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Abstract. In his Zentralblatt review of our paper [J. Eur. Math. Soc. 16, 749–768 (2014)], Faltings
pointed out that he could not follow the proof of Proposition 2.2. In this corrigendum we rectify this
and other mistakes in that paper.
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The main results of [6], Theorems A, B and C, are correct as stated. However, the version
of the Künneth formula in degree 2 with coefficients in an arbitrary ring mentioned on
p. 750 of [6], with reference to Proposition 2.2, is not true in this generality (see Remark
1.2 for a counterexample). A similar correction needs to be made to Theorem 2.6.

1. Correction to Proposition 2.2

Proposition 1.1. Let X and Y be non-empty path-connected CW-complexes such that
H1.X;Z/ and H1.Y;Z/ are finitely generated abelian groups .which holds whenX and Y
are finite CW-complexes/. For any abelian group G we have a canonical isomorphism

H1.X � Y;G/ Š H1.X;G/˚ H1.Y;G/:

IfGDZ orGDZ=n, where n is a positive integer, then there is a canonical isomorphism

H2.X � Y;G/ Š H2.X;G/˚ H2.Y;G/˚ Hom
�
H1.X;G/_;H1.Y;G/

�
;

where for a G-module M we write M_ D Hom.M;G/.
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Proof. We write Hn.X/DHn.X;Z/. SinceX is non-empty and path-connected, we have
H0.X/DZ (see [3, Prop. 2.7]). The Künneth formula for homology [3, Thm. 3.B.6] gives
a split exact sequence of abelian groups

0!

nM
iD0

�
Hi .X/˝ Hn�i .Y /

�
! Hn.X � Y /!

n�1M
iD0

Tor.Hi .X/;Hn�1�i .Y //! 0:

Since H0.X/ D Z, in degrees 1 and 2 this gives canonical isomorphisms

H1.X � Y / Š H1.X/˚ H1.Y /; (1)

H2.X � Y / Š H2.X/˚ H2.Y /˚
�
H1.X/˝ H1.Y /

�
: (2)

For any abelian group G, the universal coefficients theorem [3, Thm. 3.2] gives the fol-
lowing (split) exact sequence of abelian groups:

0! Ext.Hn�1.X/;G/! Hn.X;G/! Hom.Hn.X/;G/! 0; (3)

where the third map evaluates a cocycle on a cycle. This gives a canonical isomorphism

H1.X;G/ Š Hom.H1.X/;G/: (4)

The desired isomorphism for H1 now follows from (1).
Using the functoriality of the universal coefficients formula (3) with respect to the

projections of X � Y to X and Y , together with the isomorphisms (1) and (2), we obtain
a split short exact sequence

0! H2.X;G/˚ H2.Y;G/! H2.X � Y;G/! Hom.H1.X/˝ H1.Y /; G/! 0: (5)

The second map here has a retraction induced by the embedding of X � y0 and x0 � Y ,
for some base points x0 and y0. The third map in (5) is given by evaluating a cocycle on
X � Y on the product of a cycle onX and a cycle on Y . A similar map withG DG1˝G2
fits into the following commutative diagram with the natural right-hand vertical map:

H2.X � Y;G1 ˝G2/ // Hom.H1.X/˝ H1.Y /; G1 ˝G2/

H1.X;G1/˝ H1.Y;G2/
� //

[

OO

Hom.H1.X/;G1/˝ Hom.H1.Y /; G2/

OO

(6)

Let G D Z. By assumption, H1.X/ and H1.Y / are finitely generated abelian groups.
LetM and N be their respective quotients by the torsion subgroups. The map induced by
multiplication in Z,

Hom.H1.X/;Z/˝ Hom.H1.Y /;Z/! Hom.H1.X/˝ H1.Y /;Z/;

coincides with Hom.M;Z/˝ Hom.N;Z/! Hom.M ˝N;Z/, which is clearly an iso-
morphism, so the displayed map is also an isomorphism. Using (4) we rewrite it as

H1.X;Z/˝ H1.Y;Z/ Š Hom.H1.X/˝ H1.Y /;Z/:
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Now (5) gives a canonical isomorphism

H2.X � Y;Z/ Š H2.X;Z/˚ H2.Y;Z/˚
�
H1.X;Z/˝ H1.Y;Z/

�
: (7)

In view of diagram (6) the last summand is embedded into H2.X � Y;Z/ via the cup-
product map. Since H1.X;Z/ is a free abelian group of finite rank, we can rewrite (7) and
obtain the desired isomorphism for H2.X � Y;Z/.

Now let G D Z=n. Then Hom.H1.X/˝ H1.Y /;Z=n/ is canonically isomorphic to

Hom.H1.X/;Hom.H1.Y /;Z=n// Š Hom.H1.X/=n;H1.Y;Z=n//:

Since Hom.H1.X/=n;Z=n/ Š H1.X;Z=n/, we have H1.X;Z=n/_ Š H1.X/=n. Now
(5) produces the required isomorphism for H2.X � Y;Z=n/.

Remark 1.2. ForX D Y DRP2 we have H1.X/DZ=2, so in this case the map induced
by multiplication in Z=n with n D 4

Hom.H1.X/;Z=n/˝ Hom.H1.Y /;Z=n/! Hom.H1.X/˝ H1.Y /;Z=n/

is zero. From diagram (6) we see that in this case the cup-product map

H1.X;Z=n/˝ H1.Y;Z=n/! H2.X � Y;Z=n/

is zero.

2. Correction to Theorem 2.6

Let k be a separably closed field. Let G be a finite commutative group k-scheme of order
not divisible by char.k/. The Cartier dual of G is defined as yG D Hom.G;Gm;k/ in the
category of commutative group k-schemes.

For a proper and geometrically integral variety X over k, the natural pairing

H1
Ket.X;G/ �

yG ! H1
Ket.X;Gm;X / D Pic.X/

gives rise to a canonical isomorphism

H1
Ket.X;G/

�
�! Hom. yG;Pic.X//: (8)

The map in (8) associates to a class of a G-torsor T ! X its ‘type’ (see [5, Thm. 2.3.6]).
Let n be a positive integer not divisible by char.k/. Define SX as the finite commuta-

tive group k-scheme whose Cartier dual is

ySX D H1
Ket.X; �n/ Š Pic.X/Œn�: (9)

We shall often consider the Tate twist ySX .�1/. So for a finite commutative group
k-scheme G such that nG D 0 we introduce the notation

G_ D Hom.G;Z=n/:
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In particular, we have S_X D H1
Ket.X;Z=n/. The pairing G � G_ ! Z=n gives rise to a

canonical isomorphism G
�
�! .G_/_.

Let TX ! X be an SX -torsor whose type is the natural inclusion

ySX D Pic.X/Œn� ,! Pic.X/I

it is unique up to isomorphism. The natural pairing

H1
Ket.X; SX / � S

_
X ! H1

Ket.X;Z=n/

with the class ŒTX � 2H1
Ket.X;SX / induces the identity map on S_X DH1

Ket.X;Z=n/. In other
words, the image of ŒTX �with respect to the map induced by aWSX!Z=n equals a 2 S_X .

Suppose that Y is also a proper and geometrically integral variety over k. The image
of ŒTX �˝ ŒT Y � under the map

H1
Ket.X; SX /˝ H1

Ket.Y; SY /! H1
Ket.X;Z=n/˝ H1

Ket.Y;Z=n/

induced by aWSX ! Z=n and bWSY ! Z=n equals a˝ b 2 S_X ˝ S
_
Y .

We refer to [4, Prop. V.1.16] for the existence and properties of the cup-product. Thus
we can consider ŒTX � [ ŒT Y � 2 H2

Ket.X �k Y; SX ˝ SY / and

a [ b 2 H2
Ket.X �k Y;Z=n˝ Z=n/ Š H2

Ket.X �k Y;Z=n/:

The cup-product is functorial, so the image of ŒTX � [ ŒT Y � under the map induced by
a˝ b is a [ b. This can be rephrased by saying that the natural pairing

H2
Ket.X �k Y; SX ˝ SY / � S_X ˝ S

_
Y ! H2

Ket.X �k Y;Z=n/ (10)

with ŒTX � [ ŒT Y � gives rise to the cup-product map

S_X ˝ S
_
Y D H1

Ket.X;Z=n/˝ H1
Ket.Y;Z=n/! H2

Ket.X � Y;Z=n/:

It is important to note that (10) factors through the pairing

H2
Ket.X �k Y; SX ˝ SY / � Hom.SX ˝ SY ;Z=n/! H2

Ket.X �k Y;Z=n/: (11)

The pairing (11) with ŒTX � [ ŒT Y � induces a map

"WHom.SX ˝ SY ;Z=n/! H2
Ket.X �k Y;Z=n/:

We thus have a commutative diagram, where � is induced by multiplication in Z=n:

S_X ˝ S
_
Y

�
//

Š

��

Hom.SX ˝ SY ;Z=n/

"

��

H1
Ket.X;Z=n/˝ H1

Ket.Y;Z=n/
[ // H2

Ket.X �k Y;Z=n/

(12)
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The canonical isomorphism Hom.SX ˝ SY ;Z=n/ Š Hom.SX ; S_Y / allows us to rewrite
" as the map sending ' 2 Hom.SX ; S_Y / to ".'/ D '�ŒTX � [ ŒT Y �, where [ stands for
the cup-product pairing

H1
Ket.X; S

_
Y / � H1

Ket.Y; SY /! H2
Ket.X � Y; S

_
Y ˝ SY /! H2

Ket.X �k Y;Z=n/:

We write pX WX �k Y ! X and pY WX �k Y ! Y for the natural projections. Since
X and Y are geometrically integral over the separably closed field k, we can choose base
points x0 2 X.k/ and y0 2 Y.k/. We have the induced map

.idX ; y0/�WHiKet.X �k Y;Z=n/! Hi
Ket.X;Z=n/

and a similar map for Y . Using these maps we see that

.p�X ; p
�
Y /WH

i
Ket.X;Z=n/˚ Hi

Ket.Y;Z=n/! Hi
Ket.X �k Y;Z=n/ (13)

is split injective, so we have an isomorphism

Hi
Ket.X �k Y;Z=n/ Š Hi

Ket.X;Z=n/˚ Hi
Ket.Y;Z=n/˚ Hi

Ket.X �k Y;Z=n/prim; (14)

where Hi
Ket.X �k Y;Z=n/prim is the intersection of the kernels of .idX ; y0/� and .x0; idY /�.

Since k is separably closed, we have Hi .k;M/D 0 for any abelian groupM and any i � 1.
Thus ŒTX � [ ŒT Y � goes to zero under the maps induced by the restrictions to x0 � Y and
to X � y0. This implies that Im."/ � H2

Ket.X �k Y;Z=n/prim.

The following is a corrected version of [6, Thm. 2.6].

Theorem 2.1. Let X and Y be proper and geometrically integral varieties over a sepa-
rably closed field k. Let n be a positive integer not divisible by char.k/. Then we have the
following statements:

(i) Write H1
Ket.X;Z=n/

_ DHom.H1
Ket.X;Z=n/;Z=n/ and similarly for Y . The maps " and

� defined above fit into the commutative diagram

H1
Ket.X;Z=n/˝ H1

Ket.Y;Z=n/
�
//

[

��

Hom.H1
Ket.X;Z=n/

_;H1
Ket.Y;Z=n//

"Š

��

H2
Ket.X � Y;Z=n/ H2

Ket.X �k Y;Z=n/prim? _oo

(15)

where " is an isomorphism.

(ii) If H1
Ket.X;Z=n/ is a free Z=n-module .which holds if NS .X/Œn� D 0/, then � is an

isomorphism, so we have

H2
Ket.X � Y;Z=n/ Š H2

Ket.X;Z=n/˚ H2
Ket.Y;Z=n/˚

�
H1
Ket.X;Z=n/˝ H1

Ket.Y;Z=n/
�
:

Proof. Part (ii) is the degree 2 case of [4, Cor. VI.8.13].
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Let us prove (i). Diagram (15) is obtained from diagram (12) since Im."/ is a subset
of H2

Ket.X �k Y;Z=n/prim, as explained above. It remains to show that " is an isomorphism.
From the spectral sequence

E
p;q
2 D Hp

Ket.X;H
q

Ket.Y;Z=n//) HpCq
Ket .X �k Y;Z=n/

we get an isomorphism H2
Ket.X �k Y;Z=n/primŠH1

Ket.X;H
1
Ket.Y;Z=n//. As a particular case

of (8) we get an isomorphism

H1
Ket.X;H

1
Ket.Y;Z=n// Š Hom.SY ; S_X / Š Hom.SX ; S_Y /:

Thus the source and the target of " are isomorphic finite abelian groups. One can finish the
proof following the original arguments in [6] with small adjustments; see [1, pp. 161–162]
for this revised proof.

Here we give a short proof communicated to us by Yang Cao. Since the source and
the target of " have the same cardinality, it is enough to show that

"WHom.SX ˝ SY ;Z=n/! H2
Ket.X �k Y;Z=n/prim

is injective. More generally, for an integer m jn consider the map

"mWHom.SX ˝ SY ;Z=m/! H2
Ket.X �k Y;Z=m/prim

defined via pairing with ŒTX �[ ŒT Y �. We prove that "m is injective by induction onm jn.
If p is a prime, the usual Künneth formula [4, Cor. VI.8.13] for the field Fp implies that
the cup-product map

[WH1
Ket.X;Fp/˝ H1

Ket.Y;Fp/! H2
Ket.X �k Y;Fp/prim

is an isomorphism. We have a commutative diagram

Hom.SX ;Fp/˝ Hom.SY ;Fp/
�
//

Š

��

Hom.SX ˝ SY ;Fp/

"p

��

H1
Ket.X;Z=p/˝ H1

Ket.Y;Z=p/
[ // H2

Ket.X �k Y;Z=p/prim

(16)

In this case � is an isomorphism, hence "p is also an isomorphism.
Now for a positive integer m jn assume that "a is injective for all a jm, a ¤ m. Write

m D ab. The exact sequence of abelian groups

0! Z=a! Z=m! Z=b ! 0

gives rise to the long exact sequences of étale cohomology groups of X , Y and X � Y ,
which are linked by the split injective maps (13). Using (14) and the well-known fact
that H1

Ket.X � Y;Z=b/prim D 0 (see [6, Cor. 1.8] or [1, Thm. 5.7.7 (i)]) we find that the
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top row of the following commutative diagram is exact (see [1, p. 160] for an alternative
argument):

0 // H2
Ket.X � Y;Z=a/prim // H2

Ket.X � Y;Z=m/prim // H2
Ket.X � Y;Z=b/prim

0 // Hom.SX ˝ SY ;Z=a/ //
?�

"a

OO

Hom.SX ˝ SY ;Z=m/ //

"m

OO

Hom.SX ˝ SY ;Z=b/
?�

"b

OO

The bottom row is obviously exact. The diagram implies that the middle map is injective
too. We conclude that " D "n is injective, hence an isomorphism.
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