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Abstract. Refining Yau’s and Kołodziej’s techniques, we establish very precise uniform a priori
estimates for degenerate complex Monge–Ampère equations on compact Kähler manifolds, that
allow us to control the blow up of the solutions as the cohomology class and the complex structure
both vary.

We apply these estimates to the study of various families of possibly singular Kähler varieties
endowed with twisted Kähler–Einstein metrics, by analyzing the behavior of canonical densities,
establishing uniform integrability properties, and developing the first steps of a pluripotential theory
in families. This provides interesting information on the moduli space of stable varieties, extending
works by Berman–Guenancia and Song, as well as on the behavior of singular Ricci-flat metrics
on (log) Calabi–Yau varieties, generalizing works by Rong–Ruan–Zhang, Gross–Tosatti–Zhang,
Collins–Tosatti and Tosatti–Weinkove–Yang.
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Introduction

Let p W X ! Y be a proper, surjective holomorphic map with connected fibers between
Kähler varieties. It is a central question in complex geometry to relate the geometry of X
to that of Y and the fibers Xy of p. An important instance of such a situation is when one
can endowXy with a Kähler–Einstein metric and study the geometry ofX induced by the
properties of the resulting family of metrics. This is the main theme of this article.

Einstein metrics are a central object of study in differential geometry. A Kähler–
Einstein metric on a complex manifold is a Kähler metric whose Ricci tensor is propor-
tional to the metric tensor. This notion still makes sense on mildly singular varieties, as
was observed in [28, Section 7]. The solution of the (singular) Calabi Conjecture [28, 71]
provides a very powerful existence theorem for Kähler–Einstein metrics with negative
or zero Ricci curvature. It is important to study the ways in which these canonical met-
rics behave when they are moving in families. In this paper we consider the case when
both the complex structure and the Kähler class vary and we try to understand how the
corresponding metrics can degenerate.

Constructing singular Kähler–Einstein metrics on a mildly singular variety V boils
down to solving degenerate complex Monge–Ampère equations of the form

.! C i@@'/n D fe�'dVX ;

where

– � W X ! V is a resolution of singularities, dVX is a volume form on X ,

– ! D ��!V is the pull-back of a Kähler form on V ,

– the sign of � 2 R depends on that of c1.V /,

– f 2 Lp.X/ with p > 1 if the singularities of V are mild (klt singularities),

and ' is the unknown. The latter should be !-plurisubharmonic (!-psh for short), i.e. it
is locally the sum of a psh and a smooth function, and satisfies ! C i@@' � 0 in the weak
sense of currents. We let PSH.X; !/ denote the set of all such functions.

The uniform estimate

A crucial step in order to prove the existence of a solution to the above equation is to
establish a uniform a priori estimate. In order to understand the behavior of the solution '
as the cohomology class ¹!V º and the complex structure of V vary, we revisit the proof
by Yau [71], as well as its recent generalizations [28,48], and establish the following (see
Theorem 1.1):

Theorem A. Let X be a compact Kähler manifold of complex dimension n 2 N� and let
! be a semipositive form such that V WD

R
X
!n > 0: Let � and � D f � be probability

measures, with 0 � f 2 Lp.�/ for some p > 1. Assume the following assumptions are
satisfied:
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(H1) there exist ˛ > 0 and A˛ > 0 such that for all  2 PSH.X; !/,Z
X

e�˛. �supX  /d� � A˛I

(H2) there exists C > 0 such that .
R
X
jf jp d�/1=p � C .

Let ' be the unique !-psh solution ' to the complex Monge–Ampère equation

V �1.! C i@@'/n D �;

normalized by supX ' D 0. Then �M � ' � 0 where

M D 1C C 1=nA1=nq˛ e˛=nqbnŒ5C e˛
�1C.qŠ/1=qA1=q˛ �;

1=p C 1=q D 1 and bn is a constant such that exp.�1=x/ � bnnx
2n for all x > 0.

Remark 0.1. Let us observe that condition (H1) in Theorem A above guarantees that the
measure � does not charge pluripolar sets, since any such set can be included in the polar
locus of a global !-psh function by [33, Thm. 7.2]. The existence (and uniqueness) of the
solution ' in Theorem A follows from [11, Thm. A].

We also establish slightly more general versions of Theorem A valid for less regular
densities (Theorem 1.5) or big cohomology classes (Theorem 1.9). We then move on to
checking hypotheses (H1) and (H2) in various geometrical contexts.

� Hypothesis (H1). If � W X ! D is a projective family whose fibers Xt D ��1.t/ have
degree d with respect to a given projective embedding X � PN �D, and ! D !t is the
restriction of the Fubini–Study metric, we observe in Proposition 2.5 that

V D

Z
Xt

!nt D

Z
PN

!nFS ^ ŒXt � D d

is independent of t and the following uniform integrability holds.

Proposition B. For all  2 PSH.Xt ; !t /,Z
Xt

e�
1
nd
. �supXt  /!nt � .4n/

n
� d � exp

²
�
1

nd

Z
Xt

�
 � sup

Xt

 
�
!nt

³
:

Hypothesis (H1) is thus satisfied in this projective setting, with ˛ D 1=nd , as soon
as we can uniformly control the L1-norm of  . We take care of this in Section 3. This
non-trivial control requires the varieties Xt to be irreducible (see Example 3.5).

Bypassing the projectivity assumption, we show that (H1) is actually satisfied for
many Kähler families of interest, by generalizing a uniform integrability result of Skoda–
Zeriahi [61, 72] (see Theorem 2.9). This is the content of Theorem 3.4.

� Hypothesis (H2). We analyze (H2) in Section 4. We show that, up to shrinking the base,
it is always satisfied if the ft ’s are canonical densities associated to a proper, holomorphic
surjective map � W X ! D from a normal, Q-Gorenstein Kähler space X to the unit
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disk such that the central fiber has only canonical singularities; see Lemma 4.4 and its
application to families of Calabi–Yau varieties, Theorem F.

While previous works tend to use sophisticated arguments from Variations of Hodge
Structures (see e.g. the Appendix by Gross in [56]), we use here direct elementary com-
putations in adapted coordinates, in the spirit of [28, Sect. 6].

In the context of families of varieties with negative curvature though, it is essential
to allow worse singularities than the ones described above; see Setting 4.1 for the pre-
cise context. The trade-off is that the canonical densities do not satisfy condition (H2)
anymore, reflecting the fact that the local potentials of the Kähler–Einstein metrics at
stake need not be bounded anymore. This legitimizes the introduction of a weaker con-
dition (H20) (see Theorem 1.5 and Lemma 4.6). This allows us to derive almost optimal
control of the potentials of Kähler–Einstein metrics along a stable family; see Theorem E
below.

Let us end this subsection by emphasizing that our approach enables us to work with
singular families (i.e. families where the generic fiber is singular; see Theorems E and F)
as opposed to all previously known results on that topic, requiring one to approximate a
singular variety by smooth ones using either a smoothing or a crepant resolution.

We now describe more precisely four independent geometric settings to which we
apply the uniform estimate provided by Theorem A.

Families of manifolds of general type

Let X be an irreducible and reduced complex space endowed with a Kähler form ! and
a proper, holomorphic map � W X ! D. We assume that for each t 2 D, the (schematic)
fiber Xt is an n-dimensional Kähler manifold Xt of general type, i.e. such that its canon-
ical bundle KXt is big. In particular, X is automatically non-singular and the map � is
smooth.

We fix a closed differential .1; 1/-form ‚ on X which represents c1.KX=D/ and set
�t D ‚jXt .

It follows from [11], a generalization of the Aubin–Yau theorem [3, 71], that there
exists a unique Kähler–Einstein current on Xt . This is a positive closed current Tt in
c1.KXt / which is a smooth Kähler form in the ample locus Amp.KXt /, where it satisfies
the Kähler–Einstein equation

Ric.Tt / D �Tt :

It can be written Tt D �t C dd c't , where 't is the unique �t -psh function with min-
imal singularities that satisfies the complex Monge–Ampère equation

.�t C dd
c't /

n
D e'tCht!nt on Amp.KXt /;

where ht is such that Ric.!t / � dd cht D ��t and
R
Xt
eht!nt D vol.KXt /. For x 2 X,

set
�.x/ WD '�.x/.x/ (0.1)
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and consider
V‚ D sup ¹u 2 PSH.X; ‚/ Iu � 0º: (0.2)

We prove that conditions (H1) and (H2) are satisfied in this setting. It then follows from
Theorem A and the plurisubharmonic variation of the Tt ’s [14, Thm. A] that � � V‚ is
uniformly bounded on compact subsets of X (cf. Theorem 5.5 and Remark 5.6):

Theorem C. Let � WX ! D be a smooth Kähler family of manifolds of general type, let
‚ 2 c1.KX=D/ be a smooth representative and let � be the Kähler–Einstein potential as
in (0.1). Given any compact subset K b X, there exists a constant MK such that

�MK � � � V‚ �MK

on K , where V‚ is defined by (0.2).

The same results can be proved if the family � W X ! D is replaced by a smooth
family � W .X;B/! D of pairs .Xt ;Bt / of log-general type, i.e. such that .Xt ;Bt / is klt
and KXt C Bt is big for all t 2 D.

Stable families

A stable variety is a projective varietyX such thatX has semi-log-canonical singularities
and the Q-line bundle KX is ample. We refer to [43, 50] for a detailed account of such
varieties and their connection to moduli theory.

In [7], it was proved that a stable variety admits a unique Kähler–Einstein metric !,
i.e. a smooth Kähler metric on Xreg such that, if n D dimC X ,

Ric.!/ D �! and
Z
Xreg

!n D .KnX /:

The metric ! extends canonically across Xsing to a closed, positive current in the class
c1.KX /. It is desirable to understand the singularities of ! near Xsing. In [38, Thm. B],
it is proved that ! has cusp singularities near the double crossings of X . Moreover, it is
proved in [62] that the potential ' of ! with respect to a given Kähler form !X 2 c1.KX /,
i.e. ! D !X C dd c', is locally bounded on the klt locus of X . We make this assertion
more precise by establishing the following (see Proposition 5.9).

Proposition D. For any " > 0, there is a constant C" such that

C1 � ' � �.nC 1C "/ log.� log jsj/ � C"; (0.3)

where .s D 0/ is any reduced divisor containing the non-klt locus of X .

This estimate is almost optimal. Indeed, if X is the Satake–Baily–Borel compactifica-
tion of a ball quotient, it is a normal stable variety and it admits a resolution .X;D/which
is a toroidal compactification of the ball quotient obtained by adding disjoint abelian
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varieties. Then the potential ' of the Kähler–Einstein metric on .X; D/ with respect to
a smooth form in c1.KX CD/ satisfies

' D �.nC 1/ log.� log jsDj/CO.1/

if .sD D 0/ D D.
A slight refinement of Theorem A (see Theorem 1.5) allows us to establish a uniform

family version of estimate (0.3). In order to state it, let X be a normal Kähler space and
let � W X ! D be a proper, surjective, holomorphic map such that each fiber Xt has
slc singularities and KX=D is an ample Q-line bundle. If !X 2 c1.KX=D/ is a relative
Kähler form and !Xt WD !X jXt , then the Kähler–Einstein metric of Xt can be written as
!Xt C dd

c't where 't is uniquely determined by equation (5.7). The behavior of 't is
then described by the following (see Theorem 5.11)

Theorem E. Let X be a normal Kähler space and let � WX! D be a proper, surjective,
holomorphic map such that:

� Each schematic fiber Xt has semi-log-canonical singularities.

� KX=D is an ample Q-line bundle.

In particular, Xt is a stable variety for any t 2 D. Assume additionally that the central
fiber X0 is irreducible.

Let !Xt C dd
c't be the Kähler–Einstein metric of Xt and let D D .s D 0/ � X be

a divisor which contains Nklt.X; X0/ .see (4.4)/. Fix a smooth hermitian metric j � j on
OX.D/. Up to shrinking D, for any " > 0, there exists C" > 0 such that

C1 � 't � �.nC 1C "/ log.� log jsj/ � C"

on Xt for any t 2 D.

Let us finally mention the very recent results of Song, Sturm and Wang [63, Proposi-
tion 3.1] where similar bounds are derived in the context of smoothings of stable varieties
over higher-dimensional bases, with application towards Weil–Petersson geometry of the
KSBA compactification of canonically polarized manifolds.

Families of Q-Calabi–Yau varieties

A Q-Calabi–Yau variety is a compact, normal Kähler spaceX with canonical singularities
such that the Q- line bundleKX is torsion. Up to taking a finite, quasi-étale cover referred
to as the index 1 cover (see e.g. [46, Def. 5.19]), one can assume that KX �Z OX . Given
any Kähler class ˛ on X , it follows from [28] and [55] that there exists a unique singular
Ricci-flat Kähler metric !KE 2 ˛, i.e. a closed, positive current !KE 2 ˛ with globally
bounded potentials inducing a smooth, Ricci-flat Kähler metric on Xreg.

Now, we can consider families of such varieties and ask how the bounds on the poten-
tials vary. This is the content of the following (see Theorem 6.1 and Remark 6.2).
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Theorem F. Let X be a normal, Q-Gorenstein Kähler space and let � W X ! D be a
proper, surjective, holomorphic map. Let ˛ be a relative Kähler cohomology class on X

represented by a relative Kähler form !. Assume additionaly that:

� The relative canonical bundle KX=D is trivial.

� The central fiber X0 has canonical singularities.

� Assumption 3.2 is satisfied.

Up to shrinking D, each fiber Xt is a Q-Calabi–Yau variety. Let !KE;t D !t C dd
c't be

the singular Ricci-flat Kähler metric in ˛t , normalized by
R
Xt
't!

n
t D 0. Then, given any

compact subset K b D, there exists C D C.K/ > 0 such that

oscXt 't � C

for any t 2 K, where oscXt 't D supXt 't � infXt 't .

In the case of a projective smoothing (i.e. when X admits a �-ample line bundle and
Xt is smooth for t ¤ 0), the result above has been obtained previously by Rong–Zhang
[56] by using the Moser iteration process.

Log Calabi–Yau families

Let X be a compact Kähler manifold and let B D
P
biBi be an effective R-divisor such

that the pair .X;B/ has klt singularities and c1.KX C B/ D 0:
It follows from [11,28,71] that one can find a unique Ricci-flat metric in each Kähler

class ˛t . A basic problem is to understand the asymptotic behavior of these metrics as
˛t approaches the boundary of the Kähler cone. Despite motivations coming from mir-
ror symmetry, not much is known when the norm of ˛t converges to C1 (this case is
expected to be the mirror of a large complex structure limit; see [49]). We thus only con-
sider the case when ˛t ! ˛0 2 @KX .

The non-collapsing case (vol.˛0/ > 0) can be easily understood by using Theorem A
(see Theorem 6.5). We describe here a particular instance of the more delicate collapsing
case vol.˛0/D 0. Let f WX !Z be a surjective holomorphic map with connected fibers,
whereZ is a normal Kähler space. Let !X (resp. !Z) be a Kähler form onX (resp.Z). Set
!t WD f

�!Z C t!X . There exists a unique singular Ricci-flat current !'t WD !t C dd
c't

in ¹f �!Z C t!Xº for t > 0, where
R
X
't!

n
X D 0. It satisfies

!n't D Vt � �.X;B/; where �.X;B/ D .s ^ Ns/
1=me��B :

Here, s 2 H 0.X; m.KX C B// is any non-zero section (for some m � 1) and �B is the
unique singular psh weight on OX .B/ solving dd c�B D ŒB� and normalized byZ

X

.s ^ Ns/1=me��B D 1:

The probability measure f��.X;B/ has L1C" density with respect to !mZ thanks to
[29, Lem. 2.3]. It follows therefore from [28] that there exists a unique current !1 2 ¹!Zº
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that solves the Monge–Ampère equation

!m1 D f��.X;B/:

In the case whereX is smooth,B D 0 and c1.X/D 0, the Ricci curvature of !1 coincides
with the Weil–Petersson form of the fibration f of Calabi–Yau manifolds.

Understanding the asymptotic behavior of the !'t ’s as t ! 0 is an important problem
with a long history; we refer the reader to the thorough survey [68] for references. We
prove here the following:

Theorem G. Let .X;B/ be a log smooth klt pair such that c1.KX CB/D 0 and such that
X admits a fibration f W X ! Z. With the notations above, the conic Ricci-flat metrics
!'t 2 ¹f

�!Z C t!Xº converge to f �!1 as currents on X when t goes to 0.

When B D 0 is empty, it has been shown in [32, 39, 67, 69] that the metrics !'t
converge to f �!1 in the C˛ sense on compact subsets of X n SX for some ˛ > 0, where
SX D f

�1.SZ/ and SZ denotes the smallest proper analytic subset † � Z such that †
contains the singular locus Zsing of Z and the map f is smooth on f �1.Z n†/.

The proof of Theorem G follows the strategy developed by the above papers with
several twists that notably require the extensive use of Theorem A and conical metrics.

1. Chasing the constants

Our goal in this section is to establish the following a priori estimate which is a refinement
of the main result of Kołodziej [48] (see also [24, 27, 28]):

Theorem 1.1. Let .X; !X / be a compact Kähler manifold of complex dimension n 2 N�

and let ! be a semipositive form which is big, i.e. such that

V WD vol!.X/ D
Z
X

!n > 0:

Let � and �D f � be probability measures, with 0 � f 2 Lp.�/ for some p > 1. Assume
the following two assumptions are satisfied:

(H1) there exist ˛ > 0 and A˛ > 0 such that for all  2 PSH.X; !/,Z
X

e�˛. �supX  / d� � A˛I

(H2) there exists C > 0 such that .
R
X
jf jp d�/1=p � C .

Let ' be the unique !-psh solution ' to the complex Monge–Ampère equation

V �1.! C dd c'/n D �;

normalized by supX ' D 0. Then �M � ' � 0 where

M D 1C C 1=nA1=nq˛ e˛=nqbnŒ5C e˛
�1C.qŠ/1=qA1=q˛ �;

1=p C 1=q D 1 and bn is a constant such that exp.�1=x/ � bnnx
2n for all x > 0.



Families of singular Kähler–Einstein metrics 2705

Here d D @C @ and d c D i
2
.@� @/ so that dd c D i@@. Recall that a function ' WX!

R [ ¹�1º is !-plurisubharmonic (!-psh for short) if it is locally given as the sum of a
smooth and a psh function, and such that ! C dd c' � 0 in the weak sense of currents.
We let PSH.X; !/ denote the set of all !-psh functions.

The non-pluripolar Monge–Ampère measure for arbitrary !-psh functions has been
defined in [11]. It follows from assumption (H1) that the measure � does not charge
pluripolar sets, since the latter can be defined by !-psh functions (as follows easily from
[33, Thm. 7.2] since a big class contains a Kähler current). The existence of a unique
normalized !-psh solution to V �1.! C dd c'/n D � follows from [11, Thm. A] (the
case of Kähler forms had been earlier treated in [26, 34]).

We will use this result to obtain uniform a priori estimates on normalized solutions 't
to families of complex Monge–Ampère equations

Vt
�1.!t C dd

c't /
n
D �t ;

when hypotheses (H1)–(H2) are satisfied, i.e. the constants 1=˛t ; A˛t ; qt ; Ct in the theo-
rem are actually bounded from above by uniform constants 1=˛;A;q;C independent of t .
Here q denotes the conjugate exponent of p > 1, 1=pC 1=q D 1. The assumption on this
exponent is thus that p > 1 stays bounded away from 1.

The reader should keep in mind that assumption (H1) is the strongest of all. In some
applications one can assume f � 1, hence (H2) is trivially satisfied.

We are going to eventually obtain a version of Theorem 1.1 that applies to big coho-
mology classes, extending [11, Thm. B]. The proof is almost identical but explaining the
statement requires introducing various notions and technical notations, so we first treat
the case of semipositive classes and deal with the general case in Section 1.4.

1.1. Preliminaries on capacities

Let K � X be a Borel set and consider

VK;! WD .sup ¹ I 2 PSH.X; !/ and  � 0 on Kº/�;

where � denotes upper semicontinuous regularization.
The Alexander–Taylor capacity is

T!.K/ WD exp
�
� sup

X

VK;!

�
:

It is shown in [35, Lem. 9.17] that if K is pluripolar then VK;! � C1 and T!.K/ D 0.
If K is not pluripolar then

– 0 � VK:! 2 PSH.X; !/ and VK;! D 0 on K off a pluripolar set;

– the Monge–Ampère measure MA.VK;!/ is concentrated on E.

Here and in what follows, we denote by

MA.u/ D
1

V
.! C dd cu/n
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the normalized Monge–Ampère measure of a !-psh function u, where V D
R
X
!nD¹!ºn

is the volume of the cohomology class ¹!º. It is defined for any !-psh function u (see
e.g. [34, §1.1]). For a Borel set K � X , the Monge–Ampère capacity is

Cap!.K/ WD sup
²Z
K

MA.u/ Iu 2 PSH.X; !/ and 0 � u � 1
³
:

This capacity also characterizes pluripolar sets, i.e.

Cap�!.P / D 0 ” P is pluripolar:

Here Cap�! is the outer capacity associated to Cap! , defined for any set E � X as

Cap�!.E/ WD inf ¹Cap!.G/ IG open; E � Gº:

Moreover, if K � X is a compact set then Cap�!.K/ D Cap!.K/.
The Monge–Ampère and the Alexander–Taylor capacities compare as follows:

Lemma 1.2.
T!.K/ � exp

�
1 �

1

Cap!.K/1=n

�
:

We refer the reader to [33, Prop. 7.1] for a proof, which also provides a reverse
inequality that is not needed in the following.

1.2. Proof of Theorem 1.1

1.2.1. Domination by capacity. It follows from Hölder’s inequality and (H2) that

� � C�1=q;

where q is the conjugate exponent, 1=p C 1=q D 1.
LetK � X be a non-pluripolar Borel set. Recall that VK;!.x/ D 0 for �-almost every

point x 2 K. Hypothesis (H1) therefore implies that

�.K/ �

Z
X

e�˛ VK;! d� � A˛T!.K/
˛:

Combining previous information we obtain

�.K/ � CA1=q˛ e˛=q exp
�
�

˛=q

Cap!.K/1=n

�
� D Cap!.K/

2;

where
D D bnnCA

1=q
˛ e˛=q;

with bn a numerical constant such that exp.�1=x/ � bnnx
2n for all x > 0.

We now need to relate the Monge–Ampère capacity of sublevel sets of a !-psh func-
tion to the Monge–Ampère measure of similar sublevel sets:

Lemma 1.3. Let ' be a bounded !-psh function. For all s > 0 and 0 < ı < 1,

ın Cap!.¹' < �s � ıº/ � MA.'/.¹' < �sº/

We refer to [28, Lem. 2.2] for a proof.
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1.2.2. Bounding the solution from below. Under our assumptions (H1)–(H2), it follows
from general arguments that there is a unique bounded !-psh solution ' of MA.'/ D �
normalized by supX ' D 0 (see Remark 0.1). The non-expert reader could even think that
' is smooth; the point here is to establish a uniform a priori bound from below.

We let f W RC ! RC denote the function defined by

f .s/ WD �
1

n
log Cap!.¹' < �sº/:

Observe that f is non-decreasing and such that f .C1/ D C1. It follows from our
previous estimates that for all s > 0 and 0 < ı < 1,

f .s C ı/ � 2f .s/C log ı �
logD
n

:

Our next lemma guarantees that such a function reachesC1 in finite time:

Lemma 1.4. f .s/ D C1 for all s � 5D1=n C s0, where

s0 D inf ¹s > 0 I eD1=n Cap!.¹' < �sº/ < 1º:

Proof. We define a sequence .sj / of positive reals by induction as follows:

sjC1 D sj C ıj with ıj D eD
1=n exp.�f .sj //:

We fix s0 large enough (as in the statement of the lemma) so that ı0 < 1. It is straightfor-
ward to check, by induction, that the sequence .sj / is increasing, while .ıj / is decreasing.
Thus 0 < ıj < 1 and

f .sjC1/ � f .sj /C 1; hence f .sj / � j:

We infer ıj � eD1=n exp.�j / and

s1 D s0 C
X
j�0

.sjC1 � sj / � s0 C
X
j�0

eD1=n exp.�j / � s0 C 5D1=n:

It remains to obtain a uniform bound on s0. It follows from the Chebyshev inequality
and Lemma 1.3 (used with ı D 1) that for all s > 0,

Cap!.¹' < �s � 1º/ �
1

s

Z
X

.�'/ d�;

since MA.'/ D �. The Hölder inequality and (H2) yieldZ
X

.�'/ d� � C

�Z
X

.�'/q d�

�1=q
:

Observe that for all t � 0,

tq �
qŠ

˛q
exp.˛t/
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and use (H1) to conclude that

Cap!.¹' < �s � 1º/ �
C.qŠ/1=qA

1=q
˛

˛s
:

Thus

s0 D 1C eD
1=nC.qŠ/

1=qA
1=q
˛

˛

is a convenient choice. This yields the desired a priori estimate and concludes the proof.

1.3. More general densities

The setting of Theorem 1.1 is the most commonly used in geometric applications, as it
allows one e.g. to construct Kähler–Einstein currents on varieties with log-terminal singu-
larities (see Section 6). For varieties of general type with semi-log-canonical singularities
(see Section 5.2), one has to deal with slightly more general densities. The following
result is a refinement of [48, Thm. 2.5.2] and [28, Thm. A].

Theorem 1.5. Let .X; !X / be a compact Kähler manifold of complex dimension n 2 N�

and let ! be a semipositive form with V WD vol!.X/ D
R
X
!n > 0: Let � and � D f �

be probability measures, with 0 � f 2 L1.�/. Assume the following assumptions are
satisfied:

(H1) there exists ˛ > 0 and A˛ > 0 such that for all  2 PSH.X; !/,Z
X

e�˛. �supX  /d� � A˛I

(H20) there exist C; " > 0 such thatZ
X

jf j jlogf jnC" d� � C:

Let ' be the unique !-psh solution ' to the complex Monge–Ampère equation

V �1.! C dd c'/n D �;

normalized by supX ' D 0. Then �M � ' � 0, where M DM.C; "; n; A˛/:

Proof. The proof follows the same lines as that of Theorem 1.1, so we only emphasize
the main technical differences and focus on the case " D 1. Set, for t � 0,

�.t/ D .t C 1/

nC1X
jD0

.�1/nC1�j
.nC 1/Š

j Š
.log.t C 1//j :

Observe that � is a convex function such that �.0/ D 0 and �0.t/ D .log.t C 1//nC1. Its
Legendre transform is

��.s/ D sup
t>0

¹s � t � �.t/º D st.s/ � �.t.s//;
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where 1C t .s/ D exp.s
1
nC1 / satisfies s D �0.t.s//, thus

��.s/ D P.s
1
nC1 / exp.s

1
nC1 / � s;

where P is the following polynomial of degree n:

P.X/ D

nX
jD0

.�1/n�j
.nC 1/Š

j Š
Xj :

We let the reader check that (H20) is equivalent to kf k� � C 0; where kf k� denotes
the Luxemburg norm of f ,

kf k� WD inf
²
r > 0 I

Z
X

�.jf j=r/ d� � 1

³
:

Let K � X be a non-pluripolar Borel set. It follows from the Hölder–Young inequality
[6, Prop. 2.15] that

�.K/ � 2C 0k1Kk�� ;

where k1Kk�� D inf ¹r > 0 I �.K/��.1=r/ � 1º DW rK with

��.1=rK/ D 1=�.K/:

We are interested in the behavior of this function as �.K/ approaches zero, i.e. for
small values of rK . Observe that ��.s/ � exp.2s

1
nC1 / for s � 1=rn, hence

�.K/ � ın H) �.K/ � 2C 0rK �
2nC2C 0

.� log �.K//nC1
:

Recall that (H1) and Lemma 1.2 yield

�.K/ � A˛e
˛ exp

�
�

˛

Cap!.K/1=n

�
:

It follows that for �.K/ � ın,

�.K/ � C 00 Cap!.K/
1C1=n;

and we can then conclude by reasoning as in Lemma 1.4. This completes the proof when
" D 1. The proof for arbitrary " > 0 is similar, the crucial point being the domination of
� by a multiple of Cap1C"=n! , with an exponent 1C "=n > 1.

1.4. Big cohomology classes

We now consider a similar situation where the reference cohomology class ˛ is still big
but no longer semipositive. We assume for convenience that the ambient manifold .X;!X /
is again compact Kähler, but one could equally well develop this material whenX belongs
to the Fujiki class (i.e. when X is merely bimeromorphic to a Kähler manifold).
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By definition ˛ is big if it contains a Kähler current, i.e. there is a positive current
T 2 ˛ and " > 0 such that T � "!X . It follows from [23] that one can further assume that
T has analytic singularities, i.e. it can be locally written as T D dd cu with

u D
c

2
log
h sX
jD1

jfj j
2
i
C v;

where c > 0, v is smooth and the fj ’s are holomorphic functions.

Definition 1.6. We let Amp.˛/ denote the ample locus of ˛, i.e. the Zariski open subset
of all points x 2 X for which there exists a Kähler current in ˛ with analytic singularities
which is smooth in a neighborhood of x.

It follows from the work of Boucksom [10] that one can find a single Kähler current T0
with analytic singularities in ˛ such that

Amp.˛/ D X n SingT0:

We fix a smooth closed differential .1; 1/-form � representing ˛. Following Demailly,
one defines the following � -psh function with minimal singularities:

V� WD sup ¹u Iu 2 PSH.X; �/ and u � 0º:

Definition 1.7. A � -psh function ' has minimal singularities if for any other � -psh func-
tion u, there exists C 2 R such that u � ' C C .

There are plenty of such functions, which play here the role of bounded functions
when ˛ is semipositive. Demailly’s regularization result [23] ensures that ˛ contains
many � -psh functions which are smooth in Amp.˛/. In particular, a � -psh function '
with minimal singularities is locally bounded in Amp.˛/. The Monge–Ampère measure
.� C dd c'/n is thus well defined in Amp.˛/ in the sense of Bedford and Taylor [4].

Definition 1.8. It follows from the work of Boucksom [9] thatZ
Amp.˛/

.� C dd c'/n DW V˛ > 0

is independent of '; it is the volume of the cohomology class ˛.

One can therefore develop a pluripotential theory in the Zariski open set Amp.˛/.
This was done in [11], where the following properties have been established:

– the class PSH.X; �/ enjoys several compactness properties;

– the operator MA.'/ D V �1˛ .� C dd c'/n is a well defined probability measure on the
set of � -psh functions with minimal singularities;

– the extremal functions VK;� D sup ¹u I u 2 PSH.X; �/ and u � 0 on Kº and the
Alexander–Taylor capacity T� .K/ D exp.� supX VK;� / enjoy similar properties to
those in the semipositive case;
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– in particular T� .K/ compares similarly to the Monge–Ampère capacity

Cap� .K/ WD sup
²Z
K

MA.u/ Iu 2 PSH.X; �/ and 0 � u � V� � 1
³
I

– the comparison principle holds so Lemma 1.3 holds here as well.

The same proof as above therefore produces the following uniform a priori estimate,
which is a refinement of [11, Thm. 4.1]:

Theorem 1.9. Let .X;!X / be a compact Kähler manifold of complex dimension n 2N�.
Let ˛ be a big cohomology class of volume V˛ > 0 and fix a smooth closed differential
.1; 1/-form � representing ˛.

Let � and � D f � be probability measures with 0 � f 2 Lp.�/ for some p > 1.
Assume the following assumptions are satisfied:

(H1) there exist ˛>0;A˛>0 such that for all 2PSH.X;�/,
R
X
e�˛. �supX  /d��A˛;

(H2) there exists C > 0 such that .
R
X
jf jp d�/1=p � C .

Let ' be the unique � -psh function with minimal singularities such that

V˛
�1.� C dd c'/n D �

and supX ' D 0. Then �M � ' � V� � 0 where

M D 1C C 1=nA1=nq˛ e˛=nqbnŒ5C e˛
�1C.qŠ/1=qA1=q˛ �;

where bn is a uniform constant such that exp.�1=x/ � bnnx
2n for all x > 0.

Remark 1.10. We also have an analogue of Theorem 1.5 in the big setting.

2. Uniform integrability

We wish to apply the previous uniform estimates when the complex structure of the under-
lying manifold varies. In this section we pay a special attention to assumption (H1), by
generalizing an integrability result of Skoda–Zeriahi [61, 72].

2.1. Notations

In all what follows, given a positive real number r , we denote by Dr WD ¹z 2 C I jzj < rº
the open disk of radius r in the complex plane. If r D 1, we simply write D for D1.

Setting 2.1. Let X be an irreducible and reduced complex Kähler space. We let � W
X ! D denote a proper, surjective holomorphic map such that each fiber Xt D ��1.t/
is an n-dimensional, reduced, irreducible, compact Kähler space, for any t 2 D.

For later purposes, we pick a covering ¹U˛º˛ of X by open sets admitting an embed-
ding j˛ W U˛ ,! CN for some N � nC 1. Moreover, we fix a Kähler form ! on X. Up
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to refining the covering, the datum of ! is equivalent to the datum of Kähler metrics on
open neighborhoods of j˛.U˛/ � CN that agree on each intersection U reg

˛ \U
reg
ˇ

. Equiv-
alently, ! is a genuine Kähler metric on Xreg such that .j˛/�.!jU reg

˛
/ is the restriction of

a Kähler metric defined on an open neighborhood of j˛.U˛/ � CN .
Let us point out that this definition of a Kähler metric on a singular space X is much

more restrictive than merely asking for a Kähler metric on Xreg (even if one requires, say,
that the latter has local potentials near Xsing, and that those are bounded). One important
property that Kähler metrics satisfy is that their pull-back under a modification is a smooth
form (i.e. locally the restriction of a smooth form under a local embedding in CN ); in
particular, it is dominated by a Kähler form.

For each t 2 D, we set
!t WD !jXt :

An easy yet important observation is the following.

Lemma 2.2. In Setting 2.1 and using the notation above, the quantity
R
Xt
!nt is indepen-

dent of t 2 D. We will denote it by V in the following.

Proof. The function D 3 t 7!
R
Xt
!nt coincides with the push-forward current ��!n of

bidimension .1; 1/. Its distributional differential is zero as d commutes with �� and ! is
closed.

We fix a smooth, closed differential .1; 1/-form ‚ on X and set �t D ‚jXt . Up to
shrinking D, one will always assume that there exists a constant C‚ > 0 such that

�C‚! � ‚ � C‚!: (2.1)

In particular, PSH.Xt ; �t / � PSH.Xt ; C‚!t /. We assume that the cohomology classes
¹�tº 2H

1;1.Xt ;R/ are psef, i.e. the sets PSH.Xt ; �t / are non-empty for all t . The notions
of (quasi-)plurisubharmonic functions, positive currents and Monge–Ampère measure are
well defined on singular spaces [22].

2.2. Uniform integrability index

Recall from [21, Déf. 3] that if T is a closed, positive current of bi-dimension .p; p/ on
a complex space X and if x 2 X is a closed point, then the Lelong number of T at x is
defined as the limit

�.T; x/ WD lim
r!0

# 1

r2p

Z
¹ <rº

T ^ .dd c /p; (2.2)

where  WD
P
i2I jgi j

2 and .gi /i2I is a (finite) system of generators of the maximal ideal
mX;x �OX;x . It is proved in loc. cit. that the limit above is a decreasing limit, independent
of the choice of the generators. Moreover, one has the formula

�.T; x/ D

Z
¹xº

T ^ .dd c log /p (2.3)



Families of singular Kähler–Einstein metrics 2713

(see [21, bottom of p. 45]). Finally, if ' is a � -psh function on X for some smooth, closed
.1; 1/-form � , then the Lelong number of ' at a given point x 2 X is defined to be the
quantity �.� C dd c'; x/.

Proposition 2.3. In Setting 2.1, let 't 2 PSH.Xt ; �t / be a collection of �t -psh functions
on Xt . Then

sup
t2D1=2

sup
x2Xt

�.'t ; x/ < C1:

Proof. Let U 0˛ b U˛ be a relatively compact open subset such that the U 0˛ are still a
covering of X. Up to adding more elements to the initial covering, one can always assume
that one can find such a refinement. One picks cut-off functions �˛ such that �˛ � 1 onU 0˛
and Supp.�˛/ � U˛ . Now, let x 2 X; there exists ˛ D ˛.x/ such that x 2 U 0˛ . Recall
that we have an embedding j˛ W U˛ ! CN ; we set x0 WD j˛.x/ and Gx0 W CN 3 z 7!

log.
PN
iD1 jzi � x

0
i j
2/. One can easily check that there exists a constantA>0, independent

of the point x now ranging over the compact set ��1.D1=2/, such that the function

Hx WD �˛ � j
�
˛Gx0

defines an A!-psh function on the whole X. By (2.3), one has

�.'t ; x/ D

Z
¹xº

.�t C dd
c't / ^ .dd

c.j �˛Gx0/jXt /
n�1

�

Z
U 0˛\Xt

.�t C dd
c't / ^ .dd

cHx/
n�1

�

Z
U 0˛\Xt

.�t C dd
c't / ^ .A!t C dd

cHx/
n�1

�

Z
Xt

.C‚!t C dd
c't / ^ .A!t C dd

cHx/
n�1

D C‚A
n�1
�V:

The conclusion follows.

It follows from Skoda’s integrability theorem [61] that the Lelong number �.'t ; x/
controls the local integrability index ˛.'t ; x/ of a �t -psh function 't ,

˛.'t ; x/ WD sup ¹c > 0 I e�c't 2 L2loc.Xt ; x/º;

via
1

�.'t ; x/
� ˛.'t ; x/ �

n

�.'t ; x/
:

Proposition 2.3 thus yields:

Corollary 2.4. In Setting 2.1,

˛.‚/ WD inf ¹˛.'t ; x/ I t 2 D1=2; x 2 Xt ; 't 2 PSH.Xt ; �t /º > 0:
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2.3. Skoda’s integrability theorem in families: the projective case

Zeriahi [72] has established a uniform version of Skoda’s integrability theorem. We now
further generalize Zeriahi’s result by establishing its family version.

We first provide a very explicit result in the projective case which does not rely on
Corollary 2.4 unlike its general Kähler analogue that will be given later (see Theorem 2.9).
This should also help the reader in following the somehow tricky computations in the
general Kähler case.

Proposition 2.5. Let V � PN be a projective variety of complex dimension n and
degree d . Let ! D !FSjV and ' 2 PSH.V; !/ be such that supV ' D 0. ThenZ

V

e�
1
nd
'!n � .4n/n � d � exp

²
�
1

nd

Z
V

'!n
³
:

To our knowledge, the inequality in Proposition 2.5 is new.

Remark 2.6. When � W X ! D is a projective family whose fibers have degree d with
respect to a given projective embedding, the above result gives the integrability of e�

1
nd
't

on Vt WD ��1.t/. In particular, ˛.!FS/ �
1
2nd

.

Proof of Proposition 2.5. Embedding P1 in P2 if necessary, we assume without loss of
generality that N � 2. We first claim that it is enough to prove the proposition when '
is smooth. Indeed, thanks to [19, Cor. C], there exists a sequence of smooth functions
'n 2 PSH.V; !FS/ decreasing pointwise to '. Let "n WD supV 'n; by Hartogs’ theorem,
we have "n ! 0. If the proposition holds for smooth functions, we will haveZ

V

e�
1
nd
'n!n � e

"n �.d�1/
nd .4n/n � d � exp

²
�
1

nd

Z
V

'n!
n

³
:

Using the Fatou lemma and the monotone convergence theorem, we deduce the expected
inequality for '. From now on, we assume that ' is smooth.

The projective logarithmic kernel on PN � PN is defined by

G.x; y/ WD log
�
kx ^ yk

kxk � kyk

�
; x; y 2 PN ;

writing x; y in homogeneous coordinates. By [2, Lem. 4.1], for any fixed y, x 7! G.x;y/

is a non-positive !FS-psh function in PN such that .!FS C dd
c
xG.�; y//

N D ıy . We set
g D GjV and gy D g.�; y/. By definition, gy has Lelong number 1 at y. Therefore, it
follows from [22, Cor. 4.8] that !ngy WD .!C dd

cg.�; y//n � ıy . From the Stokes formula
(cf. Lemma 2.11 below) it follows that

'.y/ �

Z
V

'!ngy D

Z
V

'.! C dd cgy/ ^ !
n�1
gy

D

Z
V

'! ^ !n�1gy
C

Z
V

gy.! C dd
c'/ ^ !n�1gy

�

Z
V

gy! ^ !
n�1
gy

�

Z
V

'! ^ !n�1gy
C

Z
V

gy!' ^ !
n�1
gy

;
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using the fact that gy � 0. One obtains similarlyZ
V

'! ^ !n�1gy
�

Z
V

'!2 ^ !n�2gy
C

Z
V

gy! ^ !' ^ !
n�2
gy

�

Z
V

'!2 ^ !n�2gy
C

Z
V

gy!' ^ !
n�1
gy

;

where the second inequality follows fromZ
V

gy! ^ !' ^ !
n�2
gy
D

Z
V

gy!' ^ !
n�1
gy
C

Z
V

dgy ^ d
cgy ^ !' ^ !

n�2
gy

�

Z
V

gy!' ^ !
n�1
gy

:

Iterating the process n times we end up with

'.y/ �

Z
V

'!n C n

Z
V

gy!' ^ !
n�1
gy

:

Hence Z
V

e�
1
nd
'!n � exp

²
�
1

nd

Z
V

'!n
³
� I;

where

I WD

Z
y2V

exp
²
�
1

d

Z
x2V

gy.x/!'.x/ ^ !gy .x/
n�1

³
!.y/n:

The .n; n/-form 1
d
� !' ^ !

n�1
gy

induces a probability measure on V given thatZ
V

!' ^ !
n�1
gy
D

Z
PN

!' ^ !
n�1
gy
^ ŒV � D ¹!FSº

n
� ¹V º D d:

From Jensen’s inequality, one can then derive

I �
1

d

Z
y2V

Z
x2V

e�g.x;y/ !'.x/ ^ .!.x/C dd
c
xg.x; y//

n�1
^ !.y/n:

Lemma 2.8 (i) below yields

!'.x/ ^ .!.x/C dd
c
xg.x; y//

n�1
� e�2.n�1/g.x;y/!'.x/ ^ !.x/

n�1:

Lemma 2.8 (ii) (for ı D 1=2n) now yields

I �
1

d

Z
y2V

Z
x2V

e.�2nC1/g.x;y/!'.x/ ^ !.x/
n�1
^ !.y/n

D
1

d

Z
x2V

�Z
y2V

Œe�2.1�
1
2n /g.x;y/!.y/�n

�
!'.x/ ^ !.x/

n�1

� .4n/n
Z
x2V

�
1

d

Z
y2V

.! C dd c� 1
2n
ı gx/

n

�
!'.x/ ^ !.x/

n�1

D .4n/n
Z
x2V

!'.x/ ^ !.x/
n�1
D .4n/n � d:
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Remark 2.7. The same arguments as above show that for any 
 2 .0; 2/,Z
V

e�


nd
'!n � C
 � d exp

²
�



nd

Z
V

'!n
³
;

where C
 > 0 depends on n and 
 . We have fixed 
 D 1 in the above proposition to
simplify the statement.

Lemma 2.8. With the notations of the proof of Proposition 2.5, fix a point y 2 V and set
g WD gy . Moreover, let ı 2 .0; 1/. Then the following inequalities hold as currents on V :

(i) !g � e�2g!,

(ii) ı
2
e�2.1�ı/g! � ! C dd c�ı ı g.

Here, �ı is the function defined on R by �ı.t/ WD e2ıt

4ı
.

It is understood here that we take derivatives with respect to x and the estimates are
uniform both in x and y.

Proof. We proceed in three steps.

Step 1. Reduction to a computation on CN . First of all we observe that the function g
as well as the .1; 1/-currents ! and !g are the restrictions to V of a function or .1; 1/-
currents on PN . As positivity is preserved by restriction to a subvariety, it is enough to
prove the inequalities of currents above on the whole PN where they make sense as well.

Now, recall that PU.N;C/ acts transitively on PN by transformations preserving !FS

and an isometry u sends Gy to Gu.y/. Therefore it suffices to prove all the inequali-
ties above on PN , for the special point y D Œ1 W 0 W � � � W 0�. We work in the affine chart
.U1; z/where U1 WD ¹x 2 PN W x1 ¤ 0º and z WD .zj /j , zj D xj =x1. In these coordinates
!FSjU1 D

1
2
dd c log.1Ckzk2/. Note that U1 is dense in PN and both !FS;!G are smooth

on the complement PN n U1; thus it is sufficient to prove the inequalities on U1 ' CN .
We actually claim that it is sufficient to prove the inequalities on U1 n ¹yº, where all

the currents involved are smooth differential forms. This is because neither of the positive
currents e�2G!FS and !FS C dd

c�ı ıG on PN puts any mass on ¹yº. This follows from
the integrability of e�2G for the first one (recall that N � 2) and the boundedness of
�ı ıG for the second one.

As observed in [2, Lem. 4.1], for .x; y WD Œ1 W 0 W � � � W 0�/ 2 U1 � U1 we have

G.x; y/ D N.z; 0/ � 1
2

log.1C kzk2/;

where z D z.x/ and N.z; 0/ WD 1
2

log kzk2. Thus in U1 we have e�2G D 1C 1
kzk2

and

!.x/C dd cxGy.x/ D dd
c
zN.z; 0/ D

1
2
dd cz log kzk2:

Let

ˇ WD dd ckzk2 D i

NX
kD1

dzk ^ d Nzk and ˛1 WD

NX
kD1

Nzkdzk :
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Step 2. Proof of (i). Standard computations give

.!FS/j Nk D
.1C kzk2/ıj Nk � Nzj zk

2.1C kzk2/2
and Nj Nk D

1

2
�
kzk2ıj Nk � Nzj zk

kzk4
;

or equivalently

!FSD
1

2

�
1

1Ckzk2
ˇ�

1

.1Ckzk2/2
i˛1^ N̨1

�
and !G D

1

2

�
1

kzk2
ˇ�

1

kzk4
i˛1^ N̨1

�
:

The matrixA.z/ WD .zi Nzj /ij is semipositive with rank at most 1 and trace kzk2. Therefore,
if �;� 2 R (they can depend on z), the matrix � IdC �A is hermitian with eigenvalues �
(with multiplicity N � 1) and �C kzk2 � � (with multiplicity 1). In particular, it is semi-
positive if and only if � � max.0;�kzk2 � �/.

The computations above show that the eigenvalues of the .1; 1/-form �ˇC�i˛1 ^ N̨1
with respect to ˇ are � and �C kzk2 � �. Now, if C is some non-negative constant, the
.1; 1/-form Ce�2g!FS � !G can be rewritten as follows:

1

2.1C kzk2/kzk4
�
�
.C � 1/kzk2.1C kzk2/ � ˇ C Œ.1C kzk2/ � Ckzk2� � i˛1 ^ N̨1

�
:

The latter form is semipositive if and only if C � 1. This proves (i).

Step 3. Proof of (ii). Observe that �ı is convex increasing with 0 � �0
ı
� 1=2 for t � 0.

Standard computations give dd c�ı ıG D �0ı ıG dd
cG C �00

ı
ıG dG ^ d cG. Next, we

have

dd cG D
1

2kzk2.1C kzk2/

�
ˇ �

1C 2kzk2

kzk2.1C kzk2/
� i˛1 ^ N̨1

�
with the notation introduced in Step 1. Similarly,

dG ^ d cG D
1

4kzk4.1C kzk2/2
i˛1 ^ N̨1:

To lighten notation, we will from now on write �0 (resp. �00) to denote �0
ı
ı G (resp.

�00
ı
ıG). One has

!FS C dd
c�ı ıG D

1

2.1C kzk2/

��
1C

�0

kzk2

�
ˇ C

1
2
�00 � �0.1C 2kzk2/

kzk4.1C kzk2/
i˛1 ^ N̨1

�
:

As a result, the two eigenvalues �; � of !FS C dd
c�ı ı G with respect to !FS are given

by

� D 1C
�0

kzk2
;

� D .1C kzk2/ �

�
1C

�0

kzk2
C

1
2
�00 � �0.1C 2kzk2/

kzk2.1C kzk2/

�
D .1C kzk2 � �0/C

�00

2kzk2
:

Using the definition of � and the fact that e�2G D 1 C 1
kzk2

, one easily sees that � �
1
2
e�2.1�ı/G and � � ı

2
e�2.1�ı/G . The conclusion follows.
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2.4. Skoda’s integrability theorem in families: the general case

In this section, we bypass the projectivity assumption and establish a quite general family
version of Skoda’s integrability theorem, valid for families of compact Kähler varieties:

Theorem 2.9. In Setting 2.1, choose ˛ 2 .0; ˛.‚//, which is possible thanks to Corol-
lary 2.4. Then there exist constants A˛; C > 0 such that for all t 2 D1=2 and for all
't 2 PSH.Xt ; �t / with supXt 't D 0,Z

Xt

e�˛'t!nt � C exp
²
�A˛

Z
Xt

't!
n
t

³
: (2.4)

Proof. The proof follows the strategy of [72], as presented in [35, Thm. 2.50]. There
exist a finite number of trivializing charts ¹U�º of X such that ��1.D1=2/ �

S
� U� .

The statement will then follow if we prove the bound for the integral on the left-hand
side replacing Xt by Xt \ U� . Moreover, we can assume that we have an immersion
j� W U� ,! B, where B is the unit ball in CN . Up to shrinking U� , one can also assume
that there exists a smooth function � on B such that supB � D �2 and ‚jU� D dd

cj �� �.
We define �t WD .j �� �/jU�\Xt ; this is a potential of �t jU�\Xt . Note that  t WD 't C �t is
a non-positive psh function in U� \Xt such that

't � 2 �  t � 't � C� (2.5)

for some constant C� > 0 depending only on U� . It is also clear that proving (2.4) is
equivalent to showing thatZ

U�\Xt

e�˛ t!nt � C� exp
²
�A˛;�

Z
U�\Xt

 t!
n
t

³
(2.6)

for some constants C� ; A˛;� that do not depend on t .

Claim 2.10. It is sufficient to prove (2.6) for smooth, non-positive psh functions  t on
U� \Xt such that

dd c t � .j
�
� dd

c
kzk2/jXt : (2.7)

Proof of Claim 2.10. Indeed, asZ
U�\Xt

e�˛ t!nt � e
˛

Z
U�\Xt

e�˛. tCj
�
� kzk

2/!nt ;

we can replace  t by the function  t C j �� kzk
2, bounded above by �1. Next, thanks to

a result of Fornæss–Narasimhan [30, Thm. 5.5], one can write  t as a decreasing limit
of non-positive, smooth psh functions on U� \ Xt (up to possibly shrinking U� ). The
combination of the monotone convergence theorem and the integrability of e�˛'t on Xt
provided by Corollary 2.4 settles the claim.

From now on, we assume that  t is smooth, and we work exclusively on U� , which
we view inside the unit ball B of CN . By abuse of notation, we will denote by B \Xt the
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set U� \Xt . In the same vein, we will identify the coordinate functions z D .z1; : : : ; zN /
on B � CN with their pull-backs by j� on U� .

Let us pick some number t 2 D1=2 and some point x 2 B \Xt . We denote by ˆx the
automorphism of the unit ball B that sends x to the origin and consider

Gx.z/ WD log kˆx.z/k;

the pluricomplex Green function of the unit ball B. Recall that Gx is the unique plurisub-
harmonic function in B such that .dd cGx/N D ıx in the weak sense of currents, Gx � 0
and Gx is identically zero on @B. Standard computations yield

dd cGx �
C0

kˆx.z/k2
dd ckzk2 on B (2.8)

for some dimensional constant C0 D C0.N / > 0.
Since ŒXt jB� is a positive .N � n; N � n/-current on B and the singular set of the

restriction of the Green function GxjXt is compact (it is indeed equal to ¹xº), the mixed
Monge–Ampère measure .dd cGx/n ^ ŒXt � is well defined [35, Prop. 3.15] and it has a
Dirac mass with coefficient � 1 at the point x. Since  t � 0 we then have

 t .x/ �

Z
B
 t .dd

cGx/
n
^ ŒXt � D

Z
B\Xt

 t .dd
cGx/

n:

Now, we have the following result, which is the Stokes formula in the context of isolated
singularities.

Lemma 2.11. Let X � BCN .0; 2/ be a proper, n-dimensional complex subspace of the
ball of radius 2 in CN , centered at the origin. Let u; v; w be psh functions on BCN .0; 2/

with isolated singularities, i.e. they are smooth outside a discrete set of points in
BCN .0; 2/ which we assume does not meet @BCN .0; 1/. Finally, let B WD BCN .0; 1/\X .
ThenZ

@B
.ud cv � vd cu/ ^ .dd cw/n�1 D

Z
B
.udd cv � vdd cu/ ^ .dd cw/n�1: (2.9)

We include a proof for the reader’s convenience.

Proof. By using a (regularized) maximum operation, we can find a family of smooth psh
functions u" (resp. v";w") decreasing to u (resp. v;w) and which coincide with their limit
outside a compact set K" b B which collapses to a finite set S b B. By the usual Stokes
formula, one hasZ

@B
.u"d

cv" � v"d
cu"/ ^ .dd

cw"/
n�1
D

Z
B
.u"dd

cv" � v"dd
cu"/ ^ .dd

cw"/
n�1:

The left-hand side above is identical to the left-hand side of (2.9). To prove that the
right-hand side above converges to the right-hand side of (2.9), we prove that the current
.u"dd

cv"�v"dd
cu"/^.dd

cw"/
n�1 on B converges to .udd cv�vdd cu/^.dd cw/n�1
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weakly, globally on B and locally smoothly on B n S . The local smooth convergence out-
side S is obvious. As for the global weak convergence, it follows from the convergence
u"dd

cv" ^ .dd
cw"/

n�1*udd cv ^ .dd cw/n�1 (and its symmetrical version swapping
u and v), proved by Demailly (see e.g. [22, Thm. 2.6 and Rem. 2.10]).

Applying Lemma 2.11 to X D Xt , u D  t , v D w D Gx (recall that Gxj@B � 0), we
get Z

B\Xt

 t .dd
cGx/

n
D

Z
B\Xt

Gx dd
c t ^ .dd

cGx/
n�1„ ƒ‚ …

DWIt

C

Z
@B\Xt

 t d
cGx ^ .dd

cGx/
n�1„ ƒ‚ …

DWJt

:

By Lemma 2.12, in order to get a lower bound for Jt , it is enough to bound from above the
quantity

R
@B\Xt

.� t / d
ckzk2 ^ .dd ckzk2/n�1. Applying (2.9) to u D � t , v D w D

kzk2 � 1, we findZ
@B\Xt

.� t / d
c
kzk2 ^ .dd ckzk2/n�1 D

Z
B\Xt

.� t / .dd
c
kzk2/n

C

Z
B\Xt

.kzk2 � 1/ dd c t ^ .dd
c
kzk2/n�1

�

Z
B\Xt

.� t / .dd
c
kzk2/n

� C n1

�Z
Xt

.�'t / !
n
t C C� � V

�
;

where C1 is such that dd ckzk2 � C1! on B and C� is given in (2.5).
We now take care of the most singular term It . Set


t .x/ WD

Z
B
dd c t ^ .dd

cGx/
n�1
^ ŒXt �

so that � WD 
�1t dd c t ^ .dd
cGx/

n�1 ^ ŒXt � is a probability measure on B (depending
on x). We claim that for any x 2 B there exists a constant � > 0 independent of t and x
such that 1 � 
t < �. The uniform upper bound follows from the same computations as
in the proof of Proposition 2.3. By (2.7) we can infer thatZ

B
dd c t ^ .dd

cGx/
n�1
^ ŒXt � �

Z
B
dd ckzk2 ^ .dd cGx/

n�1
^ ŒXt �

� �..dd cGx/
n�1
^ ŒXt �; x/ � �.ŒXt �; x/ D m.Xt ; x/ � 1:

In the second inequality we have used the fact that r 7! 1
r2

R
Br
dd ckzk2 ^ T is decreasing

to �.T; x/ when r # 0 (see (2.2)). The first equality follows from (2.3), while the second
one comes from Thie’s theorem. Recall that the origin of B is identified with the point x.
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We now use Jensen’s formula and (2.8) to obtain

exp.�˛It .x// D exp
�Z

z2B
�˛
tGx d�

�
�
1


t

Z
z2B

e�˛
tGx dd c t ^ .dd
cGx/

n�1
^ ŒXt �

D
1


t

Z
z2B

dd c t ^ .dd
cGx/

n�1 ^ ŒXt �

kˆx.z/k˛
t

� C0

Z
z2B

dd c t ^ .dd
ckzk2/n�1 ^ ŒXt �

kˆx.z/k˛�C2n�2
;

where we can assume that ˛� < 2. By Fubini’s theorem, we haveZ
x2B1=2

e�˛ t!n ^ ŒXt � �

Z
x2B1=2

e�˛.ItCJt /!n ^ ŒXt � � K

Z
x2B1=2

e�˛It!n ^ ŒXt �

� C0K

Z
x2B1=2

�Z
z2B

dd c t ^ .dd
ckzk2/n�1 ^ ŒXt �

kˆx.z/k˛�C2n�2

�
!n ^ ŒXt �

� C0K

Z
z2B

�Z
x2B1=2

.dd ckxk2/n ^ ŒXt �

kˆx.z/k˛�C2n�2

�
dd c t ^ .dd

c
kzk2/n�1 ^ ŒXt �;

where K WD exp¹�˛ C n1
R
Xt
 t !

n
t º. Moreover, using the same computation as in the

proof of Lemma 2.13 below, one can check that if ˇ WD 2�˛�
2n

> 0, then there exists a
constant Cˇ > 0 such that the inequality between .n; n/-currents below holds on B:

C�1ˇ .dd cxkˆx.z/k
2ˇ /n �

1

kˆx.z/k˛�C2n�2
.dd ckxk2/n � Cˇ .dd

c
xkˆx.z/k

2ˇ /n:

(2.10)

Fix z 2 B and for any x 2 B let fx.z/ WD kˆx.z/k. We define an extension of fx to X by

Fx.z/ WD

´
� � fx.z/ if x 2 B;

0 else:

Here, � is a smooth cut-off function such that Supp.�/ � B and � � 1 on B1=2. It is easy
to check that Fx is an A!-psh function on X for some A D A� large enough (which a
priori depends on U� but can be chosen independently of x 2 B1=2). ThusZ
x2B1=2

1

kˆx.z/k˛�C2n�2
.dd ckxk2/n ^ ŒXt � � Cˇ

Z
x2B1=2

.dd cxkˆx.z/k
2ˇ /n ^ ŒXt �

� Cˇ

Z
x2X

.A! C dd cxFx.z/
2ˇ /n ^ ŒXt � � CˇA

nV DW C2:

It then follows thatZ
x2B1=2

e�˛ t!n ^ ŒXt � � C0C2K

Z
z2B

dd c t ^ .dd
c
kzk2/n�1 ^ ŒXt � � C3K;
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where C3 WD C0C2C‚C
n�1
1 � V . The last inequality follows from the fact that on Bt ,

we have dd c t ^ .dd ckzk2/n�1 � .�t C dd c't / ^ .C1!/n�1, and one can dominate
the integral of the right-hand side on Bt by its integral on Xt and use (2.1). This is the
conclusion.

Lemma 2.12. With the notations introduced at the beginning of the proof of Theorem 2.9,
there is a constant C D C.n/ > 0 such that for all x 2 B1=2 � CN and z 2 Xt \ S2N�1,

1

C
d ckzk2 ^ .dd ckzk2/n�1 � d cGx ^ .dd

cGx/
n�1
� Cd ckzk2 ^ .dd ckzk2/n�1:

(2.11)

Proof. There exists a neighborhood U of S2N�1 � CN not containing x such that
dd ckˆxk

2 defines a Kähler form !x on U ; this follows for instance from the fact thatˆx
can be extended as a holomorphic map to an open neighborhood of the closed ball – and
that neighborhood can be chosen to be independent of x 2 B1=2. On U , !x is comparable
to the euclidean metric on CN , and therefore !x and !eucl induce uniformly equivalent
Riemannian metrics gx and geucl on U \ Xt , and then as well on the real hypersurface
Xt \ S2N�1; we denote them by g0x and g0eucl respectively. In particular, their volume
forms dVg0x ; dVg0eucl

are equivalent too. One has dVg0eucl
D �vdVgeucl where v is the restric-

tion to Xt of the unit outward radial vector

nCkX
jD1

�
zj

@

@zj
C Nzj

@

@ Nzj

�
:

Hence, on Xt \ S2N�1 one has

dVg0eucl
D �v.dd

c
kzk2/n D 2

�
i

�

�n�1
d ckzk2 ^ .dd ckzk2/n�1:

In the same way, dVg0x D �vxdVgx , where vx is the restriction to Xt of the unit out-
ward vector with respect to dd ckˆxk2, hence vx D ˆ�xv. Therefore, on Xt \ S2N�1,

dVg0x D �vx .dd
c
kˆxk

2/n D ˆ�x.�v.dd
c
kzk2/n/

D 2

�
i

�

�n�1
d ckˆxk

2
^ .dd ckˆxk

2/n�1 D 2nC1
�
i

�

�n�1
d cGx ^ .dd

cGx/
n�1;

since Gx D 1
2

log kˆxk2 vanishes on the sphere and d c log u ^ .dd c log u/n�1 D
1
un
d cu ^ .dd cu/n�1 for any smooth function u. This shows that the above two volume

forms onXt \S2N�1 are uniformly equivalent onXt \S2N�1, which ends the proof.

Lemma 2.13. Let ˇ > 0 and B � Cn be the unit ball. Then kzk2ˇ is psh on B and there
exists a constant Cˇ > 0 .that depends only on ˇ/ such that

C�1
ˇ

kzk2.1�ˇ/
� dd ckzk2 � dd ckzk2ˇ �

Cˇ

kzk2.1�ˇ/
� dd ckzk2:
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Proof. Let � W RC ! RC be defined as �.t/ WD tˇ and u WD kzk2. One has

dd c� ı u D ˇuˇ�1.dd cu � .1 � ˇ/u�1du ^ d cu/:

Note that min.1;ˇ/ � dd cu� dd cu� .1�ˇ/u�1du^ d cu�max.1;ˇ/ � dd cu. Observe
that the hermitian matrix associated to the .1; 1/-form du^ d cu is . Nzizj /i Nj . The latter has
rank 1 and its non-zero eigenvalue coincides with its trace, i.e. u. Therefore the eigenval-
ues of the hermitian matrix A WD In � .1� ˇ/u�1. Nzizj /i Nj are 1 (with multiplicity n� 1)
and ˇ (with multiplicity 1). This ends the proof.

3. Normalization in families

The previous section allows us to check hypothesis (H1), as soon as the mean value of sup-
normalized �t -psh functions is uniformly controlled. It is classical that one can compare
the supremum and the mean value of � -psh functions on a fixed compact Kähler variety
(see [35, Prop. 8.5]). We conjecture that the following result holds:

Conjecture 3.1. In Setting 2.1, there exists a constant C > 0 such that

sup
Xt

't � C �
1

V

Z
Xt

't ! t
n
� sup

Xt

't

for all t 2 D1=2 and for every function 't 2 PSH.Xt ; �t /.

In a preprint version of this paper, we claimed a proof of the conjecture above but a
referee, whom we thank, pointed out a gap. In this section, we propose a large class of
families for which the conjecture holds. More precisely, let us consider the following

Assumption 3.2. In Setting 2.1, we assume additionally that one of the following condi-
tions is satisfied by the family � W X ! D:

(1) The map � is projective.

(2) The map � is locally trivial.

(3) The fibers Xt are smooth for t ¤ 0.

(4) The fibers Xt have isolated singularities for every t 2 D.

Recall that � is said to be

– projective if we have a commutative diagram

X PN �D

D

�

� pr2

– locally trivial if, up to shrinking D, there exists a euclidean open cover .U˛/˛ of X and
a collection of isomorphisms

F˛ W XjU˛
'
�! .U˛ \X0/ �D
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such that the following diagram is commutative:

XjU˛ .U˛ \X0/ �D

D
�

F˛

pr2

(3.1)

For instance, if X is smooth and if the map � is a holomorphic submersion, then � is
automatically locally trivial.

The main result in this section is

Proposition 3.3. In Setting 2.1 and if Assumption 3.2 is satisfied, then Conjecture 3.1
holds. That is, there exists a constant C > 0 such that

sup
Xt

't � C �
1

V

Z
Xt

't !
n
t � sup

Xt

't

for all t 2 D1=2 and for every function 't 2 PSH.Xt ; �t /.

We will prove Proposition 3.3 in several independent steps.

� In §3.2, we prove the locally trivial case.

� In §3.3, we treat the case of isolated singularities.

� In §§3.4–3.6 we introduce the material (Sobolev and Poincaré inequalities, heat kernels
and Green functions) that we will use in the final section.

� In §3.7, we establish at the same time the projective case and the case of a smoothing,
thereby completing the proof of Proposition 3.3.

By combining the above result with Theorem 2.9, we get the following

Theorem 3.4. In Setting 2.1, choose ˛ 2 .0; ˛.‚//, which is possible thanks to Corol-
lary 2.4. If Assumption 3.2 is satisfied, then there exists a constant C˛ > 0 such that for
all t 2 D1=2 and all 't 2 PSH.Xt ; �t /,Z

Xt

e�˛.'t�supXt 't /!nt � C˛:

3.1. Irreducibility of the fibers

The irreducibility of all the fibers is a necessary assumption for the left-hand inequality
in Conjecture 3.1 to hold, as the following example shows:

Example 3.5. Consider X � P2 �C where

X WD ¹.Œx W y W z�; t/ I xy � tz2 D 0º:

The variety X is smooth and comes equipped with the proper morphism � W X ! C
induced by the second projection P2 �C ! C. Set Xt D ¹Œx W y W z� 2 P2 I xy D tz2º:
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Note that Xt is a smooth conic for t ¤ 0 while X0 D ¹Œx W y W z� 2 P2 I xy D 0º is the
union of two lines. The quasi-psh function ' on P2 defined by

'.Œx W y W z�/ D
1

4

�
log.jxj2 C jzj2/C log jyj2

�
�
1

2
log.jxj2 C jyj2 C jzj2/C

log 2
2

clearly induces a !-psh function ˆ on X, where ! D !FS C dd
c jt j2,

ˆ.Œx W y W z�; t/ D '.Œx W y W z�/:

We set 't WDˆjXt and !t WD !jXt . A simple computation shows that supXˆD 0 and it is
attained at points .Œx W y W z�; t/ such that jyj2D jxj2C jzj2. We also find that supXt 't D 0
and the supremum is attained on the set

St WD

²
Œx W 1 W z� I jxj D

1

2jt j
�
�p
4jt j2 C 1 � 1

�
; z2 D xt�1

³
:

As t ! 0, St becomes the circle C WD ¹Œ0 W 1 W ei� � I � 2 Rº � X0 . Note also that X0 D
` [ `0, where ` WD ¹Œ0 W y W z�º, `0 WD ¹Œx W 0 W z�º and C � `. The open annulus Ut WD
¹Œz2 W t W z� I 1 < jzj2 < 2º � Xt satisfiesZ

Ut

!t � ı

for some ı > 0 independent of t , as well as

't jUt �
1
2
.log jt j C 1/;

from which it follows that
lim
t!0

Z
Xt

't !t D �1:

3.2. The locally trivial case

In this section, we prove Proposition 3.3 under the assumption that � is locally trivial; we
borrow the notations from diagram (3.1).

One can reduce the problem to showing that there exists a constant C > 0 depending
only on � such that given any sequence of complex numbers tk ! 0 and any functions
'k 2 PSH.Xtk ; �tk / such that supXtk 'k D 0, one hasZ

Xtk

'k!
n
tk
� �C:

By compactness of ��1.D1=2/, one can assume that ˛ ranges over the finite set
¹1; : : : ; rº and without loss of generality, one can assume that U˛C1 \ U˛ ¤ ; for any
˛ 2 ¹1; : : : ; r � 1º. Up to splitting the sequence .'k/ into (at most) r subsequences, we
can assume that for every k, 'k attains its maximum in the same set U˛0 for some fixed
˛0 2 ¹1; : : : ; rº. For simplicity, we assume that ˛0 D 1.
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Let G˛;k W U˛ \ X0 ! U˛ \ Xtk be the biholomorphism defined as the inverse of
the restriction of F˛ to U˛ \ Xtk and let us analyze the sequence of functions  ˛;k WD
G�
˛;k
'k . As F �˛ .!0 C idt ^ d Nt / is commensurable to !, there exists C > 0 depending

only on � such that
C�1!0 � G

�
˛;k!tk � C!0: (3.2)

In particular, up to increasing C , one can assume that G�
˛;k
�tk � C!0. As a result, one

has  ˛;k 2 PSH.U˛ \X0; C!0/.
The family . 1;k/k is a family of non-positive C!0-psh functions on the complex

space U1 \ X0 attaining the value zero there, so it is relatively compact for the L1loc
topology (see e.g. [35, Prop. 8.5]). In particular, given any compact subset U 01 b U1,
the integral

R
U 0
1
 1;k!

n
0 admits a lower bound depending only on U 01 but not on k.

Next, the family . 2;k/k is a family of non-positive C!0-psh functions on U2 \ X0.
Therefore, either it converges locally uniformly to �1 or it is relatively compact on
each compact subset. From (3.2), it follows that the family of automorphisms Hk WD
.G�1

2;k
/jU1\U2\Xtk ıG1jU1\U2\X0 of U1 \ U2 \X0 satisfies

C�1!0 � H
�
k !0 � C!0 and  2;k D H

�
k 1;k :

One then deduces easily that for any compact subset U 012 b U1 \ U2, the integralR
U 0
12
 2;k!

n
0 admits a lower bound independent of k. In turn, this implies that . 2;k/k

is relatively compact for the L1loc topology on the whole U2 \X0.
By iterating the argument, one finds that for any ˛, the family . ˛;k/k is relatively

compact for the L1loc.U˛ \ X0/ topology and using estimate (3.2), one concludes easily
that

R
Xtk

'k!
n
tk

admits a uniform lower bound as claimed.
This shows that Proposition 3.3 holds whenever � is locally trivial. An easy conse-

quence is

Corollary 3.6. In Setting 2.1, there exists a discrete set Z � D such that for every com-
pact subset K b D nZ, there exists a constant CK such thatZ

Xt

't!
n
t � �CK

for any collection of functions 't 2 PSH.Xt ; �t / such that supXt 't D 0. Moreover, one
can take Z D ; provided that the family � W X ! D admits a simultaneous resolution
of singularities, i.e. a proper, surjective holomorphic map f W Y ! X from a Kähler
manifold Y such that for any t 2 D, the induced morphism f jYt W Yt ! Xt is a resolution
of singularities, where Yt WD f �1.Xt /.

Proof. Let f W Y ! X be a resolution of singularities of X. One can assume that Y is a
Kähler manifold; let us pick a Kähler form!Y on Y. The induced map � WD� ı f WY!D
is surjective, hence by generic smoothness, it is smooth over the complement of a proper
analytic subset Z of D. In particular, Z is discrete. Note that over Z, the fibers of � may
have several irreducible components.
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We denote by ft the restriction f jYt W Yt ! Xt of f to the fiber Yt WD ��1.t/. For
any t 2 D nZ, the map ft is bimeromorphic, i.e. it is a resolution of singularities of Xt .
Let us choose a compact subset K b D. There exists a constant CK such that f �! �
CK!Y on ��1.K/. In particular, for any t 2 K, one has f �t 't 2 PSH.Yt ; CKC‚ !Y / and
supYt f

�
t 't D 0. Now, if we additionally assume thatK b D nZ, we can apply the result

above to the smooth family �j��1.K/ W ��1.K/ ! K to find another constant C 0K > 0

satisfying Z
Yt

.f �t 't / !
n
Y � �C

0
K

for any t 2 K. As !nY � C
�n
K f �t !

n
t , we deduce thatZ

Xt

't !
n
t � �C

0
K � C

n
K ;

which concludes the first part of the proof. The second statement is an immediate con-
sequence of the proof of the first one. Indeed, if Yt is smooth (as an analytic space),
then � ı f is smooth in a neighborhood of Yt and the argument above can be run over a
neighborhood of t .

3.3. The case of isolated singularities

In this section, we prove Proposition 3.3 in the case where all fibers Xt , t 2 D, have
isolated singularities.

Remark 3.7. We start with two observations.

� This case includes the case where n D dimXt D 1.

� If one only assumes that X0 has isolated singularities, then it is easy to check that
there exists " > 0 such that Xt has isolated singularities for any t satisfying jt j < ".
This is because the locus Z � X where � is not smooth is an analytic set such that
dim.Z \ X0/ D 0 and by upper semicontinuity, Z has relative dimension 0 over a
neighborhood of 0 2 D.

We now proceed to prove Proposition 3.3 in several steps.

Step 1. Localization of the problem at t D 0. Let f W Y ! X be a resolution of sin-
gularities X. The induced family � ı f W Y ! D is generically smooth over D, so for
r > 0 small enough, the restriction of � ı f to the inverse image of Dr has at most one
singular fiber, corresponding to t D 0. In particular, the family Y ! Dr is locally trivial
away from Y0. Applying the result in the locally trivial case (see §3.2) to the collection of
f ��t -psh functions f �'t , we see that for every compact subset K b D�r , there exists a
constant CK independent of the chosen family such that

sup
t2K

Z
Xt

.�'t /!
n
t � CK
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(cf. also Corollary 3.6). This shows that it is enough to prove that for any sequence tk! 0

and any collection of sup-normalized �tk -psh functions 'tk , one has

sup
k�1

Z
Xtk

.�'tk /!
n
tk
< C1:

Step 2. Choice of a good covering. As the fibers are reduced, it follows from the jacobian
criterion for smoothness that the smooth locus of � coincides with the union of the smooth
loci ofXt when t ranges over D. Recall thatZ, the singular locus of � , is an analytic space
of relative dimension at most zero. It has finitely many irreducible components (say when
restricted to ��1.D1=2// and we can assume without loss of generality that this number is
equal to the cardinality of Z \ X0. Let .V˛/˛ be a finite collection of (small) open balls
in X centered at the (finitely many) singular points of X0. Up to adding a finite number
of balls to the collection, one can assume that:

(i) The union V WD
S
˛ V˛ is an open neighborhood of X0 � X.

(ii) Each point of Z \X0 belongs to exactly one element V˛ of the covering.

(iii) For all ˛, there exists �˛ 2 C1.V˛;R/ such that !jV˛ D dd
c�˛ .

(iv) There exists r > 0 such that for all ˛,

Z \ @V˛ \ �
�1.Dr / D ;:

Up to subtracting a constant from �˛ , one can assume that �˛ is non-negative. More-
over, there exists a constant C1 > 0 such that �˛ � C1 on V˛ for any ˛. Let .�˛/˛ be
a partition of unity associated to the covering .V˛/˛ . That means that

P
˛ �˛ � 1 and

Supp.�˛/ � V˛ . Finally, let � WD
P
�˛�˛ . It follows from (ii) that ! D dd c� in some

neighborhood W 0˛ of each point of Z \ X0. We pick a relatively compact open sub-
set W˛ b W 0˛ and set W WD

S
W˛ . Up to decreasing r a little, one can assume that

Z \ @W \ ��1.Dr / D ;. In particular, there exists ı > 0 such that for any t 2 Dr , one
has d!.@W \Xt ; Z/ � ı. In summary,

0 � � � C1; ! D dd c� on W; d!.@W \Xt ; Z/ � ı for all t 2 Dr : (3.3)

Step 3. Weak compactness locally outsideZ. Let tk be a sequence of numbers converging
to zero, and let 'tk 2 PSH.Xtk ;�tk / be such that supXtk 'tk D 0. We claim that there exists
a sequence of points xk 2 Xtk and a constant C2 > 0 such that:

(i) 'tk .xk/ � �C2:

(ii) d!.xk ; Z/ � ı=2:

Indeed, let yk 2 Xtk be such that 'tk .yk/ D 0. If d!.yk ; Z/ � ı=2, then we are done.
Otherwise, yk 2 W by the third statement of (3.3). Now, the function C‚� C 'tk is psh
on W so by the maximum principle, there exists xk 2 @W such that .C‚�C 'tk /.xk/ �
.C‚� C 'tk /.yk/ � 0. By the first statement of (3.3), we deduce 'tk .xk/ � �C2 where
C2 WD C1C‚.

Let U WD ¹x 2 ��1.Dr / I d.x; Z/ > ı=2º. The map � is smooth on U and one can
coverU by finitely many open subsets .Uj /1�j�p isomorphic to .Uj \X0/�Dr over Dr .
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Because of (i), we can argue as in the locally trivial case (cf. §3.2) by exporting the
functions 'tk jUj\Xtk to the fixed space Uj \ X0 and get relative compactness there. In
particular, one can find a constant C3 > 0 independent of k such thatZ

U\Xtk

.�'tk /!
n
tk
� C3: (3.4)

Step 4. The integral bound. On W , one has ! D dd c�. This implies that !n D
.dd c�/n C T for some smooth, closed .n; n/-form T on ��1.Dr / such that T jW � 0.
Let us introduce constants C4; C5 such that �C4!n�1 � .dd c�/n�1 � C4!n�1 and
T � C5!

n. As the complement of W in ��1.Dr / is included in U , it follows from (3.4)
that Z

Xtk

.�'tk / T � C5C3: (3.5)

Moreover,Z
Xtk

.�'tk /.dd
c�/n D

Z
Xtk

��dd c'tk ^ .dd
c�/n�1

D �

Z
Xtk

�.�tk C dd
c'tk /^ .dd

c�/n�1C

Z
Xtk

��tk ^ .dd
c�/n�1

� C4C1

Z
Xtk

.�tk C dd
c'tk /^!

n�1
CC‚C4C1 �V

� 2C1C4C‚ �V:

All in all, one finds that Z
Xtk

.�'tk /!
n
tk
� C6;

where C6 D C3C5 C 2C1C4C‚ � V:

3.4. Sobolev and Poincaré inequalities

In this section, we work in Setting 2.1 and we assume from now on that the relative
dimension n D dimC Xt satisfies n > 1, since the case n D 1 has already been dealt with
in §3.3 (cf. Remark 3.7).

For t 2 D, we set Xt WD ��1.t/ and denote by X reg
t the regular locus of Xt . We fix a

Kähler form ! on X and set
!t WD !jXt :

Proposition 3.8. Let K b D. There exists CS D CS .K/ such that

8t 2 K; 8f 2 C10 .X
reg
t /;

�Z
Xt

jf j
2n
n�1!nt

�n�1
n

� CS

Z
Xt

.jf j2 C jdf j2!t /!
n
t :
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Remark 3.9. The inequality above extends immediately to the functions f 2W 1;2.X
reg
t /,

i.e. such that f; df 2 L2.X reg
t ; !t /.

Proof of Proposition 3.8. Because of the existence of a partition of unity, the statement
above is local. This means that it is enough to show the above inequality for any t 2 K
and any f 2 C10 .Ui \X

reg
t / where Ui � X are open sets such that

S
Ui D X.

We fix such an open set Ui and we drop the index i in what follows. Without loss
of generality, one can assume that there exists an embedding Ui ,! CN and that !jU
and !CN jU are quasi-isometric. Because the Sobolev inequality is essentially insensitive
to quasi-isometry, it is enough to show the inequality replacing !t by !CN jUt where
Ut WD U \Xt .

Now, the isometric embeddings .U reg
t ; !CN jUt / ,! .CN ; !CN / provide a family of

minimal submanifolds (i.e. with zero mean curvature vector) of the euclidean space by
virtue of the Wirtinger inequality. The expected inequality is now a direct application of
Michael–Simon’s Sobolev inequality [53, Thm. 2.1].

Proposition 3.10. Let K b D. There exists CP D CP .K/ such that

8t 2 K; 8f 2 W
1;2
0 .X

reg
t /;

Z
Xt

jf j2!nt � CP

Z
Xt

jdf j2!t !
n
t :

In the statement above, the space W 1;2
0 .X

reg
t / is defined as the space of functions f

on X reg
t such that f; df 2 L2.X reg

t ; !t / and
R
Xt
f!nt D 0.

Proof. First, we claim that for each t 2 D, there exists such a Poincaré constant CP;t .
Indeed, thanks to [5, Thm. 0.2], the Laplacian �!t is positive, self-adjoint and its spec-
trum is discrete. It remains to show that its kernel is one-dimensional. Now, if f 2
W 1;2.X

reg
t / is such that �tf D 0, it means that for every u 2 W 1;2.X

reg
t /, we have

hru;rf i D 0. In particular, taking u D f shows that f is locally constant on X reg
t .

As Xt is irreducible, X reg
t is connected and the result follows.

Given the absolute case explained above, the family version of the Poincaré inequality
follows from Proposition 3.8 and the irreducibility of the fibers: we refer the reader to
[57, Prop. 3.2] for a detailed argument (the projectivity assumption made by Ruan–Zhang
being unnecessary for this part of the argument).

3.5. Heat kernels and Green’s functions

In this section and the following one, we go back to the absolute case and consider an
irreducible and reduced Kähler space .X;!/ of dimension n D dimC X satisfying n > 1.

When X is smooth, it is well known (see e.g. [15, §VI]) that there exists a smooth,
positive function H on X � X � .0;C1/, symmetric in its space variable and such that
if � WD tr! dd c , then

� .��y C @t /H.x; y; t/ D 0.

� For every x 2 X , H.x; �; t /!n ! ıx weakly as t ! 0.
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In the general case whereX may have singularities, one can introduceX"DX n V" where
V" is a closed "-neighborhood of Xsing with smooth boundary. Then there exists a unique
smooth, positive function H" on X" �X" � .0;C1/ such that:

� .��y C @t /H".x; y; t/ D 0;

� H".x; y; t/! 0 whenever x or y approaches @X".

� For every x 2 X", H".x; �; t /!n ! ıx weakly as t ! 0.

Moreover, given .x;y; t/2X"0 �X"0 �.0;C1/, the function .0;"0/3" 7!H".x;y; t/

is decreasing. Using [15, VIII.2 Thm. 4] and its proof, we additionally see that the limit
H WD lim"H" is everywhere finite and satisfies:

� H is positive and smooth on Xreg �Xreg � .0;C1/.

� .��y C @t /H.x; y; t/ D 0.

� For all x; y 2 Xreg and t; s > 0,

H.x; y; t C s/ D

Z
X

H.x; �; t /H.�; y; s/!n: (3.6)

� For any x 2 Xreg, H.x; �; t /!n ! ıx weakly as t ! 0.

When X � PN is projective and ! D !FSjX , Li and Tian [51] have showed that there
is an absolute inequality

H.x; y; t/ � HPn.dPN .x; y/; t/ (3.7)

for any x; y 2 Xreg and t 2 .0;C1/, where HPn is the heat kernel of .Pn; !FS/, whose
dependence on the space variables x;y is known to reduce to a single real variable, namely
the distance between those two points.

In particular, H.x; �; t / is bounded on Xreg for any x 2 Xreg and t > 0. Since Xsing

has real codimension at least 2, it admits cut-off functions whose gradient converges to
zero in L2, and this allows one to perform integration by parts as in the compact case
for bounded functions in W 1;2. We refer to [51, Lem. 3.1] for more details; we will also
rely on the latter result which states that H.x; �; t / is in W 1;2 and that it satisfies the
conservation property

8t > 0;

Z
X

H.x; �; t /!n D 1:

Below are a few more properties that will be useful later, which are certainly standard
in the smooth case. For this purpose, one introduces the function

G.x; y; t/ WD H.x; y; t/ � 1=V ; where V WD

Z
X

!n:

The key information for us will be given by the fourth item, for which the arguments are
borrowed from [16]; see also [59, App. A].

Lemma 3.11. Assume either that X is smooth or that X � PN is projective and ! D
!FSjX . Let x; y 2 Xreg. Then:
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(1) G.x; y; t/ > �1=V ,
R
X
G.x; �; t /!n D 0 and

R
X
jG.x; �; t /j!n � 2.

(2) jG.x; y; t/j2 � G.x; x; t/G.y; y; t/.

(3) H.x; x; t/!C1 as t ! 0.

(4) There exists a constant C0 depending only on the Sobolev and Poincaré constants of
.Xreg; !/ such that

jG.x; y; t/j � C0t
�n

for any x; y 2 Xreg and any t > 0.

Proof. Under the assumptions on X , we know that H.x; �; t / is bounded in W 1;2 on Xreg

and satisfies the conservation property. We will only rely on these non-quantitative prop-
erties to establish the items below, and not on the more precise inequality (3.7) which
certainly does not hold if X is not projective.

.1/ is a trivial consequence of the positivity ofH and the fact that
R
X
H.x; �; t /!nD 1.

.2/ is classical whenX is smooth, so we assume for the time being thatX is projective.
Let K" be the Neumann heat kernel on X", let V" WD

R
X"
!n and let zG" WD K" � 1=V".

Then
K".x; y; t/ D

X
i�0

e��i;"t�i;".x/�i;".y/;

where .�i;"/ is an orthonormal basis of L2.X"/ consisting of Neumann eigenfunctions
of �� with eigenvalues �i;". Note that �0;" D 1=

p
V". By Cauchy–Schwarz, we find that

j zG".x; y; t/j
2
� zG".x; x; t/ � zG".y; y; t/:

Thanks to [51, Lem. 3.2], K" converges to H locally smoothly on X2reg � .0;C1/ when
"! 0, hence zG" ! G in the same way and we get the second item.

.3/ SinceH �H", it is enough to show the third claim forH". We consider a Sturm–
Liouville decomposition as before,

H".x; y; t/ D
X
i�0

e��i;"t i;".x/ i;".y/;

but now . i;"/ is an orthonormal basis of L2.X"/ consisting of Dirichlet eigenfunctions
of �� with eigenvalues �i;" (see [15, VII (31)]). The sought property now follows sinceP
 i;".x/

2 is the norm of the unbounded functional L2 \ C1.X"/ 3 f 7! f .x/.
.4/ We start from the identity (3.6), which holds for G as well as one checks easily.

Taking y D x and differentiating with respect to s and eventually setting s WD t , one finds

�G0.x; x; 2t/ D kdG.x; �; t /k2
L2
� .CS .CP C 1//

�1
kG.x; �; t /k2

L
2n
n�1

since integration by parts is legitimate as we explained above and
R
X
G.x; �; t /!n D 0.

Moreover, the interpolation inequality gives

G.x; x; 2t/ D kG.x; �; t /k2
L2
� kG.x; �; t /k

2
nC1

L1
� kG.x; �; t /k

2n
nC1

L
2n
n�1

;
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hence
kG.x; �; t /k2

L
2n
n�1

� 2�
2
nG.x; x; 2t/

nC1
n

and
�
1

n
G0.x; x; t/G.x; x; t/�1�

1
n � C�1 for C D n41=n � CS .CP C 1/.

Integrating this inequality with respect to t and using the second item, we get the fourth
item – recall that G.x; x; t/ > 0 for any x 2 Xreg given its expansion as power series
(cf. .2/).

Under the assumptions of Lemma 3.11 above, the integral

G.x; y/ WD

Z C1
0

G.x; y; t/ dt

is convergent whenever x ¤ y and defines a function G on Xreg � Xreg such that G.x; �/
is in L1.Xreg/. Moreover, since .��C @t /G.x; �; t / D 0 and

G.x; �; t /
t!C1
�����! 0; G.x; �; t /!n

t!0
���! ıx � 1=V ;

we have
dd cG.x; �/ ^ !n D !n=V � ıx ;

i.e. for all f 2 C10 .Xreg/, we haveZ
X

�f �G.x; �/ !n D
1

V

Z
X

f !n � f .x/: (3.8)

Finally, the first and fourth items of Lemma 3.11 enable us to find a lower bound of the
Green function as follows

G.x; y/ D

Z 1

0

G.x; y; t/ dt C

Z C1
1

G.x; y; t/ dt � �
1

V
�

C

n � 1
; (3.9)

where C only depends on the Sobolev and Poincaré constants of .Xreg; !/.

3.6. Green’s inequality for general psh functions

In this section, we assume that the assumptions of Lemma 3.11 are satisfied.
Let us first generalize formula (3.8) to some functions f 2 C1.Xreg/ that are not

necessarily compactly supported. For that purpose, let p W Y ! X be a log resolution of
singularities, letD be the exceptional divisor of p and let Y ı WD p�1.Xreg/D Y nD. We
claim that for any f 2 C1.Xreg/ such that p�f extends smoothly across D,Z

Xreg

�f �G.x; �/!n D
1

V

Z
Xreg

f !n � f .x/ (3.10)

for all x 2 Xreg. First observe that all the terms are well defined as one sees by pulling
back by p, which is an isomorphism overXreg. Indeed, recall that x 2Xreg and thatG.x; �/
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is locally bounded near Xsing so that p�G.x; �/ is in L1.Y ı; !Y / for any Kähler form !Y
on Y .

Next, we choose a family .�ı/ı of cut-off functions for D. As they are identically 0
on D, they come from X under p and one can see them as functions on X or Y inter-
changeably. It is classical (see e.g. [12, Sect. 9]) that one can choose �ı such that both
d�ı ^ d

c�ı and ˙dd c�ı are dominated by some fixed Poincaré metric !P (indepen-
dently of ı). In particular, using Cauchy–Schwarz and the dominated convergence theo-
rem, one finds

lim
ı!0

Z
Xreg

G.x; �/Œfdd c�ı C df ^ d
c�ı C d�ı ^ d

cf � ^ !n�1 D 0: (3.11)

Formula (3.10) is now a direct application of (3.8).
The next result is the key for the proof of Proposition 3.3.

Claim 3.12. Under the assumptions of Lemma 3.11, let ' 2 PSH.X;!/, V D
R
X
!n and

let x 2 Xreg. Then
1

V

Z
X

'!n � '.x/ � nV � inf
Xreg

G.x; �/:

Proof. Replacing ' by max.';�j / and letting j ! C1, one sees that it is enough to
prove the claim for bounded functions '. Next, thanks to Demailly’s regularization theo-
rem, one can write p�' as a pointwise decreasing limit of smooth function  " satisfying
p�! C "!Y C dd

c " � 0 for some fixed Kähler metric !Y on Y . Using (3.10) and set-
ting Gx WD G.x; �/, one finds

1

V

Z
X

'!n � '.x/ D lim
"!0

Z
Y ı
np�Gxdd

c " ^ p
�!n�1:

Moreover, as Gx have zero mean value, one hasZ
Y ı
p�Gxdd

c " ^ p
�!n�1 D

Z
Y ı

�
p�Gx � inf

Xreg
Gx

�
dd c " ^ p

�!n�1

D

Z
Y ı

�
p�Gx � inf

Xreg
Gx

�
.p�! C "!Y C dd

c "/ ^ p
�!n�1

�

Z
Y ı
p�Gx ^ .p

�! C "!Y / ^ p
�!n�1 C inf

Xreg
Gx �

�
V C "

Z
Y

!Y ^ p
�!n�1

�
� inf

Xreg
Gx � V C " �

�
inf
Xreg

Gx �

Z
Y

!Y ^ p
�!n�1 �

Z
Y ı
p�Gx!Y ^ p

�!n�1
�
:

Taking the limit as "! 0, we get the expected result.

3.7. Proof of Proposition 3.3

We can now finish the proof of Proposition 3.3. It remains to treat the cases where � is
projective or Xt is smooth for t ¤ 0. Moreover, we can assume that n D dimXt � 2,
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since otherwise Xt would have at most isolated singularities and we could then appeal to
§3.3 (see Remark 3.7).

Moreover, the content of Proposition 3.3 is insensitive to replacing ! by another Käh-
ler metric on X. In the case where � is projective, i.e. if X � PN � D is such that �
commutes with the second projection, then we will assume that ! D !FSjX .

Finally, in the case where Xt is smooth for t ¤ 0, it is sufficient to prove Proposi-
tion 3.3 for t ¤ 0 since it is already well known that the L1-sup comparison holds on the
fixed irreducible complex space X0.

We know from §3.4 that the Kähler manifolds .X reg
t ; !t / admit uniform Poincaré and

Sobolev constants. As the volume V of .Xt ; !t / is constant, it follows from (3.9) that
there exists CG > 0 independent of t such that

8x; y 2 X
reg
t ; Gt .x; y/ � �CG ;

where Gt .�; �/ is the Green function of .Xt ; !t /. As 't is sup-normalized and upper semi-
continuous, there exists xt 2X

reg
t such that 't .xt /��1. Applying Claim 3.12 to ' WD 't

and x WD xt , we find
1

V

Z
Xt

.�'t /!
n
t � nVCG C 1:

The proposition is proved.

4. Densities along a log-canonical map

We now pay attention to hypotheses (H2) and (H20). We focus on the integrability prop-
erties of some canonical densities.

4.1. Semistable model

Setting 4.1. Let � W X ! D be a proper, holomorphic surjective map from a Kähler
space X with connected fibers to the unit disk of relative dimension n. We make the
following assumption:

For each t 2 D; the pair .X; Xt / has log-canonical singularities. (4.1)

Here Xt D ��1.t/ is the schematic fiber at t 2 D [46, Def. 7.1].

About the singularities. In Setting 4.1, the following properties hold:

(1) Every fiber is reduced, KX=D is Q-Cartier and X has log-canonical singularities.

(2) The space X has canonical singularities if and only if the general fiber Xt has canon-
ical singularities [46, Lem. 7.2].

(3) The condition (4.1) is preserved by finite base change from a smooth curve [46,
Lem. 7.6].
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(4) If .X; X0/ has lc singularities, then .X; Xt / has lc singularities for jt j � 1 ([44,
Cor. 4.10 (2)] and [45, Thm. 2.3]).

(5) By loc. cit., the condition (4.1) is equivalent to asking X to be normal, Q-Gorenstein,
and that each fiber Xt has semi-log-canonical singularities.

By [42], one can find a semistable model of � .1 More precisely, up to shrinking D,
there exists a finite cover ' W t 7! tk of the disk for some integer k � 1 and a proper,
surjective birational morphism f W X0 ! X �' D

X0 X �' D X

D D
� 0

f g

pr2 �

'

(4.2)

such that X0 is smooth, f is isomorphic over the smooth locus of � and such that
around any point x0 2 X 00, there exists an integer p � nC 1 and a system of coordinates
.z0; : : : ; zn/ centered at x0 and such that � 0.z0; : : : ; zn/ D z0 � � � zp .

Additional assumption. Up to shrinking D, we will assume that � 0 is smooth away from 0

so that for any t ¤ 0, the induced morphism .g ı f /jX 0t W X
0
t ! Xt is a resolution of

singularities. Note that X 0t need not be connected.
Let m � 1 be an integer such that mKX=D is a Cartier divisor. We can cover X

with open sets Ui such that Ui \ Xreg admits a nowhere vanishing section �Ui 2

H 0.Ui \Xreg; mKX=D/. For any t 2 D, the restriction �Ui jX reg
t

defines a nowhere van-
ishing section �Ui jX reg

t
2 H 0.Ui \X

reg
t ; mKXt /. In particular, mKXt is a Cartier divisor

for all t . We want to understand the behavior of the volume forms .�Ui ^�Ui /j
1=m

X
reg
t

when
t ! 0. In order to do so, it is enough to work on X �' D directly as explained below.

Reduction step. The finite map g induces an isomorphism of Q-line bundlesKX�'D=D '

g�KX=D . In particular, one can replace X by X �' D in the following, or equivalently
assume that ' D IdD , i.e. k D 1. By what was said above, the “new” family still satisfies
condition (4.1).

4.2. Analytic expression of the densities in a semistable model

Let us start with some notation. Once and for all, we fix an open set U WD Ui0 for some i0.
We set � WD �U and �t WD �jX reg

t
. One can cover f �1.U / by a finite number of open

subsets Vj � X0 isomorphic to the unit polydisk of CnC1 and endowed with a system of
coordinates as above. We let V WD Vj0 be one of them. The goal is to understand f ��
when restricted to V , using our preferred set of coordinates. Finally, we set Ut WD U \Xt
and Vt WD V \X 0t .

1The reference [42] deals with the case of a proper morphism between algebraic varieties but
the construction extends to the analytic case mutatis mutandis, as stated e.g. in [46, Thm. 7.17].
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Next, we write
KX0 C Y0 D f

�.KX CX0/C
X
i

aiEi (4.3)

where the Ei ’s are f -exceptional divisors with ai � �1 for all i and Y0 is the strict trans-
form of X0. Note that some of the divisors Ei may be irreducible components of X 00. The
others surject onto D thanks to the additional assumption made in the previous section.
The divisor E WD

P
i Ei is the exceptional locus of f and E C Y0 has simple normal

crossing support. Under our assumptions, the analytic set

Nklt.X; X0/ WD f
� [
aiD�1

Ei

�
(4.4)

contains the non-klt locus of every fiber Xt , t 2 D. This is an easy consequence of the
adjunction formula, at least when the Xt ’s are normal.

We now let x0 2 Y0 and we assume that the coordinates mentioned above are chosen
such that Y0 D .z0 � � � zr D 0/ locally, for 0 � r � p being the number of irreducible
components of Y0 minus 1 on that chosen open set.

On Vt , t ¤ 0, the functions .z1; : : : ; zn/ induce a system of coordinates and the
form f �� on V can be seen as a collection of m-th powers of holomorphic n-forms

f ��t D gt .z1; : : : ; zn/.dz1 ^ � � � ^ dzn/
˝m

for some holomorphic function gt on Vt nE, with poles of order at most .�mai /C along
Ei \Xt . The form�^��

�
dt
t

�˝m is a trivialization ofm.KX CX0/ overU reg. The pull-

back f �.�^ ��
�
dt
t

�˝m
/ is a well definedm-th power of an .nC 1/-form on f �1.U reg/

with logarithmic poles along Y0 that extends meromorphically over f �1.U / with poles
of order at most .�mai /C along Ei . As

f ���
�
dt

t

�
D .� 0/�

�
dt

t

�
D

pX
iD0

dzi

zi

on V , the form f �.� ^ ��.dt
t
/˝m/ is equal on that set to

.�1/mn.z1 � � � zr /
mg� 0.z/.z1; : : : ; zn/

�
dz0

z0
^
dz1

z1
^ � � � ^

dzr

zr
^ dzrC1 ^ � � � ^ dzn

�˝m
so that the function .V nE [ Y0/ 3 z 7! .�1/nm.z1 � � � zr /

mg� 0.z/.z1; : : : ; zn/ extends to
a meromorphic function h on V , holomorphic along Y0 and with poles of order at most
.�mai /C along Ei and satisfying

f ��t D .�1/
mn h.z/

.z1 � � � zr /m
.dz1 ^ � � � ^ dzn/

˝m (4.5)

on Vt , for t ¤ 0. When t D 0, one can also obtain a formula as above for f ��0 but it
requires to first choose a component Y .k/0 of Y0. Let 0 � i � r be such that Y .k/0 \ V0 D

.zi D 0/: On that set (say after removing E), one has

f ��0 D .�1/
iCmn h.z/

.z1 � � �bzi � � � zr /m .dz0 ^ � � � ^bdzi ^ � � � ^ dzn/˝m: (4.6)
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Note that if X0 (or equivalently Y0) is irreducible, then r D 0 in the formula above.

Claim 4.2. If X0 has canonical singularities, then r D 0 and the meromorphic function
V 3 z 7! h.z/ is holomorphic on V .

Proof. AsX0 is normal, it is irreducible, hence Y0 is smooth and irreducible. In particular,
the map f jY0 W Y0 ! X0 induces a resolution of singularities.

As X0 has canonical singularities, the pull-back f ��0 of the form �0 on X reg
0 \ U

extends holomorphically across Y0 \ E. Given (4.6), it means that hjV\Y0 extends
holomorphically along each Ei \ Y0. As h is holomorphic on V and does not van-
ish outside V0, its divisor is an n-dimensional variety supported on V \ E, we have
div.h/D

P
biEi for some integers bi . As E C Y0 is snc, the decomposition div.hjY0/DP

bi .Ei \ Y0/ is the decomposition into irreducible components. As hjY0 is holomor-
phic along the non-empty set Y0 \Ei , we necessarily have bi � 0 for any i . The claim is
proved.

4.3. Integrability properties of the canonical densities

Definition 4.3. In Setting 4.1, let ! be a Kähler form on X. We define the function 
 on
U \Xreg by

.� ^�/1=m D e�
!n:

We want to analyze the integrability properties of e�
 . Arguing as in [56, proof of
Thm. B.1 (i)] (see also [28, Lem. 6.4]), it is easy to infer from the normality of X that
given any small open set U 0 � U , there exist bounded holomorphic functions .f1; : : : ; f`/
on U 0 such that V.f1; : : : ; f`/ � U 0sing and


 jU 0reg
D
1

m
log

X
i

jfi j
2: (4.7)

Let us pick a section sE 2H 0.X0;OX0.E// cutting out the exceptional divisor E and let
us choose a smooth hermitian metric j � j on OX0.E/. Given (4.7), there exists a constant
A > 0 such that

f �
 � A log jsE j2: (4.8)

Lemma 4.4. Assume that X0 has canonical singularities and set !t WD !jXt . Then up to
shrinking D, there exists p > 1 and a constant C > 0 such that for any t 2 D, one hasZ

Ut

e�p
!nt � C:

Proof. We set p WD 1C ı for some ı > 0 small enough to be chosen later. Given (4.8),
we haveZ
Ut

e�p
!nt D

Z
f �1.Ut /

e�ıf
�
f �.�t ^�t /

1=m
�

Z
f �1.Ut /

jsE j
�2ıAf �.�t ^�t /

1=m:
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Now, one can cover f �1.Ut / by finitely many open sets Vt D V \ X 0t as above. On V ,
the system of coordinates .z0; : : : ; zn/ induces a system of coordinates .z1; : : : ; zn/ such
that

jsE j
�2ıAf �.�t ^�t /

1=m
� C

pY
iD1

jzi j
�2ıAidz1 ^ d Nz1 ^ � � � ^ idzn ^ d Nzn

for some uniform constantC thanks to (4.5) and Claim 4.2. Recall that V D
Qn
iD0¹jzi j<1º

� CnC1 and

Vt D V \ ¹z0 � � � zp D tº ,! ¹.z1; : : : ; zn/ 2 Cn
I t � jzi j < 1º � Dn;

where the injective map is given by prz1;:::;zn jVt , i.e. the restriction to Vt of the projection
map onto the last n coordinates in CnC1. For ı small enough, the function D 3 z 7! jzj�ıA

is integrable with respect to the area measure; this concludes the proof.

For the next lemma, we come back to the general case. We start by choosing a com-
ponent Y .k0/0 of Y0, and we denote by X .k0/0 the irreducible component of X0 birational
to Y .k0/0 via f . Next, we consider the reduced divisor F on X0 whose support consists
of the union of the other components Y .k/0 , k ¤ k0, along with the divisors Ei whose
discrepancy ai is equal to �1 (see (4.3)).

Let hF be a smooth hermitian metric on OX0.F / and let sF 2H 0.X0;OX0.F // such
that div.sF / D F . We let

 F WD � log.� log jsF j2hF /: (4.9)

Similarly, let Fklt WD E � F \E and  klt WD log jsFklt j
2.

Claim 4.5. There exists ı > 0 small enough such that for any " > 0, there exists a con-
stant C" such that for any t 2 D,Z

f �1.Ut /

e.1C"/ F�ı kltf �.�t ^�t /
1=m
� C":

Proof. The statement is local on X0, so it is enough to control the integrals over Vt . Up
to relabeling, one can assume that Y .k0/0 \ V D .z0 D 0/, F \ V D .z1 � � � zs D 0/ so
that for s C 1 � i � p, f ��t has a pole of order at most m� 1 along .zi D 0/. We have
implicitly assumed that V meets Y .k0/0 ; actually, the computation is insensitive to whether
that condition is fulfilled or not. Using (4.5), our integral is bounded byZ

Vt

sY
iD1

1

jzi j2.� log jzi j/1C"
�

pY
iDsC1

1

jzi j2.ı�ai /
d�Cn ;

where �1 < ai < 0, V D
Qn
iD0¹jzi j < 1º � CnC1 and Vt D V \ ¹z0 � � � zp D tº. By the

Fubini theorem, one can reduce the integral to V pt WDVt \CpC1 (i.e. fixing zpC1; : : : ; zn).
There is no harm in assuming that ı < mini .1C ai /=2 so that the integral is bounded byZ

V
p
t

sY
iD1

1

jzi j2.� log jzi j2/1C"
�

pY
iDsC1

1

jzi j2.1�ı=2/
d�Cp :
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Using polar coordinates, one can assume that t is real (in .0; 1/) and the integral becomes
over Wt WD ¹.ri /1�i�p 2 Œ0; 1=2�p I r1 � � � rp � tºZ

Wt

sY
iD1

1

ri .� log ri /1C"
�

pY
iDsC1

1

r1�ıi

d�Rp :

As Wt �
Qp
iD1¹t � ri � 1=2º and the functions r 7! 1

r.� log r/1C"
and r 7! 1

r1�ı
are

integrable on Œ0; 1=2�, the conclusion follows from Fubini’s theorem.

The result above allows us to generalize Lemma 4.4 when no assumption on the cen-
tral fiber is made. To do so, we first need some notation. The function  F is well defined
on X0 but it does not necessarily come from X. Given that Nklt.X; X0/ is an analytic set
in X and up to shrinking D a little, one can construct a function � such that:

� � � �1 on X.

� � is quasi-psh and has analytic singularities along Nklt.X;X0/; in particular, it is iden-
tically �1 on that set.

We set
 WD � log.��/ on X:

Up to scaling �, one can assume that

f � �  F : (4.10)

Next, we introduce for " > 0 the function 
" WD 
 � .n C 1 C 2"/ defined on U . In
other words,

e.nC1C2"/ .� ^�/1=m D e�
"!n: (4.11)

Lemma 4.6. With the notation above, there exists a constant zC" such thatZ
Ut

j
"j
nC"e�
"!nt �

zC" for any t 2 D.

Proof. In order to compute the integral, we pull it back by f and work on Vt . We have
successively

jf �
"j . � log jsE j C log.� log jsF j/ . � log jsF j � log jsFklt j:

The first inequality is a combination of (4.8) and (4.10). To obtain the second inequality,
we use the fact that E D F [ Fklt to split the term log jsE j while log.� log jsF j/ can be
absorbed by the more singular � log jsF j. The integral to bound becomesZ

Vt

Œ.� log jsF j/nC" C .� log jsFklt j/
nC"�e.nC1C2"/ F f �.�t ^�t /

1=m;

which itself is controlled byZ
Vt

e.1C"/ F f �.�t ^�t /
1=m
C

Z
Vt

e2 F�ı kltf �.�t ^�t /
1=m

for any given ı > 0. The lemma now follows from Claim 4.5.
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5. Negative curvature

In this section we apply our previous results to the study of families of varieties with
“negative canonical bundle”: we consider families of manifolds of general type, as well
as families of “stable varieties”.

5.1. Families of manifolds of general type

Setting 5.1. Let X be an irreducible and reduced complex space endowed with a Kähler
form ! and a proper, holomorphic map � W X ! D. We assume that for each t 2 D,
the .schematic/ fiber Xt is an n-dimensional Kähler manifold Xt of general type, i.e. its
canonical bundle KXt is big. In particular, X is automatically non-singular and the map
� is smooth. One can view the fibers Xt as deformations of X0.

We fix a closed differential .1; 1/-form ‚ on X which represents c1.KX=D/ 2

H
1;1

@N@
.X/ and set �t D ‚jXt . Shrinking D if necessary and rescaling, we can assume

that
�! � ‚ � !:

Lemma 5.2. In Setting 5.1, the quantity vol.KXt / is independent of t 2 D.

Proof. We work in two steps. First, we assume that the family � W X ! D is projective,
i.e. there exists a positive line bundle L over X. In that case, we know that the invariance
of plurigenera holds [54, 60], meaning that the function t 7! h0.Xt ; mKXt / is constant
on D, without even assuming that Xt is of general type for all t . In particular, it would
be enough to assume that only X0 is of general type, from which it results that Xt is of
general type for all t and vol.KXt / is independent of t .

Coming back to the general case, we know that KX=D is big. Thanks to Demailly’s
regularization theorem, there exists a Kähler current T 2 c1.KX=D/ with analytic singu-
larities along V.I/ for some ideal sheaf I � OX . Let f W X0 ! X be a log resolution
of .X; I/. By Hironaka’s theorem, one can construct such a morphism f by a sequence
of blow-ups along smooth centers only. We write f �T D T 0 C ŒF � for some smooth
semipositive form T 0 on X0 and some effective divisor F . This sequence may be infi-
nite; however, the centers project onto a locally finite family of subsets of X. Up to
co-restricting f to ��1.K/ for some compact subset K b D, one can assume that f
is a finite composition of blow-ups and that T 0 � ı��! for some ı > 0 small enough.

Let E be the exceptional divisor of f , with irreducible components E D
PN
kD1 Ek .

A classical argument (see e.g. [25, Lem. 3.5]) allows one to find smooth .1; 1/-forms
�Ek 2 c1.Ek/with support in an arbitrarily small neighborhood ofEk along with positive
numbers .ak/ such that the sum � D

P
k ak�k defines a .1; 1/-form on X0 which is

negative definite along the fibers of f . It follows that for " > 0 small enough, the smooth
form ��! � "�E is Kähler. In particular, T 0 � ı"� is a Kähler form whose cohomology
class belongs to NSR.X

0/. This implies that the Kähler cone of X0 meets NSZ.X
0/, i.e.

� ı f is projective.
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Let X 0t WD f
�1.Xt / and let Kı � K be the set of regular values of � ı f . For any

t 2 Kı, the map f jX 0t W X
0
t ! Xt is birational, hence vol.KX 0t / D vol.KXt /. By the first

step, vol.KX 0t / is independent of t 2 Kı, hence the same holds for vol.KXt /. The set
K nKı is finite and without loss of generality, one can assume that it consists of the single
element ¹0º. The fiberX 00 can be decomposed asX 00 D Y0C

P
Ei where f jY0 W Y0!X0

is birational and Ei is contracted by f jX 0
0
. Let Y 00 ! Y0 be a resolution of singularities.

By [64, Thm. 1.2], we have vol.KY 0
0
/� vol.KX 0t / for t ¤ 0. AsX0 and Y 00 are smooth and

birational, we have vol.KX0/ D vol.KY 0
0
/ � vol.KXt /. Finally, as t 7! vol.KXt / is upper

semicontinous, we have vol.KX0/ D vol.KXt / for any t 2 K. The lemma is proved.

Remark 5.3. In the last step of the proof of Lemma 5.2, we could also use the exis-
tence of relative minimal models, provided D is replaced by a quasi-projective smooth
curve C . The general fiber of the projective morphism X0 ! C is a projective variety of
general type, hence it admits a good minimal model over C by [8]. By [31, Thm. 3.3] and
[65, Cor. 1.2], it follows that X0 ! C admits a birational model � W X0 Ü X00 over C
such that ��1 does not contract any divisor, every fiber X 00t of X00 ! C has canonical
singularities and KX 00t is semiample and big. For any t 2 C , one has vol.KX 00t / D .K

n
X 00t
/.

By flatness, this quantity does not depend on t .
Finally, we claim that X 000 is birational to X0. This is a combination of the following

two facts. First, the variety X 000 has canonical singularities and KX 00
0

is big, hence it is of
general type and in particular it is not uniruled. Next, X 000 is birational to a component
of X 00 and all of them but the strict transform of X0 by f are covered by rational curves
as f is a composition of blow-ups of smooth centers from a smooth manifold.

The positive .n; n/-forms .!nt /t2D induce a smooth hermitian metric on �KX=D .
Since Œ‚� D c1.KX=D/ 2 H

1;1

@N@
.X/ there exists a smooth function zh on X such that

�dd cX log!nt D �‚C dd
c
X
zh:

We will denote by zht WD zhjXt the restriction to the fiber Xt . The function zh becomes
unique (and remains smooth) after imposing the normalizationZ

Xt

zht!
n
t D 0:

We define a function h on X by imposing that ht WD hjXt satisfies

ht D zht � log
�
1

Vt

Z
Xt

e
zht!nt

�
:

In particular, Z
Xt

eht!nt D Vt WD vol.KXt /: (5.1)

As zh is smooth on X, one has the following obvious consequence.
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Lemma 5.4. Given any compact subset K b D, one has

sup
t2K

khtkL1.Xt / < C1:

It follows from [11], a generalization of the Aubin–Yau theorem [3, 71], that there
exists a unique Kähler–Einstein current on Xt . This is a positive closed current Tt in
c1.KXt / which, by [8,28], is a smooth Kähler form in the ample locus Amp.KXt /, where
it satisfies the Kähler–Einstein equation

Ric.Tt / D �Tt :

It can be written as Tt D �t C dd c't , where 't is the unique �t -psh function with minimal
singularities that satisfies the complex Monge–Ampère equation

.�t C dd
c't /

n
D e'tCht!nt on Amp.KXt /:

The minimal singularity assertion is equivalent to the following uniform bound: for all
x 2 Xt ,

�Mt �

�
't .x/ � sup

Xt

't

�
� V�t .x/ � 0;

where
V�t .x/ D sup ¹ut .x/ Iut 2 PSH.Xt ; �t / and ut � 0º:

We can choose Mt independent of t by using Theorem 1.9:

Theorem 5.5. In Setting 5.1, letK b D be a compact subset. There exists a constantMK

such that for all x 2 ��1.K/, one has

�MK � 't .x/ � V�t .x/ �MK where t D �.x/.

Proof. From Lemma 5.2, it follows that the volume Vt of KXt is independent of t . We
denote it by V .

Set �t D eht!nt =V and recall that this is a probability measure, by our choice of
normalization. We first observe that

0 � sup
Xt

't � � inf
��1.K/

h � CK : (5.2)

Let us first prove the left-hand inequality. As the measures

1

V
.�t C dd

c't /
n
D e't�t

have mass 1, one has

1 �

Z
Xt

esupXt 'td�t D e
supXt 't ;

and therefore supXt 't � 0:
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To prove the middle inequality in (5.2), we observe that, since �t � !t , 't is a subso-
lution of the equation

.!t C dd
c't /

n
� .�t C dd

c't /
n
D e'tCht!nt ;

while the constant function ut .x/D� inf��1.K/ h is a supersolution of the same equation,

.!t C dd
cut /

n
D !nt � e

utCht!nt :

It follows from the comparison principle [35, Prop. 10.6] that 't � � inf��1.K/ h. The
rightmost inequality in (5.2) follows from Lemma 5.4 above.

We can thus rewrite the complex Monge–Ampère equation as

1

V
.�t C dd

c t /
n
D e tCsupXt 't�t D ft�t ;

where  t D 't � supXt 't and ft D exp. t C supXt 't /. Combining the inequalities
 t � 0 and (5.2), it follows that the densities ft are uniformly bounded.

Recall that � is smooth, so in particular it is locally trivial. Therefore, Theorem 3.4
applies and we can now appeal to Theorem 1.9 with p D C1 and 0 < ˛ < ˛.‚;X/ and
obtain

�MK �  t � V�t � 0:

Note that one uses here the fact that the volumes Vt stay away from zero. The conclusion
follows since  t � 't is uniformly bounded by (5.2).

Remark 5.6. Set

V‚.x/ WD V��.x/.x/ and �.x/ WD '�.x/.x/:

It is tempting to compare � to

OV‚ D sup ¹u 2 PSH.X; ‚/ Iu � 0º:

Clearly OV‚ � V‚, hence OV‚ �MK � �. It follows from [14, Thm. A] that � is ‚-psh
on X, thus � � sup��1.K/ � � OV‚ and

�MK � � � OV‚ �MK :

Remark 5.7. The same results can be proved if the family � W X ! D is replaced by
a smooth family � W .X; B/ ! D of pairs .Xt ; Bt / of log-general type, i.e. such that
.Xt ; Bt / is klt and KXt C Bt is big for all t 2 D.

5.2. Stable varieties

A stable variety is a projective variety X such that:

(1) X has semi-log-canonical singularities.

(2) The Q-line bundle KX is ample.
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We refer to [1,41,43,47,50] for a detailed account of these varieties and their connection
to moduli theory.

In [7], it was proved that a stable variety admits a unique Kähler–Einstein metric !.
There are several equivalent definitions for such an object, but the simplest is probably
the following:

Definition 5.8. A Kähler–Einstein metric ! on a stable variety is a smooth Kähler metric
on Xreg such that

Ric.!/ D �! and
Z
Xreg

!n D .KnX / where n D dimC X .

It is proved in loc. cit. that ! extends canonically across Xsing to a closed, positive
current in the class c1.KX /. It is desirable to understand the singularities of ! near Xsing.
In [38, Thm. B], it is proved that ! has cusp singularities near the double crossings of X .
Moreover, it is proved in [62] that the potential ' of ! with respect to a given Kähler
form !X 2 c1.KX /, i.e. ! D !X C dd c', is locally bounded on the klt locus of X . More
precisely, given any divisor D D .s D 0/ �Q KX containing the non-klt locus of X and
given any " > 0, there exists a constant C" > 0 such that

' � " log jsj2 � C"; (5.3)

where j � j is some smooth hermitian metric on OX .D/. We wish to refine that estimate
and obtain a version for families of canonically polarized manifolds degenerating to a
stable variety.

Proposition 5.9. Let X be a stable variety of dimension n and let !X 2 c1.KX / be
a Kähler metric. Next, let ! D !X C dd

c' be the Kähler–Einstein metric of X . Let
D D .s D 0/ be a divisor containing the non-klt locus of X and let j � j be some smooth
hermitian metric on OX .D/. For any " > 0, there is a constant C" such that

' � �.nC 1C "/ log.� log jsj/ � C": (5.4)

Remark 5.10. Estimate (5.4) is an important refinement of (5.3), as it ensures that '
belongs to the finite energy class E1.X; !X /; see [34] or [11, Sect. 2] for the definitions
and main properties of these classes.

This estimate is almost optimal. Indeed, if X is the Satake–Baily–Borel compactifica-
tion of a ball quotient, it is a normal stable variety and it admits a resolution .X;D/which
is a toroidal compactification of the ball quotient obtained by adding disjoint abelian vari-
eties. The potential ' of the Kähler–Einstein metric on .X;D/ with respect to a smooth
form in c1.KX CD/ satisfies

' D �.nC 1/ log.� log jsDj/CO.1/ if .sD D 0/ D D.

Proof of Proposition 5.9. Let f W Y ! X be a resolution of singularities of X such that
f induces an isomorphism over Xreg. The complex Monge–Ampère equation satisfied
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by ' pulls back to Y and reads

.f �!X C dd
cf �'/n D ef

�'d�Y ; (5.5)

where d�Y WD
Qr
iD1 jti j

2ai!nY is a positive measure with possibly infinite mass. Here,
!Y is a Kähler form on Y , and .ti D 0/ are divisors sitting over Xsing (they need not be
exceptional though, as X may have singularities in codimension 1). Finally, ai � �1 for
all i , and any divisor .ti D 0/ such that ai D �1 sits above the non-klt locus of X .

Now, let F be an effective divisor on X and let �X 2 H 0.X;OX .F // be a section
cutting out F . Let h be a smooth hermitian metric on OX .F /; there exists a constant CF
such that ‚h.F / � CF !X . One can scale h so that j�X j2h < e

�2.nC2/CF on X . Finally,
let �Y WD f ��X and  WD � log.� log j�Y j2/. We have

dd c D
hD�Y ;D�Y i

j�Y j2.� log j�Y j2/
�

1

� log j�Y j2
� f �‚h.F /:

By our choice of scaling, the function A is f �!X -psh for any 0 � A � 2.n C 2/.
Moreover, it belongs to the class E.Y; f �!X / thanks to e.g. [36, Prop. 2.3] and [20,
Thm. 1.1 (ii)].

We apply this construction to F some (very ample, say) divisor containing the non-klt
locus of X . This yields a section �Y of f �F that vanishes to order at least 1 along the
.ti D 0/ for which ai D �1. As a result, the measure

e.nC1C2"/ d�Y .
Y
aiD�1

1

jti j2.� log jti j2/nC1C2"
Y
ai>�1

jti j
2ai � !nY

has a density g" with respect to !nY that satisfiesZ
Y

g"jlogg"jnC"!nY < C1

for any " > 0. By Theorem 1.5, this implies that the unique solution u" 2 E.Y; 1
2
f �!X /

of the Monge–Ampère equation�
1
2
f �!X C dd

cu"
�n
D eu"C.nC1C2"/ d�Y

is bounded, i.e. there exists a constant C" > 0 such that

ku"kL1.Y / � C": (5.6)

Now, the function v" WD u" C .nC 1C 2"/ 2 E.Y; f �!X / satisfies the inequality

.f �!X C dd
cv"/

n
�
�
1
2
f �!X C dd

cu"
�n
D ev"d�Y ;

i.e. v" is a subsolution of (5.5). By the comparison principle, we obtain f �' � v" and it
follows from (5.6) that

f �' � .nC 1C 2"/ � C";

from which the conclusion follows.
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5.3. Stable families

Now one can establish a family version of the previous estimate, i.e. of Proposition 5.9.
In Setting 4.1, assume additionally that KX=D is ample. We let h be a smooth hermitian
metric on KX=D whose curvature is a Kähler form !X WD ‚h.KX=D/; we set

!Xt WD !X jXt :

If � is a local trivialization of mKX=D , then the quantity

�X=D;h WD
in
2
.� ^�/1=m

j�j
2=m

h

is independent of � and m (yet it depends on h), and for any t 2 D, it restricts to X reg
t as

a positive measure
�Xt ;h WD �X=DjX

reg
t
;

which we extend by zero across X sing
t . For each t 2 D, there exists a unique Kähler–

Einstein metric !KE;t 2 c1.KXt / which solves the Monge–Ampère equation

.!Xt C dd
c't /

n
D e't�Xt ;h (5.7)

on Xt . This is due to [3, 71] when Xt is smooth and to [7] in general.

Theorem 5.11. In Setting 4.1, assume that:

� The relative canonical bundle KX=D is ample.

� The central fiber X0 is irreducible.

Let !Xt C dd
c't be the Kähler–Einstein metric of Xt that solves (5.7) and let D D

.s D 0/�X be a divisor which contains Nklt.X;X0/ .see (4.4)/. Fix a smooth hermitian
metric j � j on OX.D/. Up to shrinking D, for any " > 0, there exists C" > 0 such that

't � �.nC 1C "/ log.� log jsj/ � C" (5.8)

on Xt for any t 2 D.

This estimate improves an interesting control obtained previously by J. Song (see
[62, Lem. 4.2]).

Proof of Theorem 5.11. Let f W X0 ! X be a semistable model as in (4.2). The first
observation is that the behavior of f �.�t ^ �t /1=m and f ��Xt ;h on Xt is the same,
uniformly in t , because there exists a constant C > 0 such that for any trivializing open
set, one has C � j�j2

h
� C�1, where � ranges among the finitely many trivializations of

mKX=D . This follows from the fact h is a smooth hermitian metric on mKX=D .
We set  WD f �.� log.� log jsj2//; it is a quasi-psh function on X0 satisfying

 �  F CO.1/;

where  F is defined in (4.9).
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By scaling the metric j � j on OX.D/, one can assume that A is f �!X -psh for any
0 � A � 2.nC 2/. For any t 2 D�, the function  t WD  jX 0t belongs to E.X 0t ; f

�!Xt /

by the same argument as in the proof of Proposition 5.9.
Let u";t 2 E.X 0t ;

1
2
f �!Xt / be the unique solution of the Monge–Ampère equation�

1
2
f �!Xt C dd

cu";t
�n
D eu";tC.nC1C2"/ tf ��Xt ;h: (5.9)

One can write e.nC1C2"/ tf ��Xt ;h D e
�tf �!nXt , where �t is the restriction to X 0t of

the difference of quasi-psh functions on X0 with uniformly bounded L1 norm on X 0t . Set
V WD

R
Xt
!nXt . Integrating both sides of (5.9) and using the Jensen inequality we obtain

V

2n
D

Z
X 0t

eu";tC.nC1C2"/ tf ��Xt ;h D V

Z
X 0t

eu";tC�t
f �!nXt
V

� V � e
1
V

R
X0t
.u";tC�t /f

�!n
Xt :

Since
R
X 0t
j�t jf

�!nXt is uniformly bounded, we get
R
X 0t
u";tf

�!nXt � C for some C > 0

independent of "; t . Since u";t is f �.1
2
!Xt /-psh, it is the pull-back of a 1

2
!Xt -psh function

onXt to which one can apply Proposition 3.3 since � is projective. To summarize, we get
an upper bound

u";t � C: (5.10)

Next, we wish to apply Theorem 1.5; in order to do so, one has to check that hypothe-
ses (H1) and (H20) are satisfied in our situation. For (H1), it is a consequence of The-
orem 3.4 – recall that up to shrinking D, all fibers Xt are irreducible since so is X0.
As for (H20), it follows from Lemma 4.6 that we pull back via f to the smooth Kähler
manifold X 0t . All in all, we can find C" > 0 independent of t 2 D such that

ku";tkL1.X 0t / � C": (5.11)

Now, the function v";t WD u";t C .nC 1C 2"/ t 2 E.X 0t ; f
�!Xt / satisfies

.f �!Xt C dd
cv";t /

n
�
�
1
2
f �!Xt C dd

cu";t
�n
D ev";tf ��Xt ;h;

i.e. v";t is a subsolution of (5.7). By the comparison principle, we obtain f �'t � v";t and
it follows from (5.11) that

f �'t � .nC 1C 2"/ t � C";

from which the conclusion follows.

6. Log Calabi–Yau families

6.1. Families of Calabi–Yau varieties

In Setting 4.1, let us assume additionally that KX=D is relatively trivial and that X0 has
canonical singularities. For t small enough, Xt has canonical singularities as well and
KXt is linearly trivial.
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Let ˛ be a relative Kähler cohomology class on X represented by a relative Kähler
form !. We set ˛t WD ˛jXt , !Xt WD !jXt and V WD

R
Xt
!nt ; V does not depend on t (see

Lemma 2.2). Let � be a trivialization of KX=D , so that the quantity

�X=D WD i
n2� ^�

restricts to X reg
t as a positive measure

�Xt WD �X=DjX
reg
t
;

which we extend by zero across X sing
t . We set ct WD log

R
Xt
d�Xt . For each t 2 D,

there exists a unique Kähler–Einstein metric !KE;t D !t C dd
c't 2 ˛t which solves

the Monge–Ampère equation

1

V
.!t C dd

c't /
n
D e�ct�Xt (6.1)

on Xt and that we normalize by supXt 't D 0. This is due to [71] when Xt is smooth and
to [28] in general.

Theorem 6.1. In Setting 4.1, assume that:

� The relative canonical bundle KX=D is trivial.

� The central fiber X0 has canonical singularities.

� Assumption 3.2 is satisfied.

Let !t C dd c't be the Kähler–Einstein metric of Xt solving (6.1). Up to shrinking D,
there exists C > 0 such that

oscXt 't � C (6.2)

for any t 2 D, where oscXt 't D supXt 't � infXt 't .

A particular case of this result has been obtained previously by Rong–Zhang (see
[56, Lemma 3.1]) by using the Moser iteration process.

Remark 6.2. One can replace the first two assumptions in Theorem 6.1 above by the
following weaker ones: X is normal, Q-Gorenstein, KX=D is trivial and X0 has canon-
ical singularities. Indeed, it follows from the inversion of adjunction [45, Thm. 2.3] that
.X;Xt / is lc for t close enough to 0. Moreover, an easy computation relying on the adjunc-
tion formula shows that Xt has canonical singularities for t close to 0.

Proof of Theorem 6.1. A first observation is that the quantities ct remain bounded when
t varies thanks to Lemma 4.2. The result now follows from Theorem 1.1. Indeed, (H1) is
satisfied thanks to Theorem 3.4, while (H2) holds thanks to Lemma 4.4 that we pull back
to X 0t via f , with the notation of that lemma.

6.2. The log Calabi–Yau setting

We will use the following setting.
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Setting 6.3. LetX be an n-dimensional compact Kähler space and letB D
P
biBi be an

effective R-divisor such that the pair .X;B/ has klt singularities. We assume furthermore
that the log Kodaira dimension of the pair .X;B/ vanishes, i.e.

�.KX C B/ D 0:

In what follows, we denote by E the (unique) effective R-divisor in c1.KX C B/.
Thanks to log abundance in numerical dimension zero (see [13, Cor. 1.18]), a particular
instance of such pairs is provided by klt pairs .X;B/ with rational boundary such that the
Chern class c1.KX C B/ 2 H 2.X;Q/ vanishes.

Definition 6.4. In Setting 6.3, given a cohomology class ˛ 2 H 1;1.X;R/ that is nef and
big, it follows from [11] that there exists a unique singular Ricci-flat current T 2 ˛, i.e.
a closed, positive current of bidegree .1; 1/ representing ˛ with the following properties:

(i) T has minimal singularities in ˛.

(ii) T is a Kähler form on the analytic open set�˛ WD .Xreg n Supp.B CE//\Amp.˛/.

(iii) Ric.T / D ŒB� � ŒE� on Xreg.

The current T can be found by solving the Monge–Ampère equation

vol.˛/�1.� C dd c'/n D �.X;B/; (6.3)

where � 2 ˛ is a smooth representative, ' 2 PSH.X; �/ is the unknown function and

�.X;B/ D .s ^ Ns/
1=me��B :

Here, s 2 H 0.X; m.KX C B// is any non-zero section (for some m � 1) and �B is the
unique singular psh weight on OX .B/ solving dd c�B D ŒB� and normalized byZ

X

.s ^ Ns/1=me��B D 1:

We let KX denote the Kähler cone, i.e. the set of cohomology classes ˛ 2H 1;1.X;R/
which can be represented by a Kähler form. We fix a path .˛t /0<t�1 � KX of Kähler
classes and assume that ˛t ! @KX as t ! 0.

When X is smooth and B D 0, the existence of a unique Ricci-flat Kähler metric !t
in ˛t for each 0 < t � 1 dates back to the celebrated work of Yau [71]. A basic problem
is to understand the asymptotic behavior of the !t ’s as t ! 0. This problem has a long
history; we refer the reader to [32] for references.

Despite motivations coming from mirror symmetry, not much is known when the
norm of ˛t converges to C1 (this case is expected to be the mirror of a large complex
structure limit; see [49] or the recent survey [68]). We thus only consider the case when
˛t ! ˛0 2 @KX . There are two rather different settings, depending on whether ˛0 is big
(vol.˛0/ > 0), or merely nef with vol.˛0/ D 0.
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6.3. The non-collapsing case

We first consider the case when the volumes of the ˛t ’s are non-collapsing, i.e.
vol.˛0/ > 0. Then we have the following result, generalizing theorems of Tosatti [66]
and Collins–Tosatti [18].

Theorem 6.5. Let .X;B/ be a pair as in Setting 6.3 and let .˛t /0<t�1 �KX be a smooth
path of Kähler classes such that ˛t ! ˛0 2 @KX as t ! 0, with vol.˛0/ > 0. Then the
singular Ricci-flat currents Tt 2 ˛t converge to T0 as t ! 0 weakly on X , and locally
smoothly on �˛ .

Proof. One can work in a desingularization p W Y ! X of X . The path ˛t induces a
path ˇt D p�˛t of semipositive and big classes. The currents Tt can be decomposed as
Tt D �t C dd

c't where �t 2 ˇt is a smooth representative and 't are normalized by
supXt 't D 0 and solve the complex Monge–Ampère equation

1

Vt
.�t C dd

c't /
n
D �Y D f dVY ;

where the volumes Vt D ˛nt are bounded away from zero and infinity, C�1 � Vt � C , and
�Y D f dVY is a fixed volume form, with f 2 Lp.Y / for some p > 1 (because .X;B/
has klt singularities [28, Lem. 6.4]).

Hypothesis (H2) of Theorem 1.1 is thus trivially satisfied, while (H1) follows if we
initially bound from above ˛t � 
X by a fixed Kähler class. The most delicate C0-estimate
follows thus here from Theorem 1.9. When X is smooth, the C0-estimate in [66] is
obtained by using a Moser iteration argument as in Yau’s celebrated paper [71], but this
argument can no longer be applied in the present more singular setting.

The rest of the proof is then roughly the same as in the case of smooth manifolds. It
consists in adapting Yau’s Laplacian estimate by using Tsuji’s trick (first used in [70]),
the remaining higher order estimates being local ones.

6.4. The collapsing case

We now consider the case when the volumes of the ˛t ’s are collapsing, i.e. vol.˛0/ D 0.
This case is more involved and only special cases are fully understood.

Suppose there is a surjective, holomorphic map f W X ! Z with connected fibers,
where Z is a compact, normal Kähler space of positive dimension m. We denote by k WD
n �m D dimX � dimZ the relative dimension of the fiber space f . We let SZ denote
the smallest proper analytic subset † � Z such that:

� † contains the singular locus Zsing of Z.

� The map f is smooth on f �1.Z n†/.

� For any z 2 Z n†, Supp.B/ intersects Xz transversally.

We set SX D f �1.SZ/. Finally, we set Zı WD Z n SZ and Xı WD X n SX D f �1.Zı/.
By the last item, each component of BjXı dominates Zı.
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A general fiber Xz satisfies �.KXz C Bz/ � 0, but the inequality may be strict. If
c1.KX C B/ D 0, then log abundance implies that KXz C Bz �Q OXz for z general.
Moreover, Iitaka’s conjecture predicts that �.KXz C Bz/ vanishes as long as �.Z/ � 0,
which in turn should be equivalent to Z not being uniruled.

Fix a Kähler form !Z on Z. For simplicity, we assume that
R
Z
!mZ D 1. The form

f �!Z is a semipositive form such that f �!pZ D 0 for any p >m. We also choose a Kähler
form!X onX . The quantity

R
Xz
!kX D f�!

k
X is constant in z 2Z; up to renormalizing!X ,

we may assume that the constant is 1.
We assume that our path .˛t /t�0 in H 1;1.X;R/ is given by ˛0 D ¹f �!Zº and ˛t D

˛0 C t¹!Xº. As a result,

Vt WD vol.˛t / D
�
n

k

�
tk
Z
X

f �!mZ ^ !
k
X C o.t

k/ D

�
n

k

�
tk C o.tk/: (6.4)

We set !t WD f �!Z C t!X and let !'t WD !t C dd
c't denote the singular Ricci-flat

current in ˛t , normalized by
R
X
't!

n
X D 0. It satisfies

!n't D Vt � �.X;B/;

by (6.3). The probability measure f��.X;B/ hasL1C" density with respect to!mZ thanks to
[29, Lem. 2.3]. Therefore, there exists a unique positive current !1 2 ¹!Zºwith bounded
potentials that solves the Monge–Ampère equation

!m1 D f��.X;B/

(see [28]). In the case where X is smooth, B D 0 and c1.X/ D 0, the Ricci curvature
of f��X (or equivalently !1) coincides with the Weil–Petersson form of the fibration f
of Calabi–Yau manifolds. We propose the following problem.

Problem 1. Let f W X ! Z be a surjective holomorphic map with connected fibers
between compact, normal Kähler spaces. Assume that there exists an effective divisor B
on X such that .X; B/ is klt and �.KX C B/ D 0. Let !X .resp. !Z/ be a Kähler form
on X .resp. Z/ and let !'t be the unique singular Ricci-flat current in ¹f �!Z C t!Xº
for t > 0. Then the currents !'t converge weakly to f �!1 as t ! 0, where !1 2 ¹!Zº
solves !dimZ

1 D f��.X;B/.

The problem above is motivated by a string of papers (see below) where the expected
result is proved along with some additional information on the convergence.

Theorem 6.6 ([32, 39, 67, 69]). Assume that X is smooth, B D 0 and c1.KX / D 0. Then
the metrics !'t converge to f �!1 in the C˛loc sense on X n SX , for some ˛ > 0.

In this section, we aim at providing a positive answer to Problem 1 whenever X is
smooth, B has simple normal crossings support and c1.KX C B/ D 0. We will follow
the strategy of Tosatti [67] rather closely. However, some adjustments need to be made,
requiring the use of conical metrics and the results of the present paper.
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Theorem 6.7. In the setting of Problem 1, assume furthermore that X is smooth, B has
snc support and c1.KX C B/ D 0. Then !'t ! f �!1 as currents on X when t ! 0.

Proof. We will proceed in several steps, similarly to [67]. In order to simplify some com-
putations to follow, we will assume that SZ is contained in a divisor DZ , cut out by a
section �Z 2 H 0.Z;OZ.DZ//. If Z is projective, this is not a restriction. The general
case requires following Tosatti’s computations more closely but does not present signifi-
cant additional difficulties.

Step 1. Choice of some suitable conical metrics. In the proposition below we list the
properties of the conical metric that will be important for the following. It is mostly a
recollection of well known results (see e.g. [37]). By abuse of notation, we will not dis-
tinguish between B and Supp.B/.

Proposition 6.8. There exists a Kähler current !B 2 ¹!Xº on X such that:

(1) !B is a smooth Kähler form on X n B and has conical singularities along B .

(2) There exists a constant C > 0 and a quasi-psh function ‰ 2 C1.X n B/ \ L1.X/

such that the following inequalities between tensors hold in the sense of Griffiths on
X n B:

�.C!B C dd
c‰/˝ IdTX � ‚!B .TX / � C!B ˝ IdTX :

(3) Let h WD !nB=!
n
X . There exists p > 1 such that for any K b Zı,

sup
z2K

khjXzkLp.!k
Xz
/ < C1:

Sketch of proof of Proposition 6.8. To construct such a metric !B , one first chooses
smooth metrics hi on Bi and sections si 2 H 0.X;OX .Bi // cutting out Bi , and one sets
!B WD!X C dd

c
P
i jsi j

2.1�bi /. Up to scaling down the metrics hi , one can easily achieve
the first condition. The third condition also follows easily.

The left-hand inequality of (2) (“lower bound” on the holomorphic bisectional curva-
ture) follows from [37, (4.3)] with " D 0. As for the right-hand inequality (upper bound
on the holomorphic bisectional curvature), a proof has been given in [40, App. A] in
the case where B is smooth but a very simple argument has been found by Sturm [58,
Lem. 3.14].

Step 2. Estimates. In the proposition below we list various estimates on !'t that will be
useful for the last step. First, we define for z 2 Zı the quantity 't .z/ WD

R
Xz
't!

k
Xz

. In
the following, we will not distinguish between 't and f �'t .

Proposition 6.9. There exist a constantC > 0 as well as a positive function g 2C1.Xı/,
both independent of t , such that:

(1) k'tkL1.X/ � C .

(2) !'t � C
�1f �!Z .

(3) j't � 't j � g � t .
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(4) g�1t � !B � !'t � g � !B .

(5) g�1t � !Bz � !'t jXz � gt � !Bz for all z 2 Zı.

Proof of Proposition 6.9. In this proof, C will denote a constant that may change from
line to line but is independent of t . In the same way, g will be a smooth, positive function
onXı that should be thought of as blowing up toC1 near SX ; it can be assumed to come
from Zı via f .

(1) This is a consequence of [27, Thm. A] or [24, p. 401].
(2) Let us consider the holomorphic map f W .X nB;!'t /! .Z;!Z/. Since Ric.!'t /

D 0 and !Z is a smooth Kähler metric on the compact space Z, Chern–Lu’s formula
[17, 52] provides a constant C > 0 such that the non-negative function u WD tr!'t f

�!Z
satisfies

�!'t logu � �C.1C u/

on X n B . Now,

�!'t .�'t / D tr!'t .�!'t C f
�!Z C t!X / � u � n;

so that setting A D C C 1, one finds

�!'t .logu � A't / � u � C:

Let � be a section of OX .dBe/ cutting out B and let hB be a smooth hermitian metric on
that line bundle. We set

� WD log j� j2hB :

As !'t is a Kähler current and � is quasi-psh, there exists a constant Ct > 0 such that
dd c� � �Ct!'t . Therefore, for any ı 2 .0; C�1t /,

�!'t .logu � A't C ı�/ � u � C:

As !'t is a conical metric for t > 0, the function u is bounded above on X n B , and
thereforeHt;ı WD logu�A't C ı� attains its maximum at a point xt;ı 2X nB such that
u.xt;ı/ � C . As a result, the estimate in (1) allows one to show that for any x 2 X n B ,

logu.x/ D Ht;ı.x/C A't .x/ � ı�.x/ � Ht;ı.xt;ı/C C � ı�.x/ � C � ı�:

As this holds for any ı > 0 small enough, we can pass to the limit and conclude that
u � eC on X n B , hence everywhere.

(3) The equation solved by 't can be rewritten as

.f �!Z C t!X C dd
c't /

n
D tkeFt!nB ; (6.5)

where Ft is uniformly bounded independently of t . Next, on Xz (z 2 Zı),

.!'t jXz /
k

!kXz

D
!k't ^ f

�!mZ

!kX ^ f
�!mZ

� Cg �
!n't
!nX

(6.6)
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thanks to (2). Observing that !'t jXz D .!'t � dd
c't /jXz , one sees from (6.5) that

.'t � 't /jXz satisfies�
!Xz C dd

c

�
1

t
.'t � 't /jXz

��k
� ghjXz � !

k
Xz
;

where h D !nB=!
n
X . Thanks to the third item of Proposition 6.8, Theorem 3.4 and The-

orem 1.1, we can derive (3). Actually, we have used a version of Theorem 3.4 for
higher-dimensional bases, but only for smooth morphisms, in which case the proofs in
the one-dimensional case go through without any change.

(4.a) We first prove the right-hand inequality. Let us start by writing !B D !X C

dd c B , where  B 2 L1.X/ \ C1.X n B/. From Proposition 6.8 (2) and Siu’s Lapla-
cian inequality [37, (2.2)], one concludes that

�!'t .log tr!B !'t C‰/ � �C.1C tr!'t !B/:

Next,

�!'t .�'t C t B/ D tr!'t .�!'t C f
�!Z C t!B/ � t tr!'t !B � n; (6.7)

so that

�!'t

�
log tr!B !'t C‰ �

A

t
't C A B

�
� tr!'t !B �

C

t
: (6.8)

We want to bound the term dd c't from below. In order to achieve this, we write

dd c't D dd
cf�.'t!

k
X / D f�.dd

c't ^ !
k
X / � �f�.f

�!Z ^ !
k
X C t!

kC1
X /

� �!Z � tf�!
kC1
X � �g � !Z (6.9)

because f�!kX D 1. In particular,

�!'t 't � �g (6.10)

thanks to (2). Combining that estimate with (6.8), one finds

�!'t

�
log tr!B !'t C‰ �

A

t
.'t � 't /C A B

�
� tr!'t !B �

g

t
: (6.11)

We now set F WD ‰ � A
t
.'t � 't / C A B ; it is a bounded function on X , smooth on

Xı n B , such that
jF j � g (6.12)

thanks to (3). Next, we set � WD � C f � log j�Z j2hDZ
where � is defined in the proof

of (2) and hDZ is a smooth hermitian metric on the divisor DZ (containing SZ). As � is
quasi-psh on X , there exists Ct > 0 such that

dd c� � �Ct!'t : (6.13)
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In particular,
�!'t .log tr!B !'t C F C ı�/ � tr!'t !B � g=t (6.14)

as long as ı 2 .0;C�1t /. We choose such a ı for the following. As the quantity log tr!B !'t
CF is globally bounded onX and smooth onXı nB , the function log tr!B !'t CF C ı�
attains its maximum at a point yt;ı 2 Xı n B such that

tr!'t !B.yt;ı/ � g=t

thanks to the maximum principle. Combining this with (2), one finds

tr!'t .f
�!Z C t!B/.yt;ı/ � g: (6.15)

Using the standard inequality

tr!0 ! �
!n

!0n
.tr! !0/n�1;

valid for any two positive .1; 1/-forms, one gets from (6.15)

trf �!ZCt!B .!'t /.yt;ı/ � g

since !n't ' t
k!nB is uniformly comparable to .f �!Z C t!B/n by Claim 6.10 below. As

!B dominates f �!Z C t!B , we infer from the inequality above that

tr!B !'t .yt;ı/ � g: (6.16)

Given the definition of yt;ı , the boundedness of F and that ı > 0 is arbitrary, we find as
in the proof of (2) above that (6.16) actually implies

tr!B !'t � g on Xı n B;

hence on the whole Xı.
To conclude the proof of the right-hand inequality in (4), it remains to prove

Claim 6.10. We have

g�1tk � !nB � .f
�!Z C t!B/

n
� gtk � !nB : (6.17)

Proof of Claim 6.10. The statement is local, so one can assume that f W Cn ! Cm

is given by the projection onto the last m factors and that B D
Pr
iD1 bi .zi D 0/ for

some r � k. As the inequality is invariant under quasi-isometry, one can choose !Z DPn
jDkC1 idzj ^ d Nzj to be the euclidean metric on Cm while

!B D

rX
jD1

idzj ^ d Nzj

jzj j
2bj

C

nX
jDrC1

idzj ^ d Nzj

is the standard cone metric. Setting K WD
Qr
jD1 jzj j

�2bj and !Cn WD
Pn
jD1 idzj ^ d Nzj ,

one finds

!nB D K � !
n
Cn and .f �!Z C t!B/

n
D tk.1C t /mK � !nCn ;

which gives the expected result.
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(4.b) We now move on to the left-hand inequality of (4). Let us set v WD tr!'t .t!B/.
Recall from Proposition 6.8 (2) that !B has holomorphic bisectional curvature bounded
from above on X n B . By Chern–Lu’s inequality, we get

�!'t log v � �Ct�1v on X n B .

Combining that inequality with (6.7)–(6.10) and (6.13), one finds, for A D C C 1,

�!'t

�
log v �

A

t
.'t � 't /C A B C ı�

�
�
1

t
.v � g/:

Applying the maximum principle and arguing as before, we eventually find v � g on
Xı n B , hence on Xı.

(5) The left-hand inequality is a direct consequence of (4), by restriction. As for the
right-hand inequality, it follows easily from the left-hand one since

tr!Bz !'t jXz �
.!'t jXz /

k

!kBz

� .tr!'t jXz !Bz /
k�1
� gtk�.k�1/

thanks to (6.6). This ends the proof of Proposition 6.9.

Step 3. Convergence. Thanks to Proposition 6.9 (1), the family .'t /0<t�1 is relatively
compact for the L1-topology. All we have to do is to show that all its cluster values
coincide. Let '1 be such a cluster value; it is an f �!Z-psh function but f has connected
fibers so that '1 is necessarily constant on the fibers. Equivalently, one has '1 D f �'1
for the (unique) !Z-psh function '1 satisfying '1.z/ WD

R
Xz
'1!

k
X for z 2Zı. We want

to show that the equality of measures

.!Z C dd
c'1/

m
D f��.X;B/ (6.18)

holds on Z. Since (6.18) has a unique normalized bounded solution, this will prove the
theorem. As '1 is globally bounded on X thanks to Proposition 6.9 (1), and f��.X;B/
does not charge any pluripolar set, it is actually enough to show that the equality (6.18)
of measures holds on Zı. In order to prove (6.18) on Zı, since f�!kX D 1, it is enough to
prove instead that for any u 2 C10 .Z

ı/,Z
X

f �u � .f �!Z C dd
c'1/

m
^ !kX D

Z
X

f �u � d�.X;B/: (6.19)

We start from the identity

!n't D .f
�!Z C t!X C dd

c't /
n
D Vt � �.X;B/; (6.20)

where Vt D
�
n
k

�
tk C o.tk/ when t ! 0 (see (6.4)). Set  t WD 't � 't and decompose !'t

as
!'t D f

�.!Z C dd
c't /C .t!X C dd

c t /:
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By expanding, one obtains

!n't D

mX
iD0

�
n

i

�
f �.!Z C dd

c't /
i
^ .t!X C dd

c t /
n�i„ ƒ‚ …

DW˛i

:

� Case i D m. We expand again

˛mD

k�1X
jD0

�
k

j

�
tj f �.!ZCdd

c't /
m
^!

j
X ^.dd

c t /
k�j„ ƒ‚ …

DW ǰ

C tkf �.!ZCdd
c't /

m
^!kX :

Integrating by parts, one getsZ
X

f �u � ǰ D

Z
X

 t � f
�
�
dd cu ^ .!Z C dd

c't /
m
�„ ƒ‚ …

D0

^ !
j
X ^ .dd

c t /
k�j�1

D 0

for degree reasons.
By the dominated convergence theorem, 't ! '1 in the L1loc.Z

ı/ topology. More-
over, as B intersects the fibers of f transversally over Zı, an easy argument relying on
a partition of unity shows that f�.!B ^ !kX / is a smooth .1; 1/-form on Zı. Combining
this with Proposition 6.9 (4), we find dd c't D f�.dd

c't ^ !
k
X / � f�.g!B ^ !

k
X / �

.f�g/ � !Z . Together with (6.9), this implies

˙dd c't � .f�g/ � !Z : (6.21)

By a standard result, this shows that 't ! '1 in C 1;˛loc .Z
ı/ for any ˛ < 1. In particular,

the quasi-psh functions 't converge uniformly on Supp.u/. By Bedford–Taylor theory,
one deduces thatZ

X

f �u � f �.!Z C dd
c't /

m
^ !kX !

Z
X

f �u � f �.!Z C dd
c'1/

m
^ !kX :

In the end, we have showed that�
n
m

�
Vt

Z
X

f �u � ˛m !

Z
X

f �u � f �.!Z C dd
c'1/

m
^ !kX (6.22)

since Vt �
�
n
m

�
tk .

� Case i < m. We expand

˛i D

n�i�1X
jD0

 
n � i

j

!
tj f �.!Z C dd

c't /
i
^ !

j
X ^ .dd

c t /
n�i�j„ ƒ‚ …

DW
ij

C tn�if �.!Z C dd
c't /

i
^ !n�iX :
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From (6.21), we find

tn�i

Vt

Z
X

f �u � f �.!Z C dd
c't /

i
^ !n�iX D O.tm�i / D o.1/: (6.23)

For the remaining terms, an integration by parts yieldsZ
X

f �u � 
ij D

Z
X

 t � f
�
�
dd cu ^ .!Z C dd

c't /
i
�
^ !

j
X ^ .dd

c t /
n�i�j�1:

From Proposition 6.9 (3), one has j t j � gt . Moreover, among the .n� i � j � 1/ eigen-
values of dd c t involved in the integral, at least .n� i � j � 1/� .m� .i C 1//D k � j
must come from the fiber. By Proposition 6.9 (4, 5), the integrand is O.t1Ck�j /. As a
result,

tj

Vt

Z
X

f �u � 
ij D O.t/:

Combining that result with (6.23), we see that for any i > m,

lim
t!0

1

Vt

Z
X

f �u � ˛i D 0: (6.24)

Putting together (6.20), (6.22) and (6.24), we obtainZ
X

f �u � d�.X;B/ D
1

Vt

Z
X

f �u � !n't D lim
t!0

mX
iD0

 
n

i

!
1

Vt

Z
X

f �u � ˛i

D lim
t!0

�
n
m

�
Vt

Z
X

f �u � ˛m D

Z
X

f �u � f �.!Z C dd
c'1/

m
^ !kX :

In summary, (6.19) is proved, which concludes the proof of the theorem.
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