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Abstract. It is well known that a line can intersect at most 2n — 1 cells of the n x n chessboard.
Here we consider the high-dimensional version: how many cells of the d-dimensional n X --- X n
box can a hyperplane intersect? We also prove the lattice analogue of the following well-known
fact: if K, L are convex bodies in RY and K C L, then the surface area of K is smaller than that
of L.

Keywords. Lattices, polytopes, lattice points in convex bodies

1. Introduction and main result

It is well-known that a line can intersect the interior of at most 2n — 1 cells of the n x n
chessboard. What happens in high dimensions? This is the question we address here.

Write 0, = Q¢ = [0,n]4, Q¢ = Q‘li s0 Q¢ =nQ% Letey,..., ey be the standard
basis vectors of R? and Z¢. For z = (z1,...,2q) € 7.4 define the unit cube

Ce)={x=@1....xg) €eRY 1z; <x; <z + 1, i e[d]},

which we call a cell in this paper. Here [d] stands for the set {1,...,d}. Forv e R? (v # 0)
let A(v, ) denote the hyperplane {x € R : vx =t} where vx is the scalar product of
the two vectors. Define N (n) as the maximal number of cells in Q;‘f that a hyperplane
A(v, t) can intersect properly, meaning that A(v,t) Nint C(z) # @.

It is well-known that N2(n) = 2n — 1. Variants of this result have appeared as
olympiad problems in several countries. In a seminal paper [5], J6zsef Beck used a slightly
stronger version of this fact to answer questions of Dirac, Motzkin, and Erdés. In a com-
panion paper [3] we show that N3(n) = %nz + O(n). Here we determine the asymptotic
behaviour of N4 (n).
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We need some definitions. We let |v| resp. |v|; denote the £, and £ norm of the vector
v e RY. Set

[v]1

v
Va() = 7 maxvoly—i (A(v.1) 0 09).
Vg =max{Vy(v):v € RY, v #0,teR}.

It is a consequence of the Brunn—Minkowski theorem (cf. [6] and the proof of Lemma 4.1
below) that for fixed v the quantity voly_; (A(v,7) N Q%) is maximal when A(v,¢) N Q¢
is the central section of Q¢, that is, A(v,t) contains the centre of Q¢, which is the
point ¢/2 where e = e; + --- + e4. In this case of course ¢t = ev/2. It is known that

1 < volg_1(A(v.ev/2) N Q9) < V2;

the upper bound is a famous result of Keith Ball [2], the lower bound is trivial. This

implies that
Vd <V; <V2d.

It is known (see [1] or [2]) that the sequence V>, Vi, ... is increasing, Vo, = 2, V3 = %,
V4 = % etc., and its limit is /6d /7. We conjectured that the vector v = e gives the
maximum in the definition of V. This has recently been proved by Iskander Aliev [1].
Our main result is

Theorem 1.1. N%(n) = Vyn?=1(1 + o(1)).

In Section 3 we give an outline of the proof.
From now on we assume that v € R¥ is a unit vector, i.c., |v| =1, and v > 0; the
latter causes no loss generality because of symmetry. Define the (open) strip

S(v,t):{xeRd:t—ev<vx<t}.

Clearly
Nd(n) = matx|S(v,t) N Q,‘f N Zd|.
v,

So we have to determine the number of lattice points in the convex set S(v,#) N Q;‘f . But
this convex set is very thin in one direction (of v) and standard methods do not seem to
work. In Section 2 we introduce a novel approach to deal with such cases.

Our result extends to any convex body (convex compact set with non-empty interior)
K C R?. We define V(K) = max{|v|; volg_1(K N A(v,1)) :v e R4, [v] =1, t € R}
and consider the lattice %Zd. Write N(K, n) for the maximal number of cells contained
in K that a hyperplane can intersect properly (in the same sense as earlier). A cell in this
case is %C(Z) with z € Z¢. With this notation N (n) = N(Q?,n). Theorem 1.1 extends
to this case as follows.

Theorem 1.2. N(K,n) = V(K)n¢~1(1 + o(1)).

The proof goes along the same lines as that of Theorem 1.1 and is therefore omitted.
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2. Inside cells and boundary cells

For a general convex body K in R? a metatheorem says that vol K is approximately equal
to |[K N Zd|, that is,
vol K ~ |K NZ4|,

valid when K is well positioned with respect to Z¢. But this is not necessarily the case
with S(v,t) N Q g. We are going to well-position it or rather choose a suitable basis of Z¢
in which S(v,#) N Qfll is well positioned. We start out more generally.

Let K C R¥ be a convex body. A cell C(z), z € Z4, called inside if C(z) C K, outside
if C(z) N K = @, and boundary otherwise. The following result will be useful in other
applications as well. It is similar to the well-known fact that the surface area of a convex
subset of a convex set K is smaller that the surface area of K itself. To our surprise we
could not find it anywhere in the literature.

Theorem 2.1. Assume K, L are convex bodies in RY and K C L. Then
|boundary cells of K| < |boundary cells of L|.

We prove this theorem in Section 8.
Now we return to the generic convex body K. Since K contains all inside cells and is
contained in the union of inside and boundary cells, we have

linside cells of K| < vol K < [inside or boundary cells of K]|.
It is not hard to check that
|inside cells of K| < |K N Z¢| < |inside or boundary cells of K|,

implying that
[vol K — |K N Z?]| < |boundary cells of K|. 2.1)

Givenabasis F = { f1,..., f4} of Z% we define the F-box with parameters o, f € R?
as

d
BB F)={x=xfi eR!:ai =x; =i eldl}.
i=1
This is a parallelotope. We of course assume that o; < f; for all i. The minimal box
containing K is denoted by B(K, F); itis the F-box B(«, §, F') with all o; maximal and
Bi minimal under the condition that K C B(«, 8, F'). We will make use of the following
theorem of Bardny and Vershik [4] (see also [7]).

Theorem 2.2. For every convex body K in R? there is a basis F such that

vol B(K, F) <4 vol K.

The notation <4 means, as usual, that the quantity on the LHS is smaller than the
one on the RHS times a positive constant that only depends on d. When d is clear from
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the context, we will use < instead of ;. Of course one can use F-cells (i.e. basic
parallelotopes in the basis F') and call them inside, outside, and boundary F-cells with
respect to K. Then inequality (2.1) becomes

[vol K — |K N Z?]| < |boundary F-cells of K|. (2.2)

This inequality extends to any lattice A and a basis F of A in the following form:

vol K — |K N A|| < |boundary F-cells of K]|. (2.3)
det A

We need a non-degeneracy condition on K:
K N Z4 contains d + 1 affinely independent vectors. (2.4)

Under this condition and with minimal box B(K, F) = B(w, 8, F) we have o; < [¢;] <
|Bi] < Bi foralli e [d]. Setting y; = B; —«a;, vol B(K, F) = ]_[f:1 yi. The number of
boundary cells of B(K, F) is easy to estimate: it is at most

d d
2> [T+ <> 1w =volB(K,F).(i+...L)_

i=1j#i i=1j#i " Va
Combining the previous theorems we have
Theorem 2.3. Let K be a convex body in R? satisfying (2.4), and let F be the basis from
Theorem 2.2. Then
d 1 1
VoI K —|[KNZ%|| K volK - [ — + -+ — ).
4! Vd

The corresponding version for a general lattice A says the following. Assume K is a
convex body, A alattice in R?, and K contains d + 1 affinely independent points from A.
Then there is a basis F' of A such that

vol K — |K N Z%|

1 1 1
< AVOIK-(—+---+—). 2.5)

det A et Y1 Yd

Here, just as in Theorem 2.3, the parameters y; come from the minimal box B(K, F).

3. Outline of the proof

In this section we give a sketch of the proof of Theorem 1.1. One main ingredient is
Theorem 2.3.

The next section establishes some basic properties of A(v,t) and S(v, ). For instance,
we show that for fixed v, vol(S(v,?) N Q") is maximal when S(v, t) is the central strip
(Lemma 4.1). Write S$*(v,t) = S(v,t) N @, for the strip that maximizes, for fixed v, the
number of lattice points in S(v,#) N Q. We also prove the important but not surprising



Cells in the box and a hyperplane 2867

fact (Lemma 4.3) that the convex set S*(v, t) contains an ellipsoid whose half-axes have
lengths of order n apart from one that has length |v|; /2.

The lower bound in Theorem 1.1 is simpler and is based on estimating | S* (v, ) N Z¢|
when v = z/|z| with z € Z¢ a primitive vector. In this case the points of $*(v,7) N Z< lie
on |z|; consecutive lattice hyperplanes A(z, k) where k is an integer, and |A(z, k) N Z<|
is estimated using Theorem 2.3 in the form (2.5).

For the upper bound in Theorem 1.1 we fix a maximizer vector v = v(n) and find a
basis F = F" = {fi,..., f4} of Z¢ using Theorem 2.3. This basis is more suitable than
the standard one. The main difficulty is to bound % + -+ % on the right hand side
of the inequality in Theorem 2.3. Here of course y; = y;(n) for all i € [d]. The upper
bound is easy when y;(n) — oo for all i € [d]. So we assume that y; (r) is bounded along
a subsequence n’ for some i € [d], fori = 1, say.

Let G = G" be the corresponding dual basis, and g1 (n’) € Z be the corresponding
dual basis vector. We show next that g (n’) is also bounded, implying that g; (n”) = g is
a constant (primitive) vector along a further subsequence n”. This means that the lattice
points in S*(v, t) lie on y consecutive lattice hyperplanes orthogonal to g. Here y is
the floor of y;(n”), which we can assume to be a constant since y;(n”) is bounded. It
turns further out that v(n”) tends to go = g/|g| because the angle ¢, between these two
vectors is < \gl%'

The next step of the argument is 2-dimensional. Let ¥ = W, denote the orthogonal
projection of R to the 2-plane IT spanned by v(rn”) and g. The projections of the lattice
points in S*(v, t) lie on y parallel lines ¢, (that are h}g_l apart) see Figure 1. The projected
lattice points on the Ath line belong to a segment Yj, whose length is |v(n”)|1/sin ¢y».
We show (Claim 7.1) that any line orthogonal to £;, intersects at most y + 1 segments Y7,
and, more importantly, any such line intersects at most y segments Y,* where Y," is what
you get after deleting a short segment (of length v2d) from the left end of Yj,.

The number of lattice points in S*(v, ¢) is the sum of the lattice points in W1 (¥},),
which is close to @ volg_; W~1(Y3), which is close to @ volg_1 W~ (Y)). Estimating
the sum of these volumes finishes the proof.

4. Preparations for the proof of Theorem 1.1

In this section we establish some basic properties of the hyperplane A(v, t) and the strip
S(v, t) that give the maximal value of V;(v). We assume again that v is a unit vector, and
suppose without loss of generality that v > 0, that is, v; > 0 for all i € [d]. Actually, we
can assume that v; > 0 for each i because the requirement A(v,¢) Nint C(z) # @ remains
valid even if v; is modified a little.

For simpler notation we write A*(v,t) = A(v,t) N Q, and S*(v,t) = S(v,1) N Q.
These intersections of course depend on 7, but we suppress this dependence as long as
it is not needed. The central section is A*(v, ty) where ty = n|v|;/2; it contains en/2,
the centre of Q,. The central strip is S*(v, t5) where t, = to + |v|1/2; it is centrally
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symmetric with centre en/2. We will write A*(v) resp. S*(v) for the corresponding
central section and strip.

Lemma 4.1. For a fixed unit vector v € R%, vol S* (v, t) is maximal for the central strip
and

max vol S*(v,1) = vol $* (v, 12) = Vy(0)n?™! + 0(n?72?).

te

Proof. We still assume that v > 0 and |v| = 1. By the Brunn—Minkowski theorem (see [6])
the function > (volg_; A*(v,1))"/@=1 defined for ¢ € [0,n|v|1], is concave. It is also
symmetric with respect to to = n|v|1/2, and equals zero at the endpoints of [0, n|v|;]. So
its maximum is taken at o, implying that A*(v) = A*(v, tp). The integral formula

t

vol S*(v,1) = / volg_1 A*(v,s)ds

t—|v]y

implies that
max vol $*(v, 1) < |v|; max volg_; A*(v, 1) = |v]y volg_; A*(v) = Vz(v)n? 1.
teR teR

The volume of the central strip is

to
volg_1 A*(v,1)dt = 2/ volg_1 A* (v, 1) dt

3]

5]

vol $*(v,1,) = /

n

where t; = ty — |v|1/2. Concavity implies that on the interval [z, to],
volg_1 A*(v,1) = volg_y A* (v, t0)(t/10)* "

We next estimate D := |v|; volg—; A*(v,%9) — vol S*(v, t) fort € [t1, to]:

)
D= 2/ [volg_1 A* (v, 1) — volg_; A*(v,1)] dt
t

1

< Z/to volg_y A*(v) - [1 = (¢/10)" "] dt
t

< [v|1 volg—y A*() - [1 — (t1/20) "]

d
= [v]y voly—1 A*(v) - [1 = (1 — 1/21)*7"] < |v]y voly_y A*(v) - o
n

This shows that max, vol $*(v, ) > V4 (v)(1 — &). n

Here come the properties of A(v,?) and S(v, t) that we need. Every A*(v, t) is con-
tained an a d — 1-dimensional ball of radius < n because Q, is contained in a ball of
radius ~/d n/2. Fix a unit vector v. The maximizer is the slice A*(v,t) that properly inter-
sects the maximal number of cells in Q, among all A*(v, s), s € R. The corresponding
S*(v,t) is also a maximizer.

Lemma 4.2. There is a maximizer A* (v, t) whose inscribed ball has radius > n.
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Proof. Recallthate = ey + --- + e4 where ey, ..., ez form the standard basis of RY. We
can assume by symmetry that the hyperplane A(v, ) satisfies v > 0 and ¢t < ve/2; for
each i € [d], A(v,t) contains the (unique) point a;e;, and a; > 0, of course. We choose
A(v,t) sothat min{a; : i € [d]} is maximal. We claim that this maximum is at least n — 1.
Assume that, on the contrary, a; = min{a; : i € [d]} <n — 1. If A(v,?) intersects the
cell C(z) C Qy, then the hyperplane A(v, ) + e; intersects the cell C(z) + e; which lies
in O, so it intersects at least as many cells as A(v, t). It is easy to check that for each
i €[d], A(v,t) + e; contains the (unique) point aje; with a] > a;, a contradiction.
Then the d — 1-dimensional ball inscribed in A*(v, ¢) has radius at least n/d, as one
can see easily. ]

We now fix this maximizer A* (v, t) together with $*(v, t).

Lemma 4.3. The maximizer S* (v, t) contains an ellipsoid with all half-axes length > n
apart from one whose length is |v|1 /2, which is between 1/2 and ~/d /2.

Proof. The middle section A*(v,t — ev/2) of $*(v,t) contains a d — 1-dimensional
ball of radius >> n. This follows from Lemma 4.2 for n large. The width of the strip in
direction v is |v|;. |

5. Lattice points in A*(z, h)

Given a primitive vector z € Z¢ we are going to estimate the number of lattice points
in A*(z, h) where h € Z. We will need a more general setting so assume K is a convex
subset of A*(z, h) and we will estimate |K N Z%|. As A*(z, h) is d — 1-dimensional,
condition (2.4) requires having d affinely independent points in K N Z<.

Lemma 5.1. If K does not satisfy the non-degeneracy condition (2.4), then
|K NZ4| <« né2,

Proof. Under the above conditions the lattice points in K lie on a hyperplane in A(z, ),
that is, a d — 2-dimensional affine (lattice) subspace. One can project K orthogonally to
a facet of Q" so that distinct lattice points project to distinct (lattice) points. An induction
argument on dimension finishes the proof. ]

Lemma 5.2. If K satisfies the non-degeneracy condition (2.4), then

1
K NZ% <« [ voly_1 K.
z
Proof. We can apply the general lattice version of Theorem 2.3, i.e., (2.5). The lattice
now is A = A(z,h) N 74 . itis d — 1-dimensional and its determinant equals |z|, the £,
norm of z. So there is a basis F = {f1,..., fg—1} of A such that voly_; B(K, F) <
voly_1 K. Here B(K, F) is the minimal box in A containing K, and so it is of the form
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{x = Zl_l Xi fi top < x; < By, i €[d— 1]} with suitable «;, 8;. Because of the non-
degeneracy assumption, y; := 8; — o; > 1. Theorem 2.3 shows now that

1 1 1
—VOld 1 K — |KﬂZd| <<—V01d_1K'(—+"'+ )
|z| |z | V1 Yd—1

As y; > 1 for all 7; this implies the statement. [

We assume now that K C A*(z, h) contains a d — 1-dimensional ball of radius cin
where ¢1 > 0 is a constant depending only on d. Of course K lies in a d — 1-dimensional
ball of radius ~/d n /2 because Q, lies in the d-dimensional ball of the same radius and
centre en/2.

Lemma 5.3. Assume further that K contains d affinely independent points from Z°.

Then
d 1 1
|IKNZ% = —volg_1 K-[1+|z|O| -],
|z n

where the implicit constant depends only on d.

Proof. We assume z > 0 because of symmetry. Again there is abasis F = { f1,..., fa—1}
of A such that voly_; B(K, F) < volg_1 K < n?=! where B(K, F) is the minimal box
in A containing K which is of the form {x = Zl_l Xifi to; <x; <Bi, i € [d — 1]}
with suitable «;, B;. Set y; = B; — a; again and note that voly_; B(K, F) = |z| ]_[l L Vi

Claim 5.1. n < y;| fi| < n foreveryi € [d —1].

Proof. Let E be the largest volume (d — 1-dimensional) ellipsoid contained in B(K, F)
and define E* as the blown-up copy of E from its centre by the factor d — 1. Then
B(K, F) is contained in £* by the well-known Loewner—John theorem. The volume of
E*is <« n?9~1 and E* contains the ball of radius c1n. This implies that each axis of E*
has length >>; n, which implies in turn that each axis has length <4 n. Then the diameter
of E* is < n, and then so is the diameter of B(K, F) as well. Thus every edge of the
parallelotope B(K, F) has length < n. These edges are of the form y; f;, so y;i| fi| < n
follows.

On the other hand, the parallelotope B(K, F') contains the ball of radius ¢z so its
edges have length at least ¢y n, showing that n < ;| f;. L]

We remark that in view of the claim,
> Tn] 1A= vold 1 B(K.F)-[]IA]
> —nd l]_[Ifz

implying [ ]| fi| < |z] and so | fi| < |z| as | f;| > 1 foralli.
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As Z4 N K contains d affinely independent vectors, Theorem 2.3, or rather its lattice
version (2.5), applies. Using | f;| < |z| we see that

1 1 1
—VOld 1 K — |KﬂZd| <L —volg_; K- ( 4+t )
|z| |z| Vi Yd—1

<<HV01d K- (|f1| oy M 1|)<<_Vold K.
n

So we have indeed

1 1
1z N K| = |—|vold_1 K- (1 + |z|0(—)). u
zZ n

Set zo = z/|z| and define
My(z,n) = max 1Z4 N S*(z0.1)].

The lattice points in a maximizer S*(zo, ) (in the sense used in Lemma 4.2) are all
contained in |z|; consecutive lattice hyperplanes of the form A(z, &). Consequently,

|z]1
My(z,n) = 728 N A*(z, k — h)|. 5.1
a(z,n) I’:g;;l (z )l (5.1)

Theorem 5.1. For any primitive vector z € Z¢ there is no(z) € Z such that for all
n > no(z),
My(z,n) = n?=W;(z0) + O(n?72),

where the implied constant depends only on d.

Proof. We will use Lemma 5.3 with K = A*(z, k — h). By Lemma 4.2 the maximizer
A*(z, k) contains a ball of radius > n. It also contains d affinely independent lattice
points if 7 is large enough (depending on z). The same applies to all A*(z, k — k) with
h € [|z]1] because for large n the slice A*(z, k — h) is very close to A*(z, k). We can use
Lemma 5.3 in (5.1) to get

Iz]1 lz|y
Z|ZdﬂA (z,k —h)| —Z—vold LVA*(z.k = h) - (1+|z|0(%)).

As we have seen, voly_1 A*(z, k — h) is at most the d — 1-dimensional volume of the
central slice A*(z) = A*(z, tp). So the sum of voly_; A*(z, k — h) for |z|; consecu-
tive slices is at most |z|; volz_; A*(z). This sum is maximal when the slices are as
close to the central slice as possible. This follows from the concavity of the function
t — (volg_y A*(z,1))"/@=D The sum of these central slices is estimated as in the proof
of Lemma 4.1. We omit the details. ]

Corollary 5.1. N%(n) > Vyn?='(1 + o(1)).
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Proof. Denote by A°(v) the central section A(v,?) N Q9. Since the function v
|v|; volg—1 A%(v) (for unit vectors in R) is continuous, for any &€ > 0 we can choose
a primitive vector z € Z¢ such that V;(zo) > V; — /2 where zog = z/|z|. Then for all
large enough n,

Mg(z,n) > n? "Wy (z0) + Om?™2) > n?= (Vg —/2) + O(n97?)

> nd_l(Vd —e). |

6. Proof of the upper bound in Theorem 1.1

Let S, = S*(v, t) be the maximizer for N;(n); of course v = v(n) and t = t(n) but we
suppress this dependence as long as possible. We are to show that for every ¢ > 0,

1S, NZ4| < (Vg + e)n™! 6.1)

for all large enough n. Fix ¢ > 0.

We claim first that S, satisfies the non-degeneracy condition (2.4). Otherwise S, N Z¢
is contained in a hyperplane of normal w with we; # 0 for some i € [d], i = d say.
Projecting the points of S, N Z? to the hyperplane x; = 0 we get lattice points on a
facet of Q,, and distinct points project to distinct points. No facet contains more than
(n + 1)¢71 lattice points, so |S, N Z4| < (n 4+ 1)¢~', which is smaller than M (n) >
Vd n?' + 0(n?-2). The last inequality follows from Corollary 5.1 and from V; > Vd.

Now Theorem 2.3 gives

1 1
yvols,,—|snmzd|]<<volS,,-(—+-~-+ ) (6.2)
4! Vd—1
Here of course o; = a;(n), i = Bi(n) and y; = y;(n) = B;(n) — a; (n). A simple case
is when there is a sequence n’ of positive integers such that lim y; (n') = oo for every
i € [d]. For simplicity of writing we use n instead of n’. Then (6.2) implies that

1S, NZ4 = vol S, - (1 +0(1)) < Vyn?™1(1 + 0(1)),

so (6.1) holds true indeed.

Assume next that there is a subsequence n’ of the previous subsequence such that
i (n’) is bounded for some i € [d], i = 1 say. We write again n instead of n’. Let G" =
g1, .-, &y} be the dual basis of F = F". Set

a(m) =min{gix :x € S,} and P(n) =max{gix:x e S,}.

Of course B(n) — a(n) = y1(n) and y; (n) is bounded. So along another subsequence (to
be denoted invariably by n) lim(8(n) — «(n)) = y for some y > 0.

We claim now that the corresponding dual basis vector g is also bounded. This is
simple again: otherwise the width of S, in direction g7 is y/|g|, which tends to zero
as n — oo. But S, contains a ball of radius > 1 (by Lemma 4.3), a contradiction. This
implies that along a further subsequence, g7 is equal to a fixed primitive vector, g, say.



Cells in the box and a hyperplane 2873

Define the strip
T, = {x e R 1 a(n) < gx < B(n)}).

Then S, N Z% C T, because of the definition of a(n) and B(n). Set go = g/|g|. Let
$n be the angle between g and v(n), so cos ¢, = v(n)go. Define W : R4 — I, as the
orthogonal projection to the 2-dimensional plane spanned by v(n) and g. Note that here
we can assume g # v(n) since a minute change of v(n) does not influence what cells the
hyperplane A(v(n), t) intersects.

Claim 6.1. Along the present subsequence, ¢, < ﬁ and so v(n) — go.

Proof. We drop the subscript n whenever possible. W(Q},) is a centrally symmetric con-
vex polygon. The W-image of the lattice hyperplane A(g, [a(n)] + k) is the line £
on IT,, represented by a horizontal line in Figure 1, 2 = 0, 1, ..., y. Here we take the
upper integer part of «(n) because we need lattice hyperplanes. We should also take
h =0,1,...,|y] because y may not be an integer. But for simplicity we keep writing y
now and in what follows.

v(n)
i ‘

/\K -
[ )
/ N /
/ A Sn 4 /
( ! /
\ 9! — /
. I )
. o~/

0

Fig. 1. v(n) tends to go.
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[vly

K
s

b
Yh ‘ 14 h
a e b

0 I

Fig. 2. Projection onto IT.

The W-image of the two hyperplanes bounding S, = S(v(n), t(n)) are the lines £
and ¢~ in Figure 2. Their distance is |v|;. The length of the segments £+ N ¥(Q") and
£t N W(Q™)is > n because S, contains the ellipsoid from Lemma 4.3 and S,, C T},. So
with ¢ = ¢y,

sin¢g K L ]
nlg|
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Define now for s =0, 1,...,y the d — 1-dimensional convex polytope
Py =8, N A(g, [a(n)] + h).

Every lattice point in S, belongs to some P}'. The proof of the upper bound on M (n) is
based on estimating } ) _, [P/ N Z4].

Define a map ® = @, : RY — R? by ®(x) = x/n. Then ®(P}') is a convex com-
pact set in Q¢ forall i € {0, 1,...,y}. We use the Blaschke selection theorem (see for
instance [6]): along a subsequence (denoted by n again) ®(P}') tends to a convex poly-
tope Py forh € {0, 1,...,y}. Note also that each Py, lies in A(g,7) N Q¢ for some fixed .

Let I denote the set of & € {0, ..., y} with volg_; ¥(Py) > Cy where Cy > 0 will
be specified later. Write J; resp. Jo for those & ¢ I for which P}’ does (resp. does not)
contain d affinely independent vectors from Z<. We are going to estimate [Py N 74
separately for 4 in I, in Jy and in J;.

When h € Jo, Lemma 5.1 applies and gives | P} N 7%| <« n?=2. The total contribution
of such P/'s to |S, N Z%| is at most < |Jo|n9 72,

For h € Ji, Lemma 5.2 shows that | P} N 74| < Cdé—‘ volg—1 Pj}. Here C4 > 0 is
the constant implicit in the < notation. The total contribution of such P;'s to |S, N 74
is at most < |J1|%nd_1 < |J1|C4Cond~1.

For h € I, let Ej be the ellipsoid of largest volume inscribed in P}’ with half-axes of
length ay,...,ags—1. The Loewner-John theorem implies that

d—1
volg_y Ef > (d —1)"“Vvoly_, P! > co(d’il) .

Alsovoly_1 E}} = Kkq—1 1—[;1:—11 a; where kz_1 is the volume of the d — 1-dimensional unit
ball. As a; < +/d n for all i, the minimal a; satisfies a; > Con. So P,:’ contains a ball of
radius 3> Con. Itis also clear that for large enough n, P}’ contains d affinely independent
points from Z¢. So we can apply Lemma 5.3: for i € I,

1 1

showing that the total contribution of those P}'s to [S, N 7| is at most

1 1
— Zvold_l P (1 + IgIO(;)).

gl =
Lemma 6.1. With the previous notation,

1 & _
o > volg_y P < Va(g)n® ™ (1 + o(1)).
h=0

We postpone the proof to the next section. We show now how to complete the proof
of Theorem 1.1 using this lemma.
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The number of lattice points in S, is Vz(g)n?~'(1 + o(1)) < Vyn?~! + %snd_l if
n is large enough plus an error term of the form

|Jon? ™2 + |J1|Cq Con® !

times a constant depending only on d. Here |J1[, |Jo| < y, and g and y are fixed. So if

we choose Cp > 0 small enough the error term becomes smaller than %snd_l. ]

7. Proof of Lemma 6.1

We first note that (v(11) — g9)? =2 —2cos¢ = 2sin® ¢ /(1 +cos¢). Set Y = £, NW(S,);
itis a segment of length |v|; /sin¢. Let Y,* C Y}, be the segment that one gets after deleting
the segment of length /2d from the left end of Y,.

Claim 7.1. Each vertical line intersects at most |g|1 + 1 segments Yy, and at most |g|1
segments Y,', h =0,1,...,y.

Proof. This is elementary plane geometry using the fact that v(n) and g are very close
to each other. We assume v(n) > 0; then g > 0 as well and |v(n)|; = v(n)e, |g|1 = ge.
Assume £~ intersects £, in a point a, and £ intersects £j, resp. £5|g|, in points b and c,
and let e denote the orthogonal projection of ¢ to £;. We consider a, b, e as real numbers
on the x-axis. The length of Y, is b —a = ve/sin¢g, and b — e = |g1|/(|g| tan p) =
goe/tan ¢ and

_ ve  goe _ _
eTa= sing tan¢ B sinqb(ve goe cos§)
1
= ——[(v—go)e + goe(1 — cos ¢)]
sin ¢
1 ﬁsinqﬁ sin2¢
= sinqﬁ(./l +cos¢\/g+ l+cos¢) <v2d,

as one can check easily. This implies that Yh* is contained in the interval [e, b]. Moreover, a
vertical line intersecting the segment [a, e] intersect Yy, Yp41,. .., Yi4|g|, but no other ¥;.
And a vertical line intersecting (e, b] intersects Y, ..., Y4 4|,—1 but no other Y;. |

The claim implies what we need. Note that P}’ = ¥U=1(Y,) N Q" and define Pt =
WL(Y,F) N Q". Then P/'* C P} and evidently

volg_y P}l —volg_y P}'* = 0(n?2).

Recalling that ®(x) = x/n we have

y y
Z volg_y P* = nd=1 Zvold_l O(P;").
h=0 h=0
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The sets ®(P;*) tend to a set Ph < A(g,t) N Q¢ for the same ¢ as before,
so volg—; ®(P]*) = n=1voly_y P"- (1 + o(1)). The sets P" for h =0,1,...,y
cover A(g, 1) N 0% at most |g|; times. So their total d — l-volume is at most
lg|1 voly—1 A(g,t) N O¢. Thus

y y
ZVOld—l P; < nd=1 ZVOld—l O(P*) + 0(n??)
i=0 i=0

y
<n¢! Zvold,l P (14 0(1))
i=0

<n9 gl vola—1(A(g, 1) N QD) (1 + o(1)).

So indeed
2 Zvold P = Bl (4G, 0 091+ o)
= Va(go)(1 + o(1))
because L voly_; (A(g.1) N Q%) < Va(go) by the definition of V4 (go). n

8. Proof of Theorem 2.1

We construct a homotopy 7 — K; where ¢ € [0, 1], K; is a convex body in R? satisfying
Ko = K, K; = L and the monotonicity condition K; C K for ¢ < s. By monotonicity,
boundary cells of K; may become inside cells for K, and the point in the argument is
that whenever a boundary cell is lost, another one emerges.

The simplest homotopy is K; = (1 —¢t)K + tL, and this works under the following
non-degeneracy condition:

() whenever w € 9K; N Z%, then w ¢ K fors < ¢ and w € int K forall s > ¢, and K,
has an outer normal u at w € dK, with no coordinate zero.

Under this condition the proof is easy. As ¢ increases, a cell C(z), say, is boundary for
K, with t < tg just slightly smaller than o but C(z) C Ky, and so it becomes inside for
t > to. Then there is a vertex w of C(z) such that w ¢ K, for ¢t < to, but of course w € Ky,
and even w € 0K,,. Let H be a supporting hyperplane to K;, at w whose outer normal
has no zero coordinate. Then w € Ky, and C(z) and K,, are on the same side of H.
There is a unique cell C(z’) (unique because of condition (*)) on the other side of H
with w € C(z’). This unique cell was outside for K; with ¢t < ty and becomes boundary
for K, fort € [ty,t9 + 8) for a suitable small § > 0. So when the boundary cell C(z) is
lost at g, another boundary cell appears. Note that C(z) N H = C(z') N H = {w}.

We still have to check that the same cell C(z’) cannot appear twice. So assume the
contrary, that is, there is another cell C(z*) that is boundary for K, for ¢ slightly smaller



Cells in the box and a hyperplane 2877

than 7o but C(z*) C Ky, and C(z*) has a vertex w* with w* ¢ K, fort <ty butw* € 0K,,.
We cannot have w = w* here since that would imply C(z) = C(z*). Then w and w*
are distinct vertices of C(z’) and the segment [w, w*] is on the boundary of both C(z’)
and K;,. Then [w, w*] N H = {w} for the previous hyperplane H supporting K,, at w
with no zero coordinate, so w* € K 1, cannot hold.

To guarantee the non-degeneracy condition we proceed first by assuming that K C
int L and that both K and L have smooth boundaries such that for every unit vector u
there is a single point on dK resp. on dL where the outer normal to K and L is u. If this
were not the case, we can replace K, L by suitable (and very close to K and L) convex
bodies satisfying these conditions and having the same inside and boundary cells. With
the new K and L the homotopy K; = (1 —¢)K + L has the property that for every unit
vector u there is a single point on dK; where the outer normal to K; is u. To see that
this is indeed the case, let xx and x7, be the unique points on the boundary of K and L
with outer normal u. Then the maximum of {ux : x € K,} is reached at the unique point
(1 —t)xg + tx;, € Ky, and the outer normal to K, there is u.

This condition also guarantees that K; has no line segment on its boundary. Assume
that, on the contrary, 0K, contains a line segment and let u be the outer normal to the
tangent hyperplane to K; containing this segment. Then there is no unique point with
outer normal ¥ as every point on the segment has outer normal u.

Let us see finally that K, satisfies condition (). Assume the cell C(z) is boundary
for K; for (t9 — &, to) and is inside for Ky,. Then there is a vertex w of C(z) on 9Ky,
with outer normal ¥ = (41, ...,ug) at w to K;,. Assume some coordinate of u is equal
to zero, say u; = 0. Either w + e; or w — e; is in C(z), say w + e;. Then the segment
[w, w + eq] lies both in Ky, and in C(z), and actually in the boundary of both because
the hyperplane {x : ux = uw} is tangent to both K, and C(z). ]
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