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Abstract. The aim of this paper is threefold. Firstly, we prove the existence and uniqueness of a
global strong (in both the probabilistic and the PDE senses) H12-valued solution to the 2D stochastic
Navier–Stokes equations (SNSEs) driven by a multiplicative Lévy noise under the natural Lipschitz
condition on balls and linear growth assumptions on the jump coefficient. Secondly, we prove a
Girsanov-type theorem for Poisson random measures and apply this result to a study of the well-
posedness of the corresponding stochastic controlled problem for these SNSEs. Thirdly, we apply
these results to establish a Freidlin–Wentzell-type large deviation principle for the solutions of these
SNSEs by employing the weak convergence method introduced by Budhiraja et al. (2011, 2013).
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1. Introduction

In this paper, we concentrate on stochastic Navier–Stokes equations (SNSEs), but we
believe that our results can be generalized to other types of stochastic partial differen-
tial equations (SPDEs). Since the seminal work [4] by Bensoussan and Temam, a great
number of papers have been written on SNSEs driven by Gaussian noise. The questions
of the existence and uniqueness of solutions to such equations have been investigated in
many papers; see, for example, [13, 23, 35, 36, 47, 52]. The Freidlin–Wentzell-type large
deviation principle for 2D SNSEs has been proved in [21, 57]. In a recent paper [61],
the authors established the moderate deviation principle for these equations. The ergodic
properties of invariant measures of the Markov semigroups generated by SNSEs (in the
Gaussian case) and related questions have been studied in [8, 34, 39].

However, some real-world models of financial, economic, physical, chemical, and
biological phenomena cannot be well described by Gaussian noise. For example, in some
circumstances, some large moves and unpredictable events can be captured by jump type
noises. In recent years, SPDEs driven by jump type Lévy noise have become extremely
popular in modelling these phenomena.

Much effort has been put into understanding various properties of SPDEs driven by
general Lévy noise. Compared with the Gaussian case, SPDEs driven by pure jump
Lévy processes behave in a drastically different manner. Examples are provided by
(i) the Burkholder–Davis–Gundy inequality – see, for instance, [41,69]; (ii) the Girsanov
theorem – see, for example, [44, Theorem III.3.24] for semimartingales, [7, Theorem
3.10.21] for Poisson point processes, [7, Theorem 3.9.19] for finite-dimensional Wiener
processes, and [22, Appendix A.1.] for infinite dimensions with respect to a cylindrical
Wiener process; (iii) the time regularity of solutions – see, for instance, [43] for OU pro-
cesses driven by a cylindrical Wiener process, [3] on the uniform convergence of random
series in Skorokhod space and representations of càdlàg infinitely divisible processes, and
[9, 48, 49, 54, 55] for OU processes driven by cylindrical pure jump processes; (iv) ergod-
icity – see, for example, [6, 33, 55] for the pure jump case; (v) irreducibility – see, for
example, [27,33,40,55,60] for the pure jump case; and (vi) other long-time properties of
the solutions to SPDEs driven by jump processes – see [19, 20].

In general, the methods and techniques available for SPDEs driven by Gaussian noise
are not suitable for investigating SPDEs driven by jump type noise, and therefore new and
sophisticated tools are needed. We refer to the above-mentioned references and references
therein for more details.

As an example let us consider SNSEs. Under the classical Lipschitz condition on balls
and linear growth assumptions on the noise coefficients, one can prove the existence and
uniqueness of a strong solution in both the probabilistic and PDE senses for 2D SNSEs
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driven by Gaussian noise; see, for example, [36, 47, 51]. However, in order to prove a
similar result for the pure jump case, in the existing literature one is required to introduce
additional conditions on the jump coefficient G (see Remarks 3.2 and 4.2). The reason
for this difference is that the proof of the existence of solutions relies on the use of the
Burkholder–Davis–Gundy inequality for the compensated Poisson random measures for
the exponent p ¤ 2 (see [10, 11, 69]). Similar problems arise in the study of martingale
solutions; see, for instance, [30, 35, 53] and many more recent papers.

A natural approach to proving the well-posedness of SPDEs driven by jump type Lévy
process is to approximate the Poisson random measure N by a sequence of Poisson ran-
dom measures Nn with finite intensity measures. Dong and Xie [28] used this method to
establish the well-posedness of strong solutions in the probabilistic sense for 2D SNSEs
driven by Lévy noise. However, to make this method work, one needs to impose addi-
tional assumptions to control the “small jumps” (see Remark 3.2). Another basic idea
used to prove the well-posedness of SPDEs is based on introducing an appropriate cut-off
and then applying the Banach fixed point theorem for the approximated problems. This
method has been exploited in a recent paper [5] to establish the existence of strong solu-
tions in the PDE sense for 2D SNSEs driven by Lévy processes of jump type. However,
because they relied on the Burkholder–Davis–Gundy inequality with exponent p ¤ 2 for
the compensated Poisson random measure, in addition to the natural Lipschitz and linear
growth assumptions, the authors of [5] had to impose additional and unnatural assump-
tions on the noise coefficient G (see Remark 4.2).

The first aim of this paper is to remove these unnecessary assumptions imposed in [5]
and other papers. For this purpose we employ different ideas and techniques. We use the
cut-off approximation method and the Banach fixed point theorem, used recently by the
first author and Millet [12] and later in [5] to prove the existence of strong solutions in
the PDE sense to a class of stochastic hydrodynamical systems driven by a Lévy process.
Earlier, a similar idea had been used by De Bouard and Debussche [25,26]. However, our
auxiliary equations are different.

Using these auxiliary equations, we are able to remove the atypical assumptions
described above. Our method strongly depends on the cut-off function �m introduced
in (3.12). To achieve our goals, it is crucial to establish new a priori estimates. We believe
that this method can also be used for other systems driven by Lévy noise to weaken the
assumptions and, in particular, eliminate those that are not necessary.

Our second, and in fact, main, aim of this paper is to establish a Freidlin–Wentzell-
type large deviation principle (LDP) for strong solutions in the PDE sense (obtained in
the first part) of 2D SNSEs driven by Lévy processes of jump type.

The large deviation principle for finite-dimensional stochastic differential equations
(SDEs) with a Poisson noise term has been studied by several authors [2, 16, 24]. There
is not much study of the LDP for infinite-dimensional SDEs driven by Lévy processes
of jump type. The first paper was [56] by RRockner and Zhang, where stochastic evolution
equations with additive noise was considered. The case of multiplicative noise was studied
in [15, 16, 58, 64]. The study of the LDP for SPDEs with highly nonlinear terms has been
carried out as well [29, 62, 63, 66, 68]. Concerning 2D SNSEs, it is important to mention
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that Xu and Zhang [63] studied the LDP for these equations driven by additive Lévy noise,
while the recent papers by the third author and collaborators deal with such SNSEs driven
by multiplicative Lévy noise [29, 62, 66]. In all these results, the authors consider strong
solutions in the probabilistic sense.

To prove our results, we use the weak convergence approach introduced by Budhiraja
et al. [15, 17] for Poisson random measures, which has proved to be very effective in the
study of the LDP for finite/infinite-dimensional SDEs driven by Lévy processes [2,15,16,
29,62,64,66,68]. In contrast to the existing results, our main object are strong solutions in
the PDE sense, and hence we need to find new a priori estimates to establish the tightness
of solutions of the perturbed equations; see Lemmata 5.1, 7.2–7.6. We believe that this is
nontrivial.

Finally, let us mention the third aim of our article: the well-posedness of controlled
SPDEs (7.1). Such a result is a basic step in applying the weak convergence approach.
During our study, it has become apparent that although such a result has been used in the
previous literature, e.g., [15, 16, 29, 62, 64, 66], it has never been rigorously formulated or
proven. We fill this gap by formulating Lemma 7.1 and providing a rigorous proof. The
proof heavily depends on a Girsanov-type theorem for Poisson random measures (Theo-
rem 6.1). Although this is apparently a “standard result” (see for instance [44, Theorem
III.3.24] for semimartingales and [7, Theorem 3.10.21] for Poisson point processes), it
seems hard to find an accessible reference in the literature which would work under our
conditions. Therefore in Section 6 we include a complete proof of the version of the
Girsanov-type theorem we need. The Girsanov theorem for the Wiener process states that
the shifted and the original Wiener measures are equivalent if and only if the shift function
belongs to the corresponding Cameron–Martin space. However, in contrast to the Wiener
space case, the Girsanov theorem for Poisson random measures is related to invertible and
predictable nonlinear transformations ([44, Theorem III.3.24] and [7, Theorem 3.10.21]).
These differences lead to many difficulties in proving the variational representation for
Poisson functionals, and therefore in applying the weak convergence method for Pois-
son random measures and the Freidlin–Wentzell-type LDP for SPDEs driven by Lévy
processes of jump type; see, for example, [15–17, 31, 67]. This is also one of the main
difficulties this paper had to deal with. Let us mention that another application of the Gir-
sanov theorem is its use, in combination with the Yamada–Watanabe theorem, in proving
the well-posedness of SPDEs. For instance, see [37] for the case of SPDEs driven by a
Wiener process. However, for applications of the Girsanov theorem in the framework of
SPDEs defined in terms of Poisson random measures, the literature contains only few
results; see for instance, [40], where however no proofs are provided.

The organization of this paper is as follows. Section 2 is to introduce 2D SNSEs. In
Sections 3 and 4, we apply a cut-off and the Banach fixed point theorem to establish the
existence and uniqueness of strong (in the probabilistic sense and PDE sense, respec-
tively) solutions for 2D SNSEs with Lévy noise, under the Lipschitz condition on balls
and linear growth assumptions. We do this for initial data from the space H (Theorems
3.1 and 3.2) and for initial data from the space V (Theorems 4.1 and 4.2). Section 5
is devoted to the formulation of the LDP (Theorem 5.1). This section also contains the
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proof of Theorem 5.1 provided some auxiliary results hold true. Moreover, we prove the
first one of the auxiliary results, the so called first continuity lemma (Proposition 5.3).
The remaining auxiliary results are proven in the following sections. Section 6 contains
a formulation and proof of a Girsanov-type theorem for Poisson random measures (The-
orem 6.1). The last section 7 is devoted to the proof of the second continuity lemma
(Proposition 7.1). The paper also contains two appendices. Appendix A contains neces-
sary definitions related to Poisson random measures. Appendix B is devoted to the last
auxiliary result, i.e., Lemma 5.1.

2. The stochastic Navier–Stokes equations (SNSEs)

We assume that D is a bounded open domain in R2, with smooth boundary @D. Let us
define the following fundamental function space:

V D ¹u 2 W 1;2
0 .D;R2/ W divu D 0 weakly in Dº; kuk2V WD

Z
D

jru.x/j2 dx:

Let H be the closure of V in L2.D/ WD L2.D;R2/. The space H is a separable Hilbert
space endowed with the norm

juj2H WD

Z
D

ju.x/j2 dx:

Let … W L2.D/! H be the orthogonal projection, which is called the Leray–Helm-
holtz projection. Let us define the Stokes operator A in H by

Af D �…�f; f 2 D.A/; D.A/ WD W 2;2.D;R2/ \ V:

It is well known (e.g., Cattabriga [18]) that A is positive self-adjoint with compact resol-
vent. Hence, there is an orthonormal basis ¹ei W i 2 Nº of H (we use N D ¹1; 2; : : : º),
consisting of eigenvectors of A, with corresponding eigenvalues ¹�i W i 2 Nº, i.e., Aei D
�iei , i 2 N, such that �i > 0 for all i and �i % 1. In this paper, the space D.A/ is
endowed with the norm

kukD.A/ WD jAujH; u 2 D.A/:

It is also well known that

V D D.A1=2/ and kuk2V D jA
1=2uj2H; u 2 V:

Let B W D.B/! H, where D.B/ � H � V is the bilinear operator defined as

B.u; v/ D …Œ.u � r/v�:

Without danger of ambiguity, by B we also denote the corresponding quadratic function

B.u/ WD B.u; u/:
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It is well known [59] that the Navier–Stokes equations can be formulated in the fol-
lowing abstract form:

du.t/C Au.t/ dt C B.u.t// dt D f .t/ dt; u.0/ D u0; (2.1)

where u0 2H and f 2L2loc.Œ0;1/;V
0/ denote respectively the initial data and the external

force, with V0 being the dual space of V.
Considering the Gelfand triple

V � H Š H0 � V0;

one can show that there exist unique extensions A and B of A and B respectively such
that

A W V! V0; B W V � V! V0

are bounded linear and bilinear maps respectively. In what follows, in agreement with
the practice of almost all papers on NSEs, these extensions are denoted by the original
symbols A and B.

In the following lemma, we list some useful and well-known equalities and inequali-
ties for the bilinear map B. Some of these are only true because we assume that D � R2.
In this list, C denotes a generic constant.

Lemma 2.1. If u; v; z 2 V, then

hB.u; v/; ziV0 V D � hB.u; z/; viV0 V; hB.u; v/; viV0 V D 0;

j hB.u; v/; ziV0 Vj � 2kuk
1=2
V juj

1=2
H kvk

1=2
V jvj

1=2
H kzkV;

j hB.u/ � B.v/; u � viV0 Vj D j hB.u � v/; viV0 Vj �
1
2
ku � vk2V C kvk

4
L4.D;R2/ju � vj

2
H;

jB.u; v/j2H � C jujHkukVkvkD.A/kvkV;

kvk4
L4.D;R2/ � 2jvj

2
Hkvk

2
V:

The last inequality [59] is often called the Ladyzhenskaya inequality.
In this paper, we consider SNSEs driven by multiplicative Lévy noise in the following

abstract form:

du.t/C Au.t/ dt C B.u.t// dt D f .t/ dt C
Z

Z
G.u.t�/; z/ z�.dz; dt/;

u0 2 H:
(2.2)

Here we make the following assumptions.

Assumption 2.1. We assume that Z is a locally compact Polish space, and � is a � -finite
measure on .Z;B.Z//, where B.Z/ denotes the Borel � -field on Z.

We assume that .�;F ; F ; P /, where F D ¹Ftºt�0 is a filtered probability space
satisfying the usual conditions, i.e., the family F is right continuous, and every set A
belonging to the P -completion of the � -field F1 with P .A/ D 0 belongs to every Ft ,
t � 0.
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We also assume that � is a time-homogeneous Poisson random measure on Œ0;1/� Z
with intensity measure Leb˝ � on .�;F ;F ;P /, where Leb is the Lebesgue measure on
Œ0;1/.

We define the compensated Poisson random measure z� by

z�.Œ0; t � �O/ D �.Œ0; t � �O/ � t�.O/; t � 0; (2.3)

whenever O 2 B.Z/ is such that �.O/ <1.

Let us point out that the measure Leb ˝ � is a � -finite measure on .Œ0;1/ � Z;
B.Œ0;1//˝B.Z//.

In the following, if X is a metric space and I � R is a time interval, we denote by
D.I;X/ the space of all càdlàg paths from I to X .

3. Solutions to SNSEs with initial data in H

Our treatment of SNSEs (2.2) consists of two steps. In the first, we assume that the coef-
ficient G is globally Lipschitz. In the second, we assume that G is Lipschitz on balls and
has linear growth.

Below, we present our standing assumptions on the coefficient G in the first step.

Assumption 3.1. We assume that G W H � Z! H is a measurable map such that there
exist positive constants C1 and C2 such that

(G-H1) (Global Lipschitz)Z
Z
jG.v1; z/ �G.v2; z/j

2
H �.dz/ � C1jv1 � v2j

2
H; v1; v2 2 H; (3.1)

(G-H2) (Linear growth)Z
Z
jG.v; z/j2H �.dz/ � C2.1C jvj

2
H/; v 2 H: (3.2)

Remark 3.1. We note that the linear growth condition (3.2) follows from the global Lip-
schitz condition (3.1) and the following one, with C2 D 2max ¹C1;

R
Z jG.0; z/j

2
H �.dz/º:Z

Z
jG.0; z/j2H �.dz/ <1: (3.3)

First, we prove the following existence result in the natural setting.

Theorem 3.1. Assume that Assumption 3.1 holds. Then, for all u0 2 H and f 2

L2loc.Œ0;1/;V
0/, there exists a unique F -progressively measurable process u such that

(1) u 2 D.Œ0;1/;H/ \ L2loc.Œ0;1/;V/, P -a.s.,
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(2) the following equality holds, for all t 2 Œ0;1/, P -a.s., in V0:

u.t/ D u0 �

Z t

0

Au.s/ ds �
Z t

0

B.u.s// ds C
Z t

0

f .s/ ds

C

Z t

0

Z
Z
G.u.s�/; z/ z�.dz; ds/: (3.4)

Moreover, the solution u satisfies the following estimate: for any T > 0,

E
�

sup
t2Œ0;T �

ju.t/j2H

�
C E

�Z T

0

ku.s/k2V ds

�
� CT

�
1C ju0j

2
H C

Z T

0

kf .s/k2V0 ds

�
:

Remark 3.2. Assumption 3.1 is a fairly standard assumption when one considers the
existence and uniqueness of solutions to SPDEs driven by multiplicative Gaussian noise.
However, for the case of Lévy noise, the literature results always require additional
assumptions on G besides Assumption 3.1. For example, in [28], the authors assume
that there exists a sequence .Zm/m2N of measurable subsets of Z with Zm % Z and
�.Zm/ <1 such that, for any k > 0,

sup
jvjH�k

Z
Zcm
jG.v; z/j2H �.dz/! 0 as m!1; (3.5)

while in [10] and [11], it is assumed that there exusts K > 0 such thatZ
Z
jG.v; z/j4H �.dz/ � K.1C jvj

4
H/; v 2 H: (3.6)

Similarly, Motyl [53] assumed that for each p 2 ¹1; 2; 2C ; 4; 4C 2º, where  is some
positive constant, there exists a constant cp > 0 such thatZ

Z
jG.v; z/j

p
H �.dz/ � cp.1C jvj

p
H/; v 2 H:

Hence, our Theorem 3.1 improves the existing results in the literature.

In the second step, we relax the global Lipschitz condition in Assumption 3.1 and
consider the following assumptions.

Assumption 3.2. We assume that G W H � Z! H is a measurable map such that

(G-H1-local) (Lipschitz on balls) For every „ > 0, there exists a constant C„ > 0 such
that, for all v1; v2 2 H with jv1jH _ jv2jH � „,Z

Z
jG.v1; z/ �G.v2; z/j

2
H �.dz/ � C„jv1 � v2j

2
H; (3.7)

and G satisfies the assumption (G-H2)(Linear growth), i.e., (3.2) holds.

Let us now formulate our main theorem in this relaxed framework.
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Theorem 3.2. Suppose that Assumption 3.2 holds. Then, for every u0 2 H and f 2
L2loc.Œ0;1/;V

0/, there exists a unique F -progressively measurable process u such that

(1) u 2 D.Œ0;1/;H/ \ L2loc.Œ0;1/;V/, P -a.s.,

(2) the following equality holds, for all t 2 Œ0;1/, P -a.s., in V0:

u.t/ D u0 �

Z t

0

Au.s/ ds �
Z t

0

B.u.s// ds C
Z t

0

f .s/ ds

C

Z t

0

Z
Z
G.u.s�/; z/ z�.dz; ds/:

Proof. The proof of Theorem 3.2 is based on the proof of Theorem 3.1 and the standard
truncation procedure, and it is essentially the same as [1, proof of Theorem 3.1], keeping
in mind that for any u; v 2 V, hB.u; v/; viV0 V D 0: The proof proceeds as follows.

For any k 2 N, we define a map Gk by

Gk W H � Z 3 .y; z/ 7! G

�
jyjH ^ k

jyjH
y; z

�
2 H;

where we put jyjH^k
jyjH

D 1 when y D 0. Since G satisfies Assumption 3.2, we observe that
the mapGk satisfies Assumption 3.1. Hence, for every k > ju0jH, there exists by Theorem
3.1 a unique F -progressively measurable process Xk such that

� Xk 2 D.Œ0;1/;H/ \ L2loc.Œ0;1/;V/, P -a.s.,

� the following equality holds, for all t 2 Œ0;1/, P -a.s., in V0,

Xk.t/ D u0 �

Z t

0

AXk.s/ ds �
Z t

0

B.Xk.s// ds C
Z t

0

f .s/ ds

C

Z t

0

Z
Z
Gk.X

k.s�/; z/ z�.dz; ds/:

Define a random time �k by

�k WD inf ¹t � 0 W jXk.t/jH > kº; (3.8)

where, for the whole paper, we adopt the convention that inf ; D 1. By [32, Theorem
2.1.6] it follows that �k is a stopping time. It is not difficult to see that �k is increasing
in k, and

XkC1.t/ D Xk.t/; t 2 Œ0; �k/:

This enables us to define a stopping time � WD limk!1 �k and a process u D ¹u.t/; t 2
Œ0; �/º as follows:

u.t/ WD Xk.t/; t 2 Œ0; �k/:

It is easy to see that u.t/; t 2 Œ0; �/, is a local solution of problem (2.2). To complete the
proof, we need only show that P .� D1/ D 1.
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By the Itô formula (see, e.g., [38] and [10]), we have

ju.t ^ �k/j
2
H C 2

Z t^�k

0

ku.s/k2V ds

D ju0j
2
H C 2

Z t^�k

0

hf .s/; u.s/iV0 V ds C 2

Z t^�k

0

Z
Z
hG.u.s�/; z/; u.s�/iH z�.dz; ds/

C

Z t^�k

0

Z
Z
jG.u.s�/; z/j2H �.dz; ds/; P -a.s., for t � 0:

Noting that the process
R t^�k
0

R
ZhG.u.s�/; z/; u.s�/iH z�.dz; ds/, t � 0, is a martingale,

we infer that

E

Z t^�k

0

Z
Z
hG.u.s�/; z/; u.s�/iH z�.dz; ds/ D 0:

Thus, it follows by the linear growth condition (3.2), which is a part of Assumption 3.2,
that there exists C > 0 such that for all k,

Eju.t ^ �k/j
2
H C E

Z t^�k

0

ku.s/k2V ds

� ju0j
2
H C

Z t

0

kf .s/k2V0 ds C CE

Z t

0

.1C ju.s ^ �k/j
2
H/ ds; t � 0:

Therefore, by applying Gronwall’s lemma, we deduce that

Eju.t ^ �k/j
2
H �

�
ju0j

2
H C

Z t

0

kf .s/k2V0 ds C Ct

�
eCt ; t � 0;

which further gives

P .�k � t / �
E.ju.t ^ �k/j

2
H1�k�t /

k2
�
.ju0j

2
H C

R t
0
kf .s/k2V0 ds C Ct/e

Ct

k2
; t � 0:

Letting k !1, we obtain
P .� � t / D 0; t � 0:

Since t � 0 is arbitrary, we must have P .� D1/ D 1:
The proof of Theorem 3.2 is complete.

To prove Theorem 3.1, we first introduce the following notation (used throughout
the paper) and state three preliminary and auxiliary results: Lemmata 3.1 and 3.2, and
Corollary 3.1.

The following notation is useful. For T � 0,

‡T .H/ D D.Œ0; T �;H/ \ L2.Œ0; T �;V/: (3.9)

It is standard that the space ‡T .H/ endowed with the norm k � k‡T .H/ defined by

kyk‡T .H/ D sup
s2Œ0;T �

jy.s/jH C

�Z T

0

ky.s/k2V ds

�1=2
(3.10)

is a Banach space.
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LetƒT .H/ be the space of all H-valued càdlàg F -progressively measurable processes
y W Œ0; T � ��! V such that P -a.s. its trajectories belong to the space ‡T .H/ and

kyk2ƒT .H/ WD E

�
sup

s2Œ0;T �

jy.s/j2H C

Z T

0

ky.s/k2V ds

�
<1: (3.11)

For every m 2 N, let us fix a function �m W Œ0;1/! Œ0; 1� satisfying8<: �m 2 C
2Œ0;1/; sup

t2Œ0;1/

j� 0m.t/j � C1 <1;

1Œ0;m� � �m � 1Œ0;mC1�;

(3.12)

for some constant C1 > 0 which is independent of m. We also set

� D �1:

Let us also define, for every ı > 0, a function �ı W Œ0;1/! Œ0; 1� by

�ı.r/ D �.ır/; r 2 Œ0;1/:

It can be easily seen that every function �ı satisfies the following conditions:8<:�ı 2 C
2Œ0;1/; sup

t2Œ0;1/

j�0ı.t/j � C1ı;

1Œ0;1=ı� � �ı � 1Œ0;2=ı�:

(3.13)

We are now ready to state the first of the three promised auxiliary results.

Lemma 3.1. Assume that T > 0, m 2 N, M 2 ‡T .H/, u0 2 H and f 2 L2.Œ0; T �;V0/.
Then there exists a function Y 2 C.Œ0; T �;H/ \ L2.Œ0; T �;V/ satisfying

dY.t/C AY.t/ dt C �m.kY CMk‡t .H//B.Y.t/CM.t// dt D f .t/ dt;

Y.0/ D u0:
(3.14)

Proof. The proof is divided into three steps.

Step 1. Let us fix T > 0, m 2 N, M 2 ‡T .H/, u0 2 H, and f 2 L2.Œ0; T �;V0/. We
will use the Picard iteration method to prove that there exists a number ı0 > 0 depending
only on m, and there exists X 2 C.Œ0; T �;H/ \ L2.Œ0; T �;V/ which solves the following
auxiliary deterministic evolution equation with ı D ı0:

X 0.t/CAX.t/

C�m.kXCMk‡t .H//�ı.kXCMkL2.Œ0;t�;V//B.X.t/CM.t// D f .t/;

X.0/ D u0:

(3.15)

Let us fix y0 2 C.Œ0; T �;H/ \ L2.Œ0; T �;V/ with y0.0/ D u0 (for instance y0.t/ D
e�tAu0, t 2 Œ0; T �). Suppose that for n 2 N a function yn 2 C.Œ0; T �;H/\L2.Œ0; T �;V/
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such that yn.0/ D u0 is given. Let us observe that it is not difficult to prove that there
exists a unique ynC1 2 C.Œ0;T �;H/\L2.Œ0; T �;V/ solving the linear evolution equation8<: y0nC1.t/C AynC1.t/C �m.kyn CMk‡t .H//�ı.kyn CMkL2.Œ0;t�;V//

� B.yn.t/CM.t/; ynC1.t/CM.t// D f .t/; t 2 Œ0; T �;

ynC1.0/ D u0:

(3.16)

Our aim is to show that ¹yn W n 2 Nº is a Cauchy sequence in C.Œ0; T �; H/ \
L2.Œ0; T �;V/.

We now estimate the norm of the difference ynC1 � yn for n � 1. We cannot do this
for n D 0.

Given four functions xi 2 C.Œ0; T �; H/ \ L2.Œ0; T �; V/, i D 1; : : : ; 4, we set, for
t 2 Œ0; T �,

….x1; x2; x3; x4/.t/

D �m.kx1 CMk‡t .H//�ı.kx2 CMkL2.Œ0;t�;V//B.x3.t/CM.t/; x4.t/CM.t//

and
„.x1; x2/.t/ D �m.kx1 CMk‡t .H//�ı.kx2 CMkL2.Œ0;t�;V//:

By [59, Lemma III.1.2] we have

jynC1.t/ � yn.t/j
2
H C 2

Z t

0

kynC1.s/ � yn.s/k
2
V ds

D �2

Z t

0

˝
….yn; yn; yn; ynC1/.s/�….yn�1; yn�1; yn�1; yn/.s/; ynC1.s/�yn.s/

˛
V0 V ds

D �2

Z t

0

I.s/ ds; t 2 Œ0; T �; (3.17)

where, with the processes I1 and I2 defined, for s 2 Œ0; T �, by

I1.s/ D „.yn; yn/.s/
˝
B.yn.s/ � yn�1.s/; yn.s/CM.s//; ynC1.s/ � yn.s/

˛
V0 V;

I2.s/ D
�
„.yn; yn/.s/ �„.yn�1; yn�1/.s/

�
�
˝
B.yn�1.s/CM.s/; yn.s/CM.s//; ynC1.s/ � yn.s/

˛
V0 V;

we have

I.s/ D
˝
….yn; yn; yn; ynC1/.s/ �….yn; yn; yn; yn/.s/; ynC1.s/ � yn.s/

˛
V0 V

C
˝
….yn; yn; yn; yn/.s/ �….yn; yn; yn�1; yn/.s/; ynC1.s/ � yn.s/

˛
V0 V

C
˝
….yn; yn; yn�1; yn/.s/ �….yn�1; yn�1; yn�1; yn/.s/; ynC1.s/ � yn.s/

˛
V0 V

D 0C I1.s/C I2.s/; s 2 Œ0; T �: (3.18)

To estimate I.s/, for a fixed s 2 Œ0;T �, we will consider three cases, with Case 1 being
divided into three subcases. Each case will contain a calculation of a certain “partial”
integral

R t
0
jI.s/j ds.
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Case 1. Assume that

kyn CMkL2.Œ0;s�;V/ � 3=ı and kyn�1 CMkL2.Œ0;s�;V/ � 3=ı:

Subcase 1.1. Assume further that

kyn CMk‡s.H/ � mC 2 and kyn�1 CMk‡s.H/ > mC 2:

The definition of �m implies that in this subcase

I.s/ D
˝
….yn; yn; yn; ynC1/.s/; ynC1.s/ � yn.s/

˛
V0 V

andZ t

0

jI.s/j1¹kynCMkL2.Œ0;s�;V/_kyn�1CMkL2.Œ0;s�;V/�3=ıº1¹kynCMk‡s.H/�mC2º

� 1¹kyn�1CMk‡s.H/>mC2º ds

D

Z t

0

jI.s/j1¹kynCMkL2.Œ0;s�;V/_kyn�1CMkL2.Œ0;s�;V/�3=ıº1¹kynCMk‡s.H/�mC1º

� 1¹kyn�1CMk‡s.H/>mC2º ds: (3.19)

For any s 2 Œ0; t � such that

1¹kynCMkL2.Œ0;s�;V/_kyn�1CMkL2.Œ0;s�;V/�3=ıº1¹kynCMk‡s.H/�mC1º

� 1¹kyn�1CMk‡s.H/>mC2º D 1;

we have
kyn � yn�1k‡s.H/ D k.yn CM/ � .yn�1 CM/k‡s.H/ � 1; (3.20)

and for any " > 0,

jI.s/j �
ˇ̌ ˝

B.yn.s/CM.s/; ynC1.s/CM.s//;�yn.s/ �M.s/
˛

V0 V

ˇ̌
D
ˇ̌ ˝

B.yn.s/CM.s/; ynC1.s/ � yn.s//;�yn.s/ �M.s/
˛

V0 V

ˇ̌
� 2jyn.s/CM.s/j

1=2
H kyn.s/CM.s/k

1=2
V jynC1.s/ � yn.s/j

1=2
H

� kynC1.s/ � yn.s/k
1=2
V kyn.s/CM.s/kV � kyn � yn�1k‡s.H/

�
3

2
"4=3kynC1.s/ � yn.s/k

2=3
V kyn.s/CM.s/k

4=3
V kyn � yn�1k

4=3

‡s.H/

C
.mC 2/2

2"4
kyn.s/CM.s/k

2
VjynC1.s/ � yn.s/j

2
H

�
1

2
"4=3kynC1.s/ � yn.s/k

2
V C "

4=3
kyn.s/CM.s/k

2
Vkyn � yn�1k

2
‡s.H/

C
.mC 2/2

2"4
kyn.s/CM.s/k

2
VjynC1.s/ � yn.s/j

2
H: (3.21)

In the second “�” of (3.21), we have used (3.20).
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By inequalities (3.19) and (3.21), we getZ t

0

jI.s/j1¹kynCMkL2.Œ0;s�;V/_kyn�1CMkL2.Œ0;s�;V/�3=ıº1¹kynCMk‡s.H/�mC2º

� 1¹kyn�1CMk‡s.H/>mC2º ds

�
1

2
"4=3

Z t

0

kynC1.s/ � yn.s/k
2
V ds

C "4=3kyn � yn�1k
2
‡t .H/

Z t

0

kyn.s/CM.s/k
2
V1¹kynCMkL2.Œ0;s�;V/�3=ıº ds

C
.mC 2/2

2"4

�

Z t

0

kyn.s/CM.s/k
2
V1¹kynCMkL2.Œ0;s�;V/�3=ıº.s/ ds sup

s2Œ0;t�

jynC1.s/ � yn.s/j
2
H

�
1

2
"4=3

Z t

0

kynC1.s/ � yn.s/k
2
V ds C "

4=3
kyn � yn�1k

2
‡t .H/ �

9

ı2

C
.mC 2/2

2"4
�
9

ı2
sup
s2Œ0;t�

jynC1.s/ � yn.s/j
2
H

�

�
1

2
"4=3 C

.mC 2/2

2"4
�
9

ı2

�
kynC1 � ynk

2
‡t .H/ C

9

ı2
"4=3kyn � yn�1k

2
‡t .H/: (3.22)

Subcase 1.2. Assume further that

kyn CMk‡s.H/ > mC 2 and kyn�1 CMk‡s.H/ � mC 2:

Similar to Subcase 1.1, we now have

I.s/ D �
˝
….yn�1; yn�1; yn�1; yn/.s/; ynC1.s/ � yn.s/

˛
V0 V;Z t

0

jI.s/j1¹kynCMkL2.Œ0;s�;V/_kyn�1CMkL2.Œ0;s�;V/�3=ıº1¹kynCMk‡s.H/>mC2º

� 1¹kyn�1CMk‡s.H/�mC2º ds

D

Z t

0

jI.s/j1¹kynCMkL2.Œ0;s�;V/_kyn�1CMkL2.Œ0;s�;V/�3=ıº1¹kynCMk‡s.H/>mC2º

� 1¹kyn�1CMk‡s.H/�mC1º ds; (3.23)

and for any s 2 Œ0; t � such that

1¹kynCMkL2.Œ0;s�;V/_kyn�1CMkL2.Œ0;s�;V/�3=ıº

� 1¹kynCMk‡s.H/>mC2º1¹kyn�1CMk‡s.H/�mC1º D 1;

we have
kyn � yn�1k‡s.H/ D k.yn CM/ � .yn�1 CM/k‡s.H/ � 1; (3.24)

and, for any " > 0,
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jI.s/j �
ˇ̌ ˝

B.yn�1.s/CM.s/; yn.s/CM.s//; ynC1.s/ � yn.s/
˛

V0 V

ˇ̌
� 2jyn�1.s/CM.s/j

1=2
H kyn�1.s/CM.s/k

1=2
V jynC1.s/ � yn.s/j

1=2
H

� kynC1.s/ � yn.s/k
1=2
V kyn.s/CM.s/kV

�
1

2"4
jynC1.s/ � yn.s/j

2
Hjyn�1.s/CM.s/j

2
Hkyn�1.s/CM.s/k

2
V

C
3

2
"4=3kynC1.s/ � yn.s/k

2=3
V kyn.s/CM.s/k

4=3
V

�
1

2"4
.mC 2/2jynC1.s/ � yn.s/j

2
Hkyn�1.s/CM.s/k

2
V

C
1

2
"4=3kynC1.s/ � yn.s/k

2
V C "

4=3
kyn.s/CM.s/k

2
V

�
1

2"4
.mC 2/2jynC1.s/ � yn.s/j

2
Hkyn�1.s/CM.s/k

2
V

C
1

2
"4=3kynC1.s/ � yn.s/k

2
V C 2"

4=3
kyn�1.s/CM.s/k

2
V

C 2"4=3kyn.s/ � yn�1.s/k
2
V

�
1

2"4
.mC 2/2jynC1.s/ � yn.s/j

2
Hkyn�1.s/CM.s/k

2
V C

1

2
"4=3kynC1.s/ � yn.s/k

2
V

C 2"4=3kyn�1.s/CM.s/k
2
V � kyn � yn�1k

2
‡s.H/ C 2"

4=3
kyn.s/ � yn�1.s/k

2
V:

(3.25)

In the last inequality “�” of (3.25), we have used inequality (3.24).
By (3.23) and (3.25), we get, similar to inequality (3.22),Z t

0

jI.s/j1¹kynCMkL2.Œ0;s�;V/_kyn�1CMkL2.Œ0;s�;V/�3=ıº

� 1¹kynCMk‡s.H/>mC2º1¹kyn�1CMk‡s.H/�mC2º ds

�

�
"4=3

2
C
9.mC 2/2

2"4ı2

�
kynC1 � ynk

2
‡t .H/ C 2"

4=3

�
1C

9

ı2

�
kyn � yn�1k

2
‡t .H/:

(3.26)

Subcase 1.3. Assume further that kyn CMk‡s.H/ � m C 2 and kyn�1 CMk‡s.H/ �
mC 2. Under these assumptions, we infer that for any " > 0,

jI1.s/j �
ˇ̌ ˝

B.yn.s/ � yn�1.s/; yn.s/CM.s//; ynC1.s/ � yn.s/
˛

V0 V

ˇ̌
� 2kyn.s/ � yn�1.s/k

1=2
V jyn.s/ � yn�1.s/j

1=2
H kynC1.s/ � yn.s/k

1=2
V

� jynC1.s/ � yn.s/j
1=2
H kyn.s/CM.s/kV

� "kyn.s/ � yn�1.s/kVkynC1.s/ � yn.s/kV

C
2

"
jyn.s/ � yn�1.s/jHjynC1.s/ � yn.s/jHkyn.s/CM.s/k

2
V

� "kyn.s/ � yn�1.s/k
2
V C "kynC1.s/ � yn.s/k

2
V

C "kyn.s/CM.s/k
2
Vjyn.s/ � yn�1.s/j

2
H

C
4

"3
jynC1.s/ � yn.s/j

2
Hkyn.s/CM.s/k

2
V: (3.27)
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For I2.s/ D I2;1.s/C I2;1.s/, where

I2;1.s/ D
�
„.yn; yn/.s/ �„.yn�1; yn/.s/

�
�
˝
B.yn�1.s/CM.s/; yn.s/CM.s//; ynC1.s/ � yn.s/

˛
V0 V

and

I2;2.s/ D
�
„.yn�1; yn/.s/ �„.yn�1; yn�1/.s/

�
�
˝
B.yn�1.s/CM.s/; yn.s/CM.s//; ynC1.s/ � yn.s/

˛
V0 V;

we have, for any " > 0,

jI2;1.s/j � C1kyn � yn�1k‡s.H/jyn�1.s/CM.s/j
1=2
H kyn�1.s/CM.s/k

1=2
V

� jynC1.s/ � yn.s/j
1=2
H kynC1.s/ � yn.s/k

1=2
V kyn.s/CM.s/kV

�
3

4
"4=3kyn � yn�1k

4=3

‡s.H/
kyn.s/CM.s/k

4=3
V kynC1.s/ � yn.s/k

2=3
V

C
C 41
4"4
jyn�1.s/CM.s/j

2
Hkyn�1.s/CM.s/k

2
VjynC1.s/ � yn.s/j

2
H

�
1

4
"4=3Œ2kyn � yn�1k

2
‡s.H/kyn.s/CM.s/k

2
V C kynC1.s/ � yn.s/k

2
V�

C
C 41
4"4

.mC 2/2kyn�1.s/CM.s/k
2
VjynC1.s/ � yn.s/j

2
H; (3.28)

and

jI2;2.s/j � C1ıkyn � yn�1kL2.Œ0;s�;V/jyn�1.s/CM.s/j
1=2
H kyn�1.s/CM.s/k

1=2
V

� jynC1.s/ � yn.s/j
1=2
H kynC1.s/ � yn.s/k

1=2
V kyn.s/CM.s/kV

�
3ı

4
"4=3kyn � yn�1k

4=3

L2.Œ0;s�;V/
kyn.s/CM.s/k

4=3
V kynC1.s/ � yn.s/k

2=3
V

C
C 41 ı

4"4
jyn�1.s/CM.s/j

2
Hkyn�1.s/CM.s/k

2
VjynC1.s/ � yn.s/j

2
H

�
1

2
ı3=2"4=3kyn � yn�1k

2
L2.Œ0;s�;V/kyn.s/CM.s/k

2
V C

1

4
"4=3kynC1.s/ � yn.s/k

2
V

C
C 41 ı

4"4
.mC 2/2kyn�1.s/CM.s/k

2
VjynC1.s/ � yn.s/j

2
H: (3.29)

Similar to inequality (3.22), by inequalities (3.27)–(3.29), we infer thatZ t

0

jI.s/j1¹kynCMkL2.Œ0;s�;V/_kyn�1CMkL2.Œ0;s�;V/�3=ıº1¹kynCMk‡s.H/�mC2º

� 1¹kyn�1CMk‡s.H/�mC2º ds

�

�
"C

36

"3ı2
C
1

2
"4=3 C

C 41
4"4

.mC 2/2
9

ı2
C
9

4

.mC 2/2

"4ı

�
kynC1 � ynk

2
‡t .H/

C

�
"C

9"

ı2
C
9"4=3

2ı2
C
9"4=3

2ı1=2

�
kyn � yn�1k

2
‡t .H/: (3.30)

The proof of Case 1 is complete.
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Case 2. Assume that kyn CMkL2.Œ0;s�;V/ � 3=ı and kyn�1 CMkL2.Œ0;s�;V/ > 3=ı. In
this case, by the definitions of functions �m and �ı , we have

I.s/ D
˝
….yn; yn; yn; ynC1/.s/; ynC1.s/ � yn.s/

˛
V0 V;

andZ t

0

jI.s/j1¹kynCMkL2.Œ0;s�;V/�3=ıº.s/1¹kyn�1CMkL2.Œ0;s�;V/>3=ıº.s/ ds

D

Z t

0

jI.s/j1¹kynCMkL2.Œ0;s�;V/�2=ıº.s/1¹kyn�1CMkL2.Œ0;s�;V/>3=ıº.s/

� 1¹kynCMk‡s.H/�mC1º ds: (3.31)

For any s 2 Œ0; t � such that

1¹kynCMkL2.Œ0;s�;V/�2=ıº.s/1¹kyn�1CMkL2.Œ0;s�;V/>3=ıº.s/1¹kynCMk‡s.H/�mC1º D 1;

we have

ıkyn � yn�1k‡s.H/ � ık.yn CM/ � .yn�1 CM/kL2.Œ0;s�;V/ � 1; (3.32)

and for any p 2 .0; 1=2/ and " > 0,

jI.s/j �
ˇ̌ ˝

B.yn.s/CM.s/; ynC1.s/CM.s//;�yn.s/ �M.s/
˛

V0 V

ˇ̌
D
ˇ̌ ˝

B.yn.s/CM.s/; ynC1.s/ � yn.s//; yn.s/CM.s/
˛

V0 V

ˇ̌
� 2jyn.s/CM.s/j

1=2
H kyn.s/CM.s/k

1=2
V jynC1.s/ � yn.s/j

1=2
H

� kynC1.s/ � yn.s/k
1=2
V kyn.s/CM.s/kV � ıkyn � yn�1k‡s.H/

�
3

2
"4=3ı4.1�p/=3kynC1.s/ � yn.s/k

2=3
V kyn.s/CM.s/k

4=3
V kyn � yn�1k

4=3

‡s.H/

C
1

2"4
ı4pkyn.s/CM.s/k

2
Vjyn.s/CM.s/j

2
HjynC1.s/ � yn.s/j

2
H

�
1

2
"4=3kynC1.s/ � yn.s/k

2
V C "

4=3ı2.1�p/kyn.s/CM.s/k
2
Vkyn � yn�1k

2
‡s.H/

C
1

2"4
ı4p.mC 1/2kyn.s/CM.s/k

2
VjynC1.s/ � yn.s/j

2
H: (3.33)

In the second “�” of (3.33), we have used (3.32).
Similar to (3.22), by (3.31) and (3.33),Z t

0

jI.s/j1¹kynCMkL2.Œ0;s�;V/�3=ıº.s/1¹kyn�1CMkL2.Œ0;s�;V/>3=ıº.s/ ds

�

�
1

2
"4=3 C

9

2"4
.mC 1/2ı4p�2

�
kynC1 � ynk

2
‡t .H/ C 9

"4=3

ı2p
kyn � yn�1k

2
‡t .H/:

(3.34)

The proof of Case 2 is complete.
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Case 3. Assume that kyn CMkL2.Œ0;s�;V/ > 3=ı and kyn�1 CMkL2.Œ0;s�;V/ � 3=ı. In
this case, similar to Case 2, by the definitions of functions �m and �ı , we have

I.s/ D �
˝
….yn�1; yn�1; yn�1; yn/.s/; ynC1.s/ � yn.s/

˛
V0 V;

andZ t

0

jI.s/j1¹kynCMkL2.Œ0;s�;V/>3=ıº.s/1¹kyn�1CMkL2.Œ0;s�;V/�3=ıº.s/ ds

D

Z t

0

jI.s/j1¹kynCMkL2.Œ0;s�;V/>3=ıº.s/1¹kyn�1CMkL2.Œ0;s�;V/�2=ıº.s/

� 1¹kyn�1CMk‡s.H/�mC1º ds: (3.35)

For any s 2 Œ0; t � such that

1¹kynCMkL2.Œ0;s�;V/>3=ıº.s/1¹kyn�1CMkL2.Œ0;s�;V/�2=ıº.s/1¹kyn�1CMk‡s.H/�mC1º D 1;

we have

ı2kyn � yn�1k
2
‡s.H/ � ı

2
k.yn CM/ � .yn�1 CM/k2

L2.Œ0;s�;V/ � 1 (3.36)

and, for any p 2 .0; 1=2/ and " > 0,

jI.s/j �
ˇ̌ ˝

B.yn�1.s/CM.s/; yn.s/CM.s//; ynC1.s/ � yn.s/
˛

V0 V

ˇ̌
� 2jyn�1.s/CM.s/j

1=2
H kyn�1.s/CM.s/k

1=2
V jynC1.s/�yn.s/j

1=2
H

�kynC1.s/�yn.s/k
1=2
V kyn.s/CM.s/kV

�
3

2
ı�4p=3kynC1.s/�yn.s/k

2=3
V kyn.s/CM.s/k

4=3
V

C
1

2
ı4pkyn�1.s/CM.s/k

2
Vjyn�1.s/CM.s/j

2
HjynC1.s/�yn.s/j

2
H

�
1

2
ı4p.mC1/2kyn�1.s/CM.s/k

2
VjynC1.s/�yn.s/j

2
H

C
1

2
"3kynC1.s/�yn.s/k

2
VC

1

"3=2ı2p
kyn.s/CM.s/k

2
V

�
1

2
ı4p.mC1/2kyn�1.s/CM.s/k

2
VjynC1.s/�yn.s/j

2
H

C
1

2
"3kynC1.s/�yn.s/k

2
VC2

1

"3=2ı2p
Œkyn.s/�yn�1.s/k

2
VCkyn�1.s/CM.s/k

2
V�

�
1

2
ı4p.mC1/2kyn�1.s/CM.s/k

2
VjynC1.s/�yn.s/j

2
HC

1

2
"3kynC1.s/�yn.s/k

2
V

C2
1

"3=2ı2p
kyn.s/�yn�1.s/k

2
VC2

1

"3=2ı2p
kyn�1.s/CM.s/k

2
V �kyn�yn�1k

2
‡s.H/ı

2:

(3.37)

In the last “�” in (3.37), we have used (3.36).
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Similarly to (3.22), by (3.35) and (3.37),Z t

0

jI.s/j1¹kynCMkL2.Œ0;s�;V/>3=ıº1¹kyn�1CMkL2.Œ0;s�;V/�3=ıº ds

�

�
1

2
"3 C 2.mC 1/2ı4p�2

�
kynC1 � ynk

2
‡t .H/ C

2

"3=2ı2p
kyn � yn�1k

2
‡t .H/: (3.38)

The proof of Case 3 is complete.

Combining (3.22), (3.26), (3.30), (3.34), and (3.38), there exist constants C > 0 and
lm > 0, for any " > 0 and p 2 .0; 1=2/, such thatZ t

0

jI.s/j ds

� lm

�
"C

1

"3ı2
C "4=3 C

1

"4ı2
C

1

"4ı
C "3 C ı4p�2 C "�4ı4p�2

�
kynC1 � ynk

2
‡t .H/

C C

�
"C

"

ı2
C
"4=3

ı2
C
"4=3

ı1=2
C "4=3 C

"4=3

ı2p
C

1

"3=2ı2p

�
kyn � yn�1k

2
‡t .H/: (3.39)

Choose p D 1=4. Letting " small enough first, and then ı large enough, we see that there
exist "0; ı0 > 0 such that

lm

�
"0 C

1

"30ı
2
0

C "
4=3
0 C

1

"40ı
2
0

C
1

"40ı0
C "30 C ı

4p�2
0 C

ı
4p�2
0

"40

�
C C

�
"0 C

"0

ı20
C
"
4=3
0

ı20
C
"
4=3
0

ı
1=2
0

C "
4=3
0 C

"
4=3
0

ı
2p
0

C
1

"
3=2
0 ı

2p
0

�
�
1

16
: (3.40)

Set ı D ı0 in (3.15). By (3.17), (3.39), and (3.40), we arrive at

sup
s2Œ0;t�

jynC1.s/ � yn.s/j
2
H C 2

Z t

0

kynC1.s/ � yn.s/k
2
V ds

�
1

8
ŒkynC1 � ynk

2
‡t .H/ C kyn � yn�1k

2
‡t .H/�: (3.41)

Since

1

2
kynC1 � ynk

2
‡t .H/ � sup

s2Œ0;t�

jynC1.s/ � yn.s/j
2
H C

Z t

0

kynC1.s/ � yn.s/k
2
V ds;

by (3.41) we infer that

kynC1 � ynk
2
‡T .H/

�
1
3
kyn � yn�1k

2
‡T .H/

; (3.42)

which implies that ¹yn W n 2 Nº is a Cauchy sequence in C.Œ0; T �;H/ \ L2.Œ0; T �;V/;
we denote its limit by Y 1. Using classical arguments, it is not difficult to prove that Y 1 is
a solution of problem .3.15/ with ı D ı0.

Step 2. Let ı0 be as in Step 1, and set

t1 WD inf ¹t 2 Œ0; T � W kY 1 CMkL2.Œ0;t�;V/ � 1=ı0º:
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Since by (3.13), �ı.r/ D 1 if r 2 Œ0; 1=ı�, it is easy to show that Y 1 is a solution of
problem (3.14) on Œ0; t1�. If t1 D T then the proof of Lemma 3.1 is finished. Otherwise,
let us consider the following deterministic time-inhomogeneous evolution equation:

X 0.t/C AX.t/ D f .t/ � �m.kX CMk‡t .H//

� �ı0.kX CMkL2.Œt1;t�;V// � B.X.t/CM.t//; t > t1;

X.t/ D Y 1.t/; t 2 Œ0; t1�:

(3.43)

Using a similar argument to that in Step 1, we can find a solution Y 2 to problem (3.43).
As at the beginning of this step, we set

t2 WD inf ¹t 2 Œt1; T � W kY 2 CMkL2.Œt1;t�;V/ � 1=ı0º;

and see that Y 2 is a solution of problem (3.14) on Œ0; t2�. If t2 D T then the proof of
Lemma 3.1 is finished. Otherwise, by induction, we construct two sequences ¹tnºn2N and
¹Y nºn2N satisfying

� 0 < t1 < t2 < � � � ,

� Y n 2 C.Œ0; T �;H/ \ L2.Œ0; T �;V/ and Y nC1.t/ D Y n.t/ on t 2 Œ0; tn�,

� Y n is a solution of problem (3.14) for t 2 Œ0; tn�,

� tnC1 WD inf ¹t 2 Œtn; T � W kY nC1 CMkL2.Œtn;t�;V/ � 1=ı0º.

The proof of Lemma 3.1 is concluded once we prove that tn D T for some n 2 N. This
is done in the next step.

Step 3. Assume thatX 2 C.Œ0; ��;H/\L2.Œ0; ��;V/, for some � > 0, is a solution of the
deterministic problem (3.14). By the Lions–Magenes lemma ([46]; [59, Lemma III.1.2]),
we have this: For every t 2 Œ0; ��,

jX.t/j2H C 2

Z t

0

kX.s/k2V ds

D ju0j
2
H�2

Z t

0

�m.kXCMk‡s.H// hB.X.s/CM.s//; X.s/iV0 V ds

C2

Z t

0

hf .s/; X.s/iV0 V ds

� ju0j
2
HC

Z t

0

kX.s/k2V dsC8

Z t

0

�2m.kXCMk‡s.H//kB.X.s/CM.s//k
2
V0 ds

C8

Z t

0

kf .s/k2V0 ds

� ju0j
2
HC

Z t

0

kX.s/k2V ds

C8

Z t

0

�2m.kXCMk‡s.H//jX.s/CM.s/j
2
HkX.s/CM.s/k

2
V dsC8

Z t

0

kf .s/k2V0 ds

� ju0j
2
HC

Z t

0

kX.s/k2V dsC8.mC1/
4
C8

Z �

0

kf .s/k2V0 ds:
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Hence,

sup
t2Œ0;��

jX.t/j2H C

Z �

0

kX.s/k2V ds � ju0j
2
H C 8.mC 1/

4
C 8

Z �

0

kf .s/k2V0 ds:

This implies that tn D T for some n 2 N. Then Y n is the solution sought in Lemma 3.1.

The proof of Lemma 3.1 is complete.

The following lemma implies that the solution of problem (3.14) is unique (see Corol-
lary 3.1); this lemma will be used later. Recall that the space ƒT .H/ (and its norm) was
defined around equality (3.11).

Lemma 3.2. Assume thatm 2N. Assume that for all u0 2 H and f 2 L2.Œ0; T �;V0/ and
y 2 ƒT .H/, there exists an element u D ˆy 2 ƒT .H/ satisfying

du.t/C Au.t/ dt C �m.kuk‡t .H//B.u.t// dt D f .t/ dt C
Z

Z
G.y.t�/; z/ z�.dz; dt/;

u.0/ D u0: (3.44)

Then there exists a constant Cm > 0 such that

kˆy1 �ˆy2k2ƒT .H/ � CmT ky1 � y2k
2
ƒT .H/

; y1; y2 2 ƒT .H/: (3.45)

Remark. The above result is not true without the smoothing function �m.

Proof of Lemma 3.2. For simplicity, define u1 D ˆy1 and u2 D ˆy2 . Set U D u1 � u2.
By the Itô formula, we have

jU.t/j2H C 2

Z t

0

kU.s/k2V ds

D � 2

Z t

0

˝
�m.ku1k‡s.H//B.u1.s// � �m.ku2k‡H

2
/B.u2.s//; U.s/

˛
V0 V

ds

C 2

Z t

0

Z
Z

˝
G.y1.s�/; z/ �G.y2.s�/; z/; U.s�/

˛
H z�.dz; ds/

C

Z t

0

Z
Z
jG.y1.s�/; z/ �G.y2.s�/; z/j

2
H �.dz; ds/

DW J1.t/C J2.t/C J3.t/; t 2 Œ0; T �: (3.46)

Concerning J1, we have

jJ1.t/j �
1

2

Z t

0

kU.s/k2V ds

C 2

Z t

0

�m.ku1k‡s.H//B.u1.s// � �m.ku2k‡s.H//B.u2.s//2V0 ds: (3.47)
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Set

K.s/ WD
�m.ku1k‡s.H//B.u1.s// � �m.ku2k‡s.H//B.u2.s//2V0 ; s 2 Œ0; T �:

We distinguish four cases to find appropriate bounds forK. By the property of �m and the
Minkowski inequality, we have the following estimates. Let us fix s 2 Œ0; T �.

(1) Assume that ku1k‡s.H/ _ ku2k‡s.H/ � mC 1. In this case, we have

K.s/ � C
�
kB.u1.s// � B.u2.s//k2V0

C
ˇ̌
�m.ku1k‡s.H// � �m.ku2k‡s.H//

ˇ̌2
kB.u2.s//k2V0

�
� C jU.s/jHkU.s/kV

�
ju1.s/jHku1.s/kV C ju2.s/jHku2.s/kV

�
C C ju2.s/j

2
Hku2.s/k

2
VkU k

2
‡s.H/

�
1

4
kU.s/k2V C CkU k

2
‡s.H/

�
ju1.s/j

2
Hku1.s/k

2
V C ju2.s/j

2
Hku2.s/k

2
V

�
:

(2) Assume that ku1k‡s.H/ � mC 1 and ku2k‡s.H/ � mC 1. In this case,

K.s/ D
�m.ku1k‡s.H//B.u1.s//2V0

D
ˇ̌
�m.ku1k‡s.H// � �m.ku2k‡s.H//

ˇ̌2
kB.u1.s//k2V0

� C ju1.s/j
2
Hku1.s/k

2
VkU k

2
‡s.H/:

(3) Assume that ku1k‡s.H/ � mC 1 and ku2k‡s.H/ � mC 1. In this case, much as in
case (2), we get

K.s/ � C ju2.s/j
2
Hku2.s/k

2
VkU k

2
‡s.H/:

(4) Assume that ku1k‡s.H/ ^ ku2k‡s.H/ � mC 1. In this case, we have K.s/ D 0.

Hence we infer that

K.s/ �
1

4
kU.s/k2V C CkU k

2
‡s.H/

�
�
ju1.s/j

2
Hku1.s/k

2
V � 1Œ0;mC1�.ku1k‡s.H//C ju2.s/j

2
Hku2.s/k

2
V � 1Œ0;mC1�.ku2k‡s.H//

�
:

(3.48)

Set

‚.t/ WD sup
s2Œ0;t�

jU.s/j2H C

Z t

0

kU.s/k2V ds; t 2 Œ0; T �:

Substituting (3.48) into (3.47), and then into (3.46), noticing that kU k2
‡s.H/

� 2‚.s/, we
have

‚.T / � C

Z T

0

‚.s/
�
ju1.s/j

2
Hku1.s/k

2
V � 1Œ0;mC1�.ku1k‡s.H//

C ju2.s/j
2
Hku2.s/k

2
V � 1Œ0;mC1�.ku2k‡s.H//

�
ds C sup

t2Œ0;T �

jJ2.t/j C J3.T /: (3.49)
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Gronwall’s lemma implies that

‚.T / �
�

sup
t2Œ0;T �

jJ2.t/j C J3.T /
�

� eC
R T
0 Œju1.s/j

2
Hku1.s/k

2
V�1Œ0;mC1�.ku1k‡s.H//Cju2.s/j

2
Hku2.s/k

2
V�1Œ0;mC1�.ku2k‡s.H//� ds

� Cm

�
sup
t2Œ0;T �

jJ2.t/j C J3.T /
�
: (3.50)

By the Burkholder–Davis–Gundy inequality (see [45, Theorem 23.12]) and assumption
(G-H1) (see (3.1)), we get in a standard way the inequality

CmE
�

sup
t2Œ0;T �

jJ2.t/j
�
�
1

2
kU k2ƒT .H/ C CmT ky1 � y2k

2
ƒT .H/

: (3.51)

Moreover, applying (G-H1) again, we have

E.J3.T // � CT ky1 � y2k
2
ƒT .H/

: (3.52)

Summing the inequalities (3.50)–(3.52), we deduce that

kU k2ƒT .H/ � CmT ky1 � y2k
2
ƒT .H/

:

This proves (3.45), and thus the proof of Lemma 3.2 is complete.

Corollary 3.1. Under the assumptions of Lemma 3.1, the solution of problem .3.14/ is
unique.

Proof. Suppose that Y1 and Y2 are two solutions of problem (3.14). By the Lions–
Magenes lemma, we infer that for every t � 0,

jY1.t/ � Y2.t/j
2
H C 2

Z t

0

kY1.s/ � Y2.s/k
2
V ds

D �2

Z t

0

˝
V0 �m.kY1 CMk‡s.H//B.Y1.s/CM.s//

� �m.kY2 CMk‡s.H//B.Y2.s/CM.s//; Y1.s/ � Y2.s/
˛
V ds: (3.53)

Set u1 D Y1 CM and u2 D Y2 CM . The above equality implies that

ju1.t/ � u2.t/j
2
H C 2

Z t

0

ku1.s/ � u2.s/k
2
V ds

D�2

Z t

0

˝
�m.ku1k‡s.H//B.u1.s// � �m.ku2k‡s.H//B.u2.s//; u1.s/ � u2.s/

˛
V0 V ds:

(3.54)

We observe that the above equality is a special case of (3.46) with G � 0. Therefore, the
proof of Lemma 3.2 implies that u1 D u2. Hence we infer that Y1 D Y2.

Finally, we are ready to finish the proof of the main result in this section. We use the
Banach fixed point theorem to prove this result.
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Proof of Theorem 3.1. The proof is divided into three steps.

Step 1: Uniqueness. For the uniqueness part of Theorem 3.1, we refer to [11] or [10].

Step 2: Local existence. Consider the auxiliary problem

dun.t/CAun.t/ dtC�n.kunk‡t .H//B.un.t// dt D f .t/ dtC
Z

Z
G.un.t�/; z/ z�.dz; dt/;

un.0/ D u0: (3.55)

We fix T > 0. For any y 2 ƒT .H/, Lemma 3.1 and Corollary 3.1 imply that there exists
a unique element un D ˆy 2 ƒT .H/ satisfying

dun.t/CAun.t/ dtC�n.kunk‡t .H//B.un.t// dt D f .t/ dtC
Z

Z
G.y.t�/; z/ z�.dz; dt/;

un.0/ D u0: (3.56)

Indeed, it is known that there exists a unique M 2 ƒT .H/ satisfying the equation

dM.t/C AM.t/ dt D
Z

Z
G.y.t�/; z/ z�.dz; dt/; t � 0; M.0/ D 0;

and the inequality

E
�

sup
t2Œ0;T �

jM.t/j2H

�
C E

�Z T

0

kM.t/k2V dt

�
� CT

h
E
�

sup
t2Œ0;T �

jy.t/j2H

�
C 1

i
:

Hence, Lemma 3.1 and Corollary 3.1 imply that for any ! 2 �, there exists a unique
element X.!/ 2 C.Œ0; T �;H/ \ L2.Œ0; T �;V/ solving

dX.t/C AX.t/ dt C �n.kX CMk‡t .H//B.X.t/CM.t// dt D f .t/ dt;

X.0/ D u0:

One can show that u is a solution to (3.56) iff u D X CM . For uniqueness, we refer
to Lemma 3.2. Moreover, Lemma 3.2 implies that there exists a constant Cn > 0 such that

kˆy1 �ˆy2k2ƒT .H/ � CnT ky1 � y2k
2
ƒT .H/

; y1; y2 2 ƒT .H/: (3.57)

Let TnD 1
2Cn

. In view of (3.57) and by using the Banach fixed point theorem, we infer
that there exists a unique element u1n 2 ƒTn.H/ that is a solution of (3.55) for t 2 Œ0; Tn�.
Repeating the above proof, and observing that Tn does not depend on the initial datum,
we can find a unique element u2n WD ¹u

2
n.t/; t 2 Œ0; 2Tn�º 2ƒ2Tn.H/ solving the problem

dun.t/C Aun.t/ dt C �n.kunk‡t .H//B.un.t// dt

D f .t/ dt C

Z
Z
G.un.t�/; z/ z�.dz; dt/; t 2 ŒTn; 2Tn�;

un.t/ D u
1
n.t/; t 2 Œ0; Tn�:

It is not difficult to see that u2n is a solution of problem (3.55) on Œ0; 2Tn�. By induction,
we can construct a unique element un 2 ƒT .H/ which is a solution of problem (3.55) for
t 2 Œ0; T �, where T > 0 is arbitrary.
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Define a stopping time

�n D inf ¹t � 0 W kunk‡t .H/ > nº: (3.58)

By definition, �n.kunk‡t .H// D 1 for any t 2 Œ0; �n/, hence ¹un.t/; t 2 Œ0; �n/º is a local
solution of problem (2.2). Thus, by the uniqueness of solutions to problem (2.2), we infer
that

unC1.t/ D un.t/; t 2 Œ0; �n ^ �nC1/; P -a.s.

Hence, the sequence .�n/1nD1 is nondecreasing. We set �max WD limn!1 �n, and we
observe that �max is also a stopping time.

Now we can define a local solution ¹u.t/; t 2 Œ0; �max/º of problem (2.2) by

u.t/ D un.t/; t 2 Œ0; �n/:

Using an argument similar to the proof of [5, Theorem 3.5], we can prove that

lim
t%�max

kuk‡t .H/ D1 on ¹! 2 � W �max <1º; P -a.s. (3.59)

Step 3: Global existence. We will prove that

P .�max D1/ D 1: (3.60)

It is sufficient to prove that for every T > 0, P .�max � T / D 1. For the rest of this proof
we fix T > 0.

In this step, we do not use the Lipschitz assumption (3.1) but only the linear growth
assumption (3.2).

By the Itô formula, we have

ju.t ^ �n/j
2
H C 2

Z t^�n

0

ku.s/k2V ds

D ju0j
2
H C 2

Z t^�n

0

hf .s/; u.s/iV0 V ds C 2

Z t^�n

0

Z
Z
hG.u.s�/; z/; u.s�/iH z�.dz; ds/

C

Z t^�n

0

Z
Z
jG.u.s�/; z/j2H �.dz; ds/; t 2 Œ0; T �:

The Burkholder–Davis–Gundy inequality yields

E

�
sup
t2Œ0;T �

ju.t ^ �n/j
2
H C

Z T^�n

0

ku.s/k2V ds

�
� ju0j

2
HC

Z T

0

kf .s/k2V0 dsC2E

�
sup
t2Œ0;T �

ˇ̌̌̌Z t^�n

0

Z
Z
hG.u.s�/; z/; u.s�/iH z�.dz; ds/

ˇ̌̌̌�
CE

�Z T^�n

0

Z
Z
jG.u.s�/; z/j2H �.dz; ds/

�
� ju0j

2
HC

Z T

0

kf .s/k2V0 dsC
1

2
E
�

sup
t2Œ0;T �

ju.t ^�n/j
2
H

�
CC

Z T

0

E
�

sup
l2Œ0;t�

ju.l^�n/j
2
H

�
dtCCT: (3.61)
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Applying Gronwall’s lemma, we infer that

E

�
sup
t2Œ0;T �

ju.t ^ �n/j
2
H C

Z T^�n

0

ku.s/k2V ds

�
� CT

�
1C ju0j

2
H C

Z T

0

kf .s/k2V0 ds

�
:

Letting n!1, so that �n % �max, we deduce that

E

�
sup

t2Œ0;T^�max/

ju.t/j2H C

Z T^�max

0

ku.s/k2V ds

�
� CT

�
1C ju0j

2
H C

Z T

0

kf .s/k2V0 ds

�
:

(3.62)
This leads to

sup
t2Œ0;T^�max/

ju.t/j2H C

Z T^�max

0

ku.s/k2V ds <1; P -a.s.

The above implies that the function Œ0;T ^ �max/ 3 t 3 kuk
2
‡t .H/

is P -a.s. bounded, which
in turn in view of (3.59) implies that �max � T , P -a.s., as required. The proof of Theorem
3.1 is thus complete.

4. Solutions to SNSEs with initial data in V

Now we consider SNSEs with more regular data. For this purpose, we formulate the
following assumptions.

Assumption 4.1. The function G W V � Z! V is measurable such that there exist con-
stants C1; C2 > 0 such that

(G-V1) (Lipschitz in V)Z
Z
kG.v1; z/ �G.v2; z/k

2
V �.dz/ � C1kv1 � v2k

2
V; v1; v2 2 V; (4.1)

(G-V2) (Linear growth in V)Z
Z
kG.v; z/k2V �.dz/ � C1.1C kvk

2
V/; v 2 V: (4.2)

(G-VH2) (Linear growth in H)Z
Z
jG.v; z/j2H �.dz/ � C2.1C jvj

2
H/; v 2 V: (4.3)

In this section, we will prove the following result.

Theorem 4.1. Assume that a functionG satisfies Assumption 4.1. Then for all u0 2V and
f 2L2loc.Œ0;1/;H/, there exists a unique F -progressively measurable process u such that

(1) u 2 D.Œ0;1/;V/ \ L2loc.Œ0;1/;D.A//, P -a.s.,
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(2) for all t 2 Œ0;1/, P -a.s. in H,

u.t/ D u0 �

Z t

0

Au.s/ ds �
Z t

0

B.u.s// ds C
Z t

0

f .s/ ds

C

Z t

0

Z
Z
G.u.s�/; z/ z�.dz; ds/: (4.4)

Remark 4.1. The Lipschitz property of G with respect to the V-norm does not imply
the Lipschitz property of G with respect to the H-norm. Hence, the uniqueness part of
Theorem 4.1 is not a consequence of Theorem 3.1, and requires an independent proof.

Remark 4.2. In [5], the authors considered the existence and uniqueness of solutions
defined as in Theorem 4.1 for stochastic hydrodynamical systems with Lévy noise, includ-
ing 2D Navier–Stokes euations. They assumed that the function G is globally Lipschitz
in the sense that there exists K > 0 such that for p D 1; 2,Z

Z
kG.v1; z/ �G.v2; z/k

2p
V �.dz/ � Kkv1 � v2k

2p
V ; v1; v2 2 V;Z

Z
jG.v1; z/ �G.v2; z/j

2p
H �.dz/ � Kjv1 � v2j

2p
H ; v1; v2 2 H:

It is easy to see that our assumptions are weaker.
Let us also mention that in the Gaussian case, stochastic Navier–Stokes equations,

respectively Euler equations, for initial data in V have been studied in [36, 51], respec-
tively in [14].

Remark 4.3. In Section 3, we proved two existence results. The first one, Theorem 3.1,
holds under the global Lipschitz assumptions on the coefficient G. The second one, The-
orem 3.2, holds under the assumption that G is Lipschitz on balls in H and has linear
growth. The bulk of the proof was devoted to the proof of the former result, as the latter
follows from the former by a standard procedure.

In the same vein, in the present section, we first formulate Theorem 4.1 which holds
under the assumption that G is globally Lipschitz with respect to V. This result is supple-
mented by Theorem 4.2 below, in which we assume that G is Lipschitz on balls in V. The
latter result can be deduced from the former by a standard truncation procedure.

Assumption 4.2. A map G W V � Z! V is measurable and such that

(G-V1-local) (Lipschitz on balls) for every „ > 0, there exists a constant C„ > 0 such
that, for all v1; v2 2 V with kv1kV _ kv2kV � „,Z

Z
kG.v1; z/ �G.v2; z/k

2
V �.dz/ � C„kv1 � v2k

2
V; (4.5)

and the assumptions (G-V2) and (G-VH2) hold.

Theorem 4.2. Assume that Assumption 4.2 holds. Then for all u0 2 V and f 2

L2loc.Œ0;1/;H/, there exists a unique F -progressively measurable process u such that
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(1) u 2 D.Œ0;1/;V/ \ L2loc.Œ0;1/;D.A//, P -a.s.,

(2) for all t 2 Œ0;1/, P -a.s., in H,

u.t/ D u0 �

Z t

0

Au.s/ ds �
Z t

0

B.u.s// ds C
Z t

0

f .s/ ds

C

Z t

0

Z
Z
G.u.s�/; z/ z�.dz; ds/: (4.6)

Proof. The proof is similar to that for Theorem 3.2.
For any k 2 N, we define an auxiliary function Gk by

Gk W V � Z 3 .y; z/ 7! G

�
kykV ^ k

kykV
y; z

�
2 V;

where we set kykV^k
kykV

D 1when y D 0. Since, by our assumptions,G satisfies Assumption
4.2, we can easily show thatGk satisfies Assumption 4.1. From now on we fix k > ku0kV.
By Theorem 4.1, there exists a unique F -progressively measurable process Xk such that

� Xk 2 D.Œ0;1/;V/ \ L2loc.Œ0;1/;D.A//, P -a.s.,

� for all t 2 Œ0;1/, P -a.s., in H,

Xk.t/ D u0 �

Z t

0

AXk.s/ ds �
Z t

0

B.Xk.s// ds C
Z t

0

f .s/ ds

C

Z t

0

Z
Z
Gk.X

k.s�/; z/ z�.dz; ds/:

Similarly to (3.8) we define a stopping time

�k WD inf
°
t � 0 W sup

s2Œ0;t�

kXk.s/kV > k
±
:

It is not difficult to see that �k is increasing in k, and XkC1.t/ D Xk.t/; t 2 Œ0; �k/. We
also define a stopping time � WD limk!1 �k . The property above enables us to define
u.t/ for t 2 Œ0; �/ as follows:

u.t/ WD Xk.t/; t 2 Œ0; �k/:

It is easy to see that u.t/; t 2 Œ0; �/, is a local solution of problem (4.6). To complete
the proof, we need only show that P .� D 1/ D 1. For this purpose, we use condition
(G-VH2) from Assumption 4.2.

Following the argument we used in the proof of (3.62), we can find CT > 0 such that

E
�

sup
t2Œ0;T^�/

ju.t/j2H

�
C E

�Z T^�

0

ku.t/k2V dt

�
� CT : (4.7)

Define an additional stopping time z�N by

z�N WD inf
²
t � 0 W sup

s2Œ0;t�

ju.s/j2H C

Z t

0

ku.s/k2V ds � N

³
^ T ^ �;
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and set �N;k WD z�N ^ �k . By the Itô formula and Lemma 2.1, we have, for t � 0,

ku.t/k2V C 2

Z t

0

ku.s/k2D.A/ ds

D ku0k
2
V � 2

Z t

0

hB.u.s//;Au.s/iH ds C 2
Z t

0

hf .s/;Au.s/iH ds

C 2

Z t

0

Z
Z
hG.u.s�/; z/; u.s�/iV0 V z�.dz; ds/C

Z t

0

Z
Z
kG.u.s�/; z/k2V �.dz; ds/

� ku0k
2
V C

Z t

0

ku.s/k2D.A/ ds C C

Z t

0

ku.s/k4Vju.s/j
2
H ds C 2

Z t

0

jf .s/j2H ds

C 2

Z t

0

Z
Z
hG.u.s�/; z/; u.s�/iV0 V z�.dz; ds/C

Z t

0

Z
Z
kG.u.s�/; z/k2V �.dz; ds/:

Applying Gronwall’s lemma, we infer that

ku.t ^ �N;k/k
2
V C

Z t^�N;k

0

ku.s/k2D.A/ ds

� eC
R t^�N;k
0

ju.s/j2Hku.s/k
2
V ds

�

�
ku0k

2
V C 2

Z T

0

jf .s/j2H ds C sup
s2Œ0;T �

ˇ̌̌̌Z s^�N;k

0

Z
Z
hG.u.l�/; z/; u.l�/iV0 V z�.dz; d l/

ˇ̌̌̌
C

Z T^�N;k

0

Z
Z
kG.u.s�/; z/k2V �.dz; ds/

�
� eCN

2

�
ku0k

2
V C 2

Z T

0

jf .s/j2H ds

C sup
s2Œ0;T �

ˇ̌̌̌Z s^�N;k

0

Z
Z
hG.u.l�/; z/; u.l�/iV0 V z�.dz; d l/

ˇ̌̌̌
C

Z T^�N;k

0

Z
Z
kG.u.s�/; z/k2V �.dz; ds/

�
; t 2 Œ0; T �: (4.8)

By the Burkholder–Davis–Gundy inequality and the assumption (G-V2), i.e., (4.2),
we get

eCN
2

E

�
sup

s2Œ0;T �

ˇ̌̌̌Z s^�N;k

0

Z
Z
hG.u.l�/; z/; u.l�/iV0 V z�.dz; d l/

ˇ̌̌̌�
� CeCN

2

E

�ˇ̌̌̌Z T^�N;k

0

Z
Z
kG.u.s�/; z/k2Vku.s�/k

2
V �.dz; ds/

ˇ̌̌̌1=2�
�
1

2
E
�

sup
s2Œ0;T �

ku.s ^ �N;k/k
2
V

�
C CeCN

2

E

�Z T^�N;k

0

Z
Z
kG.u.s/; z/k2V �.dz/ ds

�
�
1

2
E
�

sup
s2Œ0;T �

ku.s ^ �N;k/k
2
V

�
C CeCN

2

Z T

0

E.1C ku.s ^ �N;k/k
2
V/ ds: (4.9)
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Applying assumption (G-V2) again, we infer that

E

�Z T^�N;k

0

Z
Z
kG.u.s�/; z/k2V �.dz; ds/

�
� C

Z T

0

E.1C ku.s ^ �N;k/k
2
V/ ds: (4.10)

Inserting inequalities (4.9) and (4.10) into (4.8), and then using Gronwall’s lemma, we
infer that

E
�

sup
t2Œ0;T �

ku.t ^ �N;k/k
2
V

�
C E

�Z T^�N;k

0

ku.s/k2D.A/ ds

�
� CN;T

�
ku0k

2
V C

Z T

0

jf .s/j2H ds C 1

�
:

Letting k !1, we get

E
�

sup
t2Œ0;T^z�N^�/

ku.t/k2V

�
C E

�Z T^z�N^�

0

ku.t/k2D.A/ dt

�
� CN;T

�
ku0k

2
V C

Z T

0

jf .s/j2H ds C 1

�
:

This implies that

sup
t2Œ0;T^z�N^�/

ku.t/k2V C

Z T^z�N^�

0

ku.t/k2D.A/ dt <1; P -a.s. (4.11)

For a fixed T > 0, we set

�N WD ¹! 2 � W z�N D T ^ �º:

Then �N � �NC1. By (4.7) and (4.11), we deduce that limN!1 P .�N / D 1, and

sup
t2Œ0;T^�/

ku.t/k2V C

Z T^�

0

ku.t/k2D.A/ dt <1 on �N ; P -a.s.

Hence

sup
t2Œ0;T^�/

ku.t/k2V C

Z T^�

0

ku.t/k2D.A/ dt <1; P -a.s.,

which yields
P .� � T / D 1; 8T > 0:

The proof of Theorem 4.2 is complete.

Similar to Section 3, we first introduce symbols which will be used later. Then we
state three auxiliary results: Lemmata 4.1 and 4.2, and Corollary 4.1.
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In this section, we set, for T � 0,

‡T .V/ D D.Œ0; T �;V/ \ L2.Œ0; T �;D.A//: (4.12)

Note that the definition of the space above differs from (3.9). It is easy to see that the
space ‡T .V/ endowed with the norm

kyk‡T .V/ D sup
s2Œ0;T �

ky.s/kV C

�Z T

0

ky.s/k2D.A/ ds

�1=2
(4.13)

is a Banach space.
Let ƒT .V/ be the space of all V-valued càdlàg F -progressively measurable pro-

cesses y whose a.a. trajectories belong to the space ‡T .V/ and such that

kyk2ƒT .V/ WD E

�
sup

s2Œ0;T �

ky.s/k2V C

Z T

0

ky.s/k2D.A/ ds

�
<1: (4.14)

We point out that the space ƒT .H/ introduced earlier around (3.11) differs from the cur-
rent space ƒT .V/.

Recall that the auxiliary function �m.�/ has been introduced in (3.12) (and used, for
instance, in Lemma 3.1).

We are now ready to state the first of the three auxiliary results we need to prove
Theorem 4.1.

Lemma 4.1. Assume that T > 0 andm 2N. Then for all u0 2 V, f 2 L2.Œ0; T �;H/, and
J 2 ‡T .V/, there exists a function y 2 C.Œ0; T �;V/ \ L2.Œ0; T �;D.A// satisfying

y0.t/C Ay.t/C �m.ky C J k‡t .V//B.y.t/C J.t// D f .t/; t 2 .0; T /;

y.0/ D u0:
(4.15)

Proof. Fix T > 0 and m 2 N. Also fix u0 2 V, f 2 L2.Œ0; T �;H/ and J 2 ‡T .V/. We
use the Picard iterative method again to prove this result.

Fix y0 2 C.Œ0; T �;V/\L2.Œ0; T �;D.A// such that y0.0/D u0. For instance, we can
take y0.t/ D e�tAu0, t 2 Œ0; T �.

It is not difficult to prove that, given yn 2 C.Œ0; T �;V/ \ L2.Œ0; T �;D.A//, n 2 N,
there exists a unique ynC1 2 C.Œ0; T �;V/\L2.Œ0; T �;D.A// satisfying the deterministic
initial value problem

y0nC1.t/C AynC1.t/C �m.kyn C J k‡t .V//B.yn.t/C J.t/; ynC1.t/C J.t// D f .t/;

ynC1.0/ D u0: (4.16)

We will show that ¹ynºn2N is a Cauchy sequence in C.Œ0; T �;V/\L2.Œ0; T �;D.A//.
We now estimate the norm inC.Œ0;T �;V/\L2.Œ0;T �;D.A// of the difference ynC1 � yn
for n � 1. To do so, set, for xi 2 C.Œ0; T �;V/ \ L2.Œ0; T �;D.A//, i D 1; 2; 3;

„.x1; x2; x3/.s/ D �m.kx1 C J k‡s.V//B.x2.s/C J.s/; x3.s/C J.s//; s 2 Œ0; T �:
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By the Lions–Magenes lemma, we have

kynC1.t/ � yn.t/k
2
V C 2

Z t

0

kynC1.s/ � yn.s/k
2
D.A/ ds D �2

Z t

0

K.s/ ds; (4.17)

where

K.s/ D
˝
„.yn; yn; ynC1/.s/ �„.yn�1; yn�1; yn/.s/;A.ynC1.s/ � yn.s//

˛
H

with h�; �iH denoting the scalar product in H.
Now fix s 2 Œ0; T �. To estimate K.s/, we consider three cases. Each case contains a

calculation of a certain “partial” integral
R t
0
jK.s/j ds.

Case 1. Assume that kyn C J k‡s.V/ _ kyn�1 C J k‡s.V/ � mC 2. Then

jK.s/j � j�m.kyn C J k‡s.V// � �m.kyn�1 C J k‡s.V//j

�
ˇ̌˝

B.yn�1.s/C J.s/; yn.s/C J.s//;A.ynC1.s/ � yn.s//
˛
H

ˇ̌
C
ˇ̌˝

B.yn.s/C J.s/; ynC1.s/ � yn.s//;A.ynC1.s/ � yn.s//
˛
H

ˇ̌
C
ˇ̌˝

B.yn.s/ � yn�1.s/; yn.s/C J.s//;A.ynC1.s/ � yn.s//
˛
H

ˇ̌
DW I1.s/C I2.s/C I3.s/:

By Lemma 2.1 and the definition of �m,

I1.s/ � Ckyn � yn�1k‡s.V/jyn�1.s/C J.s/j
1=2
H kyn�1.s/C J.s/k

1=2
V

� kyn.s/C J.s/k
1=2
V kyn.s/C J.s/k

1=2

D.A/kynC1.s/ � yn.s/kD.A/

� Cmkyn � yn�1k‡s.V/kyn.s/C J.s/k
1=2

D.A/kynC1.s/ � yn.s/kD.A/

� "kynC1.s/ � yn.s/k
2
D.A/ C

Cm

"
kyn � yn�1k

2
‡s.V/kyn.s/C J.s/kD.A/; (4.18)

I2.s/ � C jyn.s/C J.s/j
1=2
H kyn.s/C J.s/k

1=2
V

� kynC1.s/ � yn.s/k
1=2
V kynC1.s/ � yn.s/k

3=2

D.A/

� CmkynC1.s/ � yn.s/k
1=2
V kynC1.s/ � yn.s/k

3=2

D.A/

� "4=3kynC1.s/ � yn.s/k
2
D.A/ C

Cm

"4
kynC1.s/ � yn.s/k

2
V; (4.19)

and

I3.s/ � C jyn.s/ � yn�1.s/j
1=2
H kyn.s/ � yn�1.s/k

1=2
V

� kyn.s/C J.s/k
1=2
V kyn.s/C J.s/k

1=2

D.A/kynC1.s/ � yn.s/kD.A/

� Cmkyn.s/ � yn�1.s/kVkyn.s/C J.s/k
1=2

D.A/kynC1.s/ � yn.s/kD.A/

� "kynC1.s/ � yn.s/k
2
D.A/ C

Cm

"
kyn.s/ � yn�1.s/k

2
Vkyn.s/C J.s/kD.A/:

(4.20)
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Therefore, sinceZ t

0

kyn.s/C J.s/kD.A/1¹kynCJk‡s.V/�mC2º.s/ ds � Cmt
1=2;

by (4.18)–(4.20) we deduceZ t

0

jK.s/j1¹kynCJk‡s.V/_kyn�1CJk‡s.V/�mC2º.s/ ds

� .2"C "4=3/

Z t

0

kynC1.s/ � yn.s/k
2
D.A/ ds C

Cm

"4
tkynC1 � ynk

2
‡t .V/

C
Cm

"
kyn � yn�1k

2
‡t .V/

Z t

0

kyn.s/C J.s/kD.A/1¹kynCJk‡s.V/�mC2º.s/ ds

�

�
2"C "4=3 C

Cm

"4
t

�
kynC1 � ynk

2
‡t .V/ C

Cm

"
t1=2kyn � yn�1k

2
‡t .V/; t 2 Œ0; T �:

(4.21)

Case 2. Assume that kyn C J k‡s.V/ � mC 2 and kyn�1 C J k‡s.V/ > mC 2. Then the
definition of �m implies that

K.s/ D �m.kyn C J k‡s.V//
˝
B.yn.s/C J.s/; ynC1.s/C J.s//;A.ynC1.s/ � yn.s//

˛
H;

andZ t

0

jK.s/j1¹kynCJk‡s.V/�mC2º.s/1¹kyn�1CJk‡s.V/>mC2º.s/ ds

D

Z t

0

jK.s/j1¹kynCJk‡s.V/�mC1º.s/1¹kyn�1CJk‡s.V/>mC2º.s/ ds: (4.22)

For any s 2 Œ0; t � such that

1¹kynCJk‡s.V/�mC1º.s/1¹kyn�1CJk‡s.V/>mC2º.s/ D 1;

we have

kyn � yn�1k‡s.V/ � kyn�1 C J k‡s.V/ � kyn C J k‡s.V/ � 1; (4.23)

and by Lemma 2.1,

jK.s/j � C jyn.s/C J.s/j
1=2
H kyn.s/C J.s/k

1=2
V

� kynC1.s/C J.s/k
1=2
V kynC1.s/C J.s/k

1=2

D.A/kynC1.s/ � yn.s/kD.A/

� CmkynC1.s/C J.s/k
1=2
V kynC1.s/C J.s/k

1=2

D.A/kynC1.s/ � yn.s/kD.A/

� "kynC1.s/ � yn.s/k
2
D.A/ C

Cm

"
kynC1.s/C J.s/kVkynC1.s/C J.s/kD.A/:

(4.24)
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For the second term of the right hand side, we have

Cm

"
kynC1.s/C J.s/kVkynC1.s/C J.s/kD.A/

�
Cm

"
.kyn.s/CJ.s/kVCkynC1.s/�yn.s/kV/

�
�
kyn.s/CJ.s/kD.A/CkynC1.s/�yn.s/kD.A/

�
�
Cm

"

�
kyn.s/CJ.s/kD.A/kyn�yn�1k

2
‡s.V/CkynC1.s/�yn.s/kD.A/kyn�yn�1k‡s.V/

CkynC1.s/�yn.s/kVkyn.s/CJ.s/kD.A/CkynC1.s/�yn.s/kVkynC1.s/�yn.s/kD.A/
�

� 2"kynC1.s/�yn.s/k
2
D.A/C

Cm

"3
.kyn�yn�1k

2
‡s.V/CkynC1.s/�yn.s/k

2
V/

C
Cm

"
.kyn.s/CJ.s/kD.A/kyn�yn�1k

2
‡s.V/CkynC1.s/�yn.s/kVkyn.s/CJ.s/kD.A//:

(4.25)

In the second “�” in (4.25), we have used (4.23) and kyn.s/C J.s/kV�kynC J k‡s.V/�

mC 1.
Considering (4.22), (4.24), and (4.25) together, we deduceZ t

0

jK.s/j1¹kynCJk‡s.V/�mC2º.s/1¹kyn�1CJk‡s.V/>mC2º.s/ ds

� 3"

Z t

0

kynC1.s/ � yn.s/k
2
D.A/ ds C

Cm

"3
t sup
s2Œ0;t�

kynC1.s/ � yn.s/k
2
V

C
Cm

"3
sup
s2Œ0;t�

kyn � yn�1k
2
‡t .V/ t

C
Cm

"
sup
s2Œ0;t�

kynC1.s/ � yn.s/kV

�

Z t

0

kyn.s/C J.s/kD.A/1¹kynCJk‡s.V/�mC1º.s/1¹kyn�1CJk‡s.V/>mC2º.s/ ds

C
Cm

"
kyn � yn�1k

2
‡t .V/

Z t

0

kyn.s/C J.s/kD.A/1¹kynCJk‡s.V/�mC1º.s/ ds

� kynC1 � ynk
2
‡t .V/

�
3"C

Cm

"3
t C "2

�
C
Cm

"3
tkyn � yn�1k

2
‡t .V/

C
Cm

"4

�Z t

0

kyn.s/C J.s/kD.A/1¹kynCJk‡s.V/�mC1º.s/1¹kyn�1CJk‡s.V/>mC2º.s/

� kyn � yn�1k‡s.V/ ds

�2
C
Cm

"
kyn�yn�1k

2
‡t .V/

�Z t

0

kyn.s/CJ.s/k
2
D.A/1¹kynCJk‡s.V/�mC1º.s/ ds

�1=2
t1=2



2D stochastic Navier–Stokes equations with jumps 3127

� kynC1�ynk
2
‡t .V/

�
3"C

Cm

"3
tC"2

�
C
Cm

"3
tkyn�yn�1k

2
‡t .V/

C
Cm

"4
kyn�yn�1k

2
‡t .V/t

�Z t

0

kyn.s/CJ.s/k
2
D.A/1¹kynCJk‡s.V/�mC1º.s/ds

�
C
Cm

"
kyn�yn�1k

2
‡t .V/t

1=2

� kynC1�ynk
2
‡t .V/

�
3"C

Cm

"3
tC"2

�
Ckyn�yn�1k

2
‡t .V/

�
Cm

"3
tC

Cm

"
t1=2C

Cm

"4
t

�
: (4.26)

In the second “�” in (4.26), we have used (4.23).

Case 3. Assume that kyn C J k‡s.V/ > mC 2 and kyn�1 C J k‡s.V/ � mC 2. The def-
inition of �m implies that

K.s/

D ��m.kyn�1 C J k‡s.V//
˝
B.yn�1.s/C J.s/; yn.s/C J.s//;A.ynC1.s/ � yn.s//

˛
H;

and Z t

0

jK.s/j1¹kynCJk‡s.V/>mC2º.s/1¹kyn�1CJk‡s.V/�mC2º.s/ ds

D

Z t

0

jK.s/j1¹kynCJk‡s.V/>mC2º.s/1¹kyn�1CJk‡s.V/�mC1º.s/ ds: (4.27)

For any s 2 Œ0; t � such that

1¹kynCJk‡s.V/>mC2º.s/1¹kyn�1CJk‡s.V/�mC1º.s/ D 1;

we have

kyn � yn�1k‡s.V/ � kyn C J k‡s.V/ � kyn�1 C J k‡s.V/ � 1; (4.28)

and by Lemma 2.1 again,

jK.s/j � C jyn�1.s/C J.s/j
1=2
H kyn�1.s/C J.s/k

1=2
V

� kyn.s/C J.s/k
1=2
V kyn.s/C J.s/k

1=2

D.A/kynC1.s/ � yn.s/kD.A/

� Cmkyn.s/C J.s/k
1=2
V kyn.s/C J.s/k

1=2

D.A/kynC1.s/ � yn.s/kD.A/

� "kynC1.s/ � yn.s/k
2
D.A/

C
Cm

"
kyn.s/C J.s/kVkyn.s/C J.s/kD.A/: (4.29)
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Using similar arguments to (4.25), we have

Cm

"
kyn.s/C J.s/kVkyn.s/C J.s/kD.A/

�
Cm

"
.kyn�1.s/C J.s/kV C kyn.s/ � yn�1.s/kV/

� .kyn�1.s/C J.s/kD.A/ C kyn.s/ � yn�1.s/kD.A//

�
Cm

"

�
kyn�1.s/C J.s/kD.A/kyn � yn�1k

2
‡s.V/

C kyn.s/ � yn�1.s/kD.A/kyn � yn�1k‡s.V/

C kyn.s/ � yn�1.s/kVkyn�1.s/C J.s/kD.A/

C kyn.s/ � yn�1.s/kVkyn.s/ � yn�1.s/kD.A/
�

� 2"kyn.s/ � yn�1.s/k
2
D.A/ C

Cm

"3
.kyn � yn�1k

2
‡s.V/ C kyn.s/ � yn�1.s/k

2
V/

C
Cm

"
kyn�1.s/C J.s/kD.A/kyn � yn�1k

2
‡s.V/: (4.30)

In the second and third “�” of (4.30), we have used (4.28) and

kyn�1.s/C J.s/kV � kyn�1 C J k‡s.V/ � mC 1;

kyn.s/ � yn�1.s/kV � kyn � yn�1k
2
‡s.V/:

Combining (4.27), (4.29), and (4.30), and using the same idea as in (4.26), we deduceZ t

0

jK.s/j1¹kynCJk‡s.V/>mC2º.s/1¹kyn�1CJk‡s.V/�mC2º.s/ ds

� "kynC1 � ynk
2
‡t .V/ C kyn � yn�1k

2
‡t .V/

�
3"C

Cm

"3
t C

Cm

"
t1=2

�
: (4.31)

We have now finished the estimates for K.s/ in the three cases.
The statements made in (4.21), (4.26), and (4.31), combined with equality (4.17),

allow us to state that for all " > 0 and t2 Œ0; T �,

kynC1.t/ � yn.t/k
2
V C 2

Z t

0

kynC1.s/ � yn.s/k
2
D.A/ ds

� CmkynC1 � ynk
2
‡t .V/

�
"C "4=3 C

t

"4
C "2 C

t

"3

�
C Cmkyn � yn�1k

2
‡t .V/

�
"C

t

"4
C
t1=2

"
C

t

"3

�
: (4.32)

Since, by the definition of ‡t .V/,

1

2
kynC1 � ynk

2
‡t .V/ � sup

s2Œ0;t�

kynC1.s/ � yn.s/k
2
V C

Z t

0

kynC1.s/ � yn.s/k
2
D.A/ ds;

we can choose " and t0 > 0 small enough such that for all n � 1,

kynC1 � ynk
2
‡t0 .V/

�
1
3
kyn � yn�1k

2
‡t0 .V/

: (4.33)
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This implies that ¹ynºn2N is a Cauchy sequence in C.Œ0; t0�; V/ \ L2.Œ0; t0�;D.A//.
Therefore, it has a unique limit in that space, which we denote by y1. It is rather standard
(if not obvious) that y1 is a solution of (4.15) on Œ0; t0�. Observe that the constant t0 does
not depend on the initial data.

Next, we consider

y0.t/C Ay.t/C �m.ky C J k‡t .V//B.y.t/C J.t// D f .t/; t > t0;

y.t/ D y1.t/; t 2 Œ0; t0�:
(4.34)

Repeating the above arguments, we can solve (4.34) on Œ0; 2t0�, and denote its solution
by y2 WD ¹y2.t/; t 2 Œ0; 2t0�º. It is not difficult to prove that y2 is a solution of (4.15) on
Œ0; 2t0�. Then, by induction, we can solve (4.15) on Œ0; 3t0�, Œ0; 4t0�, and so on. We finally
obtain a solution y 2 C.Œ0; T �;V/\L2.Œ0; T �;D.A// of (4.15) for any fixed T > 0. The
proof of Lemma 4.1 is complete.

Although the uniqueness of solutions to equation (4.15) follows from the existence
proof, for completeness sake, we give an independent proof of this property (see also
Corollary 4.1). The following lemma is a preliminary step in this direction. It will also be
used later.

Let us recall that the space ƒT .V/ (and its norm) was defined around equality (4.14).

Lemma 4.2. Let n 2 N and T > 0. Assume that for all u0 2 V, f 2 L2.Œ0; T �;H/ and
y 2 ƒT .V/, there exists an element u D ˆy 2 ƒT .V/ satisfying

du.t/C Au.t/ dt C �n.kuk‡t .V//B.u.t// dt

D f .t/ dt C

Z
Z
G.y.t�/; z/ z�.dz; dt/;

u.0/ D u0:

(4.35)

Then there exist a positive constant C and a function Ln W .0;1/! .0;1/ such that
limT!0Ln.T / D 1 and

kˆy1 �ˆy2k2ƒT .V/ � CL
2
n.T /T ky1 � y2k

2
ƒT .V/

; y1; y2 2 ƒT .V/: (4.36)

Proof. Fix n 2N and T > 0. Assume that u0 2V, f 2L2.Œ0;T �;H/ and y1;y2 2ƒT .V/.
For simplicity, let us set u1 D ˆy1 , u2 D ˆy2 , and u D u1 � u2. By the Itô formula,

we have

ku.t/k2V C 2

Z t

0

ku.s/k2D.A/ ds

D � 2

Z t

0

˝
�n.ku1k‡s.V//B.u1.s// � �n.ku2k‡s.V//B.u2.s//;Au.s/

˛
H ds

C 2

Z t

0

Z
Z
hG.y1.s�/; z/ �G.y2.s�/; z/; u.s�/iV0 V z�.dz; ds/

C

Z t

0

Z
Z
kG.y1.s�/; z/ �G.y2.s�/; z/k

2
V �.dz; ds/

DW J1.t/C J2.t/C J3.t/: (4.37)
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For the first term, J1, we have

jJ1.t/j �
1

2

Z t

0

ku.s/k2D.A/ ds C 2

Z t

0

K.s/ ds (4.38)

where

K.s/ WD
ˇ̌
�n.ku1k‡s.V//B.u1.s// � �n.ku2k‡s.V//B.u2.s//

ˇ̌2
H; s 2 Œ0; T �:

To find suitable bounds on K, we consider four cases. By the property of �n (see
(3.12)) and the Minkowski inequality, we have the following estimates.

(1) For ku1k‡s.V/ _ ku2k‡s.V/ � nC 1, we have

K.s/ � C
�
jB.u1.s//�B.u2.s//j2HC

ˇ̌
�n.ku1k‡s.V//��n.ku2k‡s.V//

ˇ̌2
jB.u2.s//j2H

�
� C

�
ju1.s/jHku1.s/kVku.s/kVku.s/kD.A/Cku2.s/kVku2.s/kD.A/ju.s/jHku.s/kV

�
CC ju2.s/jHku2.s/k

2
Vku2.s/kD.A/kuk

2
‡s.V/

�
1
4
ku.s/k2D.A/

CCkuk2‡s.V/
�
ju1.s/j

2
Hku1.s/k

2
VCku2.s/kVku2.s/kD.A/Cku2.s/k

3
Vku2.s/kD.A/

�
:

(2) For ku1k‡s.V/ � nC 1 and ku2k‡s.V/ � nC 1, we have

K.s/ D
ˇ̌
�n.ku1k‡s.V//B.u1.s//

ˇ̌2
H

D
ˇ̌
�n.ku1k‡s.V// � �n.ku2k‡s.V//

ˇ̌2
jB.u1.s//j2H

� C ju1.s/jHku1.s/k
2
Vku1.s/kD.A/kuk

2
‡s.V/:

(3) For ku1k‡s.V/ � nC 1 and ku2k‡s.V/ � nC 1, similar to case (2), we get

K.s/ � C ju2.s/jHku2.s/k
2
Vku2.s/kD.A/kuk

2
‡s.V/:

(4) For ku1k‡s.V/ ^ ku2k‡s.V/ � nC 1, we have

K.s/ D 0:

Hence,

K.s/ � 1
4
ku.s/k2D.A/ C Ckuk

2
‡s.V/„.s/; s 2 Œ0; T �; (4.39)

where

„.s/ WD
�
ju1.s/j

2
Hku1.s/k

2
V C ku1.s/k

3
Vku1.s/kD.A/

�
1Œ0;nC1�.ku1k‡s.V//

C
�
ku2.s/kVku2.s/kD.A/ C ku2.s/k

3
Vku2.s/kD.A/

�
1Œ0;nC1�.ku2k‡s.V//;

s 2 Œ0; T �:

Set

‚.t/ WD sup
s2Œ0;t�

ku.t/k2V C

Z t

0

ku.s/k2D.A/ ds:
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Substituting (4.39) into (4.38), and then into (4.37), and noting that kuk2
‡s.V/

� 2‚.s/,
s 2 Œ0; T �, we deduce that

‚.t/ � C

Z t

0

‚.s/„.s/ ds C sup
s2Œ0;t�

jJ2.s/j C J3.t/; t 2 Œ0; T �: (4.40)

Then Gronwall’s lemma implies that

‚.T / �
�

sup
t2Œ0;T �

jJ2.t/j C J3.T /
�
� eC

R T
0 „.s/ ds

�

�
sup
t2Œ0;T �

jJ2.t/j C J3.T /
�
� eC.n

4TCn4T 1=2Cn2T 1=2/: (4.41)

Set
Ln.T / D e

C.n4TCn4T 1=2Cn2T 1=2/: (4.42)

By the Burkholder–Davis–Gundy inequality and Assumption 4.1, we have

Ln.T /E
�

sup
t2Œ0;T �

jJ2.t/j
�
�

1
2
kuk2ƒT .V/ C CLn.T /

2T ky1 � y2k
2
ƒT .V/

; (4.43)

and

E.J3.T // � CT ky1 � y2k
2
ƒT .V/

: (4.44)

Summing up (4.41), (4.43), and (4.44) we have

kuk2ƒT .V/ � CL
2
n.T /T ky1 � y2k

2
ƒT .V/

:

Notice that in view of the definition (4.42), Ln.T /! 1 as T ! 0. The proof of Lemma
4.2 is thus complete.

Using arguments similar to those for Corollary 3.1, by Lemma 4.2 we have

Corollary 4.1. Under the same assumptions as in Lemma 4.1, the solution of problem
(4.15) is unique.

Now we are in a position to prove Theorem 4.1. But before doing so, for the benefit
of the reader, we make the following remark. Conditions (2.15) and (2.16) in [5], the
auxiliary problems (3.4)1 and (3.13) and their proofs of the existence and uniqueness of
solutions correspond to properties (3.12), the auxiliary problems (4.46) and (4.45) and the
proofs of the existence and uniqueness of solutions in the present paper.

Proof of Theorem 4.1. We also use the Banach fixed point theorem to give this proof in
three steps.

1Note that (3.4) in [5] should read as follows: dun.t/ C Aun.t/dt D �.BTn v/.t/dt CR
ZG.z; v.t�// z�.dz; dt/.
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Step 1: Local existence. Consider the auxiliary problem

dun.t/C Aun.t/ dt C �n.kunk‡t .V//B.un.t// dt

D f .t/ dt C

Z
Z
G.un.t�/; z/ z�.dz; dt/;

un.0/ D u0:

(4.45)

Fix T > 0. For any y 2 ƒT .V/, there exists a unique element u D ˆy such that u 2
D.Œ0; T �;V/ \ L2.Œ0; T �;D.A// D ‡T .V/, P -a.s., and

du.t/C Au.t/ dt C �n.kuk‡t .V//B.u.t// dt

D f .t/ dt C

Z
Z
G.y.t�/; z/ z�.dz; dt/;

u.0/ D u0:

(4.46)

This can be seen as follows. It is known that there exists a unique F -progressively mea-
surable process J 2 ‡T .V/ satisfying the stochastic Langevin equation

dJ.t/C AJ.t/ dt D
Z

Z
G.y.t�/; z/ z�.dz; dt/;

J.0/ D 0:
(4.47)

Moreover, this process, called an Ornstein–Uhlenbeck process, satisfies

E
�

sup
t2Œ0;T �

kJ.t/k2V
�
C E

�Z T

0

kJ.t/k2D.A/ dt
�
� CT

�
E
�

sup
t2Œ0;T �

ky.t/k2V

�
C 1

�
:

For any ! 2 �, consider the following deterministic PDE:

dx.t/C Ax.t/C �n.kx C Jk‡t .V//B.x.t/C J.t// dt D f .t/ dt;
x.0/ D u0:

By Lemma 4.1 and Corollary 4.1, this PDE has a unique solution x 2 ‡T .V/. One can
show that the process u defined by u D x C J is a solution to (4.46). For the uniqueness,
we refer to Lemma 4.2.

Now we prove that u 2 ƒT .V/. Applying the Itô formula, we get

ku.t/k2V C 2

Z t

0

ku.s/k2D.A/ ds

D ku0k
2
V � 2

Z t

0

˝
�n.kuk‡s.V//B.u.s//;Au.s/

˛
H ds

C 2

Z t

0

hf .s/;Au.s/iH ds C 2
Z t

0

Z
Z
hG.y.s�/; z/; u.s/iV0 V z�.dz; ds/

C

Z t

0

Z
Z
kG.y.s�/; z/k2V �.dz; ds/

D

5X
iD1

Ji .t/: (4.48)
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By Lemma 2.1, we have

jJ2.t/j �
1

2

Z t

0

ku.s/k2D.A/ ds C 2

Z t

0

j�n.kuk‡s.V//B.u.s//j
2
H ds

�
1

2

Z t

0

ku.s/k2D.A/ ds C C

Z t

0

�2n .kuk‡s.V//ju.s/jHku.s/k
2
Vku.s/kD.A/ ds

�
1

2

Z t

0

ku.s/k2D.A/ ds C Cn
4t1=2: (4.49)

It is easy to see that

J3.t/ �
1

2

Z t

0

ku.s/k2D.A/ ds C 2

Z t

0

jf .s/j2H ds; t 2 Œ0; T �; (4.50)

and
E.J5.T // � CT

�
1C E

�
sup

s2Œ0;T �

ky.s/k2V

��
: (4.51)

By the Burkholder–Davis–Gundy inequality, we get

E
�

sup
t2Œ0;T �

jJ4.t/j
�
�
1

2
E
�

sup
t2Œ0;T �

ku.t/k2V

�
C CT

�
1C E

�
sup

s2Œ0;T �

ky.s/k2V

��
: (4.52)

Combining (4.48)–(4.52), we have

E
�

sup
t2Œ0;T �

ku.t/k2V

�
C E

�Z T

0

ku.s/k2D.A/ ds

�
� Cn;T

�
ku0k

2
V C 1C E

�
sup

s2Œ0;T �

ky.s/k2V

��
:

We have shown that u 2 ƒT .V/, and this implies that ˆ� W ƒT .V/ ! ƒT .V/ is well-
defined.

By Lemma 4.2, there exist a positive constant C and Ln.T /! 1 as T ! 0 such that

kˆy1 �ˆy2k2ƒT .V/ � CL
2
n.T /T ky1 � y2k

2
ƒT .V/

; y1; y2 2 ƒT .V/: (4.53)

Using arguments similar to the proof of Theorem 3.1, we can construct a unique un 2
ƒT .V/ for any T > 0 that is a solution of (4.45). However, we do not know whether the
solution is unique.

Define a stopping time �n by

�n D inf ¹t � 0 W kunk‡t .V/ > nº: (4.54)

Then �n.kunk‡t .V// D 1 for any t 2 Œ0; �n/, hence ¹un.t/; t 2 Œ0; �n/º is a local solution
of problem (4.4).

Step 2: Local uniqueness. We need a proof of uniqueness not relying on the uniqueness
from Theorem 3.1; see Remark 4.1.
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Assume that ¹U1.t/; t 2 Œ0; �1/º and ¹U2.t/; t 2 Œ0; �2/º are two local solutions of
(4.4). Fix R > 0. Define

� iR D inf ¹t > 0 W kUik‡t .V/ > Rº ^ �i ; i D 1; 2:

� D �1 ^ �2; �R D �
1
R ^ �

2
R:

It is known that �i , � iR, i D 1; 2, � , and �R are stopping times.
Now we prove that

U1 D U2 on Œ0; �/: (4.55)

Let M.t/ D U1.t/ � U2.t/. By the Itô formula,

kM.t/k2V C 2

Z t

0

kM.s/k2D.A/ ds

D �2

Z t

0

hB.U1.s// � B.U2.s//;AM.s/iH ds

C 2

Z t

0

Z
Z
hG.U1.s�/; z/ �G.U2.s�/; z/;M.s�/iV0 V z�.dz; ds/

C

Z t

0

Z
Z
kG.U1.s�/; z/ �G.U2.s�/; z/k

2
V �.dz; ds/

D I1.t/C I2.t/C I3.t/: (4.56)

By Lemma 2.1,

jI1.t/j �
1

2

Z t

0

kM.s/k2D.A/ ds C 2

Z t

0

jB.U1.s// � B.U2.s//j2H ds

�
1

2

Z t

0

kM.s/k2D.A/ ds C C

Z t

0

jU1.s/jHkU1.s/kVkM.s/kVkM.s/kD.A/ ds

C C

Z t

0

kU2.s/kVkU2.s/kD.A/kM.s/kVjM.s/jH ds

�

Z t

0

kM.s/k2D.A/ ds

C C

Z t

0

kM.s/k2V
�
jU1.s/j

2
HkU1.s/k

2
V C kU2.s/kD.A/kU2.s/kV

�
ds: (4.57)

In view of inequality (4.57), by Gronwall’s lemma applied to (4.56), we infer that for all
t 2 Œ0; T �,

kM.t ^ �R/k
2
V C

Z t^�R

0

kM.s/k2D.A/ ds

� eC
R t^�R
0

jU1.s/j
2
HkU1.s/k

2
VCkU2.s/kD.A/kU2.s/kV ds

h
sup

s2Œ0;T �

jI2.s ^ �R/j C I3.T ^ �R/
i

� eCTR
4CCR2T 1=2

h
sup

s2Œ0;T �

jI2.s ^ �R/j C I3.T ^ �R/
i
: (4.58)
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Next, by the Burkholder–Davis–Gundy inequality and Assumption 4.1 we infer that for
any ı > 0,

E
�

sup
s2Œ0;T �

jI2.s ^ �R/j
�
� ıE

�
sup

s2Œ0;T �

kM.s ^ �R/k
2
V

�
C CıE

�Z T^�R

0

kM.s/k2V ds

�
(4.59)

and

E.I3.T ^ �R// � CE

�Z T^�R

0

kM.s/k2V ds

�
: (4.60)

Combining inequalities (4.58)–(4.60), and applying Gronwall’s lemma, we deduce
that

E
�

sup
t2Œ0;T �

kM.t ^ �R/k
2
V

�
C E

�Z T^�R

0

kM.s/k2D.A/ ds

�
D 0:

Since limR%1 �R D � , by taking first the limit as R%1 and then the limit as T %1,
we infer that

E
�

sup
t2Œ0;�/

kM.t/k2V

�
C E

�Z �

0

kM.s/k2D.A/ ds

�
D 0;

which implies the uniqueness of the local solution.

Step 3: Global existence. Let us recall that �n has been defined in (4.54). By Step 2 the
sequence ¹�nº1nD1 is nondecreasing and

unC1.t/ D un.t/; t 2 Œ0; �n/; P -a.s.

Put �max WD limn!1 �n. By [32, Proposition 2.1.2], the random time �max is a stopping
time. As in the proof of Theorem 3.1, we can define a process ¹u.t/; t 2 Œ0; �max/º by

u.t/ D un.t/; t 2 Œ0; �n/;

This process is a local solution of (4.4), and it satisfies (see (3.59))

lim
t%�max

kuk‡t .V/ D1 on ¹! W �max <1º; P -a.s.

Using an argument similar to the one used in the proof of Theorem 4.2, we can prove that

P .�max D1/ D 1:

This concludes the proof of the global existence, and hence Theorem 4.1 is established.

5. Large deviation principle (LDP)

Fix T > 0. In this section, we establish a Freidlin–Wentzell LDP for problem (2.2) on
‡T .V/ defined in (4.12), i.e.,

‡T .V/ WD D.Œ0; T �;V/ \ L2.Œ0; T �;D.A//:

In the following, the space D.Œ0; T �;V/ is equipped with the Skorokhod topology.
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5.1. Description of the problem and the statement of the main result

We first introduce the problem and then state the precise assumptions on the coefficients,
followed by the main result.

Let us recall that Z is a locally compact Polish space. We set

ZT D Œ0; T � � Z; Y D Z � Œ0;1/; YT D Œ0; T � � Z � Œ0;1/:

We let MT DM .ZT / be the space of all nonnegative measures # on .ZT ;B.ZT // such
that #.K/ <1 for every compact subset K of ZT .

We endow the set MT with the weakest topology, denoted by T .MT /, such that for
every g 2 Cc.ZT / (where Cc.ZT / is the space of real continuous functions on ZT with
compact support), the map

MT 3 # 7!

Z
ZT
g.z; s/ #.dz; ds/ 2 R

is continuous. Analogously, we define MT DM .YT / and T .MT /. It is known (see
[17, Section 1]) that both .MT ;T .MT // and .MT ;T .MT // are Polish spaces.

In the present paper, we denote

N� DMT ; G WD T .MT /:

Fix a � -finite measure � on .Z;B.Z// such that �.K/ <1 for every compact sub-
set K of Z. By [42, Section I.8], there exists a unique probability measure Q on . N�;G /
on which the canonical/identity map

N W N� 3 m 7! m 2MT

is a Poisson random measure (PRM) on YT with intensity measure Leb.dt/˝ �.dz/˝

Leb.dr/, over the probability space . N�;G ;Q/.
We also introduce the following notation:

Gt D the Q-completion of �¹N..0; s� �O/ W s 2 Œ0; t �; O 2 B.Y/º; t 2 Œ0; T �;

G D .Gt /t2Œ0;T �;

P D the G-predictable � -field on Œ0; T � � N�;
NA D the class of all .P ˝B.Z//-measurable functions ' W ZT � N�! Œ0;1/.

It can be shown that N is a time-homogeneous PRM on Y, with intensity measure
Leb.dt/ ˝ �.dz/ ˝ Leb.dr/, over the (filtered) probability space . N�; G ;G;Q/; see
Appendix A. The corresponding compensated PRM is denoted by zN.

For every function ' 2 NA, let us define a counting process N' on Z by

N'..0; t � �O/ WD
Z
.0;t��O�.0;1/

1Œ0;'.s;z/�.r/N.ds; dz; dr/;

D

Z
.0;t��O�.0;1/

1¹.s;z;r/Wr�'.s;z/º.s; z; r/N.ds; dz; dr/

D

Z
.0;t��O�.0;1/

1Œr;1/.'.s; z//N.ds; dz; dr/; t 2 Œ0; T �;O 2 B.Z/: (5.1)

We observe that N' W N�!M .ZT / DMT .
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Analogously, we define a process zN' :

zN'..0; t � �O/ WD
Z
.0;t��O�.0;1/

1Œ0;'.s;z/�.r/ zN.ds; dz; dr/;

D

Z
.0;t��O�.0;1/

1¹.s;z;r/W r�'.s;z/º.s; z; r/ zN.ds; dz; dr/

D

Z
.0;t��O�.0;1/

1Œr;1/.'.s; z// zN.ds; dz; dr/; t 2 Œ0; T �; O 2 B.Z/: (5.2)

For any Borel function g W ZT ! Œ0;1/,Z
.0;t��Z

g.s; z/ zN'.ds; dz/ D
Z
.0;t��Z�.0;1/

1Œ0;'.s;z/�.r/g.s; z/ zN.ds; dz; dr/: (5.3)

Note that if ' is a constant function a with value a 2 Œ0;1/, then

Na..0; t � �O/ D N
�
.0; t � �O � .0; a�

�
; t 2 Œ0; T �; O 2 B.Z/;

zNa..0; t � �O/ D zN
�
.0; t � �O � .0; a�

�
; t 2 Œ0; T �; O 2 B.Z/:

We finish this introduction with the following two simple observations.

Proposition 5.1. In the above framework, for every a > 0, the map

Na W N�!M .ZT / DMT (5.4)

is a Poisson random measure on ZT with intensity measure Leb.dt/˝ a �.dz/ and zNa is
equal to the corresponding compensated Poisson random measure.

Proposition 5.2. In the above framework, suppose that '; 2 NA, t0 2 Œ0; T �, and a Borel
set O � Z are such that

'.s; z; !/ D  .s; z; !/ for .s; z; !/ 2 Œ0; t0� �O � N�:

Then

N'..0; t � � C/ D N ..0; t � � C/ for t 2 Œ0; t0�; C 2 O \B.Z/: (5.5)

Let us fix " > 0, u0 2 V and f 2 L2.Œ0; T �;H/. Consider the following SPDE on the
given probability space . N�;G ;G;Q/:

du".t/C Au".t/ dt C B.u".t// dt

D f .t/ dt C "

Z
Z
G.u".t�/; z/ zN1=".dz; dt/; t 2 Œ0; T �;

u".0/ D u0:

(5.6)

By Theorem 4.2 there exists a unique solution u" to problem (5.6) whose trajectories
a.s. belong to the space ‡T .V/ (see (4.12)). In particular, u" induces an ‡T .V/-valued
random variable. In this section, we aim to establish an LDP for the laws of the family
¹u"º">0 on ‡T .V/.
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For our main result, we use the following notation. Denote, for N > 0,

SN D ¹g W ZT ! Œ0;1/ W g is Borel measurable and LT .g/ � N º; (5.7)

S D
[
N�1

SN ;

where for a Borel measurable function g W ZT ! Œ0;1/, we set

LT .g/ WD

Z T

0

Z
Z

�
g.t; z/ logg.t; z/ � g.t; z/C 1

�
�.dz/ dt: (5.8)

A function g 2 SN can be identified with a measure �g 2MT , defined by

�g.O/ D

Z
O

g.t; z/ �.dz/ dt; O 2 B.ZT /:

This identification induces a topology on SN , under which SN is a compact space (see
[15, Appendix]). Throughout this section, we use this topology on SN .

Let us finally define

H WD

²
h W Z! R W h is Borel measurable and there exists ı > 0 such thatZ

�

eıh
2.z/ �.dz/ <1 for all � 2 B.Z/ with �.�/ <1

³
; (5.9)

and

L2.�/ WD

²
h W Z! Œ0;1/ W h is Borel measurable and

Z
Z
h2.z/ �.dz/ <1

³
:

In many parts of this section, we use the following assumption.

Assumption 5.1. There exist functions L„; Li 2H \ L2.�/, for „ > 0, i D 2; 3, such
that

(LDP-01) (Lipschitz on balls) for every „ > 0 and v1; v2 2 V with kv1kV _ kv2kV � „,

kG.v1; z/ �G.v2; z/kV � L„.z/kv1 � v2kV; z 2 Z;

(LDP-02) (Linear growth in V)

kG.v; z/kV � L2.z/.1C kvkV/; v 2 V; z 2 Z;

(LDP-03) (Linear growth in H)

jG.v; z/jH � L3.z/.1C jvjH/; v 2 V; z 2 Z:

Remark 5.1. A word of warning is due here. Quite often, the Lipschitz property is for-
mulated differently. See, for instance, inequality (3.1) in Assumption 3.1.

Remark 5.2. Because the functions L„, L2, and L3 belong to L2.�/, Assumption 5.1
implies Assumption 4.2.
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We now state the main result of this section. We use the convention that inf.;/ D1.

Theorem 5.1. Assume that Assumption 5.1 holds, f 2 L2.Œ0; T �;H/, and u0 2 V. Then
the family ¹u"º">0 satisfies an LDP on ‡T .V/ with the good rate function I defined by

I.k/ WD inf ¹LT .g/ W g 2 S; ug D kº; k 2 ‡T .V/; (5.10)

where for g 2 S, ug is the unique solution of the deterministic PDE

dug.t/

dt
C Aug.t/C B.ug.t// D f .t/C

Z
Z
G.ug.t/; z/.g.t; z/ � 1/ �.dz/;

ug.0/ D u0:

(5.11)

Remark 5.3. By Theorem 3.2, and using arguments similar to the proof of Theorem 5.1,
it is not difficult to improve the results on Freidlin–Wentzell-type LDP for strong solutions
in the probabilistic sense of 2D SNSEs driven by Lévy processes of jump type. We only
state the result here, and omit the proof.

Assumption 5.2. There exist functions‡„ 2H \L2.�/ for „> 0 and‡ 2H \L2.�/

such that

(LDP-01-P) (Lipschitz on balls in H) for all „ > 0 and v1; v2 2 H with kv1kH _ kv2kH

� „,
kG.v1; z/ �G.v2; z/kH � ‡„.z/kv1 � v2kH; z 2 Z;

(LDP-02-P) (Linear growth in H)

kG.v; z/kH � ‡.z/.1C kvkH/; v 2 H; z 2 Z:

Theorem 5.2. Assume that Assumption 5.2 holds, f 2 L2.Œ0; T �;V0/, and u0 2 H. Then
the family ¹u"º">0 satisfies an LDP on D.Œ0; T �;H/ \ L2.Œ0; T �;V/ with the good rate
function J defined by

J.k/ WD inf ¹LT .g/ W g 2 S; ug D kº; k 2 D.Œ0; T �;H/ \ L2.Œ0; T �;V/;

where for g 2 S, ug is the unique solution of the deterministic PDE

dug.t/

dt
C Aug.t/C B.ug.t// D f .t/C

Z
Z
G.ug.t/; z/.g.t; z/ � 1/ �.dz/;

ug.0/ D u0:

Let us point out that the results (see [29, 62, 66]) on this topic assume that the global
Lipschitz condition in H with condition (LDP-02-P) holds, i.e.,

� (Global Lipschitz in H) There exist functions z‡ 2 H \ L2.�/ such that, for all
v1; v2 2 H,

kG.v1; z/ �G.v2; z/kH � z‡.z/kv1 � v2kH; z 2 Z:
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Before we can embark on the proof of Theorem 5.1, we need to establish the well-
posedness of equation (5.11). It is a consequence of the following result, whose proof is
postponed to Appendix B.

Lemma 5.1. Assume that N 2 N. Then, for all u0 2 V, f 2 L2.Œ0; T �;H/, and g 2 SN ,
there exists a unique solution ug 2 C.Œ0; T �;V/ \ L2.Œ0; T �;D.A// of problem (5.11).
Moreover, for any �; R > 0, there exists a positive constant CN D CN;�;R such that
for every g 2 SN and all u0 2 V and f 2 L2.Œ0; T �; H/ such that ku0kV � � and
kf kL2.Œ0;T �;H/ � R, the following estimate is satisfied:

sup
t2Œ0;T �

kug.t/k2V C

Z T

0

kug.t/k2D.A/ dt � CN : (5.12)

Proof of Theorem 5.1. By applying Theorem 4.2 to problem (5.6), in view of [65, The-
orem 8], we infer that there exists a family ¹G "º">0, where G " W MT ! ‡T .V/ is a
measurable map such that for every " > 0, the following condition holds:

� If � is a time-homogeneous Poisson random measure on Z with intensity "�1 �.dz/, i.e.,
a Poisson random measure on ZT with intensity Leb.dt/˝ "�1 �.dz/, on a stochastic
basis .�1;F 1; P1; F1/ with F1 D ¹F 1

t ; t 2 Œ0; T �º satisfying the usual conditions,
then the process Y " defined by Y " WD G "."�/ is the unique solution of

dY ".t/C AY ".t/ dt C B.Y ".t// dt

D f .t/ dt C "

Z
Z
G.Y ".t�/; z/

�
�.dz; dt/ � "�1 �.dz/ dt

�
;

(5.13)
Y ".0/ D u0:

The statements in the condition mean that Y " induces (in a natural way) an F1-progres-
sively measurable process (for which we do not introduce a separate notation) which
satisfies

(a1) the trajectories of Y " belong to ‡T .V/, P1-a.s.,

(a2) the following equality holds in H: for all t 2 Œ0; T �, P1-a.s.,

Y ".t/ D u0 �

Z t

0

AY ".s/ ds �
Z t

0

B.Y ".s// ds C
Z t

0

f .s/ ds

C "

Z t

0

Z
Z
G.Y ".s�/; z/

�
�.dz; ds/ � "�1�.dz/ ds

�
: (5.14)

Therefore, since by Proposition 5.1, N "�1 is a Poisson random measure on ZT with
intensity measure Leb.dt/ ˝ "�1 �.dz/, we deduce the following result which will be
used later on.

Corollary 5.1. In the above framework, the unique solution of problem (5.6) on the prob-
ability space . N�;G ;G;Q/ is given by

u" WD G "."N "�1/: (5.15)
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Moreover, Lemma 5.1 implies that, for every g 2 S, there is a unique solution ug 2
‡T .V/ of equation (5.11). This allows us to define a map

G 0
W S 3 g 7! ug 2 ‡T .V/: (5.16)

We apply [15, Theorem 2.4] to finish the proof of Theorem 5.1. According to [15], it
is sufficient to verify two claims. The first one is the following.

Claim LDP-1. For all N 2 N, if gn; g 2 SN are such that gn ! g as n!1, then

G 0.gn/! G 0.g/; i.e., ugn ! ug in ‡T .V/:

To state the second claim, we introduce additional notations.
Let us fix an increasing sequence ¹Knº1nD1 of compact subsets of Z such that

1[
nD1

Kn D Z: (5.17)

Define

NAb D
1[
nD1

¹' 2 NA W '.t; z; !/ 2 Œ1=n; n� if .t; z; !/ 2 Œ0; T � �Kn � N�

and '.t; z; !/ D 1 if .t; z; !/ 2 Œ0; T � �Kcn � N�º; (5.18)

where the class NA was introduced at the beginning of this subsection. We also set

U N
WD ¹' 2 NAb W '.�; �; !/ 2 S

N for Q-a.a. ! 2 N�º; U WD
1[
ND1

U N : (5.19)

Claim LDP-2. For all N 2 N, if "n ! 0 and '"n ; ' 2 U N are such that '"n converges
in law to ', then

G "n."nN
"n
�1'"n / converges in law to G 0.'/ in ‡T .V/:

The verification of Claim LDP-1 will be given in Proposition 5.3 in the following
subsection. Claim LDP-2 will be established in Proposition 7.1. Assuming these claims
have been proven, the proof of Theorem 5.1 is complete.

5.2. The first continuity lemma

To verify Claim LDP-1, it is sufficient to prove the following result.

Proposition 5.3 (The first continuity lemma). For allN 2N, let gn; g 2 SN be such that
gn ! g in SN as n!1. Then

G 0.gn/! G 0.g/ in ‡T .V/:
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Proof. Recall the definition of G 0 in (5.16). Let ugn be the solution of (5.11) with g
replaced by gn. For simplicity, set un D ugn D G 0.gn/ and u D ug D G 0.g/. To prove
our result, we will show that

un ! u in ‡T .V/:

Fix ˛ 2 .0; 1=2/. Let W ˛;2.Œ0; T �;V0/ be the Sobolev space consisting of all h 2
L2.Œ0; T �;V0/ satisfying Z T

0

Z T

0

kh.t/ � h.s/k2V0

jt � sj1C2˛
dt ds <1;

endowed with the norm

khk2
W ˛;2.Œ0;T �;V0/ D

Z T

0

kh.t/k2V0 dt C

Z T

0

Z T

0

kh.t/ � h.s/k2V0

jt � sj1C2˛
dt ds: (5.20)

By Lemma 5.1 and using arguments similar to [66, proof of (4.8)], we can deduce that

sup
n�1

kunk
2
W ˛;2.Œ0;T �;V0/ �

zCN <1: (5.21)

Moreover, since by [35, Theorem 2.1] (see also [59]), the embedding

L2.Œ0; T �;D.A// \W ˛;2.Œ0; T �;V0/ ,! L2.Œ0; T �;V/ (5.22)

is compact, by Lemma 5.1 and (5.21) we infer that there exists Qu 2 L2.Œ0; T �;D.A// \
L1.Œ0; T �;V/ and a subsequence (for simplicity, also denoted by un) such that

(P1) un ! Qu weakly in L2.Œ0; T �;D.A//,

(P2) un ! Qu in the weak-� topology of L1.Œ0; T �;V/, and

sup
n�1

sup
t2Œ0;T �

kun.t/kV C sup
t2Œ0;T �

k Qu.t/kV DW „0 <1;

(P3) un ! Qu strongly in L2.Œ0; T �;V/.

Now we prove that the limit function Qu is a solution of equation (5.11). By the unique-
ness of this solution, we infer Qu D u D ug . The proof seems to be classical, but it is not,
because of the nonstandard terms.

Let  be a continuously differentiable V-valued function on Œ0; T � with  .T / D 0.
We multiply un.t/ scalarly in H by  .t/, and then integrate by parts. This leads to the
following equation:

�

Z T

0

hun.t/;  
0.t/iH dt C

Z T

0

hun.t/;  .t/iV0 V dt

D hu0;  .0/iH �

Z T

0

hB.un.t//;  .t/iV0 V dt C

Z T

0

hf .t/;  .t/iH dt

C

Z T

0

Z
Z
hG.un.t/; z/;  .t/iH.gn.t; z/ � 1/ �.dz/ dt: (5.23)

Keeping in mind properties (P1)–(P3) above and arguing similarly to [59, proof of Theo-
rem III.3.1], we see that
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lim
n!1

�
�

Z T

0

hun.t/;  
0.t/iH dt C

Z T

0

hun.t/;  .t/iV0 V dt

� hu0;  .0/iH C

Z T

0

hB.un.t//;  .t/iV0 V dt �

Z T

0

hf .t/;  .t/iH dt

�
D �

Z T

0

h Qu.t/;  0.t/iH dt C

Z T

0

h Qu.t/;  .t/iV0 V dt

� hu0;  .0/iH C

Z T

0

hB. Qu.t//;  .t/iV0 V dt �

Z T

0

hf .t/;  .t/iH dt: (5.24)

What concerns us is the last term in (5.23). Since gn ! g in SN , by [15, Lemma 3.11]
we infer that

lim
n!1

Z T

0

Z
Z
hG. Qu.t/; z/;  .t/iH.gn.t; z/ � 1/ �.dz/ dt

D

Z T

0

Z
Z
hG. Qu.t/; z/;  .t/iH.g.t; z/ � 1/ �.dz/ dt: (5.25)

Next, for ı > 0, we set

An;ı WD ¹t 2 Œ0; T � W kun.t/ � Qu.t/kV � ıº:

Since un ! Qu strongly in L2.Œ0; T �;V/, by applying the Chebyshev inequality we infer
that

lim
n!1

LebŒ0;T �.An;ı/ � lim
n!1

1

ı2

Z T

0

kun.t/ � Qu.t/k
2
V dt D 0; (5.26)

where LebŒ0;T � is the Lebesgue measure on Œ0; T �.
Fix ı > 0. Then, by Assumption 5.1 and assertion (P2), we infer thatˇ̌̌̌Z T

0

Z
Z
hG.un.t/; z/ �G. Qu.t/; z/;  .t/iH.gn.t; z/ � 1/ �.dz/ dt

ˇ̌̌̌
� j jL1.Œ0;T �;V/

Z T

0

kun.t/ � Qu.t/kV

Z
Z
L„0.z/jgn.t; z/ � 1j �.dz/ dt

� 2„0j jL1.Œ0;T �;V/

Z
An;ı

Z
Z
L„0.z/jgn.t; z/ � 1j �.dz/ dt

C ıj jL1.Œ0;T �;V/

Z T

0

Z
Z
L„0.z/jgn.t; z/ � 1j �.dz/ dt; (5.27)

where „0 is the positive constant appearing in (P2).
In what follows, we use the following result; see [66, (3.3) of Lemma 3.1], [64,

Remark 2], or [15, (3.5) of Lemma 3.4].

� For every function = 2 H \ L2.�/ and every " > 0 there exists ˇ > 0 such that for
every O 2 B.Œ0; T �/ with LebŒ0;T �.O/ � ˇ,

sup
h2SN

Z
O

Z
Z
=.z/jh.s; z/ � 1j �.dz/ ds � ": (5.28)
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Hence, by (5.26)–(5.28) and (B.3) in Appendix B, we have

lim sup
n!1

ˇ̌̌̌Z T

0

Z
Z
hG.un.t/; z/ �G. Qu.t/; z/;  .t/iH.gn.t; z/ � 1/ �.dz/ dt

ˇ̌̌̌
� ıC„0;N j jL1.Œ0;T �;V/: (5.29)

Since ı > 0 can be chosen arbitrarily small, this implies

lim
n!1

ˇ̌̌̌Z T

0

Z
Z
hG.un.t/; z/ �G. Qu.t/; z/;  .t/iH.gn.t; z/ � 1/ �.dz/ dt

ˇ̌̌̌
D 0: (5.30)

We observe that the above proof of (5.29) yields the following stronger result, which
we use later on: for every = 2H \ L2.�/,

lim
n!1

sup
k2SN

Z T

0

kun.s/ � Qu.s/kV

Z
Z
=.z/jk.s; z/ � 1j �.dz/ ds D 0: (5.31)

Combining (5.24), (5.25), and (5.30), we arrive at

�

Z T

0

h Qu.t/;  0.t/iH dt C

Z T

0

h Qu.t/;  .t/iV0 V dt

D hu0;  .0/iH �

Z T

0

hB. Qu.t//;  .t/iV0 V dt C

Z T

0

hf .t/;  .t/iH dt

C

Z T

0

Z
Z
hG. Qu.t/; z/;  .t/iH.g.t; z/ � 1/ �.dz/ dt: (5.32)

From this, following [59, Sect. 3, Chapter III, proof of Theorems 3.1 and 3.2], we can
conclude that Qu is a solution of (5.11) as claimed, and then by uniqueness, Qu D u D ug :

At the final stage of our proof of Proposition 5.3, we prove that

un ! u in C.Œ0; T �;V/ \ L2.Œ0; T �;D.A//:

For this purpose, let vn D un � u. Then by [59, Lemma III.1.2] (in V) we get, for all
t 2 Œ0; T �,

kvn.t/k
2
V C 2

Z t

0

kvn.s/k
2
D.A/ ds

D �2

Z t

0

hB.un.s// � B.u.s//;Avn.s/iH ds

C 2

Z t

0

Z
Z

˝
G.un.s/; z/.gn.s; z/ � 1/ �G.u.s/; z/.g.s; z/ � 1/; vn.s/

˛
V0 V �.dz/ ds

�
1

2

Z t

0

kvn.s/k
2
D.A/ ds C 2

Z t

0

jB.un.s/ � B.u.s//j2H ds

C 2

Z t

0

kvn.s/k
2
V

Z
Z
L„0.z/jgn.s; z/ � 1j �.dz/ ds

C 2

Z t

0

kvn.s/kV.1C ku.s/kV/

Z
Z
L2.z/.jgn.s; z/ � 1j C jg.s; z/ � 1j/ �.dz/ ds:

(5.33)
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By Lemma 2.1, for all s 2 Œ0; T �,

jB.un.s// � B.u.s//j2H
� 2

�
jB.un.s/; vn.s//j2H C jB.vn.s/; u.s/j

2
H

�
� C

�
jun.s/jHkun.s/kVkvn.s/kVkvn.s/kD.A/ C jvn.s/jHkvn.s/kVku.s/kVku.s/kD.A/

�
�

1
4
kvn.s/k

2
D.A/ C Ckvn.s/k

2
V

�
kun.s/k

4
V C ku.s/kVku.s/kD.A/

�
: (5.34)

Substituting (5.34) into (5.33), and by Lemma 5.1, since u 2 L1.Œ0; T �;V/, we obtain

kvn.t/k
2
V C

Z t

0

kvn.s/k
2
D.A/ ds

�

Z t

0

kvn.s/k
2
V

�

�
Ckun.s/k

4
V C Cku.s/kVku.s/kD.A/ C 2

Z
Z
L„0.z/jgn.s; z/ � 1j �.dz/

�
ds

C C sup
h2SN

Z T

0

kvn.s/kV

Z
Z
L2.z/jh.s; z/ � 1j �.dz/ dt; t 2 Œ0; T �: (5.35)

By Gronwall’s lemma, Lemma 5.1 and (B.2) imply that

sup
t2Œ0;T �

kvn.t/k
2
V C

Z T

0

kvn.t/k
2
D.A/ dt

� eC
R T
0 .kun.s/k

4
VCku.s/kVku.s/kD.A/C

R
ZL„0 .z/jgn.s;z/�1j �.dz// ds

� sup
h2SN

Z T

0

kvn.s/kV

Z
Z
L2.z/jh.s; z/ � 1j �.dz/ dt

� CN;T sup
h2SN

Z T

0

kvn.s/kV

Z
Z
L2.z/jh.s; z/ � 1j �.dz/ dt; t 2 Œ0; T �:

Note that the integral
R T
0
.kun.s/k

4
V C ku.s/kVku.s/kD.A// ds is finite in view of Lem-

ma 5.1.
Therefore, by (5.31),

lim
n!1

�
sup
t2Œ0;T �

kvn.t/k
2
V C

Z T

0

kvn.t/k
2
D.A/ dt

�
D 0: (5.36)

The proof of Proposition 5.3 is thus complete.

6. A generalization of the Girsanov theorem

The aim of this section is to establish a certain generalization of the Girsanov theorem.
This result will then be used in Section 7 to verify Claim LDP-2. First, we state and prove
Lemma 6.1. Then we prove Theorem 6.1, which is the main result of this section.
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In order to formulate Lemma 6.1, let us recall the setsKn that were introduced around
(5.17), and let us introduce, for n 2 N, the following set:

NAb;n D ¹' 2 NA W '.t; z; !/ 2 Œ1=n; n� if .t; z; !/ 2 Œ0; T � �Kn � N�
and '.t; z; !/ D 1 if .t; z; !/ 2 Œ0; T � �Kcn � N�º: (6.1)

Note that with the notation of (5.18), we have

NAb D
1[
nD1

NAb;n:

The proof of [17, Lemma 2.4] implies the following result; however, since [17] gives
no details, we present a detailed proof. This result is important in proving Theorem 6.1.

Lemma 6.1. Let n 2 N and ' 2 NAb;n. Then there exists an NAb;n-valued sequence
¹ mºm2N such that the following properties are satisfied.

(R1) For every m, there exist l 2 N and n1; : : : ; nl 2 N, a partition 0 D t0 < t1 < � � �
< tl D T and families

�ij ; i D 1; : : : ; l; j D 1; : : : ; ni ;

Eij ; i D 1; : : : ; l; j D 1; : : : ; ni ;

such that the �ij are Œ1=n; n�-valued, Gti�1 -measurable random variables, and, for
each i D 1; : : : ; l , ¹Eij º

ni
jD1 is a measurable partition of the set Kn such that

 m.t; z; !/ D 1¹0º.t/C

lX
iD1

niX
jD1

1.ti�1;ti �.t/�ij .!/1Eij .z/C 1Kcn.z/1.0;T �.t/

(6.2)
for all .t; z; !/ 2 Œ0; T � � Z � N�.

(R2) limm!1

R T
0
j m.t; z; !/ � '.t; z; !/j dt D 0 for � ˝Q-a.a. .z; !/ 2 Z � N�.

Proof. Fix n 2 N and ' 2 NAb;n. First, let us remark that “'k” in [17, p. 729 line �6]
should read

'k.t; z; !/ D k

�
1

k
� t

�C
C k

Z t

.t�1=k/C
'.s; z; !/ ds: (6.3)

One can check that

'k.t; z; !/ D 1 on .t; z; !/ 2 Œ0; T � �Kcn � N�: (6.4)

In [17, proof of Lemma 2.4], the following three assertions were proved.

(L1) The process 'k defined in (6.3) has the following three properties:

(L1.1) limk!1

R T
0
j'k.t; z; !/ � '.t; z; !/j dt D 0 � ˝Q-a.s. .z; !/ 2 Z � N�,

(L1.2) 'k 2 NAb;n,

(L1.3) Œ0;1/ 3 t 7! 'k.t; z; !/ is continuous for � ˝Q-a.s. .z; !/ 2 Z � N�.
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(L2) If, for k; q 2 N, we set

'
q

k
.t; z; !/ D 1¹0º.t/C

xqT yX
mD0

'k

�
m

q
; z; !

�
1.m=q;.mC1/=q�.t/;

.t; z; !/ 2 Œ0; T � � Z � N�:

then

(L2.1) 'q
k
2 NAb;n,

(L2.2)

lim
q!1

Z T

0

j'
q

k
.t; z; !/ � 'k.t; z; !/j dt D 0; � ˝Q-a.s. .z; !/ 2 Z � N�:

(L3) For all k; q 2 N, there exists an NAb;n-valued sequence ¹'q;r
k
º1
kD1

of processes such
that

(L3.1) for every k, 'q;r
k

satisfies condition (R1),

(L3.2) limr!1

R T
0
j'
q;r

k
.t; z; !/� '

q

k
.t; z; !/jdt D 0, � ˝Q-a.s. .z; !/ 2 Z � N�:

Note that (L2.2) follows easily from (L1.3).
To prove (L3), we repeat the argument from [17, proof of Lemma 2.4].
Note that for fixed q and m, g.z; !/ D 'k.m=q; z; !/ is a B.Z/˝ Gm=q-measurable

map with values in Œ1=n; n� and g.z; !/ D 1 for z 2 Kcn. By a standard approximation
procedure, one can find B.Z/˝ Gm=q-measurable maps gr ; r 2 N, with the following
properties: gr .z; !/ D

Pa.r/
jD1 c

r
j .!/1Erj

.z/ for z 2 Kn, where for each r , ¹Erj º
a.r/
jD1 is

some measurable partition of Kn and for all j; r; crj .!/ 2 Œ1=n; n� a.s.; gr .z; !/ D 1 for
z 2 Kcn; and gr ! g as r !1, � ˝Q-a.s.

Having established the above, it is easy to see that assertion (L3.2) holds.
Moreover, these three assertions imply our result in Lemma 6.1. This can be seen as

follows. First of all, it is easy to see that, for any k; q; r 2 N,

'.t; z; !/ D 'k.t; z; !/ D '
q

k
.t; z; !/ D '

q;r

k
.t; z; !/

D 1 for .t; z; !/ 2 Œ0; T � �Kcn � N�: (6.5)

Hence, we only need to consider the case of z 2 Kn.
Set

�1 D

²
.z; !/ 2 Kn � N� W lim

k!1

Z T

0

j'k.t; z; !/ � '.t; z; !/j dt D 0

³
:

Then assertion (L1.1) implies

.� ˝Q/.Kn � N� n�1/ D 0: (6.6)

For simplicity, we setOc D Kn � N� nO for anyO � Kn � N�, and keep in mind that
�.Kn/ <1.
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Let

I im D
\
k�i

²
.z; !/ 2 Kn � N� W

Z T

0

j'k.t; z; !/ � '.t; z; !/j dt � 1=m

³
:

It is easy to see that

I im � I
iC1
m ;

1[
iD1

I im DW �1;m; �1 � �1;m:

In view of (6.6), there exists im such that

.� ˝Q/..I imm /c/ � 1=m2: (6.7)

Set

�2;k D

²
.z; !/ 2 Kn � N� W lim

q!1

Z T

0

j'
q

k
.t; z; !/ � 'k.t; z; !/j dt D 0

³
;

�3;k;q D

²
.z; !/ 2 Kn � N� W lim

r!1

Z T

0

j'
q;r

k
.t; z; !/ � '

q

k
.t; z; !/j dt D 0

³
:

Let

IIk;im D
\
q�i

²
.z; !/ 2 Kn � N� W

Z T

0

j'
q

k
.t; z; !/ � 'k.t; z; !/j dt � 1=m

³
;

IIIk;q;im D

\
r�i

²
.z; !/ 2 Kn � N� W

Z T

0

j'
q;r

k
.t; z; !/ � '

q

k
.t; z; !/j dt � 1=m

³
:

Similarly to (6.7), there exist jm;k and lm;k;q such that

.� ˝Q/..IIk;jm;km /c/ � 1=m2; (6.8)

.� ˝Q/..IIIk;q;lm;k;qm /c/ � 1=m2: (6.9)

By the definition of I km; IIk;qm ; IIIk;q;rm ,

I km \ IIk;qm \ IIIk;q;rm

�

²
.z; !/ 2 Kn � N� W

Z T

0

j'k.t; z; !/ � '.t; z; !/j dt � 1=m

³
\

²
.z; !/ 2 Kn � N� W

Z T

0

j'
q

k
.t; z; !/ � 'k.t; z; !/j dt � 1=m

³
\

²
.z; !/ 2 Kn � N� W

Z T

0

j'
q;r

k
.t; z; !/ � '

q

k
.t; z; !/j dt � 1=m

³
;

so, for any .z; !/ 2 I km \ IIk;qm \ IIIk;q;rm ,Z T

0

j'
q;r

k
.t; z; !/ � '.t; z; !/j dt � 3=m: (6.10)

For
k D im, q D jm;k D jm;im , r D lm;k;q D lm;im;jm;im ; (6.11)
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set
 m D '

q;r

k

and define
�0 D

[
iD1

\
m�i

¹I km \ IIk;qm \ IIIk;q;rm º:

In the following, we prove that  m satisfies (R1) and (R2), while keeping in mind
(6.5). The claim for (R1) is obvious. For (R2), it is easy to see�0 � Kn � N�, so we only
need to prove that

.� ˝Q/.�c0/ D 0; (6.12)

lim
m!1

Z T

0

j m.t; z; !/ � '.t; z; !/j dt on .z; !/ 2 �0: (6.13)

We use convention (6.11) to get
1\
mDi

¹I km \ IIk;qm \ IIIk;q;rm º % �0 as k !1;

and so, by (6.7)–(6.9), for every i 2 N,

.� ˝Q/.�c0/ � .� ˝Q/
��\
m�i

¹I km \ IIk;qm \ IIIk;q;rm º

�c�
�

1X
mDi

�
.� ˝Q/..I km/

c/C .� ˝Q/..IIk;qm /c/C .� ˝Q/..IIIk;q;rm /c/
�

�

1X
mDi

3

m2
: (6.14)

Since
P1
mDi 3=m

2 ! 0 as i !1, (6.12) is proved.
Next, we prove (6.13). Fix .z; !/ 2 �0. Then, using (6.11) again, there exists i0 2 N

such that

.z; !/ 2

1\
mDi0

¹I km \ IIk;qm \ IIIk;q;rm º:

Thus by (6.10),Z T

0

j m.t; z; !/ � '.t; z; !/j dt � 3=m for all m � i0: (6.15)

Hence (6.13) follows, and thus (R2) holds. Consequently, the proof of Lemma 6.1 is
complete.

Fix " > 0 and '" 2 NAb , and set  " D 1='". In view of the definition (5.18) of NAb , it
is easy to see that  " 2 NAb . In particular, there exists n 2 N such that

 ".t; z; !/ 2 Œ1=n; n� if .t; z; !/ 2 Œ0; T � �Kn � N�;

where Kn is a compact subset of Z from (5.17) and

 ".t; z; !/ D 1 if .t; z; !/ 2 Œ0; T � �Kcn � N�:
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Combining this with the fact that �.Kn/ < 1, we infer the following four assertions,
grouped for convenience in Theorem 6.1.

Theorem 6.1. In the framework introduced above, the following hold:

(S1) The process M "
t . "/, t 2 Œ0; T �, defined by

M "
t . "/ D exp

�Z
.0;t��Z�Œ0;"�1'".s;z/�

log. ".s; z//N.ds; dz; dr/

C

Z
.0;t��Z�Œ0;"�1'".s;z/�

.� ".s; z/C 1/ �.dz/ ds dr

�
D exp

�Z
.0;t��Kn�Œ0;"�1'".s;z/�

log. ".s; z//N.ds; dz; dr/

C

Z
.0;t��Kn�Œ0;"�1'".s;z/�

.� ".s; z/C 1/ �.dz/ ds dr

�
; t 2 Œ0; T �; (6.16)

is a G-martingale on . N�;G ;G;Q/.

(S2) The formula

P "T .O/ D

Z
O

M "
T . "/ dQ; O 2 G ;

defines a probability measure on . N�;G /.

(S3) The measures Q and P "T are equivalent.

(S4) The laws on MT of the following two random variables are equal: (i) "N "�1'"

defined on . N�;G ;G;P "T / and (ii) "N "�1 defined on . N�;G ;G;Q/.

Recall that the two processes appearing in (S4) were introduced in (5.1).
Although Theorem 6.1 is a “standard result” (see for instance [44, Theorem III.3.24]

for semimartingales and [7, Theorem 3.10.21] for Poisson point processes), it seems hard
to find an accessible reference which would work under our conditions. Therefore, we
give a detailed proof.

Proof of Theorem 6.1. Since assertion (S2) is implied by (S1), we only prove (S1), (S3),
and (S4). We divide the proof into three steps.

Step 1. Assume that '" is a step process (see Lemma 6.1), i.e., there exist l; n1; : : : ; nl
2 N, a partition

0 D t0 < t1 < � � � < tl D T;

Œ1=n; n�-valued random variables

�ij ; i D 1; : : : ; l; j D 1; : : : ; ni ;

such that �ij is Gti�1 -measurable, and, for each i D 1; : : : ; l , a disjoint measurable partition
¹Eij º

ni
jD1 of Kn, such that for all .t; z; !/ 2 Œ0; T � � Z � N�,

'".t; z; !/ D 1¹0º.t/C

lX
iD1

niX
jD1

1.ti�1;ti �.t/�ij .!/1Eij .z/C 1Kcn.z/1.0;T �.t/:
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Then, for any O 2 B.Z/, we have

N "�1'".T;O/ D N "�1'".tl ; O/

D

Z tl

0

Z
O

Z 1
0

1.0;"�1'".s;z/�.r/N.ds; dz; dr/

D N "�1'".tl�1; O/

C

Z tl

tl�1

Z
O\Kcn

Z 1
0

1.0;"�1'".s;z/�.r/N.ds; dz; dr/

C

nlX
jD1

Z tl

tl�1

Z
O\Elj

Z 1
0

1.0;"�1'".s;z/�.r/N.ds; dz; dr/

D N "�1'".tl�1; O/

C

Z tl

tl�1

Z
O\Kcn

Z 1
0

1.0;"�1�.r/N.ds; dz; dr/

C

nlX
jD1

Z tl

tl�1

Z
O\Elj

Z 1
0

1.0;"�1�lj �.r/N.ds; dz; dr/:

Moreover, for the process M "
t . "/ defined in (6.16), we have

M "
T . "/ D exp

�Z
.0;T ��Z�Œ0;"�1'".s;z/�

log. ".s; z//N.ds; dz; dr/

C

Z
.0;T ��Z�Œ0;"�1'".s;z/�

.� ".s; z/C 1/ �.dz/ ds dr

�
D exp

�Z
.0;T ��Kn�Œ0;"�1'".s;z/�

log. ".s; z//N.ds; dz; dr/

C

Z
.0;T ��Kn�Œ0;"�1'".s;z/�

.� ".s; z/C 1/ �.dz/ ds dr

�
D exp

�Z
.0;tl�1��Kn�Œ0;"

�1'".s;z/�

log. ".s; z//N.ds; dz; dr/

C

Z
.0;tl�1��Kn�Œ0;"

�1'".s;z/�

.� ".s; z/C 1/ �.dz/ ds dr

�
� exp

� nlX
jD1

� Z
.tl�1;tl �

Z
Elj

Z
.0;"�1�lj �

log
�
1

�lj

�
N.ds; dz; dr/

C

Z
.tl�1;tl �

Z
Elj

Z
.0;"�1�lj �

�
�
1

�lj
C 1

�
�.dz/ ds dr

��
DM "

tl�1
. "/ � exp

� nlX
jD1

� Z
.tl�1;tl �

Z
Elj

Z
.0;"�1�lj �

log
�
1

�lj

�
N.ds; dz; dr/

C

Z
.tl�1;tl �

Z
Elj

Z
.0;"�1�lj �

�
�
1

�lj
C 1

�
�.dz/ ds dr

��
: (6.17)
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Hence, for any � 2 R, we have

EQ
�
e
p
�1 �N "

�1'" .T;O/
�M "

T . "/
�

D EQ
�
EQ

�
e
p
�1 �N

'"
" .T;O/

�M "
T . "/

ˇ̌
Gtl�1

��
D EQ

�
e
p
�1 �N "

�1'" .tl�1;O/ �M "
tl�1

. "/ � Y.�I �; tl�1; tl /
�
; (6.18)

where Y D Y.�I �; tl�1; tl / is defined by

Y.�I �; tl ; tl�1/

WD EQ

�
exp

�
p
�1 �

�Z tl

tl�1

Z
O\Kcn

Z 1
0

1.0;"�1�.r/N.ds; dz; dr/

C

nlX
jD1

Z
.tl�1;tl �

Z
O\Elj

Z 1
0

1.0;"�1�lj �.r/N.ds; dz; dr/
��

� exp
� nlX
jD1

� Z
.tl�1;tl �

Z
Elj

Z
.0;"�1�lj �

log
�
1

�lj

�
N.ds; dz; dr/

C

Z
.tl�1;tl �

Z
Elj

Z
.0;"�1�lj �

�
�
1

�lj
C 1

�
�.dz/ ds dr

�� ˇ̌̌̌
Gtl�1

�
:

By assumptions, each �lj , j D 1; : : : ; nl , is Gtl�1 -measurable, so by the properties of
the conditional expectation, we infer that, Q-a.s.,

Y.!; �; tl ; tl�1/ D K.!; �; �l1.!/; �l2.!/; : : : ; �lnl .!/; tl ; tl�1/

where a random variable K.!; �; a1; a2; : : : ; anl ; tl ; tl�1/ is defined by

K.�; �; a1; a2; : : : ; anl ; tl ; tl�1/

WD EQ

�
exp

�
p
�1 �

�Z tl

tl�1

Z
O\Kcn

Z 1
0

1.0;"�1�.r/N.ds; dz; dr/

C

nlX
jD1

Z
.tl�1;tl �

Z
O\Elj

Z 1
0

1.0;"�1aj �.r/N.ds; dz; dr/
��

� exp
� nlX
jD1

� Z
.tl�1;tl �

Z
Elj

Z
.0;"�1aj �

log
�
1

aj

�
N.ds; dz; dr/

C

Z
.tl�1;tl �

Z
Elj

Z
.0;"�1aj �

�
�
1

aj
C 1

�
�.dz/ ds dr

�� ˇ̌̌̌
Gtl�1

�
:
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Note that for any positive constants a1; a2; : : : ; anl , we have the identity

K.�; �; a1; a2; : : : ; anl ; tl ; tl�1/

D exp
� nlX
jD1

.tl � tl�1/�.Elj /"
�1aj

�
�
1

aj
C 1

��
� EQ

�
exp

�
p
�1 �

�Z tl

tl�1

Z
O\Kcn

Z 1
0

1.0;"�1�.r/N.ds; dz; dr/
���

� EQ

�
exp

� nlX
jD1

�
p
�1 � C log

�
1

aj

��
�

Z
.tl�1;tl �

Z
O\Elj

Z 1
0

1.0;"�1aj �.r/N.ds; dz; dr/
�

� EQ

�
exp

� nlX
jD1

log
�
1

aj

�Z
.tl�1;tl �

Z
Oc\Elj

Z 1
0

1.0;"�1aj �.r/N.ds; dz; dr/
�

D exp
�
.tl � tl�1/�.O/"

�1Œe
p
�1 �
� 1�

�
:

Summing up, we infer that for ! 2 �, Q-a.s., we have

Y.�; �; tl ; tl�1/ D exp
�
.tl � tl�1/�.O/"

�1Œe
p
�1 �
� 1�

�
: (6.19)

In particular, Y.!; 0; tl ; tl�1/ D 1, and hence by (6.18),

EQ.M "
tl
. "/ j Gtl�1/ DM "

tl�1
. "/Y.!; 0; tl ; tl�1/ DM "

tl�1
. "/:

Furthermore, by employing the above argument, we can easily verify

EQ.M "
tl
. "/ j Gt / DM "

t . "/; t 2 Œ0; T �:

This implies that the process ¹M "
t . "/; t � 0º is a G-martingale on . N�;G ;G;Q/. Hence

P "T is a well-defined probability measure.
Inserting identity (6.19) into (6.18), we arrive at

EP"
T

�
e
p
�1 �N "

�1'" .T;O/
�

D EQ
�
e
p
�1 �N "

�1'" .tl�1;O/ �M "
tl�1

. "/
�
e.tl�tl�1/�.O/"

�1Œe
p
�1��1�:

By induction, we get

EP"
T

�
e
p
�1 �N "

�1'" .T;O/
�
D exp

�
T �.O/"�1Œe

p
�1 �
� 1�

�
:

We have proved that if '" is a step process, then the law of "N "�1'" on . N�;G ;G;P "T /
is equal to the law of "N "�1 on . N�;G ;G;Q/. The proof of Step 1 is now complete.

Step 2. The general case. Let us assume that '" 2 NAb . Then by (5.18) there exists n 2N
such that '" 2 NAb;n. Hence, by Lemma 6.1, there exists a sequence  m 2 NAb;n, m D
1; 2; : : : ; satisfying conditions (R1) and (R2) with ' replaced by '".
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Applying Step 1 to  m, we get

� for any O 2 B.Z/ with �.O/ <1,

EQ

�
exp

�p
�1 �N "�1 m.T;O/

�
M "
T

�
1

 m

��
D exp

�
T �.O/"�1.e

p
�1 �
� 1/

�
;

(6.20)

� for any 0 � t1 < t2 � T ,

EQ

�
M "

t2

�
1

 m

� ˇ̌̌̌
Gt1

�
DM "

t1

�
1

 m

�
; Q-a.s. (6.21)

In order to prove our results, we first prove that there exists a subsequence, for sim-
plicity still denoted by m, such that

lim
m!1

EQ

�ˇ̌̌̌
M "

t

�
1

 m

�
�M "

t .'"/

ˇ̌̌̌�
D 0; (6.22)

and, for any O 2 B.Z/ satisfying �.O/ <1,

lim
m!1

EQ
�

sup
t2Œ0;T �

jN "�1 m.t; O/ �N "�1'".t; O/j
�
D 0: (6.23)

We have divided the argument into four parts. Recall that NAb;n was defined in (6.1).

Part 1. For any  2 NAb;n, we haveZ T

0

j .s; z/j ds � nT for .z; !/ 2 Z � N�; (6.24)

andˇ̌̌̌Z
.0;T ��Z�Œ0;"�1 .s;z/�

log
�

1

 .s; z/

�
N.ds; dz; dr/

C

Z
.0;T ��Z�Œ0;"�1 .s;z/�

�
�

1

 .s; z/
C 1

�
�.dz/ ds dr

ˇ̌̌̌
D

ˇ̌̌̌Z
.0;T ��Kn�Œ0;"�1 .s;z/�

log
�

1

 .s; z/

�
N.ds; dz; dr/

C

Z
.0;T ��Kn�Œ0;"�1 .s;z/�

�
�

1

 .s; z/
C 1

�
�.dz/ ds dr

ˇ̌̌
�

Z
.0;T ��Kn�Œ0;"�1n�

lognN.ds; dz; dr/C
Z
.0;T ��Kn�Œ0;"�1n�

.nC 1/ �.dz/ ds dr:

(6.25)

It is easy to see that, since �.Kn/ <1,

EQ

�
exp

�Z
.0;T ��Kn�Œ0;"�1n�

lognN.ds; dz; dr/

C

Z
.0;T ��Kn�Œ0;"�1n�

.nC 1/ �.dz/ ds dr

��
<1: (6.26)
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By inequality (6.24), we haveZ T

0

j m.s; z/ � '".s; z/j ds � 2nT; .z; !/ 2 Z � N�: (6.27)

Part 2. The following inequality holds:

EQ
�

sup
t2Œ0;T �

jN "�1 m.t; O/ �N "�1'".t; O/j
�

D EQ

�
sup
t2Œ0;T �

ˇ̌̌̌Z t

0

Z
O

Z "�1n

0

�
1Œ0;"�1 m.s;z/�.r/ � 1Œ0;"�1'".s;z/�.r/

�
N.ds; dz; dr/

ˇ̌̌̌�
� EQ

�Z T

0

Z
O

Z "�1n

0

j1Œ0;"�1 m.s;z/�.r/ � 1Œ0;"�1'".s;z/�.r/jN.ds; dz; dr/
�

D EQ

�Z T

0

Z
O\Kn

Z "�1n

0

j1Œ0;"�1 m.s;z/�.r/ � 1Œ0;"�1'".s;z/�.r/j dr �.dz/ ds

�
� EQ

�Z T

0

Z
O\Kn

"�1j m.s; z/ � '".s; z/j �.dz/ ds

�
: (6.28)

Part 3. The following inequality holds:ˇ̌̌̌Z
.0;T ��Z�Œ0;"�1 m.s;z/�

�
�

1

 m.s; z/
C 1

�
�.dz/ ds dr

�

Z
.0;T ��Z�Œ0;"�1'".s;z/�

�
�

1

'".s; z/
C 1

�
�.dz/ ds dr

ˇ̌̌̌
D

ˇ̌̌̌Z
.0;T ��Kn�Œ0;"�1 m.s;z/�

�
�

1

 m.s; z/
C 1

�
�.dz/ ds dr

�

Z
.0;T ��Kn�Œ0;"�1'".s;z/�

�
�

1

'".s; z/
C 1

�
�.dz/ ds dr

ˇ̌̌̌
D

ˇ̌̌̌Z
.0;T ��Kn�Œ0;"�1n�

1Œ0;"�1 m.s;z/�.r/

�
�

1

 m.s; z/
C 1

�
�1Œ0;"�1'".s;z/�.r/

�
�

1

'".s; z/
C 1

�
�.dz/ ds dr

ˇ̌̌̌
�

Z
.0;T ��Kn�Œ0;"�1n�

j1Œ0;"�1 m.s;z/�.r/ � 1Œ0;"�1'".s;z/�.r/j �.dz/ ds dr

C

Z
.0;T ��Kn�Œ0;"�1n�

j1Œ0;"�1 m.s;z/�.r/ � 1Œ0;"�1'".s;z/�.r/j
1

 m.s; z/
�.dz/ ds dr

C

Z
.0;T ��Kn�Œ0;"�1n�

1Œ0;"�1'".s;z/�.r/

ˇ̌̌̌
1

 m.s; z/
�

1

'".s; z/

ˇ̌̌̌
�.dz/ ds dr

� "�1.1C nC n3/

Z
.0;T ��Kn

j m.s; z/ � '".s; z/j �.dz/ ds: (6.29)
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Part 4. Using arguments similar to those used in Parts 2 and 3, we have

EQ

�
sup
t2Œ0;T �

ˇ̌̌̌Z
.0;t��Z�Œ0;"�1 m.s;z/�

log
�

1

 m.s; z/

�
N.ds; dz; dr/

�

Z
.0;t��Z�Œ0;"�1'".s;z/�

log
�

1

'".s; z/

�
N.ds; dz; dr/

ˇ̌̌̌�
D EQ

�
sup
t2Œ0;T �

ˇ̌̌̌Z
.0;t��Z�Œ0;"�1n�

1Œ0;"�1 m.s;z/�.r/ log
�

1

 m.s; z/

�
� 1Œ0;"�1'".s;z/�.r/ log

�
1

'".s; z/

�
N.ds; dz; dr/

ˇ̌̌̌�
� EQ

�Z
.0;T ��Kn�Œ0;"�1n�

ˇ̌̌̌
1Œ0;"�1 m.s;z/�.r/ log

�
1

 m.s; z/

�
� 1Œ0;"�1'".s;z/�.r/ log

�
1

'".s; z/

�ˇ̌̌̌
N.ds; dz; dr/

�
D EQ

�Z
.0;T ��Kn�Œ0;"�1n�

ˇ̌̌̌
1Œ0;"�1 m.s;z/�.r/ log

�
1

 m.s; z/

�
� 1Œ0;"�1'".s;z/�.r/ log

�
1

'".s; z/

�ˇ̌̌̌
�.dz/ ds dr

�
� "�1CnEQ

�Z
.0;T ��Kn

j m.s; z/ � '".s; z/j �.dz/ ds

�
: (6.30)

Keeping in mind �.Kn/ <1, we combine assertion (R2) from Lemma 6.1, the esti-
mates in (6.27), and Parts 2, 3 and 4. Doing so, and applying the Lebesgue dominated
convergence theorem (DCT), we get equality (6.23), as well as

lim
m!1

EQ

�
sup
t2Œ0;T �

ˇ̌̌̌Z
.0;t��Z�Œ0;"�1 m.s;z/�

log
�

1

 m.s; z/

�
N.ds; dz; dr/

�

Z
.0;t��Z�Œ0;"�1'".s;z/�

log
�

1

'".s; z/

�
N.ds; dz; dr/

ˇ̌̌̌�
D 0; (6.31)

and, Q-a.s.,

lim
m!1

ˇ̌̌̌Z
.0;T ��Z�Œ0;"�1 m.s;z/�

�
�

1

 m.s; z/
C 1

�
�.dz/ ds dr

�

Z
.0;T ��Z�Œ0;"�1'".s;z/�

�
�

1

'".s; z/
C 1

�
�.dz/ ds dr

ˇ̌̌̌
D 0: (6.32)

Let us observe that in view of (6.31), there exists a subsequence, for simplicity still
denoted by m, such that Q-a.s.,

lim
m!1

�
sup
t2Œ0;T �

ˇ̌̌̌Z
.0;t��Z�Œ0;"�1 m.s;z/�

log
�

1

 m.s; z/

�
N.ds; dz; dr/

�

Z
.0;t��Z�Œ0;"�1'".s;z/�

log
�

1

'".s; z/

�
N.ds; dz; dr/

ˇ̌̌̌�
D 0: (6.33)
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Combining (6.32), (6.33), (6.25), (6.26), (6.16), and the definition of M "
T .�/, and again

employing the Lebesgue DCT, we infer that (6.22) holds.
Having proved (6.22) and (6.23), we are now in a position to prove (S1) and (S4).
Since (S1) can be immediately obtained from (6.22) and (6.21), we now prove (S4).
By (6.23), there exists a subsequence, for simplicity still denoted by m, such that

lim
m!1

N "�1 m.t; O/ D N "�1'".t; O/; Q-a.s.

Combining this result with (6.22) and Part 1, using the Lebesgue DCT again, we haveˇ̌̌̌
EQ

�
exp

�p
�1 �N "�1 m.T;O/

�
M "
T

�
1

 m

��
� EQ

�
exp

�p
�1 �N "�1'".T;O/

�
M "
T .'"/

�ˇ̌̌̌
� EQ

�ˇ̌̌̌
M "
T

�
1

 m

�
�M "

T .'"/

ˇ̌̌̌�
C EQ

�ˇ̌
exp

�p
�1 �N "�1'".T;O/

�
� exp

�p
�1 �N "�1 m.T;O/

�ˇ̌
M "
T .'"/

�
� EQ

�ˇ̌̌̌
M "
T

�
1

 m

�
�M "

T .'"/

ˇ̌̌̌�
C EQ

�ˇ̌
exp

�p
�1 �N "�1'".T;O/

�
� exp

�p
�1 �N "�1 m.T;O/

�ˇ̌
� exp

�Z
.0;T ��Kn�Œ0;"�1n�

lognN.ds;dz;dr/C
Z
.0;T ��Kn�Œ0;"�1n�

.nC1/�.dz/ds dr

��
:

Since RHS! 0 as m!1, we infer, by recalling (6.20), that

EQ
�
exp

�p
�1 �N "�1'".T;O/

�
M "
T .'"/

�
D exp

�
T �.O/"�1.e

p
�1 �
� 1/

�
for anyO 2B.Z/ such that �.O/ <1, which implies assertion (S4). The proof of Step 2
is now complete.

Step 3. Proof of (S3). We observe that, by (6.16) and arguments similar to those for
(6.25), Q-a.s.,

exp
�Z

.0;T ��Kn�Œ0;"�1n�

� lognN.ds; dz; dr/

C

Z
.0;T ��Kn�Œ0;"�1n�

Œ�.nC 1/� �.dz/ ds dr

�
�M "

T . "/;

and

exp
�Z

.0;T ��Kn�Œ0;"�1n�

lognN.ds; dz; dr/

C

Z
.0;T ��Kn�Œ0;"�1n�

.nC 1/ �.dz/ ds dr

�
�M "

T . "/:

Using the facts that �.Kn/ <1 and that
R
.0;t��Kn�Œ0;"�1n�

N.ds; dz; dr/ only has finite
jumps on Œ0; T �, Q-a.s., we conclude that the probability measures Q and P "T are equiv-
alent, which is (S3). This completes the proof of Step 3, and the whole proof of Theo-
rem 6.1.
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7. Verification of Claim LDP-2

The main result of this section is Proposition 7.1, in which we prove Claim LDP-2. To
this end, we first prove that the process X" WD G "."N "�1'"/ is the unique solution of the
controlled SPDE (7.1), given in Lemma 7.1. Then to prove Claim LDP-2, we only need to
prove some a priori estimates and establish the tightness of the laws of the processes X",
" > 0, which we do in Lemmata 7.2–7.6. The key to proving Lemma 7.1 is a Girsanov-
type theorem for Poisson random measures, which is formulated within Theorem 6.1.

This section is divided into two subsections. In the second one, we formulate and
prove Proposition 7.1 from which Claim LDP-2 follows. In the first subsection, we prove
Lemma 7.1 and find necessary estimates.

7.1. A representation result and a priori estimates

Fix u0 2 V and f 2 L2.Œ0; T �;H/. Assume that the control '" belongs to the set U (see
(5.19)). Let us consider the following controlled SPDE:

dX".t/C AX".t/dt C B.X".t// dt

D f .t/ dt C "

Z
Z
G.X".t�/; z/

�
N "�1'".dz; dt/ � "�1 �.dz/ dt

�
; (7.1)

D f .t/ dt C

Z
Z
G.X".t/; z/.'".t; z/ � 1/ �.dz/ dt

C "

Z
Z
G.X".t�/; z/ zN "�1'".dz; dt/; (7.2)

X".0/ D u0:

Note that below, in (7.9) for example, we use the second version of the
above equation, i.e., (7.2). We also observe that it is easy to see that the integral
"
R t
0

R
ZG.X

".s�/; z/ .N "�1'".dz; ds/ � "�1 �.dz/ ds/ exists.
Recall the definition of G " in the proof of Theorem 5.1 (around (5.15)). By Corollary

5.1 the process
u" D G "."N "�1/ (7.3)

is the unique solution of problem (5.6) on the probability space . N�;G ;G;Q/.
We prove the following fundamental result.

Lemma 7.1. Assuming " > 0, for every process '" 2 NAb defined on . N�; G ;G;Q/, the
process X" defined by

X" D G "."N "�1'"/ (7.4)

is the unique solution of (7.1).

Proof. Fix " > 0 and a process '" 2 NAb defined on . N�; G ;G;Q/. Define X" by (7.4).
Then by assertion (S4) in Theorem 6.1 and the definition of G ", we infer that the process
X" is the unique solution of (7.1) on . N�;G ;G;P "T /, that is,
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(C1) X" is G-progressively measurable,

(C2) trajectories of X" belong to ‡T .V/, P "T -a.s.,

(C3) in H, for all t 2 Œ0; T �, P "T -a.s.,

X".t/ D u0 �

Z t

0

AX".s/ ds �
Z t

0

B.X".s// ds C
Z t

0

f .s/ ds

C "

Z t

0

Z
Z
G.X".s�/; z/

�
N "�1'".dz; ds/ � "�1 �.dz/ ds

�
: (7.5)

Next, we prove that X" is the unique solution of (7.1) on . N�;G ;G;Q/; that is,

(C1-0) X" is G-progressively measurable,

(C2-0) trajectories of X" belong to ‡T .V/, Q-a.s.,

(C3-0) in H, for all t 2 Œ0; T �, Q-a.s.,

X".t/ D u0 �

Z t

0

AX".s/ ds �
Z t

0

B.X".s// ds C
Z t

0

f .s/ ds

C "

Z t

0

Z
Z
G.X".s�/; z/

�
N "�1'".dz; ds/ � "�1 �.dz/ ds

�
: (7.6)

Note that despite the two measures Q and P "T being equivalent, equality (7.6) does not
follow from (7.5) without additional justification. We provide this justification below. The
proof is divided into two steps.

Step 1. We prove that the process X" satisfies (C1-0)–(C3-0). Obviously, condition (C1)
coincides with (C1-0). In view of (S3), the measures Q and P "T are equivalent, so condi-
tion (C2) implies (C2-0).

We are now in a position to prove that condition (C3-0) holds as well. Fix n (in view
of the definition (5.18) of NAb). Observe that equality (7.1) can be rewritten as

dX".t/C AX".t/ dt C B.X".t// dt

D f .t/ dt C "

Z
Kn

G.X".t�/; z/
�
N "�1'".dz; dt/ � "�1 �.dz/ dt

�
C "

Z
Kcn

G.X".t�/; z/
�
N "�1'".dz; dt/ � "�1 �.dz/ dt

�
D f .t/ dt C "

Z
Kn

G.X".t�/; z/
�
N "�1'".dz; dt/ � "�1 �.dz/ dt

�
C "

Z
Kcn

G.X".t�/; z/
�
N "�1.dz; dt/ � "�1 �.dz/ dt

�
;

X"0 D u0:

The second equality follows from Proposition 5.2 because '".s; z; !/ D 1 if .s; z; !/ 2
Œ0; T � �Kcn �

N�.
Thus, we have the following:
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(V1) Since �.Kn/ <1, by (S4) there exists�1 � N� with P "T .�1/D 1 such that for any
! 2�1, the process ¹N "�1'"..0; t ��Kn/; t 2 Œ0; T �º has only finite jumps. Hence
for any ! 2 �1, the integralsZ t

0

Z
Kn

G.X".s�/; z/N "�1'".dz; ds/ and
Z t

0

Z
Kn

G.X".s�/; z/ �.dz/ ds

are well-defined as Lebesgue–Stieltjes integrals.

(V2) Similarly, for any m > n, the integralsZ t

0

Z
Kcn\Km

G.X".s�/; z/N "�1.dz;ds/ and
Z t

0

Z
Kcn\Km

G.X".s�/; z/�.dz/ds

are well-defined as Lebesgue–Stieltjes integrals, P "T -a.s.

(V3) By [42, Chapter II, Section 3, pp. 59–63] and by the definition of the integralZ t

0

Z
Kcn

G.X".s�/; z/
�
N "�1.dz; ds/ � "�1 �.dz/ ds

�
on the probability space . N�;G ;G;P "T /, there exist �2 � N� with P "T .�2/ D 1 and
a subsequence ¹mkº such that for any ! 2 �2,

lim
mk!1

Z t

0

Z
Kcn\Kmk

G.X".s�/; z/
�
N "�1.dz; ds/ � "�1 �.dz/ ds

�
D

Z t

0

Z
Kcn

G.X".s�/; z/
�
N "�1.dz; ds/ � "�1 �.dz/ ds

�
:

Arguing as in the proof of assertions (V1)–(V3), and using the equality

N "�1'"..0; t � �Kn/ D

Z t

0

Z
Kn

Z 1
0

1Œ0;"�1'".z;s/�.r/N.dz; ds; dr/

D

Z t

0

Z
Kn

Z "�1n

0

1Œ0;"�1'".z;s/�.r/N.dz; ds; dr/;

we infer three facts:

(V1-0) There exists �3 � N� with Q.�3/ D 1 such that ¹N "�1'"..0; t � � Kn/, t 2
Œ0; T �º has only finite jumps for any ! 2 �3. Hence for any ! 2 �3,R t
0

R
Kn
G.X".s�/; z/ N "�1'".dz; ds/ and

R t
0

R
Kn
G.X".s�/; z/ �.dz/ ds are

well-defined as Lebesgue–Stieltjes integrals.

(V2-0) For any m > n, the integrals
R t
0

R
Kcn\Km

G.X".s�/; z/ N "�1.dz; ds/ andR t
0

R
Kcn\Km

G.X".s�/; z/ �.dz/ ds are well-defined Q-a.s. as Lebesgue–Stieltjes
integrals.

(V3-0) By the definition ofZ t

0

Z
Kcn

G.X".s�/; z/
�
N "�1.dz; ds/ � "�1 �.dz/ ds

�
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on . N�;G ;G;Q/, there exist�4 � N�with Q.�4/D 1 and a subsequence of ¹mkº
from (V3) (for simplicity still denoted by mk) such that for any ! 2 �4,

lim
mk!1

Z t

0

Z
Kcn\Kmk

G.X".s�/; z/
�
N "�1.dz; ds/ � "�1 �.dz/ ds

�
D

Z t

0

Z
Kcn

G.X".s�/; z/
�
N "�1.dz; ds/ � "�1 �.dz/ ds

�
:

By (C3) and (V1)–(V3), there exists�5 � N� such that P "T .�5/D 1 and, for any ! 2�5,

� lim
mk!1

Z t

0

Z
Kcn\Kmk

G.X".s�/; z/
�
N "�1.dz; ds/ � "�1 �.dz/ ds

�
D X".t/ � u0 C

Z t

0

AX".s/ ds C
Z t

0

B.X".s// ds �
Z t

0

f .s/ ds

� "

Z t

0

Z
Kn

G.X".s�/; z/
�
N "�1'".dz; ds/ � "�1 �.dz/ ds

�
in H:

Since, by assertion (S3) in Theorem 6.1, the measures Q and P "T are equivalent, we
deduce that Q.

T5
iD1�i / D 1. Moreover, since by (V1) and (V1-0) the right side of the

above equality is pathwise well-defined for ! 2 �1 \ �3, we infer that for any ! 2T5
iD1�i ,

� lim
mk!1

Z t

0

Z
Kcn\Kmk

G.X".s�/; z/
�
N "�1.dz; ds/ � "�1 �.dz/ ds

�
D X".t/ � u0 C

Z t

0

AX".s/ ds C
Z t

0

B.X".s// ds �
Z t

0

f .s/ ds

� "

Z t

0

Z
Kn

G.X".s�/; z/
�
N "�1'".dz; ds/ � "�1 �.dz/ ds

�
in H:

Combining this last equality with (V3-0) completes the proof of claim (C3-0) and of
Step 1.

Step 2. We prove that the solution of (7.1) on . N�; G ;G;Q/ is unique. Assume that Y "

is another solution of (7.1) on . N�;G ;G;Q/, that is, (C1-0)–(C3-0) are satisfied with X"

replaced by Y ". By arguments similar to those for Step 1, Y " is a solution of (7.1) on
. N�; G ;G; P "T /, and the uniqueness of solution to (7.1) on . N�; G ;G; P "T / implies that
Y " D X" P "T -a.s. Since the measures Q and P "T are equivalent,

Y " D X"; Q-a.s.

Thus the proof of Lemma 7.1 is complete.

Now we give some a priori estimates to be used later. For simplicity, EQ will be
denoted by E. Recall that the norm k � k2

W ˛;2.Œ0;T �;V0/
was introduced in equality (5.20).
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Lemma 7.2. For every N 2 N, there exist constants CN > 0 and "N 2 .0; 1�, and for
every ˛ 2 .0; 1=2/ there exists a constant C˛;N > 0 such that for every process '" 2 U N

and every " 2 .0; "N �, the process X" defined by (7.4) satisfies

E

�
sup
t2Œ0;T �

kX".t/k2H C

Z T

0

kX".t/k2V dt

�
� CN ; (7.7)

E.kX"k2
W ˛;2.Œ0;T �;V0// � C˛;N : (7.8)

Proof. Fix " > 0, N 2 N, and '" 2 U N . Let X" be defined by (7.4). By Lemma 7.1, this
process is the unique solution of (7.1) on . N�;G ;G;Q/.

Therefore, we can apply the Itô formula to deduce that

jX".t/j2H C 2

Z t

0

kX".s/k2V ds

D ju0j
2
H C 2

Z t

0

hf .s/; X".s/iV0 V ds

C 2

Z t

0

Z
Z
hG.X".s/; z/; X".s/iH.'".s; z/ � 1/ �.dz/ ds

C 2"

Z t

0

Z
Z
hG.X".s�/; z/; X".s�/iH zN

"�1'".dz; ds/

C "2
Z t

0

Z
Z
jG.X".s�/; z/j2HN

"�1'".dz; ds/

� ju0j
2
H C

Z t

0

kX".s/k2V ds C

Z t

0

kf .s/k2V0 ds

C 2

Z t

0

.1C 2jX".s/j2H/

Z
Z
L3.z/j'".s; z/ � 1j �.dz/ ds

C 2"

Z t

0

Z
Z
hG.X".s�/; z/; X".s�/iH zN

"�1'".dz; ds/

C "2
Z t

0

Z
Z
jG.X".s�/; z/j2HN

"�1'".dz; ds/: (7.9)

Set

J1.t/ WD 2"

Z t

0

Z
Z
hG.X".s�/; z/; X".s�/iH zN

"�1'".dz; ds/

J2.t/ WD "
2

Z t

0

Z
Z
jG.X".s�/; z/j2HN

"�1'".dz; ds/:

Applying Gronwall’s lemma and (B.2), we get

sup
t2Œ0;T �

jX".t/j2H C

Z T

0

kX".t/k2V dt

� CN

�
ju0j

2
H C

Z T

0

kf .s/k2V0 ds C 1C sup
t2Œ0;T �

jJ1.t/j C J2.T /

�
: (7.10)



2D stochastic Navier–Stokes equations with jumps 3163

The Burkholder–Davis–Gundy inequality implies that

E
�

sup
t2Œ0;T �

jJ1.t/j
�
� C"E

�Z T

0

Z
Z
jX".s�/j2HjG.X

".s�/; z/j2HN
"�1'".dz; ds/

�1=2
� "1=2E

�
sup
t2Œ0;T �

jX".t/j2H

�
C C"1=2E

�Z T

0

.1C jX".s/j2H/

Z
Z
L23.z/'".s; z/ �.dz/ ds

�
� CN "

1=2E
�

sup
t2Œ0;T �

jX".t/j2H

�
C CN "

1=2: (7.11)

To deduce the last inequality above, we use the fact (see [15, Lemma 3.4, (3.3)]) that for
any fixed = 2H \ L2.�/ (for the definition of H , see (5.9)),

C=;N WD sup
k2SN

Z T

0

Z
Z
=
2.z/.k.s; z/C 1/ �.dz/ ds <1: (7.12)

As in (7.11), we get

E.jJ2.T /j/ � CN "C CN "E
�

sup
t2Œ0;T �

jX".t/j2H

�
: (7.13)

Substituting (7.11) and (7.13) into (7.10), and then choosing "N > 0 small enough, we
get (7.7). Using the arguments that prove [66, (4.67)], we infer (7.8). This completes the
proof of Lemma 7.2.

Let us define a stopping time �";M by2

�";M WD inf
²
t � 0 W sup

s2Œ0;t�

jX".s/j2H C

Z t

0

kX".s/k2V ds > M

³
; M > 0: (7.14)

Before we continue with our estimates, let us state the following simple but useful
corollary from the previous result and the Chebyshev inequality.

Corollary 7.1. In the framework above, we have

Q.�";M < T / � CN =M; M > 0;

Q.kX"k2
W ˛;2.Œ0;T �;V0/ � R

2/ � C˛;N =R
2; R;M > 0:

(7.15)

We have the following estimate.

Lemma 7.3. For allN 2N andM >0, there exist constantsCN;M >0 and "N;M 2 .0;1�
such that for every process '" 2 U N and every " 2 .0; "N;M �, the process X" defined by
(7.4) satisfies

sup
"2.0;"N;M /

E

�
sup
t2Œ0;T �

kX".t ^ �";M /k
2
V C

Z T^�";M

0

kX".s/k2D.A/ ds

�
� CN;M : (7.16)

2In fact, this stopping time depends on X" so it depends on both " and '". Hence, it should be
denoted �X";M or �'";";M . Since these two are cumbersome, we decided not to use them. In the
same vein, X" should be denoted by X";'" , but we use the simpler notation.
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Before we give the proof of Lemma 7.3, we record the following result which is
immediate from Lemma 7.3 and the Chebyshev inequality.

Corollary 7.2. In the framework above, for all M;R > 0,

Q

�
�";M � T; sup

t2Œ0;T �

kX".t/k2V C

Z T

0

kX".s/k2D.A/ ds � R
2

�
�
CN;M

R2
: (7.17)

Proof. Notice that �";M � T iff T ^ �";M D T . Thus, if �";M � T then t ^ �";M D t for
all t 2 Œ0; T �.

Proof of Lemma 7.3. We argue as in [13, proof of Lemma 7.3]. By the Itô formula and
Lemma 2.1, we have, for all t 2 Œ0; T �,

kX".t ^ �";M /k
2
V C 2

Z t^�";M

0

kX".s/k2D.A/ ds

D ku0k
2
V � 2

Z t^�";M

0

hB.X".s//;AX".s/iH ds C 2
Z t^�";M

0

hf .s/;AX".s/iH ds

C 2

Z t^�";M

0

Z
Z
hG.X".s/; z/; X".s/iV0 V.'".s; z/ � 1/ �.dz/ ds

C 2"

Z t^�";M

0

Z
Z
hG.X".s�/; z/; X".s�/iV0 V

zN "�1'".dz; ds/

C "2
Z t^�";M

0

Z
Z
kG.X".s�/; z/k2VN

"�1'".dz; ds/

� ku0k
2
V C

Z t^�";M

0

kX".s/k2D.A/ ds C C

Z t^�";M

0

kX".s/k4VjX
".s/j2H ds

C 2

Z t^�";M

0

jf .s/j2H ds

C 2

Z t^�";M

0

.1C 2kX".s/k2V/

Z
Z
L2.z/j'".s; z/ � 1j �.dz/ ds

C 2"

Z t^�";M

0

Z
Z
hG.X".s�/; z/; X".s�/iV0 V

zN "�1'".dz; ds/

C "2
Z t^�";M

0

Z
Z
kG.X".s�/; z/k2VN

"�1'".dz; ds/: (7.18)

We define

J1.t/ WD 2"

Z t

0

Z
Z
hG.X".s�/; z/; X".s�/iV0 V

zN "�1'".dz; ds/;

J2.t/ WD "
2

Z t

0

Z
Z
kG.X".s�/; z/k2VN

"�1'".dz; ds/;

for t 2 Œ0; T �.
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By (B.2),

kX".t ^ �";M /k
2
V C

Z t^�";M

0

kX".s/k2D.A/ ds

� ku0k
2
V C 2

Z t^�";M

0

jf .s/j2H ds C sup
t2Œ0;T �

jJ1.t ^ �";M /j C J2.T ^ �";M /C CN

C

Z t^�";M

0

kX".s/k2V

�
CkX".s/k2VjX

".s/j2H C 4

Z
Z
L2.z/j'".s; z/ � 1j �.dz/

�
ds

for t 2 Œ0; T �. By (B.2) again and the definition of �";M , Gronwall’s lemma implies that

sup
t2Œ0;T �

kX".t ^ �";M /k
2
V C

Z t^�";M

0

kX".s/k2D.A/ ds

� eM
2CCN

�
ku0k

2
VC 2

Z T

0

jf .s/j2H dsC sup
t2Œ0;T �

jJ1.t ^ �";M /j C J2.T ^ �";M /CCN

�
(7.19)

for t 2 Œ0; T �. Similar to (7.11) and (7.13), we get

E
�

sup
t2Œ0;T �

jJ1.t ^ �";M /j
�
� CN "

1=2E
�

sup
t2Œ0;T �

kX".t ^ �";M /k
2
V

�
C CN "

1=2; (7.20)

and

E.jJ2.T ^ �";M /j/ � CN "C CN "E
�

sup
t2Œ0;T �

kX".t ^ �";M /k
2
V

�
: (7.21)

Substituting (7.20) and (7.21) into (7.19), and then choosing "N;M > 0 small enough, we
get (7.16).

Our next result is a tightness result.

Lemma 7.4. For everyN 2N, for any fixed subsequence ¹"kºk2N such that "k! 0, and
for every U N -valued sequence '"k , the laws of ¹X"k ºk2N are tight on the Hilbert space
L2.Œ0; T �;V/.

Proof. Assume that N 2 N. Fix � > 0, and choose M > 0 such that

CN =M < �=2;

where CN is the constant of Lemma 7.2. Let "N and "N;M be as in Lemmata 7.2 and 7.3.
Without loss of generality, we can assume that "k 2 .0; "N ^ "N;M / for all k 2 N.
Fix an auxiliary number ˛ 2 .0; 1=2/. Since the embedding D.A/ � V is compact, by

[35, Theorem 2.1] the embedding

ƒ D L2.Œ0; T �;D.A// \W ˛;2.Œ0; T �;V0/ ,! L2.Œ0; T �;V/
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is also compact. Define

kgk2ƒ D

Z T

0

kg.t/k2D.A/ dt C kgk
2
W ˛;2.Œ0;T �;V0/; g 2 ƒ:

Choose R > 0 such that
2CN;M C 2C˛;N

R2
<
�

2
;

where the constants C˛;N and CN;M are those that appear in Lemmata 7.2 and 7.3.
Since the set

KR D ¹g 2 ƒ W kgkƒ � Rº

is relatively compact in L2.Œ0; T �;V/, it is sufficient to show that

Q.X"k 62 KR/ < � for all k:

Indeed, by Lemma 7.2 and Corollaries 7.1 and 7.2 , we infer that

Q.X"k 62 KR/ � Q.�"k ;M < T /CQ..�"k ;M � T / \ .X
"k 62 KR//

�
CN

M
C
2CN;M C 2C˛;N

R2
< �:

Using arguments similar to those proving [66, Lemma 4.5], we get

Lemma 7.5. There exists % > 1 such that for every N 2 N, for any fixed subsequence
¹"kºk2N such that "k! 0, and for every U N -valued sequence '"k , the laws of ¹X"k ºk2N

are tight on the Skorokhod space D.Œ0; T �;D.A�%//.

Next, consider a family '", " 2 .0;1�, of U N -valued processes, for some fixedN 2N.
For each ", let Y " be the unique solution of the (auxiliary) stochastic Langevin equation

Y ".t/ D

Z t

0

AY ".s/ ds C "
Z t

0

Z
Z
G.X".s�/; z/ zN "�1'".dz; ds/: (7.22)

In this situation, we have the following.

Lemma 7.6. In the above framework, if � > 0, then

lim
"!0

Q

�
sup
t2Œ0;T �

kY ".t/k2V C

Z T

0

kY ".s/k2D.A/ ds � �

�
D 0: (7.23)

Proof. Fix � > 0. Suppose we have proved that for every M > 0,

E

�
sup

t2Œ0;T^�";M �

kY ".t/k2V C

Z T^�";M

0

kY ".s/k2D.A/ ds

�
� "CNCN;M ; " 2 .0; "N;M /;

(7.24)

where the stopping time �";M is defined in (7.14) and CN;M and "N;M are as in Lemma
7.3. Then we can conclude the proof as follows.
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First, we set

ƒ� WD

²
! 2 � W sup

t2Œ0;T �

kY ".t/k2V C

Z T

0

kY ".s/k2D.A/ ds � �

³
:

Hence, by Lemma 7.2 and (7.24), for all M > 0 and " 2 .0; "N;M /,

Q.ƒ�/ � Q.�";M < T /CQ..�";M � T / \ƒ�/

�
CN

M
C
"CNCN;M

�
;

which, by a standard argument, implies (7.23).
Thus, we only have to show inequality (7.24). Let us fix M > 0. By the Itô formula,

kY ".t/k2VC2

Z t

0

kY ".s/k2D.A/ ds

D 2"

Z t

0

Z
Z
hG.X".s�/; z/; Y ".s�/iV0 V

zN "�1'".dz; ds/

C "2
Z t

0

Z
Z
kG.X".s�/; z/k2VN

"�1'".dz; ds/:

By Assumption 5.1 and (7.12),

"2E

�Z T^�";M

0

Z
Z
kG.X".s�/; z/k2VN

"�1'".dz; ds/

�
� "E

�Z T^�";M

0

Z
Z
kG.X".s/; z/k2V'".s; z/ �.dz/ ds

�
� 2"E

�Z T^�";M

0

Z
Z
.1C kX".s/k2V/L

2
2.z/'".s; z/ �.dz/ ds

�
� "CNE

�
sup

t2Œ0;T^�";M �

kX".t/k2V

�
C "CN :

Applying the Burkholder–Davis–Gundy inequality and (7.12) again, we get

2"E

�
sup

t2Œ0;T^�";M �

ˇ̌̌̌ Z t

0

Z
Z
hG.X".s�/; z/; Y ".s�/iV0 V

zN "�1'".dz; ds/
ˇ̌̌�

� "CE

�ˇ̌̌̌Z T^�";M

0

Z
Z
kG.X".s�/; z/k2VkY

".s�/k2VN
"�1'".dz; ds/

ˇ̌̌̌1=2�
�
1

2
E
�

sup
t2Œ0;T^�";M �

kY ".t/k2V

�
C"CE

�Z T^�";M

0

Z
Z
kG.X".s/; z/k2V'".s; z/ �.dz/ ds

�
�
1

2
E
�

sup
t2Œ0;T^�";M �

kY ".t/k2V

�
C "CNE

�
sup

t2Œ0;T^�";M �

kX".t/k2V

�
C "CN :

Combining the above three estimates and Lemma 7.3, we deduce (7.24).
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7.2. The second continuity lemma

This subsection is devoted to proving Claim LDP-2 formulated in the proof of Theo-
rem 5.1. We need the following result.

Proposition 7.1 (The second continuity lemma). Let '"n , ' 2 U N be such that '"n con-
verges in law to ' as "n ! 0. Then the processes G "n."nN

"n
�1'"n / converge in law on

‡T .V/ to the process G 0.'/.

Proof. Fix a natural number N , a sequence "n such that "n ! 0, and a U N -valued
sequence ¹'"nºn2N , such that '"n converges in law to ' for some ' 2 U N .

By Lemma 7.1, the process

X"n WD G "n."nN
"n
�1'"n /

is the unique solution of problem (7.1) with " and ' replaced by "n and '"n respectively.
Recall that the process Y ", for " > 0, was defined in (7.22).

By Lemmata 7.4–7.6,

(1) the laws of the processes ¹X"nºn2N are tight on L2.Œ0; T �;V/ \D.Œ0; T �;D.A�%//;

(2) the sequence ¹Y "nºn2N converges in probability to 0 in ‡T .V/.

Set
�T D

�
L2.Œ0; T �;V/ \D.Œ0; T �;D.A�%//

�
˝ ‡T .V/˝ SN :

Let .X; 0; '/ be any limit point of the tight family ¹.X"n ; Y "n ; '"n/ºn2N . By the Sko-
rokhod representation theorem, there exists a stochastic basis .�1; F1; P1/ and, on this
basis, �T -valued random variables .X1; 0; '1/, .Xn1 ; Y

n
1 ; '

n
1 /; n 2 N, such that

(a) .X1; 0; '1/ has the same law as .X; 0; '/;

(b) for any n 2 N, .Xn1 ; Y
n
1 ; '

n
1 / has the same law as .X"n ; Y "n ; '"n/;

(c) limn!1.X
n
1 ; Y

n
1 ; '

n
1 / D .X1; 0; '1/ in �T , P1-a.s.

Because equations (7.5) and (7.22) are satisfied by the processes .X"n ;Y "n ;'"n/, we infer
that .Xn1 ; Y

n
1 ; '

n
1 / satisfies

Xn1 .t/ � Y
n
1 .t/ D u0 �

Z t

0

A.Xn1 .s/ � Y
n
1 .s// ds

Z t

0

B.Xn1 .s// ds C
Z t

0

f .s/ ds

C

Z t

0

Z
Z
G.Xn1 .s/; z/.'

n
1 .s; z/ � 1/ �.dz/ ds; t 2 Œ0; T �: (7.25)

Hence, by deterministic results and (b), we conclude that

P1
�
Xn1 � Y

n
1 2 C.Œ0; T �;V/ \ L

2.Œ0; T �;D.A//
�

D Q
�
X"n � Y "n 2 C.Œ0; T �;V/ \ L2.Œ0; T �;D.A//

�
D 1:

Since

lim
n!0

�
sup
t2Œ0;T �

kY n1 .t/k
2
V C

Z T

0

kY n1 .s/k
2
D.A/ ds

�
D 0; P1-a.s., (7.26)
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by applying arguments similar to the proof of Proposition 5.3, we can show that .X1; '1/
satisfies

X1.t/ D u0 �

Z t

0

AX1.s/ ds �
Z t

0

B.X1.s// ds C
Z t

0

f .s/ ds

C

Z t

0

Z
Z
G.X1.s/; z/.'1.s; z/ � 1/ �.dz/ ds:

The maximal regularity property of the solutions to the deterministic 2D Navier–Stokes
equations, taking into account Lemma B.1, imply that, P1-a.s.,

X1 2 C.Œ0; T �;V/ \ L2.Œ0; T �;D.A//:

By (7.26) and (c), using arguments as in the proof of (5.36), we get

lim
n!0

�
sup
t2Œ0;T �

kXn1 .t/ �X1.t/k
2
V C

Z T

0

kXn1 .s/ �X1.s/k
2
D.A/ ds

�
D 0; P1-a.s.

Hence, by (5.16), which is the definition of G 0, X"n converges in law to G 0.'/, which
implies the desired result.

Appendix A. Poisson random measures

Recall the following definition, which is taken from [42, Definition I.8.1]; see also [10].

Definition A.1. A time-homogeneous Poisson random measure on Y D Z � Œ0;1/ (i.e.,
a Poisson random measure on YT D Œ0; T � � Z � Œ0;1/) over the probability space
. N�;G ;G;Q/ with intensity measure LebŒ0;T � ˝ � ˝ LebŒ0;1/ is a measurable function

� W . N�;G /!M .YT / DMT

satisfying the following conditions:

(1) for each U 2 B.Œ0; T �/ ˝B.Y/, �.U / WD iU ı � W N�! N 3 is a Poisson random
variable with parameter4 E�.U /;

(2) � is independently scattered, i.e., if the setsUj 2B.Œ0;T �/˝B.Y/, j D 1; : : : ;n, are
disjoint, then the random variables �.Uj /, j D 1; : : : ; n, are mutually independent;

(3) for all U 2 B.Y/ and I 2 B.Œ0; T �/,

EŒ�.I �U/� D .LebŒ0;T �˝ �˝LebŒ0;1//.I �U/ D LebŒ0;T �.I /.�˝LebŒ0;1//.U /I

(4) for each U 2 B.Y/, the N-valued process

.0;1/ �� 3 .t; !/ 7! �.!/.U � .0; t �/

is G-adapted, and its increments are independent of the past, i.e., the increment
between times t and s with t > s > 0 is independent of the � -field Gs .

3N WD N [ ¹0º [ ¹1º.
4If E�.U / D1, then obviously �.U / D1 a.s.
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Similarly, we have

Definition A.2. A time-homogeneous Poisson random measure on Z (or Poisson ran-
dom measure on ZT D Œ0; T � � Z) over the probability space . N�;G ;G;Q/ with intensity
measure LebŒ0;T � ˝ � is a measurable function

� W . N�;G /!M .ZT / DMT

satisfying the following conditions:

(1) for each U 2 B.Œ0; T �/ ˝ B.Z/, �.U / WD iU ı � W N� ! N is a Poisson random
variable with parameter E�.U /;

(2) � is independently scattered, i.e., if the sets Uj 2B.Œ0;T �/˝B.Z/, j D 1; : : : ; n, are
disjoint, then the random variables �.Uj /, j D 1; : : : ; n, are mutually independent;

(3) for all U 2 B.Z/ and I 2 B.Œ0; T �/,

EŒ�.I � U/� D .LebŒ0;T � ˝ �/.I � U/ D LebŒ0;T �.I /�.U /I

(4) for each U 2 B.Z/, the N-valued process

.0;1/ �� 3 .t; !/ 7! �.!/.U � .0; t �/

is G-adapted, and its increments are independent of the past, i.e., the increment
between times t and s with t > s > 0 is independent of the � -field Gs .

Appendix B. Proof of Lemma 5.1

This section is devoted to the proof of Lemma 5.1, which, for the convenience of the
reader, we state again.

Lemma B.1. Assume that N 2 N. Then, for all u0 2 V, f 2 L2.Œ0; T �;H/, and g 2 SN ,
there exists a unique solution ug 2 C.Œ0; T �;V/ \ L2.Œ0; T �;D.A// of problem (5.11).
Moreover, for any �; R > 0, there exists a positive constant CN D CN;�;R such that
for every g 2 SN and all u0 2 V and f 2 L2.Œ0; T �; H/ such that ku0kV � � and
kf kL2.Œ0;T �;H/ � R,

sup
t2Œ0;T �

kug.t/k2V C

Z T

0

kug.t/k2D.A/ dt � CN : (B.1)

Proof. Fix N 2 N, u0 2 V, f 2 L2.Œ0; T �;H/, and g 2 SN . Define an auxiliary function

F.t; y/ WD

Z
Z
G.y; z/.g.t; z/ � 1/ �.dz/; t 2 Œ0; T �; y 2 V:
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By Assumption 5.1, for all t 2 Œ0; T �, „ > 0, and y; y1; y2 2 V with ky1kV _ ky2kV � „,

kF.t; y1/ � F.t; y2/kV �

Z
Z
L„.z/jg.t; z/ � 1j �.dz/ ky1 � y2kV;

kF.t; y/kV �

Z
Z
L2.z/jg.t; z/ � 1j �.dz/ .1C kykV/;

kF.t; y/kH �

Z
Z
L3.z/jg.t; z/ � 1j �.dz/ .1C kykH/:

By [15, Lemma 3.4],

C1;N WD max
iD2;3

sup
g2SN

Z T

0

Z
Z
Li .z/jg.t; z/ � 1j �.dz/ dt <1; (B.2)

and, for every „ > 0,

C„;N WD sup
g2SN

Z T

0

Z
Z
L„.z/jg.t; z/ � 1j �.dz/ dt <1: (B.3)

Combining the above five inequalities and using an argument similar to those for The-
orems 4.1 and 4.2, we can deduce that there exists a unique solution ug 2 C.Œ0; T �;V/ \
L2.Œ0; T �;D.A// of equation (5.11).

Now we are ready to prove (B.1). We begin with a priori estimates in the space H.
Note that we only use the assumption “Linear growth in V” and “Linear growth in H” in
Assumption 5.1 to get (B.1). By Assumption 5.1 and the Lions–Magenes lemma, we have

jug.t/j2H C 2

Z t

0

kug.s/k2V ds

D ju0j
2
HC2

Z t

0

hf .s/; ug.s/iH dsC2

Z t

0

Z
Z
hG.ug.s/; z/; ug.s/iH.g.s; z/�1/ �.dz/ ds

� ju0j
2
HC

Z t

0

kug.s/k2V dsC

Z t

0

kf .s/k2V0 ds

C2

Z t

0

.1C2jug.s/j2H/

Z
Z
L3.z/jg.s; z/�1j �.dz/ ds:

Hence,

jug.t/j2H C

Z t

0

kug.s/k2V ds

� ju0j
2
H C

Z T

0

kf .s/k2V0 ds C 2

Z T

0

Z
Z
L3.z/jg.s; z/ � 1j �.dz/ ds

C 4

Z t

0

jug.s/j2H

Z
Z
L3.z/jg.s; z/ � 1j �.dz/ ds: (B.4)
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By applying Gronwall’s lemma, we get

sup
t2Œ0;T �

jug.t/j2H C

Z T

0

kug.t/k2V dt

�

�
ju0j

2
H C

Z T

0

kf .s/k2V0 ds C 2

Z T

0

Z
Z
L3.z/jg.s; z/ � 1j �.dz/ ds

�
� e4

R T
0

R
ZL3.z/jg.s;z/�1j �.dz/ ds :

Applying (B.2), we get

sup
g2SN

�
sup
t2Œ0;T �

jug.t/j2H C

Z T

0

kug.t/k2V dt

�
� KN;H <1: (B.5)

Now, by Assumption 5.1 and [59, Lemma III.1.2], in the space V we have

kug.t/k2V C 2

Z t

0

kug.s/k2D.A/ ds

D ku0k
2
V C 2

Z t

0

hB.ug.s//;Aug.s/iH ds C 2
Z t

0

hf .s/;Aug.s/iH ds

C 2

Z t

0

Z
Z
hG.ug.s/; z/; ug.s/iV0 V.g.s; z/ � 1/ �.dz/ ds

� ku0k
2
V C

Z t

0

kug.s/k2D.A/ ds C C

Z t

0

kug.s/k4Vju
g.s/j2H ds C 2

Z t

0

jf .s/j2H ds

C 2

Z t

0

.1C 2kug.s/k2V/

Z
Z
L2.z/jg.s; z/ � 1j �.dz/ ds: (B.6)

Hence, we find that

kug.t/k2V C

Z t

0

kug.s/k2D.A/ ds

� ku0k
2
V C 2

Z T

0

jf .s/j2H ds C 2

Z T

0

Z
Z
L2.z/jg.s; z/ � 1j �.dz/ ds

C

Z t

0

kug.s/k2V

�
Ckug.s/k2Vju

g.s/j2H C 4

Z
Z
L2.z/jg.s; z/ � 1j �.dz/

�
ds:

Therefore, by applying Gronwall’s lemma, we deduce that

sup
t2Œ0;T �

kug.t/k2V C

Z T

0

kug.s/k2D.A/ ds

�

�
ku0k

2
V C 2

Z T

0

jf .s/j2H ds C 2

Z T

0

Z
Z
L2.z/jg.s; z/ � 1j �.dz/ ds

�
� eC

R T
0 ku

g.s/k2Vju
g.s/j2H dsC4

R T
0

R
ZL2.z/jg.s;z/�1j �.dz/ ds :

Thus, in view of (B.2) and (B.5), we know that

sup
g2SN

�
sup
t2Œ0;T �

kug.t/k2V C

Z T

0

kug.s/k2D.A/ ds

�
� KN;V <1:

This completes the proof of Lemma 5.1.
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[58] Święch, A., Zabczyk, J.: Large deviations for stochastic PDE with Lévy noise. J. Funct. Anal.
260, 674–723 (2011) Zbl 1211.60024 MR 2737394

[59] Temam, R.: Navier–Stokes Equations. AMS Chelsea Publ., Providence, RI (2001)
Zbl 0981.35001 MR 1846644

[60] Wang, R., Xiong, J., Xu, L.: Irreducibility of stochastic real Ginzburg–Landau equation driven
by ˛-stable noises and applications. Bernoulli 23, 1179–1201 (2017) Zbl 1426.60091
MR 3606763

[61] Wang, R., Zhai, J., Zhang, T.: A moderate deviation principle for 2-D stochastic Navier–Stokes
equations. J. Differential Equations 258, 3363–3390 (2015) Zbl 1310.60100 MR 3319423

[62] Xiong, J., Zhai, J.: Large deviations for locally monotone stochastic partial differential equa-
tions driven by Lévy noise. Bernoulli 24, 2842–2874 (2018) Zbl 1427.60137 MR 3779704

[63] Xu, T., Zhang, T.: Large deviation principles for 2-D stochastic Navier–Stokes equations
driven by Lévy processes. J. Funct. Anal. 257, 1519–1545 (2009) Zbl 1210.60071
MR 2541279

[64] Yang, X., Zhai, J., Zhang, T.: Large deviations for SPDEs of jump type. Stoch. Dynam. 15,
art. 1550026, 30 pp. (2015) Zbl 1327.60074 MR 3411897

[65] Zhao, H.: Yamada–Watanabe theorem for stochastic evolution equation driven by Poisson
random measure. ISRN Probab. Statist. 2014, art. 982190, 7 pp. Zbl 1308.60082

[66] Zhai, J., Zhang, T.: Large deviations for 2-D stochastic Navier–Stokes equations driven by
multiplicative Lévy noises. Bernoulli 21, 2351–2392 (2015) Zbl 1344.60030 MR 3378470

[67] Zhang, X.: Clark–Ocone formula and variational representation for Poisson functionals. Ann.
Probab. 37, 506–529 (2009) Zbl 1179.60037 MR 2510015

[68] Zheng, W., Zhai, J., Zhang, T.: Moderate deviations for stochastic models of two-dimensional
second-grade fluids driven by Lévy noise. Comm. Math. Statist. 6, 583–612 (2018)
Zbl 1404.60096 MR 3877718
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