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Abstract. The aim of this paper is threefold. Firstly, we prove the existence and uniqueness of a
global strong (in both the probabilistic and the PDE senses) H%—Valued solution to the 2D stochastic
Navier—Stokes equations (SNSEs) driven by a multiplicative Lévy noise under the natural Lipschitz
condition on balls and linear growth assumptions on the jump coefficient. Secondly, we prove a
Girsanov-type theorem for Poisson random measures and apply this result to a study of the well-
posedness of the corresponding stochastic controlled problem for these SNSEs. Thirdly, we apply
these results to establish a Freidlin—Wentzell-type large deviation principle for the solutions of these
SNSEs by employing the weak convergence method introduced by Budhiraja et al. (2011, 2013).
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1. Introduction

In this paper, we concentrate on stochastic Navier—Stokes equations (SNSEs), but we
believe that our results can be generalized to other types of stochastic partial differen-
tial equations (SPDEs). Since the seminal work [4] by Bensoussan and Temam, a great
number of papers have been written on SNSEs driven by Gaussian noise. The questions
of the existence and uniqueness of solutions to such equations have been investigated in
many papers; see, for example, [13,23,35,36,47,52]. The Freidlin—-Wentzell-type large
deviation principle for 2D SNSEs has been proved in [21, 57]. In a recent paper [61],
the authors established the moderate deviation principle for these equations. The ergodic
properties of invariant measures of the Markov semigroups generated by SNSEs (in the
Gaussian case) and related questions have been studied in [8, 34,39].

However, some real-world models of financial, economic, physical, chemical, and
biological phenomena cannot be well described by Gaussian noise. For example, in some
circumstances, some large moves and unpredictable events can be captured by jump type
noises. In recent years, SPDEs driven by jump type Lévy noise have become extremely
popular in modelling these phenomena.

Much effort has been put into understanding various properties of SPDEs driven by
general Lévy noise. Compared with the Gaussian case, SPDEs driven by pure jump
Lévy processes behave in a drastically different manner. Examples are provided by
(i) the Burkholder-Davis—Gundy inequality — see, for instance, [41, 69]; (ii) the Girsanov
theorem — see, for example, [44, Theorem II1.3.24] for semimartingales, [7, Theorem
3.10.21] for Poisson point processes, [7, Theorem 3.9.19] for finite-dimensional Wiener
processes, and [22, Appendix A.1.] for infinite dimensions with respect to a cylindrical
Wiener process; (iii) the time regularity of solutions — see, for instance, [43] for OU pro-
cesses driven by a cylindrical Wiener process, [3] on the uniform convergence of random
series in Skorokhod space and representations of cadlag infinitely divisible processes, and
[9,48,49,54,55] for OU processes driven by cylindrical pure jump processes; (iv) ergod-
icity — see, for example, [6, 33, 55] for the pure jump case; (v) irreducibility — see, for
example, [27,33,40,55,60] for the pure jump case; and (vi) other long-time properties of
the solutions to SPDEs driven by jump processes — see [19,20].

In general, the methods and techniques available for SPDEs driven by Gaussian noise
are not suitable for investigating SPDEs driven by jump type noise, and therefore new and
sophisticated tools are needed. We refer to the above-mentioned references and references
therein for more details.

As an example let us consider SNSEs. Under the classical Lipschitz condition on balls
and linear growth assumptions on the noise coefficients, one can prove the existence and
uniqueness of a strong solution in both the probabilistic and PDE senses for 2D SNSEs



2D stochastic Navier—Stokes equations with jumps 3

driven by Gaussian noise; see, for example, [36,47,51]. However, in order to prove a
similar result for the pure jump case, in the existing literature one is required to introduce
additional conditions on the jump coefficient G (see Remarks 3.2 and 4.2). The reason
for this difference is that the proof of the existence of solutions relies on the use of the
Burkholder-Davis—Gundy inequality for the compensated Poisson random measures for
the exponent p # 2 (see [10, 11,69]). Similar problems arise in the study of martingale
solutions; see, for instance, [30,35,53] and many more recent papers.

A natural approach to proving the well-posedness of SPDEs driven by jump type Lévy
process is to approximate the Poisson random measure N by a sequence of Poisson ran-
dom measures N, with finite intensity measures. Dong and Xie [28] used this method to
establish the well-posedness of strong solutions in the probabilistic sense for 2D SNSEs
driven by Lévy noise. However, to make this method work, one needs to impose addi-
tional assumptions to control the “small jumps” (see Remark 3.2). Another basic idea
used to prove the well-posedness of SPDE:s is based on introducing an appropriate cut-off
and then applying the Banach fixed point theorem for the approximated problems. This
method has been exploited in a recent paper [5] to establish the existence of strong solu-
tions in the PDE sense for 2D SNSEs driven by Lévy processes of jump type. However,
because they relied on the Burkholder-Davis—Gundy inequality with exponent p # 2 for
the compensated Poisson random measure, in addition to the natural Lipschitz and linear
growth assumptions, the authors of [5] had to impose additional and unnatural assump-
tions on the noise coefficient G (see Remark 4.2).

The first aim of this paper is to remove these unnecessary assumptions imposed in [5]
and other papers. For this purpose we employ different ideas and techniques. We use the
cut-off approximation method and the Banach fixed point theorem, used recently by the
first author and Millet [12] and later in [5] to prove the existence of strong solutions in
the PDE sense to a class of stochastic hydrodynamical systems driven by a Lévy process.
Earlier, a similar idea had been used by De Bouard and Debussche [25,26]. However, our
auxiliary equations are different.

Using these auxiliary equations, we are able to remove the atypical assumptions
described above. Our method strongly depends on the cut-off function 6,, introduced
in (3.12). To achieve our goals, it is crucial to establish new a priori estimates. We believe
that this method can also be used for other systems driven by Lévy noise to weaken the
assumptions and, in particular, eliminate those that are not necessary.

Our second, and in fact, main, aim of this paper is to establish a Freidlin—Wentzell-
type large deviation principle (LDP) for strong solutions in the PDE sense (obtained in
the first part) of 2D SNSEs driven by Lévy processes of jump type.

The large deviation principle for finite-dimensional stochastic differential equations
(SDEs) with a Poisson noise term has been studied by several authors [2, 16, 24]. There
is not much study of the LDP for infinite-dimensional SDEs driven by Lévy processes
of jump type. The first paper was [56] by Rockner and Zhang, where stochastic evolution
equations with additive noise was considered. The case of multiplicative noise was studied
in [15,16,58,64]. The study of the LDP for SPDEs with highly nonlinear terms has been
carried out as well [29, 62,63, 66, 68]. Concerning 2D SNSEs, it is important to mention
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that Xu and Zhang [63] studied the LDP for these equations driven by additive Lévy noise,
while the recent papers by the third author and collaborators deal with such SNSEs driven
by multiplicative Lévy noise [29, 62, 66]. In all these results, the authors consider strong
solutions in the probabilistic sense.

To prove our results, we use the weak convergence approach introduced by Budhiraja
et al. [15, 17] for Poisson random measures, which has proved to be very effective in the
study of the LDP for finite/infinite-dimensional SDEs driven by Lévy processes [2, 15, 16,
29,62,64,66,68]. In contrast to the existing results, our main object are strong solutions in
the PDE sense, and hence we need to find new a priori estimates to establish the tightness
of solutions of the perturbed equations; see Lemmata 5.1, 7.2—7.6. We believe that this is
nontrivial.

Finally, let us mention the third aim of our article: the well-posedness of controlled
SPDEs (7.1). Such a result is a basic step in applying the weak convergence approach.
During our study, it has become apparent that although such a result has been used in the
previous literature, e.g., [15, 16,29, 62,64, 66], it has never been rigorously formulated or
proven. We fill this gap by formulating Lemma 7.1 and providing a rigorous proof. The
proof heavily depends on a Girsanov-type theorem for Poisson random measures (Theo-
rem 6.1). Although this is apparently a “standard result” (see for instance [44, Theorem
II1.3.24] for semimartingales and [7, Theorem 3.10.21] for Poisson point processes), it
seems hard to find an accessible reference in the literature which would work under our
conditions. Therefore in Section 6 we include a complete proof of the version of the
Girsanov-type theorem we need. The Girsanov theorem for the Wiener process states that
the shifted and the original Wiener measures are equivalent if and only if the shift function
belongs to the corresponding Cameron—Martin space. However, in contrast to the Wiener
space case, the Girsanov theorem for Poisson random measures is related to invertible and
predictable nonlinear transformations ([44, Theorem II1.3.24] and [7, Theorem 3.10.21]).
These differences lead to many difficulties in proving the variational representation for
Poisson functionals, and therefore in applying the weak convergence method for Pois-
son random measures and the Freidlin—Wentzell-type LDP for SPDEs driven by Lévy
processes of jump type; see, for example, [15-17,31, 67]. This is also one of the main
difficulties this paper had to deal with. Let us mention that another application of the Gir-
sanov theorem is its use, in combination with the Yamada—Watanabe theorem, in proving
the well-posedness of SPDEs. For instance, see [37] for the case of SPDEs driven by a
Wiener process. However, for applications of the Girsanov theorem in the framework of
SPDEs defined in terms of Poisson random measures, the literature contains only few
results; see for instance, [40], where however no proofs are provided.

The organization of this paper is as follows. Section 2 is to introduce 2D SNSEs. In
Sections 3 and 4, we apply a cut-off and the Banach fixed point theorem to establish the
existence and uniqueness of strong (in the probabilistic sense and PDE sense, respec-
tively) solutions for 2D SNSEs with Lévy noise, under the Lipschitz condition on balls
and linear growth assumptions. We do this for initial data from the space H (Theorems
3.1 and 3.2) and for initial data from the space V (Theorems 4.1 and 4.2). Section 5
is devoted to the formulation of the LDP (Theorem 5.1). This section also contains the



2D stochastic Navier—Stokes equations with jumps 5

proof of Theorem 5.1 provided some auxiliary results hold true. Moreover, we prove the
first one of the auxiliary results, the so called first continuity lemma (Proposition 5.3). The
remaining auxiliary results are proven in the following sections. Section 6 contains a for-
mulation and proof of a Girsanov-type theorem for Poisson random measures (Theorem
6.1). The last section 7 is devoted to the proof of the second continuity lemma (Proposition
7.1). The paper also contains two appendices. Appendix A contains necessary definitions
related to Poisson random measures. Appendix B is devoted to the last auxiliary result,
i.e., Lemma 5.1.

2. The stochastic Navier-Stokes equations (SNSEs)

We assume that D is a bounded open domain in R?, with smooth boundary dD. Let us
define the following fundamental function space:

V = {u € W,*(D,R?) : divu = 0 weakly in D}, [u|? := / |Vu(x)|? dx.
D

Let H be the closure of V in L2(D) := L?(D, R?). The space H is a separable Hilbert
space endowed with the norm

= [ o .
D

Let IT : L?2(D) — H be the orthogonal projection, which is called the Leray—Helm-
holtz projection. Let us define the Stokes operator A in H by

Af =-IIAf, fe2(A), 2(A):=W>*(D,R>)NV.

It is well known (e.g., Cattabriga [18]) that A is positive self-adjoint with compact resol-
vent. Hence, there is an orthonormal basis {¢; : i € N} of H (we use N = {1,2,...}),
consisting of eigenvectors of A, with corresponding eigenvalues {A; : i € N}, i.e., Ae; =
Aiei, i € N, such that A; > 0 for all i and A; ' co. In this paper, the space Z(A) is
endowed with the norm

lullz) = [Aul,  u € Z(A).
It is also well known that
V=2AY%) and |u|?=|AY?ul}, ueV.
Let B : 2(B) — H, where Z(B) C H x V is the bilinear operator defined as
B(u,v) = II[(u - V)v].
Without danger of ambiguity, by B we also denote the corresponding quadratic function

B(u) := B(u, u).
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It is well known [59] that the Navier—Stokes equations can be formulated in the fol-
lowing abstract form:

du(t) + Au(t)dt + B(u(t))dt = f(t)dt, u(0) = uo, (2.1)

where ug e Hand f € Lﬁ)c( [0, 00), V') denote respectively the initial data and the external

force, with V' being the dual space of V.
Considering the Gelfand triple

VCH=x~H cV,

one can show that there exist unique extensions .7 and % of A and B respectively such
that
o N>V, B:VxV->V

are bounded linear and bilinear maps respectively. In what follows, in agreement with
the practice of almost all papers on NSEs, these extensions are denoted by the original
symbols A and B.

In the following lemma, we list some useful and well-known equalities and inequali-
ties for the bilinear map B. Some of these are only true because we assume that D C R2.
In this list, C denotes a generic constant.

Lemma 2.1. Ifu,v,z €V, then

v(B(u,v),z)y = — (B(u,2),v)y, (B, v),v)y =0,
v (B, v). 2)y| = 20l el o * vl 1z v
lv/(Bu) = B(v),u = v)y| = |y (B —v), v)y| < 5lu = vl§ + [Vl|F4p g2yl — vl
B, v)li < Clulululvivizwlviv,
10124 g2y < 20013
The last inequality [59] is often called the Ladyzhenskaya inequality.

In this paper, we consider SNSEs driven by multiplicative Lévy noise in the following
abstract form:

du(t) + Au(t)dt +Bu(t)) dt = f(t)dt —i—/G(u(t—),z) f(dz, dt), 02
Z .

Ug € H.
Here we make the following assumptions.

Assumption 2.1. We assume that Z is a locally compact Polish space, and v is a o-finite
measure on (Z, %(Z)), where Z(Z) denotes the Borel o-field on Z.

We assume that (Q,.%,F, P), where F = {%;};>¢ is a filtered probability space
satisfying the usual conditions, i.e., the family [F is right continuous, and every set A
belonging to the P-completion of the o-field %o, with P(A4) = 0 belongs to every %,
t>0.
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We also assume that 7 is a time-homogeneous Poisson random measure on [0, 00) X Z
with intensity measure Leb ® v on (2, %, F, P), where Leb is the Lebesgue measure on
[0, 00).

We define the compensated Poisson random measure 7 by

7([0,2] x O) = n([0,t] x O) —tv(0), t >0, (2.3)

whenever O € %(Z) is such that v(0) < co.

Let us point out that the measure Leb ® v is a o-finite measure on ([0, c0) X Z,
#([0,00)) ® B(Z2)).

In the following, if X is a metric space and / C R is a time interval, we denote by
D(I, X) the space of all cadlag paths from 7 to X.

3. Solutions to SNSEs with initial data in H

Our treatment of SNSEs (2.2) consists of two steps. In the first, we assume that the coef-
ficient G is globally Lipschitz. In the second, we assume that G is Lipschitz on balls and
has linear growth.

Below, we present our standing assumptions on the coefficient G in the first step.

Assumption 3.1. We assume that G : H x Z — H is a measurable map such that there
exist positive constants Cy and C, such that

(G-H1) (Global Lipschitz)
/Z|G(v1,z) — G(v2,2)|ﬁ v(dz) < Ci|lvy —va fl vy, U2 € H, (3.1)
(G-H2) (Linear growth)
/Z|G(v,z)|§ v(dz) < Co(1+ |v|3), veH. (3.2)

Remark 3.1. We note that the linear growth condition (3.2) follows from the global Lip-
schitz condition (3.1) and the following one, with C; = 2max {C1, /[, |G(0, z) 2 v(dz)):

/ |G(0, 2)|% v(dz) < oo. (3.3)
VA

First, we prove the following existence result in the natural setting.

Theorem 3.1. Assume that Assumption 3.1 holds. Then, for all ug € H and f €
L2 ([0,00), V"), there exists a unique F -progressively measurable process u such that

(1) u € D([0,00),H)y N L2 ([0, 0),V), P-a.s.,

loc
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(2) the following equality holds, for all t € [0, c0), P-a.s., in V'
t t t
u(t) = uy —/ Au(s)ds —/ B(u(s)) ds + / f(s)ds
0 0 0

¢
+/0 /ZG(u(s—),z) n(dz,ds). (3.4)

Moreover, the solution u satisfies the following estimate: for any T > 0,
T T
E( sup [u)fF) + E( | o ds) < CT(l o+ [ 1O ds)-
t€l0,T] 0 0

Remark 3.2. Assumption 3.1 is a fairly standard assumption when one considers the
existence and uniqueness of solutions to SPDEs driven by multiplicative Gaussian noise.
However, for the case of Lévy noise, the literature results always require additional
assumptions on G besides Assumption 3.1. For example, in [28], the authors assume
that there exists a sequence (Z,,)meNn of measurable subsets of Z with Z,, /' Z and
V(Zm) < oo such that, for any k > 0,

sup / |G(v,z)|121 v(dz) -0 asm — oo, (3.5)
Zpy

lvln<k

while in [10] and [11], it is assumed that there exusts K > 0 such that
/ |G(v,2)|f;v(dz) < K(1 + |vlf), veH. (3.6)
Z

Similarly, Motyl [53] assumed that for each p € {1,2,2 + y,4,4 + 2y}, where y is some
positive constant, there exists a constant ¢, > 0 such that

/ |G(v, 2)|fv(dz) < cp(1+ |v]f), veH.
z

Hence, our Theorem 3.1 improves the existing results in the literature.

In the second step, we relax the global Lipschitz condition in Assumption 3.1 and
consider the following assumptions.

Assumption 3.2. We assume that G : H x Z — H is a measurable map such that

(G-Hl-local) (Lipschitz on balls) For every # > 0, there exists a constant Cj > 0 such
that, for all vy, v, € H with |vy|g V |va|g < A,

/ |G(v1,2) — G(va,2) |5 v(dz) < Chlvy — V2l (3.7)
V4

and G satisfies the assumption (G-H2)(Linear growth), i.e., (3.2) holds.

Let us now formulate our main theorem in this relaxed framework.
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Theorem 3.2. Suppose that Assumption 3.2 holds. Then, for every ug € H and f €
leoc([O, 00), V'), there exists a unique T -progressively measurable process u such that

(1) u € D([0, 00), H) N L2, ([0, 00), V), P-a.s.,

loc

(2) the following equality holds, for all t € [0, o), P-a.s., in V':
! t !
u(t) = ug —/ Au(s)ds —/ B(u(s)) ds +[ f(s)ds
0 0 0

+/o /ZG(u(s—),z) n(dz,ds).

Proof. The proof of Theorem 3.2 is based on the proof of Theorem 3.1 and the standard
truncation procedure, and it is essentially the same as [1, proof of Theorem 3.1], keeping
in mind that for any u, v € V, +(B(u, v), v)y, = 0. The proof proceeds as follows.

For any k € N, we define a map Gy by

ANk
Gk:HxZB(y,z)HG(%y,z) € H,
YIH

where we put % = 1 when y = 0. Since G satisfies Assumption 3.2, we observe that

the map Gy, satisfies Assumption 3.1. Hence, for every k > |ug|y, there exists by Theorem

3.1 a unique F-progressively measurable process X* such that
e X* e D([0,00),H)yN L2 ([0, 0), V), P-as.,

loc

e the following equality holds, for all z € [0, 00), P-a.s., in V',
t t t
Xk@) =u0—/ AX*(s) ds—/ B(X*(s)) ds+/ f(s)ds
0 0 0

t
+ [ [ 6eext =)0z as)
0 Jz
Define a random time oy, by
ok = inf{r > 0: | X*(1)|y > k). (3.8)

where, for the whole paper, we adopt the convention that inf @ = oco. By [32, Theorem
2.1.6] it follows that oy is a stopping time. It is not difficult to see that o is increasing
in k, and

XK@y = x*k@), €10, 0%).

This enables us to define a stopping time o := limg_, o 0% and a process u = {u(t), t €
[0,0)} as follows:
u®) := X*@), te€[0,0%).

It is easy to see that u(z), t € [0, 0), is a local solution of problem (2.2). To complete the
proof, we need only show that P(o = o0) = 1.
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By the Itd formula (see, e.g., [38] and [10]), we have
tAO)
e nof+2 [ i ds
tAOK INO
—tolfi+2 [ vt @@y ds+2 [ [ (6. uG-n iz ds)
z

INO)
+/ /|G(u(s—),z)|fln(dz,ds), P-a.s., fort > 0.
0 z

Noting that the process fomak JAGu(s—),z),u(s—)u7(dz,ds),t > 0, is a martingale,
we infer that

]E/O /Z(G(u(s—),z),u(s—))H n(dz,ds) = 0.

Thus, it follows by the linear growth condition (3.2), which is a part of Assumption 3.2,
that there exists C > 0 such that for all k,

tAO|
Efu(c A o) + E/ lu()|13 ds
0

t t
< luol2 + / 1f©)12ds + CE/ (1 + u(s A op)Z) ds. 1> 0.
0 0
Therefore, by applying Gronwall’s lemma, we deduce that
t
Eu(t A ool < (|uo|§ + [l as + Cz)eca (>0,
0

which further gives

E(u( Aop)lilo<) _ (uolf + fo I/ G)IR ds + Cr)e’

Plox =1) < 2 2 . >0
Letting k — oo, we obtain
P(o <t)=0, ¢=>0.
Since ¢t > 0 is arbitrary, we must have P(0 = o0) = 1.
The proof of Theorem 3.2 is complete. ]

To prove Theorem 3.1, we first introduce the following notation (used throughout
the paper) and state three preliminary and auxiliary results: Lemmata 3.1 and 3.2, and
Corollary 3.1.

The following notation is useful. For 7 > 0,

Yr(H) = D([0. T].H) N L*([0, T]. V). (3.9)
It is standard that the space Y7 (H) endowed with the norm || - ||y, ) defined by

T 1/2
1 lrran = sup |y<s)|H+(/ ||y(s)||%ds) (3.10)
s€[0,T] 0

is a Banach space.
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Let A7 (H) be the space of all H-valued cadlag [F-progressively measurable processes
vy :[0,T] x  — V such that P-a.s. its trajectories belong to the space Y7 (H) and

T

[ r=1E( sup |y(s)|ﬁ+/ lly(s)II%ds) < 0. (3.11)
s€[0,T] 0

For every m € N, let us fix a function 6,, : [0, c0) — [0, 1] satisfying

bm € C2[0.00),  sup |6,(1)] < C1 < oo,
r€[0,00) (3.12)

IL[O,m] = em = ]1[0,m+1],

for some constant C; > 0 which is independent of m. We also set

¢ = 0.

Let us also define, for every § > 0, a function ¢; : [0, c0) — [0, 1] by

¢s5(r) = p(r), 1 €][0,00).

It can be easily seen that every function ¢ satisfies the following conditions:

¢s € C2[0,00),  sup |¢5(r)] < Ci,
t€[0,00) (3.13)

Ljo,1/61 = ¢s5 < Ljo,2/5]-
We are now ready to state the first of the three promised auxiliary results.
Lemma 3.1. Assume thatT >0, m € N, M € Y7(H), ug € Hand f € L%([0, T], V).
Then there exists a function Y € C([0, T],H) N L%([0, T], V) satisfying
dY(@) +AY(@)dt + 0,(|Y + M| x,an)B(Y () + M(¢t))dt = f(¢) dt,

.14

Proof. The proof is divided into three steps.

Step 1. Letus fix T > 0, m € N, M € Yr(H), up € H, and f € L?([0,T], V). We
will use the Picard iteration method to prove that there exists a number §g > 0 depending
only on m, and there exists X € C([0, T],H) N L2([0, T], V) which solves the following
auxiliary deterministic evolution equation with § = §p:

X' ()+AX(@)
+ Om (1 X + M v, 1) s (1X + M| 12(10,1,v))BX () +M(1)) = f(t), (3.15)
X(O) = Uy.

Let us fix yo € C([0, T],H) N L2([0, T], V) with y¢(0) = ug (for instance yo(¢) =
e "ug, t € [0, T]). Suppose that for n € N a function y, € C([0, T],H) N L3([0, T], V)
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such that y, (0) = ug is given. Let us observe that it is not difficult to prove that there
exists a unique y,+1 € C([0,T],H) N L2([0, T], V) solving the linear evolution equation

Y1 @) + Ayng1(t) + Ol yn + Mllx,q)¢s([yn + Ml 120.41.v))
B (1) + M), yn+1(t) + M(t)) = f(t), t€][0,T], (3.16)
Yn+1(0) = uo.

Our aim is to show that {y, : n € N} is a Cauchy sequence in C([0, T], H) N
L2([0,T], V).

We now estimate the norm of the difference y,+1 — y, for n > 1. We cannot do this
forn = 0.

Given four functions x; € C([0, T],H) N L?([0,T], V), i = 1,...,4, we set, for
t €0,T],

II(x1, X2, X3, X4)(?)
= Om([lx1 + Mlx, )¢5 (12 + M| L20,07,v))B(x3(2) + M (1), x4(2) + M (1))

and
E(x1, x2)(#) = Om(llx1 + M|y, a)¢s (1x2 + M 22((0,61,v))-

By [59, Lemma III.1.2] we have

[Yna1(0) — yn(OIf + 2/(: [ynt1(s) = yu (I3 ds

=2 /Ot AL ¥ s Yne 1)) =TLn—1, Yne1s Yu1, Yn) (), a1 (8) = yu (), ds
_ /0 Is)ds. 1e(0.T] (3.17)

where, with the processes /7 and I, defined, for s € [0, T'], by

11(5) = E(Vns Yn)(8) (B (8) = Yu=1(5). yn(5) + M(5)), ynt1(5) — yn(5))y.
I(s) = (E(ns yn)(5) = E(Vn-1. yn—1)(5))
: V/<B(J’n—1(s) + M(S)v J’n(s) + M(S))’ yn+1(5) - yn(s))vs

we have

I(s) = V/(H(an Vs Yns Yn+1)(8) — Nns Y, Yns Yn)(8), Y1 (s) — yn(s))v
+ AT ns Yrs Y ) (8) = TV Yo Y12 Yn) (), Yna1(5) — yu(9))y
+ AOGn: Yns Yn—1.Yn) () = T(Vn—1. Yn—1: Yn—1. Yn)(8), Ynt1(8) — yn(5))y,
=04 I1(s) + Ix(s), s€][0,T] (3.18)
To estimate /(s), for a fixed s € [0, T'], we will consider three cases, with Case 1 being

divided into three subcases. Each case will contain a calculation of a certain “partial”
integral fé |[1(s)|ds.
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Case 1. Assume that
lyn + Mll2qo,s,vy) <3/8 and  [[yn—1+ M| 120,51,v) < 3/6-
Subcase 1.1. Assume further that
lyn + Mllvyqy <m+2 and ||yp—1 + M|y, >m+2.
The definition of 6, implies that in this subcase

I(s) = VI<H(J’n, Yns Vns Yn1)(8), Ynt1(8) — Yn (S))V

and

t
/0 gy +M1 200570V I7n—1+M 1 200,574, <3/8) Lllyn+M Iy gy <m+2}

Ly s+ My ap>m+23 dS

t
= /0 gy 401200570V In—1+M 1 2005749 <3/8) Ll +Mlry gy <m+1)
Ly +Mlrgan>m+2y ds. - (3.19)

For any s € [0, ¢] such that

Llyn+M11 20057300 VIPn—1 M1 20 510 <378 LU+ Mg gy <m+1}
Ly +Mlyap=m+2y = 1

we have
lyn — Yn-1 ||TS(H) =|(yn+M)—(yn—1+ M)”TS(H) > 1, (3.20)

and for any ¢ > 0,

11(5)] < [ (B (5) + M(5), yut1(s) + M(5)),—yn(s) — M(5)), |
= [ (/B (s) + M(5), ynt1(s) — yu(8)). —yn(s) — M(s)), |
< 20yn(s) + M) 21yn(s) + M) 1ynt1(5) = ya ()

N1 ) = ya @IV 1yn () + MGy - 170 = Yaer llrs )

3
< 23 yni1(8) = ya @I 190 () + MO 190 = ya1 1T

(m +2)*
+ TH)’n(S) + M) 3 ynr1() — yn(9) |5
1
< 562 1n1(6) = yn IR + ¥ 1w ) + MO I3 1n = ynt I, )
(m +2)*
+ 1) + MOR 1) = ya @) (3.21)

In the second “<” of (3.21), we have used (3.20).
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By inequalities (3.19) and (3.21), we get

t
/O L yn+ M1 2005700 VIEn—1 4 M1 200,57, <38 Ly + M vy <m+2}

Ly + My ay>m+23 dS

1 t
< g6 /0 1ynsr(s) = yu(s) ]2 ds

t
+ & lyn = Y1 l3, @y / 1 (8) + M) IR Ly 4M1 2. 5y vy <3/8 D5
| .

m + 2)?
n ( )
2e*
t
<[ 1m0 + MOB L1, 2, 7015 d w1 1(5) = a9l
0 o s€l0,t

1 d 9
=55 [ D = 5a 1 ds %0 = a5

(m+2? 9 2
+——F"—"= Sup |[Yas1(s) — ya(s)|
2e4 8 seo.) e

1 (m+2?2 9 9
= (584/3 T e =l + e e G22)

Subcase 1.2. Assume further that
lyn + Mllx,ay >m+2 and ||yt + M|y @) <m +2.

Similar to Subcase 1.1, we now have
I(s) = = ATT(Yn=1. Yn—1, Yn—1. Yn) (), Ynt1(5) — yu(9))y -

t
/0 gy 41, 200570V In—1+ M1 2005149 <3/8) Lllvn+Mlry g >m+2)

Ly + Ml ay<m+23 dS

t
/0 Ly +M1 200570V I7n=1+ M1 200,574, <378 Lllyn+Mllry g >m+2}
Wy +Mlvgan=m+1y ds. - (3.23)

and for any s € [0, ¢] such that

Llyn+M1 200513y VIn—1 M1 20 7.0 <3/8}

Ly + My an>m+23 Llyp— 1 + Ml vy gy <m+1y = 1.

we have
lyn = yu—1llrsany = ln + M) = (yn—1 + M) llx,an = 1, (3.24)

and, for any ¢ > 0,



2D stochastic Navier—Stokes equations with jumps 15

11(5)] < | (Brn—1(5) + M(5), yu(s) + M(5)), Yus1(5) — yu(5))y |
< 2yne1(8) + M) [yn-1(5) + M) V2 [3ns1(5) = ya ()i
||yn+1<s) In (V2 11y (s) + M(s)llv
|yn+1(s) Yn( ) Elyn=1(s) + M($)[Flyn-1(s) + M(s)|3

2
3
+ 5821 01(6) = yu IR 172 () + MO

1
= 52+ 221 (9) = yn @ Rlya-10) + MO)IT

1
+3 E e ynt1 () = yn @R+ lyn(s) + MO

<5 4(m + 2% [Ynt1(8) = ya ) Fllya-1(s) + M3
1
+ 58211 ) = @I + 26 1y (5) + M)
+2e4/3||yn<s) O
2 2 1 4/3 2
< 52 0n+ 2216 = Ol ®) + MOI + 3616 o) I3

+ 263 yu1 () + MOIF - 1yn — a1l qp + 262 19n(8) = yu1 93
(3.25)

In the last inequality “<” of (3.25), we have used inequality (3.24).
By inequalities (3.23) and (3.25), we get, similar to inequality (3.22),

/0 gy M1l 2,00 57,00 VIn—1+M 1 21057 4, <3/5}

"Ly + Ml oy >m42y Ly +M g gy <m-+23 dS

4/3 2
e 9(m + 2)
= (—2 + W)”Ynﬂ _yn||2Tz(H) + 2647 (1 + )”y” y"—1||2Tz(H)'

(3.26)

Subcase 1.3. Assume further that ||y, + M ||yx,q < m + 2 and || ya—1 + M ||yv,qn <
m + 2. Under these assumptions, we infer that for any ¢ > 0,

11(5)] < |y B (S) = Yu1(5), ¥ (s) + M), yus1(5) = ya(9))y |
< 201y (5) = Yae1 () IV 2190 (8) = Yuer O [ 9ns1(5) = yu ()1

AYn+165) = ya () 2 1vn(s) + M(s)|lv
< elyn(s) = yn—1)IvIyas1(s) = ya($)|lv

2
+ () = yn-1@lulynt1(s) = yu($)lullyn(s) + M)y

< &l yn(s) = a1 )T + ellyn+1() — yu )17
+ ellyn(s) + M) 21ya(s) = Y1 ($)[E

4
+ 141 6) = vl () + M) (327)

1/2
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For I5(s) = I5,1(s) + I2,1(s), where
11(8) = (EWn. yn)(8) — E(Vn—1. Yn)(5))
ABn=1(5) + M(5), yu(s) + M(5)), yur1(5) — yu(s))y
and
D5(8) = (E(n=1, ¥n)(8) = E(Vn—1, Yn—1)(5))
- ABn—1(5) + M(5), yu(s) + M(5)), yur1(5) — yu(8))y-
we have, for any ¢ > 0,
12,1(5)] < Cillyn = Ynetllrs @y | Y1) + M) 21 yn—1(5) + M(s) |3/
NVt (8) = YO [9nt1(5) = yu (V211 (s) + M(s)llv

<§84/3
=3

1y = ynot I3 5 190 (8) + MY 190 41(5) = yu (I

C4
+ ﬁlyn—l(S) + M) [Ellyn—1(5) + M) 1yn+1(5) = ya () [

1
< 28205 — yut I 1n ) + MOIR + 1541 6) = yn )R]

4 S+ D20 (9) 4 MO L3021 6) = a0 (3.28)
and
112(5)] < C181lyn — Yn—1ll L2 qo.s1v) | Vi1 (5) + M) 1 yn=1(5) + M(s) |y
1Yn41(8) = Ya O 190 41(5) = ya &I ya () + M(s) v

38
< 1 = 1 175 0.0 170 ) + MO a1 (5) = yu ) I

8
g 1n-1() + MO n-1(5) + M©) I ms165) = ya()I

< %53/284/3 184/3

172 = Yn-113 20,5730y 172 (8) + MR + 76 1yn+1(5) = ya @7

Cls
+ 5.7 1+ 27 1yn=1(9) + MO 1yn+1() = ya ()i, (3.29)

Similar to inequality (3.22), by inequalities (3)—(3.29), we infer that

/ gy +M1 200570V I7n=1+ M1 200,574, <378 Lllyn+ My g <m+2}

Lyt + My ap <m+23 dS

36 1,4, Cf , 9 9 (m+2)? .
< (g+ =y + 55 + —4(m +2) 52 + 1 s | yn+1 _Yn“T,(H)

9e 943 9g3 )

The proof of Case 1 is complete. ]
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Case 2. Assume that ||y, + M| 12¢0.5,v) < 3/8 and [[yn—1 + M| 12(0.5,v) > 3/6. In
this case, by the definitions of functions 8, and ¢s, we have

1(5) = yATUns Yns Vs Y1) (8), Y41 (5) = Y ()

and
t
/0 gy M1, 200570 <3/8 ) Ly i M1 20 1.4y >3/83(5) S

t
= /0 gy +MI 200,570 <2/8 ) Lllyn1 411 2,005 0,3/} (5)
Ly +Miryoy=m+13ds. (3.31)

For any s € [0, ¢] such that

Llyn+ M1, 200,410, =2/8 O Wllyn1 4+ M1, 240 410> 38 O Llyn+ Mir gy <m+1y = 1,

we have
8yn = yn—1llrsa = 8Nl (yn + M) — (yn—1 + M) L2(0,51,v) = 1 (3.32)

and for any p € (0,1/2) and ¢ > 0,
(B (8) + M(s). yn1(s) + M(s)). —yn(s) — M(s)), |
AB(s) + M(), yni1(5) — yn(5)). yu(s) + M(s)), |
< 20yn(s) + MO 21y () + M)V 1ynr1(s) = ya () >

NYn+16) = IV 190 () + MOl - 8llyn — yu—ll1y

3 _
< S 284Dy (6) = yu IV Iy ) + MO 1 = ya-1 13

[1(s)] <

+ 3 1)+ MO () + MO Rl 6) = 3a )l
< %84/3||yn+1(s) — @[3 + 382D 1y, () + M) 3 1yn — ya1 3y )
+ 280 17 a() + MRy 16) — o) (3.33)
In the second “<” of (3.33), we have used (3.32).

Similar to (3.22), by (3.31) and (3.33),

t
/0 gy M1, 200570 <3/8 O Lyt M1 2o 1.4y >3/83(5) S

1 9 _ g4/3
< (5672 5o 00+ 103572 s = 3l + 9535 19 = ot o

(3.34)

The proof of Case 2 is complete. ]
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Case 3. Assume that ||y, + M| 12¢0.5,v) > 3/8 and [|[yn—1 + M| 120.5,v) < 3/6. In
this case, similar to Case 2, by the definitions of functions 6,, and ¢s, we have

1(5) = = (TT(n—1: Y1 Yn-1. Yn)(8). Yn41(5) — yn(9))y-

and

t
/0 gy M1, 200570 >3/8 O Lllynm1 M1l 200 1.4, <3/83 (5) A5

t
= /0 Oy +MI 200,570 >3/8 O Lllyn1 M1 20 1.4, <2/} (5)
Ly +Mlrap=mr1y ds. (3.35)

For any s € [0, #] such that

Llyn+ M1, 20 530> 38 O Wlyn_1 4+ M1 2041, =2/8 O Wllyn1 + Ml rgapzm+1y = 1,
we have
8 1yn = yn—1lF, iy = 81 n + M) = n—1 + M) 20,91y = 1 (3.36)

and, for any p € (0,1/2) and ¢ > 0,

11(5)] < [ (Bn—1(5) + M(5), yu(s) + M(5)), Yns1(5) = ya(9))y |
< 20yna1 () + M) Y Y1 () + M) 1Y nt1 ()= yn ()|
Y1) =y I 1y () + M) lv

3.
< 38711 (9) = yu @I 1)+ M) IV
1
5871701 (5)+ M) 1 9n-1(5) + MG yn+1(5) =y ()17
1
< S8+ D301 () + M) R yn1(5)=yn )
1 1
+583||yn+1(5)—J’n(S)||%/+WHW(S)‘FM(S)”%
1
< S8+ 12 yuea )+ MO [yn1(5)=yu ()
438 D1 63O 42 I =31 O+ a1 )+ MO R
) Yn+1 Yn v £3/282p Yn Yn-1 v Yn-1 v

1 1
< S8 0n+ D21 )+ M) 3 13n 1) =yn O i+ 56 1 9n 1) =y )T

1 2 1 2 2 2
2 30 =Yn IR + 2575 31 6) 4 MO I 13n =1 1 8
(3.37)

In the last “<” in (3.37), we have used (3.36).
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Similarly to (3.22), by (3.35) and (3.37),

t
/0 L yn+M1 2005700 >33 Wyn—1+M 1 2 4.4y <376} 95

1 . 2
< (3¢ + 200+ 025772 ) lymss = 3l + agzplon = il 339
The proof of Case 3 is complete. ]

Combining (3.22), (3.26), (3.30), (3.34), and (3.38), there exist constants C > 0 and
Im > 0, for any ¢ > 0 and p € (0, 1/2), such that

t
/ [1(s)|ds
0

1 1 1
<Im (s e A e e A e o A 8—454p—2)||yn+1 — ol

£382 482 &4§
e A3 A3 \ 4/3 1
= s e /3 e - _ 2
+C(e+ st tap eyt 83/252p)||y,, Yot B e (3:39)

Choose p = 1/4. Letting ¢ small enough first, and then § large enough, we see that there
exist g, 8o > 0 such that

L oas, | 1 apa | 8572
In( €0+ =5 + 60 + o5 + 5 T3+ 877+ L
m(O g8 0 €a62 " edsy 00 £

4/3  4/3 4/3

€0 | & 0 4/3 | o 1
+C(so+—+—+—+8 +—+—)§—. (3.40)
52 82 5(1)/2 0 8317 83/2531) 16

Set § = §p in (3.15). By (3.17), (3.39), and (3.40), we arrive at

t
w%wﬁun—m@%+zﬁnmﬂwrwam&w

s€l0,t
1
= §[||J’n+1 - Yn”gr,(H) + llyn — yn—1||gr,(H)]~ (3.41)

Since
1 2 2 ! 2
SIyner =yl gy = U |yns1(s) = yn()li + / [yn+1(s) = yn($)|y ds,
s€[0,¢] 0

by (3.41) we infer that

Iyn+1 = YnlFrqy < 3190 — ya-1l3,q» (3.42)

which implies that {y, : n € N} is a Cauchy sequence in C([0, T],H) N L2([0, T], V);
we denote its limit by ¥ 1. Using classical arguments, it is not difficult to prove that Y ! is
a solution of problem (3.15) with § = §y. |

Step 2. Let §p be as in Step 1, and set
1= il’lf{t S [0, T] . ||Y1 + M||L2([0,t],V) > 1/80}
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Since by (3.13), ¢s(r) = 1 if r € [0, 1/8], it is easy to show that Y1 is a solution of
problem (3.14) on [0, #1]. If #1 = T then the proof of Lemma 3.1 is finished. Otherwise,
let us consider the following deterministic time-inhomogeneous evolution equation:

X'(0) + AX(1) = f(1) = Om(IX + Ml an)
P50 (I1X + MllL2qy v) - BXX@) + M), t>n, (343)
Xt)=Y'(t), telo,n].
Using a similar argument to that in Step 1, we can find a solution Y 2 to problem (3.43).
As at the beginning of this step, we set
fpi=inf{t € [1, T] : |Y? + Ml 2,.0v) = 1/80},

and see that Y2 is a solution of problem (3.14) on [0, #5]. If £, = T then the proof of
Lemma 3.1 is finished. Otherwise, by induction, we construct two sequences {z, },eN and
{Y"},en satisfying

e U<t <t <:--,

Y" e C([0,T],H) N L2([0,T], V) and Y"*1(z) = Y™ (t) ont € [0, ,],

Y™ is a solution of problem (3.14) for ¢ € [0, t,,],

e = inf{t € [fn, T] : ||Yn+1 + M”LZ([tn,t],V) > 1/80}

The proof of Lemma 3.1 is concluded once we prove that t, = T for some n € N. This
is done in the next step. ]

Step 3. Assume that X € C([0, 7], H) N L2([0, 7], V), for some 7 > 0, is a solution of the
deterministic problem (3.14). By the Lions—Magenes lemma ([46]; [59, Lemma III.1.2]),
we have this: For every ¢ € [0, 7],

t
X+ 2 /0 1X(s)I2 ds
t
= |uo|ﬁ—2/0 Qm(”X+M||TX(H))V/(B(X(S)+M(S)),X(S))V ds
—I—Z/ V/(f(s),X(S))VdS
0
t t
< luol2 + / 1X()[12 ds+8 / 621X + M v, ) IBCX(5) + M(s) | ds
0 0
+8 /0 1)1 ds
t
< uol2+ / 1X(s)12 ds
0
t t
8 /0 62 (12X + M llv, )| X(5) + M) B X () + M(s) |2 ds +8 /0 1£©)I2 ds

t T
< luol2+ /0 1X($)I2 ds +8(m + D)* +8 /0 1) ]2 ds.
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Hence,

sup IX(I)IﬁJr/ IX()IIY ds < [uolf + 8(m + 1)4+8/0 Lf IS ds.
0

t€l0,7]

This implies that t, = T for some n € N. Then Y” is the solution sought in Lemma 3.1.
(]

The proof of Lemma 3.1 is complete. ]

The following lemma implies that the solution of problem (3.14) is unique (see Corol-
lary 3.1); this lemma will be used later. Recall that the space A7 (H) (and its norm) was
defined around equality (3.11).

Lemma 3.2. Assume that m € N. Assume that for allug € Hand f € L?([0,T], V') and
y € A7 (H), there exists an element u = ®¥ € A (H) satisfying

du(t) + Au(t) dt + O ([ullr, an)Bu()) dt = f(1)dt + / G(y(t—-),z)7(dz,dr),
zZ
u(0) = up. (3.44)
Then there exists a constant Cy, > 0 such that
1O = ®2[2 1 = CuTllvs = 1203 g 102 € Ar(H). (3.45)

Remark. The above result is not true without the smoothing function 6,,.

Proof of Lemma 3.2. For simplicity, define vy = &1 and up, = ®2. Set U = u; — us.
By the It6 formula, we have

U5 +2[0 1Us)|I? ds
= =2 | A (s e 0)B 1 (5)) = Ol B2 (s)). UG)), ds
oV 1 v
+2/0 /Z<G(Y1(s—),z)—G(yz(s—),z),U(s—))H 7(dz, ds)

t
+ [ [16016-.2)= 60622 iz, )
=:J1(t) + J2(t) + J5(t), t€][0,T]. (3.46)
Concerning J;, we have
1 t
hol <5 [ IR ds
0

2
ods. (347

+2 /0 1 (101 vy B 1 (5)) — Ol v, ) B2 (5))
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Set

K(5) = [[Om (11 v, 1)B 1 (8)) = O (122 |y 1) B2 () 5. s € 0.7,

We distinguish four cases to find appropriate bounds for K. By the property of 6,, and the
Minkowski inequality, we have the following estimates. Let us fix s € [0, T'].

(1) Assume that ||u1|v,an V u2llr,@y < m + 1. In this case, we have

K(s) < C[IBu1(s)) — Bua(s))[|3
+ B (1 1 1)) = Om (a2 1, ) | 1B a2 () 13 ]
< CIUG UG Iv[lur)allur($)llv + [uz(s)lulluz(s)[v]

+ Cluz () {12 IR NU 17

1

=< ZIIU(S)H% + CIUIF, [ &l I + 2 ) Flluz2 () 17]-

(2) Assume that ||uq|v,ar) < m + 1 and |uz||y,@ = m + 1. In this case,
2
K(s) = || Om (w1 [l en)B i () |y
2
= | (11 vy 00) = Om (2l vg @) | 1B 1 ()13

< Clur () [Fler D IFNU 17 -

(3) Assume that ||uy ||,y = m + 1 and ||uz |y, @) < m + 1. In this case, much as in
case (2), we get

K(s) = Cluz(9)[Fluz &R NU I3, goy-

(4) Assume that [[u1|v,an) A |u2llr,@n = m + 1. In this case, we have K(s) = 0.

Hence we infer that

1
K@) = IV + CIU 3y

[ler @ Fller )IF - Liomt Ul v, an) + 2 Elu2O1F - Liom+11 (w2 llvsan)]-
(3.48)

Set

t
o0 = sup (VO + [ [V ds. 1 ep.7]
s€[0,z] 0

Substituting (3.48) into (3.47), and then into (3.46), noticing that ||U||%S(H) <20(s), we
have

T
o) <C /0 O)[ 111 &)1 ) - Loy (1 [ty

+ [u2(9) [l 7 - Lomr 11 (12l vyan)] ds + S[UP | | 2(D)] + J3(T).  (3.49)
tel0,T
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Gronwall’s lemma implies that

o) = (sup 120+ J5(T))
t€[0,T]

T
.e€ Jo U1 ®IE w1 DIZ-L10.m+17Uu1 s @) +u2 DI1F w2 OIZ L0 m+11 (2 v @)l ds

< G sup_[12(0)] + J5(T)). (3.50)
t€l0,T]

By the Burkholder—Davis—Gundy inequality (see [45, Theorem 23.12]) and assumption
(G-H1) (see (3.1)), we get in a standard way the inequality

1
CnE( sup 1501) = 51U pan + CnT Iyt = v2lapy. GBSD
te[0,T] 2

Moreover, applying (G-H1) again, we have
E(J3(T) < CTlly1 = y2l 3, - (352)
Summing the inequalities (3.50)—(3.52), we deduce that
2 2
10N A, @y < CnTlIv1 = y2lla, gy
This proves (3.45), and thus the proof of Lemma 3.2 is complete. ]

Corollary 3.1. Under the assumptions of Lemma 3.1, the solution of problem (3.14) is
unique.

Proof. Suppose that Y; and Y, are two solutions of problem (3.14). By the Lions—
Magenes lemma, we infer that for every ¢ > 0,

nun—nm&+2Ann@»4um&w

t
=4£wmmn+Mmmmmm+Mm>
= Om(1Y2 4+ M ||y q1)B(Y2(s) + M(s)), Y1(s) — Ya(s)), ds.  (3.53)

Setu; =Y + M and u; = Y, + M. The above equality implies that
t

a0 =120 +2 [ ia(5) = 121 ds
0

= —2/0 A Om (1 [lrg 1) B (1 (5)) — Om (2 [l v, 1)) B (12(5)) . 11 (8) — ua(s)),, ds.
(3.54)

We observe that the above equality is a special case of (3.46) with G = 0. Therefore, the
proof of Lemma 3.2 implies that u; = u,. Hence we infer that Y1 = Y>. [

Finally, we are ready to finish the proof of the main result in this section. We use the
Banach fixed point theorem to prove this result.
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Proof of Theorem 3.1. The proof is divided into three steps.
Step 1: Uniqueness. For the uniqueness part of Theorem 3.1, we refer to [11] or [10].

Step 2: Local existence. Consider the auxiliary problem

duy (t)+Aun (1) dt 40, (|[un v, 1) Bua (1)) dt = f(t)dt+/ G(uu(t—),z)n(dz,dr),
Z
un(0) = up. (3.55)

We fix T > 0. For any y € A7 (H), Lemma 3.1 and Corollary 3.1 imply that there exists
a unique element ¥, = ® € Ar(H) satisfying

dun (1) +Aun (1) dt + 0, (|[unllv, @) Bun (1)) di = f(t)dt+/ZG(y(t—),Z) n(dz,dt),
un (0) = uo. (3.56)

Indeed, it is known that there exists a unique M € A7 (H) satisfying the equation
dM(t) + AM(t)dt = / G(y(t—),z)n(dz,dt), t=>0, M) =0,
z

and the inequality
T
B sop IMOR)+E( [ 1M1 dr) = cr[E( s o) +1]
tef0,T] 0 t€[0,T]

Hence, Lemma 3.1 and Corollary 3.1 imply that for any w € 2, there exists a unique
element X(w) € C([0, T],H) N L2([0, T]. V) solving

dX(t) + AX(@)dt + 6, (| X + M|y, m)B(X() + M(t))dr = f(1) dt,

X(O) = Uy.

One can show that u is a solution to (3.56) iff u = X 4+ M. For uniqueness, we refer
to Lemma 3.2. Moreover, Lemma 3.2 implies that there exists a constant C;,, > 0 such that

|7 — D723 oy < CaT Iy — y2ll3, a0 Y1092 € Ar(H). (3.57)

LetT, = ﬁ In view of (3.57) and by using the Banach fixed point theorem, we infer
that there exists a unique element u)} € A7, (H) that is a solution of (3.55) for 7 € [0, T},].
Repeating the above proof, and observing that 7, does not depend on the initial datum,
we can find a unique element u2 := {u2(t), ¢ € [0,2T,]} € Aar, (H) solving the problem

dun(t) + Aun(t) dt + O (|[unllr, a2)Bun (1)) di
- f(t)dt+[G(un(t—),z)'ﬁ(dz,dt), t € [Ty, 2T,
VA
un(t) = uy(t), telo,Tyl.

It is not difficult to see that uﬁ is a solution of problem (3.55) on [0, 27},]. By induction,
we can construct a unique element u, € A7 (H) which is a solution of problem (3.55) for
t €[0,T], where T > 0 is arbitrary.
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Define a stopping time
T, =inf{t > 0 : |lunllr, @ > n}. (3.58)

By definition, 8, (||t ||y, @) = 1 forany ¢ € [0, 7,,), hence {u,(¢), ¢t € [0, 7,)} is a local
solution of problem (2.2). Thus, by the uniqueness of solutions to problem (2.2), we infer
that

Un+1(t) = uy(t), t €0,y Athy1), P-as.

Hence, the sequence (t;);=, is nondecreasing. We set Ty := lim, o0 Tn, and we
observe that 7« is also a stopping time.
Now we can define a local solution {u(z), t € [0, tmax)} of problem (2.2) by

ul) =u,(t), tel0,t,).
Using an argument similar to the proof of [5, Theorem 3.5], we can prove that

;i'm llullr, ) =00 on{w € Q: tnax < 0o}, P-as. (3.59)

max

Step 3: Global existence. We will prove that
P (Tmax = 00) = 1. (3.60)

It is sufficient to prove that for every T > 0, P(tmax > T) = 1. For the rest of this proof
we fix T > 0.

In this step, we do not use the Lipschitz assumption (3.1) but only the linear growth
assumption (3.2).

By the It6 formula, we have

tATy
|u<tmn)|;+z/0 lus)[13 ds

— luoff +2 [
0
tATh
[ [160) B nw@z.ds). 1 e .11
0 Z

The Burkholder—Davis—Gundy inequality yields

tATp

AL u(s))y ds +2 f ’ / (G u(s—). 2), u(s—) ) 7(dz. ds)
0 Z

T Atn
IE( sup (e A )2 + [0 ||u<s>||%ds)

t€l0,T]

T tATh
< uol3 + / T ds+2E( sup / f (G u(s—). 2) u(s—))u 7(dz. ds)
0 tef0,T11J0 4

T Aty
_ 2
+E(/O /Z|G<u(s >,z>|Hn<dz,ds>)

T
1
< holict [ 17O ds+35( s e azf)
tel0,T

)

T
+C/ E( sup |u(zm,,)|§) dt+CT. 3.61)
0 1€[0,1]
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Applying Gronwall’s lemma, we infer that
T Aty T
JE( sup fute Al + | ||u(s>||%ds) < CT(l + ol + [ 7GR, ds).
t€[0,T] 0 0
Letting n — 00, so that 7, " Tpmax, We deduce that

T Atimax T
JE( swp ol + [ ||u(s>||%ds)scr(1+|uo|%l+ / ||f(s)||3/dS).
t€[0,T Atmax) 0 0
(3.62)

This leads to

T ATimax
sup |u(t)|l%I +/ ||u(s)||%, ds < oo, P-as.
0

t€[0,T Atmax)

The above implies that the function [0, T A Tpax) ¢ 3 ||u ”%r, () is IP-a.s. bounded, which
in turn in view of (3.59) implies that t,,,x > T, P-a.s., as required. The proof of Theorem

3.1 is thus complete. ]

4. Solutions to SNSEs with initial data in V
Now we consider SNSEs with more regular data. For this purpose, we formulate the
following assumptions.

Assumption 4.1. The function G : V x Z — V is measurable such that there exist con-
stants Cq, C2 > 0 such that

(G-V1) (Lipschitz in V)
/z |G(vy,2) — G(v2,2)||%,v(dz) < Cq|vy — v2||%,, V1,V3 €V, 4.1)
(G-V2) (Linear growth in V)
[160.20 @z < e+ 1ol vev. @2)
(G-VH2) (Linear growth in H)
/Z|G(v,z)|§I v(dz) < Co(1+ |vf3), veV. (4.3)

In this section, we will prove the following result.

Theorem 4.1. Assume that a function G satisfies Assumption 4.1. Then for allug € V and

f € L2 ([0,00),H), there exists a unique F -progressively measurable process u such that

(1) u € D([0,00),V) N L2 ([0, 00), Z(A)), P-a.s.,

loc
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(2) forallt € [0,00), P-a.s. in H,
t t t
u(t) = uy —/0 Au(s)ds —/(; B(u(s)) ds +/0 f(s)ds

t
+/(; /ZG(u(s—),z) n(dz,ds). 4.4)

Remark 4.1. The Lipschitz property of G with respect to the V-norm does not imply
the Lipschitz property of G with respect to the H-norm. Hence, the uniqueness part of
Theorem 4.1 is not a consequence of Theorem 3.1, and requires an independent proof.

Remark 4.2. In [5], the authors considered the existence and uniqueness of solutions
defined as in Theorem 4.1 for stochastic hydrodynamical systems with Lévy noise, includ-
ing 2D Navier—Stokes euations. They assumed that the function G is globally Lipschitz
in the sense that there exists K > 0 such that for p = 1, 2,

/ 1G(@1.2) = G(v2, )P v(d2) < Kllvy = valli”. v1.v2 €V,

z

/ |G(vy,z) — G(v2,2)|ﬁpv(dz) < K|v, — v2|£[p, v1, v, € H.
z

It is easy to see that our assumptions are weaker.

Let us also mention that in the Gaussian case, stochastic Navier—Stokes equations,
respectively Euler equations, for initial data in V have been studied in [36, 51], respec-
tively in [14].

Remark 4.3. In Section 3, we proved two existence results. The first one, Theorem 3.1,
holds under the global Lipschitz assumptions on the coefficient G. The second one, The-
orem 3.2, holds under the assumption that G is Lipschitz on balls in H and has linear
growth. The bulk of the proof was devoted to the proof of the former result, as the latter
follows from the former by a standard procedure.

In the same vein, in the present section, we first formulate Theorem 4.1 which holds
under the assumption that G is globally Lipschitz with respect to V. This result is supple-
mented by Theorem 4.2 below, in which we assume that G is Lipschitz on balls in V. The
latter result can be deduced from the former by a standard truncation procedure.

Assumption 4.2. A map G : V x Z — V is measurable and such that
(G-V1-local) (Lipschitz on balls) for every # > 0, there exists a constant Cz > 0 such

that, for all vy, v, € V with ||vy|lv V |Jvz|lv < A,

/ 1G (1. 2) — G(v2. )3 v(d2) < Chllvr — val2 “5)
Z

and the assumptions (G-V2) and (G-VH2) hold.

Theorem 4.2. Assume that Assumption 4.2 holds. Then for all ug € V and f €
leoc([O, 00), H), there exists a unique T -progressively measurable process u such that
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(1) u € D([0,00), V) N L2 ([0, 00), Z(A)), P-a.s.,

(2) forallt € [0, ), P-a.s., in H,
t t t
u(t) = ug —/(; Au(s)ds —/0 B(u(s))ds + /(; f(s)ds

+/0 /ZG(u(s—),Z) n(dz,ds). (4.6)

Proof. The proof is similar to that for Theorem 3.2.
For any k € N, we define an auxiliary function G by

ANk
G :VxZa(y,z)HG(%y,z) eV,
Yiv

% =1 when y = 0. Since, by our assumptions, G satisfies Assumption

4.2, we can easily show that Gy satisfies Assumption 4.1. From now on we fix k > |Juo]|v.

where we set

By Theorem 4.1, there exists a unique F-progressively measurable process X* such that
e X* e D(0,00), V)N L2 ([0, 00), Z(A)), P-as.,

loc

e forall ¢ € [0,00), P-a.s., in H,
Kooy o0 " B ! k !
X*(@) = up /OAX (s)ds /OB(X (s))ds—i—/o f(s)ds

t
keo ~
+/0 /ZGk(X (s—),z)n(dz, ds).

Similarly to (3.8) we define a stopping time

Of := inf {t >0: sup | X*()[lv > k}.
s€[0,¢]
It is not difficult to see that o is increasing in k, and X**1(r) = X*(1), t € [0, 0%). We
also define a stopping time o := limg_, o, 0x. The property above enables us to define
u(t) fort € [0, o) as follows:

u®) := X*@), te€[0,0%).

It is easy to see that u(z), ¢ € [0, 0), is a local solution of problem (4.6). To complete
the proof, we need only show that P(0 = oo) = 1. For this purpose, we use condition
(G-VH2) from Assumption 4.2.

Following the argument we used in the proof of (3.62), we can find Cz > 0 such that

T Ao

B( s o) +E([ o a) <cr @
t€[0,T rno) 0

Define an additional stopping time Ty by

t
N = inf{t >0: sup |u(s)|12{+/ ||u(s)||%,dszN}/\T/\o,
s€[0,¢] 0
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and set Ty x := Tn A Ok. By the It6 formula and Lemma 2.1, we have, for t > 0,
t
@) + 2 /0 ()12 ds
t t
= luoll? —2 / (Bu(s)). Au(s))s ds + 2 / (F(5). Aus))i ds
0 0
t t
+2 /0 /Z AG(s—). 2)u(s2)y F(dz ds) + /0 /Z 1G u(s=). )| n(dz. ds)
t t t
< Juoll? + [0 ()| ds + C fo ) () ds + 2 /O )P ds

+2/0 /va(G(u(s—),Z),u(s—))vﬁ(dz,ds)+/0 /ZIIG(u(s—),z)ll%, n(dz, ds).

Applying Gronwall’s lemma, we infer that

INTN k
lutt A tap) 2 + /0 ()P gy ds

IN
< oClo” N R ds

-(||uo||%+2/ F&)ads + sup

s€[0,T]

[ [ wiewao. i s, dl)'

T/\‘L'N_k
+ /0 /Z ||G(u(s—),z)||%n(dz,ds>)
5 T
cN (nuon% 12 [ P ds
0

+ sup
s€[0,T]

T/\‘L’N'
+/0 k/Z||G(u(s—),z)||3n(dz,ds)), te[0,T]. (498)

By the Burkholder-Davis—Gundy inequality and the assumption (G-V2), i.e., (4.2),

we get
SATN k
/ /V/ Gu(l-),z),u(l-))yndz, dl)D

CNE ( sup
CN2 TATN.k 2 2
<ces(| [ [ 16wt MR )1 niz. s

/0 o /Z V/<G<u(1—>,z),u(z—)>vﬁ(dz,dl)‘

s€[0,T]

1/2)

1 CN2 TATN i
SE( s s ealR) + ceVw( [ [ 6.2l v as)

s€[0,T1]

A

A

1 2 (T
SE( sup s A ewplR) + Ce [T EQ 4 uts A onpl) ds.
s€[0,T] 0

(4.9)



Z. Brzezniak, X. Peng, J. Zhai 30

Applying assumption (G-V2) again, we infer that

TAtN &
E( /0 / 1Gu(s=). o) n(dz,dS))

T
< c/ E(1 + [lu(s A typ)|3) ds.  (4.10)
0

Inserting inequalities (4.9) and (4.10) into (4.8), and then using Gronwall’s lemma, we
infer that

TATN k
B sw e nmnoR) +5( [ )1 ds)

te[0,T]
T
scN,T(||uo||%+/ |f(s)|§1ds+1).
0

Letting k — oo, we get

T ATN AC
E( s uOI})+ E( / OIS df)
tef 0

0,T ATN AC)
T
< CN,T(”Mo”%/ +/ | £ ()5 ds + 1).
0

This implies that

T/\"EN/\O'
sup u(®)]3 +/0 ||u(t)||2@(A) dt < oo, P-as. 4.11)

te[0,T ATN AC)

For a fixed T > 0, we set
Qy ={weQ:Ty =T no}.

Then Qny C Qy+1.By (4.7) and (4.11), we deduce that limy o, P(R2y) = 1, and

T Ao
sup  Jlu@®) |3 +/ ||u(l)||_2@(A) dt <oo onQpy, P-as.
0

t€[0,T Ao)
Hence
T Ao
sup  Jlu@)|? +/ ||u(l)||2@(A) dt < oo, P-as.,
t€[0,T Ao) 0
which yields
Plc>T)=1, VT >0.
The proof of Theorem 4.2 is complete. ]

Similar to Section 3, we first introduce symbols which will be used later. Then we
state three auxiliary results: Lemmata 4.1 and 4.2, and Corollary 4.1.
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In this section, we set, for T > 0,
Yr(V) = D([0,T],V) N L*([0, T], Z(A)). (4.12)

Note that the definition of the space above differs from (3.9). It is easy to see that the
space Y7 (V) endowed with the norm

1/2

T
ey = sup ||y(s>||v+( / ||y<s)||’g(A)ds) “.13)
s€[0,T] 0

is a Banach space.
Let A7(V) be the space of all V-valued cadlag F-progressively measurable pro-
cesses y whose a.a. trajectories belong to the space Y7 (V) and such that

T
Y13, o) = E( sup [ly)IF +/ [RIGIETN ds) < oo0. (4.14)
s€[0,T] 0

We point out that the space A7 (H) introduced earlier around (3.11) differs from the cur-
rent space A7 (V).

Recall that the auxiliary function 6,,(-) has been introduced in (3.12) (and used, for
instance, in Lemma 3.1).

We are now ready to state the first of the three auxiliary results we need to prove
Theorem 4.1.

Lemma 4.1. Assume that T > 0andm € N. Thenforallug €V, f € Lz([O, T1,H), and
J € Yr(V), there exists a function y € C([0, T], V) N L2([0, T], Z(A)) satisfying

Y'(©) + Ay (@) + 0ully + Jlv,ov)B (@) + J(0) = f(t), t€(0,T),
y(0) = uo.

Proof. Fix T > 0andm € N. Also fix ug € V, f € L?([0,T],H) and J € Y7(V). We
use the Picard iterative method again to prove this result.

Fix yo € C([0,T], V) N L%([0, T], 2(A)) such that y¢(0) = u,. For instance, we can
take yo(t) = e *Aug, t € [0, T).

It is not difficult to prove that, given y, € C([0,T],V) N Lz([O, T],2(A)),n € N,
there exists a unique y,+1 € C([0, T], V) N L2([0, T], Z(A)) satisfying the deterministic
initial value problem

(4.15)

V1@ + Ayns1(@) + 0mllyn + T e, v))Bn(t) + J (@), yns1(2) + J (1)) = f(1),
Yn+1(0) = uo. (4.16)

We will show that {y, }»en is a Cauchy sequence in C([0, T], V) N L2([0, T], Z(A)).
We now estimate the norm in C([0, 7], V) N L2([0,T], 2(A)) of the difference y,1+1 — yn
for n > 1. To do so, set, for x; € C([0,T],V) N Lz([O, T),2(A)),i =1,2,3,

8 (1, X2, x3)(8) = O (|1 + v, (v)Bxa(s) + J(s). x3(s) + J(5)). s €[0.T]
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By the Lions—Magenes lemma, we have

t t
[yn+1() = ya DI +2/0 1 yn+1(5) = ya ()20 ds = —2/0 K(s)ds, (4.17)
where

K(s) = (B Yn. Yt 1)) = EOnet. Yn—1. Yn)(8), An+1(5) — yn(5)))y,

with (-, -)g denoting the scalar product in H.
Now fix s € [0, T']. To estimate K(s), we consider three cases. Each case contains a
calculation of a certain “partial” integral fé |K(s)|ds.

Case 1. Assume that ||y, + J v, v) V [[yn—1 + Jllry(v) < m + 2. Then
IK($)] < [OmUlyn + T llvs) = OmUlyn—1 + TlIx,o0)
|(Ba=1(5) + J(5), yu(s) + J(5)), Ayn+1(5) = yu(5)))]
+ i(B(yn(s) + J(8), yn+1(5) — yn(8)), A(yn+1(s) — yn(s)))H|

+ i(B(yn(S) = Yn=1(8), yu(s) + J(5)), A(yn+1(s) — yn(s)))H|
=:11(s) + I(s) + I3(s).

By Lemma 2.1 and the definition of 6,,,

11(5) < Cllyn = yn-t Ity yami(8) + TG 21 yn-1(5) + I )/
Nyn(s) + TSI 1yn(s) + TG 1at1(5) = ya () 2

< Canllyn = Y-t v Iy () + T 12 Iyns1(5) = vl

< et~ 3Oy + = 3ty I906) + Ty, (418)
Ly(s) < Clyn(s) + T 19a () + TN
Nn1) = @I 190 41(5) = v @12
< Collyns1(8) = @ IV 1yn41(5) = ya 15,
< 21— Oy + e lnsa ) = 1O @19)
and
I3(5) = Clyn(s) = Y1 O 2 1yn () = ya1 ()|
Nyn() + TSIV 1ya() + TGN Ly 190 +16) = ya )2
< Conllyn(s) = Yuo1 & IVIn () + TGN 13n41(8) = ¥u(®) | 2a)
< el ) =~ 1O + 1)~y O 1 (s) + IOl
(4.20)
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Therefore, since

t
/ 191 (5) + T($) | 28 Lilyn—a Iy vy <m23(8) ds < Cut V12,
0

by (4.18)—(4.20) we deduce

t
/0|K(S)|11{||yn+1||rsmv||yn_1+J||T,Y<V)5m+z}(S)ds
4/3 ! 2 Cm 2
< (2e+¢€"") | yn+1(s) — yn(s)”@(A) ds + 8_4t||yn+1 - yn”‘rt(v)
0
Cn 5 !
t—n = yn-illy,qy | 1n() + Tl 2@ Liyn+ 7 1y zm+23(5) ds
0

B O N R -
<26+ + 841 lynt1 yn”T;(V)"*' e % yn yn—1||”r,(v)v t€l0,T]

421

Case 2. Assume that ||y, + J||v,(v) <m + 2and || ys—1 + J |1, (v) > m + 2. Then the
definition of 6,, implies that

K($) = Om(lyn + Jlryw)BOa(s) + (). ynr1(s) + J(5)) A(yn1(5) = yn(5)))yy.

and

t
fo | KLy 4+ g o0y <m+23 O Lflly, 1+ g vy >m+23 (8) ds

t
= / | KLy 40 g o0y <m+ 13 ) Ly, 4Ty oy >m+23 () ds. - (4.22)
0
For any s € [0, ¢] such that

Lty + ey ooy <m+ 13 O Ly, Tl vy >m+23 () = 1,
we have
e = yn—tllvsov) = 1vn—1 + Tllvsevy = 190 + T llrsevy = 1, (4.23)
and by Lemma 2.1,
IK(5)| < Clyn(s) + J&)I 2 1ya(s) + J(s) Iy
Nyns1() + TSI 15n416) + TN 1ynt1(5) = yu(®)ll 2a)
< Conllyns1(8) + TSI 19n+1(5) + TN Y0 1r1(5) = ya ()2

C
< &llyn+1(8) = Y3y + Tm||)’n+1(s) + J( ) vIIyn+1(s) + T () z(a)-
(4.24)
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For the second term of the right hand side, we have

Cm
T||yn+l(s) + JIvIyas1(5) + J ()l 2ea)
Cm
=< T(||Yn(s)+f(s)||v+||yn+1(S)—yn(S)||V)
(IyaO+I S 2+ 1 yntr1()=ya($)ll2a))
Cm
= T(||J’n(5)+J(S)||@(A)||yn—)’n—1||%rs(v)+||Yn+1(5)—yn(5)||@(A)||yn—yn—1||T5(v)
F 170416 =yn O V170 )+ T ) 28+ 17041 () =Yn ) IV Ya+1 () =y () | 2(a))

C
= 26041 = (500 + 5 I =rn=1 I3, 0 Fn1 () =3n ) I

Cn
+T(||yn $)+I S 2 1ya=Yn-11F, 0y F1Yn£1()=ya v [y () +T ()| 2a))-
(4.25)

In the second “<” in (4.25), we have used (4.23) and ||y, (s) + J () |v < |yn + T lIr,(v) <
m+ 1.
Considering (4.22), (4.24), and (4.25) together, we deduce

t
/0|K(S)|11{||yn+1||mv>sm+z>(S)ll{nynfl+J||mv>>m+2}(s)dS
! 2 Cm 2
=3¢ ynt1(s) — yn(s)”@(A) ds + 8_3[ sup] [yn+1(s) = yu (Y
0

s€l0,t

C
+ 5 sup yn = ya-i !
&7 sefo,t]

C
+ == sup [[ynt1(5) — ya(9)llv
€ sefo,1]

t
. /0 lyn(s) + J(S)”‘@(A)ﬂ{”y”+J”Ts(\’)5m+1}(S)]I{HJ’n—l+J||~r_y(v)>m+2}(5) ds
Cn ) t
+ T”J’n — Yn—1 ”Tt(V) [yn(s) + T 28 L{liyn+7 v, vy <m+13(8) ds
0
C C
< Iynr =yl ) (3’8 5t 82) + 5ty = ynlli 0
Cn 4
+ 8_4 o ”yn(S) + J(S)||@(A)]l{”yn+J”T»V(V)Sm+1}(S)]]'{||Yn—l+-]||'rs(v)>m+2}(s)
2
Nyn = yn—1llrsv) ds)

C t 1/2
+ = 1yn = -1l ) (/ 172.(5) + T 100y Ly + ey cvy sm-+13(5) dS) 112
0
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¢ C
< ynsr =yl (38+ 5t +82) + 3 tlvn =yl o0

C t
w3 Boyot [ 190060+ IOy L 1y m s

C
+ = yn =,y

C
< ynt1=2nll7, v) (38+ 8—;”f +82)
Cn. C C
+ ||yn_yn—1||2'r,(v)(8—;nt+ Tmtl/2+ E—Tt) (4.26)

In the second “<” in (4.26), we have used (4.23).

Case 3. Assume that ||y, + J|v,cv) > m + 2 and ||yp—1 + J |7, (v) < m + 2. The def-
inition of 6,, implies that

K(s)
= —On ([ yn-1 + J I, v)(BUn=1(s) + J(5), yu(s) + J(5)), An+1(5) = yu(5)))yy»

and

t
/0 KLy 47 ey ooy >m+23 ) Ly, g+ T g vy <m+23 (5) ds

t
= / | KLy -+ g oy >m+22 ) Ly + Ty oy sm+13(8) ds. (4.27)
0
For any s € [0, ¢] such that

Ly +7lrs oo >m+2 )Ly i + T gy =m+13(8) = 1,

we have

[yn = yn—1llxyvy = yn + T llveewy = 1yn—1 + Jlrsov) = 1, (4.28)
and by Lemma 2.1 again,
|K($)] = Clyn-1(5) + JO 1 7n-105) + J() IV
Nyns) + TSI 1ya(s) + TG 1at1(5) = ya () o)
< Cnllyn(®) + TV 17(8) + TG g 19n41(5) = 3n () 208y
< ellynr1() = ()13,

Cm
+ Tllyn () + IS Ivlyals) + TSl 2a)- (4.29)
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Using similar arguments to (4.25), we have

Cm
— 1yn() + TG vlyn(s) + TSz

Cm

= — (a1 () + TGy + [1yn () = yn-1(9)llv)
“(lyn=1(s) + J(S)”@(A) + [lya(s) — Yn—l(s)”@(A))
Cm

= T(”J’n—l(s) + IS 2@ llyn — yn—1||2'r_v(v)

+ ”yn (s) — yn—l(s)”@(A) ”yn — Yn-1 “TS(V)
F 1y (8) = V-1 IV ya—1(s) + J() | 2(a)
+ |y (s) = yu—1 (&) Ivlyals) — yn—l(s)”@(A))

C
< 2¢|lyn(s) — J’n—l(s)nzg(A) + 8_;"(||yn - yn—llﬁ‘s(v) + lyn(s) — yn—l(s)”%/)

C
+ = yn16) + IO o 1y = a1l vy (4.30)

In the second and third “<” of (4.30), we have used (4.28) and

[yn—1(s) + J)lv = lyn—1 + I llxryon =m+ 1,
190 () = Va1 v < lyn = Yn11Z -
Combining (4.27), (4.29), and (4.30), and using the same idea as in (4.26), we deduce

t
/0|K(s)|]l{||yn+J||y_v(V)>m+2}(s)]l{llyn_l+J||T‘Y(V)Sm+2}(s)ds

C’"zl/z). 4.31)

< ollywes = nlB o+ om = vl o (36 + S+

We have now finished the estimates for K(s) in the three cases.
The statements made in (4.21), (4.26), and (4.31), combined with equality (4.17),

allow us to state that for all ¢ > O and z€ [0, T'],

t
1510 = 3O +2 [ 1m16) = 3 6) By s
0
t t
< Cnllyn+1 — yn”Z’rt(V) (8 +&*3 4 o L2y 8_3)
) r Y2y
+ Cmllyn — Yn—1||~rt(v) &+ oy + = + =) 4.32)
Since, by the definition of Y;(V),

1 t
3l =l = s 1 @ =3I+ [ ) = B
se€l0,t 0

we can choose ¢ and 79 > 0 small enough such that for all n > 1,

lyns1 — J’n||2'r,0(v) = %”yn — Yn—1 Hleo(V)' (4.33)
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This implies that {y,}»en is a Cauchy sequence in C([0, t0], V) N L2([0, o], Z(A)).
Therefore, it has a unique limit in that space, which we denote by y!. It is rather standard
(if not obvious) that y! is a solution of (4.15) on [0, y]. Observe that the constant #, does
not depend on the initial data.

Next, we consider

Y(6) +Ay(@) + Om(ly + T v, v)BO(@) + J(@) = f@), > to,
y(@) =y'(), 1 €[0,1).
Repeating the above arguments, we can solve (4.34) on [0, 27¢], and denote its solution
by y2 := {y2(¢), t € [0, 2t0]}. It is not difficult to prove that y? is a solution of (4.15) on
[0, 220]. Then, by induction, we can solve (4.15) on [0, 3¢¢], [0, 4£¢], and so on. We finally
obtain a solution y € C([0, T], V) N L2([0, T], 2(A)) of (4.15) for any fixed T > 0. The
proof of Lemma 4.1 is complete. ]

(4.34)

Although the uniqueness of solutions to equation (4.15) follows from the existence
proof, for completeness sake, we give an independent proof of this property (see also
Corollary 4.1). The following lemma is a preliminary step in this direction. It will also be
used later.

Let us recall that the space A7 (V) (and its norm) was defined around equality (4.14).

Lemma 4.2. Letn € N and T > 0. Assume that for all ug € V, f € L%([0, T], H) and
y € A7 (V), there exists an element u = ®¥ € A1 (V) satisfying

du(t) + Au(t) dt + O, (ully, (v)B(u(t)) dt
= f(1) dl—i—[G(y(t—),z)ﬁ(dz,dt), (4.35)
z
u(0) = uy.

Then there exist a positive constant C and a function L, : (0, 00) — (0, 00) such that
limy—o L,(T) = 1 and

@7 — @723 vy < CLATD)TlIy1 = y2l3 . cvyr  Y1.¥2 € Ar(V). (4.36)

Proof. Fixn € Nand T > 0. Assume thatug € V, f € L2([0, T],H) and y;, y» € Ar(V).
For simplicity, let us set u; = ®¥', u, = ®72, and u = u; — u,. By the 1t6 formula,
we have

@l +2 /0 ()12, ds
~ /0 (O (1 100y B 1 ) — O (2,0 B2 (5)). Au(s)), ds
42 f / AGO1(5-). 2) — Gya(s—). ). u(s—))y F(dz. ds)
0 Z

+ / [ 1G (G (5-). 2) = G(ya(s—). 2|13 n(dz. ds)
0 Z
=: J1(t) + J2(2) + J3(2). (4.37)
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For the first term, J;, we have

1 t t
1015 [ B ds+2 [ Ko ds .38)
where

K(s) := [Bn (11 vy, (v)B 1 () = On (lua I, ) B2 (o) |5, 5 € [0. 7.

To find suitable bounds on K, we consider four cases. By the property of 6, (see
(3.12)) and the Minkowski inequality, we have the following estimates.

(1) For [luy[lvyovy V lu2llrgvy <n + 1, we have

K(s) < CIB(u1 () =B 2 (5) &+ [0n (1 [, v) = (2], v) [ Ba2 () 3]
< Cllur®)lullur ) Ivlu ) Iviu)lzm +luz) v lua(s) | g ) lullus)llv]
+Clua () ullu2 () I3 u2() g luly, v)
= %”"(5)”2@(1\)

FC 3, vy Lun () Fllun () 17+ N2 () v w2 () )+l () 17 1u2() o |-
(2) For |lu1|ly vy <n + 1and |luz||r,cv) = n + 1, we have
2
K(s) = |0 (llur [y vy) B ()[4

2
= [On (lurllxs o)) = On (2l o) | IBAer ()1
< Cluy®)lullur ()11 ()l o el vy -

(3) For [Ju1]lvy(v) = n + 1 and |[uz||r,vy < n 4+ 1, similar to case (2), we get
K(s) < Clus(®lulluz(6)13 ()]l o el -
(4) For |lu1]lr, vy A lluz2llxycvy = 7 + 1, we have
K(s) = 0.
Hence,
K(s) < 1u) 5 + Cllully, 0 E@). s €0,T], (4.39)

where
E(s) := (@Il OIF + s )17 w1 ()l 2ay) Lion+ 111 vy vy)

+ (2 () vz ()l aay + lu2 (IR Iu2() loa)) Loz s (v))-
s €0,T].

Set

t
o) == sup Ju@)|2 + / ()12 ds.
s€[0,¢] 0
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Substituting (4.39) into (4.38), and then into (4.37), and noting that ||””2TS(V) < 20(s),
s € [0, T], we deduce that
t
O@) < C/ O()E(s)ds + sup |Ja(s)| + Ja(z), €0, T] (4.40)
0 s€[0,¢]
Then Gronwall’s lemma implies that
T o
OT) = (sup |12(1)] + J5(T) ) - eCho 2O
t€l0,T]
< ( sup |2 (1)| + J3(T))  eC THn T2 4n2T1/2) (4.41)
t€[0,T]
Set
Ln(T) — eC(n4T+n4T1/2+n2T]/2)‘ (442)

By the Burkholder—Davis—Gundy inequality and Assumption 4.1, we have

Ln(T)E( sup_ |Jz(r)|) < sluli, vy + CLa(TTly1 = yala vy (443)
telo,

and

E(J3(T)) < CTy1 = y2la, v (4.44)

Summing up (4.41), (4.43), and (4.44) we have

4l A, o) < CLA(DTy1 = y20l3,.v)-

Notice that in view of the definition (4.42), L, (T) — 1 as T — 0. The proof of Lemma
4.2 is thus complete. ]

Using arguments similar to those for Corollary 3.1, by Lemma 4.2 we have

Corollary 4.1. Under the same assumptions as in Lemma 4.1, the solution of problem
(4.15) is unique.

Now we are in a position to prove Theorem 4.1. But before doing so, for the benefit
of the reader, we make the following remark. Conditions (2.15) and (2.16) in [5], the
auxiliary problems (3.4)! and (3.13) and their proofs of the existence and uniqueness of
solutions correspond to properties (3.12), the auxiliary problems (4.46) and (4.45) and the
proofs of the existence and uniqueness of solutions in the present paper.

Proof of Theorem 4.1. We also use the Banach fixed point theorem to give this proof in
three steps.

INote that (3.4) in [5] should read as follows: dun(t) + Aun(t)dt = —(B,T;v)(t)dt +
J7 G(z,v(t—)) (dz, dt).
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Step 1: Local existence. Consider the auxiliary problem
dun(t) + Aun (1) dt + Op([unllr, (v))Bun (1)) di
= f(@)dt + / Gun(t—),z)n(dz,dt), (4.45)
U, (0) = up. ’

Fix T > 0. For any y € Ar(V), there exists a unique element u = &Y such that u €
D([0,T], V) N L2([0,T], 2(A)) = Yr(V), P-as., and

du(t) + Au(t) dr + Op(ully, (v))Bu(r)) dt
= f(1) dl—i—/G(y(l—),Z)ﬁ(dz,dt), (4.46)
z
u(0) = uy.

This can be seen as follows. It is known that there exists a unique [F-progressively mea-
surable process J € Y7 (V) satisfying the stochastic Langevin equation

dJ(t) + AJ(t) dt = / G(y(t—),z) iz, dt),
Z
J(0) = 0.

(4.47)

Moreover, this process, called an Ornstein—Uhlenbeck process, satisfies

5 s WOR) +B( [ WO ar) < (E( s boR)+1).

tef0,T] t€l0,77]

For any w € €2, consider the following deterministic PDE:

dx(t) + Ax (@) + O (Ix + Jlv, (v)Bx (@) + J@) dt = f(1) dt,
x(0) = uyp.

By Lemma 4.1 and Corollary 4.1, this PDE has a unique solution x € Y7 (V). One can
show that the process u defined by u = x + J is a solution to (4.46). For the uniqueness,
we refer to Lemma 4.2.

Now we prove that u € A7 (V). Applying the Itd formula, we get

Wgw%+2AIWGNQMdS
= |luoll? —2/ (On (1t I, (v)) B (s)), Au(s))y, ds
t 0 t
+2 /0 <f<s>,Au(s>>Hds+2/0 / AGO(52). 2),u(s))y 7(dz, ds)
+ /0 / 1G(y(s—). 2)|2 n(dz. ds)

5
=370 (4.48)
i=1
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By Lemma 2.1, we have

1 t t
201 =5 [ 1 By ds +2 [ 100 (el o B s

1 t t
: /0 ()12 ds + C /0 02 (lull v, o)l () i () 12 (5) oy s

IA

1 t
3 || OBy ds + et (4.49)

It is easy to see that

1 t t
n0 <5 [ B ds+2 [ 1fOfRds e @50
and
EUs(T) < CT(1+E( sup_yo)IR))- @51
s€[0,T]

By the Burkholder-Davis—Gundy inequality, we get
1
E( sup 1J50)]) = 3E( sup Ju@I}) + CT(1+E( sup Iy©)F)).  @52)
t€[0,T] t€l0,T] s€[0,T]

Combining (4.48)—(4.52), we have

T
E( sup u()I}) +E( fo OTE ds)

t€l0,T]
< Cor (ol + 1+E( sup y0)I3))-
s€[0,T]

We have shown that ¥ € A7 (V), and this implies that ® : A7 (V) — A7 (V) is well-
defined.
By Lemma 4.2, there exist a positive constant C and L, (T) — 1 as T — 0 such that

1D — @23 vy = CLA(D)T Iyt = y2l3 vy Y1:92 € Ar(V). (4.53)

Using arguments similar to the proof of Theorem 3.1, we can construct a unique u, €
A7 (V) forany T > 0 that is a solution of (4.45). However, we do not know whether the
solution is unique.

Define a stopping time 7, by

T, =inf{t >0: ||u,,||Tt(V) > nj. (4.54)

Then 6, (|luxllr,cv)) = 1 forany ¢ € [0, 7,), hence {u,(¢), t € [0, )} is a local solution
of problem (4.4).

Step 2: Local uniqueness. We need a proof of uniqueness not relying on the uniqueness
from Theorem 3.1; see Remark 4.1.
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Assume that {U,(z), t € [0,01)} and {Ua(¢), t € [0,0,)} are two local solutions of
(4.4). Fix R > 0. Define

ok =inf{t > 0: |Uillv,vy > R} Aoy, i =1,2.
0 =01 N0, OR =o}g/\0123.

It is known that o;, 0;'3, i =1,2,0,and o are stopping times.

Now we prove that
U] = U2 on [O, O'). (455)

Let M(t) = Uy (t) — Us(t). By the Itd formula,
MO +2 | MO ds
- (B(UL(s)) — B(U(5)), AM(s) ds
+ Z/OZ /ZV&G(Ul (s—),2) — G(Ua(s—), 2), M(s—))y Ti(dz, ds)

t
+ / / 1G (U (). 2) — G(Us(s—). )2 n(dz. ds)
0 Z
= 1)+ L) + I5(2). (4.56)

By Lemma 2.1,

[11(2)]

IA

L )2 ds+2 [ 1B B hd
3 | MO ds+2 [ 1B@6) - B2 s

IA

1 t t
3 | MOy ds + € [ 0T O IMO N IMO Lo ds
+C/0 102 VI U2() | za) 1M (5)[lv | M (5) |1 ds

t
< /0 IM($)12 ) ds
t
+C /0 M IZ[|UL S ENT1)Z + 102) |0 |1 U25)llv] ds. (4.57)

In view of inequality (4.57), by Gronwall’s lemma applied to (4.56), we infer that for all
t €0, 7],

tAOR
MG Ao+ [ MO ds
0
< CRR \U1(s)lﬁuU](s)||%+||Uz(s)||@<A>||U2(s)||vds[ sup |Io(s A or)| + I5(T /\UR)]
s€[0,T]

< eCTR4+CR2T”2[ sup |Ia(s A or)| + I3(T A oR)]. (4.58)
s€[0,T]
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Next, by the Burkholder—Davis—Gundy inequality and Assumption 4.1 we infer that for
any § > 0,

TAOR
E( sup |L(s Aop)l) < 6E( sup [[M(s Aor)l3) + CgE(/ ||M(s)||$ds)
s€[0,T] s€[0,T] 0
(4.59)

and -
ANOR
Ba(r now) = Ca( [ M1 ds). (4.60)
0

Combining inequalities (4.58)—(4.60), and applying Gronwall’s lemma, we deduce
that

TAGR
]E( sup || M(t AaR)||%) + ]E(/ IM($)12a ds) =0.
t€l0,T] 0

Since limg 7o Or = 0, by taking first the limit as R ' oo and then the limitas 7" oo,
we infer that

B s IMOR) +E( [ 1M ds) =0,

t€[0,0)

which implies the uniqueness of the local solution.

Step 3: Global existence. Let us recall that t, has been defined in (4.54). By Step 2 the
sequence {7, ). is nondecreasing and

Un+1() = uy(t), tel0,1,), P-as.

Put 7x := lim, o0 T,. By [32, Proposition 2.1.2], the random time 7,,,x is a stopping
time. As in the proof of Theorem 3.1, we can define a process {u(t), t € [0, Tmax)} by

u(t) =u,(t), tel0,1,),
This process is a local solution of (4.4), and it satisfies (see (3.59))

lim |lully,cvy =00 on{w : tmx < 00}, P-as.
t /" Tmax

Using an argument similar to the one used in the proof of Theorem 4.2, we can prove that
P(nnm ::oo)::l,

This concludes the proof of the global existence, and hence Theorem 4.1 is established.
(]

5. Large deviation principle (LDP)

Fix T > 0. In this section, we establish a Freidlin—-Wentzell LDP for problem (2.2) on
Y7 (V) defined in (4.12), i.e.,

Yr(V) := D((0, T].V) N L*([0. T], Z(A)).
In the following, the space D ([0, T'], V) is equipped with the Skorokhod topology.
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5.1. Description of the problem and the statement of the main result

We first introduce the problem and then state the precise assumptions on the coefficients,
followed by the main result.
Let us recall that Z is a locally compact Polish space. We set

Zr =[0,T]xZ, Y=2Zx[0,00), Yr=][0,T]xZx[0,00).

We let M7 = .# (Zr) be the space of all nonnegative measures ¢ on (Zr, (Zr)) such
that ¥ (K) < oo for every compact subset K of Zr.

We endow the set M7 with the weakest topology, denoted by .7 (M), such that for
every g € C.(Z1) (where C.(Zr) is the space of real continuous functions on Z7 with
compact support), the map

Mr > 9% +— g(z,5)0(dz,ds) e R
Zr
is continuous. Analogously, we define My = .#(Yr) and .7 (Mr). It is known (see
[17, Section 1]) that both (M7, 7 (Mt)) and (M, 7 (Mr)) are Polish spaces.
In the present paper, we denote

Q = Mr, Y = Q(MT)

Fix a o-finite measure v on (Z, (7)) such that v(K) < oo for every compact sub-
set K of Z. By [42, Section 1.8], there exists a unique probability measure Q on (2, ¥)
on which the canonical/identity map

N:Q>m+meMrp

is a Poisson random measure (PRM) on Y7 with intensity measure Leb(d?) ® v(dz) ®
Leb(dr), over the probability space (22,%, Q).
We also introduce the following notation:

4, = the Q-completion of 6{N((0,s] x O) : s € [0,¢], O € B(Y)}, te][0,T],
G = (D)tepo,11, i

& = the G-predictable o-field on [0, T'] x €2,

A = the class of all (& ® %(Z))-measurable functions ¢ : Z x Q — [0, 00).

It can be shown that N is a time-homogeneous PRM on Y, with intensity measure
Leb(dt) ® v(dz) ® Leb(dr), over the (filtered) probability space (Q, ¥, G, Q); see
Appendix A. The corresponding compensated PRM is denoted by N.

For every function ¢ € A, let us define a counting process N® on Z by

N¢((0,1] x O) := / Ljo.p(s.2) (r) N(ds. dz.dr).
(0,£]x 0 %(0,00)
= / ]l{(s,z’r);,s(p(s,z)}(s,z,r) N(ds,dz,dr)
(0,t]1x0x%(0,00)
= L 00)(@(s,2))N(ds,dz,dr), t€]0,T],0 e HB(Z). (.1)
(0,¢]x 0 %(0,00)
We observe that N* : Q@ — .Z(Z1) = Mr.
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Analogously, we define a process Ne:

N°((0,1] x 0) := [ Lj0.0(s.2)(r) N(ds, dz,dr),
(0,¢]x 0% (0,00)

= / ]l{(s,z,r):rfgo(s,z)}(sv z,r) N(ds, dz,dr)
(0,¢]x O %(0,00)
= / Lir.00)(9(s,2))N(ds, dz,dr), t€[0,T], 0 € B(Z). (52)
(0,¢]x 0% (0,00
For any Borel function g : Zr — [0, 00),
/ g(s,z) N‘/’(ds,dz) = / Ljo,0(s,2)1(r)g (s, 2) N(ds,dz,dr). (5.3)
(0,¢]xZ (0,¢]xZx(0,00)

Note that if ¢ is a constant function a with value a € [0, co), then

N%((0,71] x 0) = N((0,¢] x O x (0,d]), 1 €[0,T], O € B(Z),
Ne((0,1] x 0) = N((0,7] x O x (0,a]), t€[0,T], O € B().

We finish this introduction with the following two simple observations.
Proposition 5.1. In the above framework, for every a > 0, the map
N:Q — . #(Zr) = Mt (5.4)

is a Poisson random measure on Zt with intensity measure Leb(dt) ® a v(dz) and N® is
equal to the corresponding compensated Poisson random measure.

Proposition 5.2. In the above framework, suppose that ¢, ¥ € A, ty € [0, T], and a Borel
set O C Z are such that

(s, z,0) = Y (s,z,w) for(s,z,w) €[0,t9] x O x Q.
Then
N®((0,1] x C) = NY((0,t] x C) fort €[0,10], C € O N B(Z). (5.5)

Letus fixe > 0,u9 € Vand f € L2([0, T], H). Consider the following SPDE on the
given probability space (2,9, G, Q):

du®(t) + Auf(t)dr +Bu®(r))dt
= f(t)dt +5[G(us(t—),z)ﬁl/s(dz,dt), t €[0,T], (5.6)
7
u®(0) = uy.

By Theorem 4.2 there exists a unique solution u® to problem (5.6) whose trajectories
a.s. belong to the space Y7 (V) (see (4.12)). In particular, u® induces an Y7 (V)-valued
random variable. In this section, we aim to establish an LDP for the laws of the family
{uf}es0 on Y7 (V).
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For our main result, we use the following notation. Denote, for N > 0,

SN = {g:Zr — [0,00) : g is Borel measurable and L7(g) < N}, (5.7)

s=J s",

N=>1

where for a Borel measurable function g : Zr — [0, 00), we set

T
Lr(g):= / /(g(l,z) logg(t,z) —g(t,z) + 1) v(dz)dt. (5.8)
0 Jz
A function g € S¥ can be identified with a measure v¥ € Mr, defined by
vE8(0) = / gt,z)yv(dz)dt, O e B(Zr).
o

This identification induces a topology on S¥, under which S¥ is a compact space (see
[15, Appendix]). Throughout this section, we use this topology on SV .
Let us finally define

H = {h : Z — R : h is Borel measurable and there exists § > 0 such that
/F 3@y (dz) < oo forall T € B(Z) with v(T') < oo } (5.9)
and
L?*(v) := {h :Z — [0, 00) : h is Borel measurable and /th(z) v(dz) < oo}

In many parts of this section, we use the following assumption.

Assumption 5.1. There exist functions Ly, L; € 27 N L?(v), forh > 0,i = 2,3, such
that

(LDP-01) (Lipschitz on balls) for every 2 > 0 and vy, v, € V with ||vy]v V ||v2]lv < A,
[G(v1,2) = G(v2,2)|lv < La(2)[lvr —v2lv, z€Z,
(LDP-02) (Linear growth in V)
G, 2)llv = L2(2)(1 + |lvllv), veV,zeZ,
(LDP-03) (Linear growth in H)
|G(v,2)|lg < L3(2)(1 + |vlg), veEV,zeZ

Remark 5.1. A word of warning is due here. Quite often, the Lipschitz property is for-
mulated differently. See, for instance, inequality (3.1) in Assumption 3.1.

Remark 5.2. Because the functions Ly, L,, and L3 belong to Lz(v), Assumption 5.1
implies Assumption 4.2.
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We now state the main result of this section. We use the convention that inf(J) = oo.

Theorem 5.1. Assume that Assumption 5.1 holds, f € Lz([O, T1,H), and ug € V. Then
the family {u®}¢~¢ satisfies an LDP on Y (V) with the good rate function I defined by

I(k) :=inf{L7(g):g€S,u® =k}, keTr\V), (5.10)

where for g € S, u8 is the unique solution of the deterministic PDE

du;l(t) + Au(t) + Bé @) = f(t) + / GWE (1), 2)(g(t, z) — 1) v(dz),
z

uf(0) = uy.

(5.11)

Remark 5.3. By Theorem 3.2, and using arguments similar to the proof of Theorem 5.1,
it is not difficult to improve the results on Freidlin—Wentzell-type LDP for strong solutions
in the probabilistic sense of 2D SNSEs driven by Lévy processes of jump type. We only
state the result here, and omit the proof.

Assumption 5.2. There exist functions Y3, € 5# N L?(v) forh > 0and Y € 2 N L?(v)
such that

(LDP-01-P) (Lipschitz on balls in H) for all # > 0 and vy, v, € H with |[vi]g V ||v2|la
f h?
1G(v1.2) = G(v2.2)|n = Tr(2)v1 —v2llu.  z €Z,

(LDP-02-P) (Linear growth in H)
G, 2)[la = Y(2)(A + [[vlw), veH zeZ

Theorem 5.2. Assume that Assumption 5.2 holds, f € L*([0,T], V"), and ug € H. Then
the family {uf}e=o satisfies an LDP on D([0, T],H) N L?([0, T, V) with the good rate
function J defined by

J(k) :=inf{Lr(g): g €S, ué =k}, ke D(0,T],H) N L2(0,T],V),

where for g € S, u8 is the unique solution of the deterministic PDE

dudgt(l) + Aué(t) +Bus @) = f(t) + [ G (1), 2)(g(t, z) — 1) v(dz),
Z
u®(0) = uo.

Let us point out that the results (see [29, 62, 66]) on this topic assume that the global
Lipschitz condition in H with condition (LDP-02-P) holds, i.e.,

e (Global Lipschitz in H) There exist functions Yexn L?(v) such that, for all
vy, V2 € H,

1G(v1,2) — G2, 2)|lu < Y (@)|vi — valu, 2z €Z.
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Before we can embark on the proof of Theorem 5.1, we need to establish the well-
posedness of equation (5.11). It is a consequence of the following result, whose proof is
postponed to Appendix B.

Lemma 5.1. Assume that N € N. Then, forallug € V, f € Lz([O, T],H), and g € SN
there exists a unique solution ué € C([0, T], V) N L2([0, T], Z(A)) of problem (5.11).
Moreover; for any p, R > 0, there exists a positive constant Cy = Cpy, p g such that
for every g € SN and all ug € V and f € L?([0, T], H) such that |uo|lv < p and
I/ lL2qo, 71,0y < R, the following estimate is satisfied:

T
sup [l (]2 + / uE (0)|%n, d < Cy. (5.12)
t€l0,T] 0

Proof of Theorem 5.1. By applying Theorem 4.2 to problem (5.6), in view of [65, The-
orem 8], we infer that there exists a family {&°}.~o, where 4% : My — Y7 (V) is a
measurable map such that for every ¢ > 0, the following condition holds:

e If 5 is a time-homogeneous Poisson random measure on Z with intensity e ! v(dz), i.e.,
a Poisson random measure on Z7 with intensity Leb(d?) ® ™! v(dz), on a stochastic
basis (Q1, F!, Pl F!) with F! = {ﬁtl,t € [0, T']} satisfying the usual conditions,
then the process Y ¢ defined by Y ¢ := ¢°(en) is the unique solution of

dY®(@t) + AY®(t)dt + B(Y®(1)) dt
= f(@)dt + 8[ G(Yé(t—),z2) (n(dz,dt) —ety(dz) dt),
z (5.13)
YS(O) = Uy.

The statements in the condition mean that Y ¢ induces (in a natural way) an I !-progres-
sively measurable process (for which we do not introduce a separate notation) which
satisfies

(al) the trajectories of Y ¢ belong to Y7 (V), Pl-as.,
(a2) the following equality holds in H: for all # € [0, T], P!-ass.,

t t t
Yé@) = — AYe(s)ds — B(Y? d d
(1) = o [0 ©ds— [ Boreenas+ [ roas
+£/ /G(Yg(s—),z) (n(dz.ds) — e~ v(dz) ds). (5.14)
0 Jz

Therefore, since by Proposition 5.1, N ¢~ is a Poisson random measure on Zr with
intensity measure Leb(dt) ® £ v(dz), we deduce the following result which will be
used later on.

Corollary 5.1. In the above framework, the unique solution of problem (5.6) on the prob-
ability space (Q,9,G, Q) is given by

Ut = G5 (eN° ). (5.15)
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Moreover, Lemma 5.1 implies that, for every g € S, there is a unique solution ué €
Y7 (V) of equation (5.11). This allows us to define a map

4%:S > g ufeYr(V). (5.16)

We apply [15, Theorem 2.4] to finish the proof of Theorem 5.1. According to [15], it
is sufficient to verify two claims. The first one is the following.

Claim LDP-1. Forall N € N, ifg,.g € SN are such that g, — g as n — oo, then
G(gn) —> 9°(g), ie, ufr —uf inYr(V).

To state the second claim, we introduce additional notations.

Let us fix an increasing sequence {K,}52, of compact subsets of Z such that

o0
K, =7 (5.17)

n=1

Define

o0
Ay = U{@ ceA:ot,z,w)e[l/nnlif(t,z,0) €[0,T] x K x Q
n=1

and ¢(t,z,w) = 1if (t,z,w) € [0, T] x KE x Q},  (5.18)
where the class A was introduced at the beginning of this subsection. We also set
_ _ o0
wN ={pehp:o,-0)e SN forQaa weQ), #U:= U wN. (5.19)
N=1

Claim LDP-2. Forall N € N, ife, — 0 and ¢.,,, ¢ € %N are such that g, converges
in law to @, then

@en (SnNS”_] en’) converges in law to 9°(p) in Y7 (V).

The verification of Claim LDP-1 will be given in Proposition 5.3 in the following
subsection. Claim LDP-2 will be established in Proposition 7.1. Assuming these claims
have been proven, the proof of Theorem 5.1 is complete. ]

5.2. The first continuity lemma
To verify Claim LDP-1, it is sufficient to prove the following result.

Proposition 5.3 (The first continuity lemma). Forall N € N, let g,,g € SV be such that
gn — gin SN asn — oco. Then

G%(gn) = 9°(g) in Yr(V).
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Proof. Recall the definition of %9 in (5.16). Let u8” be the solution of (5.11) with g
replaced by g,,. For simplicity, set u, = ué" = 4°(g,) and u = ué = ¥°(g). To prove
our result, we will show that

U, —>u inYr(V).

Fix a € (0,1/2). Let W*2([0, T], V') be the Sobolev space consisting of all & €
L2([0, T, V') satisfying

T —
/ [ MO 40 - oo

) —s[it2e

endowed with the norm

T o~ ho)IE
Wegory = [ W+ [ [T OO0 g 20

By Lemma 5.1 and using arguments similar to [66, proof of (4.8)], we can deduce that

SUp [lun 3y e2 g0, 7,01 = Cn < 0. (5.21)
nx=

Moreover, since by [35, Theorem 2.1] (see also [59]), the embedding

L2([0, T, Z2(A) N W*2([0. T]. V') = L*([0.T]. V) (5.22)
is compact, by Lemma 5.1 and (5.21) we infer that there exists i € L2([0, T], Z(A)) N
L*°([0,T], V) and a subsequence (for simplicity, also denoted by u,) such that
(P1) u, — u weakly in L2([0, T], 2(A)),
(P2) u, — u in the weak-* topology of L*°([0, T'], V), and

sup sup |[un(t)llv + sup [u(t)|lv =:ho < o0,
n>11t€[0,T] t€[0,T]

(P3) u, — 1 strongly in L2([0, T], V).

Now we prove that the limit function # is a solution of equation (5.11). By the unique-
ness of this solution, we infer 7 = u = u®. The proof seems to be classical, but it is not,
because of the nonstandard terms.

Let ¢ be a continuously differentiable V-valued function on [0, T'] with ¥ (T) = 0.
We multiply u, (¢) scalarly in H by v (¢), and then integrate by parts. This leads to the
following equation:

T T
- / (un (0o 0 (D)1 it + / At (O, Y (O)y di
0 0
T T
= (o Y (O — / ABGu (). ¥ (1)) dit + / ) () di
r 0 0
+ / / (Gun(0). ) (D) ia(gn 0. 2) — 1) v(dz) dt. (5.23)

0 Z

Keeping in mind properties (P1)—(P3) above and arguing similarly to [59, proof of Theo-
rem II1.3.1], we see that
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n—o0

T T
lim [— [ @9 @nmdi + [t pw)y ar
0 TO T
— oy (O + / ABGun (1)), ¥ (1)) di — / <f(t>,w<r>>ﬁdz]
0 0

T T
. [ @) (O di + / AT Y O)y di
0 0
T T
— ooy (O} + / B ())y di / SO Omdr. (524)
0 0

What concerns us is the last term in (5.23). Since g, — g in SV, by [15, Lemma 3.11]
we infer that

T
l1m/o /Z<G(u(t),z),w(t»H(gn(,,z)_1)v(dz)dt

T
= /0 /;(G(ﬁ(t),z),W(I))H(g(t,z) —1Dv(dz)dt. (5.25)
Next, for § > 0, we set
Aps :=1{t €[0,T]: |lus(t) —u(®)|lv = 8}

Since u,, — # strongly in L2([0, T], V), by applying the Chebyshev inequality we infer
that

1 T
lim Lebpo 7r7(An6) < lim — f lun(t) —ii(2)|3 dt = 0, (5.26)
n—00 ’ ’ n—>o0 §2 J,

where Lebyo 77 is the Lebesgue measure on [0, T].
Fix § > 0. Then, by Assumption 5.1 and assertion (P2), we infer that

T
' /0 fz (G un (). 2) — G(i(), 2. ¥ (gn (1. 2) — 1) v(d2) di

T
< WL o.r1v) /0 (1) — () v / Lo (@)lgn(t.2) — 1| v(dz) di

< oY Lo o.r1) /A / L (2)lgn(t. 2) — 1| v(dz) di
n.,s z

T
+5|1/f|L°°([o,T],V)/ /Lh0(2)|gn(l,2) —1|v(dz)dt, (5.27)
0 y4

where % is the positive constant appearing in (P2).
In what follows, we use the following result; see [66, (3.3) of Lemma 3.1], [64,
Remark 2], or [15, (3.5) of Lemma 3.4].

e For every function I € s# N L?(v) and every & > 0 there exists 8 > 0 such that for

every O € ([0, T]) with Lebo 71(0) < B,

sup / /3(z)|h(s,z) —1|v(dz)ds < e. (5.28)
0Jz

heSN
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Hence, by (5.26)—(5.28) and (B.3) in Appendix B, we have

lim sup
n—>o0

T
/0 [Z (G an(1). 2) — GGEi(t). 2. ¥ (gn (1. 2) — 1) v(d2) di
< 8Cho NIV oo, 11y).  (5.29)

Since 6 > 0 can be chosen arbitrarily small, this implies

lim
n—>0o0

T
fo / (G an (1), 2) — G(Ei(), 2. ¥ (g1, 2) — D v(d2) di| = 0. (5.30)

We observe that the above proof of (5.29) yields the following stronger result, which
we use later on: for every I € Z N L2(v),

T
lim sup /0 [y (s) — ﬁ(s)||VLS(z)|k(s,Z) —1jv(dz)ds = 0. (5.31)

00 pesN

Combining (5.24), (5.25), and (5.30), we arrive at
T

T
- / (@) () di + / ATV (D)) di
0 0
T T
= (o Y () — / ABG(O). ¥ ())y di + / ) (1)) dt
- 0 0
+/ /(G(ft(t),z),W(t))H(g(t,Z)— )v(dz)dt. (5.32)
0 Z

From this, following [59, Sect. 3, Chapter III, proof of Theorems 3.1 and 3.2], we can
conclude that # is a solution of (5.11) as claimed, and then by uniqueness, # = u = u¥.
At the final stage of our proof of Proposition 5.3, we prove that

u, —u in C([0, T], V) N L*([0, T], 2(A)).

For this purpose, let v, = u, — u. Then by [59, Lemma III.1.2] (in V) we get, for all
t [0, T],

w1 +2 [ on) Iy
——2f ' (Bun(5)) — Bu(s)). Aun(s))es ds
+2 /0 [ 60061 2)0(5:2) = 1) = G6).2)(5(6.2) = ). ) v(d) ds
=< %/0, [on ()15 ay ds + 2/(; IB(un(s) — B(u(s))|% ds
2 [ 10O [ Lay@lents. ) vz ds

+2/ lon (s)lIv(1 + ||M(S)||v)/Lz(Z)(|gn(S,Z)— 1|+ 1g(s.2) = 1) v(dz) ds.
0 z
(5.33)
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By Lemma 2.1, for all s € [0, T],

B(un(s)) = B(u(s))If
< 2(IB(un (s), vn () + B(wa(s). u(s)[)
= C(Jun®)lullun S Iv[va ) Ivliva () 2a) + [vn S lullva v IvIns) o)
< 2ln®1Z,) + Cloa@ 17 (lun Gy + lu@)Iviu©)low)- (5.34)

Substituting (5.34) into (5.33), and by Lemma 5.1, since u € L°°([0, T'], V), we obtain
2 ' 2
InOIR + [ om0 By s

sAnwuw%
-(cw4w%+«wmwmwmw%M+zéL%@mhmn—»ww@)w

T
+ C sup / ||vn(s)||V/L2(z)|h(s,z) —1|v(dz)dt, te][0,T]. (5.35)
heSN JO z

By Gronwall’s lemma, Lemma 5.1 and (B.2) imply that

T
sup MAM&+/ [on ()2, dt
t€[0,T] 0

< € J0 Uun @I+ v 1) o)+ Lng (2)lgn (s,2) =11 v(d2)) ds

T
-pr MMMWLLAQM@A—HvMﬂm

heSN

T
< Cn,7 sup / ||v,,(s)||v/L2(z)|h(s,Z)— llv(dz)dt, te][0,T].
heSN JO 4

Note that the integral fOT(||u,,(s)||§‘, + lu(s)lvllu(s)||a)) ds is finite in view of Lem-
ma5.1.
Therefore, by (5.31),

T
lim ( sup [lva ()3 + / on (D1I3a) dt) =0. (5.36)
n—=>0\ t¢l0,T] 0
The proof of Proposition 5.3 is thus complete. ]

6. A generalization of the Girsanov theorem

The aim of this section is to establish a certain generalization of the Girsanov theorem.
This result will then be used in Section 7 to verify Claim LDP-2. First, we state and prove
Lemma 6.1. Then we prove Theorem 6.1, which is the main result of this section.
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In order to formulate Lemma 6.1, let us recall the sets K, that were introduced around
(5.17), and let us introduce, for n € N, the following set:

Apn =40 €A:gt z,w)€[l/nn]if(t,z,0) €[0,T] x Ky x Q
and ¢(t,z,w) = 1if (t,z,0) € [0, T] x KS x Q}.  (6.1)

Note that with the notation of (5.18), we have
- oo -
Ay = Apa.
n=1

The proof of [17, Lemma 2.4] implies the following result; however, since [17] gives
no details, we present a detailed proof. This result is important in proving Theorem 6.1.

Lemma 6.1. Let n € N and ¢ € Ab,w Then there exists an Ab,n—valued sequence
{Vm }meN such that the following properties are satisfied.

(R1) For every m, there exist] € N and ny,...,n; € N, a partition 0 =ty <ty < ---
< t; = T and families

‘i:ij7 i=1,...,l,j=1,...,n,-,
Eij, i=1,...,l,j= e gy,

such that the &; are [1/n, n]-valued, ¥;,_,-measurable random variables, and, for
eachi =1,....1, {Ej; }7’=1 is a measurable partition of the set K, such that

I n;
Ym(t.2,0) = Lioy(1) + D> L1 (O&j (@)L g, (2) + g (2) 10,7 (0)
i=1j=1
’ (6.2)
forall (t,z,w) € [0,T] xZ x Q.

R2) limy,—eo fOT |V (t,z,0) —@(t,z,0)|dt =0 forv ® Q-a.a. (z,w) € Zx Q.

Proof. Fix n € N and ¢ € Ab,n. First, let us remark that “gr” in [17, p. 729 line —6]
should read

1 + t
oe(t,z,w) = k(— — t) + k (s, z,w)ds. (6.3)
k (@—1/k)+

One can check that
or(t,z,w)=1 on(t,z,w) €[0,T] x K x Q. (6.4)

In [17, proof of Lemma 2.4], the following three assertions were proved.
(L1) The process ¢ defined in (6.3) has the following three properties:
(L1.1) limg—oo fOT lor(t, z, ) — @(t, z,w)| dt =0v ® Q-as. (z,w) € Zx Q,
(L1.2) ¢ € Ay,
(L1.3) [0,00) 3t — @i (t,z, w) is continuous for v ® Q-as. (z,w) € Z x Q.
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(L2) If, for k,q € N, we set

LqTJ

m
o, z,0) = L) + Y ok (E,Z,w)ﬂ(m/q,<m+1>/ql(f)a
m=0
(t,z,w) €[0,T] xZ x Q.
then
(L2.1) ¢ € Apy,
(L2.2)
T -
lim |<pZ(t,z,a)) —@r(t,z,w)|dt =0, v®Q-as. (z,w) € Zx Q.
g—o0 Jo

(L3) For all k, g € N, there exists an Ab,n—valued sequence {@Z’r }%—, of processes such
that

(L3.1) for every k, (pk’r satisfies condition (R1),
(L3.2) lim, 00 fOT ll" (1,2, 0) — (1,2, )| di =0,V ® Q-as. (z.0) €Zx Q.

Note that (L2.2) follows easily from (L1.3).

To prove (L3), we repeat the argument from [17, proof of Lemma 2.4].

Note that for fixed g and m, g(z, w) = @x(m/q,z, w) is a B(Z) ® 94, /4-measurable
map with values in [1/n,n] and g(z, w) = 1 for z € K§. By a standard approximation
procedure, one can find #(Z) ® ¥,/4-measurable maps g,, r € N, with the following
properties: g,(z, w) = Z;l(zri c;(w)ILEJr (z) for z € K,,, where for each r, {E]’}fg is
some measurable partition of K, and for all j,r, ¢ (w) € [1/n,n] as.; gr(z,w) = 1 for
zeKy;and g, - gasr — 00, v ® Q-ass.

Having established the above, it is easy to see that assertion (L3.2) holds.

Moreover, these three assertions imply our result in Lemma 6.1. This can be seen as

follows. First of all, it is easy to see that, for any k,q,r € N,

ot.z,0) = gr(t.z,0) = 9l(t.2.0) = g} (1.2, w)
=1 for(t,z,w) €[0,T] x K x Q. (6.5)

Hence, we only need to consider the case of z € Kj,.
Set

T
Q= {(z,a)) € K, xQ: lim / lor(t, z,w) — @(t,z,w)| dt = O}.
k—o00 Jo
Then assertion (L1.1) implies
VR®Q)K, xQ\ Q) =0. (6.6)

For simplicity, we set 0¢ = K,, x Q \ O forany O C K, x 2, and keep in mind that
v(Ky) < oo.
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Let
' B T
I, = ﬂ{(z,a)) € K, xQ :/ lor(t, z,w) — o(t,z,w)| dt < l/m}.
0

k>i

It is easy to see that

o0
et \JIh = Qim. Q1 CQum.

i=1
In view of (6.6), there exists i,, such that
v @ Q)(Uy)°) < 1/m>. (6.7)
Set

T
Qop = {(z,a)) € K, xQ: lim / |<pg(t,z,a)) —¢r(t,z,w)|dt = 0},
q—>00 0

T
Qiakg = {(z,a)) e K, xQ: rl_i)n()l()[) |(pk’r(t,z,a)) —(pZ(t,Z,a))| dt = 0}.

Let
_ B T
s = ﬂ{(z,w) €K, xQ: / lol(t, 2, 0) — @i (1,2, 0)| dt < l/m},
q>i 0
_ ~ T
IIIlfn’q” = m{(z,a)) € K, xQ: / |<pZ’r(t,Z,a)) —(pZ(t,Z,a))| dt < l/m}
r>i 0
Similarly to (6.7), there exist j,, x and [, x 4 such that
v ® Q")) < 1/m?, (6.8)
(v ® Q)" 4)¢) < 1/m?. (6.9)

By the definition of IX, IIk7, III&7",
1k narka o ke
T
C {(z,a)) e K, xQ: / lok (1, z, 0) — (t, z, w)| dt < l/m}
0
B T
N {(z,(u) eEK,xQ: [ |<pZ(t,z,a)) — i (t,z,w)| dt < l/m}
0
B T
N {(z,a)) € K, xQ: / |<pZ’r(l,Z,w) —@Z(Z,Z,a))|dl < l/m}
0
so, for any (z,w) € I,’,‘, N Ilf,,’q N IIIf,,’q’r,
T
/ |(pZ’r(t,z,a)) —o(t,z,w)|dt <3/m. (6.10)
0

For
6.11)

k= ims q = jm,k = jm,im» r = lm,k,q = lm,imaj;n,im’
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set
Ym = (/)Z’r
and define
Qo = (K nuly? nmery.
i=1m=>i

In the following, we prove that i, satisfies (R1) and (R2), while keeping in mind
(6.5). The claim for (R1) is obvious. For (R2), it is easy to see Q29 C K, % Q, so we only
need to prove that

(v ®Q)(RQp) =0, (6.12)
T
lim [Ym(t,z,w) —@(t,z,w)|dt on (z,w) € Q. (6.13)
m—0oQ 0

We use convention (6.11) to get

o0
(kNI ey 7 Qo ask — oo,

m=i

and so, by (6.7)-(6.9), forevery i € N,

v & Q)5 = v e Q(((irk ke nmkery))

m>i

<Y (v ®QUN) + (v @ QUIEN)) + (v ® Q)UITG")))
S 3
<> — (6.14)

3
[

Since Y o, 3/m? — 0 asi — 00, (6.12) is proved.
Next, we prove (6.13). Fix (z, w) € Q¢. Then, using (6.11) again, there exists iy € N
such that

o0
(z.w) € ({5 NI N HIGT)
m=ig

Thus by (6.10),

T
/ |[Vm(t, z,w) — o(t,z,w)|dt <3/m forallm > ij. (6.15)
0

Hence (6.13) follows, and thus (R2) holds. Consequently, the proof of Lemma 6.1 is
complete. ]

Fix ¢ > 0 and ¢, € Ay, and set ¥, = 1/¢,. In view of the definition (5.18) of Ap, it
is easy to see that ¥, € Ap. In particular, there exists n € N such that

Velt,z,w) € [1/n,n] if (t,z,0) € [0,T] x K, x Q,
where K, is a compact subset of Z from (5.17) and

Velt,z,0) =1 if(t,z,0) € [0,T] x KE x Q.
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Combining this with the fact that v(K},) < oo, we infer the following four assertions,
grouped for convenience in Theorem 6.1.

Theorem 6.1. In the framework introduced above, the following hold:
(S1) The process A (Ye), t € [0, T, defined by

M (Ye) = eXP(/ log(s(s,z)) N(ds,dz,dr)
(0,¢]1xZx[0,6— L g (s5,2)]
+/ (=Ve(s,z) + Dv(dz)ds dr)
(0,t]1xZx[0,6~ L e (5,2)]
= exp(/ log(¥e(s,z))N(ds,dz,dr)
(0,6]x K x[0,e~Log(s,2)
+ / (—VYe(s,z) + Dv(dz)ds dr), t€[0,T], (6.16)
(0,t]xKp %[0, 1 pg(s,2)]

is a G-martingale on (Q,9,G, Q).

(S2) The formula
P10) = [ MyaQ. 0e9,

defines a probability measure on (Q,9).

(S3) The measures Q and P are equivalent.

(S4) The laws on Mt of the following two random variables are equal: (i) eN eloe
defined on (2,94, G, PL) and (i) eN* ' defined on (2,9, G, Q).

Recall that the two processes appearing in (S4) were introduced in (5.1).

Although Theorem 6.1 is a “standard result” (see for instance [44, Theorem II1.3.24]
for semimartingales and [7, Theorem 3.10.21] for Poisson point processes), it seems hard
to find an accessible reference which would work under our conditions. Therefore, we
give a detailed proof.

Proof of Theorem 6.1. Since assertion (S2) is implied by (S1), we only prove (S1), (S3),
and (S4). We divide the proof into three steps.

Step 1. Assume that @, is a step process (see Lemma 6.1), i.e., there exist [, ny,...,n;
€ N, a partition
O=tgy<ti<---<t; =T,

[1/n, n]-valued random variables
Sijv i=1,...,l,j=l,...,n,-,

such that &;; is %Fl -measurable, and, foreachi = 1,...,/, a disjoint measurable partition
{E,-j};”=1 of K, such that for all (¢,z,w) € [0, T] x Z x ,

l n;
0e(t.2.0) = Liy() + Y > Ly (OEj (@)1, (2) + Lgg (2)Lo,71(0).
i=1j=1
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Then, for any O € HB(Z), we have

N&'9(T, 0) = N "% (11, 0)

17 [ee]
= / / f ]l(o’e—lwg(s’z)](r) N(ds,dz,dr)
o JoJo

= N9 (1_4, 0)

171 e}
—+—/ / / ]l(o,r](ps(s,z)](r) N(ds,dz,dr)
tj—1 JONKS Jo

n 17 [ee]
+> / / / (0.1 g (5,27 (r) N(ds, dz, dr)
j=1 t;—1 JONE;; JO
= N* ' (4_1, 0)

t e}
n / / / 1oe—17(r) N(ds. dz. dr)
tl] ONK§ JO
o0
+ / / [ Toe—1g.1(r)N(ds,dz,dr).
Z OﬂE]] 0 (0’8 ]E]j]

Moreover, for the process .#; () defined in (6.16), we have

ME(Ye) = exp(/ log(V:(s,2)) N(ds,dz,dr)
0,T]1xZx[0,6~ L (s,2)]
+ / (—Ye(s,z) + 1) v(dz) ds dr)
(0,T1xZx[0,6 L e (s,2)]
= exp(/ log(V(s,z))N(ds,dz,dr)
0,T1x Ky, x[0,67 L ge(s,2)]
+ / (—Ve(s,z) + D v(dz)ds dr)
(0,T]xK;; x[0,6= 1 pe(5,2)]
= exp(/ log(V:(s,2)) N(ds,dz,dr)
0,t7—11xKn x[0,67 1 g (5,2)]

+ / (=Ye(s,z) + 1) v(dz)ds dr)
(0,27 11x Ky x[0,6 19 (5,2)]
n; 1
-exp( |:/ / / log(—) N(ds,dz,dr)
; -1 .1 VE;; J(0,e71E5] €1
/ / [ (—— + 1) v(dz)ds dri|)
-1, 1 JEr; J(0,e71E5] €1
=M  (Ye)- exp( [/ / / log(—) N(ds,dz,dr)
- Z -1 .1 VE;; J(0,e71E5] €1
/ / / (—— + l) v(dz)ds dri|). 6.17)
-1, VE;; J(0,67 1] €1
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Hence, for any £ € R, we have

EQ(¢V-TENT (T0) . zrs (y,))
Qe
= B[N OO g |4,
o1 e e
— EQeVTTENT W10 e (y) Y (sE )], (6.18)

where Y = Y(;;€,1;,_1, t7) is defined by

Y(9 Ev tls tl—l)
171 [ee]
=EQ (exp(«/—l g(/ / / L —17(r)N(ds.dz, dr)
t;—1 JONKS Jo ’
nj 00
+ / / / Loe16,,1(r) N(ds,dz,dr)))
; (tl—lstl] OﬂEl_l’ 0 ©.c glj]
nj 1
-exp(z [/ / / log(—) N(ds,dz,dr)
j=1 LY @—1.t] JEj 0,671¢;5] €1
1
~|—/ / / (——~|—1) v(dz)dsdr]) ‘ %1_1).
(tr—1.t1] VEp; (0,67 18] Elj
By assumptions, each §;;, j = 1,...,ny,is %;,_,-measurable, so by the properties of

the conditional expectation, we infer that, Q-a.s.,

Y(a)’ é,-:’ 1, tl—l) = K(Cl),ég:, é]l(a))’ EIZ(Q))’ ) Eln; (Cl)), 1, tl—l)

where a random variable K(w, §, a1, a2, ...,an,,t,t—1) is defined by

K(. & ar,az,....an,.1.111)

171 [ee]
=EQ (exp (v—l é(/ / / Le—17(r)N(ds,dz,dr)
tj—1 JONKS Jo
n; 00
+ / / / Toe~14,1(r) N(ds,dz,dr)))
; (t—1.41 JONE;; JO © 2
-exp(z [/ / / log(—) N(ds.dz,dr)
j=1 LIl JE;j J (0,670 a)] aj
1
~|—/ / / (——~|—1) v(dz)dsdr]) ‘ %11).
(—1.t1 VE; J(0.67 a1\ 4
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Note that for any positive constants ay, az, . .., an,, we have the identity

K(. & ar,az,....an,, 1. 11—1)

= eXp(Z(tl —ti—1)v(E;)e a; (_i + 1))

j=1

\EQ (exp(“/_é(/ /och/ Lo e—17(r) N(ds,dz,dr))))
'EQ(CXP(Z(‘/_E +10g( 1 ))
j=1
‘/(.’ t]/OmE -/(; Li.e~1a;1(r) N(dS,dz,dr))

n; 1 00
.]E@(ex ( lo (—)/ f / Lot (r)N(ds,dz,dr))
b ; & 4j ) J@—1.u1J0°nE;; Jo O]

= exp((t; — t1-1)v(0)e ™ [V —1]).
Summing up, we infer that for w € 2, Q-a.s., we have
Y E.0.021) = exp((t — —)v(0)e [V — 1)), (6.19)
In particular, Y(w, 0, 1;,t,—1) = 1, and hence by (6.18),
EQ (A (o) | Giy_,) = M (Y)Y (@.0,1.11-1) = M5 ().
Furthermore, by employing the above argument, we can easily verify
EQ (A (Vo) | %) = M (pe). 1 €[0.T).

This implies that the process {.Z (), t > 0} is a G-martingale on (2.¢,G,Q). Hence
P is a well-defined probability measure.
Inserting identity (6.19) into (6.18), we arrive at

1

EPF (¢VTEN 4 (1.0
= EQ[V-TEN @-1.0) .y e (o)e (t1—t1-1)v(0)e~ eV TTE-1]
By induction, we get
EPF (eﬁéNs_l%(T’O)) = exp(Tv(O)s_l[e‘ﬁIE — 1])

We have proved that if ¢, is a step process, then the law of eN® '¢¢ on (Q.9.G,PE )
is equal to the law of eN® ' on (Q,9.G, Q). The proof of Step 1 is now complete.  m

Step 2. The general case. Let us assume that ¢, € Ap. Then by (5.18) there exists n € N
such that ¢, € Ab n- Hence, by Lemma 6.1, there exists a sequence V¥, € Ab n, M =
1,2,..., satisfying conditions (R1) and (R2) with ¢ replaced by ¢;.
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Applying Step 1 to v, we get
e forany O € #(Z) with v(0) < oo,
EQ (exp(\/—_léNs_l’/’m (T, 0)).45 (%)) = exp(Tv(O)s_l(e“ﬁlS -1),
" (6.20)

o forany0 <t; <t, <T,
1 1
EQ (%ti (E) gtl) = %ti (w—m), Q-H.S. (621)
In order to prove our results, we first prove that there exists a subsequence, for sim-
plicity still denoted by m, such that

lim E© (‘/// (wi) A

m—>0o0

) =0, (6.22)
and, for any O € HAB(Z) satisfying v(0) < oo,
lim E@( sup [N '¥m(r, 0) — N ooy, 0)|) - 0. (6.23)
m—>00 tef0,7]

We have divided the argument into four parts. Recall that Ab,n was defined in (6.1).

Part 1. For any ¢ € Ab,n, we have

T
/ [Y(s,z)|ds <nT for(z,w) € ZxQ, (6.24)
0

and
og
(0,T1xZx[0,6~ 14 (s,2)] (s, z)

)N(ds, dz,dr)

1
+/ (— +1) v(dz)dsdr
(0,T1xZx[0,e= 1y (s,2)] V(s,z)

1
/ log( )N(ds,dz,dr)
0,T1x K x[0,e— L (s,2)] Y(s,z)

1
+/ (— +1) v(dz)dsdr
(0,T1x K, x[0,6 1 (s,2)] W(S»Z)

logn N(ds,dz,dr) + (n+ Dv(dz)dsdr.

<
./(O,T]xKnx[O,sln] (0,T]x K, x[0,6—1n]

(6.25)

It is easy to see that, since v(K,) < oo,

IEQ(exp(/ logn N(ds,dz,dr)
(0,T]xK;, x[0,e—1n]

+ f (n+ Dv(dz)ds dr)) <oo. (6.26)
(0,T1xK;; x[0,e—1n]
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By inequality (6.24), we have

T
/ [V (s,2) — @e(s,2)|ds < 2nT, (z,0) € Zx Q. (6.27)
0
Part 2. The following inequality holds:

EQ( sup [N, 0) = N*'% (1, 0)])
t€[0,T]

t e ln
= ]EQ( sup / / [ (]l[o,gflv,m(s,z)](r) — 1[0,871¢5(S,Z)](r)) N(dS,dZ,d}")
tef0,T11/0 JO JO
T e ln
([ [ [ Moetvnon® = Toatp @)1 N, dz,d)

T e~ 1ln
EQ( /0 /0 ano |n[o,g—1¢m(s,z>]<r)—n[o,e—lwg(s,z)](rndrv(dz)ds)

T
<EQ (/ / e Ym (s, 2) — (s, 2)| v(dz) ds). (6.28)
0 oNnk;,

)

IA

Part 3. The following inequality holds:

1
| () anasa
O.T1xZx[0.6~ (s, )]\ ¥m (S, 2)
I (5
0. T1xZx[0,6~ pe(5,2)] \ P (8, 2)

1
/ (—— + 1) v(dz)dsdr
(0. T]xKnx[0,6~ 1 yrm (5,2)] \ V¥m (s, 2)

1
/(O,TlxKnX[O,slwe(s,Z)]( Ps(s.2)

1
tocvaien 5+ 1)

+ 1) v(dz)dsdr

+ 1) v(dz)dsdr

\/(\O,T]XK;/’ x[0,6—1n]

—Ljo,e~10. 5,201 (") (— + l) v(dz)dsdr

Pe(s,2)

=< f [Lio,e=1 (5,291 (7)) — Ljo,e~10. (5,201 (P V(d2) ds dr
(0,T]xK; x[0,e—1n]

1
+/ Lo o—1 (r) =1 -1 (r)|———v(dz)dsdr
(0.TTx Ky x[0.6] (0,67 Y (s5,2)] (0,671 s (s,2)] Y (s, 2)

v(dz)dsdr

1
+ / Tpo.e-14, (r)’ —
(0,T1xK;; x[0,671n] (0,671 0e s.2)] Ym(s.2)  @e(s,2)

< 8_1(1 +n+ n3) |Um (s, 2) — @e(s, 2)| v(dz) ds. (6.29)
0, T]xKp
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Part 4. Using arguments similar to those used in Parts 2 and 3, we have

IEQ( sup
t€[0,T]

1
/ log(—) N(ds,dz,dr)
(OA1XZX[0,6~ Y (5,2)] Vm(s, z)

)N(ds,dz,dr)

)
)

)'N(ds, dz, dr))
Ljo,e=1y, (5,201 () 10%(

1
- ]l[O,s—lfpg(s,z)] (r) log((pg (s Z))

8_1CnIEQ(/ |[Vm (s, 2) — @e(s,2)| v(dz2) ds). (6.30)
(0, T1xKy,

1
Lol
(0,61xZx[0,6— 1 5 (5,2)] @e(s,2)

1
Lo ey, (r)log (—)
/go,t]x2x[0,s—ln] (0.6 m (s 2)] VYm(s,z)

1
- 11[0,.9*1 0e(5,2)] (r) log ( 0 (S

1
Lio,6= 140 (5,201 (F) log(—)

=EQ ( sup
t€l0,T]

) N(ds,dz,dr)
z)

<5
(0,T1xK; x[0,671n]
=]

(0,T]xK;; x[0,e—1n]

]1[0 e Lo (s, z)](r) log(

v(dz)ds dr)

Keeping in mind v(K,) < oo, we combine assertion (R2) from Lemma 6.1, the esti-
mates in (6.27), and Parts 2, 3 and 4. Doing so, and applying the Lebesgue dominated
convergence theorem (DCT), we get equality (6.23), as well as

1
lim EQ( sup / 1og(—) N(ds,dz,dr)
m—00 t€[0,T] [/ (0,61xZx[0,6= 1 ¥y, (5,2)] Ym(s,2)
1
—/ log( )N(ds,dz,dr) ) =0, (6.31)
0,1xZx[0,6 L e (5,2)] Ps(s.2)
and, Q-a.s.,

lim

1
m—>00 V(o,ﬂxmo,s—lwm (s,z)l( Vm(s.2)

1
—/ (— + 1) v(dz)dsdr
(0,T1xZx[0,6~ L @¢(s,2)] @e(s,2)

Let us observe that in view of (6.31), there exists a subsequence, for simplicity still
denoted by m, such that Q-a.s.,

+ 1) v(dz)dsdr

=0. (6.32)

lim ( sup
M=%\ tel0,T]

1
/ log(—) N(ds,dz,dr)
(OA1%ZX[0,6~ Y (5,2)] Vm(s, z)

)N(ds,dz,dr)

1
- [ log( ) —0. (633)
(0,61xZx[0,6~ 1 92 (5,2)] @s(s,2)
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Combining (6.32), (6.33), (6.25), (6.26), (6.16), and the definition of .#7(-), and again
employing the Lebesgue DCT, we infer that (6.22) holds.
Having proved (6.22) and (6.23), we are now in a position to prove (S1) and (S4).
Since (S1) can be immediately obtained from (6.22) and (6.21), we now prove (S4).
By (6.23), there exists a subsequence, for simplicity still denoted by m, such that
lim N® ¥m(s,0) = N® % (1,0), Q-as.
m—0o0

Combining this result with (6.22) and Part 1, using the Lebesgue DCT again, we have

'EQ(exp(x/—_ISNel‘”’"(T, 0))///;( ! ))

Yim
< EQ(‘://G(WL) — M7 (@) )
+E®(Jexp(V=TEN® (T, 0)) — exp(V=TEN® V7 (T, 0) |45 (¢2)
1
<£0( | () -0
+E@ (\exp(«/—_léNs_l"’S (T, 0)) — exp(x/—_lSNs_lw’” (T.0))|

-exp(/ 10gnN(ds,dz,dr)~|—/ (n+1)v(dz)dsdr)).
(0,T1x K, x[0,6—1n] (0,T1x K, x[0,6—1n]

Since RHS — 0 as m — oo, we infer, by recalling (6.20), that
IEQ(exp(v—l EN*’_]“’S (T, 0))///7‘3(%)) = exp(Tv(O)s_l(eﬁE — 1))

forany O € Z(Z) such that v(O) < co, which implies assertion (S4). The proof of Step 2
is now complete. ]

—EQ@ (exp(x/—_léN‘Eil%(T, 0)). 45 (¢:))

Step 3. Proof of (S3). We observe that, by (6.16) and arguments similar to those for
(6.25), Q-a.s.,

exp(/ —logn N(ds,dz,dr)
(0,T1x K, x[0,6=1n]
+ / [—(n 4+ D]v(dz)ds dr) < M7 (Ve),
(0,T]xK;, x[0,e~1n]

and

exp(/ logn N(ds,dz,dr)
(0,T1x K, x[0,6=1n]

+/ (n + 1) v(dz) ds dr) > M Ye).
(0,T1xK,, x[0,6—1n]

Using the facts that v(K},) < oo and that f(o,z]xK,,x[o,e—ln] N(ds,dz,dr) only has finite
jumps on [0, T], Q-a.s., we conclude that the probability measures Q and IP7. are equiv-
alent, which is (S3). This completes the proof of Step 3, and the whole proof of Theo-
rem 6.1. ]



Z. Brzezniak, X. Peng, J. Zhai 66

7. Verification of Claim LDP-2

The main result of this section is Proposition 7.1, in which we prove Claim LDP-2. To
this end, we first prove that the process X¢ := 4¢(eN 8_1“’9) is the unique solution of the
controlled SPDE (7.1), given in Lemma 7.1. Then to prove Claim LDP-2, we only need to
prove some a priori estimates and establish the tightness of the laws of the processes X°?,
& > 0, which we do in Lemmata 7.2-7.6. The key to proving Lemma 7.1 is a Girsanov-
type theorem for Poisson random measures, which is formulated within Theorem 6.1.

This section is divided into two subsections. In the second one, we formulate and
prove Proposition 7.1 from which Claim LDP-2 follows. In the first subsection, we prove
Lemma 7.1 and find necessary estimates.

7.1. A representation result and a priori estimates

Fix ug € Vand f € L2([0, T], H). Assume that the control ¢, belongs to the set % (see
(5.19)). Let us consider the following controlled SPDE:

dX%(t) + AX®(t)dt + B(X%(r)) dt

= f(t)dt + s/ G(X:(t-),z2) (N‘Ef]“’s(dz, dt) — e ' v(dz)dt), (7.1)
z
= f@®)dt + / G(X4(t).2)(pe(t.z) — 1) v(dz) dt
z

+e/G(Xs(t—),z)Ns_l‘pf(dz,dt), (1.2)
Z
XS(O) = Uy.

Note that below, in (7.9) for example, we use the second version of the
above equation, i.e., (7.2). We also observe that it is easy to see that the integral
sfé J, G(X?(s—),z2) (N ' (dz, ds) — e v(dz) ds) exists.

Recall the definition of ¢°¢ in the proof of Theorem 5.1 (around (5.15)). By Corollary
5.1 the process

Ut = G°(eN° ) (1.3)

is the unique solution of problem (5.6) on the probability space (2, %, G, Q).

We prove the following fundamental result.

Lemma 7.1. Assuming ¢ > 0, for every process ¢, € Ay defined on (Q,9,G,Q), the
process X¢ defined by 1
X& =9°(eN® %) (7.4)

is the unique solution of (7.1).

Proof. Fix & > 0 and a process ¢, € A defined on (Q, %, G, Q). Define X¢ by (7.4).
Then by assertion (S4) in Theorem 6.1 and the definition of ¢¢, we infer that the process
X¢ is the unique solution of (7.1) on (2,¥, G, IP%), that is,
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(C1) X?is G-progressively measurable,
(C2) trajectories of X® belong to Y7 (V), P%-as.,
(C3) inH, forallt € [0,T], P7-as.,

Xe(r) =u0—/0 AXg(s)ds—/O B(Xs(s))ds—f—/o f(s)ds
+8/[/G(Xs(s—),z) (stl“’g(dz,ds)—s_1 v(dz)ds).  (1.5)
0 Jz

Next, we prove that X¢ is the unique solution of (7.1) on (2,%, G, Q); that is,
(C1-0) X¢ is G-progressively measurable,
(C2-0) trajectories of X ¢ belong to Y7(V), Q-a.s.,
(C3-0) inH, forallz € [0, T], Q-a.s.,

t t t
X°(1) =u0—/0 AXE(s)dS—/0 B(Xe(s))ds+/0 f(s)ds

+ s/t / G(X*®(s—),z) (Ns_l“’f(dz,ds) —e'v(dz)ds). (7.6)
0 Jz

Note that despite the two measures Q and IP7 being equivalent, equality (7.6) does not
follow from (7.5) without additional justification. We provide this justification below. The
proof is divided into two steps.

Step 1. We prove that the process X ¢ satisfies (C1-0)—(C3-0). Obviously, condition (C1)
coincides with (C1-0). In view of (S3), the measures Q and P are equivalent, so condi-
tion (C2) implies (C2-0).

We are now in a position to prove that condition (C3-0) holds as well. Fix n (in view
of the definition (5.18) of Ap). Observe that equality (7.1) can be rewritten as

dX®(t) + AX®(@t)dt + B(X%(t)) dt

= f(t)dt + s/ G(X*(t-),z2) (Ne_l“’g(dz,dl) — & ' v(dz)di)

n

+ 8/ G(X:(t-),z) (Nfl% (dz,dt) — e ' v(dz) dt)
K5

= f(t)dt + 8/ G(X(t-),z2) (Nefl‘pg(dz, dt) — e ' v(dz) di)

+ 8/ G(X%(t-),z2) (Ng_1 (dz,dt) —e 1 v(dz) dt),
K
Xg = Up.

The second equality follows from Proposition 5.2 because @.(s, z, w) = 1 if (s,z, w) €
[0, T] x K¢ x Q.
Thus, we have the following:
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(V1)

(V2)

(V3)

Since v(K,) < 0o, by (S4) there exists ] C Q with PZ(€21) = 1 such that for any

w € Q1, the process {Ns_l"’ﬁ ((0,¢] x Ky), t € [0, T} has only finite jumps. Hence
for any w € €21, the integrals

t 1 t .
/0 /Kn G(X%(s—),z) N® %(dz,ds) and /0 /Kn G(X®(s—),z)v(dz)ds

are well-defined as Lebesgue—Stieltjes integrals.

Similarly, for any m > n, the integrals

|/ e GG 2N 2 ds) and |/ G v ds

are well-defined as Lebesgue—Stieltjes integrals, P7-a.s.

By [42, Chapter II, Section 3, pp. 59-63] and by the definition of the integral
t
/ / G(X®(s—),2) (N ' (dz.ds) — e  v(dz) ds)
o JKg

on the probability space (2,%, G, IPZ), there exist Q2 C Q with P%(S22) = 1 and
a subsequence {my } such that for any w € Q5,

lim /t [ G(X%(s—),z2) (NS_l (dz.ds) —e ' v(dz) ds)
0 JKGNKm,

my —>00

:/t/ G(X%(s—),z2) (Na_l(dz,ds)—e_lv(dz)ds).
o Jkg

Arguing as in the proof of assertions (V1)—(V3), and using the equality

t (o]
N€7l(p5((0, t] X Kn) = /(; /I; /O 1[0,6_1%9(2’&)](") N(dZ,dS,dr)

t e ln
= / / / ]1[0,871(/)5(2,3)](") N(dz,ds,dr),
0 JK,; JO

we infer three facts:

(V1-0) There exists Q3 C Q with Q(23) = 1 such that {Ne_l‘/’g((o, t] x Ky), t €

[0, T]} has only finite jumps for any w € Q3. Hence for any w € Q3,
Jo Jx, G(X?(s=).2) N¥'9:(dz. ds) and [y [, G(X®(s—).z) v(dz) ds are
well-defined as Lebesgue—Stieltjes integrals.

(V2-0) For any m > n, the integrals fé ngme G(X®(s—), z) N¢ '(dz, ds) and

fé fK;me G(X®(s—),z) v(dz) ds are well-defined Q-a.s. as Lebesgue—Stieltjes
integrals.

(V3-0) By the definition of

/Z / G(X®(s—),2) (N ' (dz,ds) — e  v(dz) ds)
0 JK§
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on (2,9,G,Q), there exist Q4 C  with Q(24) = 1 and a subsequence of {my }
from (V3) (for simplicity still denoted by my ) such that for any w € Q4,

lim /t/ G(X¢(s—),2) (N* ' (dz,ds) — " v(dz) ds)
0 JKENKm,

= /t/ G(X*(s—),z) (Na_l(dz,ds) — & ' v(dz) ds).
o Jkg

By (C3) and (V1)—(V3), there exists 25 C € such that P%(S25) = 1 and, for any o € Qs,

— lim /t/ G(X4(s—),2) (N ' (dz,ds) — " v(dz) ds)
0 JKZNKm,

mpy —>00

= Xs(t)—u0+/0 AX(s) ds+/0 B(X°(s)) ds—/o f(s)ds
—8/ / G(X®(s—),z) (N® % (dz,ds) — ¢ ' v(dz)ds) inH.
0o JK,

Since, by assertion (S3) in Theorem 6.1, the measures Q and P, are equivalent, we
deduce that Q(ﬂi5=1 ;) = 1. Moreover, since by (V1) and (V1-0) the right side of the
above equality is pathwise well-defined for w € €21 N Q3, we infer that for any w €

ﬂiS:l Qi,

mpg—>00

! 1
— lim / / G(X®(s—).z) (N® (dz,ds) —e ' v(dz) ds)
0 JKZNKm,
:Xg(t)—uo—i-/ AXg(s)ds—i-/ B(Xe(s))ds—/ f(s)ds
0 0 0

- E/Z / G(X*(s—),z) (Nf]"’g(dz, ds)—e'v(dz)ds) inH.
0 JKj,

Combining this last equality with (V3-0) completes the proof of claim (C3-0) and of
Step 1.

Step 2. We prove that the solution of (7.1) on (Q,%, G, Q) is unique. Assume that ¥ ¢
is another solution of (7.1) on (S_Z, 94,G,Q), that is, (C1-0)—(C3-0) are satisfied with X*
replaced by Y°. By arguments similar to those for Step 1, Y¢ is a solution of (7.1) on
(2.9.G, P%), and the uniqueness of solution to (7.1) on (8_2, ¥, G, Py) implies that
Y? = X° PZ-as. Since the measures Q and P% are equivalent,

Yé = X% Q-as.
Thus the proof of Lemma 7.1 is complete. ]

Now we give some a priori estimates to be used later. For simplicity, EQ will be

denoted by E. Recall that the norm || - ”%V‘ﬂ (qo.77.v) Was introduced in equality (5.20).
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Lemma 7.2. For every N € N, there exist constants Cy > 0 and ey € (0, 1], and for
every a € (0, 1/2) there exists a constant Co,n > 0 such that for every process ¢, € wyN
and every € € (0, en], the process X ¢ defined by (7.4) satisfies

T
E( sup X1 + | ||X€<z>||%dr) < Cw. a7
t€l0,T] 0
E(”Xa”%/;/a.Z([O’T]’V/)) = Ca,N~ (78)

Proof. Fixe >0, N € N, and ¢, € . Let X¢ be defined by (7.4). By Lemma 7.1, this
process is the unique solution of (7.1) on (Q,%, G, Q).
Therefore, we can apply the Itd formula to deduce that

XSOF 42 / 1X5)]13 ds
0

= Juol? +2 /0 A F(5). XE(5))y ds
—+—2/0 /Z(G(Xs(s),z),Xs(s))H(gog(s,z)— ) v(dz)ds
+ 28/(: /Z(G(Xa(s—),z), XE(s—))u N¢ ' (dz, ds)
+ &2 /Ot/Z|G(X‘S(s—),z)|12{ N0 (dz, ds)

< uol2 + /0 1XE)I3 ds + /0 1 )2 ds
+2/ (1 +2|X8(s)|%>/L3(z)|¢e(s,z)— 1| v(dz) ds

0 Z

t
+zs/0 /Z(G(XS(S—),Z),X'S(S—))H NeTee(dz, ds)

t
+82/ /|G(Xs(s—),z)|12{ N ' (dz, ds). (7.9)
0 Z
Set

Ji(t) = 28/0 /Z(G(Xs(s—),z),Xs(s—))H ﬁe_l%(dz,ds)

t
Ja(t) == 82/ / |G(X4(s—), 2)|} Nafl‘/’f(dz,ds).
0 Jz
Applying Gronwall’s lemma and (B.2), we get
T
sp X+ [ 1X 1R d
t€l0,T] 0

T
scN(|uo|ﬁ+/ I £ ds+ 1+ sup |Jl(t)|+Jz(T)). (7.10)
0 tef0,T]
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The Burkholder—Davis—Gundy inequality implies that
1/2

E( sup 11(1)]) = CoE( /O ' | X GRIG0 6-).2)f N e a2, ds)

t€[0,T]

<& E( sup |X°0)1)
t€l0,T]

T
+ CSI/Z]E (/0 (1 + |X8(S)|]%I)/;L§(z)(p8(s,z) U(dZ) dS)

< cN81/2E( sup_ |X5(t)|%[) + Cye'2. (7.11)
t€l0,

To deduce the last inequality above, we use the fact (see [15, Lemma 3.4, (3.3)]) that for
any fixed 3 € 2 N L?(v) (for the definition of J7Z, see (5.9)),

N = sup / / 3%(2)(k(s,z) + 1) v(dz) ds < oo. (7.12)
keSN
Asin (7.11), we get
E(2(T))) < Cwe + CeE( sup [X°ORR). (7.13)

t€[0,T]

Substituting (7.11) and (7.13) into (7.10), and then choosing ey > 0 small enough, we
get (7.7). Using the arguments that prove [66, (4.67)], we infer (7.8). This completes the
proof of Lemma 7.2. |

Let us define a stopping time 7 pr by2
t
TeM ‘= inf{t >0: sup |X*(s)[F +/ [ XE(s)13 ds > M}, M>0. (7.14)
s€[0,¢] 0

Before we continue with our estimates, let us state the following simple but useful
corollary from the previous result and the Chebyshev inequality.

Corollary 7.1. In the framework above, we have
Qtem <T)<Cy/M, M >0,
Q(”X’S”%‘/a,Z([O’T],V/) = R2) = Ca,N/RZ, R, M > 0.

We have the following estimate.

(7.15)

Lemma 7.3. Forall N € N and M > 0, there exist constants Cn p > 0and ey y € (0,1]
such that for every process g, € %™ and every ¢ € (0, eN,M], the process X ¥ defined by
(7.4) satisfies

TAtem
sup E( sup ||X8(t/\rs,M)||\2,+/(; ||X8(s)||2@(A) ds) <Cnm. (1.16)

e€(0,en.01) t€[0,T]

%In fact, this stopping time depends on X ¢ so it depends on both & and . Hence, it should be
denoted txes pr OF Ty, ¢ M- Since these two are cumbersome, we decided not to use them. In the
same vein, X ¢ should be denoted by X*%¢, but we use the simpler notation.
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Before we give the proof of Lemma 7.3, we record the following result which is
immediate from Lemma 7.3 and the Chebyshev inequality.

Corollary 7.2. In the framework above, for all M, R > 0,

Cnm
=

T
Q(‘L'S,M >T, sup | Xe(t)||% + / IXE 20 ds = R2) < (7.17)
0

t€l0,T]

Proof. Notice that topr > T iff T A tepr = T. Thus, if 1, 0 > T thent A 7oy =t for
allr €0, T]. [ ]

Proof of Lemma 7.3. We argue as in [13, proof of Lemma 7.3]. By the It6 formula and
Lemma 2.1, we have, for all ¢t € [0, T,

5 IATe, M N
1X5 A tonn) I + 2 [0 1X )1 g ds
tATe, M INTe, M
= luoll? — 2 f (B(X*(5)), AX*(s))u ds + 2 / (£(5). AXE(5))n ds
0 0
t/\TE.M
+2 [ / WAGXE(5). 2). X5(5))y (@e(5.2) — 1) v(d2) ds
0 Z
INTe, M ~ 1
+28[ f\,/(G(X's(s—),z),X‘y(s—))v N¢ %¢(dz,ds)
Ot/\TS’M - .
g2 / / 1G(X*(s=). )IZ N (dz. ds)
° t/\rg_ZM IATe, M
< Juoll + /0 IXE(5) 2 ds + C [0 IXE@I4IXE () ds
tNTe M
) / F)12 ds
0
t/\TE.M
) [ (1 + 2] X5(s)[2) / La()lge(s.2) — 1] v(dz) ds
0 Z

= e [ AGE 5.2, X760 B ez a)
+82/0W$’M/Z||G(X€(s—),z)||% N ' (dz, ds). (7.18)
We define
niwy=2s t [ G 50,20 X550y Bz ),
n = t 160,208 Nz,

fort € [0, T].
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By (B.2),

1XE( A a3+ [W&MnXs(s)nz ds
eM)llv o 2(A)

INTe, M
< ||u0||%,+2/ | f()|Fds + S[up]|J1(l/\Ts,M)|+J2(T/\T8,M)+CN
0 te[0,T

+/ v ||X8(s)||%(c||X8(s)||%|xf<s)lﬁ +4/L2(Z)"p*’(s’z) - ”(dz)) @
o zZ

fort € [0, T]. By (B.2) again and the definition of t, 3r, Gronwall’s lemma implies that

INTe, M
sup [ X°(t A zopg) 2 + / 1X 6y ds
t€l0,T] 0

T
2
< MP+Cn (uuou% +2 /0 FOds-+ sup 116 AT+ S0 A o) + CN)
tefo,
(7.19)

fort € [0, T]. Similar to (7.11) and (7.13), we get

]E( sup |J1(t A ‘L’g,M)|) < CN£1/2]E< sup || X°(t A rs,M)llf,) + CNSI/Z, (7.20)
t€[0,T] t€[0,7T]

and

E( /(T A tem)l) = Cne + CyeE( sup X7 Azep)R). (721)
t€l0,T]

Substituting (7.20) and (7.21) into (7.19), and then choosing en,3s > 0 small enough, we
get (7.16). [

Our next result is a tightness result.

Lemma 7.4. Forevery N € N, for any fixed subsequence {& }reN such that e — 0, and

for every U N -valued sequence ¢, , the laws of { X * }ren are tight on the Hilbert space
L2([0.T]. V).

Proof. Assume that N € N. Fix n > 0, and choose M > 0 such that
Cn/M < /2,

where Cy is the constant of Lemma 7.2. Let ¢y and e,p be as in Lemmata 7.2 and 7.3.
Without loss of generality, we can assume that ¢ € (0,ex A ey ar) forall k € N.
Fix an auxiliary number « € (0, 1/2). Since the embedding Z(A) C V is compact, by

[35, Theorem 2.1] the embedding

A = L%([0, T], 2(A)) N W*2([0,T], V') — L?([0, T], V)
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is also compact. Define

T
lels = [ Nl dr + Iglmsqomyy & A

Choose R > 0 such that
2Cnp +2Cun 7

R2 2’
where the constants C,, y and Cy, s are those that appear in Lemmata 7.2 and 7.3.
Since the set
Kr={geA:|glla =R}

is relatively compact in L2([0, T], V), it is sufficient to show that
Q(X°® ¢ Kr) <n forall k.
Indeed, by Lemma 7.2 and Corollaries 7.1 and 7.2 , we infer that
QX* ¢ Kr) = Q(te,m < T) + Q(te,m = T) N (X** & KR))

- O 2Cvm +2CeN
- M R?

Using arguments similar to those proving [66, Lemma 4.5], we get

Lemma 7.5. There exists 0 > 1 such that for every N € N, for any fixed subsequence
{ex ken such that e — 0, and for every % ™ -valued sequence Qs> the laws of { X % Jpen
are tight on the Skorokhod space D([0, T], 2(A™9)).

Next, consider a family ¢, & € (0, 1], of % N -valued processes, for some fixed N € N.
For each ¢, let Y'¢ be the unique solution of the (auxiliary) stochastic Langevin equation

t t
Yé@r) = [ AY?®(s)ds + 8] / G(X%(s—),z2) Nelee (dz,ds). (7.22)
0 0o Jz
In this situation, we have the following.
Lemma 7.6. In the above framework, if n > 0, then
T
i s IFOR+ [ I ORwds =) =0 02
>0 \sef0,7] 0
Proof. Fix n > 0. Suppose we have proved that for every M > 0,

T Ate, m
E( swp Vol + [ ||Y8<s)||2@(A)ds)sechN,M, 6 (0, enpr).
t€[0,T Ate, pr] 0
(7.24)

where the stopping time 7 ps is defined in (7.14) and Cy s and ey ps are as in Lemma
7.3. Then we can conclude the proof as follows.
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First, we set

T
Ay = {a) eQ: sup |YED)|? +/ ||Y£(s)||2@(A) ds > r]}.
t€l0,T] 0

Hence, by Lemma 7.2 and (7.24), forall M > O and € € (0, en,m),

QAy) =Qrem <T)+QUre,m =2 T) N Ay)
Cy  eCnCyum
=yt

3

which, by a standard argument, implies (7.23).
Thus, we only have to show inequality (7.24). Let us fix M > 0. By the It formula,

1Y@ 242 /0 175 (5)112 00, ds
! ~ —1
= 25/0 /Z\,/(G(Xg(s—),z),Y‘g(s—))V N® % (dz,ds)

t
Hzf / IG(X5(s—), 2)IZ N° ¥ (dz, ds).
0 Z

By Assumption 5.1 and (7.12),

TAte,m
a7 [160ceo. 2l 8z )

T/\rg_M

< ([ [160e e 2l 2y via ds )
TAte,m

< %E ( [ [as i oR e v ds)
0 Z

fsCNIE( sup ||X5(t)||%,) +eCy.

tel0,T Ate, pr]

Applying the Burkholder—-Davis—Gundy inequality and (7.12) again, we get

281@( sup /Ot/ZV/(G(XE(S—),Z),Ye(s—))V ﬁf‘%(dz,ds)))

te[0,T Ate p]

T/\TS,M 1 1/2
feCE( [ [i6ecsa vk 8o @z ds) )
0 V4
1 T/\‘L'S'M
<58 sw rroR)eece( [ [160e0. 0B v s )
te[0,T Ate, ] 0 Z
<

1
SE( s IOR) +eCnE( sip IXT0IR) +eCw.

tel0,T Ate, pr] te[0,T Ate, mr]

Combining the above three estimates and Lemma 7.3, we deduce (7.24). [
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7.2. The second continuity lemma

This subsection is devoted to proving Claim LDP-2 formulated in the proof of Theo-
rem 5.1. We need the following result.

Proposition 7.1 (The second continuity lemma). Let ¢, ¢ € % be such that ¢, con-
verges in law to ¢ as &, — 0. Then the processes 4" (e, N 8"_1“’”1) converge in law on
Y7 (V) to the process 9°(¢).

Proof. Fix a natural number N, a sequence &, such that &, — 0, and a % N _valued
sequence {¢;, }neN, such that ¢, converges in law to ¢ for some ¢ € V.

By Lemma 7.1, the process
X3n = gsn (anEn_l(Psn)

is the unique solution of problem (7.1) with ¢ and ¢ replaced by ¢, and ¢,, respectively.
Recall that the process Y¢, for ¢ > 0, was defined in (7.22).
By Lemmata 7.4-7.6,

(1) the laws of the processes {X®"},cn are tight on L2([0, T], V) N D([0, T], Z(A™9));
(2) the sequence {Y®"},eN converges in probability to 0 in Y7 (V).
Set

I'r = [L?([0,T]. V) N D([0,T], Z(A™2)] ® Tr(V) ® SV.

Let (X, 0, ) be any limit point of the tight family {(X*",Y?®", ¢.,)}nen. By the Sko-
rokhod representation theorem, there exists a stochastic basis (Ql, Fl, ]P’l) and, on this
basis, I'7-valued random variables (X1,0, 1), (X7, Y/, ¢}), n € N, such that

(a) (X1,0,¢1) has the same law as (X, 0, ¢);
(b) forany n € N, (X{,Y]", ¢}) has the same law as (X*7,Y®", ¢;,);
(©) limyooo(XT, Y, 07) = (X1,0,¢1) inI'7, Ploas.
Because equations (7.5) and (7.22) are satisfied by the processes (X", Y ®", ¢,, ), we infer
that (X7, Y[, o) satisfies
t t t
X O-10 =~ [ Ao =70 ds [ Bt + [ fods

t
+/ /G(Xf’(s),z)(q){‘(s,z) —v(dz)ds, t€][0,T]. (7.25)
0 Jz
Hence, by deterministic results and (b), we conclude that

PYX] —Y{" € C([0,T]. V) N L*([0, T], Z(A)))
=Q(X* —Y*® € C([0.T],V) N L*([0.T], 2(A))) = 1.

Since

T
lim( sup [|[Y{H() |13 + / DL dS) =0, Plas., (7.26)
n—=>0\¢0,7] 0
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by applying arguments similar to the proof of Proposition 5.3, we can show that (X1, ¢1)
satisfies

Xl(t)=uo—/0 AXl(s)ds—/O B(Xl(s))ds—i-/0 f(s)ds

t
+/0 [ZG(Xl(s),Z)(fpl(s,z)—l)v(dz)ds.

The maximal regularity property of the solutions to the deterministic 2D Navier—Stokes
equations, taking into account Lemma B.1, imply that, Plas.,
X1 € C([0,T], V) N L?([0, T], Z2(A)).
By (7.26) and (c), using arguments as in the proof of (5.36), we get
T
lim< sup || XT(t) — X1()|Z + / | X7 (s)— Xl(s)||29(A) ds) =0, Plas.
n=>0%¢[0,T] 0

Hence, by (5.16), which is the definition of ¢°, X®" converges in law to ¥°(¢), which
implies the desired result. u

Appendix A. Poisson random measures

Recall the following definition, which is taken from [42, Definition 1.8.1]; see also [10].

Definition A.1. A time-homogeneous Poisson random measure on Y = Z x [0, 00) (i.e.,
a Poisson random measure on Y7 = [0, T] x Z x [0, 00)) over the probability space
(2,9,G, Q) with intensity measure Lebjp 71 ® v ® Lebjg ) is a measurable function

n:(Q.9) — .#(Yr) =Mr
satisfying the following conditions:

(1) for each U € Z([0, T]) ® B(Y), n(U) := iy on: Q — N7 is a Poisson random
variable with parameter* En(U);

(2) nisindependently scattered, i.c.,if the sets U; € Z([0,T]) @ A(Y), j =1,...,n,are
disjoint, then the random variables n(U;), j = 1,...,n, are mutually independent;

(3) forallU € (YY) and I € %([0,T)),
E[n(I xU)] = (Lebjo,r1 ® v ®Lebjo,oc))({ xU) = Lebyo,71(1)(v ® Lebjg,00)) (U );
(4) foreach U € #(Y), the N-valued process
(0,00) x 2 3 (¢,w) = n(w)(U x (0,¢])

is G-adapted, and its increments are independent of the past, i.e., the increment
between times ¢ and s with # > s > 0 is independent of the o-field ¥;.

3N := N U {0} U {co).
4If En(U) = oo, then obviously 7(U) = oo a.s.
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Similarly, we have

Definition A.2. A time-homogeneous Poisson random measure on Z (or Poisson ran-
dom measure on Z7 = [0, T'] x Z) over the probability space (2,%, G, Q) with intensity
measure Lebpg 71 ® v is a measurable function

n:(Q.9) — M (Zr) = Mr

satisfying the following conditions:

(1) for each U € #([0, T]) ® #(Z), n(U) := iy on: 2 — N is a Poisson random
variable with parameter En(U);

(2) nisindependently scattered, i.e., if the sets U; € ([0, T]) ® #(Z), j =1,...,n, are
disjoint, then the random variables n(U;), j = 1,...,n, are mutually independent;

(3) forall U € #(Z) and I € £([0,T)),
E[n(I x U)] = (Lebp,r1 ® v)(I x U) = Lebyo 71(I)v(U);
(4) foreach U € Z(Z), the N-valued process
(0,00) x 2 3 (1,®) = n(w)(U x (0,1])

is G-adapted, and its increments are independent of the past, i.e., the increment
between times ¢ and s with ¢ > s > 0 is independent of the o-field %;.

Appendix B. Proof of Lemma 5.1

This section is devoted to the proof of Lemma 5.1, which, for the convenience of the
reader, we state again.

Lemma B.1. Assume that N € N. Then, forallug €V, f € Lz([O, T),H), and g € SN
there exists a unique solution ué € C([0, T], V) N L2([0, T], Z(A)) of problem (5.11).
Moreover; for any p, R > 0, there exists a positive constant Cy = Cy p g such that
for every g € SN and all ug € V and f € L?([0, T], H) such that |uollv < p and

I/ z2qo,rmy < R

T
sup [t )1 + [ It ()1 i = Cov. (B.1)
t€[0,T] 0

Proof. Fix N e N,ug €V, f € L2([0,T],H), and g € SV. Define an auxiliary function

F(t,y) = LG(y,Z)(g(l,z) —1)v(dz), t€][0,T],yeV.
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By Assumption 5.1, forall ¢ € [0, T], # > 0, and y, y1, y2 € V with || y1|lv V |y2llv < #,
IF @, y1) = Ft, y2)lly < / La@)lg(t, 2) — 11v(d2) lly1 = 2llv,
1yl < / La(@)lg(t,2) = 1| w(dz) (1 + 1),
1F 7)< /Z Ls()lg(t.2) — 11v(d2) (1 + [y ).

By [15, Lemma 3.4],

T
Ci,N := max sup / /L,-(z)lg(t,z) —1|v(dz)dt < o0, (B.2)
l=2,3g€SN 0 7

and, for every 7 > 0,

T
Cy N 1= sup / /Lh(z)|g(t,z) —1|v(dz)dt < oo. (B.3)
0 Jz

geSN

Combining the above five inequalities and using an argument similar to those for The-
orems 4.1 and 4.2, we can deduce that there exists a unique solution u& € C([0, T],V) N
L%([0, T], 2(A)) of equation (5.11).

Now we are ready to prove (B.1). We begin with a priori estimates in the space H.
Note that we only use the assumption “Linear growth in V”” and “Linear growth in H” in
Assumption 5.1 to get (B.1). By Assumption 5.1 and the Lions—Magenes lemma, we have

t
WE O + 2 [0 s ()2 ds
t t
= luof2+2 /0 (F(s) w8 (5))ir ds +2 /0 [Z (G® (s). 2).u® (5 (s. 2) 1) v(dz) ds
t t
< luol2+ fo 4 ()12 ds+ /0 1 £ )13 ds
t
+2/ (1+2|ug(s)|§)/L3(z)|g(s,z)—1|v(dz)ds.
0 Z
Hence,
t
WE @) + /0 u® ()2 ds
T T
< uol? + /0 1£)]12 ds +2 /0 /Z Ls(2)lg(s.2) — 1] v(d=) ds

' g (|2 _
+4/0 |u (s)|HLL3(Z)|g(s,z) 1| v(dz)ds. (B.4)
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By applying Gronwall’s lemma, we get

T
sup ¥ (1) + [ 1u® ()12 de
t€[0,T] 0

T T
< (loff+ [ 17 ds +2 [ [ La@lets.) = 11 s
Y 0o Jz
ot fL3@)g(s.2)-11v(dz)ds

Applying (B.2), we get
T
sup ( sup [u®(t)|% +/ ||ug(l)||%,dt) < Ky H < o0. (B.5)
geSN \r€[0,T] 0

Now, by Assumption 5.1 and [59, Lemma III.1.2], in the space V we have
t
O3 +2 /0 e ()12, s
t t
= luoll? +2 / (Bu® (s)), Auf (5)) ds + 2 / (£(5), Au® () ds
0 0
t
+ 2/ / viGW(s),2), ub(s))y(g(s,z) — D v(dz) ds
0 Z
t t t
< Juol2 + /0 ¥ ()12, s + C /0 e )[4 1 () 2 ds + 2 /0 f)[2 ds
t
12 / (1 + 2u ()2) / L2(2)|g(s.2) — 1] v(d2) ds. (B.6)
0 V4
Hence, we find that
t
e ()]13 + /0 e ()12, s
T T
< ||uo||%+2f /() ds +2/ /L2<z)|g<s,z)— 1) v(dz) ds
0 0 V4
t
+ /0 ||ug<s)||%(c||ug(s)||%|ug(s)|ﬁ +4 /Z Lr(2)lg(s.2) — 1] v(dz)) ds.
Therefore, by applying Gronwall’s lemma, we deduce that

T
sup [u® ()13 + / e ()2 ) ds
t€[0,T] 0

T T
< (ol +2 [ 1r@Ras 2 [ [ Lalets.n - 11vidz as)
0 0 VA
. eClo IWE@IZ s @) ds+4 [g J; L2(2)lg(s.2)=1]v(dz) ds

Thus, in view of (B.2) and (B.5), we know that

T
sup ( sup et @+ [ 1) ds) < Ky < oo
geSN \z€[0,T] 0

This completes the proof of Lemma 5.1. ]
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