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Abstract. First, we prove the Kac–Wakimoto conjecture on modular invariance of characters of
exceptional affine W-algebras. In fact more generally we prove modular invariance of characters of
all lisse W-algebras obtained through Hamiltonian reduction of admissible affine vertex algebras.
Second, we prove the rationality of a large subclass of these W-algebras, which includes all excep-
tional W-algebras of type A and lisse subregular W-algebras in simply laced types. Third, for
the latter cases we compute S -matrices and fusion rules. Our results provide the first examples
of rational W-algebras associated with nonprincipal distinguished nilpotent elements, and the cor-
responding fusion rules are rather mysterious.
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1. Introduction

Let g be a finite-dimensional simple Lie algebra, f 2 g a nilpotent element, and k 2 C
a complex number. The universal affine W-algebra Wk.g; f / of level k is obtained from
the universal affine vertex algebra V k.g/ through the process of quantised Drinfeld–
Sokolov reduction. This construction was introduced in [39] for f a principal nilpotent
element, and in [62] for f a general nilpotent element.

Affine W-algebras arise as algebras of symmetries of integrable models [61], in the
geometric Langlands program [12, 43, 48], the 4d/2d duality [9, 18, 19, 74], N D 4 super
Yang–Mills gauge theories [25, 47], and as invariants of 4-manifolds [40].

It is believed that for appropriate choices of nilpotent element f 2 g and level k the
simple quotient Wk.g; f / of Wk.g; f / is a rational and lisse vertex algebra, and as such
gives rise to a rational conformal field theory. Indeed, let kD�h_Cp=q be an admissible
level for the affine Kac–Moody algebra yg associated with g. (Recall this means that the
simple quotient Vk.g/ of V k.g/ is admissible as a representation of yg [65].) Then for f
a principal nilpotent element the rationality of Wk.g; f / was conjectured by Frenkel,
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Kac and Wakimoto [44] and proved by the first named author [7]. For general nilpotent
elements, the notion of an exceptional pair .f; q/, where f 2 g is nilpotent and q � 1
is an integer, was introduced in [66] (and later extended in [38]). Kac and Wakimoto
conjectured that Wk.g; f / is rational whenever k D �h_ C p=q is admissible and .f; q/
forms an exceptional pair.

In [6] it was shown that the associated variety [4] of the simple affine vertex algebra
Vk.g/ equals the closure of a certain nilpotent orbit Oq � g and that Wk.g; f / is nonzero
and lisse if f 2 Oq . At the risk of ambiguity we should like to refer to .f; q/ as an
exceptional pair whenever f 2 Oq . Restriction to those pairs .f; q/ for which f is of
standard Levi type recovers the notion of exceptional pair of [38], and further restriction
to those pairs for which q is coprime to the lacety r_ recovers the original notion of
exceptional pair of [66]. For g of type A all these notions coincide.

It was conjectured in [6] that all exceptional W-algebras (now in the broader sense of
exceptional) are rational. Our first main result gives strong evidence for this conjecture,
and thus for the conjecture of Kac and Wakimoto.

Main Theorem 1 (Theorems 4.3 and 5.1). Let k D �h_ C p=q be an admissible level
for yg, and let f 2 Oq be a nilpotent element. Then the Ramond twisted Zhu algebra
A.W/ of W DWk.g; f / is semisimple. Let ¹L1; : : : ;Lrº be a complete set of represen-
tatives of isomorphism classes of simple Ramond twisted W-modules, and SLi .� j u/ D

TrLi .u0q
L0�c=24/ for u 2W the associated trace function. Then SLi .� j u/ converges to

a holomorphic function on the upper half-plane for all u 2 W, i D 1; : : : ; r . Moreover,
there is a representation � W SL2.Z/! EndC.Cr / such that

SLi

�
a� C b

c� C d

ˇ̌̌̌
.c� C d/�LŒ0�u

�
D

X
j

�.A/ijSLj .� j u/ for all u 2W.

We note that if f admits a good even grading, as is always the case for g of type A,
a Ramond twisted module is the same thing as an untwisted module in the usual sense.

Our next result establishes rationality of those W-algebras appearing in Main Theo-
rem 1 for which the set of principal (or coprincipal) admissible weights of level k satisfies
a certain integrability condition relative to f . Let k be an admissible level for yg. The irre-
ducible highest weight representation L.y�/ of yg with highest weight y� D kƒ0 C � is a
Vk.g/-module if and only if � belongs to the set Prk of level k principal (or coprincipal)
admissible weights [8]. For such � 2 Prk we consider the annihilating ideal J� � U.g/
of L.�/ and for a nilpotent orbit O we denote by PrkO the subset of Prk consisting of
those � for which Var.J�/ D O. The annihilator J� depends only on the orbit of � under
the dot action of the finite Weyl group W , and we set ŒPrkO� D PrkO =W ı .�/.

Main Theorem 2 (Theorem 7.9). Let k D �h_ C p=q be an admissible level for yg, and
let f 2Oq be a nilpotent element. Suppose f admits a good even grading gD

L
j2Z gj

such that every element of ŒPrkOq � has a representative integrable with respect to g0. Then
the vertex algebra Wk.g; f / is rational and lisse, and all irreducible Wk.g; f /-modules



Rationality of W-algebras 2765

are obtained via quantised Drinfeld–Sokolov “�”-reduction of level k admissible yg-
modules.

Main Theorem 2 proves the Kac–Wakimoto rationality conjecture for all exceptional
W-algebras of type A (Theorem 8.5). It also proves the rationality of all exceptional sub-
regular W-algebras in simply laced types (see Theorem 9.4). The latter algebras actually
lie outside the class of Kac–Wakimoto exceptional W-algebras. The values of q for which
Oq D Osubreg are listed in Table 1.

Some special cases of Main Theorem 2 have already been proved; for f a principal
nilpotent element [7], for the Bershadsky–Polyakov algebras Wk.sl3; fmin/ [5], and for
Wk.sl4; fsubreg/ [27].

We note that subregular W-algebras of types D and E are distinguished W-algebras,
that is, W-algebras associated with distinguished nilpotent elements, or equivalently, W-
algebras that have zero weight 1 subspaces. Distinguished W-algebras play a fundamental
role among W-algebras. However, the representation theory of distinguished W-algebras
that are not of principal type is mysterious even at the level of finite W -algebras, since
there are no canonical standard modules. Main Theorem 2 provides the first examples of
rational distinguished W-algebras that are not of principal type.

We say a few words about the proofs of the theorems. The first step is to compute the
Zhu algebra of Wk.g; f /, which is a quotient of the finite W-algebra U.g; f / [72]. To do
this we compute the Zhu algebra of the admissible affine vertex algebra (Theorem 3.4),
and then apply the commutativity [7] of the Zhu algebra functor and the Drinfeld–Sokolov
reduction functor. The irreducible Wk.g; f /-modules are in bijection with those over the
Zhu algebra. The role of the g0-integrality condition is to ensure invariance of irreducible
modules under the canonical action of the component group C.f /, allowing us to use
results of Losev [68] on the representation theory of finite W-algebras, and thereby char-
acterise the irreducible Wk.g; f /-modules. It remains to rule out nontrivial extensions
between irreducible modules, which is done by following the same approach as in [7].
Here a result of Gorelik–Kac [51] on complete reducibility of admissible representations
of yg is used.

By Huang’s result [53], the module category of a rational, lisse, self-dual vertex
algebra is a modular tensor category. Therefore Main Theorem 2 provides a huge sup-
ply of modular tensor categories. Following the approach of [44] and [17] we compute
the modular S -matrix and fusion rules of Wk.g; f / whenever g is simply laced and f is
subregular. We now explain the general features in simplified form.

We recall that the irreducible modules of the simple affine vertex algebra Vp�h_.g/
are parametrised by regular dominant integral weights of level p. The S -matrix of this
vertex algebra is, up to normalisation, given by

K�;�p D

X
w2W

�.w/e�
2�i
p .w.�/;�/;

where the indices �;� run over the set of regular dominant integral weights of yg of level p.
These coefficients lie in the cyclotomic field Q.�N / where N equals p times the order
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of the centre of the adjoint group of g. For a coprime to N we let 'a 2 Gal.Q.�N /=Q/
denote the automorphism defined by 'a.�N / D �aN .

The S -matrix of W D W�h_Cp=q.g; fsubreg/ is, up to normalisation, the Kronecker
product matrix

'p.Cq/˝ 'q.Kp/;

where Cq is a sort of degenerate analogue of Kp given explicitly by (Theorem 12.2)

C �;�q D

X
w.˛�/2�C

�.w/
hw.˛�/; xi

h˛�; xi
e�

2�i
q .w.�/;�/: (1.1)

Here ˛� is the unique positive root of the Lie subalgebra g0 and x is an arbitrary element
of h not orthogonal to ˛�. The indices �; � run over the set of weights 
 2 Q of level q
satisfying h
; ˛i i 2 ZC for i D 1; : : : ; ` and h
; ˛i i D 0 for exactly one i .

Since the fusion product multiplicities are integers determined from the S -matrix via
the Verlinde formula, hence Galois invariant, we deduce that the fusion algebra of W is
the tensor product of the fusion algebra of Vp�h_.g/ with the fusion algebra whose S -
matrix is Cq . This factorisation is quite parallel to the result discovered in [44], that the
fusion algebra of the principal W-algebra W�h_Cp=q.g; fprin/ is more or less the tensor
product of the fusion algebras of two simple affine vertex algebras.

For type A the matrix Cq is the 1 � 1 identity matrix and therefore the fusion rules of
W depend only on the numerator p and coincide with those of Vp�h_.g/. For typesD and
E the matrix Cq is nontrivial and the fusion rules of W are more interesting. In most cases
(but not quite all, see Conjecture 14.2 below) Cq is itself naturally identified with the S -
matrix of a subregular W-algebra. In those cases for which this W-algebra has asymptotic
growth less than 1, that is, all cases except gDE7, qD 16;17 and gDE8, qD 27;28;29,
we are able to identify it as a simple current extension of a Virasoro minimal model, thus
confirming the S -matrix computed by (1.1). We summarise these results in Table 3. Most
of the rational lisse W-algebras obtained above are not unitary. However, we conjecture
that

W�117=11.E6; fsubreg/ and W�267=16.E7; fsubreg/

are unitary, giving rise to two seemingly new unitary modular tensor categories.
Finally, let us make some comments on the relations of the present work to 4d/2d

duality [18]. It has been shown in [23,74,77,79] that the exceptional W-algebras at bound-
ary admissible levels appear as vertex algebras obtained from 4d N D 2 superconformal
field theories (or more precisely from Argyres–Douglas theories), and the corresponding
modular tensor categories are expected to coincide with those arising from the Coulomb
branches of the corresponding four-dimensional theories, or the wild Hitchin moduli
spaces [31, 42]. Furthermore, the modular tensor categories associated with exceptional
distinguished W-algebras at boundary admissible levels are closely connected with the
Jacobian rings of certain hypersurface singularities [78]. We hope to come back to these
points in our future work.
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2. Affine Lie algebras and admissible weights

Let g be a complex simple finite-dimensional Lie algebra with a fixed triangular decompo-
sition gD n�˚ h˚ nC. Let� be the set of roots of g, let�C be the set of positive roots
andW the Weyl group. Denote byQD

P
˛2�Z˛ the root lattice and by LQD

P
˛2�Z˛_

the coroot lattice. Here ˛_ D 2˛=.˛; ˛/ where . ; / is the invariant bilinear form nor-
malised so that the highest root � satisfies .�; �/ D 2. The highest short root is denoted
by �s and satisfies .�s; �s/ D 2=r_, where r_ is the lacing number of g. Let P be the
weight lattice of g and LP the coweight lattice. The simple coroots ˛_i form a basis of LQ,
and the basis ¹$iº of P dual to ¹˛_i º defines the fundamental weights$i of g. Similarly,
$_i will denote the fundamental coweights, which form a basis of LP dual to the simple
roots ¹˛iº. Let � be the half sum of positive roots of g, and �_ the half sum of positive
coroots. Let PC D

P
i Z�0$i and LPC D

P
i Z�0$_i be the sets of dominant weights

and dominant coweights, respectively, and for n 2 Z�0 set

P nC D ¹� 2 PC j h�; ˛
_
i � n for ˛ 2 �Cº; LP nC D ¹� 2

LPC j h˛; �i � n for ˛ 2 �Cº:
(2.1)

For � 2 h�, we denote by M.�/ the Verma g-module with highest weight �, and
by L.�/ the unique simple quotient of M.�/. A weight � is said to be dominant if
h�C �; ˛_i … Z<0 for all ˛ 2 �C, and regular if it has trivial stabiliser under the “dot”
action y ı � D y.�C �/ � � of W .

A primitive ideal in the universal enveloping algebra U.g/ is by definition the annihi-
lator of some irreducible g-module. Set

J� D AnnU.g/L.�/:

By Duflo’s theorem [36], any primitive ideal in U.g/ is of the form J� for some � 2 h�.
The centre of U.g/ is denoted Z.g/, and the character 
� W Z.g/! C is defined by

zv� D 
�.z/v�, where v� is a highest weight vector of L.�/.
Let

yg D gŒt; t�1�˚CK

be the affine Kac–Moody algebra associated with g, whose commutation relations are
given by

Œxtm; ytn� D Œx; y�tmCn Cm.x; y/ımCn;0K; ŒK; yg� D 0:

Let yh D h˚ CK be the standard Cartan subalgebra of yg, and zh D h˚ CK ˚ CD the
extended Cartan subalgebra of yg. The dual of zh is zh�D h�˚Cƒ0˚Cı, whereƒ0.K/D
ı.D/ D 1 and ƒ.hC CD/ D ı.h˚ CK/ D 0. The dual yh� of yh is identified with the
subspace h˚Cƒ0 � zh�.

Let y� � zh� be the set of roots of yg and

y�re
D ¹˛ C nı j ˛ 2 �; n 2 Zº;

y�re
C D ¹˛ C nı j ˛ 2 �C; n 2 Z�0º t ¹�˛ C nı j ˛ 2 �C; n 2 Z�1º

the subsets of real roots and positive real roots, respectively.
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We denote by yW the Weyl group of yg, so yW DW Ë LQ, and we denote by zW DW Ë LP
the extended affine Weyl group of g. We have zW D zWC Ë yW , where zWC is a finite
subgroup of zW which we now describe. Write � as a sum of simple roots: � D

P`
iD1 ai˛i ,

and set J D ¹i 2 ¹1; : : : ; `º j ai D 1º. Then we have

zWC D ¹�j D t$j N�j j j 2 J º; (2.2)

where N�j is the unique element of W which fixes the set ¹˛1; : : : ; ˛`;��º and which
satisfies N�j .��/ D j̨ .

Lemma 2.1 ([44, Lemma 4.1.1]). Let g be a simply laced Lie algebra, and yg its affini-
sation. If � is a dominant integral weight of level coprime to jJ j then the elements of the
zWC-orbit of � represent a complete set of classes of P=Q. In particular, there exists a

unique � 2 zWC such that �.�/ 2 Q.

For � 2 yh�, let y�.�/ denote its integral root system and yW .�/ its integral Weyl group,
that is,

y�.�/ D ¹˛ 2 y�re
j h�C y�; ˛_i 2 Zº; yW .�/ D hs˛ j ˛ 2 y�.�/i � yW ;

where s˛ is the reflection in the root ˛ and y� D �C h_ƒ0. Let y�.�/C D y�.�/ \ y�re
C be

the set of positive roots of y�.�/ and y….�/ � y�.�/C its set of simple roots.
A weight � 2 yh� is called admissible [65] if

(1) � is regular dominant, i.e., h�C y�; ˛_i 62 ¹0;�1;�2; : : : º for all ˛ 2 y�re
C, and

(2) Qy�.�/ D Qy�re.

For � 2 h� and k 2 C, we denote by yMk.�/ the Verma module of yg with highest
weight �C kƒ0 2 yh�, and by yLk.�/ the unique simple quotient of yMk.�/. The simple
highest weight representation yLk.�/ is called admissible if y� is admissible. A complex
number k is called admissible if kƒ0 is admissible.

When clear from context, we shall write, as above, y� for �C kƒ0. Occasionally we

shall use the notation O� for the image of y� 2 yh� under the natural projection yh� ! h�.

Proposition 2.2 ([65, 66]). The number k is admissible if and only if

k C h_ D
p

q
with p; q 2 Z�1; .p; q/ D 1; p �

´
h_ if .r_; q/ D 1;

h if .r_; q/ D r_;

where h and h_ are the Coxeter number and the dual Coxeter number of g, respectively.
Furthermore,

y….kƒ0/ D ¹ P̨0; ˛1; : : : ; ˛`º;

where

P̨0 D

´
�� C qı if .r_; q/ D 1;

��s C
q
r_
ı if .r_; q/ D r_:
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Let k be an admissible number. Then

y�.kƒ0/ Š

´
y�re if .q; r_/ D 1;
L y�re if .q; r_/ ¤ 1;

where L y�re is the real roots system of the Langlands dual Lyg of yg. Let Prk � h� be the
set of weights � such that y� D �C kƒ0 is admissible and there exists y 2 zW such that
y�.y�/ D y.y�.kƒ0//. Such admissible weights are said to be principal admissible [65] if
.q; r_/ D 1 or coprincipal admissible [17] if .q; r_/ ¤ 1. Let PrkZ D Prk \ P . Then Prk

decomposes as

Prk D
[
y2 zW

y.y�.kƒ0/C/�y�
re
C

Prky ; where Prky D ¹� j y� 2 y ı .PrkZ C kƒ0/º: (2.3)

For later purposes let us assume that the denominator q of k is coprime to r_ for the
rest of this section and describe the set Prk of principal admissible weights in more detail.
We have [65, (3.52)]

Prky \ Prky0 ¤ ; ” Prky D Prky0 ” y0 D ytq$j N�j for some j 2 J ; (2.4)

where q is the denominator of k. If p is the numerator of k as in Proposition 2.2, we have

PrkZ D P
p�h_

C : (2.5)

The cardinality of Prk is jPrkj D q`jP
p�h_

C j ([44, Section 1.5]; see also [8, Proposi-
tion 3.2]).

Let � denote the isometry of yh defined by �jh D 1 and �.ƒ0/D .1=q/ƒ0. For ˛_ 2 h

the translate [44, Section 1.2] by � 2 h is

t�.˛
_
C sK/ D ˛_ C .s � �.˛_//K:

By (2.3) any element of Prk is of the form � where

�C kƒ0 D y� D yy�.y�/ � y� (2.6)

with y� D pƒ0 C �, � 2 P pC;reg D ¹� 2 P j 0 < h�;˛
_i < p for all ˛ 2�Cº, and yy 2 zW .

We may write yy D yt�� D tˇy where y 2W and �;ˇ 2 P , and put y�D qƒ0 C �. In this
way we associate triples .y; �; �/ and .y; y�; y�/ to � 2 Prk . The associated triple is unique
up to the action of the group zWC by

� W .y; y�; y�/ 7! .y��1; �.y�/; �.y�//: (2.7)

3. Zhu algebras of admissible affine vertex algebras

For k 2 C let V k.g/ be the universal affine vertex algebra associated with g at level k.
By definition

V k.g/ D U.yg/˝U.gŒt�˚CK/ Ck



T. Arakawa, J. van Ekeren 2770

as a yg-module, where Ck denotes the one-dimensional representation of gŒt �˚ CK on
which gŒt � acts trivially and K acts as multiplication by k. In this paper we assume that
k ¤ �h_, so the vertex algebra V k.g/ is conformal with Virasoro element L 2 V k.g/
and corresponding field

L.z/ D
X
n2Z

Lnz
�n�2

given by the Sugawara construction. The central charge of V k.g/ is k dim g
kCh_

. The unique
simple quotient Vk.g/ of V k.g/ is called the simple affine vertex algebra associated with g

at level k. Note that Vk.g/ Š yLk.0/ as yg-modules.
The Zhu algebra (more precisely the Ramond twisted Zhu algebra)A.V / of the vertex

algebra V is the quotient of V by its vector subspace ¹a ��2 b j a; b 2 V º, where by
definition

a �n b D
X
j2ZC

�
�.a/

j

�
a.nCj /b;

equipped with the associative product a ˝ b 7! a ��1 b. We denote in general the com-
ponent of lowest L0-eigenvalue in a graded V -module M by Mtop. This graded piece
acquires the natural structure of A.V /-module, and it is known that the correspondence
M 7! Mtop is a bijection [30, 81] from the set of isomorphism classes of irreducible
Ramond twisted V -modules to the set of simple A.V /-modules.

For all k there exists a natural isomorphism A.V k.g// Š U.g/ and hence

A.Vk.g// Š U.g/=Ik (3.1)

for some two-sided ideal Ik of U.g/. Thus yLk.�/ is a Vk.g/-module if and only if
Ik �L.�/D 0, that is, Ik � J�. The following assertion was conjectured in [1] and proved
by the first named author.

Theorem 3.1 ([8]). Let k be an admissible number for yg and � 2 h�. Then yLk.�/ is a
Vk.g/-module if and only if � 2 Prk .

Corollary 3.2. Any A.Vk.g//-module on which nC acts locally nilpotently and h acts
locally finitely is a direct sum of L.�/ with � 2 Prk .

Proof. It is sufficient to show that Ext1g.L.�/; L.�// D 0 for �; � 2 Prk . If � ¤ � this
is obvious since any weight in Prk is dominant. So suppose there exists a nonsplit exact
sequence 0 ! L.�/ ! M ! L.�/ ! 0. Applying the Zhu induction functor to this
sequence gives rise to a nontrivial self-extension of yLk.�/ [7, proof of Theorem 10.5]. But
this contradicts the fact [51] that admissible representations of yg do not admit nontrivial
self-extensions.

Lemma 3.3 ([13, Proposition 2.4]). Let �;� 2 Prk .

(1) J� is the unique maximal two-sided ideal containing U.g/ ker 
�. In particular,
U.g/=J� is a simple algebra.

(2) J� D J� if and only if there exists w 2 W such that � D w ı �.
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Set
ŒPrk � D Prk=�; where � � � ” � 2 W ı �.

By Lemma 3.3, the primitive ideal J� depends only on the class of � 2 Prk in ŒPrk �.
We are now in a position to state the main result of this section.

Theorem 3.4. Let k be an admissible number for yg. The Zhu algebra A.Vk.g// is iso-
morphic to the product of the simple algebras U.g/=J� as � runs over ŒPrk �:

A.Vk.g// Š
Y

�2ŒPrk �

U.g/=J�:

Remark 3.5. (1) Theorem 3.4 implies, in particular, that any A.Vk.g//-module admits
a central character. Thus the image ŒL� of the conformal vector L is semisimple in
A.Vk.g//.

(2) For � 2 Prk , the algebra U.g/=J� is finite-dimensional if and only if � 2 P . (Note
that the latter condition implies that � is a dominant integral weight, since any element
of Prk is regular dominant.) In this case we have U.g/=J� Š L.�/˝ L.�/�.

(3) In the special case of k 2 ZC, or equivalently Vk.g/ integrable, Prk is the projec-
tion P kC to h� of the set yP kC of dominant integral weights of yg of level k and we have

A.Vk.g// Š
Y
�2P

C

k

L.�/˝ L.�/�;

which is well-known [46].

Proof of Theorem 3.4. Fix an admissible number k and put A D A.Vk.g// D U.g/=Ik .
For any � 2 Prk we have

A˝U.g/M.�/ Š L.�/ (3.2)

as A-modules. Indeed, A ˝U.g/ M.�/ is a quotient of M.�/, and by Corollary 3.2 the
only quotient A-module of M.�/ is L.�/.

Let Z.g/ denote the centre of U.g/ and put

Z D Z.g/=Z.g/ \ Ik :

Since the associated variety of Vk.g/ is contained in the nilpotent cone N of g [6], it
follows that Z is finite-dimensional (see [16, proof of Corollary 5.3]). Hence

Z D
Y


2Specm.Z/

Z
 ; where Z
 D ¹z 2 Z j .z � 
.z//
r
D 0 for r � 0º:

This gives a decomposition

A D
Y


2Specm.Z/

A
 ; where A
 D A˝Z Z
 :

Moreover, by Theorem 3.1 and Lemma 3.3, we have

Specm.Z/ D ¹
� j � 2 ŒPrk �º:
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Let � 2 Prk and denote by C
� the one-dimensional representation of Z correspond-
ing to 
�. Then A˝Z C
� is a quotient algebra of U.g/, and we claim that

A˝Z C
� Š U.g/=J�: (3.3)

Indeed, A ˝Z C
� Š U.g/=I for some two-sided ideal I , and clearly I contains
U.g/ ker 
�. Since M.�/=IM.�/ is an A-module, we have M.�/=IM.�/ Š L.�/ by
Corollary 3.2. On the other hand, � is dominant, and by [59] the correspondence I 7!
IM.�/ is an order preserving bijection from the set of two-sided ideals of U.g/ con-
taining U.g/ ker 
� to the set of submodules of M.�/ for a dominant �. It follows that
I D J�.

There exists a finite filtration

0 D Z0 � Z1 � � � � � Zr D Z
�

of Z
� as a Z
� -module such that each successive quotient Zi=Zi�1 is isomorphic to the
one-dimensional representation C
� of Z
� . We put Ai D A˝Z Zi and obtain

0 D A0 � A1 � � � � � Ar D A
�

and
Ai=Ai�1 D A˝Z .Zi=Zi�1/ D A˝Z C
� Š U.g/=J�:

as A-bimodules. If the filtration is trivial, that is, if r D 1, then A
� Š U.g/=J� and we
are done. So we now assume that r > 1 and deduce a contradiction.

Note that each exact sequence 0! Zi ! ZiC1 ! ZiC1=Zi ! 0 is nonsplit since
otherwise we obtain a contradiction to (3.3). So we consider the nonsplit exact sequence
of Z-modules

0! Z1 ! Z2 ! Z2=Z1 ! 0: (3.4)

Since Z1 D Z2=Z1 D C
� and � is regular, it follows from [7, proof of Lemma 10.6]
that (3.4) is obtained from an exact sequence 0! C�! E ! C�! 0 of h-modules via
the Harish-Chandra homomorphism Z.g/! S.h/. We apply induction to obtain an exact
sequence

0!M.�/! N !M.�/! 0

of g-modules. Here N D U.g/ ˝U.h˚n/ E where n acts trivially on E. Applying the
functor A˝U.g/ .�/ yields the exact sequence

L.�/ D A˝U.g/M.�/
'1
�! A˝U.g/ N ! A˝U.g/M.�/ D L.�/! 0: (3.5)

Let v� be a highest weight vector of M.�/. Then 1 ˝ v� is a highest weight vector of
A ˝U.g/ M.�/ D L.�/. By construction, this vector is mapped to a nonzero vector of
A˝U.g/ N . Thus, the map L.�/! A˝U.g/ N is an injection and (3.5) is a nontrivial
self-extension of L.�/. But this contradicts Corollary 3.2.
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For a two-sided ideal I of U.g/ we denote by Var.I / the zero locus of gr I in g� (or
rather its image in g under the isomorphism induced by the Killing form), where gr I is
the associated graded of I with respect to the filtration induced from the PBW filtration
of U.g/. Joseph’s Theorem [60] asserts that Var.I / DO for some nilpotent orbit O of g.
Thus for each nilpotent orbit O, we denote by PrimO the set of those primitive ideals
I � U.g/ such that Var.I / D O.

Recall the ideal Ik such thatA.Vk.g//DU.g/=Ik . In [7, Theorem 9.5] the first author
has shown that, for an admissible number k, Var.Ik/ coincides with the associated vari-
ety [4] XVk.g/ of Vk.g/, and hence by [6],

Var.Ik/ D Oq;

where Oq is some nilpotent orbit of g that depends only on the denominator q of k. More
precisely, we have

Oq D

´
¹x 2 g j .ad x/2q D 0º if .r_; q/ D 1;

¹x 2 g j ��s .x/
2q=r_ D 0º if .r_; q/ D r_;

where ��s is the simple finite-dimensional representation of g with highest weight �s .
For a nilpotent orbit O we write

PrkO D ¹� 2 Prk j Var.J�/ D Oº;

and we write ŒPrkO� for the image of PrkO in ŒPrk �. We have Var.J�/ � Var.Ik/ D Oq for
all � 2 Prk , so we may write

Prk D
G

O�Oq

PrkO and ŒPrk � D
G

O�Oq

ŒPrkO�: (3.6)

Finally, we put
Prkı D PrkOq and ŒPrkı � D ŒPrkOq �: (3.7)

Theorem 3.6. For an admissible number we have

Prkı D ¹� 2 Prk j j�.�/j D dim N � dim Oqº;

where �.�/ D ¹˛ 2 � j h�C �; ˛_i 2 Zº.

Proof. Let � 2 Prk . Since Var.J�/ � Var.Ik/DOq , it follows that � 2 Prkı if and only if

dim Var.J�/ D dim Oq; (3.8)

where q is the dominator of k. Since all the elements in Prk are regular dominant, we have

dim Var.J�/ D dim N � j�.�/j

for such � by [58, Corollary 3.5]. The result follows.
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4. Semisimplicity of Zhu algebras of W-algebras

Let f be a nilpotent element of g. Recall [37] that a 1
2
Z-grading gD

L
j2 12Z gj is called

good for f if f 2 g�1, ad.f / W gj ! gj�1 is injective for j � 1=2 and surjective for
j � 1=2. The grading is even if gj D 0 for j … Z. Any nilpotent f can be embedded into
an sl2-triple ¹e; h; f º, and g thereby acquires a 1

2
Z-grading by eigenvalues of ad.h=2/.

Such a grading is called a Dynkin grading. All Dynkin gradings are good, but not all good
gradings are Dynkin.

We denote by Wk.g; f / the affine W-algebra associated with g, f at level k and a
good grading g D

L
j2 12Z gj [62]. It is defined by the generalised quantised Drinfeld–

Sokolov reduction:
Wk.g; f / D H 0

f .V
k.g//;

whereH �
f
.M/ denotes the cohomology of the BRST complex associated with g, f and k.

This vertex algebra carries a conformal structure with central charge [62, Theorem 2.2]

dim.g0/ �
1

2
dim.g1=2/ �

12

k C h_
j� � .k C h_/x0j

2; (4.1)

where x0 is the semisimple element of g that defines the grading, that is, gj D ¹x 2 g j

Œx0; x� D jxº. We note that the vertex algebra structure of Wk.g; f / does not depend on
the choice of the good grading of g [14, Section 3.2.5] but the conformal structure does.

Recall [2, 30] that
A.Wk.g; f // Š U.g; f /;

where U.g; f / is the finite W -algebra associated with .g; f / [72], whose construction
we now briefly recall.

Let HC be the category of Harish-Chandra U.g/-bimodules, that is, the full subcate-
gory of the category of U.g/-bimodules consisting of objects that are finitely generated as
U.g/-bimodules and on which the adjoint action of g is locally finite. For an object M of
HC one defines a finite-dimensional analogue of the quantised Drinfeld–Sokolov reduc-
tion which, by abuse of notation, we write as H 0

f
.M/ [7, Section 3]. In particular,

U.g; f / D H 0
f .U.g//;

and in general the space H 0
f
.M/ is a bimodule over the finite W -algebra U.g; f /.

Let C` be the Clifford algebra associated with the vector space g>0 ˚ g�>0 equipped
with the canonical symmetric bilinear form. Let � W g�1 ! C be defined by �.x/ D
.f; x/, and let D D U.g>0/=I>0;� where I>0;� is the two-sided ideal U.g>0/hx � �.x/ j
x 2 g�1i. Note that if the good grading is even then D is one-dimensional. Now for
M 2 HC we put

C.M/ DM ˝D ˝ C`:

This inherits a Z-grading from C` by assigning deg.g>0/D �1 and deg.g�>0/DC1. Let
¹xiº be a homogeneous basis of g>0, denote by xi the canonical image of xi in D , and
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let ¹x�i º be the dual basis of g�>0. Put

d D
X
i

.xi ˝ 1C 1˝ xi /˝ x
�
i � 1˝ 1˝

1

2

X
i;j;k

ckijx
�
i x
�
j xk 2 C

1.U.g//;

where ckij are the structure constants, Œxi ; xj � D
P
k c

k
ijxk . Then ad.d/ is a differential

on C.M/, and one defines

H �f .M/ D H �.C.M/; ad.d//:

The functor H 0
f
.�/ is identical to .�/� in Losev’s notation [68] (see [7, Remark 3.5]).

The space g1=2 is a symplectic vector space with respect to the form .x;y/ 7!�.Œx;y�/.
Let l be a Lagrangian subspace of g1=2, and let m D l˚

L
j�1 gj . Then m is a nilpotent

subalgebra of g and � W m! C defines a character. Put Y D U.g/˝U.m/ C�. We have
the algebra isomorphism [29]

U.g; f / Š EndU.g/.Y /op:

Let E be a left U.g; f /-module. Then E 7! Y ˝U.g;f / E is a U.g/-module on which
x � �.x/ acts locally nilpotently for all x 2 m; moreover, this assignment defines an
equivalence of categories known as the Skryabin equivalence [72].

By [6, Theorem 4.15],H 0
f
.Vk.g// is a quotient vertex algebra of Wk.g; f /, provided

it is nonzero. By [7, Theorem 8.1] we have

A.H 0
f .Vk.g/// Š H

0
f .A.Vk.g///;

and thus by Theorem 3.4 we have, for any admissible number k,

A.H 0
f .Vk.g/// Š

Y
Œ��2ŒPrk �

H 0
f .U.g/=J�/: (4.2)

We recall the construction of the component group C.f /. Let us embed f into an
sl2 triple ¹e; h; f º � g, and let G\ be the centraliser of the corresponding copy of sl2 in
the simply connected algebraic group G with Lie algebra g. The restriction of the adjoint
action of G defines actions of G\ on U.g; f / and Wk.g; f /. The Lie algebra g\ of G\

embeds naturally into U.g; f / and therefore the action of the unit component .G\/ı ofG\

is trivial. Hence the action of G\ descends to the component group C.f / D G\=.G\/ı.
Let � 2 h�. Then H 0

f
.U.g/=J�/ is naturally an algebra and the exact sequence 0!

J� ! U.g/! U.g/=J� ! 0 induces an exact sequence

0! H 0
f .J�/! H 0

f .U.g//! H 0
f .U.g/=J�/! 0

([50,68]; see also [7, Section 3]). Thus,H 0
f
.U.g/=J�/ is a quotient algebra of U.g; f /D

H 0
f
.U.g//.

Let I 2 PrimG�f , that is, I �U.g/ is a primitive ideal and Var.I /DG � f . For such I
we denote by FinI .U.g; f // the set of isomorphism classes of finite-dimensional simple
U.g; f /-modules E such that AnnU.g/.Y ˝U.g;f / E/ D I .
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Theorem 4.1 ([68]). Let � 2 h� and let f 2 g be a nilpotent element.

(1) If Var.J�/ ¨ G � f then H 0
f
.U.g/=J�/ D 0.

(2) If Var.J�/ D G � f then

H 0
f .U.g/=J�/ Š

Y
E2FinJ� .U.g;f //

E ˝E�:

In particular, H 0
f
.U.g/=J�/ is a semisimple algebra.

(3) The natural action of C.f / on FinJ�.U.g; f // is transitive.

Theorem 4.2. Let k be an admissible number with denominator q 2Z�1, and let f 2Oq .
Then

A.H 0
f .Vk.g/// Š

Y
Œ��2ŒPrkı �

� Y
E2FinJ� .U.g;f //

E ˝E�
�
:

In particular, A.H 0
f
.Vk.g/// is semisimple. Moreover, if SŒ�� is a complete set of isomor-

phism classes of FinJ�.U.g; f //, then
F
Œ��2ŒPrkı �

SŒ�� is a complete set of isomorphism
classes of simple A.H 0

f
.Vk.g//-modules.

Proof. The first statement follows immediately from Theorems 3.4 and 4.1. To see the
second statement, we recall that the centre of U.g; f / is isomorphic to Z.g/ [73], and
hence E 2 FinJ�.U.g; f // and E 0 2 FinJ�.U.g; f // have distinct central characters if
Œ��; Œ�� are distinct in ŒPrkı �.

Let Wk.g; f / be the unique simple quotient of Wk.g; f /.

Theorem 4.3. Let k be an admissible number with denominator q 2Z�1, and let f 2Oq .
Then the Zhu algebra A.Wk.g; f // is semisimple.

Proof. Since H 0
f
.Vk.g// is a quotient of Wk.g; f /, we infer that Wk.g; f / is a quotient

of H 0
f
.Vk.g//. Hence A.Wk.g; f // is a quotient of A.H 0

f
.Vk.g///. Since the latter is

semisimple by Theorem 4.2, so is the former.

Remark 4.4. Conjecturally [66], H 0
f
.Vk.g// is either zero or isomorphic to Wk.g; f /.

This will be proved in Theorem 7.8 for the exceptional W-algebra Wk.g; f / when f
admits a good even grading.

5. Modular invariance of trace functions

For a vertex algebra V let RV D V=C2.V / denote Zhu’s C2 algebra [81], which is a
Poisson algebra. The associated variety XV of V is by definition the Poisson variety
SpecmRV [4]. By [6] we haveXH0

f
.Vk.g//

Š XVk.g/ \ �f , where �f is the Slodowy slice
f C ge at f .
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Let k be an admissible number with denominator q and let f 2 Oq . Since XVk.g/
D Oq , XH0

f
.Vk.g//

D ¹f º by the transversality of �f to G-orbits. Therefore H 0
f
.Vk.g//

is lisse, and so is Wk.g; f / [6]. The vertex algebra Wk.g; f / is 1
2
Z�0-graded, as are

untwisted irreducible Wk.g; f /-modules. On the other hand, Ramond twisted irreducible
Wk.g; f /-modules (see [3, 66]) are Z�0-graded. Note that if Wk.g; f / is ZC-graded
then a Ramond twisted module is the same thing as an untwisted module.

For a simple A.Wk.g; f //-module E, we denote by L.E/ the corresponding irre-
ducible Ramond twisted Wk.g; f /-module. The module L.E/ is the unique simple quo-
tient of the Verma module

M.E/ D U.Wk.g; f //˝U.Wk.g;f //�0
E;

where U.Wk.g; f // D
L
d2Z U.Wk.g; f //d is the Ramond twisted current algebra of

Wk.g; f / [46, 69] and U.Wk.g; f //�0 D
L
d�0 U.Wk.g; f ///d .

Let M be an irreducible Ramond twisted representation of Wk.g; f / and for
u 2Wk.g; f /, set

SM .� j u/ D TrM .u0qL0�c=24/;

where c is the central charge, q D e2�i� , and u0 is the degree preserving Fourier mode of
the field u.z/. Set

LŒ0� D L0 �

1X
jD1

.�1/j

j.j C 1/
Lj :

Theorem 5.1. Let k be an admissible number with denominator q 2Z�1, and let f 2Oq .
Let ¹E1; : : : ; Erº be a complete set of representatives of isomorphism classes of simple
modules over the Zhu algebra A.W/ of W DWk.g; f /. Then SL.Ei /.� j u/ converges to
a holomorphic function on the upper half-plane for all u 2 W, i D 1; : : : ; r . Moreover,
there is a representation � W SL2.Z/! EndC.Cr / such that

SL.Ei /

�
a� C b

c� C d

ˇ̌̌̌
.c� C d/�LŒ0�u

�
D

rX
jD1

�.A/ijSL.Ej /.� j u/ for all u 2W.

Proof. As remarked by the second author [76], in Zhu’s result [81] on the modular invari-
ance of the trace function and its generalisations [34, 76], the assumption of rationality
of the vertex algebra can be replaced by semisimplicity of the Zhu algebra. Therefore the
theorem follows immediately from Theorem 4.3 and the fact that Wk.g;f / is lisse [6].

Since SM .j0i; �/ is just the normalised character

�M .�/ D TrM .qL0�cV =24/;

we obtain

Corollary 5.2. Let k be an admissible number with denominator q2Z�1, and let f 2Oq .
Let ¹E1; : : : ; Erº be a complete set of representatives of isomorphism classes of simple
modules over the Zhu algebra A.W/ of W D Wk.g; f /. Then the character �L.Ei /.�/
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converges to a holomorphic function on the complex upper half-plane, and the span of the
�L.Ei /.�/, as i runs over ¹1; : : : ; rº, is invariant under the action of SL2.Z/.

The exceptional W-algebras introduced by Kac and Wakimoto [66] are exactly the
W-algebras Wk.g; f / with f of standard Levi type and an admissible number k whose
denominator q is coprime to r_ [6]. Hence Corollary 5.2 in particular proves the modu-
lar invariance of the characters of modules over the exceptional W-algebras, which was
conjectured by Kac and Wakimoto [66].

We now restrict to the Z�0-graded case and discuss fusion products. The category of
modules of a rational lisse self-dual simple vertex algebra V D

L
n2ZC

Vn of CFT-type
carries the structure of a modular tensor category (MTC) under the fusion product X � Y

of modules [54]. The fusion product is the one defined, at this level of generality, in [55].
Duals are given by the usual contragredient construction, and twists are given in terms of
conformal dimensions. The S -matrix of the MTC coincides with the matrix S D �

�
0 �1
1 0

�
of Zhu’s theorem. In particular, the Verlinde formula asserts that the decomposition mul-
tiplicities or fusion rules N in X � Y Š

L
Z N

Z
X;Y �Z are given by

NZ
X;Y D

X
W 2Irr.V /

SX;W SY;W SZ0;W

SV;W
:

Furthermore, the charge conjugation matrix S2 is the permutation matrix which
exchanges each module with its contragredient.

Let C be an MTC. The integral Grothendieck group F .C/ acquires a commutative
ring structure corresponding to the tensor product, and a distinguished Z-basis corre-
sponding to simple objects, which comes equipped with an involution corresponding to
duality. We refer to this structure as the fusion ring of C , and we also write F .V / for the
fusion ring of the category of representations of a rational lisse self-dual vertex algebra V .
Since the structure of F .C/ is completely encoded in its S -matrix, we shall sometimes
abuse notation and write F .S/.

6. Self-duality of W-algebras

Let V be a vertex algebra of CFT-type, that is, V is Z�0-graded where V0 DC. Then V is
called self-dual if V Š V 0 as V -modules, where M 0 denotes the contragredient dual [45]
of the V -module M . Equivalently, V is self-dual if and only if it admits a nondegenerate
symmetric invariant bilinear form. According to Li [67], the space of symmetric invariant
bilinear forms on V is naturally isomorphic to the linear dual of V0=L1V1.

The condition of self-duality depends on the choice of the conformal vector and is
necessary to apply Huang’s result [54] on the Verlinde formula. In this section we consider
the question of self-duality of affine W-algebras.

Proposition 6.1. Suppose that f admits a good even grading. The simple W-algebra
Wk.g; f / is self-dual if and only if

.k C h_/.x0; v/ �
1
2

trg>0.ad v/ D 0 for all v 2 g
f
0 .
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Proof. By Li’s result Wk.g; f / admits a nonzero symmetric invariant bilinear form if and
only if L1Wk.g; f /1 D 0. By [62], Wk.g; f /1 is spanned by the vectors J ¹vº, v 2 g

f
0 ,

defined in [62, p. 320]. Hence from [62, Theorem 2.4 (b)] it follows that Wk.g; f / admits
a symmetric invariant bilinear form such that .1; 1/ D 1 if and only if .k C h_/.x0; v/ �
1
2

trg>0.ad v/ D 0 for all v 2 g
f
0 . If this is the case, the form induces a nondegenerate

symmetric invariant bilinear form on the simple quotient Wk.g; f / and thus the latter is
self-dual. Conversely, suppose that .kC h_/.x0; v/� 1

2
trg>0.adv/¤ 0 for some v 2 g

f
0 .

Then the image of J ¹vº in Wk.g; f /1 is nonzero, and L1J ¹vº D 1 up to nonzero constant
multiplication. Therefore Wk.g; f / is not self-dual according to Li’s criterion.

Remark 6.2. The notion of the contragredient dual naturally extends to modules over
1
2
Z-graded vertex algebras and the proof of Li’s criterion applies without any change. See

[80, Proposition 2.4] for example. Hence Proposition 6.1 is valid without the assumption
that f admits a good even grading.

Recall that a nilpotent element f is called distinguished if g
f
0 D 0 for the Dynkin

grading. For example all principal nilpotent elements are distinguished, and so are sub-
regular nilpotent elements in types D and E. All distinguished nilpotent elements are
even. For a distinguished nilpotent element the only good grading is the Dynkin grading.
The following assertion is a direct consequence of Proposition 6.1.

Proposition 6.3. Let f be a distinguished nilpotent element. Then the simple W-algebra
Wk.g; f / is self-dual.

Remark 6.4. More generally, one can show that Wk.g; f / is self-dual for the Dynkin
grading for any nilpotent element [11].

For g D sln, only principal nilpotent elements are distinguished. A subregular nilpo-
tent element fsubreg 2 sln is even if and only if n is even.

Proposition 6.5. Let g D sln. The simple subregular W-algebra Wk.g; fsubreg/ is self-
dual if and only if either .1/ n is even and the grading is Dynkin, or .2/ kC nD n=.n� 1/.

Proof. By [37] the good even gradings of fsubreg are classified by the pyramids corre-
sponding to the partition .n � 1; 1/. So we may take

f D

m�2X
iD1

EiC1;i CEmC1;m�1 C

n�1X
iDmC1

EiC1;i ;

x0 D

m�1X
iD1

.m � i/Ei;i �

nX
iDmC2

.i �m � 1/Ei;i ;

(6.1)

for somemD 1; : : : ;n, to obtain g
f
0 DCvm, where vmDEm;m � 1

n

Pn
iD1Ei;i . It follows

that

.k C h_/.x0; v/ �
1

2
trg>0.ad v/ D

.n � 1/.n � 2k/

2n

�
k C h_ �

n

n � 1

�
:
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The assertion follows from Proposition 6.1 on noting that n D 2m if and only if n is even
and the corresponding pyramid is symmetric, or the grading is Dynkin.

Remark 6.6. For k C n D n=.n � 1/ we have Wk.sln; fsubreg/ D C.

7. The “�”-reduction functor revisited

From now on we assume that the nilpotent element f admits a good even grading g DL
j2Z gj , so that Wk.g; f / is Z�0-graded. Note that this condition is satisfied by all

nilpotent elements in type A and subregular nilpotent elements in simply laced types.
Without loss of generality we assume that h � g0 and the root system � is compatible
with the grading, that is, �C D �0;C t

F
j�1�j , where �j D ¹˛ 2 � j g˛ � gj º and

�0;C��C is a set of positive roots of g0. We write g�0D
L
j�0gj and g<0D

L
j<0gj .

Let �� W g<0! C be the character defined by ��.e�˛/D �.e˛/. As in [3, Section 5]
we write

H Lie
� .M/ D H�.g<0;M ˝C��/

for the Whittaker coinvariants functor, whereH�.�/ denotes the usual Lie algebra homol-
ogy functor.

Let O be the Bernstein–Gelfand–Gelfand category of g, and let Og0 be the full sub-
category of O consisting of those objects that are integrable as g0-modules. We put

P0;C D ¹� 2 h� j h�; ˛_i 2 Z�0 for all ˛ 2 �0;Cº: (7.1)

Then ¹L.�/ j �2P0;Cº is a complete set of isomorphism classes of simple objects in Og0 .
Let DimM be the Gelfand–Kirillov dimension of the g-moduleM . ForM 2Og0 one

has
DimM � dim g<0 D

1
2

dimG � f ;

and in the case of equality we shall say that DimM is maximal. We recall that M is said
to be holonomic if DimM D 1

2
dim Var Ann.M/.

Theorem 7.1 ([70, 71]; see also [3, Theorem 5.1.1]). (1) If M 2 Og0 then H Lie
0 .M/ is

finite-dimensional.

(2) If M 2 Og0 then H Lie
i .M/ D 0 for i > 0.

(3) If � 2 P0;C then H Lie
0 .L.�// ¤ 0 if and only if DimL.�/ is maximal.

Proposition 7.2. For � 2 P0;C we have Var.J�/ D G � f if and only if DimL.�/ is
maximal.

Proof. We begin by recalling that L.�/ is holonomic, by a result of Joseph [58]. Now
suppose DimL.�/ is maximal, so that DimL.�/ D 1

2
dimG � f . Then H Lie

0 .L.�// ¤ 0

and thus there exists a vector v 2 L.�/ such that its image Œv� in H Lie
0 .L.�// is nonzero.

As H Lie
0 .L.�// is an H 0

f
.U.g/=J�/-module and Œv� D Œ1� � Œv�, the image Œ1� of 1 in

H 0
f
.U.g/=J�/ is nonzero, and henceH 0

f
.U.g/=J�/¤0. But this implies Var.J�/�G � f .
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By the holonomicity ofL.�/we have dimVar.J�/D dimG � f and thus Var.J�/DG � f
as required.

On the other hand, if DimL.�/ < 1
2

dimG � f , then dim Var.J�/ < dimG � f . This
completes the proof.

Let O D G � f and for I 2 PrimO let ¹EI Œi � j i D 1; : : : ;NI º denote the complete set
of isomorphism classes of irreducible finite-dimensional representations ofH 0

f
.U.g/=I /.

Recall that the group C.f / acts transitively on this set.

Theorem 7.3.

� Let � 2 h�, O D G � f and suppose that J� 2 PrimO . As U.g; f /-modules,

H Lie
p .L.�// Š

NJ�M
iD1

EJ� Œi �
˚np;i

for some collection of np;i 2 Z�0 [ ¹1º for each p � 0.

� Let � 2 P0;C and suppose DimL.�/ is maximal. As U.g; f /-modules,

H Lie
p .L.�// Š

´LNJ�
iD1 EJ� Œi �

˚n� for p D 0;

0 otherwise

for some n� 2 Z>0.

Proof. By Theorem 4.1,

H 0
f .U.g/=J�/ Š

NJ�M
iD1

EJ� Œi �˝EJ� Œi �
�

is a finite-dimensional semisimple algebra. We note thatH Lie
p .L.�// is a module over this

algebra, and therefore is a direct sum of EJ� Œi � with i D 1; : : : ;NJ� . This proves the first
part. For the second part, there is a natural inclusion of G\ in G0, the simply connected
algebraic group with Lie algebra g0. Since L.�/ is integrable with respect to g0, we have
H Lie
0 .L.�// invariant under the action of G\ and hence of C.f /.

We also need the following result of Matumoto.

Theorem 7.4 ([70]). Suppose that h�C�;˛_i 62Z�1 for all ˛2�n�0. ThenH Lie
0 .L.�//

is a .nonzero/ simple U.g; f /-module.

Theorem 7.5. Let � 2 P0;C be such that h� C �; ˛_i 62 Z�1 for all ˛ 2 �>0. Then
DimL.�/ is maximal, J�2PrimG�f , andH 0

f
.U.g/=J�/ has a unique simple moduleEJ� .

Furthermore, H Lie
0 .L.�// Š EJ� .

Proof. By Theorem 7.4, H Lie
0 .L.�// is a nonzero simple U.g; f /-module. Hence by

Theorem 7.1, DimL.�/ is maximal, and so J� 2 PrimG�f by Proposition 7.2. Finally,
it follows from Theorems 7.3 and 7.4 that H Lie

0 .L.�// is the unique element of
FinJ�.U.g; f //.
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We recall the definition of (the “�” variant of) the quantised Drinfeld–Sokolov reduc-
tion functor H 0

f;�
.�/ [3, 62]. For a vector space a we denote by La the superalgebra

.a ˚ a�/Œt; t�1� ˚ C1 whose even part is C1 and odd part is .a ˚ a�/Œt; t�1�, and the
commutation relation is Œatm; btn� D .a; b/ım;�n1, where .�; �/ is the canonical symmet-
ric bilinear form .a; �/ D .�; a/ D �.a/ for a 2 a, � 2 a�.

Let
V1

2 C� denote the Fock Lg<0-module with highest weight vector j0i, subject to
the relations '˛;n�1j0i D 0, '�˛;n�0j0i D 0. Here '˛ � e�˛ for ˛ 2 �>0 and ¹'�˛º is

the dual basis of g�<0. Assigning deg.'/ D �1 and deg.'�/ D C1 makes
V1

2 C� into a
Z-graded vertex superalgebra, with generating fields '˛.z/ D

P
n '˛;nz

�n and '�˛ .z/ DP
n '
�
˛;nz

�n�1. For any V k.g/-module we put

C ��.M/ DM ˝
V1

2 C�; (7.2)

and we introduce the operator Q� on C ��.M/ by

Q� D
X

˛2�>0; n2Z

e�˛t
�n
˝ '�˛;n �

1

2

X
˛;ˇ;
2�>0
m;n2Z

c˛ˇ
 W '˛;�m'
�
ˇ;�n'

�

;mCn

C

X
˛2�>0

�.e�˛/'
�
˛;0:

Then .Q�/2 D 0, and we define

H �f;�.M/ D H �.C ��.M/;Q�/:

If M is any V k.g/-module, then by [3, Section 4.3] (see also [44, Section 2.2]) the space
H 0
f;�
.M/ carries the structure of a Ramond twisted Wk.g; f /-module (which, under our

assumption that f admits a good even grading, is nothing but the usual untwisted module
structure).

Let yOg0
k

be the full subcategory of the category of left yg-modules consisting of
objects M such that

� K acts as multiplication by k on M ,

� M admits a weight space decomposition with respect to the action of yh,

� there exists a finite subset ¹�1; : : : ; �nº of h�
k

such that M D
L
�2

S
i �i�

yQC
M�,

� for each d 2 C, Md is a direct sum of finite-dimensional g0-modules.

For � 2 P0;C, put yMk;0.�/ D U.yg/˝U.gŒt�˚CK/ L.�/ 2 yO
g0
k

, where L.�/ is considered
as a gŒt �˚ CK-module on which gŒt �t acts trivially and K acts as multiplication by k.
The modules yLk.�/, as � ranges over P0;C, form a complete set of simple objects of yOg0

k
.

Theorem 7.6. Let k be any complex number.

(1) .[3, Theorem 5.5.4]/ Let M 2 yOg0
k

. Then H i
f;�
.M/ D 0 for all i ¤ 0. In particular,

the functor yOg0
k
!Wk.g; f / -Mod, M 7! H 0

f;�
.M/, is exact.
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(2) .[3, Theorem 5.5.4]/ Let � 2 P0;C. Then H 0
f;�
.yLk.�// ¤ 0 if and only if DimL.�/

is maximal.

(3) Let � 2 P0;C and suppose DimL.�/ is maximal. Then

H 0
f;�.
yMk;0.�// Š

NJ�M
iD1

M.EJ� Œi �/
˚n� and H 0

f;�.
yLk.�// Š

NJ�M
iD1

L.EJ� Œi �/
˚n� ;

where n� is the multiplicity of EJ� Œi � in H Lie
0 .L.�// as in Theorem 7.3.

Proof of (3). We haveH 0
f;�
. yMk;0.�//top Š H

0
f;�
.yLk.�//top Š H

Lie
0 .L.�// (see [3]), and

the latter space is isomorphic to
LNJ�
iD1 EJ� Œi �

˚n� by Theorem 7.3. On the other hand, it
was shown in [3] that H 0

f;�
. yMk;0.�// is almost highest weight, that is, H 0

f;�
. yMk;0.�// is

generated by H 0
f;�
. yMk;0.�//top. Therefore, there is a surjective homomorphism

NJ�M
iD1

M.EJ� Œi �/
˚n� � H 0

f;�.
yMk;0.�//:

of Wk.g; f /-modules. But this must be an isomorphism since their characters coincide
(see [3]). The exactness result of part (1) now implies that there is a surjective homomor-
phism

NJ�M
iD1

M.EJ� Œi �/
˚n� � H 0

f;�.
yLk.�//: (7.3)

On the other hand, it was also shown in [3] thatH 0
f;�
.yLk.�// is almost irreducible, that is,

any nontrivial submodule of H 0
f;�
.yLk.�// intersects H 0

f;�
.yLk.�//top nontrivially. It fol-

lows that (7.3) factors through the isomorphism
LNJ�
iD1 L.EJ� Œi �/

˚n�
�
�! H 0

f;�
.yLk.�//.

This completes the proof.

By the definition of the “�”-reduction [3], it follows that the conformal dimension of
the Wk.g; f /-module L.EJ� Œi �/ is

h� WD
j�C �j2 � j�j2

2.k C h_/
�
k C h_

2
jx0j

2
C .x0; �/ (7.4)

(see [44, (3.1.6)]). A simple but useful observation is that this expression is invariant under
the dot action of W on �.

Theorem 7.7. Let k be an admissible number for yg. Let � 2 Prk \ P0;C be such
that DimL.�/ is maximal. Then H 0

f
.U.g/=J�/ has a unique simple module, which we

denote EJ� , and

H 0
f;�.
yMk;0.�// ŠM.EJ�/ and H 0

f;�.
yLk.�// Š L.EJ�/:
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Proof. By Theorem 7.5,H 0
f
.U.g/=J�/ has a unique simple moduleEJ� . The other state-

ments follow from Theorem 7.6.

Theorem 7.8. Let k be an admissible number for yg with denominator q and let � 2 PrkZ.
For f 2 Oq , we have � � p

q
x0 2 Prk \ P0;C and

H 0
f .
yLk.�// Š L.EJ

��
p
q x0

/ Š H 0
f;�

�
yLk

�
� �

p

q
x0

��
:

In particular,
Wk.g; f / Š H

0
f .Vk.g// Š L.EJ

�
p
q x0

/:

Proof. First, we have � � p
q
x0 2 Prk \P0;C. Indeed, it is clear that � � p

q
x0 2 P0;C.

Also, x0 2 P_C since we have assumed that f admits a good even grading. We have´
�.x0/ < q if .q; r_/ D 1;

�s.x0/ < q=r
_ if .q; r_/ ¤ 1I

see [6, Section 5.7]. It follows that t�x0.y�.kƒ0/C/� y�
re
C, and so �� p

q
x0 2 Prkt�x0�Prk .

Moreover by Janzten’s criterion [57] we have .�� p
q
x0/Š U.g/˝U.g�0/ Lg0.��

p
q
x0/,

where g�0 D
L
j�0 gj and Lg0.�/ is the irreducible highest weight representation of g0

with highest weight �. Hence DimL.�� p
q
x0/D dimg�0 is maximal. Therefore, by The-

orem 7.7, H 0
f
.U.g/=J�/ has a unique simple module EJ

��
p
q x0

and H 0
f;�
.yLk.� �

p
q
x0//

Š L.EJ��pq x0/.
Now recall that the centre Z.U.g; f // of U.g; f / is isomorphic to the centre Z.g/

of U.g/ [73]. By definition, for �; � 2 Prk , �� D �� if and only if Œ�� D Œ�� in ŒPrk �,
where the central character �� W Z.g/! C is the evaluation at Lg.�/. Hence EJ

�
p
q x0

is

the unique simple A.H 0
f
.Vk.g///-module having central character ���pq x0 . On the other

hand, Z.U.g; f // acts on H 0
f
.yLk.�//top by the central character ���pq x0 as well (see

[7, Section 5]). Because H 0
f
.yLk.�// and L.EJ

��
p
q x0

/ Š H 0
f;�
.yLk.� �

p
q
x0// have the

same character (see [6, Proposition 5.12]), we find that H 0
f
.yLk.�// Š L.EJ

��
p
q x0

/ as
required.

Theorem 7.9. Let k be an admissible number for yg with denominator q and let f 2 Oq .
Suppose that each element of ŒPrkı � can be represented by an element � 2 Prk \ P0;C.
Then

(1) for each Œ�� 2 ŒPrkı � the algebraH 0
f
.U.g/=J�/ has a unique simple module, which we

denote EJ� ,

(2) a complete set of representatives of isomorphism classes of simple Wk.g;f /-modules
is ¹L.EJ�/ j Œ�� 2 ŒPrkı �º,

(3) Wk.g; f / is rational.
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Proof. Let ¹�1; : : : ; �rº be a subset of P0;C such that ŒPrkı � D ¹Œ�1�; : : : ; Œ�r �º. By The-
orem 7.7 we have H 0

f;�
.yLk.�i // Š L.EJ�i / for i D 1; : : : ; r , where EJ�i is the unique

simple H 0
f
.U.g/=J�i /-module.

By Theorem 4.2, ¹EJ�i j i D 1; : : : ; rº is a complete set of representatives of isomor-
phism classes of simple A.H 0

f
.Vk.g///-modules. Thus by Theorem 7.8, ¹L.EJ�i / j i D

1; : : : ; rº is a complete set of representatives of isomorphism classes of simple Wk.g; f /-
modules.

We already know that Wk.g; f / is lisse. It thus remains to show that

Ext1Wk.g;f /
.L.EJ�i /;L.EJ�j // D 0

for all i; j . Let
0! L.EJ�j /!M ! L.EJ�i /! 0 (7.5)

be an exact sequence of Wk.g; f /-modules.
Let h�i denote the conformal dimension, i.e., the lowest L0-eigenvalue, of L.EJ�i /.

If h�i D h�j , then (7.5) is obtained by applying the induction functor to the sequence

0! L.EJ�j /top !Mtop ! L.EJ�i /top ! 0

of A.Wk.g; f //-modules, and is therefore split because A.Wk.g; f // is semisimple.
Now suppose that h�i < h�j . There is a Wk.g; f /-module homomorphism M.EJ�i

/

!M such that the following diagram commutes:

M.EJ�i
/

��{{

M // L.EJ�i /

If (7.5) is nonsplit then M must coincide with a homomorphic image of M.EJ�i
/. In

particular, ŒM.EJ�i
/ W L.EJ�j /� ¤ 0. By Theorem 7.6 this occurs only if there exists

� 2 P0;C such that Œ yMk.�i / W yLk.�/� ¤ 0 and EJ�j is a direct summand ofH Lie
0 .L.�//.

The second of these conditions implies that�2W ı�j . But since y�i and y�j are dominant,
the first condition is only satisfied if y�i D y�j , which contradicts h�i < h�j .

Finally, the case h�i < h�j follows from the case h�i > h�j by applying the duality
functor to (7.5).

Remark 7.10. Let k D p=q � h_ be an admissible number for yg and let f 2 Oq . By
Theorem 7.8 and the exactness of the functorH 0

f
.�/ [6], we have the exact sequence 0!

H 0
f
.Nk/! Wk.g; f /! Wk.g; f /! 0, where Nk is the maximal proper submodule

of V k.g/. The submodule Nk is generated by a singular vector �k of weight s P̨0 ı kƒ0.
From the relations .�; �/ D h_ � 1 and .�; �s/ D h � 1 we compute

s P̨0 ı kƒ0 D

´
.p � h_ C 1/.� � qı/C kƒ0 if .q; r_/ D 1;

.p � hC 1/
�
�s �

q
r_
ı
�
C kƒ0 if .q; r_/ ¤ 1:
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From this we compute the action of the conformal vectorL0 � .x0/0 on the corresponding
singular vector �k ˝ j0i in Wk.g; f / (cf. [62, Remark 2.3]) to be given by´

.p � h_ C 1/.q � h�; x0i/ if .q; r_/ D 1;

.p � hC 1/
�
q
r_
� h�s; x0i

�
if .q; r_/ ¤ 1:

8. Rationality of W-algebras of type A

For g of type A all nilpotent elements are standard Levi type, and so Wk.g; f / is excep-
tional in the sense of Kac and Wakimoto [66] if and only if k is admissible and f 2 Oq ,
where q 2 Z�1 is the denominator of k. In this section we prove the rationality of all
exceptional W-algebras of type A. Throughout this section g D sln D An�1. The Cox-
eter number of g is h_ D h D n. It is known that the component group C.f / is trivial
for every nilpotent element f 2 g (see e.g. [22, Section 6.1]). Therefore for any primi-
tive ideal I of U.g/ such that Var.I / D G � f , the set FinI .U.g; f // contains a single
element, which we denote EI . Hence

H 0
f .U.g/=I / Š EI ˝E

�
I :

Moreover, the correspondence I 7! EI gives a bijection from the set of primitive ideals
of U.g/ satisfying Var.I / D G � f to the set of isomorphism classes of irreducible finite-
dimensional U.g; f /-modules. The module EI is described as follows [21].

As usual, we write

� D ¹˛i;j j 1 � i; j � nº and �C D ¹˛i;j j 1 � i < j � nº:

The nilpotent orbits are indexed by partitions of n. Indeed, let Y D .p1 � � � � � pr / be a
partition of n; then as in [21] we identify Y with the Young diagram having pi boxes in
the i th row, and we number the boxes of Y by 1; : : : ; n down columns from left to right.
Let row.i/ and col.i/ denote the row and column number of the i th box. Now put

f D fY D
X

ej;i ;

where the sum runs over .i; j / satisfying row.i/D row.j / and col.i/D col.j /� 1. Here
ei;j stands for the i; j -matrix unit. Then f is a nilpotent element of Jordan type Y . Declar-
ing deg.ei;j /D col.j /� col.i/ equips g with a good even grading for fY 2 g�1 [37]. The
subsets of roots

�0 D ¹˛ 2 � j e˛ 2 g0º; (8.1)

�f D ¹˛ 2 � j ˛.h/ D 0 for all h 2 hf º (8.2)

now become

�0 D ¹˛i;j 2 � j the i th and j th boxes belong to the same columnº;

�f D ¹˛i;j 2 � j the i th and j th boxes belong to the same rowº:
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Let �fC D �
f \�C and

W f
D ¹w 2 W j w.h/ D h for all h 2 hf º: (8.3)

Then W f is the subgroup of W Š Sn generated by s˛ for ˛ 2 �f . Finally, we put

P0;C D ¹� 2 h� j h�; ˛_i 2 Z�0 for all ˛ 2 �0;Cº; (8.4)

where �0;C D �0 \�C.

Theorem 8.1 (Brundan and Kleshchev [21]). (1) Let � 2 P0;C. Then H Lie
0 .L.�// ¤ 0

if and only if h� C �; ˛_i 62 Z�1 for all ˛ 2 �fC. In this case H Lie
0 .L.�// is an

irreducible U.g; f /-module. Furthermore, every irreducible finite-dimensional rep-
resentation of U.g; f / arises in this way.

(2) Let �; � 2 P0;C and suppose that H Lie
0 .L.�// and H Lie

0 .L.�// are nonzero. Then
H Lie
0 .L.�// Š H Lie

0 .L.�// if and only if � D w ı � for some w 2 W f .

Corollary 8.2. The assignment � 7! J� sets up a bijection

¹� 2 P0;C j h�C �; ˛
_i 62 Z�1 for all ˛ 2 �fCº=�

�
�! PrimG�f ;

where � � � if and only if � D w ı � for some w 2 W f . Furthermore,

EJ� Š H
Lie
0 .L.�//:

Proof. By Losev’s result [68] and the fact that C.f / is trivial, there is a bijection between
PrimG�f and the isomorphism classes of simple U.g; f /-modules, where the simple
U.g; f /-module corresponding to J 2 PrimG�f is the unique simple module of the simple
algebraH 0

f
.U.g/=J / (see Theorem 4.1). The assertion is obtained by comparing this with

Theorem 8.1.

In the present case Theorem 7.6 becomes

Theorem 8.3 ([3, Theorem 5.7.1]). Let k be any complex number and let � 2 P0;C. Then

H 0
f;�.
yLk.�// Š

´
L.EJ�/ if h�C �; ˛_i 62 Z�1 for all ˛ 2 �fC;

0 otherwise:

Lemma 8.4. Any element of ŒPrkı � can be represented by an element of Prkı \ P0;C.

Proof. By Corollary 8.2, for any � 2 Prkı there exists � 2 P0;C such that J� D J�. But
then yLk.�/ is a Vk.g/-module by Theorem 3.4, and hence � 2 Prk by Theorem 3.1.

The following assertion follows immediately from Theorem 7.9 and Lemma 8.4.

Theorem 8.5. Let k be admissible fq 2Oq . Then Wk.g; fq/ is rational and the complete
set of simple Wk.g; f /-modules is given by ¹L.EJ�/ j Œ�� 2 ŒPrkı �º.
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We now describe the set ŒPrkı � more precisely. Let k D �nC p=q be an admissible
number for yg, so p and q are coprime and p � n. Since ŒPrkı � is described in [44] in the
cases where q � n, we assume that q < n, so that Oq is nonprincipal. Let n D rq C s
where r; s � 0 and 0� s < q. Then Oq is the nilpotent orbit corresponding to the partition
Y D .s; q; : : : ; q/ of n, in which q appears r times. We have gj D ¹u 2 g j Œx0; u�D juº,
where

x0 WD

sX
iD1

$_i.rC1/ C

q�1X
iDsC1

$_s.rC1/C.i�s/r : (8.5)

For � 2 LP we set �� D ¹˛ 2 � j h�; ˛i D 0º � �, and define

LP
q

C;f
D ¹� 2 LP

q
C j h�; �i � q � 1 and �� Š �0 as root systemsº: (8.6)

Note that x0 2 LP
q

C;f
.

Lemma 8.6. A weight � 2 LPC belongs to LP q
C;f

if and only if there exists a permutation

.m1; : : : ; mq/ of .

s‚ …„ ƒ
r C 1; : : : ; r C 1;

q�s‚ …„ ƒ
r; : : : ; r/ such that

� D

q�1X
jD1

$_Pj
aD1

ma
:

Proof. From the description of �0 given at the beginning of this section, applied to the
partition Y associated with the orbit Oq , it follows that �0 is the direct product of q
irreducible root systems, s of them of type ArC1 and q � s of type Ar (treating the case
r D 0 as A0 D ;). If �� is to be isomorphic to �0 then we must have h�; ˛i > 0 for
at least q � 1 simple roots ˛, and now the condition h�; �i � q � 1 implies that h�; ˛i
equals 1 for these simple roots and 0 for all others. The simple roots ˛i1 ; ˛i2 ; : : : ; ˛iq�1
for which h�;˛ij i D 1 are of the form ij D

Pj
aD1ma for some permutation .m1; : : : ;mq/

as in the statement of the lemma and so we are done.

We define an equivalence relation � in the set P p�nC � LP
q

C;f
by declaring .�; �/ �

.�0; �0/ if and only if´
�0 D N�i ı �C p$i D N�i�C .p � n/$i

�0 D N�i�C q$i

for some i D 1; : : : ; n � 1

(cf. (2.4)). We may also describe the equivalence relation in terms of the description of
LP
q

C;f
given in Lemma 8.6. Suppose .�; �/ � .�0; �0/ in P p�nC � LP

q

C;f
. Writing � DPq�1

jD1 $
_Pj
aD1

ma
and �0 D

Pq�1
jD1 $

_Pj
aD1

m0a
, setting mq D n �

Pq�1
jD1 mj and m0q D

n�
Pq�1
jD1m

0
j and, for convenience, considering the index modulo n, we then havem0a D

maCb for all a D 1; : : : ; q, for some fixed b.
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Theorem 8.7. Let k D �nC p=q with q � n. We have a bijection

.P
p�n
C � LP

q

C;f
/=�

�
�! ŒPrkı �; .�; �/ 7!

�
� �

p

q
�

�
:

Proof. First we recall that dim Oq coincides with the maximal Gelfand–Kirillov dimen-
sion of objects of Og0 , and thus

dim Oq D j�j � j�0j:

Hence, by Theorem 3.6, � 2 Prk belongs to Prkı if and only if j�.�/j D j�0j.
Let � 2 LP q

C;f
. Since � 2 LPC and h�;�i � q � 1we have h�;˛i< q for all ˛ 2�C, and

therefore t��.y�.kƒ0/C/� y�re
C. Hence for all � 2P p�nC we have t�� ıy�D �� pq �Ckƒ0

with � � p
q
� 2 Prk . Moreover, �.� � p

q
�/ D �.�/ Š �0 since � 2 LP q

C;f
and hence

�� p
q
�2 Prkı by the above criterion. On the other hand, let us suppose that .�0;�0/� .�;�/

in P p�nC � LP
q

C;f
, so that �0 D N�i ı �C p$i and �0 D N�i�C q$i . Then

N�i ı

�
� �

p

q
�

�
D N�i ı � �

p

q
N�i� D �

0
� p$i �

p

q
.�0 C q$i / D �

0
�
p

q
�0:

We have shown that the map in the theorem statement is well-defined.
Next we show the injectivity of the map. We shall use the relation N�n�i .$i / D

�$n�i , which is easily proved. Let .�; �/; .�0; �0/ 2 P p�nC � LP
q

C;f
and suppose that

Œ�0 � p
q
�0�D Œ�� p

q
�� in ŒPrkı �, i.e., there existsw 2W such that �0 � p

q
�0Dw ı .�� p

q
�/.

Since �0 � p
q
�0 2 Prk , this meanswt��.y�.kƒ0/C/� y�re

C and �0 � p
q
�0 2 Prkwt�� \ Prkt��0 .

By (2.4), we get wt�� D t��0 tq$j N�j D N�j t�. N�n�j �0Cq$n�j / for some j . Thus

w D N�j and � D N�n�j�
0
C q$n�j :

From �0 � p
q
�0 D w ı .� � p

q
�/, and the equalities above, it follows that � D N�n�i ı

.�0 � p
q
�0/C p

q
� D N�n�i ı �C p$n�i . We have shown that .�0; �0/ � .�; �/.

Finally, we prove surjectivity. Let Œ�� 2 ŒPrkı �. By Lemma 8.4, we may choose a rep-
resentative � 2 Prkı \P0;C of Œ��. Clearly we have �.�/ D �0. By [13, Proposition 2.8]
and its proof,

Prk D
[

Prkyt�� ;

where the union is taken over pairs .y; �/ 2 W � LP qC such that

h˛; �i � 1 for all ˛ 2 �C \ y�1.��/. (8.7)

Let us therefore take such a pair .y; �/ 2 W � LP qC satisfying (8.7) such that � 2 Prkyt�� .
Then we may write � D y ı �1 and �1 D �0 �

p
q
�, where �1 2 Prkt�� and �0 2 PrkZ.

We have on the one hand �.�1/ D y�1.�.�// D y�1.�0/. On the other hand, �.�1/ D
�.p

q
�/ and, since 0� h˛;�i � h�;�i � q � 1 < h_ for all ˛ 2�C, we have hp

q
�;˛_i 2Z

if and only if h�; ˛_i D 0. Hence�.�1/D�� . Therefore�� Š�0, and we obtain Œ��D
Œ�0 �

p
q
�� where .�0; �/ 2 P

p�n
C � LP

q

C;f
. This establishes surjectivity as required.



T. Arakawa, J. van Ekeren 2790

Remark 8.8. Let f 2 sln be a nilpotent element associated with the partition Y D
.p1 � � � � � pr / of n. According to [37] the good gradings g D

L
j2 12Z gj for f are

in natural bijection with combinatorial structures known as pyramids associated with Y .
A pyramid is an arrangement of n boxes of dimensions 1 � 1 into r rows, the i th row
consisting of a contiguous block of pi boxes. The projection to the horizontal axis of the
i th row must be contained within the projection of the .i C 1/th for each i , and the centre
of each box is required to lie directly above the centre or else the edge of the box below.

The symmetric pyramid is the one in which the centres of all rows lie on a single
vertical line.

The good grading associated with a pyramid is obtained by labelling its boxes
1; : : : ; n, letting col.i/ and row.i/ denote the horizontal and vertical coordinates of the
i th box, respectively, and declaring deg.eij / D col.j / � col.i/. The nilpotent f D fY
is recovered as

P
ej;i where the sum runs over .i; j / satisfying row.i/ D row.j / and

col.i/ D col.j / � 1.
The grading is even if the centre of each box lies above the centres (and not the edges)

of other boxes. Throughout this section we have worked with the even grading associated
with the Young diagram, in which all rows are left justified. In particular, the element
x0 given in (8.5) corresponds to this grading. All statements in this section hold upon
replacing this grading with any other even grading. In particular, if f is even, so that the
Dynkin grading is a good even grading, the results of this section apply to the Dynkin
grading. This will be important for applications to the computation of fusion rules in
subsequent sections, for instance by Proposition 6.5 the subregular W-algebra of type A
is only self-dual for the Hamiltonian reduction associated with the Dynkin grading.

9. Rationality of simply laced subregular W-algebras

Let fsubreg be a subregular nilpotent element of g. We recall that Osubreg D G � fsubreg

is by definition the unique nilpotent orbit of g of dimension dim g � rank g � 2. The
corresponding partition or the Bala–Carter label of fsubreg can be found in the third column
of Table 1 below.

Lemma 9.1. Let g be a (not necessarily simply laced) simple Lie algebra, and let k be
an admissible number with denominator q such that Oq D Osubreg. For � 2 Prk ,

(1) �.�/ is nonempty,

(2) � 2 Prkı D PrkOsubreg
if and only if j�.�/j D 2.

Proof. If�.�/were empty then we would haveL.�/DM.�/ and so Var.J�/DN ©Oq ,
which contradicts (3.6). This proves the first part. The second part follows from Theo-
rem 3.6.

By [6] the condition Oq D Osubreg holds for precisely those values of q listed in the
following table.
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Type h_ fsubreg q

An nC 1 Œn; 1� n

Bn 2n � 1 Œ2n � 1; 12� 2n � 1; 2n

Cn .n � 3/ nC 1 Œ2n � 2; 2� 2n � 1; 4n � 6; 4n � 4

Dn 2n � 2 Œ2n � 3; 3� 2n � 4; 2n � 3

E6 12 E6.a1/ 9; 10; 11

E7 18 E7.a1/ 14; 15; 16; 17

E8 30 E8.a1/ 24; 25; 26; 27; 28; 29

F4 9 F4.a1/ 9; 11; 12; 14; 16

G2 4 G2.a1/ 4; 5; 6; 9

Tab. 1. Subregular denominators

Remark 9.2. There are typos in [6, Tables 6, 7]. The central charge of Wk.g; fsubreg/ for
type F4 at level k D �h_ C p=q should read

�
6.12p � 13q/.5p � 6q/

pq
:

In the rest of this section we assume g is of simply laced type and that k D�h_Cp=q
is an admissible number with denominator q such that Oq DOsubreg. Let fsubreg 2Osubreg.

We recall that if g is of type D or E then fsubreg is distinguished, and thus there is
exactly one even grading with respect to which fsubreg is good, namely its Dynkin grading.
Up to conjugacy this grading is given by g0 D hC g˛� C g�˛� and g1 �

L
˛2…n¹˛�º

g˛ ,
where ˛� is the simple root corresponding to the trivalent node in the Dynkin diagram
of g. If g is of type A then we fix a simple root ˛� arbitrarily and define g0 and g1 as
above. This defines n distinct good even gradings on g, all of subregular type. If n is
odd then one of these gradings is Dynkin; if n is even then none of them are. We have
�0;C D ¹˛�º. Let

x0 D
X
i¤�

$i

denote the grading element: gj D ¹x 2 g j Œx0; x� D jxº, and let h D 2x0.

Lemma 9.3. Let g be simply laced. Then every class of ŒPrkı � contains a representative
� 2 Prkı such that �.�/C D ¹˛�º.

Proof. Let � 2 Prkı . By Lemma 9.1,�.�/C D ¹˛º for some ˛ 2�C. Choosew 2W such
that ˛ D w.˛�/. Then w ı � 2 Prk and �.w ı �/C D ¹˛�º as required.

Theorem 9.4. Let g be simply laced and let k be an admissible number for g with denom-
inator q such that Oq D Osubreg. Then Wk.g; fsubreg/ is rational and a complete set of
isomorphism classes of irreducible Wk.g; fsubreg/-modules is

¹L.EJ�/ j Œ�� 2 ŒPrkı �º;

where EJ� is the unique simple module of H 0
f
.U.g/=J�/.
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Proof. By Lemma 9.3 the conditions of Theorem 7.9 are satisfied. Thus the assertion
follows immediately from that theorem.

We give a more explicit description of the set ŒPrkı � in the subregular case.

Definition 9.5. Put

LP
q
C;subreg D ¹� 2

LP
q
C j h˛i ; �C qDi D 0 for exactly one i 2 ¹0; 1; : : : ; `ºº;

where ˛0; : : : ; ˛` 2 y… are the simple roots of yg.

The finite group zWC acts on the set P p�h
_

C � LP
q
C;subreg by

�j .�; �/ D . N�j�C .p � h
_/$j ; N�j�C q$

_
j / for j 2 J .

Theorem 9.6. Suppose g is of simply laced type. For each � 2 LP q
C;subreg there exists

y� 2 W such that y�t��.y�.kƒ0// � y�re
C. Moreover, there is a well-defined bijection

P
p�h_

C � LP
q
C;subreg

zWC

�
�! ŒPrkı �; .�; �/ 7!

�
y� ı

�
� �

p

q
�

��
:

Proof. Let � 2 Prkı \ Prk
yy

where yy D yt�� 2 zW with y 2 W and � 2 P_. It is straight-

forward to see that the condition yy.y�.kƒ0// � y�re
C is equivalent to´

0 � ˛.�/ � q � 1 for all ˛ 2 �C such that y.˛/ 2 �C;

1 � ˛.�/ � q for all ˛ 2 �C such that �y.˛/ 2 �C:
(9.1)

It is also clear that

�.�/C D ¹y.˛/ j ˛ 2 �C; ˛.�/ D 0º t ¹�y.˛/ j ˛ 2 �C; ˛.�/ D qº:

Therefore the condition j�.�/Cj D 1 implies that � satisfies one of the following two
conditions:

(i) 0 � ˛.�/ < q for all ˛ 2 �C and there exists a unique simple root ˛i of g such that
˛i .�/ D 0,

(ii) 0 < ˛.�/ � q for all ˛ 2 �C, and ˛.�/ D q if and only if ˛ D � .

But this is equivalent to the statement � 2 LP q
C;subreg.

Now let � 2 LP q
C;subreg. For y 2 W , we have yt�� ı P

p�h_

C � Prkı if and only if

yt��.y�.kƒ0// � y�
re
C: (9.2)

If � satisfies (i) above then we may take y D 1 and condition (9.2) is satisfied. If � satisfies
(ii) above then we may take y Dwı the longest element ofW , and condition (9.2) is again
satisfied.

Finally, let �; �0 2 LP q
C;subreg and suppose that � D �j .�0/ for some j 2 J . Then

.yt��/.tq$j N�j / D y N�j t���1
j
.�/ D y N�j t��0 :

The assertion now follows from (2.4).
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We now record some properties of subregular rational W-algebras.

Type Conformal weights of generators c.p=q/

An (n odd) 1; 2; : : : ; n�12 ; .nC12 /3; nC32 : : : ; n

D4 23; 3; 42 �
6.4p�7q/.3p�4q/

pq

Dn (n odd) 22; 4; 6; 8; : : : ; n � 3; n � 2; .n � 1/2;

n; nC 1; nC 3; : : : ; 2n � 4

Dn (n even, n � 6/ 22; 4; 6; 8; : : : ; n � 4; .n � 2/2;

n2; nC 2; nC 4; : : : ; 2n � 4

E6 2; 3; 4; 5; 62; 8; 9 �
8.9p�13q/.7p�9q/

pq

E7 2; 4; 62; 8; 9; 10; 12; 14 �
9.14p�19q/.11p�14q/

pq

E8 2; 6; 8; 10; 12; 14; 15; 18; 20; 24 �
10.24p�31q/.19p�24q/

pq

Tab. 2. Subregular W-algebras in simply laced types

The conformal structure, and in particular the central charge, of the subregular W-
algebra Wk.g; fsubreg/ of type g D An depends on the choice of good grading. In Table 2
we list conformal weights of generators relative to the Dynkin grading, which corresponds
to x0 D �_ �$_m, where n D 2mC 1. The central charge at level k D �h_ C p=q is

c D �n.n2 � 1/
p

q
� .1C nC 3n2 C 2n3/ � n.2C 3nC n2/

q

p
:

The central charge of the subregular W-algebra Wk.g; fsubreg/ of type g D Dn at k D
�h_ C p=q is given by

c D �2n.13 � 9nC 2n2/
p

q
C .26C 17n � 24n2 C 8n3/ � 2n.1 � 3nC 2n2/

q

p
:

Remark 9.7. If g is of type A and q D h_ � 1 then LP q
C;subreg D

LP
q

C;fsubreg
t ¹�_º and

Theorem 9.6 agrees with Theorem 8.7. Furthermore, the action of zWC on LP q
C;subreg is

simply transitive and the bijection becomes

P
p�h_

C

�
�! ŒPrkı �; � 7! � �

p

q
x0:

See also Lemma 13.1 below.

10. Characters of admissible highest weight modules

For a weight y� D � C kƒ0 2 yh
� of level k we write �� for the formal characterP

�2yh�
dim yLk.�/�e� of the irreducible yg-module yLk.�/D

L
�2yh�

yLk.�/�. For � 2 Prk

the formula
�� D

1

R

X
w2 yW .y�/

�.w/ewı
y� (10.1)
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was proved by Kac and Wakimoto [64] and used to deduce modular properties of the
set of characters of modules of admissible highest weight. Here R is the Weyl–Kac
denominator for yg, and yW .�/ D hr˛ j ˛ 2 …_.�/i is the integral Weyl group of �.
We may consider �� as a meromorphic function of .�; z/ 2 H � h, more precisely
��.�; z/ D h��;�2�i.�ƒ0 � z/i.

Let us now take k D �h_ C p=q and assume that g is simply laced for convenience.
In particular, all admissible weights are principal. For � 2 P .mod pqQ/ we write

‚�.�; z/ D
X

˛2 �pqCQ

e�ipq�.˛;˛/e2�ipq.˛;z/:

Up to a change of variable these are exactly the theta functions associated with the dis-
criminant form L_=L D P=pqQ of the integral lattice L D Q.pq/.

Let � 2 Prk and let .y; �; �/ be a triple associated with � as in (2.6) and subsequent
remarks, and let ˇ D �y.�/ so that yt�� D tˇy. The function

B�.�; z/ D �.y/
X
w2W

�.w/‚qw.�/Cpˇ .�; z=q/

depends on � and not on the choice of triple .y; �; �/. A linear change of coordinates
identifies the sum over yW .y�/ in (10.1) with a sum over W of theta functions, and in
this way one obtains �� D B�=R. Modular properties of theta functions now yield the
following result.

Proposition 10.1 ([64]). The set of functions B�, as � ranges over Prk , is SL2.Z/-in-
variant. Furthermore,

B�.�1=�; z=�/ D .�i�/
`=2e�i.kCh

_/.z;z/=�
X
�02Prk

aB.�; �0/��0.�; z/; (10.2)

where

aB.�; �0/ D
�.y/�.y0/

jP=pqQj1=2
e�2�iŒ.�;ˇ

0/C.�0;ˇ/�e�2�i
p
q .ˇ;ˇ

0/
X
w2W

�.w/e�2�i
q
p .w.�/;�

0/;

(10.3)

where .y; �; �/ is a triple associated with � as above, ˇ D �y.�/, and .y0; �0; �0/ and ˇ0

are defined similarly.

In [64] the modular transformations of the �� are given by coefficients denoted a.
These are related to the aB of (10.2) by a D i j�CjaB .

Lemma 10.2. Let � 2 Prk and w 2 W be such that w.…_.�// D …_.w ı �/. Then

Bwı�.�; z/ D B�.�; w
�1.z//: (10.4)

In particular, if � is regular then (10.4) holds for all w 2 W , and if �C.�/ D ¹˛�º then
(10.4) holds for all w 2 W such that w.˛�/ 2 �_C.
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Proof. We write � D yy�.�/ � � where …_.�/ D yy.…_
.q/
/ � �

_;re
C , and yy D tˇy. By

assumption …_.w ı �/ D w yy.…_
.q/
/ � �

_;re
C , and therefore

tw.ˇ/.wy/�.�/ � y� D w yy�.�/ � y� D w ı �;

so .wy; �;w.ˇ// is an admissible triple. In general‚w.�/.�; z/D ‚.�;w�1.z//, and one
immediately deduces (10.4).

Let us write

‚.�; v/ D
�1;1.�;�v/

�.�/
D q1=12e��iv

1Y
nD1

.1 � e�2�ivqn�1/.1 � eC2�ivqn/:

Then ‚ obeys
‚.�1=�; v=�/ D �ie�iv

2=�‚.�; v/:

Now let f be a subregular nilpotent element in g. We fix a good even grading for f ,
and we consider the characters of Hamiltonian reductions H 0

f;�
.L.�//, i.e., of the coho-

mology of (7.2). By the Euler–Poincaré principle the supercharacter of H �
f;�
.M/ equals

that of C ��.M/ DM ˝
V1

2 C�. For � 2 Prk we write

‰�.�; z j u/ D STr
C��.
yLk.�//

u0e
2�i.z0�.x0;z//qL0�c=24;

where u is a d -closed element of C ��.Vk.g//. The central charge of
V
D
V1

2 C� is
�2j�>0j and

STrV1
2 C�

e2�i.F
z
0
C.x0;z//qL0Cj�>0j=12 D

Y
˛2�>0

‚.�; ˛.x//:

The modular transformations of the ‰� may be derived from [17, Theorem 6.4].

Proposition 10.3. For all � 2 Prk we have

‰�

�
�1

�
;
z

�

ˇ̌̌̌
��LŒ0� exp

�
1

�

X
n>0

.�1/n

n
z.n/

�
u

�
D e�i.kCh

_/jz2j=�
X
�02Prk

i � aB.�; �0/‰�0.�; z j u/:

In fact, the proof of this proposition is the same as that of [17, Theorem 8.1], which
deals with the case of f being a principal nilpotent element. The only difference is that
dim.g>0/ changes from j�Cj to j�Cj � 1which causes the factor of i to appear in Propo-
sition 10.3 above.

For � 2 Prk \ P0;C the Hamiltonian reduction H 0
f;�
.yLk.�// is an irreducible

Wk.g; f /-module. Let us define

 �.� j u/ D Tr
H0
f;�

.yLk.�//
u0q

L0�c=24:
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By Theorem 7.6 (1) we have

 �.� j u/ D lim
z!0

‰�.�; z j u/: (10.5)

From now on we assume that Oq D Osubreg, i.e., q is one of the denominators listed
in Table 1. In particular, j�0j D 2 and we write ˛� for the unique element of �0;C. Now
we define

W sr
D ¹w 2 W j w.˛�/ 2 �Cº:

Since g is simply laced, we may fix a set X � P0;C of representatives of ŒPrkı �, so that
Prk D ¹y ı � j � 2 X and y 2 W srº. Since Wk.g; f / is rational and lisse, by Theorem
7.9, the set of trace functions (10.5), as � ranges over X, is modular invariant.

We now compute the S -matrix of Wk.g; f / using Proposition 10.3. Since the restric-
tions‰�.�;z j 1/ are linearly independent, it suffices to work with them. The Weyl denom-
inator R.�; x/ is essentially

Q
˛2�C

‚.�; ˛.x// and so, since �>0 D �Cn¹˛�º, we have

‰�.�; z j 1/ D ��.�; z/ �
Y

˛2�Cn˛�

‚.�; ˛.z// D
1

�.�/`
�
B�.�; z/

‚.�; ˛�.z//
:

Note that ‚.�; ˛�.z// has a zero along the hyperplane ˛�.z/ D 0. If �C.�/ D ¹
º then
B�.�; z/ has a zero along the hyperplane 
.z/ D 0. So unless � 2 P0;C the function
‰�.�; z j 1/ has an indeterminate value at z D 0. We make an arbitrary choice of x 2 h�

not orthogonal to ˛� and we put z D tx. The limit in (10.5) becomes a limit as t ! 0. We
then apply l’Hôpital’s rule to the formula of Theorem 10.3. Since for � 2 P0;C we have

 D ˛� and hence ‰�.�; z j 1/ is regular, the final result does not depend on the auxiliary
parameter x.

Fix x 2 h not orthogonal to ˛�, and let � 2 X. We have

lim
t!0

1

�.�1=�/`
�
B�.�1=�; tx=�/

‚.�1=�; t˛�.x/=�/

D
1

.�i�/`=2�.�/`
� lim
t!0

.�i�/`=2e
�it2

� .kCh_/jxj2
P
�2Prk a

B.�; �/B�.�; tx/

.�i/e
�it2

� j˛�.x/j
2
‚.�; t˛�.x//

D
i

�.�/`
� lim
t!0

e
�it2

� Œ.kCh_/jxj2�j˛�.x/j2�
X
�2Prk

aB.�; �/
B�.�; tx/

‚.�; t˛�.x//
:

The exponential factor tends to 1. It follows from Lemma 10.2 thatX
�2Prk

aB.�; �/
B�.�; tx/

‚.�; t˛�.x//
D

X
�02X

� X
y2W sr

aB.�; y ı �0/
B�0.�; ty

�1.x//

‚.�; t˛�.x//

�
:

Using the product formula for‚, l’Hôpital’s rule, and the fact that �0 2 P0;C, we compute

lim
t!0

B�0.�; ty
�1.x//

‚.�; t˛�.x//
D lim

t!0

1 � e�t˛�.y
�1.x//

1 � e�t˛�.x/
� lim
t!0

B�0.�; ty
�1.x//

‚.�; t˛�.y�1.x///

D
˛�.y

�1.x//

˛�.x/
� lim
t!0

B�0.�; tx/

‚.�; t˛�.x//
:
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Thus we have proved the following theorem.

Theorem 10.4. Let f be a subregular nilpotent element of the simply laced simple Lie
algebra g, and let k D �h_ C p=q with denominator q such that Oq DOsubreg. Let X be
a set of representatives of ŒPrkı � in P0;C. For all � 2 X we have

 �.�1=� j �
�LŒ0�u/ D

X
�02X

S�;�0 �0.� j u/;

where

S�;�0 D i
X
y2W sr

hy.˛�/; xi

h˛�; xi
aB.�; y ı �0/: (10.6)

A remarkable feature of the sum appearing in (10.6) is its independence of x. Of
course this follows a posteriori but clearly an elementary proof would be desirable. Hav-
ing fixed ˇ; ˇ0 let us put

r.x/ D
X

y.˛�/2�
_
C

�.y/
hy.˛�/; xi

h˛�; xi
e�

2�i
q .ˇ;y.ˇ 0//:

Let �x denote the 1-form of pairing with x, i.e., hx;�i. We compute the gradient of f to
be

rr.x/ D
1

h˛�; xi2
��x .˛� ^ �/; where � D

X
y.˛�/2�

_
C

�.y/e�
2�i
q .ˇ;y.ˇ 0//y.˛�/:

To show that r is independent of x, it therefore suffices to show that � is proportional
to ˛�. This may be established by a direct computation for any fixed root system, though
we do not know a uniform proof.

11. Modular transformations of simple affine vertex algebras

In this section we collect some results on S -matrices and fusion rules of the rational vertex
algebra Vp�h_.g/ where p � h_.

Proposition 11.1 ([63]). Let g be a simple Lie algebra and p � h_ an integer. The irre-
ducible Vp�h_.g/-modules are precisely the irreducible highest weight yg-modules L.y�/
where y� D � C .p � h_/ƒ0 and � runs over P p�h

_

C . The span of the characters ��.�; z/
is modular invariant. In particular,

��.�1=�; z=�/ D
X

�02P
p�h_

C

K�;�
0

��0.�; z/;

where

K�;�
0

D
i j�Cj

jP=pQj1=2

X
w2W

�.w/e�
2�i
p .w.�C�/;�C�/: (11.1)
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We recall from [44, (4.2.6)] the relation

Kw.y�/;�
0

D e�2�i.w.ƒ0/;�
0/K�;�

0

(11.2)

for all w 2 zWC.
We denote by Kp the matrix of coefficients K�;�

0

given by (11.1) as �, �0 run over
P
p�h_

C . We also denote by K int
p the submatrix obtained by restricting �; �0 2 Q and by

KZ
p the submatrix obtained by restricting �; �0 2 ��CQ.

Lemma 11.2. The subgroup F .Vp�h.g//
int � F .Vp�h_.g// spanned by Œ��, where �

runs overQ, is a subring closed under duality. Furthermore, F .Vp�h_.g//
int Š F .KZ

p /.

Proof. Combining (11.2) with the Verlinde formula yields

N �
�;� D e

�2�i.w.ƒ0/;�C���/N �
�;� for all w 2 zWC:

Sincewj .ƒ0/D$j Cƒ0 for j 2 J , it follows thatN �
�;�
D 0 unless .�C�� �;$j / 2Z

for all j 2 J . But the set ¹$j ºj2J of fundamental weights forms a system of representa-
tives of the quotient P=Q. Therefore

N �
�;� D 0 unless �C � � � 2 Q: (11.3)

This shows that F .Vp�h_.g//
int is closed under the fusion product. For duality it is well

known that L.�/_ Š L.�wı.�//, and if � 2 Q then so is �wı.�/. This proves the first
part.

Let s 2 J be defined by the condition$s � � 2Q. Then for � 2Q we have ws.�/ 2
��CQ. (Here we have used the fact that 2� 2 Q.) For �;�0 2 Q we have, by (11.2),

Kws.�/;ws.�
0/
D e�2�i.�;�/K�;�

0

:

This says thatKZ
p becomes proportional toK int

p upon conjugation by ws . It therefore suf-
fices to show that the fusion algebra determined by K int

p is isomorphic to F .Vp�h.g//
int.

But this follows easily from (11.2) and the Verlinde formula.

12. S -matrices of subregular W-algebras

Let g be a finite-dimensional simple Lie algebra of simply laced type. In this section
we compute the fusion rules of rational subregular W-algebras obtained via Hamiltonian
reduction of g. Let k D �h_ C p=q where q is one of the denominators listed in Table 1
and p � h_ is coprime to q. The irreducible Wk.g; fsubreg/-modules are parametrised
by ŒPrkı �, and by Theorem 9.6 we have a bijection

P
p
C;reg �

LP
q
C;subreg

zWC
! ŒPrkı �;
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taking .�; �/ to the W ı .�/-orbit of

t���.y�/ � y� D .� � .p=q/� � �/C kƒ0:

The fusion rules are computed by applying the Verlinde formula to the S -matrix of
Wk.g; fsubreg/. Let y� D yt���.y�/ � y� and y�0 D y0t��0�.y�

0/ � y�. By Proposition 10.1
and Theorem 10.4 the S -matrix is given by

S�;�0 D i
�.y/�.y0/

jP=pqQj1=2

X
w2W sr

�
�.w/

hw.˛_� /; xi

h˛_� ; xi
e�2�iŒ.�;w.ˇ

0//C.�0;ˇ/�e�2�i
p
q .ˇ;ˇ

0/

�

X
u2W

�.u/e�2�i
q
p .u.�/;�

0/

�
;

where ˇ D �y.�/ and ˇ0 D �y0.�0/. We wish to reduce this to a product of sums over
w 2 W sr and u 2 W , and to do this it is desirable to eliminate the cross terms

e2�iŒ.�;w.ˇ
0//C.�0;ˇ/�:

If q is coprime to jJ j then by Lemma 2.1 we are able to choose, for each � 2 ŒPrkı �,
a representative .�; �/ for which � 2Q. Indeed, in this case the action of zWC on LP q

C;subreg
is transitive and we obtain a bijection

P
p
C;reg � .

LP
q
C;subreg \Q/! ŒPrkı �: (12.1)

If q is not coprime to jJ j then p is coprime to jJ j and we have a bijection

.P
p
C;reg \Q/ �

LP
q
C;subreg ! ŒPrkı �: (12.2)

In either case, for each �, we fix an element y.�/ 2 W such that

y� D y.�/t���.y�/ � y� 2 P0;C for all y� 2 P pC;reg: (12.3)

The existence of such elements y.�/ 2 W is ensured by the following lemma.

Lemma 12.1. Let � 2 LP q
C;subreg. Then there exists y D y.�/ 2 W such that

h˛_� ; y.� � .p=q/�/i 2 ZC for all p 2 ZC and � 2 P pC .

Proof. Let �D
P`
iD1 ci$i 2 LP

q
C;subreg. Then either ck D 0 for some k 2 ¹1; : : : ; `º or else

h�; �_i � h�; �_i D h_ � 1 and hence q � h_ � 1. Since in fact q � h_ � 1 we deduce
that either ck D 0 for some k 2 ¹1; : : : ; `º or else � D �.

It clearly suffices to show that there exists y 2 W such that�
˛_� ; y

�
$i �

a_i
q
�

��
2 ZC; i D 1; : : : ; `: (12.4)

Here a_i D h�
_;$i i. If ck D 0 then we have h�; ˛_

k
i D 0 and h$i �

a_
i

q
�; ˛_

k
i D ıik . On

the other hand, if � D � then q D h_ � 1 and h$i �
a_
i

q
�; �_i D a_i � a

_
i D 0. Let us

now take y 2 W such that y.˛_
k
/ D ˛_� , respectively y.�_/ D ˛_� . We obtain (12.4) as

required.
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Theorem 12.2. Let g be a simple Lie algebra of simply laced type and let k D �h_ C
p=q where q is a subregular denominator for g and p � h_ is coprime to q. Let y� D
y.�/t���.y�/ � y� as in the preceding remarks, and similarly y�0 D y.�

0/t��0�.y�
0/ � y�. Put

ˇ D �y.�/.�/ and ˇ0 D �y.�
0/.�0/. Then the S -matrix of Wk.g; fsubreg/ is given by

S�;�0 D i
�.y.�//�.y.�

0//

jP=pqQj1=2

� X
w2W sr

�.w/
hw.˛_� /; xi

h˛_� ; xi
e�2�i

p
q .ˇ;w.ˇ

0//

�
�

�X
u2W

�.u/e�2�i
q
p .u.�/;�

0/

�
: (12.5)

Proof. Having made the choices prescribed above, the result follows immediately from
Theorem 10.4.

Let q be a subregular denominator for g, i.e., one of the denominators listed in Table 1,
and p � h_ coprime to q. We denote by Cq the matrix of coefficients

C �;�
0

D

X
w2W sr

�.w/
hw.˛_� /; xi

h˛_� ; xi
e�

2�i
q .ˇ;w.ˇ 0//; (12.6)

where y�; y�0 run over LP q
C;subreg, and by CZ

q the submatrix with �; �0 2 Q. We denote by
S
p;q
sr the S -matrix of the rational vertex algebra W�h_Cp=q.g; fsubreg/.

Lemma 12.3. The weight lattice P of g satisfies .P;P / � 1
jJ j

Z, where .�; �/ is the invari-
ant bilinear form on g so normalised that .�; �/ D 2. If g D Dn and n is even then
.P; P / � 1

2
Z in fact.

Let Q.�N / denote the cyclotomic field obtained by adjoining to Q a primitive N th
root of unity �N . For an integer a coprime to N we denote by 'a 2 Gal.Q.�N /=Q/ the
automorphism defined by 'a.�N / D �aN . The Galois group Gal.Q.�N /=Q/ is naturally
isomorphic to .Z=N/�.

We denote the Kronecker product of matrices by ˝, and proportionality of matrices
with a nonzero scalar by �. Now suppose .q; jJ j/ D 1. Then by Lemma 12.3 the entries
ofKp lie in Q.�pjJ j/, on which 'q acts as an automorphism. Meanwhile the entries of CZ

q

lie in Q.�q/, on which 'p acts as an automorphism. Similar considerations apply in case
.p; jJ j/ D 1 and Theorem 12.2 can now be summarised as

Sp;qsr � 'p.C
Z
q /˝ 'q.Kp/ if .q; jJ j/ D 1; (12.7)

Sp;qsr � 'p.Cq/˝ 'q.K
Z
p / if .p; jJ j/ D 1: (12.8)

In both cases we obtain a presentation of the fusion ring of Wk.g; fsubreg/ as the tensor
product of the fusion ring of Vp�h_.g/ (or its integral weight subalgebra) and the fusion
ring associated with the S -matrix CZ

q (or Cq).
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13. Fusion rules of subregular W-algebras of type A

We now specialise the discussion of the preceding section to the type A case. We note that
subregular W-algebras of type A were previously studied by Feigin and Semikhatov [41]
as W.2/

n -algebras and the isomorphism between them was established by Genra [49].

Lemma 13.1. Let g be the simple Lie algebra of type An and let k D �h_ C p=q where
q D h_ � 1 D n and p � h_ coprime to q. There exists a bijection between the sets of
irreducible modules of W�h_Cp=q.g; fsubreg/ and Vp�h_.g/ which induces an equality
S
p;q
sr D 'q.Kp/.

Proof. The set LP q
C;subreg consists of � and the weights � �$i for i D 1; : : : ; `. Let us put

� D � if n is even, and � D � �$m if n D 2mC 1 is odd. Then LP q
C;subreg \Q D ¹�º.

Let us fix a good even grading on g with associated simple root ˛� 2 �0;C and let $�
be the fundamental weight corresponding to ˛�. Finally, we fix y D y.�/ 2 W such that
condition (12.3) is satisfied, so that y�D .yt��/ ı y� defines a bijection� 7! � fromP

p�h_

C

to ŒPrkı �. By Theorem 12.2 we now have

.Sp;qsr /�;�0 D C �
i

jP=pqQj1=2

X
u2W

�.u/e�2�i
q
p .u.�C�/;�

0C�/; (13.1)

where the factor C D C �;� , given by formula (12.6), is independent of �; �0. By Lem-
ma 12.3 the exponential sums of (11.1) and (13.1) lie in Q.�ph_/. Since q is coprime to
p and h_, the latter is the conjugate of the former by 'q 2 Gal.Q.�ph_/=Q/.

Theorem 13.2. The fusion rules of the exceptional subregular W-algebras of typeAn, for
q D n odd, coincide with those of simple affine vertex algebras at positive integer level.
More precisely, the assignment

yLp�h_.�/ 7! L.E��pq x0/ Š H
0
DS;f .

yLk.�//;

induces an isomorphism of fusion rings

F .W�h_Cp=q.g; fsubreg// Š F .Vp�h_.g//:

Proof. We let nD 2mC 1 and take ˛�D ˛m. The subregular denominator is qD n. In the
proof of Lemma 13.1 we have � D x0 and since h˛�; x0i D 0 we may take y D 1. This
gives the bijection between irreducible modules stated in the theorem and gives the S -
matrix of WDW�h_Cp=q.g;fsubreg/ as 'q.Kp/. Since W is self-contragredient by Propo-
sition 6.5 (as well as rational and lisse), the fusion rules can be computed via the Verlinde
formula. The fusion rules and coefficients of the charge conjugation matrix (which specify
duality) are integers and therefore invariant under the Galois group Gal.Q.�ph_/=Q/. It
follows immediately that the bijection yLp�h_.�/ 7! L.E��pq x0/ induces an isomorphism
from the fusion ring of Vp�h_.g/ to that of W.
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Remark 13.3. The rationality of subregular W-algebras of typeA has also been proven in
another way by Creutzig and Linshaw [28] after the first version of the present article was
submitted. There it was shown that Wk.sln; fsubreg/ at level k D �nC .nCm/=.n � 1/
is isomorphic to a simple current extension of the rational vertex algebra VpmnZ ˝

W`.slm; fprin/, where VpmnZ is the lattice vertex algebra associated with the lattice
p
mnZ and ` D �mC .mC n/=.nC 1/.

Remark 13.4. Using a result in [10], which appeared after the first version of the present
article was submitted, one can strengthen the statement of Theorem 13.2.

Let k be an admissible level for g D sln, let KLk be the full subcategory of yOk con-
sisting of modules isomorphic to a direct sum of finite-dimensional g-modules, and let
KL.Vk.g// be the full subcategory of the category of Vk.g/-modules consisting of those
objects which belong to KLk as yg-modules. Then KL.Vk.g// is naturally a fusion category
[24, 26]. By [10, Theorem 10.4, Remark 10.7], the functor

KL.Vk.g//!Wk.g; fq/ -mod; M 7! H 0
f .M/; (13.2)

is an equivalence of fusion categories for q D n� 1 and n odd since it induces a bijection
between simple objects. Theorem 13.2 then follows from the fact [24] that F .KL.Vk.g///
is isomorphic to F .Vp�h_.g//.

Remark 13.5. The argument of Remark 13.4 can also be used to describe the fusion
categories of exceptional rectangular W-algebras [15]. Namely, let gD sln, let k D�nC
p=q be an admissible level and suppose that n D qr for some r 2 Z�1, and let fq 2 Oq .
Note that fq is necessarily an even nilpotent. We have LP q

C;f
D ¹x0º. It follows from

Theorem 8.7 that we have a bijection

P
p�n
C =Zq

�
�! ŒPrkı �; Œ�� 7!

�
� �

p

q
x0

�
;

where the cyclic group Zq acts on P p�nC as follows: i C qZ 2 Zq sends � 7! N�ir� C
.p � n/$ir . Therefore, (13.2) gives a quotient functor of fusion categories such that

H 0
DS;f .

yLk.�// Š H
0
DS;f .

yLk.�//

if and only if � 2 Zq�. In particular, F .Wk.g; fq// Š F .Vp�n.g//=Zq .
In a companion paper [11] with Anne Moreau, we will show that in the special case

where p D h_ C 1, we have W�nC.nC1/=q.g; fq/Š V1.slr /. This is compatible with the
fact that F .V1.slqr //=Zq Š F .V1.slr //.

We also note that Ueda [75] has recently constructed a surjective homomorphism from
the affine Yangian [20,52] of type Ar to the current algebra of the rectangular W-algebra
Wk.gln; fq/. It would be of interest to understand the modular category of exceptional
rectangular W-algebras in terms of the representation theory of the affine Yangian.
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14. Fusion rules of subregular W-algebras of types D and E

Now suppose g is of typeD orE. In this section we reduce the description of fusion rings
of the associated rational subregular W-algebras to a finite number of cases which can be
computed explicitly. We denote by ˛� the root associated with the trivalent node of the
Dynkin diagram of g, and by $� the corresponding fundamental weight.

Proposition 14.1. (a) Let q be a subregular denominator for g coprime to h_ C 1 and
let k D �h_ C p=q where p � h_ is coprime to q and to jJ j. Then there exists an
isomorphism of fusion rings

F .Wk.g; fsubreg// Š F .W�h_C.h_C1/=q.g; fsubreg//˝ F .Vp�h_.g//
int:

(b) Let q D h_ � 1 and let k D �h_ C p=q where p � h_ is coprime to q. Then there
exists an isomorphism of fusion rings

F .Wk.g; fsubreg// Š F .W�h_Ch_=.h_�1/.g; fsubreg//˝ F .Vp�h_.g//:

We remark that the only subregular denominator q excluded by the condition
.q; h_ C 1/ D 1 is g of type Dn for n � 2 .mod 3/ and q D 2n � 4.

Proof of Proposition 14.1. (a) Since .p; jJ j/D 1 we have the relation (12.8). By Lemma
11.2 the fusion ring of Wk.g; fsubreg/ is the tensor product of F .Vp�h_.g//

int and the
fusion ring associated with the S -matrix Cq . Now in general P 1C is in bijection with the
finite set J and carries a transitive action of zWC, hence jP 1C \Qj D 1 and KZ

h_C1
is a

1 � 1 matrix. Since we assume .q; h_ C 1/ D 1, we have

Sh
_C1;q

sr � 'h_C1.Cq/˝ 'q.K
Z
h_C1/ � 'h_C1.Cq/;

so Cq is a cyclotomic conjugate of the S -matrix of W�hC.hC1/=q.g; fsubreg/, and the result
follows.

(b) Since .q; jJ j/D 1 we have the relation (12.7). The fusion ring of Wk.g; fsubreg/ is
therefore the tensor product of the fusion ring of Vp�h.g/ and the fusion ring associated
with the S -matrixCZ

q . Evidently jP 0Cj D 1 and soKh_ is a 1� 1matrix. Since .q;h_/D 1
we have

Sh
_;q

sr � 'h_.Cq/˝ 'q.Kh_/ D 'h_.Cq/;

so Cq is a cyclotomic conjugate of the S -matrix of W�hCh=.h�1/.g; fsubreg/, and the result
follows.

In the following table we record some data on the W-algebras of minimal numerator.
The isomorphisms of the final column will be proved in Section 15. See that section also
for background on the effective central charge.
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g p=q c ceff #(Irr. rep.) Isom. type

An
nC1
n 0 0 1 1

Dn
2n�2
2n�3 �

12n2�62nC78
2n�3 1 � 3

2n�3 n � 2 Vir2;2n�3

Dn .3 − n � 2/ 2n�1
2n�4 �

2n2�21nC52
n�2 1 � 2

n�2 n � 3 Vir3;n�2

E6 13=9 0 0 1 1

E6 13=10 4=5 4=5 6 W�7=4.A2; fprin/

E6 12=11 �350=11 10=11 7 Vir3;22 ˚ L.21; 1/

E7 19=14 0 0 1 1

E7 19=15 �3=5 3=5 4 Vir3;5

E7 19=16 �135=8 9=8 13

E7 18=17 �1420=17 20=17 16

E8 31=24 0 0 1 1

E8 31=25 �22=5 2=5 2 Vir2;5

E8 31=26 �350=13 10=13 6 Vir2;13

E8 31=27 �590=9 10=9 12

E8 31=28 �830=7 10=7 25

E8 30=29 �7518=29 42=29 44

Tab. 3. Subregular W-algebras W�hCp=q.g; fsubreg/

We observe that for g of type E6, E7, E8 of rank ` the cardinality of LP q
C;subreg coin-

cides with that of the set of regular dominant integral weights of level q � `C 2 for the
root system �? D ¹˛ 2 � j .˛; ˛�/ D 0º (which is, respectively, A5, D6, E7). A similar
pattern extends to types An and Dn but is more complicated since, for � of type Dn for
example, �? has type Dn�2 � A1. These bijections do not correspond to isomorphisms
of fusion rings however. Indeed, the fusion ring of V1.E7/ is isomorphic to the group ring
of Z=2, while the fusion ring of W�719=25.E8; fsubreg/ Š Vir2;5 is different.

We close this section with a remark on the case g D Dn where n � 2 mod 3, and
kD�hCp=q where qD 2n� 4, and p� h_ is coprime to q. By the proof of Proposition
14.1 we have an isomorphism of fusion rings

F .Wk.g; fsubreg// Š F .Cq/˝ F .Vp�h_.g//
int:

Since h_ C 1 is not coprime to q we cannot set p D h_ C 1 and thereby identify the
fusion ring F .Cq/ as the fusion ring of a subregular W-algebra. Nevertheless, we may
compute the fusion rules of F D F .Cq/ explicitly for small n. For g D D5 for instance,
F is the group ring of Z=2 with its canonical basis. In general F contains n � 3 simple
objects (naturally indexed by �D ��$i , where$i are those fundamental weights ofDn
with Kac label a_i D 2). Based on explicit computation of F for low ranks, we propose
the following conjecture.
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Conjecture 14.2. For each positive integer m there exists a rational lisse vertex algebra
of central charge c D 13 � 6.m C 1=m/ whose r D 3m � 1 irreducible modules,
denoted Œi � for i D 0; 1; : : : ; r , have the following fusion rules:

Œi � � Œj � Š
M

ji�j j�k�min ¹iCj;r�i�j º
k�iCj mod 2

Œk�:

Curiously, the central charges that appear here are the central charges of the triplet
vertex algebras.

15. Sporadic isomorphisms

In this section we explain the final column of Table 3. First we fix some notation regarding
the Virasoro minimal models. Recall that

Virp;q D H 0
fprin

.V�2Cp=q.A1//

is a rational vertex algebra of central charge cp;q D 1 � 6.p � q/2=pq. It has
.p � 1/.q � 1/=2 irreducible modules, all of the form

L.r; s/ D H 0
fprin;�

.L.�// where � D kƒ0 C Œs � 1 � r.p=q/�$1:

Here 1 � r � q � 1, 1 � s � p � 1 and L.r; s/Š L.q � r; p � s/. The conformal dimen-
sions of the irreducible modules are given by

�.L.r; s// D hr;s D
.pr � qs/2 � .p � q/2

4pq
: (15.1)

The effective central charge of a rational vertex algebra V is by definition

ceff
D c � 24hmin;

where hmin is the minimal conformal dimension of the irreducible V -modules.
Next let M D

L
n2hCZC

Mn be a graded vector space for which the series �M .�/ DP1
nD0 dim.Mn/q

hCn is convergent. If for some constants A, ˇ and g, the character �M
has asymptotic behaviour

�.it/ � Atˇe�g=12t ; (15.2)

then one says that M has asymptotic growth g and asymptotic dimension A.
The following proposition is a well known consequence of the modular invariance of

characters of rational vertex algebras [81].

Proposition 15.1. Let V be a rational lisse vertex algebra of CFT type. The asymptotic
growth of an irreducible V -module does not exceed the effective central charge of V , and
equality occurs if all entries of the S -matrix of V are nonzero.
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The asymptotic growth g and asymptotic dimension A of W�h_Cp=q.g; f / are given
in [66, Theorem 2.16] as

g D dim.gf / �
h_

pq
dim.g/; (15.3)

and, if f possesses a good even grading,

A D
1

.pq/`=2jP=Q_j1=2
�

1

qj�C;0j

Y
˛2�>0

2 sin
�
�

q
.˛; x0/

�
�

Y
˛2�C

2 sin
�
�

p
.˛; �/

�
:

(15.4)
The asymptotic dimension of the Virp;q-module L.r; s/ is

AL.r;s/p;q D .8=pq/1=2.�1/.rCs/.r0Cs0/ sin
�
�
p � q

q
rr0

�
� sin

�
�
p � q

p
ss0

�
; (15.5)

where r0 and s0 are positive integers characterised by r0 < q, s0 < p and r0p � s0q D 1
(see [64]).

Proposition 15.2. For each entry in Table 3 for which ceff < 1, the isomorphism type of
W�h_Cp=q.g; fsubreg/ is as listed in the final column.

Proof. First we consider the case g D Dn, q D 2n � 4 (for n 6� 2 mod 3). By (4.1) and
(15.3) the central charge c and the asymptotic growth g of W DWk.g; fsubreg/ are

c D �
2n2 � 21nC 52

n � 2
and g D 1 �

2

n � 2
:

These coincide with the values for Vir3;n�2.
Let N �W be the vertex subalgebra generated by the Virasoro vector. By the repre-

sentation theory of the Virasoro algebra, N is either the universal Virasoro vertex algebra
Vir2;2n�3 of central charge c, or its simple quotient Vir3;n�2. However, by [64, Proposi-
tion 4 (b)] the asymptotic growth of Vir3;n�2 is 1, which is greater than the asymptotic
growth of W. Thus we cannot have N Š Vir3;n�2 and so in fact N Š Vir3;n�2. Since
Vir3;n�2 is a rational vertex algebra, its embedding into W induces a decomposition of
the latter into a direct sum of irreducible Vir3;n�2-modules. The direct sum is finite since
W has finite-dimensional graded pieces.

Each irreducible Vir3;n�2-module has ˇ D 0 in (15.2) and nonzero asymptotic dimen-
sion, and all have the same asymptotic growth g. It follows that the asymptotic dimension
of W equals the sum of the asymptotic dimensions of the modules in its decomposition,
and so to prove WŠ Vir3;n�2 it suffices to prove equality of their asymptotic dimensions.
By (15.5) the asymptotic dimension of Vir3;n�2 is

A
L.1;1/
3;n�2 D

2

q1=2
sin
�
2�

q

�
:

To compute the asymptotic dimension A of W we recall that �>0 D �C n ¹˛�º and
x0 D ��$�. We count, for eachm 2ZC, the number of ˛ 2�>0 satisfying .˛;x0/Dm
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and we deduceY
˛2�>0

2 sin
�
�

q
.˛; x0/

�
D 4 sin

�
�

q

�
sin
�
.q=2 � 1/�

q

�

�

�q�1Y
kD1

2 sin
�
�k

q

��n=2C1
�

�q=2�1Y
kD1

2 sin
�
2�k

q

���1=2
:

Using the identity
Qr�1
kD1 2 sin.�k=r/ D r , the product reduces to

4qn=2C1.q=2/�1=2 sin
�
2�

q

�
:

Similarly the product over �C reduces to pn=2. Substituting into (15.4) yields A D
A
L.1;1/
3;n�2 as required.

Next we consider the case g D Dn, q D 2n � 3. As above we conclude that W D
Wk.g; fsubreg/ is an extension of Vir2;2n�3, and computation of asymptotic dimensions
reveals WŠVir2;2n�3. For .g; q/ one of the pairs .E7; 15/, .E8; 25/ or .E8; 26/ the proof
is again the same.

Now we consider the case W DW�h_C12=11.E6; fsubreg/, which, by the same argu-
ments as above, is an extension of Vir3;22. The unique irreducible Vir3;22-module with
conformal dimension � 2 Z�1 is L.21; 1/ with� D 5. Thus W Š Vir3;22 ˚L.21; 1/˚n

for some n 2 ZC. Comparison of asymptotic dimensions reveals n D 1.
The final case g D E6, q D 10 is quite similar to the last case. Analy-

sis of central charges, asymptotic growths and asymptotic dimensions reveals that
W�h_C13=10.E6; fsubreg/ decomposes as Vir5;6 ˚ L.5; 1/. The same arguments imply
that W�7=4.A2; fprin/ D Vir5;6 ˚ L.5; 1/ (a fact well known in the physics literature
[32, p. 227]). Now the module L.5; 1/ is a simple current, so by uniqueness of simple
current extensions [35, Proposition 5.3] we obtain the claimed isomorphism.

16. New modular tensor categories

We have computed the fusion rules of W�h_Cp=q.g; fsubreg/ in terms of the fusion rules of
the affine vertex algebra Vp�h_.g/ and those of the vertex algebras listed in Table 3. We
have identified most of these vertex algebras, the remaining cases beingE6, p=q D 12=11
and the five algebras with asymptotic growth greater than 1. We compute the fusion rings
of these vertex algebras from their S -matrices. In this section we present in detail the
cases E6, p=q D 12=11 and E7, p=q D 19=16.

A vertex algebra V is said to be positive if every irreducible V -module besides V
itself has positive conformal dimension. We observe that the vertex algebras

U6 DW�h_C15=11.E6; fsubreg/ and U7 DW�h_C21=16.E7; fsubreg/

are positive. It is natural to expect the following.
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Conjecture 16.1. The vertex operator algebras U6 and U7 are unitary.

We remark that the analogue U8 D W�h_C32=25.E8; fsubreg/ is isomorphic to the
unitary theory Vir4;5. The MTCs associated with U6 and U7, which we also believe to
be unitary, appear to be new and interesting. We recall that the quantum dimension of an
irreducible V -moduleL is SV;L=SV;V where S is the S -matrix of V . By results of [33] the
quantum dimensions of all irreducible U6- and U7-modules L must satisfy qdim.L/ � 1.
By Theorem 14.1 the S -matrices are

S .U6/ D S15;11sr D '3.S
12;11
sr /˝ '11.K15.E6//;

S .U7/ D S21;16sr D '3.S
19;16
sr /˝ '16.K21.E7/

int/;
(16.1)

and the relation qdim.L/ � 1 is verified by direct computation of quantum dimensions
from (16.1).

To compute the fusion rules of U6 and U7 it suffices to compute the fusion rules of
V6 DW�h_C12=11.E6; fsubreg/ and V7 DW�h_C19=16.E7; fsubreg/.

The vertex algebra V6 is an extension of V 0 D Vir3;22 by its simple current M D
L.21; 1/. We note that M � L.r; 1/ Š L.22 � r; 1/. The seven irreducible V6-modules
are obtained as follows: the fusion product V6 �V 0 L.r; 1/ is an irreducible V6-module for
1� r � 9 odd, while for r D 11 it decomposes into two irreducible V6-modules consisting
of symmetric resp. antisymmetric tensors. We also note that V6 carries a Z=2-action by
virtue of the decomposition V6D V 0˚M , and for r even V6 �V 0 L.r;1/ is an irreducible
Z=2-twisted V -module.

The fusion rules of V6 can be compactly described as follows. We write Œi � D V �V 0

L.2i C 1; 1/ for 0 � i � 5 and Œ5� D Œ5C�˚ Œ5��. Then Œ5C�0 D Œ5�� and all the other Œi �
are self-dual. The conformal dimensions are given by �.Œi �/ D i.3i � 19/=22. For 0 �
i; j � 4 we have Œi � � Œj � D

L
ji�j j�k�iCj Œk�, where we identify Œ5C �� with Œ5 � ��.

Also Œ5˙� � Œi � D Œ5˙.�1/i �C
L
5�i�k�4Œk�. Finally, Œ5˙� � Œ5˙� D Œ1�˚ Œ3�˚ Œ5�� and

Œ5C� � Œ5�� D Œ0�˚ Œ2�˚ Œ4�.
The quantum dimensions of the irreducible V6-modules lie in the cyclotomic field

Q.�/ of degree 11 and are given explicitly as

qdim.Œ0�/ D 1; qdim.Œ3�/ D �9C2�8C�6C�5C2�3C�2C2;

qdim.Œ1�/ D ��7��4C1; qdim.Œ4�/ D �9C2�8C2�6C2�5C2�3C�2C2;

qdim.Œ2�/ D �8��7��4C�3C1; qdim.Œ5˙�/ D �8C�6C�5C�3C1:

We now examine the vertex algebra V7. Since the asymptotic growth of V7 is 9=8 > 1,
it is not a finite extension of a Virasoro minimal model. The central charge is c D�135=8
and it has 13 irreducible modules, parametrised by LP 16

C;subreg. We denote by � the nontrivial
diagram automorphism of the Dynkin diagram of E7.

1 3 4 5 6 7

2

0
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We list the 13 weights y� D 16ƒ0 C � where � 2 LP 16
C;subreg: they are

y�0 D .1I 1; 1; 1; 0; 1; 1; 3/; y�1 D .1I 2; 1; 1; 0; 1; 1; 1/;

y�2 D .1I 0; 1; 1; 1; 1; 1; 1/; y�3 D .1I 1; 1; 1; 1; 0; 1; 2/;

y�4 D .1I 1; 1; 0; 1; 1; 1; 2/; y�5 D .1I 1; 2; 1; 0; 1; 1; 1/;

y�6 D .1I 1; 0; 1; 1; 1; 1; 1/; y�7 D .2I 1; 1; 1; 0; 1; 1; 2/;

together with y�12�i D �.y�i / for i D 0; 1; 2; 3; 4. LetMi denote the irreducible V -module
associated with the weight y�i . Then M12 is a simple current of order 2 and conformal
dimension 3=2. The fusion product with M12 acts as � at the level of weights. All irre-
ducible V7-modules are self-contragredient, and the fusion rules Fi D Mi � .�/ are as
follows.

F1 D

2666666666666666664

0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0

3777777777777777775
, F2 D

2666666666666666664

0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 1 1 2 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0

3777777777777777775
,

F3 D

2666666666666666664

0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 1 1 1 0
1 1 1 1 0 0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 2 0 1 0 0 0 0
0 0 0 0 1 2 2 1 1 0 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0 0 1 1 1 1
0 1 1 1 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0

3777777777777777775
, F4 D

2666666666666666664

0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 1 1 0 0
0 1 1 1 0 0 0 0 0 1 1 1 0
0 0 0 1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0

3777777777777777775
,

F5 D

2666666666666666664

0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 1 1 2 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 1 1 1 1
0 1 1 2 0 0 0 0 0 2 1 1 0
0 1 1 0 0 0 0 0 0 0 1 1 0
0 0 1 1 0 0 0 0 0 1 1 0 0
0 0 0 0 1 1 2 0 1 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0

3777777777777777775
, F6 D

2666666666666666664

0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 1 0 0 0 0
0 0 0 0 1 1 2 1 1 0 0 0 0
0 0 0 0 1 2 2 1 1 0 0 0 0
0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 1 2 0 0 0 0 0 2 1 1 0
1 1 2 2 0 0 0 0 0 2 2 1 1
0 0 1 1 0 0 0 0 0 1 1 0 0
0 1 1 1 0 0 0 0 0 1 1 1 0
0 0 0 0 1 2 2 1 1 0 0 0 0
0 0 0 0 1 1 2 1 1 0 0 0 0
0 0 0 0 1 1 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0

3777777777777777775
,
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F7 D

2666666666666666664

0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0 1 1 0
0 0 1 1 0 0 0 0 0 1 1 0 0
1 1 0 0 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0

3777777777777777775
.
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