil} € F(G, n)(C).

From now on, suppose j is minuscule. Then the Biatynicki-Birula map 7, is an iso-
morphism by [5, Lemma 3.4.4]. For x € ¥ (G, n)(C), we denote by & , the modification
Sb,nalu(x) of & of type u.

When [b] € B(G) is basic, the isomorphism classes of the modifications of &3 can be
classified as follows.

Proposition 1.14 ([30, Corollary A.10], [6, Proposition 5.2]). Let [b] € B(G) be basic.
Let

B(G.kg(b) — pf vpu™") := B(G. kg (b) — ¥, vp(wop™)°) € B(G).

(Here we write the element vy (wou 1) in X (A)a in multiplicative form and not in the
usual additive form.) The map [b'] — [Ep/] gives a bijection

B(G, kG (b) — puF,vpu™") = {€p | x € F(G, )(C)}/~.

The action of J;(K) on Grg"‘Z(C ) defined by multiplication on the left via the

morphism «p ¢ induces an action of Jp(K) on ¥ (G, )(C) via the Biatynicki-Birula
map rg,,. Forany y € J5(K), we have an automorphism (still denoted by)

v gb,x :) E:b,y(x)
of G-bundles for any x € ¥ (G, u)(C).
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2. Admissible locus and weakly admissible locus

2.1. Reductions of G-bundles

Definition 2.1. (1) Let H € G be a closed subgroup of G. Suppose & is a G-bundle
on X. A reduction of & to H is a pair (g, t) where &g is an H-bundle and ¢ :
&y x7 G = Eisan isomorphism of G-bundles. We will also write &g for such a
reduction if we do not need to emphasize t.

(2) Two reductions (€g,t) and (€4,") of & to H are called equivalent if there exists an
isomorphism u : € — &}, such that = ¢ o (u x7 G).

Remark 2.2. The equivalence classes of reductions of & to H are in bijection with the

sections of the fibration H\& — X.

We will assume G is quasi-split in the rest of this subsection.

Definition 2.3. Let b € G(F ). For a Levi subgroup M of G, a reduction of b to M
is a pair (bpr, g) with by € M(I:“) and g € G(F) such that b = ghpro(g)~!. We also
write bys for such a reduction if we do not need to emphasize g. Two reductions (bys, g)
and (b, g’) of b to M are equivalent if there exists h € M(F) such that (by- &) =
(hbpro(h)~1, gh™"). Similarly, we can define the same notion for parabolic subgroups.

There is a natural injective map

{equivalence classes of reductions of b to M}

— {equivalence classes of reductions of &, to M }.

This map is in general not surjective.

Example 2.4. Let G = GL5 with Levi subgroup M = GLj3 x GL,. Let b € G(F ) with
Newton slopes (%, % %, % %). Then there exists a unique equivalence class of reductions
of b to M. However, as the decomposition of &, = (9(—%) @ (9(—%) into semistable
vector bundles is not canonical because of the existence of morphisms (—%) -0 (—%),

there exist infinitely many equivalence classes of reductions of & to M .
The following lemma will be used frequently.

Lemma 2.5 ([6, Lemma 2.4]). Let & and &’ be two G-bundles on X with a modification
&1 x\{oo} — E;I/X\{oo}' Then for any parabolic subgroup P of G, we have a bijection

{reductions of & to P} — {reductions of & to P}.

Let & be a G-bundle on X . By [15, §5.1], there exists the canonical reduction &p of &
to a unique standard parabolic subgroup P of G such that

e the associated M-bundle &p xP M is semistable, where M is the Levi component
of P,

e forany y € X*(P/Zg) \ {0} N NAg, we have deg y+&p > 0.
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Using the Harder—Narasimham reduction &p, we can define the slope
ve € X«(A)Q

of & by the Galois invariant morphism X*(P) — Z which maps y € X*(P) todeg y«Ep
combined with the inclusion

Homgz (X*(P),Z)" = Xo(M™)" C Xu(Am)o S X«(A)q.
where M2 is the cocenter of M and Ay € A is a maximal split central torus of M.

Proposition 2.6 ([18, Proposition 6.6], [5, Lemma 3.5.5]). Let [b] € B(G) and let
X € Grg® (C). Then

(1) in the positive Weyl chamber we have

Vg, = —Wo [Vb]s

where wy is the element of maximal length in the Weyl group W ;

2) ch(Sb,x) = u* —kg(b) € m1(G)r, where ch denotes the G-equivariant first Chern
class. In particular, ch(é”b) = —kg ().
Recall the following fact:

Theorem 2.7 ([34, Theorem 4.5.1]). Let & be a G-bundle on X.

(1) Suppose &g is a reduction of € to the standard parabolic subgroup Q. Consider the
vector
vV:X*(Q)—>Z, x> deg x«Eo,

seen as an element of X«(A)q. Then v < vg. Moreover, if this inequality is an equal-
ity, then Q C P and Ep >~ E¢ x2 P, where Ep is the canonical reduction of .

(2) The vector vg can be defined as the supremum of all such vectors v associated to all
possible reductions & g in the poset X+(A)q.

Remark 2.8. If we view v as an element in X, (A4)g, then v = AVWMQ (ve Mo ), where

Mg is the Levi component of O and €y, = &g x¢ M.

Corollary 2.9. Suppose & is a G-bundle with Ep a reductionto P. Let & = (Ep xF M)
xM G. Then vg < vg:. In particular, if 8p x¥ M is a trivial M -bundle, then § is a trivial
G-bundle.

Remark 2.10. When G = GL,,, this corollary is shown in [22, Lemma 3.4.17].

Proof of Corollary 2.9. Suppose &g is a reduction of & to a standard parabolic sub-

group Q. Suppose
sp:X = P\&, so:X — 0\&

are the corresponding sections for &p and & respectively. Then the relative position map

O\G x P\G — Q\G/P = Wo\W/Wp, (Qg1.Pg)+ 0gig5"'P,
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gives
(sQ,sp)
X —— Q\& x P\& — Wo\W/Wp.

Let WowWp be the image of the generic point of X, where w is the minimal length
representative of the double coset WowWp. Let X ’ C X be the preimage of WouwWp. It
is an open subscheme of X .

By Theorem 2.7 (2), the corollary follows from the following Claim.

Claim. & induces a reduction & b of &' to the parabolic subgroup Q such that &g and
& 22 have the same vector v as defined in Theorem 2.7.

Now it remains to prove the Claim. The composition

&r > 6% g
induces a monomorphism
PN 10w\&p — 0\6.
The pullback by the section sg : X — Q\& of this morphism gives a section of
PN tQu\(Ep)x — X'
Combining it with the natural morphism
PN ' Qu\&p — Pi\E)y

induced by the projection to the Levi quotient, where &;, = &p xP M and P, =
M N~ 0w, we get a reduction (81,\4,P1/‘,,)|X' of (&},)x’ to its standard parabolic sub-
group P;,. The composition
g, 8
induces a morphism
(P \Ep)ixr = (O\E)x/,
and we get a reduction SI/X’,Q of SI’X, to Q induced from Sl/ll,P]’w via this morphism. Then

the desired reduction & b of the Claim is obtained by applying the valuative criterion of
properness to Q\&" — X, as Q\G is proper and X is a Dedekind scheme.

Now it remains to show that &g and & /Q have the same vector v as defined in Theo-
rem 2.7. By the construction of & b, this results from the commutativity of the following
diagram for any y € X*(Q):

Pnwlow 20 —*.G,

| |

P](4 adw Q Gm

where pr,, is restriction to P N w™! Qw of the projection of P to its Levi component M .
(]

(2.1.1)
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Remark 2.11. In the notations of the above corollary, when G = GL, and M =
GL,, x GL,, withn; 4+ n, = n, then & corresponds to a vector bundle of rank n over X,
and & xP M corresponds to a pair of a vector bundle of rank 7, and a vector bundle
of rank 7, over X which admits an extension by &. Therefore the above corollary gives
a necessary condition for a vector bundle over the Fargues—Fontaine curve X to be an
extension of two given vector bundles over X .

The converse of the corollary is the following conjecture.

Conjecture 2.12. Let P be a standard parabolic subgroup of G with Levi component M .
Let & be a G-bundle and &), be a semistable M -bundle with vg < vg: where &' =
€1y xM G. Suppose vg,, is G -anti-dominant. Then & has a reduction Ep to P such that
813 XP M ~ 81/‘4

Remark 2.13. When G = GL,, the conjecture is proved in [1]. Recently, this conjec-
ture has been proved by Viehmann [41]. Note that in the conjecture the G -anti-dominant
assumption for ves, is necessary since H'(X, ©®(1)) = 0 for A > 0. The assumption
that &}, is semistable (i.e. corresponds to a basic element in B(M)) is also necessary, as
explained in [8].

Let bps be a reduction of b to M, where M is a standard Levi subgroup of G. Let P
be the standard parabolic subgroup with Levi component M. Recall that for any w € W,
there is an affine fibration

pry, ¢ F (G, w)(C)" := P(C)wPu(C)/Pu(C) = F (M, wp)(C)
by projection to the Levi quotient. We have the following fact.

Lemma 2.14 ([6, Lemma 2.6]). For x € P(C)wP,(C)/P,(C) there is an isomorphism
(Ebx)p xF M =~ Epyy e ()

where by is a reduction of b to M and (Ep,x) p is the reduction of Ep x to P induced by
the reduction &,, xM P of& to P.

2.2. Weakly admissible locus

Recall that {j1} is a geometric conjugacy class of a minuscule cocharacter u : G, — G 5.
After choosing a suitable representative in {u}, we may assume p € X, (7)™ via inner
twisting, where * stands for the dominant cocharacters. We consider the adic space
% (G, w) associated to the flag variety over Spa(E). For b € G(F), Rapoport and Zink
have defined a weakly admissible locus

F(G, p,b)™ C F(G,p)

associated to (G, , b). Now we recall its definition.
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Let L|I5 be a complete field extension. To any x € ¥ (G, u)(L), we can associate a
cocharacter . € {i} defined over L. Let p-FilMod LIF be the category of filtered isocrys-

tals over L|F . There is a functor

Ipx :RepG — ¢-FilMod; iz, (V,p) = (V. p(b)o Fily,, V).

POMx

The pair (b, x) is called weakly admissible if for any (V, p) € Rep G, the filtered isocrys-
tal dp (V, p) is weakly admissible in the sense of Fontaine. More precisely, a filtered
isocrystal V = (V, ¢, Fil®* V) over L|15 is called weakly admissible if for any subobject
V' of 'V with filtration induced from V, we have

tg(V) =tny(V) and t5(V) <tn(V),
where 7 (V) is the 7 g -adic valuation of det ¢ and

(V) =) i -dimg grie (VL)
i€Z
Let
F(G, u, D)Y™(L) :={x € F(G, w)(L) | (b, x) is weakly admissible}.

This defines the weakly admissible locus ¥ (G, u, b)™?, which is a partially proper open
subspace inside ¥ (G, p) by [33, Proposition 1.36].

Remark 2.15. (1) Let b, b’ € G(F) with [b] = [b'] € B(G), then F (G, u, b)™ ~
F (G, u, b)™.

(2) By [32, Proposition 3.1], ¥ (G, u, b)** is non-empty if and only if [b] € A(G, w).

(3) Suppose the Frobenius maps on H (15 ) maps to g~ 'o(—)g via the inner twisting
Hy = G with g € G(F). We have a bijection B(G) — B(H) which maps [b] to [»],
where hf maps to bg € G(F) via the inner twisting. By [10, Proposition 9.5.3], there is
an identification

F(G, ., b)"™ = F(H, pu, b7,

Therefore for the study of weakly admissible locus, it suffices to reduce to the quasi-split
case.

In the following proposition, we will use the modification of G-bundles on the
curve X to give an equivalent definition of weak admissibility of a pair (b, x) when G is
quasi-split.

Proposition 2.16 ([6, Proposition 2.7]). Assume that G is quasi-split. Let [b] € A(G, 1)
and x € ¥ (G, u)(L). Then the pair (b, x) is weakly admissible if and only if for any
standard parabolic subgroup P with Levi component M, any reduction by of b to M,
and any x € X*(P/Zg)" where Zg is the center of G, we have

deg x«(€p.x)P <0,

where (Ep x) p is the reduction of €p x to P induced by the reduction &,, xM P of &,
by Lemma 2.5.
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2.3. Admissible locus

Rapoport and Zink [33] have conjectured the existence of an open subspace
F(G,pu, b < F(G,u,b)™

with an étale-G-local system £ on ¥ (G, w, b)* such that these two spaces have the same
classical points and the G-local system £ interpolates a family of crystalline representa-
tions with value in G(F).

When the local Shimura datum (G, i, b) corresponds to a Rapoport-Zink space
M(G, u, b) over E, the admissible locus F (G, u, b)* is the image of the p-adic period
mapping [33, Chapter 5]

7 M(G, u,b) > F(G, 1),

and the G-local system £ corresponds to the Tate module of the universal p-divisible
group with G-structures by descent via the p-adic period mapping.

For the general local Shimura datum (G, i, b), the existence of the admissible locus
is due to the work of Fargues—Fontaine [18], Kedlaya—Liu [23] and Scholze [35].

Definition 2.17. Let ¥ (G, u, b)* be a subspace of ¥ (G, ) stable under generalization
with C-points, defined as follows:

F(G, 1, b)(C) = {x € F(G,u)(C) | vg,, is trivial}
for any complete algebraically closed field C over F.
Remark 2.18. (1) (G, i, b)* is an open subset of ¥ (G, i) (see [23]), and by definition

F (G, 1, b)* C F(G. ju,b)™.

Moreover,
F(G, pn,b)(K) = F(G, pn,b)™(K)

for any finite extension K over E [30, Remarks A.5], [9]. In particular, ¥ (G, u,b)* # @
if and only if [b] € A(G, w).

(2) For [b] € A(G, p), the admissible locus ¥ (G, i, b)* coincides with the image
of the p-adic period mapping from the local Shimura variety attached to (G, u, b) to
the flag variety ¥ (G, u) [36, 37]. It also coincides with the construction of admissi-
ble locus of Hartl [21] and Faltings [12] when (G, w, b) is a Hodge type local Shimura
datum.

(3) Via the bijection B(G) 5B (H) by inner twisting which maps [b] to [b*], there
is an identification

F(G, . b)* = F(H, u, by

Therefore for the study of admissible locus, we can also reduce to the quasi-split case.
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For any [b] € B(G), consider the Newton stratification

FG.w= [ 7@ un
[b’]1eB(G)

where 7 (G, u, b)?1is a subspace of ¥ (G, u) stable under generalization with C-points
defined by
FEUC) = {(x € F(C) | Epx = 1)

for any complete algebraically closed field C over F. Note that when [b] is basic, we
know precisely which strata show up in the Newton stratification by Proposition 1.14.
But this is unknown for non-basic [b]. Each stratum in the Newton stratification is locally
closed by Kedlaya—Liu [23]. And it is clear that

F(G, . b = F(G, ., b).

Remark 2.19. The J,(K)-action on % (G, )(C) induces an action on each stratum
F (G, u, b)P'1(C). In particular, Jy,(K) acts on F (G, u, b)*(C).

3. Hodge-Newton-decomposability

Let My = Centg ([vp]) be the centralizer of [vp].

Definition 3.1. (1) A triple (G, u,b) (resp. (G, 8,b) with § € X (A)a) is called Hodge—
Newton-decomposable (or HN-decomposable for short) if [b] € A(G, ) (resp. [b] €
B(G, ¢, 6) with ¢ = kg (b) € m1(G)r) and there exists a strict standard Levi sub-
group M of the quasi-split inner form H of G containing M}, such that u°® — [vp] €
(g ar)Q (resp. § — [vp] € (D )/ )@). Otherwise, the triple (G, w, b) (resp. (G, 4, b))
is called Hodge—Newton-indecomposable (or HN-indecomposable for short).

(2) A pair (G, ) is called fully Hodge—Newton-decomposable (or fully HN-decompos-
able for short) if for any non-basic [b] € B(G, w), the triple (G, , b) is HN-decom-
posable. In this case, we also say the Kottwitz set B(G, u) is fully Hodge—Newton-
decomposable.

(3) The generalized Kottwitz set B(G, ¢, §) is called fully HN-decomposable if for any
non-basic [b] € B(G, ¢, §), the triple (G, 8, b) is HN-decomposable.

Remark 3.2. The notion of full Hodge—Newton-decomposability has first been intro-
duced and systematically studied by Gortz, He and Nie [19]. They gave equivalent condi-
tions for a pair (G, ) to be fully HN-decomposable and classified all such pairs.

In the quasi-split case, we have the following equivalent definition for HN-decompos-
ability.

Lemma 3.3 (cf. [6, Lemma 4.11]). Suppose G is quasi-split. Let [b] € B(G, u* + ¢, 1°)
for some ¢ € w1 (G)r,1or. Then the following three conditions are equivalent:
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(1) the triple (G, w, b) is HN-decomposable,

(2) there exist a strict standard Levi subgroup M containing My, and a unique element
em € w1 (M)r,ior such that [byr] € B(M, /ﬁi + epm, 1°) and ey maps to € via the
natural map 7wy (M)r — 71(G)r, where by is the reduction of b to M deduced from
its canonical reduction to My combined with the inclusion My C M,

(3) there exist a strict standard Levi subgroup M containing woMpwy U and a unigue
element €py € 71 (M )T 10 Such that [bar] € B(M, (Wop)* + Epr. (o)) and woiny
maps to ¢ via the natural map w1(M)r — 71(G)r, where b is the reduction of b
to M deduced from its canonical reduction wobpg, Wy Lto woMj wy U combined with
the inclusion wo Mpwg V'€ M and wop = (Wot) M-dom is the M -dominant represen-
tative in Wyrwo L.

Proof. The proof of the equivalence of (1) and (2) is similar to that of [6, Lemma 4.11].
Indeed, by definition, (G, u, b) is HN-decomposable if and only if [bp] € A(M, 1)
for some strict standard Levi subgroup of G. By Remark 1.5, we may assume [bys] €
B(M, /,L# + em, 1°) for some eps € 71 (M)r or which maps to & € 71 (G)r. The unique-
ness of gp7 follows from Lemma 1.8 (1).

The equivalence between (2) and (3) is due to the fact that there is a bijection between
B(M, iif + epr, 1°) and B(woMwy!, (Wop)* + woen, (o)) induced by the conju-
gation by wy. ]

Corollary 3.4. Suppose G is quasi-split. Let [b] € A(G, ). Then the following three
conditions are equivalent:

(1) the triple (G, u, b) is HN-indecomposable,

(2) u¥— kpm, (byy,) € 11 (Mp)r ® Q is a linear combination of elements of

(@ € 11 (Mp)r ® Q |« € Ao, {a, [vp]) > 0}

with positive integer coefficients,
(3) forall a € Ay, {a,[vp]) > 0 implies the coefficient of a” in u® — [vp] is positive.
Corollary 3.5. Suppose G is quasi-split. Suppose [b] € B(G, u* + ¢, u°) for some ¢ in

71(G)ror and (G, w, b) is HN-decomposable. Then there exists a unique strict standard
Levi subgroup M, a unique element py € w1 (M )1 1or and a reduction byy such that

(1) & is the image of woep under the natural map w1 (M)t — 71(G)r,

(2) [bp] € B(M. (o) + enr. (Wo)°),

(3) (M, wopu, EM) is HN-indecomposable.

Proof. Let M be the standard Levi subgroup of G such that its simple roots are described

as follows:
Am, 0 = Dm0 U{a € Ag | ng > 0},

where ©° — [vp] = Zaer nga” with ny > 0. Let by, be the reduction of b to M,
deduced from its canonical reduction to M}, combined with the inclusion My C M;.
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Then it is easy to see (M1, i, bar, ) is HN-indecomposable and M is the unique standard
Levi subgroup with this property. Let M = woM;jw, 1 The rest of the assertions can be
proved in the same way as Lemma 3.3. ]

Remark 3.6. With notations as in Corollary 3.5, as woe is the image of ejs under the
natural injective map 71 (M)r — 71(G)r, we may identify eps and wye.

The following proposition is a key ingredient in the proof of the main result.

Proposition 3.7. Suppose G is quasi-split. Let [b] € A(G, 1) be such that (G, 1, b) is HN-
decomposable. Let M C G be the strict standard Levi subgroup such that (M, wo, bpr)
is HN-indecomposable as in Corollary 3.5. Then

Py (F (M. oj2, ba)*(€)) = F (G, 1. b)*(C),
iy (F (M. 0j1. 5a)™(C)) = F (G, 1. b)"*(C).

Remark 3.8. The appearance of Wy in the statement is due to the fact that vg, = —wo[vp]
by Proposition 2.6.

The remainder of this section is devoted to the proof of the above proposition. Suppose
(G, u, b) is HN-decomposable with G quasi-split. Suppose M is the Levi subgroup of G
such that (M, wou, l;M) is HN-indecomposable as in Corollary 3.5. Let P be the standard
parabolic subgroup of G with M as Levi component.

Lemma 3.9. ¥ (G, u,b)"(C) € P(C)wo P, (C)/Pu(C).

Proof. Suppose ¥ (G, p, b)**(C) N P(C)wP,(C)/P,(C) # @ for some w € W. We
want to show wg € WpwWp,,. For any x € ¥ (G, u, b)**(C) N P(C)wP,(C)/ P, (C),
we have

(Epx)p =~ SEM ,pry, (X)

by Lemma 2.14. The weak semistability of & , implies that deg X*(85M or (x)) < 0 for

any y € X*(M/Zg)™". On the other hand, using the fact that [EM] € A(M, o), we
have

(€5, e v = W = kg (byr) = (W) = (wop)*  in 11 (M)r ® Q.

and deg x«(Epy; pr, (x) = (Wi — wop, x) < 0 for any y € X*(M/Zg)" by Proposi-
tion 2.6. Therefore equality holds for any y and (wu)* = (wou)* in 7y (M)r. On the
other hand, as wy > wou, wp and wou have the same image in 3 (M). The result fol-

lows. [

With notations as in Corollary 3.5, let SEG be the G-bundle such that v s is trivial

and ¢%(€F) = —e. Similarly, let 81%8 be the M-bundle such that vgas is trivial and
woe

c{”(guﬂ){)g) = —wpe (cf. Remark 3.6). Let 8508 = 8%8 xM P When [b] € B(G, )

(i.e., & = 0), the bundles §¢ = €7, 81%5 = &M and 8508 = &F are trivial.
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Consider the following commutative diagram (cf. [28,39]) of de Rham period maps
for different groups from local Shimura varieties at infinite level to flag varieties:

M(P, o, bp)oo

%\

M(M, Dok, bt )oo M(G, . b)oo
i F (P, wou, bp)? G
F (M, o, bar)* F (G, . b)*

where:

o h p is the reduction of b to P induced by the reduction l;M of b to M combined with
the inclusion M C P.

o M(G,u,b)oo (resp. M(M, Wopu, Z;M), resp. M(P, WML, 5[))) classifies modifications
of type w (resp. Wwo, resp. W) between SbG (resp. &M | resp. 8;) and 88G (resp.

M
8w08, resp. wa)
G _M _P

® T4k, Tar» T4g are the de Rham period maps. More precisely, for a modification in
M(G, |4, b)oo its image by 7TdR is x if SG = SG and similarly for n(ﬂ’{ and ndI;. We
define ¥ (P, wou, bp)d to be the image of ndR.

o £g (resp. £pr) is the induced modification via the natural morphism P — G (resp. the
projection to the Levi quotient P — M).

° éG is induced from
F(P,wop) = P/Pyou NP — PwoPy/P, < G/P, =5 (G, ),

- - 3.0.1)
aPgou NP = a(Pgy, N PPy = agPy.

° §M is induced from the natural projection P — M to the Levi component
F(P.Bop) = P/ Pioy — M/ Mgy = F (M. Gop).
By [6, proof of Lemma 6.3], we have the following fact.
Lemma 3.10. Let & be a G-bundle and let P’ C P be a standard parabolic subgroup
of G contained in P. There is a bijection between

e reductions Ep: of € to P/,

e reductions Ep to P together with a reduction (€p x¥ M)ynp of &p xF M of
MNP,

Moreover, this bijection identifies Epr x¥' M’ and (§p xF M)pnpr xMP' M’, where
M’ is the Levi component of P’.
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Now we can prove the following result.

Lemma 3.11. In the above diagram, §G is an isomorphism of adic spaces and

M(G, i, b)oo =~ 11 M(P, Wo/t, D)oo

Aut(€E)/Au(EH )

Proof. We only deal with the case [b] € B(G, w); the proof for [b] € A(G, w) is similar.
For the first assertion, as ¥ (P, wou) — F (G, ) is an open immersion, it suffices to
show that _
F (P, wop,bp)*(C) > F(G, pu, b)*(C)

is surjective for any complete algebraically closed field C. For any x € ¥ (G, w, b)*(C),
by Lemma 3.9, x € P(C)woPu(C)/P,(C). Let (6p,x)p be the reduction of & , to P
induced by the reduction & bp of & to P. Write (Epx)p =& by where y is the preimage
of x via (3.0.1). We want to show y € ¥ (P, wWou, l;p)”(C). This is equivalent to showing
that (Epx)p = & Bp.y is a trivial G-bundle. The isomorphism of G-bundles & , >~ &
induces areduction (&1)p of &; to P and an isomorphism (& ;) p >~ (&1)p of P-bundles.

We want to show that (&) p is a trivial P-bundle. By Corollary 2.9, it suffices to show
that 8y := (81)p xF M is a trivial M -bundle. We first show that

Mgy =o0. (3.0.2)
Indeed,

! ((&m) = ' ((Ep)p X© M)
= c1(&; (by Lemma 2.14)

21 Py ()

= (wop)* —kar(bpr) = 0 € 1 (M)r,

where the last equality holds because [EM] € B(M, o).

Now it remains to show the slope vg,, = 0. Let (Exr) Pl be the canonical reduction
of &)y to a standard parabolic subgroup P, of M. Write P’ = P;, - R, (P), where R, (P)
denotes the unipotent radical of P. Note that P’ is a standard parabolic subgroup of G
with P"N M = P;,. Let M’ be the Levi component of P;,. By [15, Proposition 5.16],

v(@M)p,’w <Py Ve € X« (4.
By Lemma 3.10, (Epr) pj, corresponds to a reduction of &1 to P’. Hence the semistability
of &; implies that
(X:vey) <0, VyxeX*(M'/Zg)".

On the other hand, (3.0.2) implies that vg,, is a non-negative linear combination of simple
coroots in M . Hence

(X.vey) =0, VyeX*(M'/Zg)*.

It follows that vg,, = 0.
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The second assertion is obtained from the first assertion and the fact that M (G, i, b) o
(resp. M (P, Wot,bp)oo) is the Aut(€9)-torsor (resp. Aut(EL )-torsor) over F (G, u,b)?

wopé

(resp. ¥ (P, i}ou,l;p)). |

Remark 3.12. This lemma was proved for an unramified local Shimura datum of PEL
type by Mantovan [28, §8.2] and Shen [39, Corollary 6.4].

In order to prove Proposition 3.7, we also need the following lemmas.

Lemma 3.13. Suppose G is quasi-split. Consider ¥ (M, wo ) as a subspace of ¥ (G, 1)
via the natural injective morphism ¥ (M, wou) — F (G, ). Then

F (M, Wop, bar)* € F (G, . b)*,  F (M, Wop, by )™ C F(G, ., b)™.

Proof. The first assertion is clear. For the second one, let x € ¥ (M, Wy, I;M)Wa(C ) and
let xg be its image via the natural morphism ¥ (M, wop) — F (G, ). Suppose Q is
a standard parabolic subgroup with Levi component Mg. Let bas,, be a reduction of b
to Mg. Let w € WT and b; € Ml(ﬁ) with M; = M N w_lMQw as in Lemma 3.14
below. Let Q1 be the standard parabolic subgroup of M with Levi component M. Since

(&, xM1 Q1) x214W 0 ~ &, xMe @
by Lemma 3.14, we have

(Epxg)o = (65, o, x21 0,

where Q1 — Q is induced by ad w and where (Ep x. ) o (resp.(SI;M )0, ) is the reduction
of &p x (resp. 8I;M ) to Q (resp. Q1) induced by the reduction SbMQ xMo O (resp.
&y, xM1 Q1) of &, (resp. &;,,) 10 Q (resp. Q1). Forany y € X*(Q/Zg)™, we have

deg 1+(Ep,xc)o = deg 14(E5, o,

with ' = yoadw € X*(Q1). Write ' = x| + x5 with x| = Avyw,, (x) the Wjs-average
of x’. Up to replacing y by a multiple my for m € N large enough, we may assume y) €
(®Y,)F = X*(M) and x4 € X*(M1/Zum). Moreover, the choice of w implies wp € @g
for any B € ®3,. Hence x, € X*(M1/Zum) T, where ™ stands for M -dominant. Then

deg x«(Ep,x)o = deg x, (&5, o, =deg x|, (65 ) +deg x5.(E; o, <0

=0 <0

since [EM] € B(M, wop) combined with the weak admissibility of x. |

Recall that M and by are as in Corollary 3.5. The following lemma reflects the fact
that the category of isocrystals is semisimple. If we can decompose an isocrystal in two
different ways, then we can decompose it in a way that is finer than the previous two
decompositions.
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Lemma 3.14. Suppose G is quasi-split. Let by, be a reduction of b to Mg, where Mg
is the Levi component of a standard parabolic subgroup Q. Then there exist w € WT
(where WT can be identified with the relative Weyl group of G), g1 € M(F), g €
(w™'Mow)(F) and by € My (F) with My = w™'Mow N M such that

(1) w is the minimal length element in WAEQ wWAI,; ;

(2) (b1, g1) is a reduction ofEM to My,

(3) (b1, g)) is a reduction of u')_leQo(u')) to My with w € N(T)(F) a representative
of w.

Moreover, Wayr, wWyy is the generic relative position between the reduction & Bas xM p

of &y to P and the reduction SbMQ xMo 0 of & t0 Q.

Proof. The last assertion is implied by conditions (2) and (3). We first show that there

exist elements satisfying (2) and (3). More precnsely, we claim that there exist o € WT,
g1 € M(F), g € w_lMQw(F) and by € My (L) with My = & “IMow N M such that

) (bl,gl) is a reduction of bM to My;

3) (l;l,gr’l) is a reduction of zf)_leQG(lf)) to My with w € N(T)(F) a representative

of W.

Note that a representative i of W can be chosen in N(T)(F) by Steinberg’s theorem
[38, 111, §2.3].

By definition, by is induced from wobpr, wy 1" via the natural inclusion
woMpwy 1 € M. Therefore, without loss of generality, we may assume M = wqo M}, wy 1
Since by, is a reduction of b to Mg, up to o-conjugation, we may assume vy Mo
D — My is defined over F and has image in the split maximal torus A which is Mg-
anti-dominant. Choose € W such that v, My = wo[vp] is G-anti-dominant. Then

Cent~_1MQu~,(v;_le a(fu)) = 'MowNM = M and Lf)_leQJ(tf)) has a canon-

ical reduction (bl, gy to M. Then (3) follows.
Let b/ be the image of by via the inclusion M; € M. For (2), it suffices to show
[b/] = [by] in B(M). Clearly,

VeI = [vg,,In = (Wo[ve)a-aom € N (M).
By the injectivity of the map (see (1.3.1))
(v.km) : BIM) — N (M) x 71 (M)r,
it suffices to show «s (l;’l) = Kpm (5M) € m(M)r. Since
kp(a) = v inm(M)r ®z Q, Ya € M(F),

we have ks (51) — KM (Z;M) € w1 (M)T tor- A 151 and I;M are both reductions of b, we
have

k6 (B}) = kG (b1) = kg (by) in 71 (G)r.
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The result follows by the injectivity of the map 71 (M)r or = 71(G )T t0r (cf. proof of
Lemma 3.3).
Let w = w;ww, be the unique minimal length element in WAI,;Q zi)WAI,; with wq € WAI,;Q

and w;, € WAI;. Then w € WT and we can choose representatives 1, € M(I:“), w € G(I:“)
of w, and w respectively again by Steinberg’s theorem. Let

by i= 5 'hio(iby) € My(F),
g1 = gllbz € M(F),

g = g, € w Mow(F).
They satisfy the desired properties (1)—(3). ]
Now we are ready to prove the main result of this section.

Proof of Proposition 3.7. We only deal with the case [b] € B(G, w); the proof for
[b] € A(G, ) is similar. By Lemmas 3.9 and 3.11, we have pry, = i © 561 and

F (G, j1,b)* S pro (F (M, wop, bar)").

It remains to show that & x is a trivial G-bundle for any x € prE)(l) (F (M, wou, b)*(C)).
By Lemma 2.14, (& x)p xPM~8 which is a trivial M -bundle. The result
then follows by Corollary 2.9.

The proof for weak admissibility is similar. Suppose x € ¥ (G, u, b)**(C). Then x €
P(C)wo P, (C)/Pu(C) by Lemma 3.9. We show that pr, (x) € F (M, Wou, BM)W“(C).
Suppose M’ C M is a standard Levi subgroup of M with b’ € M'(L) a reduction of by
to M'. Let Py, € M (resp. P’ C G) be the standard parabolic subgroup of M (resp. G)
with Levi component M’. We need to show that

barpripg (x)°

deg)(*(SEM,per(x))P& <0, VyeX*(Py/Zu)".

where (& is the reduction of & é‘;’

g Pring () to P, induced by the reduction

M Pra, )Py

Ep xM' P;, of SI;M. By Remark 2.8, this is equivalent to showing

Avw,, (ve,,) <m 0 in Xy (A)q, (3.0.3)
where 8/ 1= (SEM,prwo(x))Pz'w xPu M’. By Theorem 2.7,
AVWM/ (VGM/) =M Ve in X*(A)Qs (304)
where &)y == & By proy. ()" On the other hand, by Lemmas 2.14 and 3.10, we have
Prug
= (8I;M,prw0(x))P1/v1 x Py M~ ((&p.x)p %P M)P;\/I Py M’

~ (&pr)p xT M,
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where (& ) p- is the reduction of &, , to P’ induced by the reduction &y xM' p’of &p.
The weak semistability of &  implies that

Avw,,, (ve,,) <6 0 in X«(4)q. 3.0.5)
Hence inequality (3.0.3) follows from (3.0.4) and (3.0.5) combined with the fact that

AVWM (UgM) = 0

since [EM] € B(M, o).
Conversely, suppose

x € P(C)woPu(C)/Pu(C) with pry (x) € F(M, Wot. bar)™(C).

We want to show x € ¥ (G, i, b)"(C). Suppose Q is a standard parabolic subgroup of G
with Levi component M. Let by, be a reduction of b to Mg. We need to show

deg x«(Epx)o <0, Yy € X™"(Q/Zo)", (3.0.6)

where (Ep, )¢ is the reduction of & x to Q induced by the reduction SbMQ xMo o
of & to Q. By the proof of Corollary 2.9, (6p )¢ induces a reduction

M
(851\4 ,prwo(x) X G)Q

of & M G to Q. Moreover, we have

bat pripy ()
deg X (Ep,x)o = deg X« (SEM SPry g (%) xM G)o.

Hence (3.0.6) follows by the weak admissibility of pr,,, (x) and Lemma 3.13. |

4. The action of fb on modifications of G -bundles

Now we state the main results of this article. We first state the main result in the quasi-split
case.

Suppose G is quasi-split and [b] € A(G, p). Recall that by Remark 1.5, we may
assume [b] € B(G, u* + &, u°) for some & € 71 (G)r gor- By Lemma 3.3 (cf. also Corol-
lary 3.5), there exists a unique standard Levi subgroup M of G with a reduction by of b
to M such that (M, u, b) is HN-indecomposable and ¢ is in the image of the injective
map 71 (M)r,or = 71(G)r,1or- SO We may consider ¢ as an element in 71 (M)ror. In the
following, sometimes we also identify bys with b.

Theorem 4.1. Suppose G is quasi-split and  is minuscule. Let [b] € B(G, u* + &, u°).
Suppose M is the standard Levi subgroup of G such that (M, i, b) is Hodge—Newton-
indecomposable. Then the equality ¥ (G, u, b)™ = F (G, u, b)?* holds if and only if
B(M, u* + ¢, u®) is fully Hodge—Newton-decomposable and [b) is basic in B(M).

In particular, for [b] € B(G, ), the equality ¥ (G, u,b)** = F (G, u, b)* holds if and
only if the pair (M, ) is fully Hodge—Newton-decomposable and [b] is basic in B(M).
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Remark 4.2. For GL,, and [b] € B(G, u), this theorem was proved by Hartl [21, Theo-
rem 9.3].

We have a similar description when the group G is non-quasi-split.

Theorem 4.3. Suppose i is minuscule and [b] € B(G, ). Let [b*] € B(H) be the image
of [b] via the natural bijection B(G) ~ B(H). Let M be the standard Levi subgroup
of H with a reduction bﬁ of b to M such that [bﬁ] e AMH 1) and (MH i, bﬁ)
is HN-indecomposable. Then

(1) the Levi subgroup M of H corresponds to a Levi subgroup M of G via the inner
twisting,

(2) the equality ¥ (G, i, b)) = F (G, u, b)? holds if and only if the pair (M, W) is fully
HN-indecomposable and [byy] is basic in B(M), where [byg] corresponds to [bﬁ] via
B(M) ~ B(M™).

In order to prove the main theorems, we need some preparations.

Lemma 4.4. Suppose M is a standard Levi subgroup of H defined over F. Let g €
G(F) be a representative of wg. Then the map

M(F) = (woMwy " )(F), g = ogo (o) ",
induces the bijections
B(M) ~ B(woMwy"),
B(M)vasic == B(woMwy Mpasic,
B(M, p) ~ B(woMwyg", wop).
B(M, 1i* + &, 1) ~ B(woMwg", (op)* + woe, (Fo)°%),

where Wou ;= (W) is the wo M wy ' -domominant representative of wo in

wono_l—dom
its WwonO—l -orbit. Moreover, B(M, u* + ¢, u®) is fully HN-decomposable if and only
if so is B(woMwy, (Wou)* + woe, (Wou)®).

Proof. We may assume that wy is the minimal length representative in W, Muy ' Wo-
Note that for any g € M(F),

[WVisogoin)~1] = Wolvg] € N (woMwy™).

The other assertions can be checked easily. ]

We also need the following proposition which is a key ingredient in the proof of the
main result.

Proposition 4.5. Suppose G is quasi-split. Suppose [b] € A(G, ) and (G, ju, b) is HN-
indecomposable. If b is not basic, then ¥ (G, u, b)* # F (G, u, b)™.
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Before proving this proposition, we first show how to use it combined with Proposi-
tion 3.7 to prove the main theorem.

Proof of Theorem 4.1. For the sufficiency, suppose B(M w? + e, u®) is fully HN-
decomposable and [by] is basic in B(M). Then B(M, (wou)” + woe, (wou) ) is
fully HN-decomposable and [bM] is basic in B(M) with M = woMwy! and by =
wobpro(wo)~! by Lemma 4.4. After applying [6, Theorem 6.1] and its proof for
the non-quasi-split case to the triple (M, Wou, Z;M), we get F (M, Wou, l;M)”1 =
F (M o, l;M)Wa. The result follows by Proposition 3.7.

For the necessity, if bps is not basic in M or B(M, u* + ¢, u°) is not fully
HN-indecomposable, then equivalently by is not basic in M or B(M, (Wop)* +
woe, (Wop)®) is not fully HN-indecomposable. Hence after applying Proposition 4.5 (in
the first case) or [6, Theorem 6.1 and its proof] for the non-quasi-split case to the triple
(M, II}()/L,Z;M), we get F (M, II}()/L,Z;M)a # F(M, wop, I;M)Wa. And ¥ (G, u, b)) =
F (G, ., b)* follows again by Proposition 3.7. |

Proof of Theorem 4.3. The reduction to the quasi-split case is similar to the proof of [6,
Theorem 6.1]. We may assume that G is adjoint. Then G = Jjp* is an extended pure inner
form of H, where [b*] € B(H )pasic. We have

F(G,pw,b)* = F(H,pu,b™),  F(G,pu,b)™ = F(H, p,b")™,
and [b] € B(H, u* + k(b*), 1°). By Lemma 1.8,
k(0™) € Im(ry (M) ror = 71 (H)1gor).
and if we view k (b*) as an element in 7y (MH)p’tor, we have
[bar] € BIM™ uF 4 1c(b*), ).

Let [byIyn € B(M ™) with kpr (byy) = k(b*) € 71 (M ™). Then [b*] = [by] €
B(H) and we may assume b* = by, e MH (F). It follows that M = Ibr, is a pure inner
form of M, which is also a Levi subgroup of G. Therefore (1) follows.

For (2), by Theorem 4.1, ¥ (H, ju,b™)* = ¥ (H, ., b7 )" if and only if [b ] is basic
in H and BIMH | ¥ 4 «(b*), 1°) is fully HN-indecomposable. The latter condition is
equivalent to (M, p) being fully HN-indecomposable. |

The rest of the section is devoted to proving Proposition 4.5. Suppose G is quasi-split.
In order to distinguish the roots for different groups, we will write Ag and Ag o for A and
Ay respectively. For any B € Ag, let Mg be the standard Levi subgroup of G such that
Amy = Ag\I'B. Forany a € Ag,o, let My := Mg for any f € Ag such that B4 = «.

Lemma 4.6. Suppose G is quasi-split. Let [b] € B(G, u* + &, 1°) be a non-basic element,
where ¢ € 1(G)rtor- Suppose (G, i, b) is HN-indecomposable. Then there exist & € Ao,
w e Wand x € ¥ (Mg, wi)(C) satisfying the following conditions:

(1) (@.[vs]) >0,
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(2) wp is Mg-dominant,

(3) & € (1 (Mg)ror = 71(G)rr) (hence we may view & € 71 (Mg)ror),

4) SbM& x X 81,1/‘4&, where bM& is the reduction of b to Mg deduced from its canonical
reduction by, to My combined with the inclusion My € Mg, and bI/M& € B(Mg)pasic
is such that K (b;vI,;) = —(BY) + e with B € A and ,3|A =a.

Proof. By Lemma 1.8, [by,] € B(Mp, (wip)? + &, (wip)®) for some wy, € W. More-
over, ¢ € Im(mw; (Mp)r,jor = 71(G)r or). Hence (3) holds for any My containing M.
For any @ € Ag,o such that (o, [vp]) > 0, let [bas, ] be the image of [bay,] via the natu-
ral map B(Mp) — B(My). Then [bpy,] € A(My, (W1 0)M,y-dom)- As (b, i) is not HN-
decomposable, we have (wi)a,-dom 7# M. Therefore there exists B € Ag such that
Bila = o and (B, (W1/4)My-dom) < 0. Let

Ra = {(S,B(wllfb)Ma—dom)Ma—dom S W/'l/ | ﬁ € AG? ﬂ|A = a’ (ﬂa (wll’L)Ma—dom) < O}v

where sg € W is the reflection corresponding to 8. Let wit be a maximal element in the
subset

U R, C Wp.

a€AG 0, (a,[vp])>0
Suppose wit € R, for any o € Ag,o. Then (o, wu) satisfies (1) and (2). It remains to find
x € F (Mg, wn)(C) satisfying condition (4) for some & with wu € Rg.
This is equivalent to finding & € Ag o and y € F (Mg, (ww)~1)(C) such that ng& ~
Sb;‘/h,y and wyu € Rg.
ﬁy Proposition 1.14, we need to find & € Ag,o such that wu € Rz and
[bay] € B(Ma. kag (biy,) + (win)¥, vy, (wi)°).
By Lemma 1.7, the latter is equivalent to the conditions
kg (uy) = (wp — BY) + & in w1 (Ma)r. (4.0.1)
v, (b)) <m, —AVr AV, (BY) + Avr(wp) in 711 (Mp)r.o- (4.0.2)
Let (B;),es be a set of representatives of Galois orbits in Ag\Ayy, . Let
wu —wip =Y n;B; inm(Mp)r
jeJ
withn; € N forall j € J.
Claim 1. n; > 1forall j € J.

Suppose 1, =0 for some jo € J. Letog = B, |, Then (wM)MaO—dom = (wIM)MaO—dom~
Again by HN-indecomposability, (W) My, -dom 7 K- Then there exists B € T'fj, such that
(B, (W) My -dom) < 0. Tt follows that

(Sﬂ (wlﬂ)Mao—dom)Mao—dom ,% wH.

This contradicts the maximality of wu. Hence Claim 1 follows.
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By definition, suppose wi € Ry for some a and wp = (s (W1 ) Mey-dom) My -dom>
where o € Ag,o with (@, [vp]) > 0 and B € Ag with Bj4 = . Suppose B € I'B;, for
some jo € J. Then nj, = 1 by the definition of wpu.

The subset

J1:={j€J|nj=1}
of J consists of a single element jj. Let & := « and B := B. We will verify that & has the
desired properties. Since [bar, ] € B(Mp, (wi)* + &, (w1 1)°), we have

kmg (byg) = (i)t +e = (wp—BY) +&  inm (M),
which is (4.0.1). For (4.0.2), we have

Avr(wp) — kur, (bu,) — AvrAvir,, (BY) = (wp — wip) — Avigy,_(BY) =m, 0

in 71 (Mp)r,q. where the last inequality follows from Lemma 4.7 (1) (because the Eg case
does not occur as there are only trivial minuscule cocharacters in that case) combined with
the fact that n; > 2 forany j € J \ {jo}.

It remains to deal with the case when J; has at least two elements. By Claim 1, for
any j € J, up to replacing B; by some other representative in the same Galois orbit, we
may assume f; appears in the linear combination of wu — w1 p.

Claim 2. WU = [ = (Sﬂj, (wll’L)Mﬁj,—dom)Mﬁj/—dom fOV any j/ € Jl-

We want to show wu is G-dominant. Suppose jj € Ji with jo # jj. Let wu =
W3sp,, WaWift with w,, w3 € WMB-/ . Then
0 70

(Sﬁj(/) (wll’L)Mﬁj(,)*dOm)Mﬁj(,)fdom = sﬂj(’) WrW1 M.

Since both sides are in W with difference a linear combination of coroots in M B> We
0

have

U Ra > (Sﬂj/ (wIM)Mﬁ‘, —dom)Mﬁ‘, -dom = (Sﬁ«/ LU2U)1//L)MBJ -dom = w.
p 0 Jo Jo 70 Jo

By the maximality of wy, we deduce that wys is both M, -dominant and Mg, -dominant.
0
Therefore
wu = (sﬂj/ wal,lL)MB _, -dom
0 70

is G-dominant and Claim 2 follows.

Let (/;)o<i<r be the increasing sequence of subsets in Ag as in Lemma 4.7. Suppose
ip is the smallest integer such that {; | j € J1} N I;, is not an empty set. Choose g e
{Bilj e JiyN 1, Leta := B| 4. By the same arguments as before we can verify that &
satisfies the condition (4.0.1). For (4.0.2), let

Aviy, (BY) =Y m;B) inmi(Mp)ro.
jel
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withm; € Q forall j € J. By Lemma 4.7, 0 < m; < 2 (as the Eg case will not occur)
forall j € J,and0 <m; < 1forall j € J;. Then

AVF (U)/,L) — Km,, (be) - AVI‘AVWM& (BV) = (UJ/,L - wl:u) - AVWM& (BV)
=Y (j—m)B) =m, Y (L—mp)BY + Y 2—m)B} =um, 0. m
jeJ jen €I\
Lemma 4.7. Suppose G is quasi-split. Let B € Ag. Suppose
Avms(B) =BY+ D npyyY in Xu(T)ro. (4.0.3)
ve€(Amglr
Then:

(1) 0 <ng,, <3forally € (Ag)r. Moreover, if no connected component of the Dynkin
diagram of G is of type Es, then 0 < ng, <2 forally € (Ag)r.

(2) There exist r € N> and an increasing sequence
d=IyhclLc---Ccl,—1CI, =Ag

of I'-invariant subsets such that if B € I; for some i, thenng,, <1 forally ¢ (I;_1)r.
In particular, if r = 1, thenng,, < 1 forall B € Ag andy € (Ag)r.

Proof. This lemma only depends on the absolute root system of G with Galois action.
After considering separately each connected component of the Dynkin diagram of G, we
may assume the Dynkin diagram of G is connected. The first assertion can be checked
directly case by case. Indeed, it suffices to compute explicitly all the ng , in (4.0.3). As
(Avpr,(BY), ) = O for any a € Apyg, it follows that

(BY,a) + Z ngy(yY,a) =0

ve€(Amg)r

for any & € Apz,. Then {ng,,, } is the unique solution of this system of linear equations.

For the second assertion, we consider the increasing sequence of I'-invariant subsets
in Ag case by case according to the type of the Dynkin diagram of G. We can check
directly that this increasing sequence of subsets has the desired property. We leave the
details of the verification to the readers.

Case A,: In the ' A, case or 24, case with n even, take r = 1. Otherwise, we are in
the 24, case with n odd; then take r = 2 and I} = Ag \ {B} where B is the unique
I"-invariant root in Ag.

Case B,: Take r = 2 and I, the subset of long roots in Ag.
Case Cy,,: Taker = 1.

Case D,: Inthe ! D, case with n > 4, take r = 2 and let Ag \ I; consist of two roots
which are the end points of the Dynkin diagram and are neighbors to the same simple
root.
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In the 2D,, case or 1 D4 case, take r = 1.
In the 3Dy case, take r = 2 and I; = Ag \ {B} where B is the unique I'-invariant
rootin Ag.

Case E,: Suppose the Dynkin diagram of Eg is
B2
B Bs Ba Bs Bs B71 Bs

In the E; (resp. Eg) case, we remove g (resp. f7 and Bg) in the diagram.
In the 1E6 case,taker = 3,11 = {ﬁ4}, I, = {,32, /33,,34,ﬁ5}.
In the 2E6 case,taker = 4,11 = {ﬁ3,,35}, IL,=1U {/31,/36}, Is;=1U {,34}
Inthe E7 case, take r = 4, Iy = {Ba}, [2 = {B3, Ba. Bs}, Is = A \{B7}.
In the Eg case, take r = 5, I1 = {ﬁ4}, I, = {,34, /35}, I =1L U {,33, /36}, Iy =
Ag\{Bs}.

Case F4: Suppose the Dynkin diagram is
*—o—>90—0
Bi B2 B3 Ba

Take r = 3, Iy = {B2}, I = {B1, B2, B3}

Case G,: Take r = 2, I; the set consisting of the unique long root in Ag. ]
Now we can prove Proposition 4.5.

Proof of Proposition 4.5. As b is not basic, there exist @ € Ag, w € W and x €
F (Mg, wu)(C) satisfying properties (1)-(3) in Lemma 4.6. Let byy, and b}, be as in
that lemma. ’

Let xg € F (G, 1)(C) be the image of x via the natural morphism

F Mgz, wu)(C) = F(G,w)(C), alMzn wP,Lw_l) = awPy.

Then € x; ~ &y xMa G ~ &, where [b'] € B(G) is the image of [bfu&] € B(My) via
the natural map B(aM&) — B(G).Hence xg ¢ ¥2(C). Moreover, xg ¢ ¥“*(C). Indeed,
the canonical reduction (&) p; of &y to the standard parabolic subgroup Pg correspond-
ing to Mg induces the reduction &,,_ xMa py of &, to Py. Take y € X*(P3z/Zg)*.
Then deg x+«(Ep)p, > 0. :

For any element y € Jj,(K), we have y(xg) ¢ F*(C). Choose y € sz’lm“*(K)\{l}
with Anax = Maxyea(Vp, ¥); it remains to show that y(xg) € F*(C).

Suppose the pair (b, y(xg)) is not weakly admissible. There exist a standard maximal
parabolic subgroup Q, a reduction by, of b to the Levi component Mg of Q and x €
X*(Q/Zg)" such that

deg X*(gb,y(x(;))Q >0,
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where (8p,(x;)) 0 is the reduction of &3 ,(x;) to Q induced by a reduction E;Z 0 of &
to Q, where SgQ = 85M xMo O is induced by a reduction Z;MQ of b to Mg (and
’ o

hence to Q). The isomorphism y : & 5 &, induces an isomorphism &/ Q 5 &/ 0,
hence by Remark 2.2, &5 o induces a reduction 8;’ o of &p to O and an isomorphism

&0 — &) o Yielding the commutative diagram

8b+>8b

€0 xQG;>8;/QxQG
Suppose the reduction (&p x;)o of &px, to O is induced by the reduction

(Eb,y(x)) 0 of Eby(xe) to O by Lemma 1.13 and Remark 2.2. We get a cubic com-
mutative diagram

Eb,0 ~ €50
!
!
&y ; v €p
!
(Chxglo——— =2 — ==+ (Ehyae)o
K g ~
8b,xG 8b,y(xs)

where the vertices of the front face are G-bundles and the vertices of the back face are the

corresponding reductions of the G-bundles to Q; the vertical waved arrows denote modi-

fications of G- or Q-bundles. It follows that deg x«(Ep x;) o = deg x+(Ep y(x5)) 0 > 0.
According to Theorem 2.7 the vector

v:X*(Q/Zg) > Z, x> degx«(Epx;)o,

seen as an element of X« (A)q, satisfies v < Ve v = VEy with v # 0. As vg,, € Ng \ {0}
is minimal, one deduces that v = vp x,, O = Pg and (Ep x;)o is the HN canonical
reduction of &, .. Therefore & g9 = &,,_ xMa P is a reduction of & to Q. Pushing
forward via the natural projection Pz — ]\‘2&, the isomorphism of Pg-bundles & p, >~
8;', Py induces an isomorphism of Mg-bundles, hence we have [by,] = [Z;MQ] € B(My).
According to Lemma 4.8 below, the two reductions bM& and Z;M& = Z;MQ of b to Mg are
equivalent. In particular, the reductions & o and & Z’ 0 of &, to Q are equivalent. Hence
they give the same vector subbundle

€p0 x2AM Lie Q = SZQ x2Ad Lie 0
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over X of Ad(&p) = &, x%Ad q. By Theorem 1.9, this subbundle corresponds to a B-
submodule q in gz which is stable under the action of Ad(y), where we identify jb(K )
with a subgroup of G (B) (cf. Section 1.5). Recall that in loc. cit., we have also defined a
filtration (g%’l) A€Q ON g 5. As Vbyg, = Vb the non-zero elements of g are in the —(y, vp)

graded pieces of gz for some absolute root y in Q = Pg. In particular, g N g%’lm*‘* =0.

On the other hand, since y # 1, we can always choose an element y € g N gZ-O such that

B
Ad(y)(y) # y. Note that
Amax
0#Ad(y)(y) —y € g3™™,
which implies g N g%’lm“ = 0. We get a contradiction. ]

Lemma 4.8. Suppose b € G(F). Suppose & € Ag is such that (&, vp) > 0. Let (b, &)
and (bpy, , g) be two reductions of b to Mg with [by;] = [by] € B(Mg) and Vbar, = Vb-
Then these reductions are equivalent.

Proof. As [by,] = [Z;M&] € B(Mg), we may assume by, = EM&. Then
gg Ve Jp ={h € G(F) | bo(h) = hb).

Since (&, vp) > 0, Jp C M&(I:“). It follows that (by, , g) and (EM&, g) are equivalent. m

5. Newton stratification and weakly admissible locus

In this section, we suppose G is quasi-split and [b] € A(G, ) is basic. Under this condi-
tion, the proof of [6, Theorem 6.1] in fact shows the following finer result.

Theorem 5.1 ([6]). Let [b'] € B(G,kg(b) — ut, vpu™).

(1) If (G, vp(wopu~1)°,b") is HN-decomposable, then ¥ (G, b, )11 F (G, b, u)**=0.

Q) If (G, vp(wou™1)°, b") is HN-indecomposable and [b'] a minimal element in the
set B(G,kg(b) — pt, vpuu™1) \ [1] for the dominance order, then ¥ (G, b, p)'1 N
F(G,b, )" £ 0.

Inspired by this theorem, we make the following conjecture.

Conjecture 5.2. Suppose [b'] € B(G kg (b) — ¥, vpp™") with (G, vy (wou™)°,b") HN-
indecomposable. Then

F(G, b, )P0 F(G.b, W)™ +£ 0.
Remark 5.3. This conjecture has been completely proved by Viehmann [4 1] very recently.

In the rest of the section, we will prove this conjecture for the linear algebraic groups
for special u.

For r,s € Z withr > 0, let O([}]) := (9(%)“’ ifd = (s,r). Then deg O([7]) = s and
rank O([3]) = r.
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Proposition 5.4. Let G = GL,. Suppose [b'] € B(G, kg(b) — u¥, vyu™") with
(G, vy (wou™1)°, b') HN-indecomposable. If & ~ (9([%]) <) (9([:—22]) or (9([%]) &)
(9([%]) &) (9([:—31])f0r some r1,ra,r3 > 0, then
F(G, b, )TN F (G, b, n)™ £ 0.

In particular, Conjecture 5.2 holds when . = (17,0 with r(n — r) < 2n.

Proof. For the last assertion, if u = (17,07~ with r(n — r) < 2n, then by Proposition
114, [0 € B(G. k6 (b) = u,vpu™") \ [1] implies & = O([2]) @ O((32]) or O([1]) @
(9([%]) <) (9([;—:]) for some ry, r3 > 0 and r, > 0. So the last assertion follows from the
first one combined with Theorem 5.1 (when r, = 0). Now it remains to prove the first

assertion.
We claim that there exists an exact sequence of vector bundles

08 =86 —>8"->0 (5.0.1)

satisfying a commutative diagram

0 &' &p g” 0
0 & Ep g 0

where &’ and &” are semistable vector bundles and the vertical arrows are the modifi-
cations of minuscule type. Indeed, suppose &, = O([}]). If &, ~ (9([%]) &) (9([:—22]),

then r = ry 4 ra. Let &' = O([Z]) and " = O([32]). If s < ra, then let &' = O([Z])

_ —2 : _ +2— _ -2 -~
and €” = O([*;*]). Otherwise, let & = (9([%]) and &" = (9([%]) If & ~
(9([%]) &) (9([%]) 1<) (9([7—31]), then r1 4+ r, + r3 = r. We can easily check that one of
the following two inequalities holds:

s—1<r3—1 s—r3—|—1>1

3

r—r1 = 13 r—rs 11
(Otherwise, the inequalities give upper and lower bounds for s. The comparison of the
two bounds leads to a contradiction » < r; + r3). In the former case, let

g =o(L]). & =o0(=t),
&=0(%). € =o0(2)eo().

In the latter case, let

e =o(=2). e =o(=h).

& - o) wo(L]). & -o(=])

The existence of the extension (5.0.1) is due to [1], and the existence of the modifications
given by the left and right vertical arrows is given by Proposition 1.14. The vertical arrow
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in the middle of the commutative diagram gives a point x € % (G, b, u)['}(C). It suffices
to show x € F¥(C). Suppose § C &y is any vector subbundle of &,/ corresponding
to a reduction (&, x)p of & to a maximal parabolic subgroup P such that deg§ > 0.
Let §’ C &, be the corresponding vector subbundle of & corresponding to the reduction
(8p) p induced by (8p,,)p. We want to show that &’ does not come from subisocrystals.

Suppose &' comes from subisocrystals. The fact that deg ¥ > 0 combined with the
particular choice of 5" implies that § D & org C & .Then€ D& org C & The latter
case is obviously impossible. For the former, §” = &§,/&’ must have a direct summand
of slope s/r, which is also impossible as &” is semistable. ]

Acknowledgments. We would like to thank Laurent Fargues, David Hansen, Xuhua He, Sian Nie,
Xu Shen, Jilong Tong, Eva Viehmann and Bingyong Xie for many helpful discussions. Especially
we would like to thank Eva Viehmann for her interest in this work and for her comments on the
previous version of the preprint. We thank the referee for careful reading and useful comments.

Funding. The author is partially supported by NSFC grants No. 11671136, No. 12071135 and
STCSM grant No. 18dz2271000.

References

[1] Birkbeck, C., Feng, T., Hansen, D., Hong, S., Li, Q., Wang, A., Ye, L.: Extensions of vector
bundles on the Fargues—Fontaine curve. J. Inst. Math. Jussieu 21, 487-532 (2022)
Zbl 07482201 MR 4386821

[2] Biswas, 1., Holla, Y. I.: Harder—Narasimhan reduction of a principal bundle. Nagoya Math. J.
174, 201-223 (2004) Zbl 1056.14046 MR 2066109

[3] Bourbaki, N.: Groupes et algebres de Lie, Chapitres 4, 5 et 6. Masson (1981)
7Zbl 0483.22001 MR 682756

[4] Biiltel, O., Wedhorn, T.: Congruence relations for Shimura varieties associated to some unitary
groups. J. Inst. Math. Jussieu 5, 229-261 (2006) Zbl 1124.11029 MR 2225042

[5] Caraiani, A., Scholze, P.: On the generic part of the cohomology of compact unitary Shimura
varieties. Ann. of Math. (2) 186, 649-766 (2017) Zbl 1401.11108 MR 3702677

[6] Chen, M., Fargues, L., Shen, X.: On the structure of some p-adic period domains. Cambridge
J. Math. 9, 213-267 (2021) Zbl 07374201 MR 4325262

[7] Chen, M., Kisin, M., Viehmann, E.: Connected components of affine Deligne—Lusztig vari-
eties in mixed characteristic. Compos. Math. 151, 1697-1762 (2015) Zbl 1334.14017
MR 3406443

[8] Chen, M., Tong, J.: Weakly admissible locus and Newton stratification in p-adic Hodge
theory. arXiv:2203.12293 (2022)

[9] Colmez, P., Fontaine, J.-M.: Construction des représentations p-adiques semi-stables. Invent.
Math. 140, 1-43 (2000) Zbl 1010.14004 MR 1779803

[10] Dat, J.-F, Orlik, S., Rapoport, M.: Period Domains over Finite and p-adic Fields. Cambridge
Tracts in Math. 183, Cambridge Univ. Press, Cambridge (2010) Zbl 1206.14001
MR 2676072

[11] Drinfel’d, V. G.: Coverings of p-adic symmetric domains. Funkcional. Anal. i PriloZen. 10,
no. 2, 29-40 (1976) (in Russian) Zbl 0346.14010 MR 0422290

[12] Faltings, G.: Coverings of p-adic period domains. J. Reine Angew. Math. 643, 111-139 (2010)
Zbl 1208.14039 MR 2658191


https://zbmath.org/?q=an:07482201
https://mathscinet.ams.org/mathscinet-getitem?mr=4386821
https://zbmath.org/?q=an:1056.14046
https://mathscinet.ams.org/mathscinet-getitem?mr=2066109
https://zbmath.org/?q=an:0483.22001
https://mathscinet.ams.org/mathscinet-getitem?mr=682756
https://zbmath.org/?q=an:1124.11029
https://mathscinet.ams.org/mathscinet-getitem?mr=2225042
https://zbmath.org/?q=an:1401.11108
https://mathscinet.ams.org/mathscinet-getitem?mr=3702677
https://zbmath.org/?q=an:07374201
https://mathscinet.ams.org/mathscinet-getitem?mr=4325262
https://zbmath.org/?q=an:1334.14017
https://mathscinet.ams.org/mathscinet-getitem?mr=3406443
https://arxiv.org/abs/2203.12293
https://zbmath.org/?q=an:1010.14004
https://mathscinet.ams.org/mathscinet-getitem?mr=1779803
https://zbmath.org/?q=an:1206.14001
https://mathscinet.ams.org/mathscinet-getitem?mr=2676072
https://zbmath.org/?q=an:0346.14010
https://mathscinet.ams.org/mathscinet-getitem?mr=0422290
https://zbmath.org/?q=an:1208.14039
https://mathscinet.ams.org/mathscinet-getitem?mr=2658191

Fargues—Rapoport conjecture for p-adic period domains in the non-basic case 2917

[13]

(14]
[15]

[16]
[17]

(18]
(19]
[20]
(21]
(22]
(23]
[24]
[25]
(26]
[27]
(28]

[29]

(30]

(31]
(32]
(33]

(34]

(35]

Fargues, L.: Quelques résultats et conjectures concernant la courbe. In: De la géométrie
algébrique aux formes automorphes (I) (Une collection d’articles en I’honneur du soixantieéme
anniversaire de Gérard Laumon), Astérisque 369, 325-374 (2015) Zbl 1326.14109

MR 3379639

Fargues, L.: Geometrization of the local Langlands correspondence: an overview.
arXiv:1602.00999 (2016)

Fargues, L.: G-torseurs en théorie de Hodge p-adique. Compos. Math. 156, 2076-2110 (2020)
Zbl 1469.11455 MR 4179595

Fargues, L.: Letter to Rapoport.

Fargues, L., Scholze, P.: Geometrization of the local Langlands correspondence.
arXiv:2102.13459 (2021)

Fargues, L., Fontaine, J.-M.: Courbes et fibrés vectoriels en théorie de Hodge p-adique.
Astérisque 406 (2018) Zbl 1470.14001 MR 3917141

Gortz, U., He, X., Nie, S.: Fully Hodge-Newton decomposable Shimura varieties. Peking
Math. J. 2, 99-154 (2019) Zbl 1465.11155 MR 4060001

Hartl, U.: On period spaces for p-divisible groups. C. R. Math. Acad. Sci. Paris 346, 1123—
1128 (2008) Zbl 1161.14032 MR 2464250

Hartl, U.: On a conjecture of Rapoport and Zink. Invent. Math. 193, 627-696 (2013)

Zbl 1285.14027 MR 3091977

Kedlaya, K. S.: Sheaves, stacks, and shtukas. In: Perfectoid Spaces, Math. Surveys Monogr.
242, Amer. Math. Soc., 45-192 (2019) Zbl 1453.14074 MR 3970252

Kedlaya, K. S., Liu, R.: Relative p-adic Hodge theory: foundations. Astérisque 239 (2015)
Zbl 1370.14025 MR 3379653

Kottwitz, R. E.: Isocrystals with additional structure. Compos. Math. 56, 201-220 (1985)
Zbl 0597.20038 MR 809866

Kottwitz, R. E.: Isocrystals with additional structure. II. Compos. Math. 109, 255-339 (1997)
Zbl 0966.20022 MR 1485921

Kottwitz, R. E.: On the Hodge-Newton decomposition for split groups. Int. Math. Res. Notices
2003, 1433-1447 Zbl 1074.14016 MR 1976046

Laumon, G., Rapoport, M.: The Langlands lemma and the Betti numbers of stacks of G-
bundles on a curve. Internat. J. Math. 7, 29-45 (1996) Zbl 0871.14028 MR 1369904
Mantovan, E.: On non-basic Rapoport—Zink spaces. Ann. Sci. Ecole Norm. Sup. (4) 41, 671—
716 (2008) Zbl 1236.11101 MR 2504431

Rapoport, M.: Non-Archimedean period domains. In: Proceedings of the International
Congress of Mathematicians, Vol. I (Ziirich, 1994), Birkhduser, Basel, 423-434 (1995)
Zbl 0874.11046 MR 1403942

Rapoport, M.: Accessible and weakly accessible period domains. Appendix in: On the p-adic
cohomology of the Lubin-Tate tower (by P. Scholze), Ann. Sci. Ecole Norm. Sup. 51, 856—
863 (2018) Zbl 1419.14031 MR 3861564

Rapoport, M., Richartz, M.: On the classification and specialization of F-isocrystals with
additional structure. Compos. Math. 103, 153—-181 (1996) Zbl 0874.14008 MR 1411570
Rapoport, M., Viehmann, E.: Towards a theory of local Shimura varieties. Miinster J. Math.
7,273-326 (2014) Zbl 1378.11070 MR 3271247

Rapoport, M., Zink, T.: Period Spaces for p-divisible Groups. Annals of Mathematics Studies
141, Princeton University Press, Princeton, NJ (1996) Zbl 0873.14039 MR 1393439

Schieder, S.: The Harder—Narasimhan stratification of the moduli stack of G-bundles via Drin-
feld’s compactifications. Selecta Math. (N.S.) 21, 763-831 (2015) Zbl 1341.14006
MR 3366920

Scholze, P.: Etale cohomology of diamonds. arXiv:1709.07343v3 (2022)


https://zbmath.org/?q=an:1326.14109
https://mathscinet.ams.org/mathscinet-getitem?mr=3379639
https://arxiv.org/abs/1602.00999
https://zbmath.org/?q=an:1469.11455
https://mathscinet.ams.org/mathscinet-getitem?mr=4179595
https://arxiv.org/abs/2102.13459
https://zbmath.org/?q=an:1470.14001
https://mathscinet.ams.org/mathscinet-getitem?mr=3917141
https://zbmath.org/?q=an:1465.11155
https://mathscinet.ams.org/mathscinet-getitem?mr=4060001
https://zbmath.org/?q=an:1161.14032
https://mathscinet.ams.org/mathscinet-getitem?mr=2464250
https://zbmath.org/?q=an:1285.14027
https://mathscinet.ams.org/mathscinet-getitem?mr=3091977
https://zbmath.org/?q=an:1453.14074
https://mathscinet.ams.org/mathscinet-getitem?mr=3970252
https://zbmath.org/?q=an:1370.14025
https://mathscinet.ams.org/mathscinet-getitem?mr=3379653
https://zbmath.org/?q=an:0597.20038
https://mathscinet.ams.org/mathscinet-getitem?mr=809866
https://zbmath.org/?q=an:0966.20022
https://mathscinet.ams.org/mathscinet-getitem?mr=1485921
https://zbmath.org/?q=an:1074.14016
https://mathscinet.ams.org/mathscinet-getitem?mr=1976046
https://zbmath.org/?q=an:0871.14028
https://mathscinet.ams.org/mathscinet-getitem?mr=1369904
https://zbmath.org/?q=an:1236.11101
https://mathscinet.ams.org/mathscinet-getitem?mr=2504431
https://zbmath.org/?q=an:0874.11046
https://mathscinet.ams.org/mathscinet-getitem?mr=1403942
https://zbmath.org/?q=an:1419.14031
https://mathscinet.ams.org/mathscinet-getitem?mr=3861564
https://zbmath.org/?q=an:0874.14008
https://mathscinet.ams.org/mathscinet-getitem?mr=1411570
https://zbmath.org/?q=an:1378.11070
https://mathscinet.ams.org/mathscinet-getitem?mr=3271247
https://zbmath.org/?q=an:0873.14039
https://mathscinet.ams.org/mathscinet-getitem?mr=1393439
https://zbmath.org/?q=an:1341.14006
https://mathscinet.ams.org/mathscinet-getitem?mr=3366920
https://arxiv.org/abs/1709.07343v3

M. Chen 2918

[36]
(37]
(38]
(39]

[40]
[41]
[42]

[43]

Scholze, P., Weinstein, J.: Berkeley Lectures on p-adic Geometry. Ann. of Math. Stud. 207,
Princeton Univ. Press (2020) Zbl 1475.14002 MR 4446467

Scholze, P., Weinstein, J.: Moduli of p-divisible groups. Cambridge J. Math. 1, 145-237
(2013) Zbl 1349.14149 MR 3272049

Serre, J.-P.: Cohomologie galoisienne. 5th ed., Lecture Notes in Math. 5, Springer, Berlin
(1994) Zbl 0812.12002 MR 1324577

Shen, X.: On the Hodge—Newton filtration for p-divisible groups with additional structures.
Int. Math. Res. Notices 2014, 3582-3631 Zbl 1304.14057 MR 3229763

Shen, X.: Harder—Narasimhan strata and p-adic period domains. arXiv:1909.02230 (2019)
Viehmann, E.: On Newton strata in the B(;E-Grassmannian. arXiv:2101.07510 (2021)

Wintenberger, J.-P.: Propriétés du groupe tannakien des structures de Hodge p-adiques et
torseur entre cohomologies cristalline et étale. Ann. Inst. Fourier (Grenoble) 47, 1289-1334
(1997) Zbl 0888.14008 MR 1600395

Ziegler, P.: Graded and filtered fiber functors on Tannakian categories. J. Inst. Math. Jussieu
14, 87-130 (2015) Zbl 1331.18008 MR 3284480


https://zbmath.org/?q=an:1475.14002
https://mathscinet.ams.org/mathscinet-getitem?mr=4446467
https://zbmath.org/?q=an:1349.14149
https://mathscinet.ams.org/mathscinet-getitem?mr=3272049
https://zbmath.org/?q=an:0812.12002
https://mathscinet.ams.org/mathscinet-getitem?mr=1324577
https://zbmath.org/?q=an:1304.14057
https://mathscinet.ams.org/mathscinet-getitem?mr=3229763
https://arxiv.org/abs/1909.02230
https://arxiv.org/abs/2101.07510
https://zbmath.org/?q=an:0888.14008
https://mathscinet.ams.org/mathscinet-getitem?mr=1600395
https://zbmath.org/?q=an:1331.18008
https://mathscinet.ams.org/mathscinet-getitem?mr=3284480

	Introduction
	Notations
	1. Kottwitz set and G-bundles on the Fargues–Fontaine curve
	1.1. The Fargues–Fontaine curve
	1.2. G-bundles
	1.3. Kottwitz set
	1.4. Classification of G-bundles in terms of -modules over 
	1.5. The automorphism group _b
	1.6. Modifications of a G-bundle on X

	2. Admissible locus and weakly admissible locus
	2.1. Reductions of G-bundles
	2.2. Weakly admissible locus
	2.3. Admissible locus

	3. Hodge–Newton-decomposability
	4. The action of _b on modifications of G-bundles
	5. Newton stratification and weakly admissible locus
	References

