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Abstract. The classical Erdős–Szekeres theorem dating back almost a hundred years states that any
sequence of .n� 1/2 C 1 distinct real numbers contains a monotone subsequence of length n. This
theorem has been generalised to higher dimensions in a variety of ways but perhaps the most natural
one was proposed by Fishburn and Graham more than 25 years ago. They defined the concept of
a monotone and a lex-monotone array and asked how large an array one needs in order to be able
to find a monotone or a lex-monotone subarray of size n � � � � � n. Fishburn and Graham obtained
Ackerman-type bounds in both cases. We significantly improve these results. Regardless of the
dimension we obtain at most a triple exponential bound in n in the monotone case and a quadruple
exponential one in the lex-monotone case.

Keywords. Erdős–Szekeres theorem, high-dimensional permutations, monotone arrays, Ramsey
theory

1. Introduction

A classical paper of Erdős and Szekeres [14] from 1935 is one of the starting points
of a very rich discipline within combinatorics: Ramsey theory. The main result of the
paper, which has become known as the Erdős–Szekeres theorem, says that any sequence
of .n � 1/2 C 1 distinct real numbers contains either an increasing or a decreasing sub-
sequence of length n, and this is tight. Among simple results in combinatorics, only few
can compete with this one in terms of beauty and utility. See, for example, Steele [29] for
a collection of six proofs and some applications.

A very natural question which arises is how does one generalise the Erdős–Szekeres
theorem to higher dimensions? The main concept which does not have an obvious gen-
eralisation is that of the monotonicity of a subsequence. Several candidates have been
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proposed [8, 9, 20–23, 28, 30] but perhaps the most natural one was introduced more than
25 years ago by Fishburn and Graham [16]. A multidimensional array is said to be mono-
tone if for each dimension all the 1-dimensional subarrays along the direction of this
dimension are increasing or are all decreasing. To be more formal, a d -dimensional array
f is an injective function from A1 � � � � � Ad to R where A1; : : : ; Ad are non-empty
subsets of Z; we say f has size jA1j � � � � � jAd j.

Definition (Monotone array). A d -dimensional array f WA1 � � � � �Ad !R is monotone
if for each i 2 Œd � one of the following alternatives occurs:

(i) f .a1; : : : ; ai�1; x; aiC1; : : : ; ad / is increasing in x for all choices of a1; : : : ; ai�1;
aiC1; : : : ; ad ;

(ii) f .a1; : : : ; ai�1; x; aiC1; : : : ; ad / is decreasing in x for all choices of a1; : : : ; ai�1;
aiC1; : : : ; ad .

For example, of the following 2-dimensional arrays the first and second are monotone,
while the third is not (since some rows contain increasing and some rows decreasing
sequences).

7 8 9 1 3 6 7 8 9
4 5 6 2 5 7 6 5 4
1 2 3 4 8 9 1 2 3

The higher-dimensional version of the Erdős–Szekeres problem introduced by Fish-
burn and Graham [16] now becomes: given positive integers d and n, determine the
smallest N such that any d -dimensional array of size N � � � � � N contains a monotone
d -dimensional subarray of size n � � � � � n; we denote this N by Md .n/. The Erdős–
Szekeres theorem can now be rephrased asM1.n/D .n� 1/

2 C 1. Fishburn and Graham
[16, Section 3] showed that M2.n/ � towr5.O.n//,1 that M3.n/ is bounded by a tower
of height at least a tower in n, and that Md .n/ is bounded from above by an Ackermann-
type2 function of order at least d for d � 4. We significantly improve upon these results.

Theorem 1.1.
(i) M2.n/ � 2

2.2Co.1//n
,

(ii) M3.n/ � 2
2.2Co.1//n2

and

(iii) Md .n/ � 2
22

Od .nd�1/

for d � 4.

Fishburn and Graham introduced another very natural generalisation of the notion
of monotonicity of a sequence to higher-dimensional arrays. A multidimensional array

1We define the tower function towrk.x/ by towr1.x/D x and towrk.x/D 2towrk�1.x/ for k � 2.
2The Ackermann function Ak of order k is defined recursively by Ak.1/ D 2;A1.n/ D 2n and

Ak.n/ D Ak�1.Ak.n � 1//. It is an incredibly fast growing function, for example A2.n/ D 2n,
A3.n/ D towrn.2/ and A4.n/ is a tower of height tower of height tower, iterated n times, of 2.
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is said to be lexicographic if for any two entries the one which has the larger position
in the first coordinate in which they differ is larger. For example, the following array is
lexicographic:

3 6 9

2 5 8

1 4 7

An array is said to be lex-monotone if it is possible to permute the coordinates and
reflect the array along some dimensions to obtain a lexicographic array. To be more for-
mal, for two vectors u D .u1; : : : ; ud / and v D .v1; : : : ; vd / in Rd , we write u <lex v if
ui < vi , where i is the smallest index such that ui ¤ vi .

Definition (Lex-monotone array). A d -dimensional array f is said to be lex-monotone if
there exist a permutation � W Œd �! Œd � and a sign vector s 2 ¹�1; 1ºd such that

f .x/ < f .y/ ” .s�.1/x�.1/; : : : ; s�.d/x�.d// <lex .s�.1/y�.1/; : : : ; s�.d/y�.d//:

Note that a 1-dimensional array is lex-monotone if and only if it is a monotone
sequence. The following 2-dimensional arrays are lex-monotone since for the first one
the above matrix is obtained by swapping the coordinates, for the second one by reflect-
ing along the first dimension and for the third by performing both of these operations.

7 8 9 9 6 3 9 8 7
4 5 6 8 5 2 6 5 4
1 2 3 7 4 1 3 2 1

Given positive integers d and n, letLd .n/ denote the minimumN such that for any d -
dimensional array of size N � � � � �N , one can find a lex-monotone subarray of size n �
� � � � n. Fishburn and Graham [16, Theorem 1] showed that Ld .n/ exists. This result has
been used to prove interesting results in poset dimension theory [15] and computational
complexity theory [4].

Note that any lex-monotone array is monotone, so a very natural strategy to bound
Ld .n/ is to first find a monotone subarray and then within this subarray find a lex-
monotone subarray. This motivates the following problem which is of independent inter-
est. For positive integers d and n, we define Fd .n/ to be the minimum N such that any
d -dimensional monotone array of size N � � � � �N contains a lex-monotone subarray of
size n � � � � � n. It is easy to see by the above reasoning that Ld .n/ �Md .Fd .n//. Fish-
burn and Graham [16, Lemma 1] showed F2.n/ � 2n2 � 5nC 4 and F3.n/ � 22nCo.n/,
while for d � 4 their argument gives Fd .n/ � towrd�1.Od .n//. We determine F2.n/
completely and significantly improve the bound for all d � 3.

Theorem 1.2.
(i) F2.n/ D 2n2 � 5nC 4 and

(ii) Fd .n/ � 2Od .n
d�2/ for d � 3.
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Part (i) of Theorem 1.2 answers in the negative a question of Fishburn and Graham
asking whetherF2.n/D .1C o.1//n2. Combining Theorems 1.1 and 1.2 with the inequal-
ity Ld .n/ �Md .Fd .n// gives the following upper bounds on Ld .n/.

Theorem 1.3.
(i) L2.n/ � 22

.4Co.1//n2

,

(ii) L3.n/ � 22
2.2Co.1//n

and

(iii) Ld .n/ � towr5.Od .nd�2// for d � 4.

For comparison, the best lower bound on Ld .n/, due to Fishburn and Graham [16,
Theorem 2], is Ld .n/ � n.1�1=d/n

d�1
for all d � 2, n � 3, achieved by taking a random

array.

Notation and organisation. The rest of the paper is organised as follows. We prove The-
orem 1.1 in Section 2 and Theorem 1.2 in Section 3. The final section contains some
concluding remarks and open problems.

We use standard set-theoretic and asymptotic notation throughout the paper. We write
Œn� for ¹1; : : : ; nº. For sequences a.n/ and b.n/ we write a.n/ D O.b.n// to mean there
is a constant C such that ja.n/j � C jb.n/j for all n 2 N, and we write a.n/D o.b.n// to
mean that a.n/=b.n/! 0 as n!1. For the purpose of asymptotics we always treat d ,
the number of dimensions, as a constant while taking n!1. Given d 2 N, we denote
the set of all permutations of Œd � by Sd . For real numbers ˛ and ˇ, we employ the interval
notation

Œ˛; ˇ� WD ¹x 2 Z W ˛ � x � ˇº:

A set of the form A1 � � � � � Ad , where Ai is a finite subset of Z for each i 2 Œd �,
is called an jA1j � � � � � jAd j grid or a grid of size jA1j � � � � � jAd j. Note that a d -
dimensional array f WA1 � � � � � Ad ! R is equivalent to an ordering of the vertices of
the d -dimensional gridA1 � � � � �Ad ; we switch between these points of view depending
on which is more suitable for the topic at hand.

We generally use lowercase boldface letters for vectors and uppercase boldface letters
for grids. For a vector u we denote by ui the value of the i -th coordinate.

2. Monotone arrays

In this section we will prove Theorem 1.1. We begin with a few preliminaries.

2.1. Preliminaries

We collect here two well-known Ramsey-type results for grids. We mention first a rela-
tion between the grid Ramsey problem and the (hyper)graph Zarankiewicz problem which
offers an alternative perspective. Given d; n1; : : : ; nd 2 N, let K.d/n1;:::;nd

denote the
complete d -uniform d -partite hypergraph with parts V1 D Œn1�; : : : ; Vd D Œnd �. Edges
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ofK.d/n1;:::;nd
correspond in the obvious way to vertices of the d -dimensional grid Œn1�� � � �

� Œnd �. Subhypergraphs of K.d/n1;:::;nd
of the form K

.d/
m1;:::;md

then correspond to subgrids
of Œn1� � � � � � Œnd � of size m1 � � � � � md . Using this correspondence, the two lemmas
below follow, for example, from [18, Theorem 2] and [12, Theorem 4], respectively.

Lemma 2.1. Given k; n; t 2 N in any vertex k-colouring of an tk
�
nk
n

�
� kn grid there is

a monochromatic subgrid of size t � n.

In the higher-dimensional case we will not need an asymmetric variant.

Lemma 2.2. Given integers d; k � 2 there exists a positive constant C D C.d; k/ such
that for any positive integers n and N with N � 2Cn

d�1
, in any k-colouring of the d -

dimensional N � � � � �N grid there is a monochromatic subgrid of size n � � � � � n.

2.2. Proofs of the main results on monotonicity

We begin with the 2-dimensional case. We will actually prove a stronger version of The-
orem 1.1 (i) as we will need it for the 3-dimensional case.

Theorem 2.3. For every n; t 2 N, any 4n2 � .2t/2
2n

array contains an n � t monotone
subarray.

Proof. Let f be an array indexed by ŒN � � ŒM �, where N D 4n2 and M D .2t/2
2n

.
By the Erdős–Szekeres theorem we know that in each column of f there is a monotone
subsequence of length 2n. The entries of this subsequence can appear in

�
4n2

2n

�
different

positions so there must be a set R � ŒN � of 2n positions for which at least M=
�
4n2

2n

�
columns are monotone when restricted to (rows) R. We take C � ŒN � to be the sub-
set of these columns for which the restriction is increasing; without loss of generality
we may assume that C consists of at least half of these columns. We obtain a sub-
array f 0 D f jR�C which is increasing in each column and has size 2n �M 0 where
M 0 � M

2.4n2

2n /
� t2

2n
.

By applying the Erdős–Szekeres theorem to the sequence given by the first row of f 0,
we can find a subset C1 � C of size jC1j �

p
jC j such that the first row of f 0jR�C1

is
monotone. Repeating this argument at step i we find a subset Ci � Ci�1 of size jCi j �p
jCi�1j � jC j

1=2i
such that the first i rows of f 0jR�Ci

are monotone. Continuing this
process until i D 2n we obtain a 2n � t array with each row being either increasing
or decreasing. By taking the ones of the type which appears more often we obtain a
monotone n � t subarray as claimed.

One can easily generalise the above proof to give a bound of the form Md .n/ �

towrdC1.O.nd�1// for any d � 2, which would already be a substantial improvement
over the Ackermann bound due to Fishburn and Graham [16]. However, to prove the
desired significantly better bound Md .n/ � towr4.O.nd�1// for d � 4, we need to con-
sider an intermediate problem which we find interesting in its own right.
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Definition (Inconsistently monotone array). An array f WA1 � � � � � Ad ! R is incon-
sistently monotone if for each i 2 Œd �, f .a1; : : : ; ai�1; x; aiC1; : : : ; ad / is monotone in x
for all choices of a1; : : : ; ai�1; aiC1; : : : ; ad :

The main difference compared with the definition of a monotone array is that we do
not require the lines along a fixed dimension to be all increasing or all decreasing but allow
some to be increasing and some to be decreasing. For positive integers d and n, letM 0

d
.n/

denote the minimum N such that for any d -dimensional array of size N � � � � � N , one
can find a d -dimensional inconsistently monotone subarray of size n � � � � � n. We have
M 01.n/D .n� 1/

2 C 1 according to the Erdős–Szekeres theorem. When d � 2 we obtain
the following version of Theorem 1.1 which gives stronger bounds but only guarantees us
an inconsistently monotone array, a weaker notion compared to actual monotone arrays.

Theorem 2.4. For every d � 2, we have M 0
d
.n/ � 22

.1Co.1//nd�1

.

Proof. We will prove the following recursive bound:

M 0d .n/ �

�
M 0
d�1

.n/

n

�d�1
n2

nd�1

: (1)

LetmDM 0
d�1

.n/ andN D
�
m
n

�d�1
n2

nd�1

. To prove (1), let f be an array indexed by
Œm�d�1 � ŒN �. For each “height” h 2 ŒN �, consider the restriction of f to Œm�d�1 � ¹hº.
As m DM 0

d�1
.n/, there exist an n � � � � � n subgrid S h of Œm�d�1 such that f is incon-

sistently monotone on S h � ¹hº. Given h 2 ŒN �, there are at most
�
m
n

�d�1 possibilities
for the location of S h. Hence, by the pigeonhole principle, we can find an n � � � � � n
subgrid S of Œm�d�1 and a subset H � ŒN � of size

jH j �
N�

m
n

�d�1 D n2nd�1

such that f is inconsistently monotone on S � ¹hº for every h 2H . Let us denote the ele-
ments of S by s1; : : : ; snd�1 . By the Erdős–Szekeres theorem, we can construct a nested
sequenceH0 WDH �H1 � � � � �Hnd�1 such that jHi j �

p
jHi�1j for every i � 1, and

¹sj º �Hi is monotone for j D 1; : : : ; i . In particular, jHnd�1 j � jH j1=2
nd�1

� n, and the
restriction of f to S �Hnd�1 is inconsistently monotone. This completes the proof of (1).

It remains to show that (1) implies the desired boundM 0
d
.n/� towr3..1Co.1//nd�1/.

We proceed by induction on d , noting that the case d D 2 follows from (1) and the fact
that M 01.n/ D .n � 1/

2 C 1. For the induction step, in the case d � 3, using (1) and the
induction hypothesis we find

M 0d .n/ �M
0
d�1.n/

.d�1/n
� n2

nd�1

� towr3.O.nd�2// � towr3..1C o.1//nd�1/

D towr3..1C o.1//nd�1/;

finishing the proof.

The following definition is going to help us find a monotone array inside an inconsis-
tently monotone array.
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Definition 2.5 (Monotonicity pattern). Let f WA ! R be an inconsistently monotone d -
dimensional array. Let a D .a1; : : : ; ad / 2 A. For each i 2 Œd �, let si 2 ¹�1; 1º be such
that sif .a1; : : : ; ai�1; x; aiC1; : : : ; ad / is increasing in x. The vector s D .s1; : : : ; sd / is
called the monotonicity pattern of f at a.

Notice that if f is a monotone array then f has the same monotonicity pattern at all
points, in which case we just call it the monotonicity pattern of f . We now use Theo-
rem 2.4 to prove part (iii) of Theorem 1.1.

Theorem 2.6. For every d � 4, we have Md .n/ � towr4.O.nd�1//.

Proof. Let N D towr4.O.nd�1//, and let C D C.d; 2d / be the positive constant given
by Lemma 2.2. It follows from Theorem 2.4 that in any d -dimensional array of size
N � � � � � N , one can find an inconsistently monotone subarray f indexed by A D

A1 � � � � � Ad such that jA1j D : : : D jAd j D 2Cn
d�1

:

Let us colour every point in A with the monotonicity pattern of f at this point. This
gives us a vertex-colouring of A with 2d colours given by ¹�1; 1ºd . By Lemma 2.2 and
the choice of C , there exists a monochromatic n � � � � � n subgrid B of A with colour
.s1; : : : ; sd /. From the definition of the monotonicity pattern .s1; : : : ; sd /, we can see that
f jB is monotone.

In order to prove M3.n/ � 2
2.2Co.1//n2

, we devise a different argument, not going
through the intermediate problem of bounding M 0

d
.n/.

Theorem 2.7. We have M3.n/ � 2
2.2Co.1//n2

.

Proof. Let X1 D Œ16n2�; X2 D Œ22
6n
� and X3 D Œ22

.2Co.1//n2

�. To prove Theorem 1.1 (ii)
it suffices to show that any 3-dimensional array f indexed by X1 �X2 �X3 contains an
n � n � n monotone subarray.

For each “height” h 2 X3, let C h D X1 � X2 � ¹hº. As 22
6n
� .2n22n/2

4n
, The-

orem 2.3 implies that each C h contains a 2n � n22n � 1 monotone subarray. There

are
�
16n2

2n

��
226n

n22n

�
different possibilities for a 2n � n22n � 1 monotone subarray, and the

monotonicity pattern of each such subarray is a vector s 2 ¹�1; 1º2. Since 4
�
16n2

2n

��
226n

n22n

�
D 22

o.n2/
, by the pigeonhole principle we can find a vector s 2 ¹�1; 1º2 and three subsets

S1 �X1, S2 �X2, S3 �X3 with jS1j D 2n, jS2j D n22n and jS3j D 22
.2Co.1//n2

such that
for any h 2 S3 the array f jS1�S2�¹hº is monotone with pattern s. Our remaining goal is to
find an n� n subgrid of S1 � S2 such that for any pair .a1; a2/ of this subgrid, f .a1; a2; �/
is always increasing or always decreasing on some fixed subset of size n of S3.

For each h 2 S3, let Lh D S1 � S2 � ¹hº. We can think of Lh’s as “layers” stacked
one on top of each other. Given two layers Lh and Lh0 with h < h0, we colour an element
v 2 S1 � S2 red if f .v; h/ > f .v; h0/, and blue otherwise. This way we obtain a colouring
of S1 �S2 with two colours, so by Lemma 2.1 we can find a monochromatic subgrid Bhh0

of size n� n. We now consider the following edge-colouring of the complete graph on the
vertex set S3 using k colours. We colour the edge between h and h0 by a pair made of Bhh0
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and its monochromatic colour. Since there are at most
�
2n
n

��
n22n

n

�
possibilities for Bhh0 ,

we must have k � 2
�
2n
n

��
n22n

n

�
D 2.2Co.1//n

2
, giving kkn � 22

.2Co.1//n2

D jS3j. From
this and a result of Erdős and Rado [13, Theorem 1] on the multicolour Ramsey numbers
which states that any k-edge colouring of the complete graph on kkn vertices contains
a monochromatic Kn, we deduce that our colouring contains a monochromatic Kn. Let
H � S3 correspond to the vertices of this Kn and let its colour correspond to an n � n
subgrid B and say, without loss of generality, be blue. This means that f .a1; a2; �/ W
H ! R is increasing for all .a1; a2/ 2 B. So by our construction of S1; S2 we find that
f when restricted to B �H is a monotone array of size n � n � n.

Remark. In the above proof we used the usual Ramsey theorem on our colouring of the
complete graph on S3. However, our colouring is not arbitrary and in fact one can instead
use the ordered Ramsey number of a path (see [11]). The third alternative is to only colour
an edge according to Bhh0 , and record whether the values increase or decrease between
Bhh0 � ¹hº and Bhh0 � ¹h

0º by a directed edge. This gives us a colouring of a tournament
in which we want to find a monochromatic directed path (see [10, 19]). Both approaches
give slightly better bounds than the one in Theorem 1.1 (ii), but unfortunately still give
bounds of the form M3.n/ � towr3.O.n2//.

3. Lexicographic arrays

In this section we show our bounds on Fd .n/, in particular we prove Theorem 1.2.

3.1. Preliminaries

A monotone array f is said to be increasing if restriction of f to any axis parallel line
is an increasing sequence (i.e. case (i) of the definition of monotonicity always occurs).
More formally:

Definition 3.1. A d -dimensional array f is increasing if f .x/� f .y/whenever xi � yi
for all i 2 Œd �.

The following definition generalises the notion of a lexicographic array to allow for a
custom priority order of coordinates.

Definition 3.2. Given a d -dimensional array f and a permutation � 2 Sd , we say f is
.lexicographic/ of type � if f .x/ < f .y/, .x�.1/; : : : ; x�.d// <lex .y�.1/; : : : ; y�.d//

for all possible x and y .

Recall that an array is said to be lex-monotone if it is possible to permute the coor-
dinates and reflect the array along some dimensions to obtain a lexicographic array. The
above definition allows us to separate these two actions. In particular, an alternative defi-
nition is that an array is lex-monotone if one can reflect the array along some dimensions
to obtain a lexicographic array of some type.
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Notice that any subarray of a monotone array is itself monotone and moreover has the
same monotonicity pattern. This means that when looking for a lex-monotone subarray
within a monotone array we can only find one with the same monotonicity pattern. In other
words, we may without loss of generality assume that the starting array is increasing. The
following immediate lemma makes this statement formal.

Lemma 3.3. For all d; n 2 N, Fd .n/ equals the minimum N such that any increasing
d -dimensional array of size N � � � � � N contains an n � � � � � n subarray of type � for
some � 2 Sd .

3.2. 2-dimensional case

Notice first that in two dimensions there are only two possible types of a (lexicographic)
array, namely .1; 2/ and .2; 1/. See Figure 1 for an illustration of both together with an
example of the arrow notation which we found useful when thinking about the problem.

1 3

2 4

1

2

3

4

1 2

3 4

1

3

2

4

Fig. 1. Lexicographic arrays of type .1; 2/ and .2; 1/; arrows point towards larger points.

We begin with a proof of the upper bound F2.n/ � 2n2 � 5nC 4 as it sheds some
light on where our lower bound construction is coming from.

Theorem 3.4 (Fishburn and Graham [16]). For n 2 N we have F2.n/ � 2n2 � 5nC 4.

Proof. Let f be an increasing array indexed by ŒN ��ŒN �, whereN D .n�1/.2n�3/C1.
For i 2 Œ2n � 2�, let ai D .n � 1/.i � 1/ C 1. Define a red-blue colouring of the grid
¹a1; : : : ; a2n�3º � ¹a1; : : : ; a2n�3º as follows. For every i; j 2 Œ2n� 3�, we colour .ai ; aj /
red if f .aiC1;aj / < f .ai ;ajC1/, and blue otherwise. As .n�2/.2n�3/C.n�2/.2n�3/
< .2n�3/2, there exists a row with at least n� 1 red points or a column with at least n� 1
blue points. By symmetry, we can assume .ai ; aj1

/; : : : ; .ai ; ajn�1
/ are n � 1 red points

in a row ai with j1 < � � � < jn�1. One can check that the n � n subarray of f indexed by
Œai ; aiC1�� ¹aj1

; : : : ; ajn�1
; ajn�1C1º is of type .1;2/. Hence F2.n/�N D 2n2 � 5nC 4,

as required.

The remainder of this subsection is devoted to the proof of the lower bound F2.d/ �
2n2 � 5nC 4. We will make ample use of the immediate observation that any subarray
of a lexicographic array of type � which has size at least 2 in each dimension must also
be of type � . We first construct a “building block” for our actual construction showing
F2.d/ � 2n

2 � 5nC 4.
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Lemma 3.5. For n� 3, there exists an increasing array g of size .n�1/.n�2/�.n�1/2

such that

(G1) g does not contain an .n � 1/ � 2 subarray of type .1; 2/,

(G2) g does not contain an n � 2 subarray of type .2; 1/.

Proof. For 1� i � n� 2, let C i D Œ.n� 1/.i � 1/C 1; .n� 1/i �� Œ.n� 1/
2�. We choose

an array g (see Figure 2 for an illustration), indexed by Œ.n� 1/.n� 2/�� Œ.n� 1/2�, such
that

� gjC 1
< � � � < gjC n�2

,

� for each i 2 Œn � 2�, gjC i
is of type .2; 1/.

n � 1 n � 1 n � 1

.n � 1/2

1 2

� � �

n � 2

Fig. 2. An illustration of the array g. Directed arrows point towards a position with a larger value
of g. Numbers denote relative order of subarrays.

For (G1), if such a subarray exists, then at least one of C i ’s would need to intersect
this subarray in some 2 � 2 subarray. By the second property of g, the 2 � 2 subarray is
of type .2; 1/, a contradiction.

For (G2), if such a subarray exists it would intersect at least two distinct C i ’s, and so
it would contain a 2 � 2 subarray of type .1; 2/, a contradiction.

Another building block of our construction is the following.

Lemma 3.6. For n � 3, there is an increasing array h of size .n � 1/2 � .n � 1/.n � 2/
such that

(H1) h does not contain a 2 � n subarray of type .1; 2/,

(H2) h does not contain a 2 � .n � 1/ subarray of type .2; 1/.

Proof. Let Ri D Œ.n � 1/
2� � Œ.n � 1/i � nC 1; .n � 1/i � for i 2 Œn � 2�. Let us define

h to be an array indexed by Œ.n � 1/2� � Œ.n � 1/.n � 2/� so that hjRi
< hjRj

whenever



Erdős–Szekeres theorem for multidimensional arrays 2937

n � 1

n � 1

n � 1

.n � 1/2

1

2

:::

n � 2

Fig. 3. An illustration of the array h. Directed arrows point towards a position with a larger value
of h. Numbers denote relative order of subarrays.

i < j and so that hjRi
is of type .1;2/ (see Figure 3 for an illustration). This array satisfies

the properties (H1) and (H2) by the same argument as in Lemma 3.5.

We are now in a position to prove Theorem 1.2 (i).

Theorem 3.7. For n 2 N we have F2.n/ � 2n2 � 5nC 4.

Proof. It is immediate that the statement holds for n D 1; 2. We henceforth assume that
n � 3.

LetN D 2n2 � 5nC 3D .n� 1/2C .n� 1/.n� 2/. To prove the statement, it suffices
to construct an increasing array f W ŒN �2 ! R which does not contain an n � n subgrid
of type .1; 2/ or .2; 1/.

We first split ŒN �2 into five subgrids A1; : : : ;A5 (see Figure 4) such that both A1

and A5 have size .n � 1/.n � 2/ � .n � 1/2, both A2 and A4 have size .n � 1/2 �
.n � 1/.n � 2/, while A3 has size .n � 1/ � .n � 1/. Let g and h be arrays given by
Lemmas 3.5 and 3.6, respectively. The array f is chosen so that f jA1

< � � � < f jA5
,

f jA1
and f jA5

are copies of g, f jA2
and f jA4

are copies of h, and f jA3
is an arbitrary

increasing array. Since f jA1
< � � � < f jA5

and f jAi
is increasing for every 1 � i � 5,

f is increasing as well. It remains to show that f does not contain an n � n subarray of
type .1; 2/ or .2; 1/.

As f jA1
< � � � < f jA5

and f jAi
is increasing for every 1 � i � 5, we also find that

(P1) any 2 � 2 subarray with two vertices in A1 and two to the right of A1 is of type
.1; 2/,

(P2) any 2� 2 subarray with two vertices in A5 and two to the left of A5 is of type .1; 2/,

(P3) any 2 � 2 subarray with two vertices in A2 and two above A2 is of type .2; 1/,

(P4) any 2 � 2 subarray with two vertices in A4 and two below A4 is of type .2; 1/.
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n � 1 n � 1 n � 1

n � 2

.n � 1/2

71 2 3

11 12 13

8

9

10

4

5

6

I KJ

I

J

K

A1

A5

A3

A2

A4

Fig. 4. Directed arrows point towards a larger value of f and indicate whether the given subarray
is of type .1; 2/ or .2; 1/ (as in Figure 1). Numbers denote the relative order of subarrays.

We will show that f has the desired property using properties (P1)–(P4) together with
conditions (G1), (G2), (H1), (H2) from Lemmas 3.5 and 3.6.

Suppose towards a contradiction that ŒN �2 contains an n � n subgrid L D L1 � L2
such that f jL is of type .1; 2/ or .2; 1/. Letting I D Œ.n � 1/.n � 2/�, J D
Œ.n � 1/.n � 2/C 1; .n � 1/2�, K D Œ.n � 1/2 C 1;N �, we define

a D jL1 \ I j; b D jL1 \ J j; c D jL1 \Kj;

x D jL2 \ I j; y D jL2 \ J j; z D jL2 \Kj:

We will obtain various inequalities involving a; b; c; x; y; z, and eventually reach a con-
tradiction. Since L has size n � n and jJ j D n � 1 we obtain

aC b C c D x C y C z D n; 0 � a; c; x; z � n and 0 � b; y � n � 1: (2)

We divide our analysis into two cases.

Case 1: L is of type .2; 1/. We have the following series of observations:

.G2/ H) a � n � 1 or x C y � 1; (3)

.G2/ H) c � n � 1 or y C z � 1; (4)

.H2/ H) aC b � 1 or z � n � 2; (5)

.H2/ H) b C c � 1 or x � n � 2; (6)

.P1/ H) a D 0 or b C c D 0 or x C y � 1; (7)

.P2/ H) aC b D 0 or c D 0 or y C z � 1: (8)

Observe that

a D 0 or x C y � 1; (9)

c D 0 or y C z � 1: (10)
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To see (9), if b C c D 0 then by (2) we have a D n, which according to (3) implies
x C y � 1, so (7) implies (9). Similarly, to see (10), if a C b D 0 then by (2) we have
c D n, which according to (4) implies y C z � 1, so (8) implies (10).

To complete our analysis of Case 1, we show a D c D 0, giving a contradiction to (2).
Suppose to the contrary that a � 1. Then xC y � 1 by (9), and so z � n� 1 by (2), which
according to (5) shows aC b � 1. Hence

c D n � .aC b/ � n � 1 � 1 and y C z � z � n � 1 � 2;

giving a contradiction to (10). It remains to show that c D 0. If instead c � 1, then (10)
implies y C z � 1, and so x � n � 1 by (2), which by (6) implies b C c � 1. Thus

a D n � .b C c/ � n � 1 � 1 and x C y � x � n � 1 � 2;

contradicting (9) and completing the proof in this case.

Case 2: L is of type .1; 2/. The analysis of this case is very similar to that of Case 1. We
first have the following observations:

.G1/ H) a � n � 2 or x C y � 1; (11)

.G1/ H) c � n � 2 or y C z � 1; (12)

.H1/ H) aC b � 1 or z � n � 1; (13)

.H1/ H) b C c � 1 or x � n � 1; (14)

.P4/ H) aC b � 1 or x C y D 0 or z D 0; (15)

.P3/ H) b C c � 1 or x D 0 or y C z D 0: (16)

We next show

aC b � 1 or z D 0; (17)

b C c � 1 or x D 0: (18)

To see (17), if x C y D 0 then by (2) we have z D n, which according to (13) implies
aC b � 1, so (15) implies (17). Similarly, to see (18), if y C z D 0 then by (2) we have
x D n, which according to (14) implies b C c � 1, so (16) implies (18).

Finally, we show x D z D 0, giving a contradiction to (2). Suppose x � 1. Then
bC c � 1 by (18), and so (2) gives a � n� 1, which by (11) forces x C y � 1. From this
we conclude

aC b � a � n � 1 � 2 and z D n � .x C y/ � n � 1 � 1;

giving a contradiction to (17). To show z D 0, we suppose z � 1. Then (17) gives aC b
� 1, and so (2) implies c � n � 1, which by (12) results in y C z � 1. Thus

b C c � c � n � 1 � 2 and x D n � .y C z/ � n � 1 � 1;

contradicting (18). This completes our proof of Theorem 1.2 (i).

The example used above is partially motivated by certain examples considered in [5].
That paper also considers higher-dimensional examples which may be of some use in
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higher-dimensional instances of our problem as well, but only in terms of optimizing the
dependence on d .

3.3. High-dimensional case

In this subsection we prove Theorem 1.2 (ii). Our first ingredient in the proof will be the
following lemma.

Lemma 3.8 (Dominant coordinate). Let d; m; t � 2 be integers, and let f be an
increasing array indexed by Œd2mt�d . Then there exist a dimension i 2 Œd �, sets
B1; : : : ; Bi�1; BiC1; : : : ; Bd � Œd

2mt� of size mC 1 and t subgrids Ah WD B1 � � � � �

Bi�1 � ¹hº � BiC1 � � � � � Bd such that f jAh
< f jAh0

whenever h < h0.

One should think of this lemma as saying that there is a dimension i such that one
can find a “stack” of subgrids appearing at the same location along the remaining d � 1
dimensions and different positions along dimension i , which can be thought of as heights
of the subgrids. Furthermore, the subgrids are not much smaller than the initial one in the
remaining dimensions and our array is always bigger on a higher subgrid. Our proof of
this lemma borrows some ideas of [16].

Proof of Lemma 3.8. The proof is in some sense a high-dimensional generalisation of the
argument used to prove Theorem 3.4. We split the grid Œd2mt�d along each coordinate
into td intervals of equal size, obtaining a partition of Œd2mt�d into translates of Œdm�d ,

Œd2mt�d D
[
u2T

.uC Œdm�d /; (19)

where T D ¹0; dm; 2dm; : : : ; .dt � 1/dmºd . The reason behind considering this is that
we are now going to compare values taken by the array on certain points in uC Œdm�d

for each u 2 T , and once we find the one with the largest entry, the fact that points of T

are suitably spaced apart will allow us to get information about the ordering of a relatively
large .d � 1/-dimensional subarray. For each i 2 Œd �, the aforementioned points are given
by xi and the subarrays by C i , where

xi D ..i � 1/m; .i � 2/m; : : : ; m; dm; .d � 1/m; : : : ; im/ 2 Œdm�
d ;

C i D Œ.i � 1/m; im� � � � � � Œm; 2m� � ¹mº � Œ.d � 1/m; dm�

� � � � � Œim; .i C 1/m� � Œdm�d :

Notice that xiC1 has every coordinate larger than xi , except the i -th; here xdC1 WD x1.
Notice further that xiC1 2 C i is larger in every coordinate than any other point of C i .
Similarly xi with its i -th coordinate reduced by .d � 1/m is the point of Ci which is
smaller than any other in every coordinate. In other words, with respect to the componen-
twise order of Œdm�d ,

max C i D xiC1; and min C i D xi � .d � 1/mei ; (20)

where ei stands for the i -th standard unit vector.
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x1 D .2m;m/

x2 D .m; 2m/

.m;m/

.2m; 2m/

x1

x3

x2

.m;m;m/

x1 D .3m; 2m;m/

x2 D .m; 3m; 2m/

x3 D .2m;m; 3m/

.3m; 3m; 3m/

Fig. 5. Lightly shaded .d � 1/-dimensional regions in the figure denote C i ’s with their maximum
point being xiC1. Depending on which of the xi ’s has largest value of f one of these C i ’s has
value of f on xi smaller than that of f on the minimal point of a translate of C i (strongly shaded
region of the same colour) at xi .

Now consider a colouring �WT ! Œd � given by

�.u/ D i if and only if f .uC xi / D max ¹f .uC x1/; : : : ; f .uC xd /º:

By the pigeonhole principle, there is a colour i 2 Œd � which appears at least .td/d=d
times. This implies that the grid T contains a column in the direction of the i -th coordinate
for which at least t vertices of this column have colour i . We list those vertices of T from
smallest to largest with respect to their i -th coordinates: u1; : : : ;ut .

We show that the grids A1 D u1 C C i ; : : : ;A t D ut C C i have the desired prop-
erties. Indeed, (19) implies that A1; : : : ;A t are subgrids of Œd2mt�t . Since we have
chosen uj ’s as in the same column in the direction of the i -th coordinate, all of them
have the same coordinates in all other dimensions. This implies that there are d � 1 sets
B1; : : : ; Bi�1; BiC1; : : : ; Bd and t “heights” h1; : : : ; ht such that Aj can be written
as B1 � � � � � Bi�1 � ¹hj º � BiC1 � � � � � Bd for every 1 � j � t . Since C i has size
.m C 1/ � � � � � .m C 1/, each Bj has size m C 1: Finally, since f is increasing, for
1 � j < k � t we have

maxf .Aj / D f .uj C xiC1/ < f .uj C xi /

< f .uk � .d � 1/mei C xi / D minf .Ak/:

The first equality follows since (20) implies uj C xiC1 is the largest point of Aj so since
f is increasing we conclude that f is maximised over Aj at uj C xiC1. Similarly, we
get the last equality as well. The first inequality follows since �.uj / D i . The second
inequality follows since j < k implies the i -th coordinate of uj is smaller than that of uk
(since uj and uk belong to the same column along the i -th dimension and since we named
them according to their i -th coordinate) by at least dm (since uj ;uk 2 T /. This finishes
the proof of Lemma 3.8.
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This lemma provides us with a stack of subgrids A1; : : : ;A t on which f is increasing
in dimension i . It is natural to try to iterate and now apply the lemma within each Aj ,
but notice that we do not only want to find a lexicographic subgrid in some n differ-
ent Aj ’s, but they also have to appear at the same positions in each of them. One can now
apply a Ramsey result forO.2Fd�1.n// colours to ensure that the subgrids found appear at
the same locations. Consequently, this approach gives at best Fd .n/ � towrd�1.Od .n//.
Fishburn and Graham [16, Section 4] follow a similar approach and their arguments hit
the same barrier in terms of the bounds they can obtain.

We take a different approach in order to prove Theorem 1.2 (ii).

Theorem 3.9. For d � 3, we have Fd .n/ � 2.cdCo.1//n
d�2

, where cd D 1
2
.d � 1/Š.

Proof. We prove the statement by induction on d .

The base case: d D 3. LetmD 2n3, t D 2m
�
m=n
n

�
=
�
m=.2n/
n

�
D 2nCo.n/, andN D d2mt D

2nCo.n/. Consider an increasing array f W ŒN �3!R. By Lemma 3.8, we may assume with-
out loss of generality that ŒN �3 contains a stack of t subgrids A1 D B1 �B2 � ¹h1º; : : : ;

A t D B1 �B2 � ¹htº of size m�m� 1 such that h1 < � � �< ht and f jA1
< � � �< f jAt

.
We drop the third dimension from now on, and think of Ai ’s as 2-dimensional grids.

We split each Ai into .m=n/2 smaller subgrids of size n� n. Colour each such smaller
subgrid red if its top left corner is smaller than the bottom right one, and blue otherwise.
As in the proof of Theorem 3.4, any n red subgrids in the same row of Ai give rise to
an n � n subgrid of type .1; 2/. If we further manage to find n layers of the stack, each
having such a sequence of the same n red n � n subgrids, we obtain an n � n � n subgrid
of type .3; 1; 2/ (using the property that h1 < � � �< ht and f jA1

< � � �< f jAt
). Similarly,

if we find n layers each having the same sequence of n blue n � n subgrids in the same
column, we find an n � n � n subgrid of type .3; 2; 1/.

By the pigeonhole principle, each layer Ai of the stack has a row with m
2n

red subgrids
or a column with at least m

2n
blue subgrids. This row or column can be chosen in 2 � m

n

ways, so there are nt
2m

layers having in the same row/column m
2n

red/blue subgrids. Let
us say without loss of generality that it is the first row. Then the first row of such a layer
contains at least

�
m=.2n/
n

�
tuples of n red subgrids. By the pigeonhole principle, there are

at least
nt
2m

�
m=.2n/
n

��
m=n
n

� � n

layers having the same red n-tuples, as desired.

The induction step: Suppose d � 4 and that the lemma holds for d � 1. It is easy to see
that the desired estimate Fd .n/ � 2.cdCo.1//n

d�2
follows from the induction hypothesis

and the following recursive bound:

Fd .n/ � d
dFd�1.n/

.d�1/nC1 for all d � 4 and n � 2:

We now prove this inequality. LetmD Fd�1.n/, t D .d � 1/Šn
�
m
n

�d�1, andN D d2mt �
ddFd�1.n/

.d�1/nC1. Consider an increasing array f W ŒN �d ! R.
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By Lemma 3.8, we may assume without loss of generality that ŒN �d contains a stack
of t subgrids A1 D B1 � � � � � Bd�1 � ¹h1º; : : : ;A t D B1 � � � � � Bd�1 � ¹htº of size
m � � � � �m � 1 such that h1 < � � � < ht and f jA1

< � � � < f jAt
.

Given i 2 Œt �, as m D Fd�1.n/, one can find a permutation � 2 Sd�1 and a subgrid
A0i � Ai of size n � � � � � n � 1 such that f jA0i is of type � . Since t

.d�1/Š.m
n/

d�1 D n, the

pigeonhole principle implies the existence of a permutation � 2Sd�1, an n� � � � � n sub-
gridB 01 � � � � �B

0
d

ofB1 � � � � �Bd , and n layers 1� i1 < � � �< in � t such that for every
k 2 Œn�, we have A0ik D B

0
1 � � � � � B

0
d�1
� ¹hik º, and the restriction of f to A0ik is of

type � . As f jAi1
< � � � < f jAin

, the restriction of f to B 01 � � � � �B
0
d�1
� ¹hi1 ; : : : ; hinº

is an n � � � � � n array of type .d; �/. This shows Fd .n/ � N � ddFd�1.n/.d�1/nC1, as
required.

4. Concluding remarks

We obtain a major improvement on best known upper bounds for Md .n/. However, our
bounds are still off from the best known lower bound ofMd .n/ � n

.1Co.1//nd�1=d due to
Fisburn and Graham [16, Theorem 3]. Perhaps the most interesting open question regard-
ing Md .n/ is to determine the behaviour in two dimensions.

Question 4.1. What is the behaviour of M2.n/? Is it closer to exponential or to double
exponential in n?

It is natural to ask whether our argument used to get a double exponential bound
in the monotone case in three dimensions (Theorem 2.7) generalises to higher dimen-
sions. Unfortunately, the natural generalisation of our approach to more dimensions gives
a bound of the form Md .n/ � towrbd=2cC2.Od .n// which has a tower of height growing
with d . However, this does still imply a better bound than Theorem 2.6 in four and five
dimensions. The main issue preventing us from extending our argument to more dimen-
sions is that it seems hard to obtain asymmetric results which would allow us to find a
monotone subarray with exponential size in at least two dimensions. For example, if we

could find an n� 2n � 2n
2

monotone subarray within any array of size 22
O.n2/

� 22
O.n2/

�

22
O.n2/

we would obtain a double exponential bound M4.n/ � 2
2O.n3/

. However, if we
knew how to do this then by considering an array which is always increasing in the first
dimension and has the same but arbitrary ordering for each 2-dimensional subarray with
fixed value in the first dimension, we would also be able to get a better than double expo-
nential bound in the 2-dimensional case, which leads us back to Question 4.1. Our better
bounds in three, four and five dimensions make it seem unlikely that a triple exponential
is ever needed.

Question 4.2. For d � 4 isMd .n/ bounded from above by a double exponential in nd�1?

For the problem of determining Fd .n/, we completely settle the 2-dimensional
case and give exponential upper bounds for d � 3. The best known lower bound
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Fd .n/ � .n � 1/
d , also due to Fishburn and Graham [16], is still only polynomial. We

find the 3-dimensional case particularly interesting since via Lemma 3.8 it reduces to the
following nice problem.

Question 4.3. What is the smallestN such that givenN increasing arrays of sizeN �N
one can find an n� n lexicographic array of the same type appearing in the same positions
in at least n of the arrays?

In particular, is this N bounded by a polynomial in n or is it exponential in n?
The study of Md .n/; Fd .n/ and Ld .n/, while interesting in its own right, is also

closely related to various other interesting problems. We present just a few here.

4.1. Long common monotone subsequence

The problem of estimating M2.n/ is closely related to the longest common monotone
subsequence problem. A common monotone subsequence of two permutations �;� 2SN

is a set I � ŒN � such that the restrictions of � and � to I are either both increasing or both
decreasing. A common monotone subsequence of more than two permutations is defined
analogously. Given positive integers t; k and N , let LMS.t; k;N / denote the maximum `

such that any size-k multisubset P � SN contains a size-t multisubset P 0 such that the
length of the longest common monotone subsequence of P 0 is at least `.

We now describe the connection betweenM2.n/ and LMS.t; k;N /. Let f W ŒN �2!R
be a 2-dimensional array. Similarly to the first part of the proof of Theorem 2.3, we
can show that ŒN �2 contains a subgrid R � C of size .logN/1�o.1/ � N 1�o.1/ such that
either f jR�C is increasing in each column, or f jR�C is decreasing in each column. For
each r 2 R, the restriction of f to the row ¹rº � C induces a permutation �r of C ,
since f is assumed to be injective. (Note that �r ’s are not necessarily distinct.) It is
not hard to see that if among .logN/1�o.1/ permutations ¹�r W r 2 Rº of C there are
n permutations whose longest common mononotone subsequence has length at least n,
then f jR�C contains an n � n monotone subarray. Therefore every N � N array con-
tains a monotone subarray of size n � n, where n is the maximum t 2 N such that
LMS.t; .logN/1�o.1/;N 1�o.1// is greater than or equal to t . By an iterative application of
the Erdős–Szekeres theorem, one can take n D .1=2 � o.1// log2 log2N , or equivalently
N D 22

.2Co.1//n
.

The problem of determining the parameter LMS.t; k; N / for other ranges of t and
k is also very appealing. For example, it would be interesting to have a good estimate
for LMS.t; k; N / when t is fixed and k grows to infinity with N . We refer the reader to
[2, 3, 7] for some related results in this direction.

4.2. Ramsey type problems for vertex-ordered graphs

One can place the problems we have studied in this paper under the framework of
(vertex-)ordered Ramsey numbers. For simplicity of presentation we choose to illustrate
this through the 2-dimensional monotone subarray problem. Let K.3/N;N be the 3-uniform
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hypergraph with vertex set A [ B , where A and B are two copies of ŒN �, and edge set
consisting of all those triples which intersect both A and B . Given an array f W ŒN �2! R,
we can associate to f an edge-colouring � of K.3/N;N with two colours, red and blue. For
i 2 A and j; j 0 2 B with j < j 0, let �.i; j; j 0/ D red if and only if f .i; j / < f .i; j 0/.
Similarly, for j 2 B and i; i 0 2 A with i < i 0, we assign colour red to .i; i 0; j / if and only
if f .i; j / < f .i 0; j /. The following simple observation connects the multidimensional
Erdős–Szekeres world with the ordered Ramsey world.

Observation 4.4. Suppose there are two size-n subsets ¹a1 < � � �<anº �A and ¹b1 < � � �
< bnº � B such that

� ¹.ai ; bj ; bjC1/ W i 2 Œn�; j 2 Œn � 1�º is monochromatic under �,

� ¹.ai ; aiC1; bj / W j 2 Œn�; i 2 Œn � 1�º is monochromatic under �.

Then the restriction of f to ¹a1; : : : ; anº � ¹b1; : : : ; bnº is monotone.

Now define OR.n/ to be the smallest N such that in every red-blue colouring of
the edges of K.3/N;N we can always find two size-n subsets ¹a1 < � � � < anº � A and
¹b1 < � � � < bnº � B with the aforementioned properties. From the observation, we know
M2.n/ � OR.n/. A closer inspection of our proof of the inequality M2.n/ � 2

2.2Co.1//n

reveals that it actually gives OR.n/ � 22
.2Co.1//n

. Thus it is natural to ask whether M2.n/

and OR.n/ have the same order of magnitude.

4.3. Canonical orderings of discrete structures

An ordering of the edges of a (vertex-ordered) d -graphG with V.G/�Z is lex-monotone
if one can find a permutation � 2 Sd and a sign vector s 2 ¹�1; 1ºd such that the edges
.a1; : : : ; ad / of G with a1 < � � � < ad are ordered according to the lexicographical order
of the tuple .s�.1/a�.1/; : : : ; s�.d/a�.d//. An old result of Leeb and Prömel (see [24, The-
orem 2.8]) says that for all d; n 2 N there is a positive integer LPd .n/ such that every
edge-ordering of a (vertex-ordered) complete d -graph on LPd .n/ vertices contains a copy
of the complete d -graph on n vertices whose edges induce a lex-monotone ordering. The-
orem 1.3 in our paper can be viewed naturally as a d -partite version (with a better bound)
of this result. It would be interesting to know if our approach can lead to an improve-
ment on the upper bound LPd .n/ � towr2d .Od .n// for d � 2, due to Nešetřil and Rödl
[26, Theorem 14]. For other interesting results on edge-ordered Ramsey numbers, we
refer the reader to [1, 17].

Theorem 1.3 is also related to the work of Nešetřil, Prömel, Rödl and Voigt [25] on
linear orders of the combinatorial cube Œk�n when k is fixed and n is large. For simplified
presentations of this work, see [6, 27].
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