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Abstract. We prove the local multiplicity at most one theorem underlying the definition and theory
of local  -, �- and L-factors, defined by virtue of the generalized doubling method, over any local
field of characteristic 0. We also present two applications: one to the existence of local factors
for genuine representations of covering groups, the other to the global unfolding argument of the
doubling integral.

Keywords. Doubling method, multiplicity one, invariant distributions, covering groups, Schwartz
functions

Contents

1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1. The groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2. Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3. Distribution vanishing theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4. Representations of type .k; c/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5. Doubling setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Uniqueness results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1. Outline of the proof of Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2. The case H ¤ GL2kc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3. The case H D GL2kc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1. Covering groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2. Global unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Dmitry Gourevitch: Faculty of Mathematics and Computer Science, Weizmann Institute of
Science, POB 26, Rehovot 76100, Israel; dmitry.gourevitch@weizmann.ac.il

Eyal Kaplan: Department of Mathematics, Bar Ilan University, Ramat Gan 5290002, Israel;
kaplaney@gmail.com

Avraham Aizenbud: Faculty of Mathematics and Computer Science, Weizmann Institute of
Science, POB 26, Rehovot 76100, Israel; aizenr@gmail.com

Mathematics Subject Classification (2020): Primary 11F70; Secondary 11F55, 11F66, 22E50,
22E55

mailto:dmitry.gourevitch@weizmann.ac.il
mailto:kaplaney@gmail.com
mailto:aizenr@gmail.com


D. Gourevitch, E. Kaplan 2

A. Vanishing of vector-valued distributions on smooth manifolds . . . . . . . . . . . . . . . . . . . 73
A.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.2. Distribution vanishing theorems and their proofs . . . . . . . . . . . . . . . . . . . . . . . . 78

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

The doubling method of [18, 20, 90] constructs an integral representation for the ten-
sor product of a pair of irreducible cuspidal automorphic representations of G.A/ and
GLk.A/, for a range of reductive groups G defined over a number field F0 with a ring of
adeles A. One of the advantages of this method is that it does not rely on the existence of
a model (or a nonzero Fourier coefficient) for the representation of G.A/; it is applicable
to any cuspidal representation. The family of local integrals can be used to define local
 -, �- and L-factors. These factors are defined for arbitrary irreducible admissible rep-
resentations, and as such, generalize the corresponding (tensor product) factors defined
by Shahidi [96] for irreducible generic representations, using his method of local coeffi-
cients. We prove the local multiplicity at most one theorem underlying the definition of
the local factors.

Let F be a local field of characteristic 0. Let G be one of the split groups Spc , SOc ,
GSpinc or GLc , where in the symplectic case c is even. For an integer k, letH be the split
group of the same type as G, which is either Sp2kc , SO2kc , GSpin2kc or GL2kc . There
is a unipotent subgroup U of H , and a character  U of U which is generic with respect
to the unipotent orbit ..2k � 1/c1c/ associated with H , such that G � G can be mapped
into the normalizer of U and stabilizer of  U . We denote the image of G �G under this
map by .G;G/ and let D be the subgroup U Ì .G;G/ of H .

We identify F -groups with their F -points. The underlying principle of the doubling
construction is the multiplicity at most one property of the restriction to D of representa-
tions of H parabolically induced from certain degenerate representations of GLkc .

A representation � of GLkc is called a .k; c/ representation if its wave-front set con-
tains .kc/ as the unique maximal orbit, and its degenerate Whittaker model with respect
to this orbit is unique. The simplest examples are the representation det of GLc or its
twist by a quasi-character of F �, which is a .1; c/ representation, or irreducible generic
representations of GLk , which are .k; 1/. The generalized Speh representation �c.�/ of
GLkc attached to c copies of an irreducible unitary representation � of GLk is .k; c/
[19, Theorem 4].

Let P be a maximal parabolic subgroup of H which is a Siegel parabolic subgroup if
G ¤ GLkc . Denote the Levi part of P by MP . If MP D GLkc , let � be a .k; c/ represen-
tation ofMP . For a complex parameter s, consider the space V.s; �/ of the representation
ofH parabolically induced from jdetjs�1=2� and P toH . In the other cases of subgroups
MP the representation V.s; �/ slightly varies: for MP D GLkc �GL1 we induce from
� ˝ � with a quasi-character � of F �, and for MP D GLkc �GLkc , � is the (exterior)
tensor product of two .k; c/ representations of GLkc .

Theorem A (see Theorem 2.1). Let �1 and �2 be irreducible admissible representations
ofG, and � be an admissible finite length .k;c/ representation of GLkc . Outside a discrete
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subset B � C of s,

dim HomD.V .s; �/;  �1U ˝ �1 ˝ �2/ � dim HomG.�
_
1 ; �

�
2/:

Over nonarchimedean fields, for supercuspidal representations �1 and �2 the result holds
for all s, under certain additional conditions.

Here � is a certain involution of G; when G D Spc , �
� D �_, and for GLc , � is trivial.

As usual, if the field is nonarchimedean and its residue field contains q elements, the
set B consists of finitely many values of q�s . For the stronger statement for supercuspidal
representations we must exclude minimal rank cases where G does not contain nontrivial
unipotent subgroups, and for GLc there is an additional condition on �. In the setup of the
doubling method of [18,20], .�1; �2/D .�_; � �/ and the dimension is precisely 1 outside
a discrete subset of s. Note that there is no canonical isomorphism between the spaces
appearing in the theorem. For the definitions of all objects, notation and for the more
precise statement, see §1, in particular §1.5 where we recall the generalized doubling
setup, and Theorem 2.1 (e.g., � is defined in §1.5).

The case k D 1 of the theorem for supercuspidal representations was proved by Harris
et al. [51, §4], but the general setting of the theorem (even for k D 1) has not been studied.
In this sense we close a historical gap.

Theorem A is the local counterpart of the global unfolding argument in [18]. We
briefly recall the global result, focusing on the parts relevant to us here. For more detail
on the global setting see §3.2.

Let � be an irreducible cuspidal automorphic representation of GLk.A/, and E� be
the generalized Speh representation of GLkc.A/ corresponding to c copies of � , defined
by Jacquet [55]. The representation E� is a global .k; c/ representation, in the sense that
it does not support any Fourier coefficient along an orbit greater than or incomparable
with .kc/, it supports a Fourier coefficient along .kc/, and all of its local components are
.k;c/ [18–20,41,60]. LetE.hIs;f / denote the Eisenstein series attached to a suitable sec-
tion f in the space of the representation ofH.A/ parabolically induced from jdetjs�1=2E�
and P.A/. One can consider the Fourier coefficient EU; U .hI s; f / of E.hI s; f / along
.U; U / (see (3.7)) as an automorphic function onG.A/�G.A/. The global integral was
defined in [18] by integrating EU; U .hI s; f / against two cusp forms in the space of a
unitary irreducible cuspidal automorphic representation � of G.A/. In a right half-plane
Re.s/ � 0, one can rewrite the integral as a sum (of integrals) parametrized by repre-
sentatives of P.F0/nH.F0/=D.F0/. All summands but one vanish, and the remaining
summand was shown to produce an Eulerian integral.

There are three methods for showing the vanishing of a summand. The first is by
finding a subgroup U 0 < U such that  U is nontrivial on U 0.A/, and showing that the
summand admits an inner integral of U overU 0.F0/nU 0.A/, which is then zero. Second,
if the summand admits an inner integral which constitutes a Fourier coefficient of E� that
is greater than or incomparable with .kc/. This summand vanishes because E� is .k; c/.
Third, if one can obtain an inner integral of one of the cusp forms along a unipotent
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radical UR of a parabolic subgroup R D MR Ë UR of G, then the summand vanishes
because � is cuspidal.

Our local result is, in some sense, parallel to the global unfolding. We consider distri-
butions on the orbits of P nH=D. The argument involving  U can be applied locally. The
second case, where we use the .k; c/ representation alone, is not difficult to carry out in
the nonarchimedean setting, using the local “exchange of roots” arguments of Ginzburg et
al. [44] and the theory of derivatives of Bernstein and Zelevinsky [11,12]. Results involv-
ing the Jacquet functor are in general more difficult and subtle over archimedean fields.
Fortunately, we are able to benefit from the recent (partial) extension of the theory of
derivatives to archimedean fields by Aizenbud et al. [3, 4]. In fact, our argument in this
case is greatly simplified and streamlined using the precise reformulation of Gomez et al.
[46] of the connection between the wave-front set and the theory of derivatives, over both
archimedean and nonarchimedean fields.

The class of double cosets, where the global vanishing follows using the fact that
the representations of G are cuspidal, requires a different approach. The difficulty arises
because in the local setting one must consider non-supercuspidal representations of G as
well. This is where we lose the subset B.

In more detail, if the global summand was treated using, say, UR < R < G, the cor-
responding orbit should be handled by analyzing the action of the center CMR of MR.
Consider the nonarchimedean setting. Following the method of Jacquet et al. [58], if
the local representations (which are usually Jacquet modules of �i and �) restrict to
finite length representations of MR, the action of CMR is filtered by a finite sequence
of quasi-characters, combined with a quasi-character determined by jdetjs . This produces
a compatibility condition that rules out a discrete subset of s, i.e., there are no distri-
butions on the orbit unless s belongs to a discrete set. This argument was carried out
in several works, including [40, 44, 66, 97]. The main difficulty was to show that indeed
the representations involved restrict to finite length representations of a Levi subgroup,
or more precisely in those works, of the reductive part of the appropriate mirabolic sub-
group, and the key tool in the proofs was the theory of derivatives [11, 12]. By contrast,
here the Jacquet modules of � that occur in the analysis do not afford a representation of
the mirabolic subgroup, but we are still able to show that they restrict to finite length rep-
resentations of MR. Moreover, while in the previous aforementioned works the number
of double cosets was finite, here there are in general uncountably many (unless k D 1).
Therefore we must be careful to apply this argument to only finitely many representatives.

In fact, treating uncountably many orbits is another difficulty. In the nonarchimedean
case, in principle if there are no distributions (satisfying certain equivariance properties)
on the orbits, there are no global distributions (see, e.g., [11, §6]). Over archimedean
fields this is considerably more complicated. Kolk and Varadarajan [68] extended parts
of the archimedean Bruhat theory to this case using transverse symbols. In Appendix A
by the first named author and Avraham Aizenbud, we will present a generalization of the
main result of [68], which is sufficiently strong for our application and is of independent
interest, using tools from functional analysis.
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The proof here clarifies several arguments of [18], and is applicable to a wide class
of groups, in particular all groups treated in [20] (the unfolding argument in [18] was
presented only for symplectic groups). The original doubling method of [90] was stated
for a slightly different class of groups, e.g., the full orthogonal groups Oc , and also unitary
groups; general spin groups, as well as the double cover of the symplectic group, were
mentioned in [90, §4.3] but not treated in any way. The extension of the present proof to
other classes of groups would be straightforward.

Note that the aforementioned proof in [51, §4] does not involve  U nor the structure
of � (at any rate � for k D 1 is plainly a character), and involves only finitely many
orbits. Once the proof here is reduced to the open orbit, it “mirrors” the arguments of loc.
cit. when the representations are supercuspidal, but again in the general case it is more
difficult and relies on the deep properties of �.

Our work has two immediate applications. The first concerns covering groups (topo-
logical central extensions by finite cyclic groups). The classical doubling method (k D 1)
was extended by Gan [34] to the double cover of the symplectic group. In the recent work
[64], the doubling method was extended tom-fold coverings Sp.m/c .A/ of Spc.A/ (defined
by [80]) for all m, and any k, providing an integral representation for the tensor product
of a pair of genuine irreducible cuspidal automorphic representations � of Sp.m/c .A/ and
� of fGLk.A/, where fGLk.A/ is a covering group of GLk.A/ defined by restriction from
Sp.m/
2k
.A/. Alongside, the local doubling construction for fGLc was developed as well

(for all m and k). The construction of [64] is still subject to local and global conjectures
regarding generalized Speh representations, but the local theory for unramified data over
nonarchimedean fields does not depend on these conjectures.

Theorem A can be reformulated for covering groups, granted certain conditions hold
(see §3.1 for details). In the particular cases of Sp.m/c and fGLc , Theorem A is applicable
and as a consequence, we can define local factors using uniqueness, at least when data
are unramified. Specifically, define the  -factor as the proportionality factor between two
integrals, then use it to define �- and L-factors; see (0.2) and the explanation below in the
linear setting. To the best of our knowledge, at present no other method for an analytic
definition of these factors is known (see below; of course, for a formal abstract definition
of local factors for unramified data one can use the Satake parametrization). Moreover,
granted the conjectures of [64], Theorem A is expected to imply the existence of local  -,
�- and L-factors in general, i.e., also in the ramified case, for Sp.m/c �

fGLk (and additional
covering groups).

As explained above, the doubling method does not rely on the existence of a model for
the representation of G. This is advantageous for linear groups, but even more so when
considering covering groups. As a rule, Whittaker models are not unique for representa-
tions of covering groups (the double cover of Spc is an exception), first and foremost, for
genuine irreducible unramified principle series representations. This means that Shahidi’s
theory of local coefficients is no longer applicable, even in the unramified setting. The fact
that one can still define local factors using analytic methods and uniqueness, is perhaps a
surprise.
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We note that the number of Whittaker models is still finite. In recent works, Gao et al.
[38,39] and Szpruch [106] studied generalizations of Shahidi’s local coefficients, namely
a local coefficients matrix and a scattering matrix, and extracted interesting representa-
tion-theoretic invariants.

The second application is global. Since the local components of E� are .k; c/ rep-
resentations, our local analysis expresses the Fourier coefficient of the Eisenstein series
as a sum over a finite number of cosets in (the infinite space) P.F0/nH.F0/=D.F0/.
Then it is visible that the integral of this coefficient against two cusp forms reduces to a
single summand, explicating the unfolding process. In this sense we fill out the gap of the
unfolding for the cases of groups considered in [20]. Note that our arguments also readily
globalize.

The original doubling method of Piatetski-Shapiro and Rallis [90] produced an inte-
gral representation for the standard automorphic L-function of an irreducible cuspidal
automorphic representation of a classical group, or its rank-1 twists, which is the case
k D 1. The local theory for k D 1 was fully developed by Lapid and Rallis [73]. The
doubling construction was extended to arbitrary k in [18], and the corresponding theory
of local factors was developed in [20].

We briefly explain how Theorem A is used for the definition of the local factors. Fix
a nontrivial additive character  of F . Let � be an irreducible admissible representa-
tion of G, and � be an irreducible admissible and generic representation of GLk . If � is
unitary, the representation �c.�/ was introduced above; in general �c.�/ is defined using
Langlands’ classification and the tempered case. The local doubling integral Z.s; !; f /
is defined for a matrix coefficient ! of �_ and a holomorphic section f of V.s; �c.�//. In
its domain of absolute convergence (a right half-plane),Z.s;!; f / defines a morphism in

HomD.V .s; �c.�//;  �1U ˝ �
_
˝ � �/: (0.1)

Applying a standard intertwining operator

M.s;w/ W V.s; �c.�//! V.1 � s;w�c.�//;

where
w�c.�/ D �c.�

_/ for G D Spc ;SOc ,

we obtain a second integral Z.1 � s; !;M.s; w/f /, absolutely convergent in a left half-
plane, which still defines a morphism in (0.1). In fact,M.s;w/ is further normalized using
a second functional equation, M �.s; w/ D C.s; c; �;  /M.s; w/, where C.s; c; �;  / is
a meromorphic function of s (see [20, §4]). By Theorem A we can define the  -factor
.s; � � �;  / by

.s; � � �;  /Z.s; !; f / D Z�.s; !; f /;

Z�.s; !; f / D Z.1 � s; !;M �.s; w/f /:
(0.2)

The main local result of [20] was the characterization of this factor, according to the pre-
scribed list of properties formulated by Shahidi in the context of generic representations
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[96, Theorem 3.5] (see also [73, Theorem 4]). In turn, the  -factor was used in [20] to
define the local �- and L-factors, following Shahidi’s method [96, §7] (see also [92–95]).
The main motivation of [20] was to find a new proof of global functoriality from G.A/ to
the appropriate general linear group, via the Converse Theorem of Cogdell and Piatetski-
Shapiro [27, 28], thereby extending the global result of [6, 25, 26] from globally generic
representations to arbitrary cuspidal ones. Note that the endoscopic functorial transfer for
quasi-split orthogonal or symplectic groups was obtained by Arthur [5] using the twisted
stable trace formula, and extended to quasi-split unitary groups by Mok [84].

We mention that if � is supercuspidal (under certain additional assumptions), our
uniqueness results imply, using Bernstein’s continuation principle [7], that the integral
is holomorphic (see Corollary 2.4). Using the fact that the integral can always be made
constant, it follows that the only poles appearing in .s; � � �; / are poles ofM �.s;w/.
This observation hints that a “g.c.d. definition” of the L-function using the generalized
doubling method must involve “good sections” (see, e.g., [65, pp. 589–590]). Indeed,
this was the approach of Yamana [113], who studied this definition of the L-function for
k D 1.

Similar multiplicity at most one theorems exist in the literature. In the context of
Rankin–Selberg integrals for representations of G � GLk admitting unique Whittaker
models, where G is a classical group, see [40, 44, 66, 97, 98]. See also [2, 35, 62, 74,
102, 104, 108, 109] where strong general uniqueness results were proved (which in par-
ticular imply multiplicity one for the same Rankin–Selberg constructions with irreducible
generic representations). Our proof technique resembles Soudry’s [97, §8] and [98].

In a more general context, for a representation � of an arbitrary group H , a sub-
group D < H and a representation � of D, one can consider the space HomD.�; �/.
Typical questions involve the multiplicity of this space, or the structure of � for which
HomD.�; �/ ¤ 0. In certain cases, the nonvanishing is related to special values of L-
functions. Globally, one is often interested in a period integral of an automorphic form
on H.A/ over D.F0/nD.A/ (with � D 1). There is a vast amount of research on such
problems; let us mention [32, 33, 56, 57, 59, 75–79, 86–89, 114, 115].

For other works involving the doubling method see, e.g., [14, 31, 36, 51–53, 72]. The
doubling method is not the only integral representation to lift the barrier of globally
generic representations: other constructions of similar generality were developed, thus
far without complete local theory, in [10,42,43,63,99,100]. While the local ramified the-
ory is probably within reach (see, e.g., [99, Theorem 4.2]), it will require an abundance
of work. For example, these integrals are far less uniform than the doubling method, and
for orthogonal groups one uses the Bessel model of � which involves an auxiliary repre-
sentation.

The rest of this work is organized as follows. In §1 we provide some general prelim-
inaries, define .k; c/ representations and recall the doubling construction of [18, 20]. The
proof of our main result is given in §2. Section 3 contains our main applications.

Parts of the nonarchimedean version of Theorem A for supercuspidal representations
appear in [17]; Cai and the present authors were working independently.
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1. Preliminaries

1.1. The groups

Let l � 1 be an integer. Let BGLl D TGLl Ë NGLl denote the Borel subgroup of upper
triangular invertible matrices, where NGLl is its unipotent radical. The standard parabolic
subgroups of GLl can be identified with the set of compositions ˇ D .ˇ1; : : : ; ˇa/ of l
(ˇi � 0, a � 1), where Pˇ D Mˇ Ë Vˇ denotes the parabolic subgroup with Mˇ D

GLˇ1 � � � � � GLˇa and Vˇ < NGLl . Let Jl be the permutation matrix with 1 on the anti-
diagonal and 0 otherwise. For g 2GLl , tg denotes the transpose of g, and g�D Jl tg�1Jl .

For x 2 R, bxc (resp., dxe) denotes the largest (resp., smallest) integer smaller (resp.,
greater) than or equal to x.

For an even l , define

Spl D
°
g 2 GLl W tg

�
Jl=2

�Jl=2

�
g D

�
Jl=2

�Jl=2

�±
:

Let BSpl D Spl \BGLl . For any l , let SOl D ¹g 2 SLl W tgJlg D Jlº and fix BSOl D

SOl \BGLl . Let Spinl be the algebraic double cover of SOl , with the Borel subgroup
which is the preimage of BSOl . This defines the set of simple roots ˛0; : : : ; ˛bl=2c�1
where ˛i D �i � �iC1 for 0 � i < bl=2c � 1, and GSpinl can be defined as the Levi sub-
group of SpinlC2 obtained by removing ˛0. For l D 0; 1, GSpinl D GL1, and GSpin2 D
GL1 �GL1.

Henceforth we fix one of the families of groups GLl , Spl (when l is even), SOl or
GSpinl , and for a given l denote the member by Gl , e.g., Gl D Spl . Write the Borel sub-
group in the form BGl D TGl Ë NGl , where NGl is the unipotent radical. For a parabolic
subgroup R < Gl , ıR denotes its modulus character, and we write R DMR Ë UR where
MR is the Levi part andUR is the unipotent radical. IfU < Gl is a unipotent subgroup,U�

denotes the opposite subgroup. The Weyl group of Gl is denotedW.Gl /, and similar nota-
tion is used for any reductive group. The center of an algebraic group X is denoted CX ,
and its connected component by C ıX .

The unipotent subgroups of GSpinl are isomorphic (as algebraic groups) to the unipo-
tent subgroups of SOl , and W.GSpinl / is isomorphic to W.SOl /. Also CGSpin2lC1 is
connected and for l > 2, C ıGSpinl

Š GL1.
Let F be a local field with characteristic 0. Throughout, we identify F -groups with

their F -points, e.g., Gl D Gl .F /. The additive group of l � l 0 matrices (over F ) is denoted
Matl�l 0 and Matl D Matl�l . The trace map is denoted tr. If F is nonarchimedean, we let
q denote the cardinality of its residue field. When we say that a property holds outside a
discrete subset of s, over a nonarchimedean field we mean for all but finitely many values
of q�s . For any group X , x; y 2 X and Y < X , xy D xyx�1 and xY D ¹xy W y 2 Y º.

1.2. Representations

We describe the general notation involving representations that appear in this work. In
this section Gl can be replaced with any reductive algebraic group. By a representation
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of a closed subgroup of Gl we always mean a smooth representation on a complex vector
space. Over archimedean fields, an admissible representation is understood to be admis-
sible Fréchet of moderate growth. If � is a representation of a closed subgroup Y < Gl ,
�_ is the representation contragredient to � , and for x 2 Gl , x� denotes the representation
of xY on the same space as � , with the action given by x�.y/ D �.x

�1
y/. Parabolic

induction is normalized. Morphisms are continuous and induction is smooth, and˝ is the
complete tensor product, over archimedean fields.

In this work supercuspidal representations are not automatically irreducible (or uni-
tary). When the field is nonarchimedean, a representation of a group which does not have
unipotent subgroups is also (trivially) supercuspidal. By definition, supercuspidal repre-
sentations only exist over nonarchimedean fields.

For a closed unipotent subgroup U < Gl , denote the set of (unitary) characters of U
by bU . Let � be a representation of U on a space V . For  2 bU , let V.U;  / � V be the
subspace spanned by the vectors �.u/� �  .u/� for all u 2 U and � 2 V over nonar-
chimedean fields, and over archimedean fields V.U;  / is the closure of this subspace.
The Jacquet module JU; .�/ is the quotient V.U;  /nV . Assume R < Gl is a closed
subgroup containing U . Denote the normalizer of U in R byNR.U /. If � is a representa-
tion of R, JU; .�/ is a representation of the subgroup of NR.U / which stabilizes  . We
do not twist the action, i.e., we do not multiply by a modulus character. For any r 2 R, we
have an isomorphism rJU; .�/ Š JrU;r .�/ of representations of rU (use � 7! �.r/�).
In particular, if r 2 NR.U /, then rJU; .�/ Š JU;r .�/.

Over nonarchimedean fields, if U is abelian and NR.U / acts on bU with finitely many
orbits, by [11, §§5.9–5.12] if JU; 0.�/ D 0 when  0 varies over a complete set of repre-
sentatives for the nontrivial orbits, U acts trivially on the space of � , i.e., � D JU;1.�/.

Let JU; .�/� be the algebraic dual of JU; .�/ over a nonarchimedean field, and the
continuous dual over archimedean fields. By definition HomU .�;  / D JU; .�/

�.
Over archimedean fields we will also need the notion of generalized Jacquet modules.

Let � be a representation of Gl , andRDMR ËUR < Gl be a parabolic subgroup. Denote
the Lie algebra of UR by u D uR. For any positive integer i , we call �=ui� the i -th
generalized Jacquet module of � .

Lemma 1.1. If � is an admissible finite length representation of Gl , the i -th generalized
Jacquet module is an admissible finite length representation of MR.

This lemma is proven in the same way as the classical case (i D 1); see Wallach
[110, Lemma 4.3.1].

Lemma 1.2. Assume � is an admissible finite length representation of Gl . The set of
central exponents of �=ui� , i.e., the central characters of the irreducible constituents of
�=ui� as a representation of MR, where i varies over the positive integers, belong in a
discrete set.

Proof. Let V denote the Harish-Chandra module of � , i.e., the space of K-finite vectors,
whereK � Gl is a maximal compact subgroup. By [22, Proposition 2.2], V is dense in � ,
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and by [22, Proposition 5.1 and Lemma 5.3], V=uV has finitely many central exponents.
In other words, for anyX in the Lie algebra of the center of Gl there exists a polynomial p
such that p.X/ acts by zero on V=uV .

Now, V=uiV is filtered by the modules ujV=ujC1V , 0 � j < i , and each of these
is a quotient of uj ˝ V=uV . When i varies, the set of central exponents of V=uiV is
contained in the set of central exponents of uj ˝ V=uV , j � 0. Regarding uj , its central
exponents can be computed using the adjoint action, and when j varies they belong in a
lattice. Since V=uV admits only finitely many central exponents, the central exponents
of V=uiV for all i lie in a finite union of lattices.

Finally, note that for any i , the set of central exponents of �=ui� lies in the set of
central exponents of V=uiV . Indeed, if p.X/ acts by zero on V=uiV then it acts by zero
on �=ui� , since V is dense in � .

Remark 1.3. In particular, the set of central exponents of the i -th generalized Jacquet
modules of � , where i varies over the positive integers, belongs in a discrete set.

Let  be a nontrivial additive character of F . For v 2 V.cl /, write v D .vi;j /1�i;j�l
with vi;j 2 Matc . Denote

 l .v/ D  
�l�1X
iD1

tr.vi;iC1/
�
:

For a representation � of GSpinl which admits a central character, let �� be the
restriction of the central character of � to C ıGSpinl

.

1.3. Distribution vanishing theorem

Let a real algebraic group C act on a real algebraic manifold X . Let E be a smooth
representation of C in a Fréchet space. Assume the actions of C on X and on E extend
to a Lie group A, which contains C as a closed normal subgroup.

Let Z � X be a closed subset which is a union of finitely many locally closed A-
orbits. For any � 2 Z>0 and z 2 Z let ƒ�z be the symmetric �-th power of the conormal
space at z to the orbit Cz in X . Let Cz denote the stabilizer of z in C , and ı be the ratio
of modular functions of C and Cz .

Denote the space ofE-valued distributions onX , i.e., functionals on the space of com-
pactly supported smooth E-valued functions on X , by D 0.X; E/, and let D 0Z.X; E/ �

D 0.X;E/ denote the subspace of distributions supported on Z. For a smooth character �
of Z, let D 0Z.X;E/

C;� � D 0Z.X;E/ be the subspace of .C; �/-equivariant distributions.
The following theorem follows from Theorem A.13 in the appendix:

Theorem 1.4. Assume that for any z 2 Z, the set ¹�ajCz W a 2 Aº is a union of finitely
many locally closed orbits under the action of the stabilizer Az of z in A. Suppose also
that for any z 2 Z and any � � 0,

..E ˝ƒ� ˝ ı/
�/Cz ;� D 0: (1.1)

Then D 0Z.X;E/
C;� D 0.
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Remark 1.5. If � is trivial or A D C , the theorem already follows from [68, Theorem
3.15, Cases (i, ii)]. Note that in both cases �a D � for any a 2 A.

Remark 1.6. If A;X and the action of A on X are semialgebraic, the A-orbits in X are
automatically locally closed. If in addition C is semialgebraic and Cz is unipotent, the
condition (1.1) is equivalent to .E�/Cz ;� D 0, independently of � (see [103]).

In order to check the conditions of the theorem we will need the following lemma.

Lemma 1.7. Let H be a real reductive group and Q < H be a parabolic subgroup with
a unipotent radical U D UQ. The set bU .the unitary characters of U/ is a finite union of
locally closed Q-orbits.

Proof. Let u denote the Lie algebra of U . There exists a hyperbolic semisimple element
S 2 H such that u is the sum of positive eigenspaces of the adjoint action ad.S/. The
eigenspace u1 corresponding to the smallest positive eigenvalue of ad.S/ is called the
first internal Chevalley module of Q. Clearly, u1 projects onto (and in fact identifies
with) the space of characters of u, which in turn identifies with bU by multiplying by i and
exponentiation. By [91, Theorem E0], Q has finitely many orbits on u1, and each orbit is
locally closed since the action is algebraic.

1.4. Representations of type .k; c/

Let k and c be positive integers. For a partition � of kc, let V.�/ < NGLkc denote the
corresponding unipotent subgroup, and bV .�/gen denote the set of generic characters. If � 0

is another partition of kc, write � 0 % � if � 0 is greater than or incomparable with � , with
respect to the natural partial ordering on partitions. See [41], [29, §5] and [21] for details
on these notions. For convenience, we provide the definition of V.�/. Identify � with an
l-tuple .a1; : : : ; al / of integers such that a1 � � � � � al > 0. Let p� be the kc-tuple of
integers obtained by arranging the multi-set ¹ai � 2j C 1 W 1 � i � l; 1 � j � aiº in
decreasing order. For any x 2 F �, put xp� D diag.xp� .1/; : : : ; xp� .kc// 2 TGLkc . The
one-parameter subgroup ¹xp� W x 2 F �º acts on the Lie algebra ofNGLkc by conjugation,
and V.�/ is the subgroup generated by the weight subspaces of weight at least 2.

For the orbit .kc/, V..kc// D V.ck/, the group M.ck/ acts transitively on the setbV ..kc//gen, and  k 2 bV ..kc//gen. The stabilizer of  k in M.ck/ is then the diagonal
embedding GL4c of GLc in M.ck/.

Let � be a representation of GLkc . We say that � is a .k; c/ representation if
HomV.�/.�;  

0/ D 0 for all � % .kc/ and  0 2 bV .�/gen, and dim HomV
.ck/

.�;  k/ D 1.
We briefly recall the definition of the wave-front set (see e.g., [48, §4.1] for some

more details). When � is admissible of finite length, its character defines a distribution on
a neighborhood of 0 in the Lie algebra of GLkc . This distribution (in the nonarchimedean
case) or the leading term of its asymptotic expansion near 0 (archimedean case) is a com-
bination of Fourier transforms of Haar measures of nilpotent coadjoint orbits ([54], [50,
p. 180], [9, Theorems 1.1 and 4.1]). For a nilpotent orbit O, let cO denote its coefficient in
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this expansion (for a suitable normalization of the measures). The wave-front set WF.�/
of � is defined to be the set of orbits O such that cO ¤ 0 and for every other orbit O0

containing O in its closure, cO0 D 0.
In this case, an equivalent definition of a .k; c/ representation can be given in terms of

WF.�/: Now � is .k; c/ if .kc/ is the unique maximal orbit in WF.�/ and the dimension
of the space of degenerate Whittaker functionals on � with respect to V.ck/ and  k is 1
(see [46, Theorem E]).

For c D 1, a representation is .k; 1/ if and only if it affords a unique Whittaker model.
On the other end, a representation is .1; c/ if and only if dim HomV.c/.�; 1/ D 1, equiva-
lently � is a character (V.c/ is the trivial group).

For a .k; c/ representation �, dim JV
.ck/

; k .�/
� D 1, hence dim JV

.ck/
; k .�/ D 1 so

that SL4c acts trivially on JV
.ck/

; k .�/ and GL4c acts on JV
.ck/

; k .�/ by a character.
We recall the map �c defined (implicitly) in [19, §2.2] from irreducible admissible

generic representations of GLk to admissible finite length .k; c/ representations of GLkc .
For an irreducible tempered representation � of GLk , �c.�/ is the generalized Speh rep-
resentation, i.e., the unique irreducible quotient of IndGLkc

P.kc/
..� ˝ � � � ˝ �/ı

1=.2k/
P.kc/

/ (see

[55, 83]). Then if � D IndGLk
Pˇ

.˝diD1 jdetjai �i / where ˇ is a composition of d parts of

k, a1 > � � � > ad and each �i is tempered, �c.�/ D IndGLkc
Pˇc

.˝diD1 jdetjai�c.�i //. By
[19, Theorem 4] the representation �c.�/ is .k; c/. The definition of �c.�/ was also
extended to unramified principal series IndGLk

BGLk
.˝kiD1 jdetjai �i /, where �i are unram-

ified unitary quasi-characters of F � and a1 � � � � � ak , again by letting �c.�/ D

IndGLkc
P
.ck/

.˝kiD1 jdetjai�c.�i // (note that �c.�i / D � ı detGLc ). While �c.�/ might be
reducible in the general case, it is still admissible, of finite length and admits a cen-
tral character. Also note that (over any local field) GL4c acts on JV

.ck/
; k .�c.�// by

g 7! �..detg/Ik/ [19, Lemma 12].
We mention that over nonarchimedean fields, certain structural properties of irre-

ducible .k; c/ representations follow from [82, §II.2]. For principal series representations,
irreducible or not, over any local field, a representation is .k; c/ if and only if it takes the
form IndGLkc

P
.ck/

.˝kiD1 �i detGLc / for quasi-characters �i of F �. This follows from [3,4,46]
(their focus was archimedean; the nonarchimedean case essentially follows from [11,82]).

1.5. Doubling setup

We define the basic setup for the doubling method: the groups G and H , the image of
G �G in H , and the definition of the local integral. The precise details depend on G.

Let c; k � 1 be integers, G D Gc and H D G2kc (if G D Spc , c must be even). Let
n D bc=2c if G ¤ GLc , otherwise n D c. Also set �0 D �1 for G D Spc and �0 D 1

otherwise, and if G D SOc ;GSpinc and c is odd, define .�1; �2/ D .1; 1=2/ if k is even
and .�1; �2/ D .1=2; 1/ if k is odd.

Recall BH D TH Ë NH is our fixed Borel subgroup in H (see §1.1). Set H0 D G2c .
Let Q DMQ Ë UQ be the standard parabolic subgroup of H such that its Levi part MQ
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is isomorphic to GLc � � � � � GLc �H0 if H ¤ GL2kc , otherwise Q D P.ck�1;2c;ck�1/.
Denote U D UQ. We construct the following character  U of U .

For k > 1, denote the middle 4c � 4c block of an element in U by�
Ic u v
I2c u

0

Ic

�
: (1.2)

Let u1;1 be the top left n� n block of u, and ifH ¤ GL2kc , denote the bottom right n� n
block of u by u2;2. For H D GL2kc , u2;2 is defined to be the top c � c block of u0. If
H D SO2kc ;GSpin2kc and c is odd, denote the middle two coordinates of row nC 1 of u
by .u3; u4/ 2 Mat1�2.

If H ¤ GL2kc and k > 1, the character  U restricts to  k�1 on the group V.ck�1/,
identified with a subgroup of U via the embedding v 7! diag.v; I2c ; v�/ 2 U . For H D
GL2kc and k > 1,  U restricts to  �1

k�1
on each of the two copies of V.ck�1/, embedded

in U via .v1; v2/ 7! diag.v1; I2c ; v2/ (v1; v2 2 V.ck�1/). The character  U is given on
(1.2) by8̂̂<̂

:̂
 .tr.�u1;1 C u2;2//; H D GL2kc ;

 .tr.u1;1 C u2;2//; H D Sp2kc ;SO2kc ;GSpin2kc ; even c;

 .tr.u1;1 C u2;2/C �1u3 � �2u4/; H D SO2kc ;GSpin2kc ; odd c:

For k D 1, U and thereby  U are trivial.
Now consider the case H ¤ GSpin2kc . In this case G � G is embedded in the stabi-

lizer of  U in MQ. Explicitly, assume k � 1 and g1; g2 2 G. If H D Sp2kc ;SO2kc with
an even c, write g1 D

� g1;1 g1;2
g1;3 g1;4

�
, g1;i 2 Matn; then

.g1; g2/ D diag
�
g1; : : : ; g1;

� g1;1 g1;2
g2

g1;3 g1;4

�
; g�1 ; : : : ; g

�
1

�
;

where g�1 appears k � 1 times. For H D GL2kc ,

.g1; g2/ D diag.g1; : : : ; g1; g1; g2; g1; : : : ; g1/:

Here g1 appears k times on the left of g2 and k � 1 on the right.
For odd c and H D SO2kc , take column vectors e˙i , 1 � i � c, whose Gram matrix

is J2c (i.e., teie�j D ıi;j ). Let

b D .e1; : : : ; ec�1; �1ec � �2e�c ; �1ec C �2e�c ; e�cC1; : : : ; e�1/;

b1 D .e1; : : : ; en; �1ec � �2e�c ; e�n; : : : ; e�1/;

b2 D .enC1; : : : ; ec�1; �1ec C �2e�c ; e�cC1; : : : ; e�n�1/;

m D diag
�
Ic�1;

�
�1 �1
��2 �2

�
; Ic�1

�
:

The Gram matrices of .b; b1; b2/ are .J2c ; diag.In;�1; In/Jc ; Jc/. The left (resp., right)
copy of SOc acts on the subspace spanned by b1 (resp., b2); the left copy is defined by

¹g1 2 SLc W tg1diag.In;�1; In/Jcg1 D diag.In;�1; In/Jcº;
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and the right copy is defined using the convention of §1.1 (the Gram matrix of b2 is Jc).
Extend gi by letting it fix the vectors of b3�i , then write this extension as a matrix
g0i 2 SO2c with respect to b, i D 1; 2. The matrices mg01 and mg02 commute and the embed-
ding is given by

.g1; g2/ D diag.g1; : : : ; g1;mg01
mg02; g

�
1 ; : : : ; g

�
1 /:

The notation .1; g/ or .g; 1/ is used for the embedding of one of the copies ofG inH ,
where 1 denotes the identity element of G.

Example 1.8. Here are a few examples for the embedding in the odd orthogonal case,
adapted from [20, Example 15]. Consider the standard Siegel parabolic subgroup R of G.
For a; b 2 GLn ŠMR,

.a; b/ D diag.diag.a; 1; a�/4
0

; diag.a; b; I2; b�; a�//;

where40 denotes the diagonal embedding of GLc in GL.k�1/c , and we omitted, here and
below, the bottom right .k � 1/c � .k � 1/c block of .a; b/ (it is uniquely defined by the
given blocks and H ). The images of .UR; 1/ and .1; UR/ take the form

diag

0B@� In x y

1 x0

In

�40
;

0B@
In �2x ��1x y
In

1 �1x
0

1 ��2x
0

In
In

1CA
1CA;

diag

0B@I.k�1/c ;
0B@
In
In �2x �1x y

1 �1x
0

1 �2x
0

In
In

1CA
1CA;

where x0 is uniquely determined given x and H . We also note that  In�1
1

�1
1

In�1

!
; 1

!

D diag

0BBBB@
 In�1

1
�1

1
In�1

!40
;

0BBBB@
In�1

1
In

2�2
1

2�2
2

In
1

In�1

1CCCCA
1CCCCA;

 
1;

 In�1
1

�1
1

In�1

!!
D diag

0BB@I.k�1/c ;
0BB@
I2n�1

1
�2�2

1

�2�2
2

1
I2n�1

1CCA
1CCA:

The case of H D GSpin2kc is slightly more complicated: we have an embedding of

¹.z; z/ W z 2 C ıGºnG �G (1.3)
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in MQ, in the stabilizer of  U . Here, with a minor abuse of notation, .z; z/ is regarded as
an element of G �G. For details see [20, §3.5].

We define the space of the induced representation of H , which is used for the con-
struction of the integral. First assume H D Sp2kc ; SO2kc . Let P DMP Ë UP be a stan-
dard maximal parabolic subgroup of H such that MP Š GLkc and MP < M.kc;kc/. Let
� be a representation of GLkc . For a complex parameter s, let V.s; �/ be the space
of IndHP .jdetjs�1=2�/. For H D GSpin2kc we take the standard parabolic subgroup P
obtained by removing the simple root ˛kc , thenMP Š GLkc �GL1, and note that GL1 is
identified with C ıH . Let � be as above, and � be a quasi-character of F �. Then V.s; �˝ �/
is the space of the induced representation IndHP .jdetjs�1=2� ˝ �/. For H D GL2kc we
take P D P.kc;kc/, � D �1 ˝ �2 for two representations �1 and �2 of GLkc , and V.s; �/
denotes the space of IndHP .jdetjs�1=2�1 ˝ jdetj�sC1=2�2/.

Assume H ¤ GSpin2kc . Take ı0 2 H satisfying ı0UP D U
�
P if kc is even or H D

GL2kc ; otherwise take ı00 2 O2kc with ı0
0UP D U

�
P and let ı0 be the product of ı00 and a

representative of the transposition in O2kc which normalizes NH (to obtain det ı0 D 1).
Let ı1 2 H0 \ UP (H0 < MQ) be such that its natural identification with a matrix in
Matc is of rank c, unless H D SO2kc and c is odd, in which case the rank is c � 1 (this
is the maximal rank). Put ı D ı0ı1. Then let � be an involution of G such that ı¹.g; �g/ W
g 2 Gº < MP .

One concrete choice of ı0; ı1 and � was given in [20]:

ı0 D

8̂̂̂̂
<̂
ˆ̂̂:

�
Ikc

�0Ikc

�
; H ¤ SO2kc or c D 2n;�

Ikc
Ikc

�
diag

�
I.k�1/c ;

�
In

.�1/k

In

�
;

�
In

.�1/k

In

�
; I.k�1/c

�
|kc ;

H D SO2kc , c D 2nC 1;

where |kc D diag
�
Ikc�1;

�
1

1

�kc
; Ikc�1

�
, ı1 D diag

�
I.k�1/c ;

�
Ic A
Ic

�
; I.k�1/c

�
with

A D

8̂̂̂<̂
ˆ̂:
Ic ; H D Sp2kc ;GL2kc ;�
�In

In

�
; H D SO2kc , c D 2n;�

�In
In

0

�
; H D SO2kc , c D 2nC 1;

and

� D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�
In

��0In

�
; H D Sp2kc ;SO2kc , c D 2n;

Ic ; H D GL2kc ;�
In

I2
In

�
; H D SO2kc , c D 2nC 1, k is odd;0@ In
�2�2

1

�2�2
2

In

1A ; H D SO2kc , c D 2nC 1, k is even:

Also set U0 D U \ |kcUP ; then  U is a character of U0 by restriction.



D. Gourevitch, E. Kaplan 16

For H D GSpin2kc , ı0 2 H is defined using the isomorphism W.H/ Š W.SO2kc/,
ı1 is the element taken for SO2kc , and � satisfies the same condition as above (the concrete
examples of � extend to involutions of GSpinc as well). The important observation for
us here concerning GSpin2kc is that the images of unipotent subgroups, and subgroups
GLl occurring as direct factors of standard Levi subgroups, can be read off from the
corresponding orthogonal cases.

For any representation � of G, � � is the representation on the space of � , with the
action defined by � �.g/ D �.�g/. The definitions imply .� �/_ D .�_/�.

We define the (local) doubling integral. Let � be an irreducible admissible represen-
tation of G. If H ¤ GL2kc , let � be an admissible finite length .k; c/ representation of
GLkc which admits a central character. Otherwise � D �1 ˝ ��1�2 where �1 and �2 are
admissible finite length .k; c/ representations of GLkc , each admitting a central character,
and such that the central character of �1 is the inverse of the central character of �2, and
� is a quasi-character of F �.

Let ! be a matrix coefficient of �_. Let f be a holomorphic section of V.s; �/ if
H ¤ GSpin2kc , and for GSpin2kc , f is a holomorphic section of V.s; � ˝ ��/. The
doubling integral for � � � is defined by

Z.s; !; f / D

ˆ
G

ˆ
U0

!.g/f .s; ıu0.1;
�g// U .u0/ du0 dg: (1.4)

Here if H D GSpin2kc , the domain of integration is C ıGnG instead of G.

Theorem 1.9 ([20, Propositions 17, 20, 21]). Integral (1.4) enjoys the following proper-
ties.

(1) Formally, it belongs to the space

Hom.G;G/

�
JU; �1

U
.V .s; �˝ ��//; �

�k�_ ˝ � �
�
: (1.5)

Here �� and � are omitted for the cases where they are undefined.

(2) It is absolutely convergent for Re.s/� 0, independent of the data .!; f /.

(3) Over nonarchimedean fields there is data .!; f /, where f is a polynomial section
in q�s , such that Z.s; !; f / is absolutely convergent in C and equals a nonzero
constant .independent of s/. Over archimedean fields for each s there is ! and a
smooth section f such that the integral is nonzero at s.

Proof. The theorem was proved in loc. cit., for the representation �D �c.�/ (H ¤GL2kc)
or � D �c.�/ ˝ �

�1�c.�
_/ (�c.�/ was defined in §1.4). However, the proofs of these

statements remain valid when we take the more general representation � as described
above.

Over nonarchimedean fields, once we prove that (1.5) is at most one-dimensional out-
side a discrete subset of s, Theorem 1.9 together with Bernstein’s continuation principle
(in [7]) imply that for a rational section f , Z.s; !; f / admits meromorphic continuation
to a rational function in q�s . Over archimedean fields for the choice of � in [20], the



Multiplicity one theorems for generalized doubling 17

meromorphic continuation of the integral and continuity of this continuation in the input
data were proved in [20, §6.13].

2. Uniqueness results

2.1. Outline of the proof of Theorem A

Let �1 and �2 be admissible finite length representations ofG. IfH ¤ GL2kc , let � be an
admissible finite length .k; c/ representation of GLkc . For H D GL2kc put � D �1 ˝ �2
where each �i is an admissible finite length .k; c/ representation of GLkc , and let �0
be the quasi-character of F � such that the diagonal action of GL4c on JV

.ck/
; k .�1/ ˝

JV
.ck/

; k .�2/ is given by g 7! �0.detg/ (g 2GLc). IfH DGSpin2kc , assume in addition
that ��1 ; ��2 exist and ��1�1 D ��2 , and put � D ��1�1 . To preserve uniform notation the
characters �0; ��i and � are simply ignored in all other cases.

LetDDU Ì .G;G/<H . We will prove our main result by analyzing distributions on
the orbits of the right action of D on the homogeneous space P nH . The space P nH=D
is finite if k D 1 (see [90, Lemma 2.1]) or c D 1 (then either n D 0 and U D NH , or
G D GL1 and U contains all the roots of NH but one, on which .G; G/ acts with two
orbits). Otherwise it is infinite, even uncountable (e.g., for H D Sp2kc and k > 2), but
contains a unique Zariski open orbit which is PıD. This follows by showing that the
dimension of PıD is equal to the dimension of PU�P . For h; h0 2 H , write h � h0 if
PhD D Ph0D, otherwise h œ h0.

Regard  U ˝ �_1 ˝ �
_
2 as a representation of D. For H D GSpin2kc , .G; G/ is a

homomorphic image of G � G (see (1.3)), and the condition ��1�1 D ��2 above implies
that �_1 ˝ �

_
2 is a representation of .G;G/.

Consider the space

Hom.G;G/

�
JU; �1

U
.V .s; �˝ �//; �1 ˝ �2

�
Š HomD

�
V.s; �˝ �/˝ U ˝ �

_
1 ˝ �

_
2 ; 1

�
;

(2.1)
which is isomorphic to

HomD
�

IndH�DP�D

�
.jdetjs�1=2�˝ �/˝ . U ˝ �_1 ˝ �

_
2 /
�
; 1
�
: (2.2)

Here the action of D on the space of functions � on H �D is given by d � �.h0; d 0/ D
�.h0d; d 0d/; and if H D GL2kc , jdetjs�1=2� is short for jdetjs�1=2�1 ˝ jdetj�sC1=2�2.

For any h 2 H , denote Ph D h�1P \D. We will study (2.2) by considering the fol-
lowing spaces of distributions on the orbits PhD (this is well defined, see below):

HomD
�

indDPh
�
h�1..jdetjs�1=2�˝ �/ı1=2P /˝ . U ˝ �

_
1 ˝ �

_
2 ˝ƒ�/

�
; 1
�
: (2.3)

Here over nonarchimedean fields, ind denotes the compact nonnormalized induction,
while for archimedean fields, ind is the Schwartz induction of [30, §2] (see also [47,
§2.3]); and ƒ0 is the trivial character. If the field is nonarchimedean or h � ı, we only
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have � D 0. Over archimedean fields when hœ ı, we further have, for each integer � > 0,
a finite-dimensional algebraic representation ƒ� which is the algebraic dual of the sym-
metric �-th power of the normal bundle to the double coset. Note that when h� ı, i.e., for
the open orbit PıD, the tangent space to the double coset coincides with the total tangent
space, and thus the normal space is trivial.

By the Frobenius reciprocity (2.3) is isomorphic to

H�.h/ D HomPh
�
h�1.jdetjs�1=2�˝ �/˝ . U ˝ �_1 ˝ �

_
2 /˝ƒ� ; �h

�
: (2.4)

Here �h.x/D ıPh.x/ı
�1
D .x/ı

�1=2
P .hx/ (x 2 Ph). We define H .h/DH0.h/ if F is nonar-

chimedean or h � ı, otherwise H .h/ D
L
� H�.h/.

Our main result (Theorem 2.1 below) is that (2.1) is at most one-dimensional outside
a discrete subset of s. We will prove there is a discrete subset B � C such that for all
s … B, H .h/ D 0 for all h œ ı, and dim H .ı/ � 1.

Over nonarchimedean fields this already implies (2.1) is at most one-dimensional out-
side B. Indeed, this follows from the theory of distributions on l-sheafs of [11]. In more
detail, let F be the l-sheaf of the induced representation in (2.2). The right action ofD on
P nH is constructive, by [11, Theorem A] applied to X.F / where X is the algebraic F -
variety P nH . Each H .h/ (see (2.3)) is the space of distributions on the restriction of F

to the orbit PhD (the orbits are locally closed, hence this restriction is well defined). Fix
s … B and let T ; T 0 be nonzero distributions in (2.2). Since PıD is open, by [11, §1.16]
both T and T 0 restrict to distributions on H .ı/, which is one-dimensional, hence there
is ˛ 2 C such that ˛T jPıD D T 0jPıD . Then ˛T � T 0 is well defined on the quotient
l-sheaf F .P ıD/nF (see [11, §1.16] for the definition and notation), which is an l-sheaf
on the complement of PıD in H . Since there are no nonzero distributions on any H .h/

for h œ ı, by [11, Theorem 6.9] we deduce ˛T � T 0 vanishes on F , i.e., ˛T D T 0.
Over archimedean fields the argument also depends on the precise methods we use in

order to handle each H .h/. We describe this below.

2.1.1. Basic properties of H .h/. In general every algebraic representation of a unipotent
group is unipotent, i.e., admits a (finite) filtration such that the group acts trivially on
each of its quotients. We can hence filter each ƒ� and consider these quotients. If (2.4)
is nonzero, it is nonzero when ƒ� is replaced by one of these quotients. Since we will
prove H�.h/ D 0 for all � > 0, we can consider each of these quotients, re-denoted ƒ�
(at the cost of relabeling the index set of �), separately, so that we assume ƒ� is a trivial
representation of U for all � � 0.

In general if Y < hU \MP , then h
�1
Y < Ph and by definition any morphism in H .h/

factors through JY;h �1
U
.�/. Indeed, since h

�1
Y < U , for y 2 Y we have

h�1.jdetjs�1=2�˝ �/.h
�1

y/ D �.y/; . U ˝ �
_
1 ˝ �

_
2 ˝ƒ�/.

h�1y/ D  U .
h�1y/;

so if T 2H�.h/ for some �, and ��˝� is a pure tensor in the space of �˝.�_1 ˝�
_
2 ˝ƒ�/,

then
 U .

h�1y/T .�.y/�� ˝ �/ D T . U .
h�1y/�.y/�� ˝ �/ D T .�� ˝ �/:
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Thus
T ..�.y/�� �

h �1U .y/��/˝ �/ D 0: (2.5)

This means that T factors through JY;h �1
U
.�/, where in the archimedean case note that

T is continuous, and because the argument is applicable to all �, we conclude that any
morphism in H .h/ factors through JY;h �1

U
.�/.

2.1.2. The vanishing of H .h/. One can prove the vanishing of H .h/ using three types
of arguments. First we have an incompatibility condition: assume h is such that

 U jU\h�1UP
¤ 1: (2.6)

In this case we can take a subgroup Y < U such that hY < UP and  U jY ¤ 1. Then
Y < Ph and both h�1.jdetjs�1=2� ˝ �/ and �_1 ˝ �

_
2 ˝ ƒ� are trivial on Y (because

hY < UP and Y < U ), hence the action on the left hand side in H�.h/ is given by  U ,
which is nontrivial by (2.6). However, the action on the right hand side is trivial, because
it is given by a modulus character and Y < U . Thus H�.h/ D 0 for all �, and H .h/ D 0.

Note that while a priori (2.6) depends on h, we will actually prove it only depends on
the double coset PhQ (this is only important for the archimedean parts).

Second, if any morphism in H .h/ factors through JV.�/; 0.�/, where � % .kc/ and
 0 2 bV .�/gen, then JV.�/; 0.�/ D 0 because � is .k; c/, and a fortiori H .h/ D 0.

Let us remark that these two methods for proving vanishing will be applied to all but
finitely many representatives. In fact, consider the Bruhat decompositionHD

`
w0 Pw

0Q

wherew0 are representatives for Weyl elements ofH , and letw0 denote the representative
of the longest reduced Weyl element. Then the orbit Pw0Q is open. The above arguments
prove vanishing on H � Pw0Q. The remaining orbit Pw0Q is the disjoint union of
finitely many orbits PhD, namely nC 1 orbits when H ¤ GL2kc and .c C 1/.c C 2/=2
orbits for H D GL2kc . In particular, as explained in §1.5, one can choose ı D ı0ı1 with
ı0 D w0 and ı1 2 NH0 , so PıD � Pw0Q. The orbits in Pw0Q must be handled using
the third method, which we now describe.

Third, assume there is a composition ˇ of kc and a character  of Vˇ , which may
depend on h, such that any morphism in H .h/ factors through JVˇ ; .�/. The vanishing
argument in this case will be applicable to all but a discrete subset of s.

We first describe the nonarchimedean case. Assume there is a proper parabolic sub-
group R D MR Ë UR < G, with MR containing GLl as a direct factor, l � 1, such that
JVˇ ; .�/ is a trivial representation of h.1; UR/. Therefore any morphism in H .h/ also
factors through JUR.�

_
2 /, which is an admissible finite length representation of MR (if

�2 is supercuspidal, we immediately deduce H .h/ D 0). On each irreducible constituent
of JUR.�

_
2 /, as a representation of MR, CGLl < CMR acts by a character, and there are

only finitely many such characters possible, depending only on �2 and UR (thereby on h).
Also assume JVˇ ; .�/ admits a finite length filtration as a representation of h.1;GLl /,

and on each of the (not necessarily irreducible) constituents, h.1; CGLl / acts by a charac-
ter. Again this character belongs to a finite set, now depending only on � and on the
character  (which depends on h).
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If 0 ¤ T 2 H .h/, we can take constituents V of JVˇ ; .�/ and V 0 of JUR.�
_
2 / such

that T is well defined and nonzero on V ˝ �_1 ˝ V 0. We then obtain a relation

�.a/jajbsT .�/ D T
��
h�1.jdetjs�1=2�˝ �/˝ . U ˝ �_1 ˝ �

_
2 /
�
.1; a/�

�
D �h..1; a//T .�/; (2.7)

where � is a quasi-character of F � which belongs to a finite set depending only on
.�2; �; �; h/, and b is a constant which depends only on h, and we assume b ¤ 0. We
deduce �.a/jajbs D �h..1; a// for all a 2 F �. This excludes at most a discrete subset
of s, and if we apply this argument to only finitely many representatives h, the set of these
values of s can be taken to be our B.

Now assume the field is archimedean. Let uR denote the Lie algebra of UR. Assume
h.1;uR/ acts locally nilpotently on JVˇ ; .�/

�. Then there is a countable increasing fil-
tration of (closed subspaces) Wi of JVˇ ; .�/

� by the order of nilpotency. The orthogonal
complements Vi D .Wi /? � JVˇ ; .�/ form a decreasing filtration of JVˇ ; .�/, exhaust-
ing in the sense that

T
i Vi D 0. For each i , JVˇ ; .�/=Vi is a quotient of a generalized

Jacquet module of � with respect to h.1; uR/. Since any morphism in H�.h/ lies in
some Wi , it is annihilated by uiR. Thus it factors through a generalized Jacquet module

�_2 =u
i
R�
_
2 . The latter is an admissible finite length representation of MR by Lemma 1.1,

in particular it admits a finite filtration such that CGLl acts by a character on each con-
stituent.

Assume in addition that there exists a parabolic subgroup of GLkc , whose Levi part
contains h.1;GLl / as a direct factor, such that the Lie algebra v of its unipotent radi-
cal acts locally nilpotently on JVˇ ; .�/

�. Repeating the argument in the last paragraph,
any morphism in H�.h/ factors through a generalized Jacquet module �=vj�, and the
latter—by Lemma 1.1—has a finite filtration with h.1; CGLl / acting by a character on its
constituents.

Now if 0 ¤ T 2 H�.h/, there are constituents V of �=vj�, V 0 of �_2 =u
i
R�
_
2 and

V 00 of ƒ� (considering ƒ� as a representation of .1;GLl /) such that T is well defined
and nonzero on V ˝ �_1 ˝ V 0 ˝ V 00. Again we can apply (2.7) and obtain a relation
�.a/jajbs D �h..1; a// (with b ¤ 0) for all a 2 F �. Here � is uniquely determined by
V ;V 0;V 00 and h. In the archimedean case this condition excludes one s.

As we vary V and V 0 over the finite filtrations of �=vj� and �_2 =u
i
R�
_
2 , and also vary

j and i , the actions of h.1; CGLl / and CGLl are given by a discrete set of characters, by
Lemma 1.2. The action of .1; CGLl / on V 00 is also given by a discrete set of characters,
because the central characters of the set of irreducible constituents of ¹ƒ�º� as represen-
tations of .1;GLl / form a lattice. Thus the total subset of s we exclude is still discrete (for
each h). Again, repeating this for finitely many h, we will obtain a discrete set B.

2.1.3. The space (2.1) is at most one-dimensional outside B: archimedean case. Let the
Bruhat cells appearing in the decomposition P nH=Q be Y0; : : : ; Yl , numbered so that
if Yi � Yj then i � j . In particular, Y0 is the open Bruhat cell (i.e., Y0 D Pw0Q). We
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have

HomD.V .s; �˝ �/;  �1U ˝ �1 ˝ �2/ Š ..V .s; �˝ �/˝  U ˝ �
_
1 ˝ �

_
2 /
�/�D

Š D 0
�
H; .jdetjs�1=2�˝ �/˝  U ˝ �_1 ˝ �

_
2

�D�P
:

First we show that outside B,

D 0
Y1

�
H; .jdetjs�1=2�˝ �/˝  U ˝ �_1 ˝ �

_
2

�D�P
D 0: (2.8)

For any i > 0, letXi D
Si
jD0 Yj ; it is an open subset ofH , and Yi is a closed submanifold

of Xi . It is enough to show that for any i > 0, outside B we have

D 0Yi

�
Xi ; .jdetjs�1=2�˝ �/˝  U ˝ �_1 ˝ �

_
2

�D�P
D 0: (2.9)

Indeed, we show by induction on i that for any distribution T belonging to the left hand
side of (2.9), the restriction T jXi vanishes. The base case i D 0 holds by definition, and
the induction step is (2.9). Since Xk D H we get T D 0.

To prove (2.9), we divide Yi into two cases depending on the first two vanishing
arguments from §2.1.2 (which apply to all s). Assume (2.6) holds and recall this condition
only depends on the double coset (this is proved in Proposition 2.7 below). In this case
we show, for all s,

D 0Yi

�
Xi ; .jdetjs�1=2�˝ �/˝  U ˝ �_1 ˝ �

_
2

�U�UP
D 0:

Indeed, by [68, §2, p. 70], the left hand side can be identified with the subspace of
.U � UP /-invariant maps from C1c .Xi ;  U / supported on Yi to ..jdetjs�1=2� ˝ �/ ˝
�_1 ˝ �

_
2 /
� (recall that over archimedean fields � denotes the continuous dual). Since

U � UP acts trivially on .jdetjs�1=2� ˝ �/ ˝ �_1 ˝ �
_
2 , such a nonzero map L would

define a nonzero distribution in D 0Yi .Xi ;  U /
U�UP (e.g., fix some functional which is

nonzero on the image of L). But D 0Yi .Xi ; U /
U�UP D 0 by [68, Theorem 3.15, case (iii)]

(in their notation M .r/
y D ƒv which can be taken to be trivial as explained above, and

O D Yi ).
Now assume (2.6) does not hold. We prove a more general result: for all s,

D 0Yi

�
Xi ; .jdetjs�1=2�˝ �/˝  U ˝ �_1 ˝ �

_
2

�U�P
D 0: (2.10)

We deduce it from Theorem 1.4 as follows. Let X D Xi , Y D Yi , C D U � P ;
E D .jdetjs�1=2� ˝ �/ ˝ �_1 ˝ �_2 with U acting trivially and P acting only on
jdetjs�1=2�˝ �; and �D  �1U � 1. LetADQ �P and extend the action of C onE to an
action of A by lettingQ act trivially. Condition (1.1) follows from our proof of H .h/D 0

in this case (which uses the fact that � is .k; c/). Note that H .h/ can indeed be identified
with the space of distributions on the orbit PhD by, e.g., [111, Theorem 5.2.4.5]. The set
¹�ajCz W a 2Aº is finite: first, U jU\h�1UP D 1 and because this condition is independent
of the representative h in the double coset PhQ, �a is trivial on U \ h

�1
UP ; and second,
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Q \ h
�1
MP is a parabolic subgroup of h

�1
MP and U \ h

�1
MP is its unipotent radical

(see (2.27) below). From this and Lemma 1.7 we deduce that the set ¹�ajCz W a 2 Aº is a
finite union of orbits. All these orbits are locally closed since they are orbits of an alge-
braic action of an algebraic group (note that the characters are unitary). Thus Theorem 1.4
implies (2.10).

Altogether we have shown (2.8). Therefore restriction of D � P -equivariant distri-
butions from H to Y0 is injective. Now D � P acts on Y0 with finitely many orbits
Z0; : : : ; Zr , enumerated such that Zi � Zj implies i � j , in particular, Z0 D PıD

is the open orbit. As above is suffices to prove that for any i > 0, but for s … B,

D 0Zi

� i[
jD0

Zj ; .jdetjs�1=2�˝ �/˝  U ˝ �_1 ˝ �
_
2

�D�P
D 0: (2.11)

LetADC DD �P ,E D .jdetjs�1=2�˝ �/˝�_1 ˝�
_
2 withD acting only on �_1 ˝�

_
2

(U acting trivially), P acting only on jdetjs�1=2�˝ �; and � D  D � 1, where  D is the
character ofD defined by �1U extended trivially to .G;G/. Our proof of H .h/D 0 in this
case (using (2.7)) implies (1.1) for s …B, and Theorem 1.4 implies (2.11). It then follows
that restriction of D � P -equivariant distributions from H to Z0 is injective. Combining
this with the fact that dim H .ı/ � 1, we are done.

2.1.4. The main result. We now formulate our main result. Define

d.s; �; �; �1; �2/ D dim Hom.G;G/

�
JU; �1

U
.V .s; �˝ �//; �1 ˝ �2

�
:

Theorem 2.1. Let �1, �2 and � be as above.

(1) Outside a discrete subset of s, d.s; �; �; �1; �2/ � dim HomG.�0�
_
1 ; �

�
2/.

(2) If �1 and �2 are irreducible, outside a discrete subset of s, d.s; �; �; �1; �2/ D 0

unless �1 D �0.� �2/
_, in which case d.s; �; �; �1; �2/ � 1.

Furthermore, assume �2 is supercuspidal and � is not necessarily of finite length. Then
the assertions of (1) and (2) hold for all s, granted one of the following:

(a) H ¤ GL2kc and c > 2; or H D Sp4k .G D Sp2/; or H ¤ GL2kc , c D 2 and � D
�c.�/ for an irreducible supercuspidal representation � of GLk and k > 1.

(b) H DGL2kc , ck > 1, �1 is also supercuspidal, and �i D �c.�i / for irreducible super-
cuspidal representations �1 and �2 of GLk .

Remark 2.2. If � ¤ ��1�1 , then d.s; �; �; �1; �2/ D 0 outside a discrete subset of s.

The proof of the theorem occupies §2.2–§2.3. Note that the case of GL1 �GLk over
nonarchimedean fields was proved in [18, Lemma 35] for �1 D �_2 and �0 D 1 (P nH=D
is finite in this case).

Recall the representations � and � defined in §1.5: � is an irreducible admissible
representation of G, and � is either an admissible finite length .k; c/ representation of
GLkc which admits a central character, or the tensor product �1 ˝ ��1�2 of two such
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representations �i of GLkc , with a quasi-character � of GLk , in which case �0 D ��k

(the central character of �1 is the inverse of the central character of �2). This is a minor
generalization of [20], where � was taken to be �c.�/ (or �i D �c.�i /, i D 1; 2).

Combining Theorem 2.1 with the doubling integral, we obtain the following.

Corollary 2.3. Let F be nonarchimedean and consider (1.4) for the representations �
and � defined in §1.5.

(1) If f is a rational section in q�s , then Z.s; !; f / admits meromorphic continuation
to a rational function in q�s .

(2) d.s; �; �� ; �0�_; � �/ � 1 for all s.

Proof. For part (1), by Theorem 2.1 with �1 D �0�_ and �2 D � � (then �D ��1�1 D �� ),
the dimension of (1.5) is at most 1 outside a discrete subset of s. Now the meromorphic
continuation follows from Theorem 1.9 and Bernstein’s continuation principle [7].

For part (2), fix some s0. Consider the family I of integralsZ.s;!;f /, where ! varies
over the matrix coefficients of �_, and f varies over the sections of V.s; � ˝ ��/ that
are polynomial in q�s . The set of poles of Z.s;!; f / 2 I belongs to a finite set of values
of q�s which depends only on the representations � and �, by [7] (we do not claim the
multiplicity of a pole is bounded independently of ! and f ). Therefore, there is r > 0

such that all integrals of I are holomorphic in the punctured disk of radius 2r around s0.
Let  be the boundary of the disk of radius r around s0. Moreover, by Theorem 1.9 (3),
there is Z.s;!; f / 2 I which is a nonzero constant at s0. Thus Cauchy’s integral formula
gives a nonzero morphism .!; f / 7! 1

2�i

¸

Z.s;!;f /
s�s0

ds in (1.5).

Corollary 2.4. Consider (1.4) for the representations � and � defined in §1.5. Assume
� is irreducible supercuspidal and the additional assumptions (a) or (b) of Theorem 2.1
hold.

(1) d.s; �; �� ; �0�_; � �/ D 1 for all s.

(2) If f is a polynomial section in q�s , then Z.s; !; f / admits analytic continuation to
a polynomial function in q�s .

Proof. The first assertion follows from Theorem 2.1 combined with Corollary 2.3 (2). The
second holds because when d.s; �; �� ; �0�_; � �/D 1 for all s, by the corollary in [7] the
continuation is to a polynomial.

2.2. The case H ¤ GL2kc

As explained in §2.1, we will consider each H .h/ separately. We prove that all but finitely
many spaces H .h/ vanish using the first two methods, show the vanishing of the remain-
ing H .h/ with h œ ı outside a discrete subset B, then prove dim H .ı/ � 1.

Recall n D bc=2c, and since we prove the result for both odd and even c simultane-
ously, we also use dc=2e, which is n when c is even and nC 1 otherwise.

We start by describing a choice of representatives. Since P nH=NH can be identi-
fied with W.MP /nW.H/ and Q D MQ Ë U , we can write P nH=D D

`
h PhD with
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h D wu, where w is a representative from W.MP /nW.H/ and u 2 MQ \ NH . Since
W.MP /nW.H/ is embedded in Zkc2 , we can identify w with a kc-tuple of 0’s and 1’s,
where the i -th coordinate (from the left) corresponds to the permutation matrix0@ Ikc�i

0 1
I2.i�1/

�0 0
Ikc�i

1A :
(E.g., .0kc/ is the identity.) IfH ¤ Sp2kc , only even products of such matrices can appear
in w. In this case denote for an integer a � 0, |a D .1; 0kc�1/ if a is odd otherwise
|a D .0

kc/. Note that |a normalizesNH . IfH D Sp2kc , we set |a D .0kc/ for uniformity.
We use � in an expression for w to signify an undetermined coordinate (either 0 or 1).

For the case k D 1, we can parametrize P nH=D D P nH=.G;G/ using the elements

|l .0
c�l ; 1l /.|lul /; 0 � l � n;

where

.0c�l ; 1l / D

�
Jl

I2.c�l/
�0Jl

�
(2.12)

and

ul D

0BBB@
Il Il
In�l

Il
I2c�2.nCl/

Il �Il
In�l

Il

1CCCA : (2.13)

Here if l < dc=2e, |lul D ul (always the case for an odd c). The double cosets for k D 1
were described in [90, §2]; see also [45, §4] for Sp2c ; SO2c and GSpin2c with even c
are similar, and for odd c also refer to the description of the embedding of SOc � SOc in
SO2c given in [20, Example 15] (see Example 1.8).

We start by generalizing this description, to some extent, to all k � 1. For x 2 MQ,
denote its projection into the direct product of k � 1 copies of GLc by `.x/; then x D
`.x/`0.x/, where `0.x/ 2 H0. For k D 1, x D `0.x/ and `.x/ is trivial. If y 2MQ, then

`.xy/ D `.x/`.y/; `0.
xy/ D `0.x/`0.y/:

For any .g1; g2/ 2 .G;G/,

.g1;g2/x D `..g1;g2/x/`0.
.g1;g2/x/; (2.14)

but because .1; g2/ 2 H0,

.1;g2/x D `.x/..1;g2/`0.x//: (2.15)

Proposition 2.5. Let h D wu, where w is a representative from W.MP /nW.H/ and
u 2MQ \NH . Then h � Ow Ou with the following properties. There is 0 � l � n such that

Ow D |a.0
c�l ; 1l ; w2; : : : ; wk/; 8i; wi 2 ¹0; 1º

c ; (2.16)
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where a is the sum of coordinates 1 in .0c�l ; 1l ; w2; : : : ; wk/. Additionally Ou 2 MQ,
there is � D .g; 1/ 2 .G; 1/ such that g is a representative of an element in W.G/ and
� Ou 2MQ \NH , |a`0. Ou/ takes the form0BBB@

Il Al
In�l

Il
I2c�2.nCl/

Il A0
l

In�l
Il

1CCCA ; (2.17)

and there are no zero rows in Al .

Proof. LetE DME ËUE denote the standard parabolic subgroup ofH0 such thatME D

GLn�G2.c�n/, and identifyNGLn with its natural image inME . According to the descrip-
tion of .G; G/ in §1.5, NGLn Ë CUE < `0..G; 1//. Let g 2 NG be with `0..g; 1// 2
NGLn Ë CUE and such that the projection of `0.u.g; 1// into NH0 is trivial on NGLn . Put
u1 D u.g; 1/ 2MQ \NH , wu � wu1. We also have some control over the projection of
the unipotent part of the representative into CUE (see below).

If c is even, then alsoNG2.c�n/ < .1;G/, and for g 2 NG2.c�n/ such that the projection
of `0.u1.1; g// into NG2.c�n/ is trivial, wu1 � wu2 with u2 D u1.1; g/. The projection
of `0.u2/ into NGLn Ë CUE coincides with that of `0.u1/.

If c is odd,NG2.c�n/=.1;NG/ŠMatn�1. Choosing g 2NG and taking u2 D u1.1; g/,
we can assume the projection of `0.u2/ into NG2.c�n/ takes the form0@ In y1 y2 y

00

1 y0
1

1 y0
2

In

1A 2 NG2.nC1/ ; (2.18)

where y0i , y
00 uniquely depend on y1; y2 and H , and we can choose either y1 D 0 or

y2 D 0 (see Example 1.8). Observe that w conjugates precisely one of the columns y1
or y2 in (2.18) into P , so that if we choose the other column to be zero (i.e., define
g 2 NG accordingly), then now we already have both zero. In other words, we can write
u3 D z

�1u2 for z defined by y1 or y2 such that wz 2 P , so wu1 � wu2 D wzu3 � wu3.
If c is even, put u3 D u2, so that the projection of `0.u3/ into NG2.c�n/ is trivial now for
both odd and even c.

One can take a representative g of an element in W.G/ such that

w1 D w.1; g/ D ja.0
dc=2e;�kc�dc=2e/: (2.19)

Thenwu3 �wu3.1;g/Dw1..1;g/
�1
u3/. Put u4D .1;g/�1u3; it is of the same form as u3:

this conjugation merely permutes the columns in the projection of `0.u3/ into CUEnUE .
Now we can write

`0.u4/ D

�
In v v00

I2.c�n/ v
0

In

�
2 NH0 ;

where v 2 Matn�2.c�n/ is arbitrary and v0; v00 are uniquely defined given v and H .
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Put v D .v1; v2/, v1 D .z1; z2/ and v2 D .z3; z4/, where z1; z4 2 Matn�dc=2e�1 and
z2; z3 2Matn�1. The elementw1 does not permute any column of z1 or z4, and conjugates
the block z4 into P . Hence one can write u5 D z�1u4, where z 2 NH0 is defined by z4,
and the corresponding block z4 of `0.u5/ is 0, so w1u4 D w1zu5 � w1u5.

Next we see that w1 also conjugates precisely one column zj out of ¹z2; z3º into P .
If a is even, then j D 3 and we can assume z3 D 0. Otherwise j D 2, and we can assume
z2 D 0. In both cases we multiply u5 on the left by a suitable matrix z�1, and w1u5 �
w1u6 with u6 D z�1u5. We deduce

|a`0.u6/ D

 
In v 0 v00

Ic�n 0
Ic�n v0

In

!
2 NH0 :

If c is odd, v contains nC 1 columns. We show that the rightmost column of |a`0.u6/
can be made 0. Indeed, we can take g 2 NG such that

`0..g; 1// D

0B@
In �2x ��1x y
In

1 �1x
0

1 ��2x
0

In
In

1CA 2 NH0
(see Example 1.8). The element w1 permutes precisely one of the middle two columns
into P , either the column with �2x or with ��1x. Then if `0..g; 1// is chosen such that
the other column is 0 in u6.g; 1/, and zj 2 NH0 is defined by the column of `0..g; 1//
which is permuted by w1 into P (thus w1zj 2 P ), then

w1u6 � w1u6.g; 1/ D w1zj z
�1
j u6.g; 1/ � w1z

�1
j u6.g; 1/:

Put u7 D z�1j u6.g; 1/. Then

|a`0.u7/ D

0@ In v v00

In
I2.c�2n/

In v0

In

1A 2 NH0 :
For uniformity, denote u7 D u6 when c is even.

By the definition of H , the block v00 in |a`0.u7/ above can be taken independently
of v. Hence we can multiply u7 on the right by .g;1/with g2NG , where `0..g;1//2CUE
is defined using v00, and obtain u8 D u7.g; 1/ such that |a`0.u8/ is of the form0@ In v

In
I2.c�2n/

In v
0

In

1A 2 H0: (2.20)

Then w1u7 � w1u8. If c is odd, `0.u8/ commutes with |a (since then 2.c � 2n/ D 2).
At this point we still have u8 2 MQ \ NH , since the only changes from u to u8

involve multiplying by elements of MQ \NH (on the right or left).
For any matrix u0 of the form (2.20), denote the block of v by v.u0/. For any repre-

sentative w0 D .�kc/, let R.w0/ denote the set of 1 � i � n such that w0 permutes the
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i -th row of the block v of a general matrix (2.20). Note that R.w0/ only depends on the
coordinates dc=2e C 1; : : : ; c of w0 (enumerating the coordinates of w0 from left to right).

For each row i of v.|a`0.u8//, one can always write u9 D z�1i u8, where the i -th
row of v.|a`0.u9// is zero, |azi is of the form (2.20) and any row j ¤ i in v.|azi / is
zero. Moreover, zi 2 P , and if i … R.w1/, then w1 commutes with zi . Hence w1u8 D
ziw1u9 � w1u9. Since we can apply this separately to each row, we can assume that for
each 1 � i � n, either the i -th row of v.|a`0.u9// is zero or i 2 R.w1/. The difference
between u8 and u9 is that the nonzero rows of v.|a`0.u9// occur only at rows i which
w1 permutes.

Consider i such that both the i -th row of v.|a`0.u9// is zero and i 2 R.w1/. In this
case take �1 D .g; 1/ where g 2 G is a representative of an element of W.G/ of minimal
length such that R.�1/D¹iº. More specifically, take g with `0..g;1//D |1.0c�i ; 1;0i�1/
(if c is odd, the right hand side is multiplied by diag.Ic�1; 2�21 ; 2�

2
2 ; Ic�1/, see Ex-

ample 1.8). Since �1 D `.�1/`0.�1/ and `.�1/ 2 P ,

w1u9 � w1u9�1 D w1�1.
��1
1 u9/ D `.�1/.

`.�1/
�1

w1/`0.�1/.
��1
1 u9/

� .`.�1/
�1

w1/`0.�1/.
��1
1 u9/:

Put w2 D .`.�1/
�1
w1/`0.�1/, it is again a representative from W.MP /nW.H/ and

R.w2/ D R.w1`0.�1// D R.w1/ � ¹iº:

Let u10 D ��1
1 u9. We have `0.u10/ D `0.u9/ if H D Sp2kc or c is odd, otherwise

`0.u10/ differs from `0.u9/ only in the middle two columns: these columns are exchanged
because of |1. The element `.u10/ need not be in NH anymore, only in MQ, but �1u10 2
MQ \ NH and by (2.14), also `.�1/`.u10/ 2 .H0nMQ/ \ NH . Since we can apply this
procedure separately to each row i , we can assume the i -th row of v.|a`0.u10// is nonzero
if and only if i 2 R.w2/. However, we can no longer assume `.u10/ 2 NH .

Regard GLn as the direct factor of the standard Levi subgroup GLn � Gc�2n ofG. For
any representative g of an element ofW.GLn/, set �2D .g;1/. Given arbitrary sets R.w0/

and R0 � ¹1; : : : ; nº of the same size, one can find �2 for which R.�
�1
2 w0/DR0. Because

i 2 R.w2/ if and only if the i -th row of v.|a`0.u10// is nonzero, we can choose �2 such
that R.�

�1
2 w2/ D ¹1; : : : ; lº, where 0 � l � n is the size of R.w2/, and simultaneously

`0.
|a.�

�1
2 u10// D

0BBB@
Il v
In�l

In
I2.c�2n/

In v0

In�l
Il

1CCCA (2.21)

where none of the rows of v are zero. Set w3 D ��1
2 w2 and u11 D ��1

2 u10. Since �2 2
.G; 1/ \ P , we have

w2u10 � w2u10�2 D �2.
��1
2 w2/.

��1
2 u10/ � w3u11:
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Now R.w3/ D ¹1; : : : ; lº and note that w3 is still of the form (2.19) (with possibly a
different a, but of the same parity), because when we pass to w2 and then to w3, we
do not change the coordinates 2; : : : ; dc=2e of w1 (c � i � dc=2e for i � n). Moreover,
w3.|a.1; g// 2 MP for any g 2 GLn (where GLn < GLn � Gc�2n < G); if |a is trivial,
w3 simply commutes with .1;GLn/. Also

�1�2u11 D
�1u10 2MQ \NH : (2.22)

The rank of v in (2.21) is at most l , whence we can further use |a.1;g0/with g0 2GLn
to reduce v to an l � l block (e.g., in a column reduced echelon form). Denote Ow D w3
and Ou D

|a .1;g0/
�1
u11. Now R. Ow/ D ¹1; : : : ; lº and Ow takes the form (2.16), namely

|a.0
c�l ; 1l ;�.k�1/c/. Since w3|a.1; g/ 2MP for any g 2 GLn, we have w3u11 � Ow Ou.

Regarding Ou, |a`0. Ou/ takes the form (2.17) with Al D v. Denote � D �1�2 with
the notation above. We claim � Ou 2 NH (clearly � Ou 2 MQ). Since the conjugation by
|a.1; g0/

�1 only affects the columns of v and rows of v0 in (2.21), the result follows from
(2.22).

While it is relatively straightforward to obtain condition (2.6) when h D w, the repre-
sentatives wu are more difficult to describe, because of the form of `.u/. The following
lemma implies that (with our current structure of u) it is sufficient to obtain (2.6) for w.

Lemma 2.6. Let h D wu, where w and u are given by Proposition 2.5. Assume

 U jU\w�1UP
¤ 1: (2.23)

Then (2.6) holds as well, that is,  U jU\h�1UP ¤ 1.

Proof. By (2.23) there exists a root in U , such that for the subgroup Y < U generated by
this root, wY < UP and  U jY ¤ 1. Since u 2MQ, it normalizes U , whence u

�1
Y < U ,

and also h.u
�1
Y / D wY < UP . It remains to show  U ju�1Y ¤ 1, since then (2.6) holds.

We can identify the quotient of U by its commutator subgroup with the direct product
of k � 2 copies of Matc , and one copy of Matc�2c . The root defining Y corresponds to a
coordinate .i; j / in one of these copies. Looking at the definition of  U , we can be more
specific. Either .i; j / belongs to one of the k � 2 blocks of size c � c, on which  U is
given by  ı tr, or .i; j / belongs to one of two n� n blocks inside Matc�2c (u1;1 or u2;2,
see (1.2)), and again  U restricts to  ı tr on these blocks. Denote the block by B . In both
cases, since  U jY ¤ 1, the coordinate .i; j / appears as a diagonal coordinate of B . When
c is odd there is a third possibility, that .i; j / appears in the block B 2 Mat1�2 on which
 U is given by  .�1B1;1 � �2B1;2/, and .i; j / is either the coordinate of B1;1 or B1;2. In
this case also note that w of the prescribed structure cannot permute both B1;1 and B1;2
into UP .

Write �u D u�10 2 MQ \ NH , where � 2 .G; 1/ is given by Proposition 2.5. Then
�Y is again a root subgroup, and since conjugation by � permutes the coordinates of U
and stabilizes  U , �Y is still defined by a coordinate .i; j / which belongs to one of the
blocks B 0 described above. In fact, if B 2 Matc , we must have B 0 D B; if B 2 Matn,
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there are two options for B 0, one of which is B; and for B 2 Mat1�2, B 0 D B . Of course
 U is nontrivial on �Y .

Conjugation of �Y by u0 must be performed with more care, because u0 normalizesU
but may not stabilize  U . First consider the case where B D B 0 2 Matc . Then �Y is the
root subgroup defined by the .d; d/-th diagonal coordinate in B , for some 1 � d � c.
For a fixed element y 2 Y , assume the .d; d/-th coordinate of �y is x ¤ 0. It is the only
nonzero coordinate in the projection of y to B . Since u0 2MQ, the nontrivial coordinates
of u0.�y/ are still contained in B . This means that the only nonzero coordinates of u0.�y/
on which  U can possibly be nontrivial are coordinates in the block B . Because u0 2
MQ \NH , the .d;d/-th coordinate of u0.�y/ is still x, and all other nontrivial coordinates
belong to the set of coordinates in B of the form ¹.i 0; j 0/ ¤ .d; d/ W i 0 � d; j 0 � dº, i.e.,
are above or to the right of the .d;d/-th coordinate. Therefore U .u0.�y//D .x/, hence
 U is nontrivial on u0�Y .

Next assume B 0 2 Matn and proceed with similar notation. Now u0.�y/ can con-
tain nontrivial coordinates outside B 0. Assume B 0 is the top left n � n block in Matc�2c
(i.e., u1;1). Then u0.�y/ contains x in the .d; d/-th coordinate, 1 � d � n, and arbitrary
elements in the coordinates .i 0; j 0/¤ .d;d/, where i 0 � d only varies over the rows ofB 0,
but j 0 varies over all columns j 0 � d of B 0 and also the columns to the right of B 0, up
to the rightmost column of Matc�2c (this is the .k C 1/c-th column for a matrix in U ).
Otherwise B 0 is the bottom right block (which is u2;2). Then u0.�y/ contains x in the
.d; d/-th coordinate and may contain nontrivial coordinates for .i 0; j 0/ ¤ .d; d/, where
i 0 varies over the rows i 0 � d of B 0 and the rows above B 0, up to the first row of Matc�2c
(row .k � 2/c C 1 for matrices in U ), and j 0 � d only varies over columns of B 0. In both
cases  U is trivial on all of the possibly nonzero coordinates .i 0; j 0/, and the .d; d/-th
coordinate is x, thus  U ju0�Y ¤ 1.

If c is odd we also consider B D B 0 2 Mat1�2. Observe that now  U is trivial on all
coordinates above or to the right of B1;2, and also on all coordinates above or to the right
of B1;1 except B1;2. Hence if the nonzero coordinate x of �y is in B1;2,  U ju0�Y ¤ 1,
but also if x is in B1;1 we have  U ju0�Y ¤ 1, because multiplying u0.�y/ on the right
by u�10 leaves B1;2 zero (when c is odd, the .kc; kc C 1/-th coordinate of any element
of NH is zero).

Now because � 2 .G; 1/, it immediately follows that  U is nontrivial on ��1u0�Y

D u�1Y , completing the proof of the lemma.

Let now hDwuwherew and u satisfy the properties of Proposition 2.5. In particular,
w defines the integer 0 � l � n.

Proposition 2.7. We have H .h/ D 0 unless

wi D .1
dc=2e;�n�l ; 1l /; 81 < i � k: (2.24)

Proof. For k D 1 there is nothing to prove, so assume k > 1. Write w2 D .w02; w
00
2/ with

w02 2 ¹0;1º
dc=2e,w002 2 ¹0;1º

n. Ifw02 is not of the form .1l ;�dc=2e�l /, then l > 0 (for l D 0,
w02 is automatically of the form .1l ;�dc=2e�l /D .�dc=2e/). Let Y < U be the subgroup of
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elements with the middle 2.c C l/ � 2.c C l/ block of the form0BBBBBB@
Il y yA0

l

Il �Aly
0

In�l
Il y0

I2c�2.nCl/
Il
In�l

Il
Il

1CCCCCCA :

Recall  U restricts to  ı tr on the block u2;2 (see (1.2)). The block yA0
l

above occupies
the bottom right l � l block of u2;2. Since there are no zero rows in Al , there are no
zero columns in A0

l
. Hence for each 1 � i � l , the form y 7! .yA0

l
/i;i on Matl is not

identically 0. Then if one of the first l coordinates of w02 is 0, we can take a subgroup
Yi < Y with  U jYi ¤ 1 and hYi < UP , hence H .h/ D 0 by (2.6). Thus we can write
w02 D .1

l ;�dc=2e�l / (whether l > 0 or l D 0).
If w02 ¤ .1

n; �dc=2e�n/, one of the rows from the top left n � l � n � l block of u2;2

is conjugated by w into UP . Hence we can take a subgroup Y < U such that  U jY ¤ 1
and wY < UP , then H .h/ D 0 by (2.23).

If c is odd,  U restricts to a nontrivial character on the middle two coordinates
.u3; u4/ of row n C 1 in (1.2), and the columns of u3 and u4 are either swapped or
remain unchanged by w. Then if w02 ¤ .1

dc=2e/, one of these coordinates is conjugated by
w into UP , and if Y < U is defined by this coordinate, we have  U jY ¤ 1 and wY < UP .
Thus H .h/ D 0 by (2.23). (Because 2c � 2.nC l/ � 2, uY D Y and we can also apply
(2.6) directly.) Thus w02 D .1

dc=2e/ whether c is even or odd. We proceed for all c.
Recall  U restricts to  ı tr on the top left l � l block of u1;1. Since the first c

coordinates of w are |a.0c�l ; 1l /, w permutes the columns of this block into columns
in UP , hence if w002 ¤ .�n�l ; 1l /, we can again find Y < UP such that  U jY ¤ 1 and
wY < UP , so that H .h/ D 0 by (2.23). Altogether, w2 D .1dc=2e;�n�l ; 1l /.

If k D 2 we are done, so assume k > 2. We show w3 D .1dc=2e; �n�l ; 1l /. Recall
V.ck�1/ < U . Because w2 D .1dc=2e; �n�l ; 1l /, w conjugates the last dc=2e and first l
columns of vk�2;k�1 (see §1.2 for this notation) intoUP . Hence ifw3¤ .1dc=2e;�n�l ; 1l /,
a diagonal coordinate of one of the blocks inside vk�2;k�1, namely the bottom right
dc=2e � dc=2e block if w3 ¤ .1dc=2e;�n/, or the top left l � l block if w3 ¤ .�c�l ; 1l /, is
conjugated byw into UP , so that if Y < U is generated by this coordinate, then H .h/D 0

by (2.23). Proceeding in this manner for 3 < i � k, each time using vk�iC1;k�iC2 and
(2.23), we deduce wi D .1dc=2e;�n�l ; 1l /.

For each 1< i � k, sincewi takes the form (2.24), we can uniquely identify a maximal
integer 0 � di�1 � n � l such that wi D .1dc=2e; �n�l�di�1 ; 1lCdi�1/. By maximality
.�n�l�di�1/ D .�n�l�di�1�1; 0/ (if di�1 < n� l), but the remaining coordinates are still
undetermined. As we show next, if H .h/ ¤ 0, we can replace h by a representative for
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which .�n�l�di�1/ D .0n�l�di�1/ (this may mean the integers di�1 are larger), and even
fix an ascending order on di�1. Note that for k D 1, the integers di�1 are undefined.

Proposition 2.8. We have H .h/ D 0 unless h � Ow Ou where

Ow D |a.0
c�l ; 1l ; w2; : : : ; wk/;

81 < i � k; wi D .1
dc=2e; 0n�l�di�1 ; 1lCdi�1/; d1 � � � � � dk�1;

(2.25)

and Ou satisfies the conditions of Proposition 2.5, in particular `0. Ou/ takes the form (2.17)
.and Al does not have any zero row/.

Proof. Write wi D .1dc=2e; w0i ; 1
l / with w0i 2 ¹0; 1º

n�l . The rightmost di�1 coordinates
of w0i are 1. We start with the following observation. Let 1 � j � n � l and assume
1 < i0 � k is minimal such that w0i0 Œj � (the j -th coordinate of w0i0 ) equals 1. We claim
H .h/ D 0 unless w0i Œj � D 1 for all i � i0. Otherwise, assume i > i0 is minimal with
w0i Œj � D 0. Write the top left n � n block of the block vk�iC1;k�iC2 of V.ck�1/ in the
form

�
v1 v2

v3 v4

�
with v1 2 Matl and v4 2 Matn�l . Then a unipotent subgroup Y containing

coordinates from v4 will satisfy  U jY ¤ 1 and wY < UP , whence H .h/ D 0 by (2.23).
We proceed to show that we can sort the coordinates of w2; : : : ; wk to obtain (2.25).

Identify GLn�l with its natural image in the middle factor of the standard Levi sub-
group GLl � GLn�l � Gc�2n of G. Then P \ .GLn�l ; 1/ contains a full set of rep-
resentatives for W.GLn�l /. Given such a representative g, we have h � h.g; 1/�1 �
..g;1/w/..g;1/u/ where Ou D .g;1/u still satisfies the conditions of Proposition 2.5 and
`0. Ou/ D `0.u/ (.g; 1/ commutes with (2.17)). Hence one can use such conjugations to
permute the entries in each wi , while maintaining the prescribed structure of u. Using
transpositions fromW.GLn�l / we can permute each consecutive pair .w0i Œj �;w

0
i Œj C 1�/.

If w0i Œj � D w0i Œj C 1�, the conjugation has no affect on this pair. Choose some j such
that there is a minimal i0 with .w0i0 Œj �; w

0
i0
Œj C 1�/ D .1; 0/. If j does not exist, then

w0i D .0
n�l�di�1 ; 1di�1/ for all 1 < i � k, and by what we have proved, if H .h/ ¤ 0,

then d1 � � � � � dk�1 so that (2.25) holds. If j exists, then again by the above obser-
vation (assuming H .h/ ¤ 0), for i > i0, either .w0i Œj �; w

0
i Œj C 1�/ D .1; 0/, in which

case the order is swapped, or w0i Œj � D w0i Œj C 1� D 1. Proceeding in this manner we
obtain (2.25).

Let now h D wu, with w and u given by Proposition 2.8, in particular w satisfies
(2.25). Recall that in general if Y < hU \MP , h

�1
Y < Ph and by definition any mor-

phism in H .h/ factors through JY;h �1
U
.�/ (see §2.1.1). We turn to computing hU \MP .

To simplify the presentation we slightly alter w, using multiplication on the left by rep-
resentatives of W.MP /, which we identify with permutation matrices in GLkc . First, we
multiply w on the left by diag.I.k�1/c ; Jl ; Ic�l /; this changes the innermost block Jl
into Il (see (2.12)). Then for wi , 1 < i � k, we multiply w on the left by

diag.I.k�i/c ; JlCdi�1 ; In�l�di�1 ; Jdc=2e; Ic.i�1//:
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For example if k D 2,

w D |a

0BBBBBBB@

IlCd1
In�l�d1

Idc=2e
Il

I2.c�l/
�0Il

�0Idc=2e
In�l�d1

�0IlCd1

1CCCCCCCA : (2.26)

For 1 � j � k � 1, define j 2 GLkc by

j D diag
�
I
n�l�dk�jC

Pj�1
iD1

.n�l�dk�i /
;
�

Ikc�dc=2e�.j�1/c�n
Idc=2e

�
;

I
lCdk�jC

Pj�1
iD1

.dc=2eClCdk�i /

�
� diag

�
IPj�1

iD1
.n�l�dk�i /

;
�

Ikc�.j�1/c�l�dk�j
IlCdk�j

�
; IPj�1

iD1
.dc=2eClCdk�i /

�
:

For example,

1 D diag
�
In�l�dk�1 ;

�
Ikc�dc=2e�n

Idc=2e

�
; IlCdk�1

� �
Ikc�l�dk�1

IlCdk�1

�
:

Further multiply w on the left by k�1 � : : : � 1 (henceforth we only use this form for w).
For the computation of hU \MP also note that hU D wU . Now we see that hU \MP

D Vˇ , where ˇ is the composition of kc given by

ˇ D .n� l � dk�1; : : : ; n� l � d1; c; dc=2e C l C d1; : : : ; dc=2e C l C dk�1/: (2.27)

(The purpose of the elements i was to obtain an upper triangular hU \MP .) The char-
acter h U is a character of Vˇ by restriction; denote  Vˇ D

h U jVˇ . We cannot fully
describe  Vˇ without determining `.u/, but the lemma below will provide the informa-
tion we need. First we describe w`0.u/ U jVˇ . For v 2 Vˇ write

v D

0BBBBBB@
In�l�dk�1 b1 ���

: : :
: : :

In�l�d1 bk�1 ���

Ic bk ���

: : :
: : :

Idc=2eClCdk�2
b2k�2

Idc=2eClCdk�1

1CCCCCCA : (2.28)

Here
.bi /1�i�2k�2 D .b1; : : : ; bk�2; bk�1; bk ; bkC1; : : : ; b2k�2/

is a general element of the product

2Y
jDk�1

Matn�l�dj�n�l�dj�1 �Matn�l�d1�c �Matc�dc=2eClCd1

�

k�2Y
jD1

Matdc=2eClCdj�dc=2eClCdjC1 :

Note that for k D 2, .bi /1�i�2k�2 2 Matn�l�d1�c �Matc�dc=2eClCd1 . Then
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w`0.u/ U .v/ D  

0@ 2X
jDk�1

tr
�
bk�j

�
0dj�dj�1�n�l�dj

In�l�dj

� �
C tr

 
bk�1

 
0lCd1�n�l�d1
In�l�d1

0dc=2e�n�l�d1

!!

� tr

0@bk
0@ 0 0 ��0Al 0 0
0 �0In�l 0 0 0
0 0 0 0 Ic�2n
0 0 0 0d1�n�l 0

Il 0 0 0 0

1A1A
�

k�2X
jD1

tr

 
bkCj

 
Idc=2e 0dc=2e�djCl

0djC1�dj�dc=2e
0djC1�dj�djCl

0djCl�dc=2e
IdjCl

!!1A : (2.29)

Here the sum
P2
jDk�1 is omitted if k D 2; and if c � 2n D 1 (0 � c � 2n � 1), the

coordinate Ic�2n D 1 initially depends on the constants �1; �2 (see §1.5; 2�1�2 D 1),
but we can use another conjugation of w by an element of MP to fix this coordinate to
be 1 (without otherwise changing (2.29)). Additionally, for l D n and Al of rank l , the
character (2.29) belongs to the orbit of  �1

k
.

Example 2.9. For k D 2 and an even a, after multiplying (2.26) on the left by 1 we have

w D

0BBBBBBBB@

0 In�l�d1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Il 0 0 0
0 0 0 0 Ic�l 0 0 0 0 0
0 0 0 0 0 0 0 Idc=2e 0 0

0 0 0 0 0 0 0 0 0 IlCd1
�0IlCd1 0 0 0 0 0 0 0 0 0

0 0 �0Idc=2e 0 0 0 0 0 0 0

0 0 0 0 0 Ic�l 0 0 0 0
0 0 0 �0Il 0 0 0 0 0 0
0 0 0 0 0 0 0 0 In�l�d1 0

1CCCCCCCCA
; (2.30)

Vˇ D V.n�l�d1;c;dc=2eClCd1/ D

²�
In�l�d1 b1 �

Ic b2
Idc=2eClCd1

�³
and  Vˇ depends only on b1 and b2. For example, if u D `0.u/, its restriction to b1 is
given by  composed with the trace of the n � l � d1 � n � l � d1 block of b1 starting
at column l C d1 C 1 of b1. For k D 3 and again an even a, after multiplying w on the
left by 21 we obtain0BBBBBBBBBBBBBBBB@

0 In�l�d2
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 In�l�d1
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Il 0 0 0 0 0 0

0 0 0 0 0 0 0 Ic�l 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Idc=2e 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 IlCd1
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 Idc=2e 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IlCd2
�0IlCd2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 �0Idc=2e 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 �0IlCd1
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 �0Idc=2e 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 Ic�l 0 0 0 0 0 0 0

0 0 0 0 0 0 �0Il 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 In�l�d1
0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 In�l�d2
0

1CCCCCCCCCCCCCCCCA
;

ˇ D .n � l � d2; n � l � d1; c; dc=2e C l C d1; dc=2e C l C d2/:
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Remark 2.10. It is convenient to compute Vˇ in two steps: first compute wU \MP

using w without the elements i , e.g., (2.26), then conjugate by these elements in order to
obtain Vˇ .

Proposition 2.11. Assume k > 1 and l < n. If H .h/¤ 0, then Vˇ belongs to the orbit of

v 7!  

0@ 2X
jDk�1

tr.bk�j .�n�l�dj�1�n�l�dj //C tr
�
bk�1

� �lCd1�n�l�d1
In�l�d1

�dc=2e�n�l�d1

��

� tr

0@bk
0@ 0 0 ��0Al 0 0
0 �0In�l 0 0 0
0 0 0 0 Ic�2n
0 0 0 0d1�n�l 0

Il 0 0 0 0

1A1A
�

k�2X
jD1

tr

 
bkCj

 
Idc=2e 0dc=2e�djCl

�djC1�dj�dc=2e
�djC1�dj�djCl

�djCl�dc=2e
�djCl

!!1A : (2.31)

Here � means undetermined block entries. When `.u/ is the identity element, all coordi-
nates were computed above and (2.31) coincides with (2.29).

Proof. We introduce notation for blocks of unipotent matrices inMQ and U . Recall from
Lemma 2.6 that  U is defined by k � 2 blocks Bi 2 Matc , 1 � i � k � 2, two blocks
B 01; B

0
2 2 Matn and when c is odd also by B 00 2 Mat1�2. Set d0 D 0 and dk D dk�1. For

each 1 � i � k � 2, Bi is further divided into subblocks by writing it as the upper right
block of0BBBBBBBB@

IlCdk�i�1 B
1;1
i

B
1;2
i

B
1;3
i

B
1;4
i

Idk�i�dk�i�1 B
2;1
i

B
2;2
i

B
2;3
i

B
2;4
i

In�l�dk�i B
3;1
i

B
3;2
i

B
3;3
i

B
3;4
i

Idc=2e B
4;1
i

B
4;2
i

B
4;3
i

B
4;4
i

IlCdk�i�1
Idk�i�dk�i�1

In�l�dk�i
Idc=2e

1CCCCCCCCA
:

The blocks B 01; B
0
2 are contained in the following blocks:0BBBBBB@
Il B

01;1
1

B
01;2
1

B
01;3
1

Id1 B
02;1
1

B
02;2
1

B
02;3
1

In�l�d1 B
03;1
1

B
03;2
1

B
03;3
1

Idc=2e B
04;1
1

B
04;2
1

B
04;3
1

Il
Id1

In�l�d1

1CCCCCCA ;
0BBBBBBB@

IlCd1 B
01;1
2

B
01;2
2

B
01;3
2

In�l�d1 B
02;1
2

B
02;2
2

B
02;3
2

Idc=2e�l B
03;1
2

B
03;2
2

B
03;3
2

Il B
04;1
2

B
04;2
2

B
04;3
2

I2c�n�l
Il

In�l
Il

1CCCCCCCA :
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If c is odd, we also have the c � 2 block containing B 00 which we write in the form 
B001

B002

B003

B004

!
; B 001 2 MatlCd1�2; B

002
2 Matn�l�d1�2; B

003
2 Mat1�2; B 004 2 Matn�2:

For 1 � i � 4, B 00i D .B 00i;1; B 00i;2/. In terms of the blocks Bi , B 0i and B 00,  U is given
by

 
�k�2X
iD1

4X
jD1

tr.Bj;ji /C

3X
jD1

tr.B 0j;j1 /Ctr.. 0n�l�c�2nIn�l / B 03;22 /Ctr.B 04;32 /CB 003
�
�1
��2

��
:

(2.32)

Let MP , UP and U �P denote the lists of blocks B t;t
0

i ; B 0
t;t 0

i ; B 00t;t
0

conjugated by w
into MP , UP and U�P , respectively (these can still be computed using (2.25); w differs
from (2.25) by an element ofMP ). If c is odd, let a0 2 ¹1;2º be the column ofB 00 whichw
conjugates into column kc C 1, it consists of the blocks .B 001;a0 ;B 002;a0 ;B 003;a0 ;B 004;a0/.
We see that

MP D ¹B
1;1
i ; B

1;4
i ; B

2;1
i ; B

2;4
i ; B

3;2
i ; B

3;3
i ; B

4;1
i ; B

4;4
i W 1 � i � k � 2º

q ¹B
01;1
1 ; B

02;1
1 ; B

03;2
1 ; B

03;3
1 ; B

04;1
1 ; B

01;1
2 ; B

01;2
2 ; B

02;3
2 ; B

03;1
2 ; B

03;2
2 ; B

04;1
2 ; B

04;2
2 º

q ¹B 001;a0 ; B 002;3�a0 ; B 003;a0 ; B 004;a0º;

UP D ¹B
3;1
i ; B

3;4
i W 1 � i � k � 2º q ¹B

03;1
1 ; B

02;1
2 ; B

02;2
2 ; B 002;a0º;

U �P D ¹B
1;2
i ; B

1;3
i ; B

2;2
i ; B

2;3
i ; B

4;2
i ; B

4;3
i W 1 � i � k � 2º

q ¹B
01;2
1 ; B

01;3
1 ; B

02;2
1 ; B

02;3
1 ; B

04;2
1 ; B

04;3
1 ; B

01;3
2 ; B

03;3
2 ; B

04;3
2 ; B 001;3�a0 ;

B 003;3�a0 ; B 004;3�a0º:

Since `.�/`.u/ 2MQ \NH with � 2 .G; 1/, we can write `.u/ D diag.z1; : : : ; zk�1/ for
zi D

w� vi where w� 2 W.GLc/ corresponds to the projection of .�; 1/�1 into the i -th
copy of GLc and vi 2 NGLc . Note that if we write a general element of w�NGLc in the
form �

X1 X2 X3
X4 X5 X6
X7 X8 X9

�
where X1; X5 and X9 are square matrices (of arbitrary sizes), then X1; X5; X9 are
already invertible, and so are

�
I X2
�X4 I

�
and

�
I X6
�X8 I

�
, whence I C X2X4, I C X4X2,

I CX6X8 and I CX8X6 are also invertible (Xi ; Xj need not be square matrices).
Since the left coset of w inW.MP /nW.H/ is still represented by (2.25), we can write

zi D z
0
imi where wdiag.z01; : : : ; z

0
k�1

; I2c ; z
0�
1 ; : : : ; z

0�
k�1

/ 2MP and

mi D

 
IlCdk�iCM

1
i
M2
i

M1
i

0

M2
i

In�l�dk�iCM
3
i
M4
i

M3
i

0 M4
i

Idc=2e

!
2 GLc ;

IlCdk�i CM
1
i M

2
i 2 GLlCdk�i ; In�l�dk�i CM

3
i M

4
i 2 GLn�l�dk�i :
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These matrices are invertible because mi D w� v0i where v0i 2 NGLc . We have

m�1i D

 
IlCdk�i �M1

i
M1
i
M3
i

�M2
i

In�l�dk�iCM
2
i
M1
i

�.In�l�dk�iCM
2
i
M1
i
/M3

i

M4
i
M2
i
�M4

i
.In�l�dk�iCM

2
i
M1
i
/ Idc=2eCM

4
i
.In�l�dk�iCM

2
i
M1
i
/M3

i

!
:

Since h � ph for any p 2 P , we can already assume zi D mi .
We show that  Vˇ belongs to the orbit of a character whose restriction to the blocks

bk�1; bk ; bkC1; : : : ; b2k�2 agrees with (2.31), otherwise H .h/ D 0. This will complete
the proof. To this end it suffices to compute u U on the blocks of U conjugated by w
into bk�1; bk ; bkC1; : : : ; b2k�2. The contribution of `0.u/ is easy to compute and was
essentially given in (2.29). To determine `.u/ U (thereby u U ) we compute

m�1k�1B
0
1; m�1k�1B

0
2; m�1k�1B

00; m�1i BimiC1; 81 � i � k � 2:

Columns l C d1 C 1; : : : ; n of bk�1 (the only columns of bk�1 where (2.31) is deter-
mined) consist of the block B 03;31 , conjugated to bk�1 byw (other columns are conjugated
from B

03;2
1 ; B

02;3
2 and columns between the columns of u1;1 and u2;2). The coordinates

of bk are uniquely defined by

B
01;1
1 ; B

02;1
1 ; B

04;1
1 ; B

01;1
2 ; B

01;2
2 ; B

03;1
2 ; B

03;2
2 ; B

04;1
2 ; B

04;2
2 ; B 001;a0 ;

B 002;a0 ; B 003;3�a0 ; B 004;a0

and by additional l C d1 C dc=2e � n � l coordinates appearing to the left of B 01;12 ;

B
03;1
2 ;B

04;1
2 ( U and `0.u/ U are trivial on the corresponding columns, thereby also u U

because multiplying on the left by m�1
k�1

cannot introduce a character on a column where
`0.u/ U was trivial, so we do not provide notation for these), as well as the form defin-
ing H . Note that B 00 is omitted if c is even.

When we multiply m�1
k�1

B 01 we see that if the top l rows of M 1
k�1

are nonzero, u U
is nontrivial on B 03;11 2 UP and then H .h/ D 0 by (2.6). Hence we can assume the top
l rows of M 1

k�1
are 0, which implies u U is trivial on the coordinates of bk obtained

from B 01, namely B 01;11 ; B
02;1
1 ; B

04;1
1 ( U and `0.u/ U are also trivial there). Additionally

u U restricts to  .tr..In�l�d1 CM
2
k�1

M 1
k�1

/B
03;3
1 // on B 03;31 , and since

wdiag.I.k�2/cClCd1 ; In�l�d1 CM
2
k�1M

1
k�1; I2.dc=2eCc/; .In�l�d1 CM

2
k�1M

1
k�1/

�;

IlCd1C.k�2/c/ 2MP ;

 Vˇ belongs to the orbit of a character which agrees with (2.31) on bk�1 and the coordi-
nates of bk conjugated from B 01.

The character `0.u/ U is given on the blocks of B 02, which w conjugates into bk , by

 .tr.'kB 0ı2 //; 'k D
�

0l�lCd1 0l�n�l�d1 0l�dc=2e�l A.X/

0n�l�lCd1 0n�l�n�l�d1 .
0n�l�c�2n In�l / 0n�l�l

�
:

Here B 0ı2 is the c � n block consisting of B 0t;t
0

2 with 1 � t � 4 and 1 � t 0 � 2 (all of
these blocks except for t D 2 are conjugated into bk). Multiplying 'km�1k�1 we deduce
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H .h/ D 0, unless the product of 'k and columns l C d1 C 1; : : : ; n of m�1
k�1

defines a
trivial character on .B 02;12 ; B

02;2
2 / 2 UP , which amounts to�

0l�dc=2e�l A.X/

. 0n�l�c�2n In�l / 0n�l�l

�
.�M 4

k�1.In�l�d1 CM
2
k�1M

1
k�1// D 0dc=2e:

Hence the product of 'k and the last dc=2e columns of m�1
k�1

equals�
0l�dc=2e�l A.X/

. 0n�l�c�2n In�l / 0n�l�l

�
.Idc=2e CM

4
k�1.In�l�d1 CM

2
k�1M

1
k�1/M

3
k�1/

D

�
0l�dc=2e�l A.X/

. 0n�l�c�2n In�l / 0n�l�l

�
;

thus u U agrees with  U on the blocks contained in B 02.
If c is odd, the restriction of u U to B 00 is given by

 
�
tr
��
02�n

�
�1
��2

�
02�n

�
m�1k�1B

00
��
:

Since B 002;a0 2 UP and �1�2 ¤ 0, we deduce the first row of �M 4
k�1

.In�l�d1 C

M 2
k�1

M 1
k�1

/ is 0, and because In�l�d1 CM
2
k�1

M 1
k�1

is invertible we find that the first
row of M 4

k�1
is 0. Then the first row of m�1

k�1
is .0n 1 0n/, whence u and  U agree

on B 00.
Altogether we have shown that  Vˇ belongs to the orbit of a character which agrees

with (2.31) on bk�1 and bk .
Consider bkCi , 1 � i � k � 2. The coordinates of bkCi are uniquely defined by the

blocks
B
1;1
k�i�1

; B
1;4
k�i�1

; B
2;1
k�i�1

; B
2;4
k�i�1

; B
4;1
k�i�1

; B
4;4
k�i�1

:

More precisely, if we denote for X 2 Mata�b , X 0 D �Jb tXJa, then

bkCi D

�
.B
4;4
k�i�1

/0 .B
2;4
k�i�1

/0 .B
1;4
k�i�1

/0

.B
4;1
k�i�1

/0 .B
2;1
k�i�1

/0 .B
1;1
k�i�1

/0

�
: (2.33)

We multiply m�1
k�i�1

Bk�i�1mk�i . Since  U restricts to  ı tr on Bk�i�1, the restriction
of u U to Bk�i�1 is given by  .tr.mk�im�1k�i�1Bk�i�1//. If this restriction is nontrivial
on B3;1

k�i�1
; B

3;4
k�i�1

2 UP , we obtain H .h/ D 0.
On B3;4

k�i�1
, u U is given by the product of the last dc=2e rows of mk�i and columns

l C diC1 C 1; : : : ; n of m�1
k�i�1

; H .h/ D 0 unless this product vanishes:

. 0dc=2e�lCdi M
4
k�i

Idc=2e /

0@ �M1
k�i�1

In�l�diC1CM
2
k�i�1

M1
k�i�1

�M4
k�i�1

.In�l�diC1CM
2
k�i�1

M1
k�i�1

/

1A D 0:
Thus the product of the last dc=2e rows ofmk�i and the last dc=2e columns ofm�1

k�i�1
is

. 0dc=2e�lCdi M
4
k�i

Idc=2e /

0@ M1
k�i�1

M3
k�i�1

�.In�l�diC1CM
2
k�i�1

M1
k�i�1

/M3
k�i�1

Idc=2eCM
4
k�i�1

.In�l�diC1CM
2
k�i�1

M1
k�i�1

/M3
k�i�1

1A D Idc=2e:
This means that the restriction of u U to B4;4

k�i�1
, which corresponds to the bottom right

dc=2e � dc=2e block of mk�im�1k�i�1, is  ı tr, so that it agrees with  U on this block.
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On B3;1
k�i�1

, u U is defined by the product of the first l C di rows of mk�i and
columns l C diC1 C 1; : : : ; n of m�1

k�i�1
. Then H .h/ D 0 unless

. IlCdiCM
1
k�i

M2
k�i

M1
k�i

0lCdi�dc=2e /

0@ �M1
k�i�1

In�l�diC1CM
2
k�i�1

M1
k�i�1

�M4
k�i�1

.In�l�diC1CM
2
k�i�1

M1
k�i�1

/

1A D 0:
Hence

. IlCdiCM
1
k�i

M2
k�i

M1
k�i

0lCdi�dc=2e /

�

0@ M1
k�i�1

M3
k�i�1

�.In�l�diC1CM
2
k�i�1

M1
k�i�1

/M3
k�i�1

Idc=2eCM
4
k�i�1

.In�l�diC1CM
2
k�i�1

M1
k�i�1

/M3
k�i�1

1A D 0:
Therefore the restrictions of u U and  U to B4;1

k�i�1
, which correspond to the top right

l C di � dc=2e block of mk�im�1k�i�1, are both trivial.
Finally, using (2.33) and noting that the leftmost l columns ofX are the bottom l rows

of X 0 (and the entries are permuted), we find that u U is given on the blocks which w
conjugates into bkCi by

 

�
tr
��

.B
4;4
k�i�1

/0 .B
2;4
k�i�1

/0 .B
1;4
k�i�1

/0

.B
4;1
k�i�1

/0 .B
2;1
k�i�1

/0 .B
1;1
k�i�1

/0

��
Idc=2e 0dc=2e�lCdi

�lCdiC1�dc=2e
�lCdiC1�lCdi

���
:

We conclude that  Vˇ belongs to the orbit of (2.31).

Proposition 2.12. Assume d1 < n � l .in particular k > 1 and l < n, because d1 � 0/.
Then JVˇ ; �1Vˇ

.�/ D 0, in particular H .h/ D 0.

Proof. Any morphism in H .h/ factors through JVˇ ; �1Vˇ
.�/. We show JVˇ ; �1Vˇ

.�/ D 0.

Suppose otherwise. The subgroup Vˇ and character  �1Vˇ define a degenerate Whittaker
model in the sense of [46, 82]. The character  �1Vˇ uniquely defines a nilpotent element
t' 2Matkc such that  �1Vˇ .v/D  .tr.v.

t'/// for all v 2 Vˇ . Then ' 2Matkc is an upper
triangular nilpotent matrix. We prove ' is nilpotent of order at least k C 1. By [46, Theo-
rem E], the orbit of ' belongs to the closure of the wave-front set WF.�/ of �, but this orbit
is greater than or incomparable with .kc/, contradicting the fact that � is .k; c/. When �2
is supercuspidal (in particular, the field is nonarchimedean) and � is not necessarily of
finite length, we derive the same contradiction from [46, Theorem A].

By Proposition 2.11, we can assume  Vˇ is given by (2.31). Since ' C Ikc 2 Vˇ , we
let b1; : : : ; b2k�2 denote the blocks of ' above the principal diagonal (see (2.28)). These
can be read off from (2.31), namely bi is the transpose of the block appearing to the right
of bi in (2.31) (one should include the signs appearing in (2.31) before tr). For example,
bk�1 D � . �n�l�d1�lCd1 In�l�d1 �n�l�d1�dc=2e /.

We apply a sequence of conjugations to ', conjugating k nonzero coordinates from ',
one coordinate from each block bk�1; bk ; : : : ; b2k�2: since d1 < n � l ,  Vˇ is nontrivial
on bk�1, so that the block bk�1 of ' is nonzero.
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The only nonzero blocks of ' are the blocks b1; : : : ; b2k�2, and these blocks contain
nonzero entries at the coordinates defined by (2.31). Define the following partial sums d j

of the integers appearing in the composition ˇ, from right to left (see (2.27)):

d j D

8̂̂<̂
:̂
Pj
iD1.dc=2e C l C dk�i /; 1 � j � k � 1;

c C dk�1; j D k;

n � l � d1 C d
k ; j D k C 1:

First we conjugate ' by

"1 D diag
�
Ikc�dk�1�dc=2e�1;

�
1

Idc=2e�1
1

�
; Idk�1

�
:

Note that "1 normalizes Vˇ . The .n; n/-th coordinate of bk , which is �0 D ˙1 because
l < n, becomes the .c; n/-th coordinate, and the .n � l � d1; n/-th coordinate of bk�1,
which is �1, becomes the .n � l � d1; c/-th coordinate—the bottom right coordinate.
Both of these coordinates are independent of the blocks where  Vˇ is undetermined
(denoted � in (2.31)), and are the only nonzero entries on their columns. We can further
conjugate "1' by an element of the group°

diag
�
I
.
Pk�1
iD1 .n�l�di //Cc

;
�
b
IlCd1

�
; : : : ;

�
b
IlCdk�1

��
W b 2 GLdc=2e

±
< Mˇ ;

to take the .c; n/-th coordinate of bk into the .c; 1/-th coordinate, without affecting any
of the blocks bk�1; : : : ; b2k�2 of "1' except the block bk (the diagonal embedding of
b 2 GLn instead of b 2 GLdc=2e in each of the last k � 1 blocks is sufficient). Now let

"2Ddiag
�
I
.
Pk�1
iD1 .n�l�di //Cc

;

�
1

Idc=2eClCd1�2
1

�
; : : : ;

�
1

Idc=2eClCdk�1�2
1

��
2Mˇ ;

where if dc=2eC lCdk�i D 1, the corresponding block of size 1C .dc=2eC lCdk�i �2/
C 1 is I1. Again "2 normalizes Vˇ . Conjugating "1' by "2, the .c; 1/-th coordinate of bk
is taken into the .c; dc=2e C l C d1/-th coordinate (the bottom right coordinate), and
the top left coordinate of bkCi , which is independent of the undetermined blocks and is
the only nonzero coordinate on its column, is taken into the bottom right coordinate for
each 1 � i � k � 2. We conclude that the bottom right coordinate of each of the blocks
bk�1; : : : ; b2k�2 of "2"1' is nonzero (�1 for bk�1, �0 for bk , 1 for all other blocks), and in
each of these blocks, the bottom right coordinate is the only nonzero entry in its column.
Therefore ' is nilpotent of order at least k C 1.

Example 2.13. Consider c D k D 2, G D Sp2, H D Sp8 and l D 0. Then 0 � d1 �
n � l D 1. For d1 D 0, w 2MP .0

2; w2/ with w2 D .1; 0/. One can take

w D

 
1

1
I4

�1
1

!
:

Then

u D

�
I2 x y

I4 x
0

I2

�
;  U .u/ D  .x1;1 C x2;4/;

wU \MP D

´ 
1 y1;1 x1;1 x1;2

1
x2;4 1
x2;3 1

!µ
:
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Multiplying w on the left by 1 D diag
�
1;
�

I2
1

��
, we see that

Vˇ D V.1;2;1/ D

´ 
1 x1;1 x1;2 y1;1

1 x2;4
1 x2;3

1

!µ
; ' D

�
0 �1 0 0
0 0 �1
0 0
0

�
:

The nilpotency order of ' is 3, and since � is a .k; c/ D .2; 2/ representation, we have
JVˇ ; �1Vˇ

.�/ D 0.

Now consider the cases d1 D n � l or k D 1. There are only finitely many represen-
tatives (i.e., representatives hi ; hj with hi œ hj ) satisfying this condition. This is trivial
when k D 1. For k > 1 recall h D wu with `0.u/ of the form (2.17). Since d1 D n � l ,
and thereby d1 D � � � D dk�1 D n � l , we finally have for any m 2MQ, w`.m/ 2 P , in
particular w`.u/2P hence h�w`0.u/. We simplify `0.u/ and deduce that there are only
finitely many representatives remaining. Regard GLl as the direct factor of the standard
Levi subgroup GLl � Gc�2l of G. For g1; g2 2 GLl , because (finally) w.g1; g2/ 2 P ,

w`0.u/ � w`0.u/.g1; g2/ � w.
.g1;g2/

�1

`0.u//:

Looking at (2.17), we can now assume Al D diag.Il 0 ; 0l�l 0/, where l 0 � l is the rank
of Al . There are only finitely many such representatives. Furthermore if l 0 < l , take a
representative g of an element of W.G/ such that w`0..g; 1// does not permute the rows
l 0 C 1; : : : ; l of (2.17). Since (as opposed to the proof of Proposition 2.5) w`..g; 1// 2 P ,
we have w.g; 1/ � w`0..g; 1//. Then

w..g1;g2/
�1

`0.u//�w.g;1/.
.g;1/�1.g1;g2/

�1

`0.u//�w`0..g;1//.
.g;1/�1.g1;g2/

�1

`0.u//:

Since l 0 � l ,w`0..g;1// now trivially satisfies (2.25) for l 0 with d1D � � � D dk�1D n� l 0

(the multiplications on the left by elements of W.MP / do not matter for this), and if we
reset w WD w`0..g; 1// and l WD l 0, we have h D w.|.k�1/cClul /. If c is odd, then ul
commutes with any |a, otherwise |.k�1/cCl D |l . Hence h D w.|lul / (as in the k D 1
case).

Thus there are only nC 1 representatives h to consider, and note that the representative
w.|nun/ satisfies h � ı.

Proposition 2.14. Assume d1 D n � l or k D 1, and l < n. Then H .h/ D 0 outside a
discrete subset of s. Moreover, under each one of the conditions of (a), e.g., when �2 is
supercuspidal .and c > 2 or G D Sp2/, H .h/ D 0 for all s.

Proof. Now Vˇ D V.ck/, which is trivial when k D 1, in which case we set  Vˇ D 1. If
k > 1, since now `.u/ is trivial, one can read off  Vˇ directly from (2.29), then

 Vˇ .v/ D  

0@�tr

0@bk
0@ 0 0 ��0Il 0 0
0 �0In�l 0 0 0
0 0 0 0 Ic�2n
0 0 0 0n�l 0
Il 0 0 0 0

1A1A � k�2X
jD1

tr.bkCj /

1A : (2.34)

(Note that Al was replaced by Il in the first matrix.)
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Consider the parabolic subgroupRDMR ËUR <G whereMRŠGLn�l �Gc�2.n�l/
and

|.cC1/lUR D

8̂<̂
:
0B@
Il u1 0

u2 In�l u4 u3 u0
1

Ic�2n u0
4

In�l
u0
2

Il

1CA
9>=>; :

Here if c is even, then |.cC1/l D |l , otherwise |.cC1/l is trivial. Since l < n, this is a
nontrivial parabolic subgroup unless c D 2 and G ¤ Sp2. If c is odd, the image of UR in
H0 is given by (see Example 1.8)8̂̂̂<̂

ˆ̂:
0BBB@
Il �2u4 �1u4 u1 0

u2 In�l u3 u0
1

1 �1u
0
4

1 �2u
0
4

In�l
u0
2

Il

1CCCA
9>>>=>>>; :

Denote the Lie algebra of UR by uR.

Lemma 2.15. The following holds for all s.

(1) If F is nonarchimedean, then JVˇ ; �1Vˇ
.�/ is a trivial representation of

h.1; |.cC1/lUR/.

(2) For an archimedean field, h.1; |.cC1/luR/ acts locally nilpotently on JVˇ ; �1Vˇ
.�/�.

The proofs of this lemma and the following one appear after the proof of the propo-
sition. If �2 is supercuspidal (nontrivially), the proposition follows immediately from
Lemma 2.15, in particular we do not need to exclude any s (see also the discussion pre-
ceding (2.7)).

Identify the group GLn�l with its image in MR,

h.1;GLn�l / D ¹diag.InCl ; a; Ic�2nC.k�1/c/ W a 2 GLn�lº;

where the right hand side is implicitly regarded as a subgroup of MP . By (2.34),
h.1; GLn�l / stabilizes  Vˇ , and because it also normalizes Vˇ , h.1; GLn�l / acts on
JVˇ ; �1Vˇ

.�/.

Lemma 2.16. The following holds for all s.

(1) If F is nonarchimedean, then JVˇ ; �1Vˇ
.�/ admits a finite length filtration as a repre-

sentation of h.1;GLn�l /, where h.1;CGLn�l / acts by a character on each constituent.
.The constituents need not be irreducible./

(2) Over archimedean fields, there is a maximal parabolic subgroup of GLkc whose Levi
part contains h.1;GLn�l / as a direct factor, such that the Lie algebra v of its unipo-
tent radical acts locally nilpotently on JVˇ ; �1Vˇ

.�/�.

(3) If c D 2 and �D �c.�/ for an irreducible supercuspidal representation � of GLk with
k > 1, then JVˇ ; �1Vˇ

.�/ D 0.
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This implies H .h/D0 outside a discrete subset of s, because h
�1
.jdetjs�1=2/.1;aIn�l /

D jaj.n�l/.s�1=2/ for all a 2 F �, and l < n, then we can apply (2.7). Also Lemma 2.16 (3)
implies H .h/ D 0 for all s, in the remaining case of (a).

Proof of Lemma 2.15. First consider a nonarchimedean field. We show JVˇ ; �1Vˇ
.�/ is a

trivial representation of h.1; |.cC1/lUR/. For z 2 UR, h.1; |.cC1/l z/Dmzz0 where z0 2 UP
and

mz D diag

0B@
0B@ Il

In�l
Il

u0
1

u2 In�l �u4
Ic�2n

1CA ; I.k�1/c
1CA:

Here � D �1 or �2 depending on |l ; also for the computation note that since l < n, |l com-
mutes with ul . When l D 0 and c is even, mz is trivial, whence h.1; |.cC1/lUR/ < UP , so
that JVˇ ; �1Vˇ

.�/ is immediately a trivial representation of h.1; |.cC1/lUR/.

Let Z be the subgroup of MP generated by the matrices mz as z varies in UR. It is
an abelian group. The rank of Z is .2l C c � 2n/.n � l/. Since  �1Vˇ restricts to a trivial
character on rows 2n; : : : ; 2nC 1 � .n � l/ of bk (which are the last n � l rows if c is
even), Z stabilizes  �1Vˇ (it clearly normalizes Vˇ ). Thus JVˇ ; �1Vˇ

.�/ is a representation
of Z and for each character � of Z,

JZ;�.JVˇ ; �1Vˇ
.�// D JVˇËZ; �1Vˇ˝�

.�/:

A similar identity holds for any subgroup of Z.
For b 2 GLc , denote b4 D diag.b; b4

0

/ 2 M.ck/ where b4
0

is the diagonal embed-
ding of GLc in M.ck�1/. The group diag.Ic ;GL4

0

c / stabilizes the restriction of  �1Vˇ to
the blocks bkC1; : : : ; b2k�2 (but not to bk). The group GLl � GLl � GLn�l � GLc�2n
embedded in M.ck/ by

Œx1; x2; x3; x4� D diag

0@ x1 In�l x2
x3

x4

!
;

 x2
In�l

x4
In�l

x1

!401A; (2.35)

where x1; x2 2 GLl , x3 2 GLn�l and x4 2 GLc�2n, acts on the set of characters of Z
with infinitely many orbits, but precisely two orbits separately on each block Z0 D u01; u2
and �u4, and stabilizes  �1Vˇ . It is enough to prove that each block Z0 acts trivially on
JVˇ ; �1Vˇ

.�/. By [11, §§5.9–5.12], it suffices to show that for each nontrivial character �0

of Z0,
JVˇËZ0; �1Vˇ˝�

0.�/ D 0; (2.36)

since then for each Z0, JVˇ ; �1Vˇ
.�/ D JVˇËZ0; �1Vˇ

.�/, and thus JVˇ ; �1Vˇ
.�/ D

JVˇËZ; �1Vˇ
.�/. This implies that h.1; |.cC1/lUR/ acts trivially on JVˇ ; �1Vˇ

.�/.

Let �0 be a nontrivial character of Z0. As in the proof of Proposition 2.12, we let
' denote the transpose of the nilpotent element defined by the character  �1Vˇ ˝ �

0 of
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Vˇ Ë Z0, and show that ' is nilpotent of order at least k C 1, then (2.36) essentially
follows from [46, Theorems A, E] because � is .k; c/, but an additional argument is used
because Vˇ ËZ0 does not correspond to a unipotent orbit (see below).

Conjugating ' by a suitable element (2.35), we can assume the bottom left coordi-
nate of Z0 in ' is 1, and all other coordinates in the same column of Z0 are 0. Assume
(momentarily) c is even or l > 0. One can permute �u4 (for odd c) with the first column
of u2 using conjugation by

diag

 � In
�1

In�1
�1

�
;

� 1
In�1

1
In

�40!
:

This element normalizes Vˇ and stabilizes the blocks bk ; : : : ; b2k�2 of '. Moreover, we
can exchange the blocks u01 and u2 using conjugation by

diag

  
Il

In�l
Il

Idc=2e�l

!
; I.k�1/c

!
; (2.37)

hence we can always assume, for any Z0, that after a conjugation the bottom left coor-
dinate of the block u01 of ' is 1. The matrix (2.37) normalizes Vˇ , fixes the blocks
bkC1; : : : ; b2k�2 of ', but permutes the coordinates of the block bk of '. In particu-
lar, the .nC 1; 1/-th coordinate in the block bk of ', which is ��0, is conjugated into the
.1; 1/-th coordinate of this block. If Z0 D u01 we can skip this conjugation. When c is odd
and l D 0, in which case Z0 D �u4 (evidently u01 and u2 are trivial when l D 0), we use
conjugation by

diag
��

1
Ic�2

1

�
;
�

1
Ic�2

1

�40�
;

so that the .c; nC 1/-th coordinate of the block bk of ', which is 1, is permuted to the
.1; n C 1/-th coordinate, and the bottom left coordinate of Z0 in ' is permuted to the
.2n; 1/-th coordinate of '. At any rate, ' has a nonzero coordinate in the first row of bk .

Conjugating ' by an element of diag.Ic ;GL4
0

c /, we can always assume ' contains 1
in the top right coordinate of bk , and additionally (still) contains 1 in the .2n;1/-th coordi-
nate (the bottom left coordinate of u01 if l > 0). If c is odd, we can permute this coordinate
to the .c; 1/-th coordinate using conjugation by diag.Ic�2;

�
1

1

�
; I.k�1/c/.

Now conjugating ' by

diag
��

1
Ic�2

1

�
; I.k�1/c

�
;

the top right coordinate of bk is permuted into its bottom right, so that now ' has 1 in the
bottom right coordinate of each of the blocks bk ; : : : ; b2k�2, and the .c;1/-th coordinate of
' is permuted into the .1; c/-th coordinate. Moreover, the only nonzero entry in column
c is the .1; c/-th coordinate, and in each bk ; : : : ; b2k�2 the only nonzero entry in the
rightmost column is the bottom right one. This brings us to the situation in the proof of
Proposition 2.12, with two exceptions. First, instead of �1 in the bottom right coordinate
of the block bk�1, we have 1 in the .1; c/-th coordinate (the first coordinate to the left of
the top left coordinate of bk). It again follows that ' is nilpotent of order at least k C 1.
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Second and more importantly, the unipotent subgroup Vˇ ËZ0 does not correspond to
a unipotent orbit (i.e., it is not of the form V.�/, see §1.4). However, we reduced (2.36)
to the vanishing of JVˇËZ00; �1Vˇ˝�

00.�/, where Z00 < NGLkc corresponds to the .1; c/-th

coordinate and �00 is a nontrivial character of Z00. We see that Vˇ ËZ00 < V.1;c�1;ck�1/
and any character  0 of V.1;c�1;ck�1/ which extends  �1Vˇ ˝ �

00 is still nilpotent of order
kC1. Also, the torus TGLc�1 acts on the added c�2 new coordinates of V.1;c�1;ck�1/ with
finitely many orbits (one can identify each diagonal coordinate from TGLc�1 with an ele-
ment of TGLkc which fixes �1Vˇ ˝�

00). Thus (by [11, §§5.9–5.12]) JVˇËZ00; �1Vˇ˝�
00.�/D 0

if for any  0 as above, JV
.1;c�1;ck�1/

; 0.�/ D 0. The latter holds by [46, Theorems A, E]
because � is .k; c/. We conclude (2.36) for any nontrivial �0 and any block Z0.

For the archimedean case, again the result is trivial if l D 0 and c is even. The (abelian)
Lie algebra z of Z decomposes into the direct sum of one-dimensional Lie algebras zi;j ,
corresponding to the coordinates Zi;j of Z (which can be identified with roots of GLkc).

For each .i; j /, there is a subgroup of (2.35) which acts on the characters of Zi;j
with two orbits; one can identify this subgroup with TGL2 . Then we can proceed as in
the nonarchimedean case and prove JVˇËZi;j ; �1Vˇ˝�

0.�/ D 0 for any nontrivial charac-

ter �0, where to deduce this from the vanishing of JV
.1;c�1;ck�1/

; 0.�/ D 0 for all  0 we
apply [47, Corollary 3.0.2] (instead of [11]). By the transitivity of the Jacquet functor, this
implies that there are no continuous distributions on JVˇ ; �1Vˇ

.�/ that transform on the left

under Zi;j by �0, i.e., .JVˇ ; �1Vˇ
.�/�/.Zi;j ;�

0/ D 0. Hence by [47, Proposition 3.0.1], zi;j

acts locally nilpotently on JVˇ ; �1Vˇ
.�/�. Note that for the proof of (2.36) above we really

used only one coordinate, the bottom left one, for each block, and using conjugation we
can assume this coordinate is Zi;j .

We deduce that each zi;j acts locally nilpotently, hence so does z.

Proof of Lemma 2.16. Consider a nonarchimedean field. We prove that JVˇ ; �1Vˇ
.�/

admits a finite length filtration as a representation of h.1;GLn�l /, and on each constituent
h.1; CGLn�l / acts by a character, by showing JVˇ ; �1Vˇ

.�/ factors through a Jacquet mod-

ule along a unipotent radical of a certain parabolic subgroup, with respect to a trivial
character.

After conjugating JVˇ ; �1Vˇ
.�/ by

� D diag

  
In�l

In
Il

Ic�2n

!
; I.k�1/c

!
;

we regard JVˇ ; �1Vˇ
.�/ as a representation of �.h.1;GLn�l // D diag.GLn�l ; Ikc�.n�l//.

In addition, this conjugation only changes the restriction of  �1Vˇ to bk , now given by

 

0@tr

0@bk
0@ 0 0 ��0Il 0 0

0 �0In�l 0 0 0
0 0 0 0 Ic�2n

0n�l 0 0 0 0
0 0 0 Il 0

1A1A1A
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(use (2.34)). Now  �1Vˇ
is trivial on the top n � l rows of bk , hence JVˇ ; �1Vˇ

.�/ is a

representation of V.n�l;c�.n�l//, which we identify with its image in the top left c � c
block of GLkc .

We claim
JVˇ ; �1Vˇ

.�/ D JV
.n�l;c�.n�l/;ck�1/

; �1
Vˇ

.�/: (2.38)

Here  �1Vˇ is extended trivially to V.n�l;c�.n�l//. Before proving (2.38), we explain how
it leads to the result. Because V.n�l;kc�.n�l// < V.n�l;c�.n�l/;ck�1/, the right hand side of
(2.38) becomes

Jdiag.In�l ;V.c�.n�l/;ck�1//; 
�1
Vˇ

.JV.n�l;kc�.n�l//.�//:

Since � is an admissible finite length representation of GLkc , JV.n�l;kc�.n�l//.�/ is an
admissible finite length representation of M.n�l;kc�.n�l//. As such, it admits a finite fil-
tration with irreducible admissible constituents. On each constituent V , CM.n�l;kc�.n�l//
acts by a character, and because �h.1;CGLn�l / < CM.n�l;kc�.n�l// ,

�h.1;CGLn�l / also acts
by a character. Note that V may certainly be reducible (or not admissible) as a repre-
sentation of �h.1;GLn�l /. By the exactness of the Jacquet functor, JVˇ ; �1Vˇ

.�/ admits

a finite filtration where on each constituent �h.1; CGLn�l / still acts by the same charac-
ter. This completes the proof of the main assertion—part (1)—for the nonarchimedean
case. Regarding (3), when c D 2, � D �c.�/ for an irreducible supercuspidal representa-
tion of GLk and k > 1, the Jacquet module JV.n�l;kc�.n�l//.�/ vanishes since n � l D 1
[12, Theorem 2.13 (a)].

Write v 2 V.n�l;c�.n�l// in the form v D .v1; v2; v3; v4/ with v1 2 Matn�l , v2; v3 2
Matn�l�l and v4 2 Matn�l�c�2n. The group � Œx1; x2; x3; x4� (see (2.35)), together with
the group GLn�l embedded inM.ck/ by x5 7! diag.In�l ; x5; I2lCc�2n/4, stabilizes  �1Vˇ
and acts on the set of characters of V.n�l;c�.n�l// with infinitely many orbits, but only two
on each block vi separately. Using the transitivity of the Jacquet functor and [11, §§5.9–
5.12], (2.38) follows at once if we prove separately, that for each block Z0 D vi and
nontrivial character �0 of Z0,

JVˇËZ0; �1Vˇ˝�
0.�/ D 0: (2.39)

Let ' denote the transpose of the nilpotent element defined by the character  �1Vˇ ˝ �
0

of Vˇ Ë Z0. We prove ' is nilpotent of order at least k C 1; then since � is .k; c/, the
results of [46, Theorems A, E] imply (2.39).

First we show that, after possibly a suitable conjugation, ' is nontrivial on the .1; c/-th
coordinate, and all other blocks remain unchanged except the block bk , where there is a
nonzero entry in the bottom right coordinate.

We can assume the top right coordinate ofZ0 in ' is nonzero, and it is the only nonzero
entry in that column. If Z0 D v4, the .1; c/-th entry of ' is nonzero. Using conjugation
by an element of diag.Ic ;GL4

0

c /, the .c; nC 1/-th coordinate of bk becomes its .c; c/-th
coordinate, and the other blocks bkC1; : : : ; b2k�2 are unchanged.
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For Z0 D v2, we conjugate ' by

diag

0@0@ In�l
In�l

Il
Il

Ic�2n

1A ;� Il
Ic�2l

Il

�401A;
and for Z0 D v1 we conjugate by

diag

0@0@ In�l
Il

Il
In�l

Ic�2n

1A ; Il Il
Ic�n�l

In�l

!401A:
Both conjugations preserve bkC1; : : : ; b2k�2, the .1; 2n/-th coordinate of ' becomes non-
trivial, and the rightmost column of bk has (precisely) one nontrivial coordinate, which
is the .c � 1; c/-th coordinate if c is odd, otherwise it is the bottom coordinate (the
.c; c/-th coordinate). For an even c, ' is of the prescribed form; if c is odd, using another
conjugation by diag

�
Ic�2;

�
1

1

�
; I.k�1/c

�
, the .c � 1; c/ entry of block bk is permuted

into its bottom right coordinate, and the .1; 2n/-th coordinate of ' becomes its .1; c/-th
coordinate.

We conclude that in all cases of Z0, when �0 is nontrivial, the .1; c/-th coordinate
of ' and the bottom right coordinate of each block bk ; : : : ; b2k�2 of ' are nonzero (these
coordinates are all 1 except for bk , where the coordinate is ˙1), and the corresponding
nonzero entry is the unique one in its column. Thus as in the proof of Lemma 2.15 (and
again considering all extensions to characters of V.1;c�1;ck�1/ in order to “adjust” Vˇ ËZ0
to a unipotent radical), ' is nilpotent of order at least k C 1 and (2.39) follows.

Over archimedean fields, as in the proof of Lemma 2.15, we deduce that the Lie al-
gebra v.n�l;c�.n�l// of V.n�l;c�.n�l// acts locally nilpotently on JVˇ ; �1Vˇ

.�/� by carrying

out the proof of (2.39) and applying [47, Proposition 3.0.1] separately for each coordinate
of each vi . Let v0 denote the Lie algebra of the unipotent subgroup V.n�l;kc�.n�l// \ Vˇ .
Since v0 acts trivially on JVˇ ; �1Vˇ

.�/, v.n�l;kc�.n�l// D v.n�l;c�.n�l// ˚ v0 acts locally

nilpotently on JVˇ ; �1Vˇ
.�/�.

Example 2.17. Consider c D 4, k D 2, G D Sp4, H D Sp16 and l D 1. Assume d1 D
n � l D 1. Then w 2MP .0

3; 1; w2/, w2 D .14/ and u D `0.u/ 2 H0 is given by

u D diag
�
I4;
�
1 1
1
1

�
; I2;

�
1 �1
1
1

�
; I4

�
:

The elementw is given by (2.30), note that 1 D diag
��

I4
I2

�
; I2

��
I6

I2

�
(see Remark

2.10). We have ˇ D .42/, and if we write an element of Vˇ in the form v D
�
I4 x
I4

�
,

 Vˇ .v/ D  .�x1;4 C x2;2 � x3;1/. The Jacquet module JVˇ ; �1Vˇ
.�/ is a representation

of h.1; UR/ with

UR D

´ 
1 u1 0
u2 1 u3 u1

1
�u2 1

!µ
:
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We see that for z 2 UR,

u.1; z/ D diag

0BBB@I4;
0BBB@
1 u1
1
1 u1
u2 1 u3 u1 u1

1
�u2 1

1
1

1CCCA ; I4
1CCCA:

Then h.1; z/ D mzz0 with mz 2MP and z0 2 UP , and such that as an element of GL8,

mz D diag
��

1
1
1

u1 u2 1

�
; I4

�
:

Denote the subgroup of elements of this form by Z, then JVˇ ; �1Vˇ
.�/ is a representa-

tion of Z. We proceed over nonarchimedean fields. To show that JVˇ ; �1Vˇ
.�/ is a trivial

representation of h.1; UR/ amounts to proving JVˇËZ; �1Vˇ˝�
.�/ D 0 for any nontrivial

character � of Z. Combining Z and Vˇ together we are considering the following unipo-
tent subgroup and character:8̂̂̂<̂

ˆ̂:v D
0BBB@

1 x1;1 x1;2 x1;3 x1;4
1 x2;1 x2;2 x2;3 x2;4
1 x3;1 x3;2 x3;3 x3;4

u1 u2 1 x4;1 x4;2 x4;3 x4;4
1

1
1

1

1CCCA
9>>>=>>>; ;

. �1Vˇ ˝ �/.v/ D  .x1;4 � x2;2 C x3;1 C ˛1u1 C ˛2u2/:

We have an action of TGL2 on u1 and u2 separately, given by diag.x1; I2; x3; I3; x1/
(for u1) and diag.I2; x2; x3; x2; I3/. When considering each coordinate separately, there
are two orbits. The corresponding ' takes the form

' D

0BB@
0 0 0 0 0 0 0 1
0 0 0 0 0 �1 0 0
0 0 0 0 1 0 0 0
˛1 0 ˛2 0 0 0 0 0

0
0
0
0

1CCA ;
and a nontrivial � means .˛1; ˛2/ ¤ .0; 0/. Using conjugations by diag.J3; I5/ and by
diag.I4; g/ for a permutation matrix g 2 GL4 if necessary, we can assume the .4; 1/-th

and .1; 8/-th coordinates of ' are nonzero; then conjugating by diag
��

1
I2

1

�
; I4

�
, we

see that ' is nilpotent of order at least 3. Thus JVˇ ; �1Vˇ
.�/ is a trivial representation of

h.1; UR/ (� is .k; c/ D .2; 4/).
The Jacquet module JVˇ ; �1Vˇ

.�/ is also a representation of

h.1;GLn�l / D ¹diag.I3; a; I4/ W a 2 F �º:

Conjugating by � D diag
��

1
I2

1

�
; I4

�
, we can regard JVˇ ; �1Vˇ

.�/ as a representation

of diag.V.1;3/; I4/. Combining the coordinates of V.1;3/ and Vˇ , we then have
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ˆ̂:v D

0BBB@
1 v1 v2 v3 x4;1 x4;2 x4;3 x4;4
1 x2;1 x2;2 x2;3 x2;4
1 x3;1 x3;2 x3;3 x3;4
1 x1;1 x1;2 x1;3 x1;4

1
1

1
1

1CCCA
9>>>=>>>; ;

and note that we permuted the coordinates of xi;j (so that  �1Vˇ remains as above). The
tensor product of an arbitrary character � of V.1;3/ with  �1Vˇ takes the form

. �1Vˇ ˝ �/.v/ D  .x1;4 � x2;2 C x3;1 C #1v1 C #2v2 C #3v3/:

As above, we have the action of TGL2 on each of the coordinates vi : diag.x3;x5; I3;x5; I2/
for v1, diag.x3; 1; x2; 1; x2; I3/ for v2, and diag.x3; I2; x1; I3; x1/ for v3. The correspond-
ing ' is then nilpotent of order at least 3 when #1#2#3 ¤ 0. This is immediate when

#3 ¤ 0, using x1;4. If #3 D 0 and #2 ¤ 0, we conjugate by diag
�
I2; J2;

�
1

I2
1

��
and

use x3;1, otherwise #1 ¤ 0 and we conjugate by diag.1; J3; 1; J3/ and use x2;2.
Therefore JVˇ ; �1Vˇ

.�/ factors through V.1;7/, so that the original module JVˇ ; �1Vˇ
.�/

factors through ��1V.1;7/. Since det.diag.I3; a; I4// D a, we can use (2.7) to deduce
H .h/ D 0.

Propositions 2.5–2.14 imply H .h/ D 0 for all h such that h œ ı. Finally, consider
h D w.|nun/ � ı. We prove that for all s, dim H .ı/ D dim HomG.�

_
1 ; �

�
2/. In this case

Pı D .G
� � C ıH / Ë V.ck/, where G� D ¹.g; �g/ W g 2 Gº,  �1Vˇ belongs to the orbit of  k

(the choice of ı of [20] gives precisely  k), and any morphism in H .ı/ factors through
JV

.ck/
; k .�/. Note that C ıH is trivial unless H D GSpin2kc , in which case C ıH < Pı

because C ıG is mapped by the embedding g 7! .g; 1/ bijectively into C ıH (see also (1.3)).
Therefore

H .ı/ D HomG��Cı
H
.ı
�1

JV
.ck/

; k .�/˝ �˝ �
_
1 ˝ �

_
2 ; 1/:

Here jdetjs�1=2 and �h are absent because they are trivial on G� � C ıH .
ForH DGSpin2kc we assumed ��1 ;��2 exist; then H .ı/D 0 unless �D ��1�1 D ��2 ,

because for z1; z2 2 C ıG , .z1; z2/ is the element z�11 z2 of C ıH . When this condition holds,
we can finally ignore C ıH and � altogether.

Recall that GL4c denotes the diagonal embedding of G in M.ck/, and JV
.ck/

; k .�/ is

a trivial representation of SL4c . Since ıG� < SL4c (for H ¤ GSpin2kc ,
ıG� D G4), the

action of G� on ı
�1
JV

.ck/
; k .�/ is trivial, and because dimJV

.ck/
; k .�/ D 1 (see §1.4),

HomG�.
ı�1JV

.ck/
; k .�/˝ �

_
1 ˝ �

_
2 ; 1/ D HomG.�

_
1 ˝ .�

_
2 /
�; 1/ D HomG.�

_
1 ; �

�
2/:

This completes the proof of the first part of the theorem. For the second part, clearly
when �1 and �2 are irreducible, dim HomG.�

_
1 ; �

�
2/ � 1 and is zero unless �1 D .� �2/

_.
Under the assumptions of (a) (e.g., �2 is supercuspidal and c > 2), we do not need to
exclude any s, by Proposition 2.14 (which is the only case where the vanishing depends
on s).
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2.3. The case H D GL2kc

Write P nH=D D
`
h PhD with h D wu, where w is a representative from

W.MP /nW.H/ and u 2MQ \NH . Throughout this section we fix the standard identifi-
cation of W.H/ with permutation matrices in H . One can still describe w as a 2kc-tuple
of ¹0; 1º: if the i -th coordinate of w is 1, w permutes the i -th row into one of the
first kc rows, and if it is 0, then w permutes this row into one of the last kc rows. Of
course only vectors whose total sum of coordinates is kc are permissible (UP contains
kc nontrivial rows). Let p0.w/ denote the middle 2c coordinates of w, and p1.w/ (resp.,
p2.w/) denote the first (resp., last) .k � 1/c coordinates. Also note that in general, w
permutes row i into UP if and only if w�1 permutes column i out of UP .

For the case k D 1, we can parametrize P nH=.G �G/ using the elements

.0l ; 1c�l ; 0c�l ; 1l /ul;j ; 0 � l � c; 0 � j � l;

where

.0l ; 1c�l ; 0c�l ; 1l / D

�
Il

I2.c�l/
Il

�
; ul;j D

�
Il Al;j
I2.c�l/

Il

�
; Al;j D

�
Ij

0

�
:

The choice of matrix for .0l ; 1c�l ; 0c�l ; 1l / is not canonical, but can be used for conve-
nience.

Assume k � 1. Recall

MQ D GLc � � � � � GLc �H0 � GLc � � � � � GLc ; H0 D GL2c :

Given x 2 MQ, denote its projection into the left (resp., right) direct product of k � 1
copies of GLc by `1.x/ (resp., `2.x/), put `.x/ D `1.x/`2.x/, and let `0.x/ be the pro-
jection intoH0. We have the analogs of (2.14) and (2.15), in particular since .1;G/ <H0,
conjugation by elements of .1;G/ does not affect `.x/.

Proposition 2.18. Let h D wu, where w is a representative from W.MP /nW.H/ and
u 2MQ \NH . Then h� Ow Ou, where p0. Ow/D .0l ; 1c�l ; 0c�l

0

; 1l
0

/ for some 0� l; l 0 � c,
Ou 2MQ, there is � 2 .W.G/;W.G// with � Ou 2MQ \NH , and `0. Ou/ takes the form�

Il X
I2c�l�l0

Il0

�
(2.40)

for some X .

Proof. Identify NGLc � NGLc with its image in M.c;c/ < H0. Since NGLc � NGLc <

`0..G; G//, one can assume `0.u/ 2 V.c;c/, possibly multiplying `.u/ by an element in
MQ \NH .

One can find � 2 .W.G/; W.G// such that w� D w1 satisfies p0.w1/ D

.0l ; 1c�l ; 0c�l
0

; 1l
0

/ for some 0 � l; l 0 � c. Denote u1 D ��1u. Since `0..G; G// <
M.c;c/, we have `0.u1/ 2 V.c;c/. Also `.u1/ is in MQ, but might not be in NH . Then
wu � wu� D w1u1.
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Write the top right c � c block of `0.u1/ in the form
�
X1 X2

X3 X4

�
, X2 2 Matl�l 0 . Now

w1 conjugates the blocks X i , i ¤ 2, into P . Hence if u2 D z�1u1 with z 2 V.c;c/ defined
by these blocks, then w1u1 D w1zu2 � w1u2. Now `0.u2/ takes the form (2.40). Note
that `.u2/ D `.u1/, whence `.�u2/ D `.�u1/ D `.u/ 2MQ \NH , and `0.�u2/ 2 NH0
because `0..G;G// < M.c;c/. Thus �u2 2MQ \NH . Then Ow D w1 and Ou D u2 satisfy
the required properties.

Lemma 2.19. Let h D wu, where w and u are given by Proposition 2.18. Assume

 U jU\w�1UP
¤ 1: (2.41)

Then (2.6) also holds, i.e.,  U jU\h�1UP ¤ 1.

Proof. The proof is a repetition of the proof of Lemma 2.6, with only one case to consider.
In the notation of that proof, we only have to consider the case where the coordinate .i; j /
defining Y belongs to a block B 2 Matc . Then �Y is also defined by a coordinate in the
same block B . One change here is that � is in .W.G/;W.G// instead of .W.G/; 1/, but
this does not make any difference. In fact, .1; G/ commutes with all of the blocks of U
where  U is nontrivial.

Let now h D wu where w and u satisfy the properties of Proposition 2.18. In partic-
ular, w defines the integers 0 � l 0; l � c. Write

w D .w1k ; : : : ; w
1
1 ; w

2
1 ; : : : ; w

2
k/; 8i; j; w

j
i 2 ¹0; 1º

c :

With this notation

p0.w/ D .w
1
1 ; w

2
1/; w11 D .0

l ; 1c�l /; w21 D .0
c�l 0 ; 1l

0

/:

Proposition 2.20. We have H .h/ D 0 unless

w1i D .0
l ;�c�l /; w2i D .�

l ; 1c�l /; 81 < i � k: (2.42)

Proof. For k D 1 there is nothing to prove, so assume k > 1. Since w11 D .0l ; 1c�l /,
conjugation by w leaves the last c � l rows of u2;2 (see (1.2)) in UP ; these are rows

.k � 1/c C l C 1; : : : ; kc:

The character  U is nontrivial on the bottom right c � l � c � l block of u2;2, whence
H .h/ D 0 by (2.41) unless w�1 permutes the last c � l columns of u2;2, columns

.k C 1/c C l C 1; : : : ; .k C 2/c

outside of UP . This means w permutes rows

.k C 1/c C l C 1; : : : ; .k C 2/c
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into UP , i.e., w22 D .�
l ; 1c�l /. But these are also the last c � l rows of the block v1;2 of

the bottom right copy of V.ck�1/ in U . Since  U restricts to  ı tr on v1;2, H .h/ D 0 by
(2.41) unless w�1 permutes the last c � l columns of v1;2, columns

.k C 2/c C l C 1; : : : ; .k C 3/c

outside of UP . Thus w permutes rows

.k C 2/c C l C 1; : : : ; .k C 3/c

into UP , i.e. w23 D .�l ; 1c�l /, and these are the bottom c � l rows of v2;3. Proceeding
similarly ( U is  ı tr on vj;jC1) we obtain w2i D .�

l ; 1c�l / for all 1 < i � k.
In addition,w11 D .0

l ;1c�l / impliesw�1 permutes the first l columns of u1;1, columns

.k � 1/c C 1; : : : ; .k � 1/c C l;

into UP . Since  U restricts to  ı tr on u1;1, H .h/ D 0 by (2.41) unless w permutes the
first l rows of u1;1 outside of UP ; these are rows

.k � 2/c C 1; : : : ; .k � 2/c C l;

and we obtainw12 D .0
l ;�c�l /. Thenw�1 permutes the first l columns of the block vk�1;k

of the top left copy of V.ck�1/ in U , columns

.k � 2/c C 1; : : : ; .k � 2/c C l

into UP , so that H .h/ D 0 by (2.41) unless w permutes the first l rows of vk�1;k , rows

.k � 3/c C 1; : : : ; .k � 3/c C l;

outside of UP , i.e., w13 D .0
l ; �c�l /. Similarly, we deduce w1i D .0

l ; �c�l / for all 1 < i
� k.

For each 1 < i � k, let 0 � d1i�1 � c � l and 0 � d2i�1 � l be maximal such that for
all 1 < i � k,

w1i D .0
lCd1

i�1 ;�c�l�d
1
i�1/; w2i D .�

l�d2
i�1 ; 1c�lCd

2
i�1/:

The integer d ji�1 is defined since wji takes the form (2.42).

Proposition 2.21. We have H .h/ D 0 unless h � Ow Ou, p0. Ow/ D .0l ; 1c�l ; 0c�l
0

; 1l
0

/, for
each 1 < i � k,

w1i D .0
lCd1

i�1 ; 1c�l�d
1
i�1/; w2i D .0

l�d2
i�1 ; 1c�lCd

2
i�1/;

d11 � � � � � d
1
k�1; d21 � � � � � d

2
k�1;

(2.43)

and Ou satisfies the conditions of Proposition 2.18, in particular `0. Ou/ takes the form
(2.40).
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Proof. For each 1 < i � k, put w2i D ..w
2/0i ; 1

c�l / with .w2/0i 2 ¹0; 1º
l . Let 1 � j � l

and assume 1 < i0 � k is minimal such that .w2/0i0 Œj � D 1. Assume i > i0 is minimal
with .w2/0i Œj � D 0. Since .w2/0i�1Œj � D 1, w permutes row .k C i � 2/c C j into UP .
This row contains coordinates of a row from vi�2;i�1, and  U is  ı tr on vi�2;i�1, so
that on row .k C i � 2/c C j it is nontrivial on column .k C i � 1/c C j . Thus (2.41)
implies H .h/ D 0, unless w�1 permutes column .k C i � 1/c C j outside of UP , which
means that w permutes row .k C i � 1/c C j into UP , contradicting the assumption
.w2/0i Œj � D 0. Therefore .w2/0i Œj � D 1 for all i � i0 (or H .h/ D 0).

Now we are in a situation similar to the proof of Proposition 2.8. If i0 is
minimal with .w2/0i0 Œj � D 1 and .w2/0i0 Œj C 1� D 0, then for each i > i0, either
.w2/0i Œj � D 1, .w2/0i Œj C 1� D 0 or .w2/0i Œj � D .w

2/0i Œj C 1� D 1. Using transpositions
from .diag.W.GLl /; Ic�l /; 1/, one can sort the coordinates of the blocks w2i so that
d21 � � � � � d

2
k�1

. Any b 2 .diag.W.GLl /; Ic�l /; 1/ fixes the last c � l rows of w1i and
keeps the first l rows of w1i in w1i , for each 1 < i � k, and since w1i starts with .0l /,
we have p1.bw/ D p1.w/ (for brevity, we identify w1i with the rows it is affecting:
.k � i/c C 1; : : : ; .k � i/c C c). Additionally b fixes the last 2c � l rows of p0.w/ while
keeping the first l rows in p0.w/, thus p0.bw/ D p0.w/.

Similarly denotew1i D .0
l ; .w1/0i /with .w1/0i 2 ¹0;1º

c�l , and consider 1� j � c � l .
Suppose i0 > 1 is minimal with .w1/0i0 Œj � D 0 and i > i0 is minimal with .w1/0i Œj � D 1.
On the one hand, .w1/0i�1Œj �D 0, hencew permutes row .k � i C 1/cC j outside of UP ,
so thatw�1 permutes column .k � i C 1/cC j intoUP . On the other hand, .w1/0i Œj �D 1,
whence w permutes row .k � i/c C j into UP . Again H .h/ D 0 because of (2.41), oth-
erwise we deduce that if i0 exists then .w1/0i Œj � D 0 for all i � i0.

This means that unless H .h/ D 0, if i0 is minimal with .w1/0i0 Œj � D 1 and
.w1/0i0 Œj C 1� D 0, then for each i > i0, either .w1/0i Œj � D 1, .w1/0i Œj C 1�

D 0 or .w1/0i Œj � D .w1/0i Œj C 1� D 0. Again we use transpositions, now from
.diag.Il ; W.GLc�l //; 1/, to rearrange the coordinates of the blocks w1i and obtain d11 �
� � � � d1

k�1
. For b 2 .diag.Il ;W.GLc�l //; 1/, b fixes the first l rows of w2i and leaves the

last c � l rows in w2i for 1 < i � k, and because w2i (still) ends with .1c�l /, we have
p2.

bw/ D w. Also p0.bw/ D p0.w/.
Now condition (2.43) holds, and note that the conjugations affect u, but it still satisfies

the conditions of Proposition 2.18. As opposed to the proof of Proposition 2.8, we do
not claim `0. Ou/ D `0.u/, it might not hold because .diag.W.GLl /; Ic�l /; 1/ does not
commute with (2.40).

Let now h D wu, with w and u given by Proposition 2.21. Since the total sum of
coordinates of w must be kc, we have

c � l C l 0 C

k�1X
iD1

.c � l � d1i /C

k�1X
iD1

.c � l C d2i / D kc;

hence
k�1X
iD1

.d2i � d
1
i / D .k � 1/.2l � c/C l � l

0: (2.44)
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We can multiply w on the left by an element ofW.MP /, so that the matrix corresponding
to w takes the form0BBBBBBBBBBBBBBB@

0 I
c�lCd2

k�1

I
c�l�d1

k�1

0

0 ::
:

: : : 00@ Il
I2c�l�l0

Il0

1A
0 I

l�d2
1

: :
:

0

0
: : :

I
lCd1

k�1

0

1CCCCCCCCCCCCCCCA
:

For example, if k D 2, then

w D

0BBBBBB@

0 0 0 0 0 0 I
c�lCd2

1

0 I
c�l�d1

1

0 0 0 0 0

0 0 0 0 Il 0 0
0 0 0 I2c�l�l0 0 0 0

0 0 Il0 0 0 0 0

0 0 0 0 0 I
l�d2

1

0

I
lCd1

1

0 0 0 0 0 0

1CCCCCCA ;
and for k D 3,

w D

0BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0 I
c�lCd2

2

0 I
c�l�d1

2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 I
c�lCd2

1

0 0

0 0 0 I
c�l�d1

1

0 0 0 0 0 0 0

0 0 0 0 0 0 Il0 0 0 0 0

0 0 0 0 0 I2c�l�l0 0 0 0 0 0

0 0 0 0 Il 0 0 0 0 0 0
0 0 0 0 0 0 0 I

l�d2
1

0 0 0

0 0 I
lCd1

1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 I
l�d2

2

0

I
lCd1

2

0 0 0 0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCA
:

For 1 � j � k � 1, denote

j D diag

 
IPj�1

iD1
.c�l�d1

k�i
/
;

 
I
kc�.2j�1/.c�l/�d2

k�j
C
Pj�1
iD1

.d1
k�i
�d2
k�i

/

I
c�lCd2

k�j

!
;

IPj�1
iD1

.c�lCd2
k�i

/

!
2 W.GLkc/;

 0j D diag

 
IPj�1

iD1
.lCd1

k�i
/
;

 
I
lCd1

k�j

I
kc�.2j�1/l�d1

k�j
C
Pj�1
iD1

.d2
k�i
�d1
k�i

/

!
;

IPj�1
iD1

.l�d2
k�i

/

!
2 W.GLkc/;
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and multiply w on the left by diag.k�1 � : : : � 1;  0k�1 � : : : � 
0
1/. Now it follows that

hU \MP D Vˇ � Vˇ 0 , where ˇ and ˇ0 are the compositions of kc given by

ˇ D .c � l � d1k�1; : : : ; c � l � d
1
1 ; l
0
C c � l; c � l C d21 ; : : : ; c � l C d

2
k�1/;

ˇ0 D .l C d1k�1; : : : ; l C d
1
1 ; c � l

0
C l; l � d21 ; : : : ; l � d

2
k�1/:

Both ˇ and ˇ0 are indeed compositions of kc, by (2.44). Put  Vˇ�Vˇ0 D
h U jVˇ�Vˇ0 ,

 Vˇ D
h U jVˇ�Ikc and  Vˇ0 D

h U jIkc�Vˇ0 , and note that

JVˇ�Vˇ0 ; Vˇ�Vˇ0
.�/ D JVˇ ; Vˇ .�1/˝ JVˇ0 ; Vˇ0

.�2/: (2.45)

We start with describing w`0.u/ U jVˇ�Vˇ0 . For v 2 Vˇ and v0 2 Vˇ 0 , write

v D

0BBBBBBBBBBB@

I
c�l�d1

k�1

b1 ���

: : :
: : :

I
c�l�d1

2

bk�2 ���

I
c�l�d1

1

e bk�1 ���

Il0 0 bk ���

Ic�l bkC1 ���

: : :
: : :

I
c�lCd2

k�2

b2k�1

I
c�lCd2

k�1

1CCCCCCCCCCCA
;

v0 D

0BBBBBBBBBBBB@

I
lCd1

k�1

b0
1
���

: : :
: : :

I
lCd1

2

b0
k�2

���

I
lCd1

1

e0 b0
k�1

���

Ic�l0 0 f 0 ���

Il b0
k

���

: : :
: : :

I
l�d2

k�2

b0
2k�2

I
l�d2

k�1

1CCCCCCCCCCCCA
:

The dimensions of the blocks bi and b0i are clear; note that bk and bkC1 (resp., b0
k

) have
c � l C d21 (resp., l � d21 ) columns. Then

w`0.u/ U .diag.v; Ikc//

D  

0@� 2X
jDk�1

tr
�
bk�j

� 0
d1
j
�d1
j�1
�c�l�d1

j

I
c�l�d1

j

��
� tr

�
bk�1

�
0
d1
1
�c�l�d1

1

I
c�l�d1

1

��

�tr
�
bk

�
A.X/
0c�l�l0

��
C tr

�
bkC1

�
0
d2
1
�c�l

Ic�l

��
�

k�2X
jD1

tr
�
bkC1Cj

� 0
d2
jC1
�d2
j
�c�lCd2

j

I
c�lCd2

j

��1A ;
(2.46)



Multiplicity one theorems for generalized doubling 55

w`0.u/ U .diag.Ikc ; v0//

D  
�
�

2X
jDk�1

tr
�
b0k�j

�
I
lCd1

j�1

0
lCd1

j�1
�d1
j
�d1
j�1

��
� tr

�
b0k�1

�
Il 0l�d1

1

��
C tr

�
b0k
�
I
l�d2

1

0
l�d2

1
�d2
1

��
�

k�2X
jD1

tr
�
b0kCj

�
I
l�d2

jC1

0
l�d2

jC1
�d2
jC1
�d2
j

���
: (2.47)

In both formulas, the sums
P2
jDk�1 are omitted when kD2. The matrix A.X/2Matd2

1
�l 0

in (2.46) is uniquely defined given the block X of `0.u/, and in particular A.0/ D 0 and
when d21 D l D l

0, A.Il /D Il . For l D c, we have d1i D 0 for all i , and since d2i � c and
l 0 � c, (2.44) implies d2i D c for all i and l D l 0, then (2.47) becomes  �1

k
, and when

X D Ic , (2.46) also becomes  �1
k

.

Proposition 2.22. Assume k > 1 and H .h/ ¤ 0. The character  Vˇ belongs to the orbit
of

v 7!  

�
�

2X
jDk�1

tr.bk�j�/� tr
�
bk�1

�
�
d1
1
�c�l�d1

1

I
c�l�d1

1

��
� tr

�
bk

�
�
d2
1
�l0

0c�l�l0

��
C tr

�
bkC1

�
0
d2
1
�c�l

Ic�l

��
�

k�2X
jD1

tr
�
bkC1Cj

� �
d2
jC1
�d2
j
�c�lCd2

j

I
c�lCd2

j

���
;

(2.48)

and  Vˇ0 belongs to the orbit of

v0 7!  
�
�

2X
jDk�1

tr
�
b0k�j

�
I
lCd1

j�1

�
lCd1

j�1
�d1
j
�d1
j�1

��
� tr

�
b0k�1

�
Il 0l�d1

1

��
C tr

�
b0k
�
I
l�d2

1

�
l�d2

1
�d2
1

��
�

k�2X
jD1

tr.b0kCj�/
�
: (2.49)

Here � means undetermined block entries. When `.u/ is the identity, (2.48)–(2.49) coin-
cide with (2.46)–(2.47).

Proof. The proof is similar to the proof of Proposition 2.11. Now  U is defined by
2.k � 1/ blocks in Matc . Let B1;k�2 (resp., B2;0) be the block corresponding to u1;1

(resp., u2;2), and B1;0; : : : ; B1;k�3 (resp., B2;1; : : : ; B2;k�2) be the blocks corresponding
to the top left (resp., bottom right) embedding of V.ck�1/ < MP (see §1.5).

Set d10 D d
2
0 D 0. For 0 � i � k � 2, write B1;i as the upper right block of0BBBBBBBB@

I
lCd1

k�i�2

B
1;1
1;i

B
1;2
1;i

B
1;3
1;i

I
d1
k�i�1

�d1
k�i�2

B
2;1
1;i

B
2;2
1;i

B
2;3
1;i

I
c�l�d1

k�i�1

B
3;1
1;i

B
3;2
1;i

B
3;3
1;i

I
lCd1

k�i�2

I
d1
k�i�1

�d1
k�i�2

I
c�l�d1

k�i�1

1CCCCCCCCA
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and B2;i as the upper right block of0BBBBBBBB@

I
l�d2

iC1

B
1;1
2;i

B
1;2
2;i

B
1;3
2;i

I
d2
iC1
�d2
i

B
2;1
2;i

B
2;2
2;i

B
2;3
2;i

I
c�lCd2

i

B
3;1
2;i

B
3;2
2;i

B
3;3
2;i

I
l�d2

iC1

I
d2
iC1
�d2
i

I
c�lCd2

i

1CCCCCCCCA
:

Recall  U is given by

 
�
�

k�2X
iD0

3X
tD1

tr.B t;t1;i /C
3X
tD1

tr.B t;t2;0/ �
k�2X
iD1

3X
tD1

tr.B t;t2;i /
�
: (2.50)

Let MP (resp., UP , U �P ) denote the list of blocks conjugated by w into MP (resp.,
UP , U�P ):

MP D ¹B
1;1
j;i ; B

2;1
j;i ; B

3;2
j;i ; B

3;3
j;i W 1 � j � 2; 0 � i � k � 2º;

UP D ¹B
3;1
j;i W 1 � j � 2; 0 � i � k � 2º;

U �P D ¹B
1;2
j;i ; B

1;3
j;i ; B

2;2
j;i ; B

2;3
j;i W 1 � j � 2; 0 � i � k � 2º:

We can assume j̀ .u/ D diag.zj;0; : : : ; zj;k�2/, j D 1; 2, with zj;i 2 w�NGLc . Here w� is
the projection of .�; 1/�1 into the i -th copy of GLc ..1; �/ commutes with `.u/). We can
then write zj;i D z0j;imj;i where

wdiag.m1;0; : : : ; m1;k�2; I2c ; m2;0; : : : ; m2;k�2/ 2MP

and for all 0 � i � k � 2,

m1;i D

 
I
lCd1

k�i�1

M1
1;i

M2
1;i

I
c�l�d1

k�i�1

CM2
1;i
M1
1;i

!
2 GLc ;

m2;i D

 
I
l�d2

iC1

M1
2;i

M2
2;i

I
c�lCd2

iC1

CM2
2;i
M1
2;i

!
2 GLc ;

Ic�l�d1
k�i�1

CM 2
1;iM

1
1;i 2 GLlCd1

k�i�1
;

Ic�lCd2
iC1
CM 2

2;iM
1
2;i 2 GLc�lCd2

iC1
:

Then

m�11;i D

 
I
lCd1

k�i�1

CM1
1;i
M2
1;i

�M1
1;i

�M2
1;i

I
c�l�d1

k�i�1

!
2 GLc ;

m�12;i D

 
I
l�d2

iC1

CM1
2;i
M2
2;i

�M1
2;i

�M2
2;i

I
c�lCd2

iC1

!
2 GLc :

Henceforth we assume zj;i D mj;i . To compute `.u/ U we calculate

m�11;k�2B1;k�2; m�11;iB1;im1;iC1; B2;0m2;0; m�12;iB2;iC1m2;iC1; 80 � i � k � 3:



Multiplicity one theorems for generalized doubling 57

We start with  Vˇ and show that it belongs to the orbit of (2.48), otherwise H .h/D 0.
This amounts to the description of its restriction to bk�1; : : : ; b2k�1 and e. The rightmost
c � l columns of bk�1 consist of B3;2

1;k�2
and B3;3

1;k�2
(the leftmost l 0 columns are con-

jugated from the c � c block to the right of u1;1). Looking at m�1
1;k�2

B1;k�2, if the top

l rows of M 1
1;k�2

are nonzero, u U is nontrivial on B3;1
1;k�2

2 UP . Hence H .h/ D 0 by

(2.6) in this case. Also u U restricts to  ı tr on B3;3
1;k�2

. Hence  Vˇ agrees with (2.48)
on bk�1.

The block bkC1 consists of .B3;22;0 ; B
3;3
2;0/ and we consider B2;0m2;0. If the last c � l

columns of M 1
2;0 are nonzero, u U is nontrivial on B3;12;0 2 UP . Unless H .h/ D 0, we

find that the last c � l columns of M 1
2;0 are 0; then it follows that u U and  U coincide

on .B3;22;0 ; B
3;3
2;0/.

Regarding bk , it is conjugated by w from the c � c block below u2;2. Denote this
block by B0; we further divide it by writing it as the upper right block of0BBBBBB@

Ic�l0 B
1;1
0

B
1;2
0

B
1;3
0

I
l0�d2

1

B
2;1
0

B
2;2
0

B
2;3
0

I
d2
1

B
3;1
0

B
3;2
0

B
3;3
0

I
l�d2

1

I
d2
1

Ic�l

1CCCCCCA :

Here

B
1;1
0 ; B

2;2
0 ; B

2;3
0 ; B

3;2
0 ; B

3;3
0 2MP ; B

2;1
0 ; B

3;1
0 2 UP ; B

1;2
0 ; B

1;3
0 2 U �P :

The blocks conjugated into bk are B2;20 ; B
2;3
0 ; B

3;2
0 and B3;30 . The conjugation of U

by `.u/multiplies B0 on the right bym�12;0. The restriction of `0.u/ U to B2;20 and B3;20 is
defined by A.X/, but `0.u/ U can also be nontrivial on B2;10 or B2;20 (or we could have,
e.g., d21 D 0; l). We can assume `0.u/ U is given on B0 by

 

 
tr

 
'k

 
B
1;1
0

B
1;2
0

B
1;3
0

B
2;1
0

B
2;2
0

B
2;3
0

B
3;1
0

B
3;2
0

B
3;3
0

!!!
; 'k D

 
0
l�d2

1
�c�l0

A1.X/

0
d2
1
�c�l0

A.X/

0c�l�c�l0 0c�l�l0

!
; A1.X/ 2Matl�d2

1
�l 0 :

(2.51)

Here A1.X/ defines the restriction of `0.u/ U to B2;10 and B3;10 . When we consider
m2;0'k we see that the restriction of u U to B2;10 ; B

3;1
0 2 UP is given by the first l � d21

rows of m2;0 multiplied by the last l 0 columns of 'k ; this restriction should vanish, and
the restriction to the blocks conjugated into bk corresponds to the last c � l C d21 rows
ofm2;0 multiplied by the last l 0 columns of 'k . Since the last c � l columns ofM 1

2;0 are 0,

we can denote M 1
2;0 D

�
˛ 0

l�d2
1
�c�l

�
. Also put M 2

2;0 D

�
ˇ1

ˇ2

�
with ˇ1 2 Matd2

1
�l�d2

1
;

then

m2;0

�
A1.X/
A.X/
0c�l�l0

�
D

0@ I
l�d2

1

˛ 0

ˇ1 I
d2
1

Cˇ1˛ 0

ˇ2 ˇ2˛ Ic�l

1A� A1.X/
A.X/
0c�l�l0

�
D

 
A1.X/C˛A.X/

ˇ1A1.X/CId2
1

Cˇ1˛A.X/

ˇ2A1.X/Cˇ
2˛A.X/

!
:
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Now if H .h/ ¤ 0, we must have A1.X/C ˛A.X/ D 0, so ˇ2A1.X/C ˇ2˛A.X/ D 0,
in which case  Vˇ agrees with (2.48) on bk . Thus both characters agree on bk�1, bk
and bkC1.

Consider bkCi , 2 � i � k � 1. We multiply m�12;i�2B2;i�1m2;i�1. The block bkCi
consists of B3;22;i�1 and B3;32;i�1. Recall B3;12;i�1 2 UP . Then H .h/ D 0 unless the top right
l � d2i � c � l C d

2
i�1 block of m2;i�1m�12;i�2 is 0:

�
I
l�d2

i

M1
2;i�1

� � �M1
2;i�2

I
c�lCd2

i�1

�
D 0:

In this case the restriction of u U to .B3;22;i�1; B
3;3
2;i�1/, which corresponds to the bottom

right c � l C d2i � c � l C d
2
i�1 block of m2;i�1m�12;i�2, is defined by

�
M2
2;i�1

I
c�lCd2

i

CM2
2;i�1

M1
2;i�1

� � �M1
2;i�2

I
c�lCd2

i�1

�
D
�
0
c�lCd2

i
�l�d2

i

I
c�lCd2

i

� � �M1
2;i�2

I
c�lCd2

i�1

�
D

�
�
d2
i
�d2
i�1
�c�lCd2

i�1

I
c�lCd2

i�1

�
:

Therefore  Vˇ agrees with (2.48) on bkCi .
Also  Vˇ je D 1, because e is conjugated from the c � c block to the right of u1;1.

This completes the proof for  Vˇ .
We turn to the restriction of  Vˇ0 to b01; : : : ; b

0
k

, e0 and f 0, and prove that unless
H .h/ D 0,  Vˇ0 and (2.49) coincide. The block b0

k
corresponds to B1;12;0 and B2;12;0 . Con-

sideringB2;0m2;0, the restriction of u U to these blocks is given by the top left l � d21 � l
block of m2;0, namely

 

�
tr
��

I
l�d2

1

�
l�d2

1
�d2
1

� � B1;1
2;0

B
2;1
2;0

���
:

Hence  Vˇ0 and (2.49) coincide on b0
k

.
The block b0

k�1
is conjugated from B

1;1
1;k�2

and B2;1
1;k�2

. This is similar to bkC1. We
multiply m�1

1;k�2
B1;k�2 and if the first l rows of M 1

1;k�2
are nonzero, u U is nontrivial

on B3;1
1;k�2

2UP whence H .h/D 0. Henceforth we can assume the first l rows ofM 1
1;k�2

are 0; then the top left l � l C d11 block ofm�1
1;k�2

equals
�
Il 0l�lCd1

1

�
, so that the restric-

tion of u U to B1;1
1;k�2

and B2;1
1;k�2

coincides with the restriction of  U ( ı tr on the
former, trivial on the latter).

Consider b0i , 1� i � k � 2. We multiplym�11;i�1B1;i�1m1;i . The block b0i is conjugated
from .B

1;1
1;i�1; B

2;1
1;i�1/. This is similar to the case of bkCi . Since B3;11;i�1 2 UP , H .h/ D 0

unless the top right l C d1
k�i�1

� c � l � d1
k�i

block of m1;im�11;i�1 is 0, i.e.,

�
I
lCd1

k�i�1

M1
1;i

� � �M1
1;i�1

I
c�l�d1

k�i

�
D 0:
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Then the restriction of u U to .B1;11;i�1; B
2;1
1;i�1/, which corresponds to the top left l C

d1
k�i�1

� l C d1
k�i

block of m1;im�11;i�1 becomes

�
I
lCd1

k�i�1

M1
1;i

� � I
lCd1

k�i

CM1
1;i�1

M2
1;i�1

�M2
1;i�1

�
D
�
I
lCd1

k�i�1

M1
1;i

� � I
lCd1

k�i
0
c�l�d1

k�i
�lCd1

k�i

�
D
�
I
lCd1

k�i�1

�
lCd1

k�i�1
�d1
k�i
�d1
k�i�1

�
;

hence  Vˇ0 agrees with (2.49) on b0i .
The character  Vˇ0 is trivial on f 0, because f 0 is conjugated from B

1;1
0 (see (2.51),

the top left l � d21 � c � l
0 block of 'k). It is also trivial on e0 since it is conjugated from

the c � c block to the right of u1;1 (this is similar to e).

Proposition 2.23. Consider k > 1. Assume d11 < c � l .in particular l < c/ or d21 < l
.in particular 0 < l/. Then JVˇ�Vˇ0 ; �1Vˇ�Vˇ0

.�/ D 0 and H .h/ D 0.

Proof. We argue as in the proof of Proposition 2.12. By Proposition 2.22, we can
assume  Vˇ (resp.,  Vˇ0 ) is given by (2.48) (resp., (2.49)). Let ' be the transpose of
the nilpotent element defined by  �1Vˇ (resp.,  �1Vˇ0 ). By (2.45) and [46, Theorems A, E],
because �1 (resp., �2) is .k; c/, it is enough to show that ' is nilpotent of order at least
k C 1.

Consider d11 < c � l . Looking at (2.48), we have k nontrivial blocks bk�1; bkC1; : : : ;
b2k�1, and for each block, the bottom right coordinate is nontrivial and the other coordi-
nates in its column in ' are 0. This does not depend on the undetermined coordinates of
the character. To see this use the assumption c � l � d11 > 0 for bk�1 and l < c for bkC1,
and the bottom right coordinate of bkC1 is the only nonzero coordinate in its column in '
because on the l 0 � c � l C d21 block bk above bkC1, ' is 0 in the last c � l columns (if
l 0 D 0, this is trivially true). It follows that ' is nilpotent of order at least k C 1.

For the case d21 < l , the blocks b01; : : : ; b
0
k

are k nontrivial blocks, the top left coor-
dinate of each block is nontrivial (use l > 0 and d21 < l) independently of undetermined
coordinates, and is the only nonzero coordinate in its row (for b0

k�1
use the fact that (2.49)

is trivial on e0!). Again ' is nilpotent of order at least k C 1.

Remark 2.24. If l D l 0, the conditions d11 D c � l and (2.44) already imply d2i D l for
all i .

For the remaining cases k D 1 or both d11 D c � l and d21 D l , in which case d1i D
c � l and d2i D l for all i , whence by (2.44) we have, for all k � 1, l 0 D l . Up to left
multiplication by an element of W.MP /, w equals0BBBBBBB@

Ic

: :
:

Ic 
Il

I2.c�l/
Il

!
Ic

: :
:

Ic

1CCCCCCCA ;
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so that w`.u/ 2 P and h � w`0.u/ (we still do not change w, in order to use ˇ; ˇ0 and
the formulas for the characters given above). Therefore  Vˇ and  Vˇ0 are already given
by (2.46) and (2.47). Considering the action of .GLl ;GLl /, where GLl is the natural
subgroup of M.l;c�l/, we can already write X D Al;j D

�
Ij

0l�j

�
with 0 � j � l . We

deduce there are only finitely many more representatives to analyze, but as opposed to
§2.2, we must handle each 0 � j � l separately (i.e., we cannot easily reduce to j D l).
The form of representatives is finally similar to the case k D 1. For the representative h
such that j D l D c we have h � ı.

Proposition 2.25. Assume d11 D c � l or k D 1, and 0 � l < c. Then H .h/ D 0 outside
a discrete subset of s. Furthermore, if l > 0 . forcing c > 1/ and �2 is supercuspidal, or
ck > 1, l D 0, �1 and �2 are supercuspidal and �2 D �c.�2/ for an irreducible super-
cuspidal representation �2 of GLk , then H .h/ D 0 for all s.

Proof. Now Vˇ D Vˇ 0 D V.ck/. Consider the parabolic subgroup R < G with MR D

M.c�l;l/ and UR D V �.c�l;l/. Note that V �
.c�l;l/

is trivial if l D 0. Identify the group GLc�l
(nontrivial for 0 � l < c) with its natural image in MR.

For convenience, we multiply w on the left by diag
�
I2kc�c ;

�
Il

Ic�l

��
. This permu-

tation normalizes Vˇ � Vˇ 0 , fixes  Vˇ and conjugates  Vˇ0 into0B@
Ic b

0
1

: : :
: : :
Ic b

0
k�1

e0

Il
Ic�l

1CA 7!  
�
�

2X
jDk�1

tr.b0k�j / � tr.b0k�1 . Il 0l�c�l //
�
: (2.52)

Now h.1;GLc�l /D diag.I2kc�.c�l/;GLc�l /, and since the character (2.52) is trivial on e0,
JVˇ�Vˇ0 ; 

�1
Vˇ�Vˇ0

.�/ is a well defined representation of h.1;GLc�l /.

Over nonarchimedean fields, we simultaneously prove that JVˇ�Vˇ0 ; �1Vˇ�Vˇ0
.�/ is,

for all s, a trivial representation of h.1; UR/, and admits a finite length filtration as
a representation of h.1;GLn�l /, where h.1; CGLn�l / acts by a character on each con-
stituent. For archimedean fields we prove that h.1; uR/ acts locally nilpotently on
JVˇ�Vˇ0 ; 

�1
Vˇ�Vˇ0

.�/�, and the Lie algebra v..k�1/cCl;c�l/ of diag.Ikc ; V..k�1/cCl;c�l//

acts locally nilpotently on JVˇ�Vˇ0 ; �1Vˇ�Vˇ0
.�/�. Note that h.1;GLn�l / is a direct factor

of diag.Ikc ;M..k�1/cCl;c�l//. (Cf. Lemmas 2.15 and 2.16.)
Granted that, since h

�1
.jdetjs�1=2/.1; aIc�l / D jaj�.c�l/.s�1=2/, one can apply (2.7)

to deduce H .h/ D 0 outside a discrete subset of s. For l > 0, if �2 is supercuspidal,
H .h/ D 0 for all s (because JUR.�

_
2 / D 0).

Henceforth we identify GLkc with the bottom right block of MP . For u 2 UR,
h.1; u/ D muu

0 with u0 2 UP and mu D diag
�
I.k�1/c ;

�
Il Al;ju

Ic�l

��
. Let Z D

diag.I.k�1/c ; V.l;c�l//. This (abelian) group stabilizes (2.52). In addition, the subgroups
diag.Ikc�.c�l/; GLc�l / and diag.GLl ; Ic�l /4 < GLkc stabilize (2.52), and act on the
characters of Z with two orbits.



Multiplicity one theorems for generalized doubling 61

Over nonarchimedean fields, we show that for any nontrivial character � of Z,

JVˇ0ËZ; 
�1
Vˇ0
˝�.�2/ D 0; (2.53)

which implies (by [11, §§5.9–5.12])

JVˇ0 ; 
�1
Vˇ0

.�2/ D JVˇ0ËZ; 
�1
Vˇ0

.�2/: (2.54)

Thus JVˇ0 ; �1Vˇ0
.�2/ is a trivial representation of h.1; UR/ and this Jacquet module fac-

tors through JV..k�1/cCl;c�l/.�2/, which is an admissible finite length representation of
M..k�1/cCl;c�l/. By exactness JVˇ0 ; �1Vˇ0

.�2/ admits a finite length filtration such that on

each constituent, h.1; CGLc�l / acts by a character. Now by (2.45), JVˇ�Vˇ0 ; �1Vˇ�Vˇ0
.�/ is

a trivial representation of h.1; UR/ and admits a finite filtration with h.1; CGLc�l / acting
by a character on each constituent.

For the proof of (2.53) we can assume l > 0, otherwise (2.54) is trivial. Identifying Z
with Matl�c�l , we can assume � is nontrivial on the bottom right coordinate of Z, and
trivial on the other coordinates of the rightmost column. Let ' be the transpose of the
nilpotent element defined by the inverse of (2.52) and by �. Note that ' is independent

ofAl;j . After conjugating ' by diag
��

Ic�l
Il

�40
; Ic

�
(GL4

0

c is the diagonal embedding

of GLc in GL.k�1/c), it has nontrivial entries on the bottom right coordinates of k blocks:
b01; : : : ; b

0
k�1

and Z, and in each block there is only one nontrivial entry in the rightmost
column. Therefore ' is nilpotent of order at least k C 1 and (2.53) holds, because �2
is .k; c/.

Over archimedean fields we repeat the proof of (2.53) and apply [47, Proposition
3.0.1] for each coordinate of Z separately, exactly as in the proofs of Lemmas 2.15
and 2.16.

It remains to prove the stronger assertion when ck > 1, l D 0, both �1 and �2 are
supercuspidal and �2 D �c.�2/ for an irreducible supercuspidal �2. Since �2 is supercus-
pidal and JVˇ0 ; �1Vˇ0

.�2/ factors through JV..k�1/c;c/.�2/D JV..k�1/c;c/.�c.�2//, we obtain

H .h/ D 0 for all s, unless c D tk for some integer t � 1 (use [12, Theorem 2.13 (a)]).
If t > 1, in particular c > k, and we claim JV..k�1/c;c/.�2/ is trivial on h.1; Vı/ for

some composition ı of c, then because �2 is supercuspidal, H .h/ D 0 for all s. This
follows by repeatedly applying the derivatives of Bernstein and Zelevinsky [11, 12] to
JV..k�1/c;c/.�2/. Indeed, for 1 � i � c, let �i be the character of V..k�1/c;c�i;1i / given by
�i .z/ D  .

Pi
i 0D1 zkc�i 0;kc�i 0C1/. Then either

JV..k�1/c;c/.�2/ D JV..k�1/c;c�1;1/.�2/;

in which case our claim is proved with ı D .c � 1; 1/, or

JV..k�1/c;c/.�2/ D JV..k�1/c;c�1;1/;�1.�2/:
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We proceed with i D 2. After i steps, our claim is either proved with ı D .c � i; 1i /, or

JV..k�1/c;c/.�2/ D JV..k�1/c;c�i;1i /;�i .�2/:

However, since c > k, for i D c we already obtain JV..k�1/c;1c/;�c .�2/ D 0, because the
highest derivative of �2 is k (put differently, the suitable ' is nilpotent of order at least
k C 1).

Lastly, for c D k > 1, JV..k�1/c;c/.�2/D jdetj˛1�c�1.�2/˝ jdetj˛2�2, where ˛1; ˛2 2
1
2
Z (see [115, Theorem 3.4]) and �c�1.�2/ is .k; c � 1/, then (because l D 0)

JVˇ0 ; 
�1
Vˇ0

.�2/ D jdetj˛1JV
.ck�1/

; k�1.�2/˝ jdetj˛2�2:

Hence diag.SL4
0

c ; Ic/ acts trivially on JVˇ0 ; �1Vˇ0
.�2/. Additionally because  �1Vˇ belongs

to the orbit of  k (l D 0, see (2.46)), SL4c acts trivially on JVˇ ; �1Vˇ
.�1/. Thus h.SLc ; 1/

acts trivially on JVˇ�Vˇ0 ; �1Vˇ�Vˇ0
.�/, in particular H .h/D 0 for all s, because �1 is super-

cuspidal.

For the remaining cases, l D c and 0 � j � c (recall j is the rank of Al;j ). The cases
j < c are similar to l < c, but involve Vˇ and  Vˇ .

Proposition 2.26. Assume 0 � j < l D c or k D 1. Then H .h/ D 0 outside a discrete
subset of s. Furthermore, if j > 0 and �2 is supercuspidal, or ck > 1, j D 0, �1 and �2
are supercuspidal and �1 D �c.�1/ for an irreducible supercuspidal representation �1 of
GLk , then H .h/ D 0 for all s.

Proof. In this case X D Ac;j D
�

Ij
0c�j

�
, so that if we consider R < G with MR D

M.c�j;j / and UR D V �.c�j;j /, we can repeat most of the proof of Proposition 2.25 (with j
instead of l), except we use Vˇ instead of Vˇ 0 (hence, e.g., �1 instead of �2).

Identify GLc�j with its natural image in MR. We note that h.1; GLc�j / D
diag.GLc�j ; I.2k�1/c/. The character  Vˇ is now given by0B@ Ic bk

Ic bkC2
: : :

: : :
Ic b2k�1

Ic

1CA 7!  
�
�tr.bkAc;j / �

k�1X
jD2

tr.bkCj /
�
;

and  V 0
ˇ
D  �1

k
. Then JVˇ�Vˇ0 ; 

�1
Vˇ�Vˇ0

.�/ is a well defined representation of

h.1;GLc�j /.
We proceed over nonarchimedean fields, and prove that for all s, JVˇ�Vˇ0 ; �1Vˇ�Vˇ0

.�/

is a trivial representation of h.1; UR/ and factors through JV.c�j;jC.k�1/c/.�1/.
Since h

�1
.jdetjs�1=2/.1;aIc�j /D jaj.c�j /.s�1=2/, H .h/D 0 outside a discrete subset

of s by (2.7). For j > 0 (then l D c > 1), if �2 is supercuspidal, then H .h/ D 0 for all s.
For more details and the archimedean case see the proof of Proposition 2.25.
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Identify GLkc with the top left block of MP . Let Z D diag.V.c�j;j /; I.k�1/c/ Š
Matc�j�j . For u 2 UR we have h.1; u/ D muu0 with mu 2 Z and u0 2 UP . The group
Z stabilizes  Vˇ , and the set of characters of Z is partitioned into two orbits with respect
to the action of diag.GLc�j ; Ikc�.c�j // and ¹diag.Ic�j ; g; diag.g; Ic�j /4

0

/ W g 2 GLj º.
We show that for any character � ¤ 1 of Z,

JVˇËZ; �1Vˇ˝�
.�1/ D 0: (2.55)

This implies that JVˇ�Vˇ0 ; �1Vˇ�Vˇ0
.�/ is a trivial representation of h.1; UR/ and factors

through JV.c�j;jC.k�1/c/.�1/.
For the proof of (2.55) assume j > 0. We can assume � is nontrivial on the bot-

tom right coordinate of Z, and trivial on the other coordinates in the rightmost col-
umn. Let ' be the transpose of the nilpotent element defined by  �1Vˇ ˝ �, which now
depends on Al;j (as opposed to the proof of Proposition 2.25). Using a conjugation by

diag
�
Ic ;
�

Ic�j
Ij

�40�
, we obtain ' which has nontrivial entries on the bottom right

coordinates of bk ; bkC2; : : : ; b2k�1 and Z (k blocks). This proves (2.55), because �1 is
.k; c/.

The proof of the assertion for the case ck > 1, j D 0, supercuspidal representations �1
and �2, and �1 D �c.�1/ for an irreducible supercuspidal �1, proceeds as in the proof of
Proposition 2.25. Since now JV.c�j;jC.k�1/c/.�1/ D JV.c;.k�1/c/.�1/, we have H .h/ D 0

for all s unless cD tk, t � 1. For t > 1we use derivatives along V.1i ;c�i;.k�1/c/, 1� i � c.
For c D k > 1, JV.c;.k�1/c/.�1/D jdetj˛3�1 ˝ jdetj˛4�c�1.�1/ and �c�1.�1/ is .k; c � 1/,
hence h.SLc ; 1/ acts trivially on JVˇ�Vˇ0 ; �1Vˇ�Vˇ0

.�/.

Propositions 2.18–2.26 imply H .h/D 0 for all h unless h� ı. We prove dim H .ı/D

dim HomG.�0�
_
1 ; �2/, for all s. Now Pı D G� Ë .V.ck/ � V.ck// with G� D ¹.g; g/ W

g 2 Gº (for H D GL2kc one can take � D Ic ; we keep the notation G� for uniformity)
and any morphism in H .ı/ factors through JV

.ck/
�V
.ck/

; k˝ k .�/. Hence

H .ı/ D HomG�.
ı�1JV

.ck/
�V
.ck/

; k˝ k .�/˝ �
_
1 ˝ �

_
2 ; 1/:

Note that jdetjs�1=2 ˝ jdetj�sC1=2 and �h are trivial on G�.
We can assume ı commutes with G� (G� is simply the diagonal embedding of G

in H ). Then as a representation of G�,

ı�1JV
.ck/
�V
.ck/

; k˝ k .�/ D JV.ck/; k .�1/˝ JV.ck/; k .�2/:

Recall that the action of G� on JV
.ck/

; k .�1/˝ JV.ck/; k .�2/ is given by g 7! �0.det g/
(g 2 G) for some quasi-character �0 of F � (see §2.1), therefore

HomG�.
ı�1JV

.ck/
�V
.ck/

; k˝ k .�/˝ �
_
1 ˝ �

_
2 ; 1/ D HomG.�0�

_
1 ; �2/:

The remaining parts of the proof now follow as in §2.2, and note that when ck > 1, �1
and �2 are supercuspidal and �i D �c.�i / for irreducible supercuspidal representations �i
of GLk , i D 1; 2, we do not need to exclude any s.
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3. Applications

3.1. Covering groups

In this section we describe the extension of Theorem 2.1 to certain covering groups. We
proceed with the definitions and notation of §1.5. Let m � 1. Assume F � contains the
full group �m of m-th roots of unity. A topological central extension of G.F / by �m is
an exact sequence of topological groups

1! �m
i
�! G.m/

p
�! G.F /! 1;

where i and p are continuous, i.�m/ is closed and belongs to the center of G.m/, and p
induces an isomorphism i.�m/nG

.m/ Š G.F / of topological groups. We call G.m/ an
m-fold covering group of G.F /; it is in general not unique, but for G.F / D Spc.F / it is
uniquely defined given a Steinberg symbol (e.g., a Hilbert m-th order symbol). The cov-
ering groups under consideration here were constructed, in increasing level of generality,
through a series of works including [16,67,70,71,80,85,101,112]. For further references
see [8, 81].

In this section we assume the field is nonarchimedean; then G.m/ is an l-group in
the sense of [11]. For m > 2, an archimedean field is already complex; then the cover is
split over the group so that the results in this case are immediate from the linear case. As
above, we identify F -groups with their F -points. Of course this only applies to G and its
subgroups; G.m/ is not an algebraic group.

In general forX <G, zX denotes the covering ofX (more precisely, ofX.F /) defined
by restriction fromG.m/. This covering depends on the embedding ofX insideG. We say
that zX is split over X if there is a group embedding X ! zX . If X is perfect (as an F -
group), such a splitting, if it exists, is unique. Note that since F is of characteristic 0,
Spc and SLc are perfect. The coverings under consideration are split canonically over
unipotent subgroups, hence the notions of Jacquet functors and unipotent orbits extend
to the covering in the obvious way. If Y is a unipotent subgroup of G, denote by 'Y W
Y ! zY the splitting of Y . Since 'Y is canonical, we usually omit it from the notation,
e.g., ifR <G is a parabolic subgroup and we consider a genuine representation � of zMR,
for the induced representation IndG

.m/

zR
.�/ we extend � trivially on UR, more precisely

on 'Y .UR/. Since we are considering central coverings, G acts on G.m/ by conjugation.
In particular,

h'Y .y/ D 'hY .
hy/; 8y 2 Y: (3.1)

We describe a general system of assumptions for covering groups, under which the
doubling construction is well defined, and then state the analog of Theorem 2.1. For the
particular cases of the covering Sp.m/c of [80] and the covering fGLc obtained by restriction
from Sp.m/2c , these assumptions were verified in [64]. More details are given below; see
also Corollary 3.5.

Fix a covering groupG.m/. Assume there is a covering zH ofH (typically zH DH .m/)
with the following properties.
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(1) For H D GSpin2kc , the preimage zC ıH of C ıH in zH belongs to the center of zH , and
zC ıH is split over C ıH . The same properties are satisfied by the preimage zC ıG of C ıG
in zG.

(2) Let e1.g/ D .g; 1/ and e2.g/ D .1; g/. These are the embeddings of G into MQ in
the linear case. Assume they extend to embeddings zei W G.m/ ! Aei .G/.

(3) The restriction of ze2 to�m is the identity. (Here we regard�m as a subgroup ofG.m/.)

(4) The images of ze1 and ze2 commute in zH , and give rise to a homomorphism

¹.�1; �2/ 2 �m � �m W �1 D �2ºnG
.m/
�G.m/ ! zMQ: (3.2)

This is (automatically) an embedding unlessH DGSpin2kc , in which case we further
assume that ze1.z/ze2.z/ is the identity for z 2 C ıG ; then the left hand side of (3.2) is
further divided by the subgroup ¹.z;z/ W z 2C ıGº (a subgroup by (1)). Cf. (1.3). Denote
the left hand side of (3.2) by .G;G/.m/.

(5) ForH D GL2kc , the preimages of the direct factors GLkc ofMP commute in zH , and
the coverings fGLkc of each copy of GLkc are isomorphic.

(6) Identify fGLkc with zMP if H ¤ GL2kc , or with the covering of one of the copies of
GLkc in MP for H D GL2kc . Assume fGLkc is split over SL4c .

(7) For H D GL2kc , assume zMP is split over ¹diag.g4; g4/ W g 2 GLcº.

(8) The involution � extends to an involution of G.m/ and for a genuine representation �
of G.m/, .�_/� D .� �/_.

(9) For any maximal parabolic subgroup R < G whose Levi part contains GLl , the cov-
ering fGLl has the property that for a sufficiently large integer d , the preimage of
C dGLl

D ¹xd W x 2 CGLl º belongs to the center of fGLl .

First we use these properties to construct the basic data for the doubling method.
Define fGLkc by (6). Let � be a genuine representation of fGLkc . We say that � is a
.k; c/ representation if HomV.�/.�;  

0/ D 0 for all � % .kc/ and  0 2 bV .�/gen, and
dim HomV

.ck/
.�;  k/ D 1. By (6), the action of SL4c on JV

.ck/
; k .�/ is well defined,

then it is trivial.
If H ¤ GL2kc , let � be a genuine admissible finite length .k; c/ representation offGLkc . For H D GSpin2kc , by (1) the irreducible representations of zC ıH are the lifts of

quasi-characters of F � to genuine characters; therefore, if � is a quasi-character of F �

which we regard also as a character of zC ıH , the representation �˝ � is well defined. For
H D GL2kc , by (5) we have

¹.�1; �2/ 2 �m � �m W �1�2 D 1ºnfGLkc � fGLkc Š zMP :

Hence � D �1 ˝ �2 is defined for genuine representations �1 and �2, which we take to be
admissible finite length and .k; c/. The space V.s; �˝ �/ is now defined as in §1.5, with
induction from zP to zH .

If H D GL2kc , according to (7) there is a quasi-character �0 of F � such that the
action of ¹diag.g4; g4/ W g 2 GLcº on ı�1.JV

.ck/
; k .�1/˝ JV.ck/; k .�2// is given by

g 7! �0.detg/.
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Let �1 (resp., �2) be an anti-genuine (resp., genuine) finite length admissible repre-
sentation ofG.m/. IfH DGSpin2kc , we assume �1 and �2 admit central characters. Then
by (1) these characters restrict to genuine characters of zC ıH , denoted ��1 and ��2 , which
we can identify with quasi-characters of F �. We assume ��1�1 D ��2 and put � D ��1�1 .
Consider the space

Hom.G;G/.m/

�
JU; �1

U
.V .s; �˝ �//; �1 ˝ �2

�
: (3.3)

The representation V.s; � ˝ �/ is a priori a representation of .G;G/.m/ by (4). Since �1
is anti-genuine and �2 is genuine, �1 ˝ �2 factors through .G;G/.m/, and it follows that
(3.3) is well defined.

RecallD D U Ì .G;G/ and denoteD.m/ D U Ì .G;G/.m/. Then (3.3) is isomorphic
to

HomD.m/.V .s; �˝ �/;  
�1
U ˝ �1 ˝ �2/: (3.4)

By (3), V.s; �˝ �/ is a genuine representation of the right copy ofG.m/, and so is �2.
Combining (3) with (4), �1 2 �m is mapped to ��11 under ze1, whence V.s; � ˝ �/ is an
anti-genuine representation of the left copy ofG.m/, as is �1. Therefore the representation

V.s; �˝ �/˝ . U ˝ �
_
1 ˝ �

_
2 /

of D.m/ factors through D. Hence (3.4) equals

HomD
�
V.s; �˝ �/˝ . U ˝ �

_
1 ˝ �

_
2 /; 1

�
D HomD

�
Ind zH�D

.m/

zP�D.m/

�
.jdetjs�1=2�˝ �/˝ . U ˝ �_1 ˝ �

_
2 /
�
; 1
�

(cf. (2.2)). Recall Ph D h�1P \ D. The covering zPh obtained by restriction from zH

coincides with the covering restricted from D.m/, by (4). The space of distributions on
zPhD.m/ corresponds to

HomD
�

indD
.m/

zPh

�
h�1..jdetjs�1=2�˝ �/ı1=2P /˝ . U ˝ �

_
1 ˝ �

_
2 /
�
; 1
�
;

which by the Frobenius reciprocity is equal to

H .h/ D HomPh
�
h�1.jdetjs�1=2�˝ �/˝ . U ˝ �_1 ˝ �

_
2 /; �h

�
(3.5)

(cf. (2.4)). We can now use the theory of distributions on l-sheafs of [11]. Recall that the
right action of D on P nH is constructive, i.e., the graph of the action is a finite union of
locally closed sets (see [11, §§6.1–6.6] for more details on these notions). This follows
from [11, Theorem A], because P nH is an algebraic F -variety. Since

. zP �D.m//n. zH �D.m// Š zP n zH Š P nH

(as topological spaces), the right action of D on . zP �D.m//n. zH �D.m// is also con-
structive, justifying the application of [11, Theorem 6.9] (note that the action of D.m/ on
the quotient factors through D).
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The arguments of §2.1 showing the vanishing of H .h/ also remain valid. We explain
this in more detail. First, if Y < hU \MP , then by (3.1), h

�1
'Y .Y / D 'h�1Y .

h�1Y / D

'U .
h�1Y /. Hence (2.5) holds and any morphism in H .h/ factors through JY;h �1

U
.�/.

Condition (2.6) is independent of the covering. Since � ˝ � is trivial on 'NH .UP /,
the condition hY < UP and (3.1) imply h�1.jdetjs�1=2� ˝ �/ is trivial on 'Y .Y /, so we
can deduce H .h/ D 0. The second method, where we show that any morphism in H .h/

factors through JV.�/; 0.�/ with � % .kc/ and  0 2 bV .�/gen, also implies H .h/ D 0, as
in the linear case.

The only change concerns the third condition, where it is not necessarily true that
the preimage of h.1; CGLl / in zH acts by a character, because this preimage might not be
abelian. However, we can instead use the preimage zC dGLl

of C dGLl
(for a large integer d ),

which is abelian and belongs to the center of fGLl , by assumption (9). Then zC dGLl
acts by

a character on each irreducible constituent of JUR.�
_
2 /, and the preimage of h.1; C dGLl

/

in zH acts by a character on each of finitely many constituents. The only change to (2.7) is
that now we replace a 2 F � with ad , but this still implies the vanishing outside a discrete
subset of s.

Define

d.s; �; �; �1; �2/ D dim Hom.G;G/.m/.JU; �1
U
.V .s; �˝ �//; �1 ˝ �2/:

We are ready to prove Theorem 2.1 for covering groups.

Theorem 3.1. Let �1, �2 and � be as above.

(1) Outside a discrete subset of s, d.s; �; �; �1; �2/ � dim HomG.m/.�0�
_
1 ; �

�
2/.

(2) If �1 and �2 are irreducible, then outside a discrete subset of s, d.s; �; �;�1; �2/D 0
unless �1 D �0.� �2/

_ in which case d.s; �; �; �1; �2/ � 1.

Furthermore, assume �2 is supercuspidal and � is not necessarily of finite length. Then
the assertions of (1) and (2) hold for all s, granted either H ¤ GL2kc and c > 2, or
H D Sp4k .

Remark 3.2. Evidently, there is no essential difference between the statements in the
linear setting and the covering (for m D 1, G.m/ D G), except the supercuspidal cases,
where we excluded the conditions depending on �. This is because we are not discussing
�c.�/ for covering groups here; the definition of this representation is thus far clear only
when � is a genuine unramified principal series (see [64]). Once the details are worked
out, the arguments here are expected to extend to these cases as well.

Proof of Theorem 3.1. Since zP n zH=D.m/ D P nH=D, we can use the same description
for the representatives h. The arguments of Propositions 2.5–2.11 and Propositions 2.18–
2.22 extend to the covering.

For Propositions 2.12, 2.14, 2.23, 2.25–2.26 we used two types of arguments. First,
we showed that the Jacquet module JVˇ ; �1Vˇ

.�/ vanishes, because the order of nilpotency

of ' is at least k C 1. The arguments involving the action of a normalizer on the set of
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characters of an abelian unipotent subgroup carry over to the covering. This is because
in general, if a subgroup A < H normalizes a unipotent subgroup Y < H , and thereby
acts on its set of characters, then zA also acts on the set of characters of Y with the same
orbits (because zH is split canonically over Y ). The arguments of [11, §§5.9–5.12] still
apply. Then we used [46, Theorems A, E], in which strictly speaking covering groups
were not discussed. However, one can still use conjugations and [11, §§5.9–5.12] to show
that JVˇ ; �1Vˇ

.�/ factors through a Jacquet module with respect to a unipotent orbit which

is greater than or incomparable with .kc/. See Example 3.3 below. Second, we used (2.7),
which is still applicable with the minor change explained above.

It remains to consider H .h/ where h � ı. Consider H ¤ GL2kc . Then

H .ı/ D HomG��Cı
H
.ı
�1

JV
.ck/

; k .�/˝ �˝ �
_
1 ˝ �

_
2 ; 1/:

For H D GSpin2kc the assumption � D ��1�1 D ��2 implies that this space equals

HomG�.
ı�1JV

.ck/
; k .�/˝ �

_
1 ˝ �

_
2 ; 1/:

Then since JV
.ck/

; k .�/ is a trivial representation of SL4c (see (6)) and by virtue of (8),

H .ı/ D HomG�.�
_
1 ˝ �

_
2 ; 1/ D HomG.�

_
1 ˝ .�

_
2 /
�; 1/ D HomG.m/.�

_
1 ; �

�
2/:

For H D GL2kc we first have

H .ı/ D HomG�.
ı�1JV

.ck/
�V
.ck/

; k˝ k .�/˝ �
_
1 ˝ �

_
2 ; 1/:

The action of G� on ı�1.JV
.ck/

; k .�1/˝ JV.ck/; k .�2// is given by g 7! �0.det g/, and
we obtain HomG.m/.�0�

_
1 ; �2/. The remaining parts of the proof now follow as in the

linear case.

Example 3.3. Consider a Jacquet module of a .2; 2/ representation � with respect to the
unipotent subgroup Y < GL4 and character  given by

Y D

²
y D

� 1 x1 x2 x3
1 x4 x5

1
1

�³
;  .y/ D  .x1 C x5/:

It suffices to show the vanishing with respect to the subgroup of Y with x4 D 0. Using
conjugation by diag

�
1;
�

1
1

�
; 1
�
, we obtain

Y 0 D

²
y D

� 1 x2 x1 x3
1

1 x5
1

�³
:

The Jacquet module JY 0; .�/ ( does not change) is a representation of

X D

²�
1
1 x6
1
1

�³
:

The preimage of the subgroup ¹diag.1; t; I2/ W t 2 F �º, which also acts on JY 0; .�/,
acts on the set of characters of X with two orbits (for an action of TGL2 use
diag.t 0; t; t 0; t 0/). Both orbits can be conjugated into JY 0ÌX; .�/ with still the same  
using diag

�
1;
�
1
z 1

�
; 1
�
. It remains to prove JY 0ÌX; .�/ D 0. Passing to the subgroup
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with x2 D 0 and conjugating by diag
��

1
1

�
; I2
�
, it is enough to prove JY 00; .�/D 0 with

Y 00 D

´
y D

 
1 x6
1 x1 x3
1 x5

1

!µ
;  .y/ D  .x1 C x5/:

As with x6, one can fill in the missing coordinate above x1 using

X 0 D

²�
1 x0
1
1
1

�³
; ¹diag.t; I3/ W t 2 F �º; diag

��
1
z 1

�
; I2
�
:

We have shown that JY; .�/ factors through JV.2;1;1/; .�/. This module is filtered by
the third and fourth derivatives of � (in the sense of [11]), both of which vanish because
� is .2; 2/.

We briefly describe the applicability of Theorem 3.1 to the construction of [64].
Henceforth assume �1 is an m-th root of unity in F � (this is a technical assumption,
used in [64] and several other works, to simplify some of the computations). For any inte-
ger l , let Sp.m/

2l
denote the covering of [80] defined using the m-th order Hilbert symbol

. ; /m. For GLl , let GL.m/
l

denote the covering obtained by restriction from Sp.m/
2l

, when
we identify GLl with the standard Siegel Levi subgroup of Sp2l by g 7! diag.g; g�/.

Let r D m if m is odd, otherwise r D m=2. Let k0 be a positive integer, and put
k D rk0. The above list of properties were verified in [64] when G D Spc or GLc , for the
covering G.m/, with zH D H .m/.

Remark 3.4. The group GL.m/
l

was denoted GL.m;r/
l

in [64], to underline the difference
between this covering and the coverings of [67], and k of [64] is k0 here.

Assume we have a .k; c/ D .rk0; c/ representation � (admissible of finite length). It
is at present not clear how to construct such representations in general (e.g., from rep-
resentations of a covering of GLk), but in the unramified setting this was obtained in
[64] (following [105]). Note that here the “unramified setting” includes the assumptions
jmj D 1 and q > 4. Briefly, given a genuine unramified principal series representation �
of GL.m/

k0
, one can choose an unramified character of TGLk0

associated with the induc-
ing data of � (the correspondence is not unique). Using this character and an exceptional
representation of GL.m/rc (exceptional in the sense of [67], see [37]), the prescribed � was
constructed in [64, §2.2].

For H D GL2kc , �0 was taken to be trivial (see [64, (3.34)]).
Also let � be a genuine irreducible representation of G.m/. The integral Z.s; !; f /,

with a holomorphic or rational section f , was defined in [64] (using notation similar
to §1.5). Formally, it belongs to (3.3) with �1 D �_ and �2 D � �. This was proved in
[64, Propositions 68, 75] (in [64, (3.21) and (3.36)], G.m/ � G.m/ should be replaced
with .G;G/.m/).

Corollary 3.5. Z.s; !; f / admits meromorphic continuation to a function in q�s .

Proof. This follows from Theorem 3.1 and Bernstein’s continuation principle [7]; see
[64, Remark 72] and [64, §3.3] (cf. Corollary 2.3 here).
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Corollary 3.6. One can define a local  -factor .s; � � �;  / by virtue of (0.2).

Note that the additional normalization of the intertwining operator appearing in (0.2)
can be applied to the covering case as well; but we are not proving the multiplicativity
properties of the  -factor here, and at any rate, we are still limited to the unramified
setting. The point here is that the proportionality factor exists.

3.2. Global unfolding

The global doubling construction in the linear case for arbitrary k was first described in
[18] mainly for the symplectic group, with some details also for the special even orthogo-
nal group, then briefly explained in [20] for the other cases appearing here. The covering
version for the symplectic group was described in [64].

Let F0 be a number field with a ring of adeles A. Let � be an irreducible cuspidal auto-
morphic representation of GLk.A/, and let E� denote the generalized Speh representation
of GLkc.A/ corresponding to c copies of � , constructed by Jacquet [55]. According to
[18–20, 41, 60], the representation E� is a global .k; c/ representation: it does not support
any Fourier coefficient along an orbit greater than or incomparable with .kc/, it supports
a Fourier coefficient along .kc/, and all of its local components are .k; c/. See [18, §2.2]
and the references therein for more details on the global notions. Moreover, if � D ˝0� ��
as a restricted tensor product, .E� /� D �c.��/ for any place � of F0.

One can readily globalize our arguments used for the proof of Theorem 2.1 to obtain
a proof of the unfolding of the global doubling integral, for all of the groups under con-
sideration here (and in [20]). At the same time, since local vanishing of Jacquet modules
implies global vanishing of the corresponding Fourier coefficients (even one local .k; c/
component suffices for this), the proof of Theorem 2.1 also provides a proof of the global
unfolding. In addition we obtain the following corollary, which for brevity, is stated here
in the symplectic or special orthogonal cases, but the other cases are evident as well.

We use the notation and definitions of §1.5, in the global context. LetKH be a standard
maximal compact subgroup, in a “good position” with respect to TH . Let f be aKH -finite
section of IndH.A/

P.A/ .jdetjs�1=2E� /, whose restriction toKH is independent of s. We regard
f as a complex-valued function.

Recall the definition (2.34) of a character  Vˇ when ˇ D .ck/, defined with respect
to 0 � l � n, which we rename here as  .ck/;l (in the context of (2.34), l was fixed). In
particular, .ck/;n is in the orbit of �1

k
( .ck/;nD 

�1
k

when c is even). For kD 1, .ck/;l
is trivial. Then we have the Fourier coefficients of f along .V.ck/;  .ck/;l /, defined by

f
V
.ck/

; 
.ck/;l .s; x/ D

ˆ
V
.ck/

.F0/nV.ck/.A/
f .s; vx/ .ck/;l .v/ dv:

In particular, f V.ck/; .ck/;n is the coefficient fW.E� / appearing in [18, Theorem 1], i.e., the
composition of f with the global .k; c/ functional on the space of E� given by a Fourier
coefficient (if c is odd, this is true up to a conjugation which identifies  .ck/;n with  �1

k
).
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The Eisenstein series corresponding to f is defined by

E.xI s; f / D
X

2P.F0/nH.F0/

f .s; x/; x 2 H.A/: (3.6)

The series is absolutely convergent for Re.s/� 0 and admits meromorphic continuation
to C. Consider the Fourier coefficient of E.xI s; f / along .U;  U /, given by

EU; U .xI s; f / D

ˆ
U.F0/nU.A/

E.uxI s; f / U .u/ du: (3.7)

The definitions imply that EU; .�I s; f / is an automorphic form on G.A/ �G.A/.
For 0 � l � n, let wl be the representative w chosen after the proof of Proposition 2.8

(used for the computation of (2.27)), but with d1D � � �D dk�1Dn� l . Using Example 2.9
we see that

wl D

0BB@
0 0 0 0 Il 0
0 0 Ic�l 0 0 0
0 0 0 0 0 I.k�1/c

�0I.k�1/c 0 0 0 0 0

0 0 0 Ic�l 0 0
0 �0Il 0 0 0 0

1CCA |.k�1/cCl :
A quick computation implies w

�1
l V.ck/ D

w00V.ck/, where

w00 D |.k�1/cCldiag
�
I.k�1/cCl ;

�
Ic�l

�0Ic�l

�
; I.k�1/cCl

�
:

Then U D w�1
l V.ck/ Ë Un�l for the subgroup

Un�l D
w00.U \ UP / D

|.k�1/cCl

0BB@
I.k�1/c 0 u1 0 u2 u3

Il u0
2

Ic�l 0

Ic�l u0
1

Il 0
I.k�1/c

1CCA
(if we replace wl by ı0, U0 D U \ |kcUP ), and Pwl \ U D

w�1
l V.ck/. Denote P 0wl D

Pwl \ .G;G/.

Corollary 3.7. In Re.s/� 0,

EU; U .xI s; f /

D

nX
lD0

X
y2P 0wl .F0/n.G.F0/;G.F0//

ˆ
Un�l .A/

f
V
.ck/

; 
.ck/;l .s; wl .

|lul /uyx/ U .u/ du:

Proof. We can assume x D I2kc . Write the sum (3.6) over P.F0/nH.F0/=D.F0/ �
Ph.F0/nD.F0/. In a right half-plane we can exchange summation and integration. Thus

EU; U .I2kc I s; f /

D

X
h2P.F0/nH.F0/=D.F0/

ˆ
U.F0/nU.A/

X
y2Ph.F0/nD.F0/

f .s; hyu/ U .u/ du:
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Next because w�1h 2MQ and P \ wQ D .P \ wMQ/ Ë .P \ wU/, we have

h�1P \Q D h�1.P \ wQ/ D .h
�1

P \MQ/ Ë .h�1P \ U/:

Since Ph < Q and .G;G/ < MQ, we deduce

Ph D .Ph \ .G;G// Ë .Ph \ U/ D P 0h Ë P 00h ;

whence we can collapse the du-integral, exchange yu 7! uy and take the integral inside:

EU; U .I2kc I s; f /

D

X
h2P.F0/nH.F0/=D.F0/

X
y2P 0

h
.F0/n.G.F0/;G.F0//

ˆ
P 00
h
.F0/nU.A/

f .s; huy/ U .u/ du:

Now the proof of Theorem 2.1, more specifically Propositions 2.5, 2.7–2.12, imply the
inner du-integral vanishes unless h � wl .|lul /, 0 � l � n. The corresponding summand
is X

y2P 0wl .F0/n.G.F0/;G.F0//

ˆ
Un�l .A/

f
V
.ck/

; 
.ck/;l .s; wl .

|lul /uy/ U .u/ du:

This completes the proof.

Now let �1 and �2 be irreducible cuspidal automorphic representations of G.A/, and
'1 and '2 be two cusp forms in the corresponding spaces. Assume G admits nontrivial
unipotent subgroups (i.e., exclude some low rank cases). Denote �'2.g/ D '2.�g/ and

h'1; '2i D

ˆ
G.F0/nG.A/

'1.g/'2.g/ dg:

Then by Corollary 3.7 and Lemma 2.15, (3.7) pairs with '1 and '2, in the sense that for
Re.s/� 0,
ˆ
G.F0/nG.A/�G.F0/nG.A/

'1.g1/�'2.g2/E
U; ..g1; g2/I s; f / dg1 dg2

D

ˆ
G.A/

ˆ
U0.A/

h'1; �2.g/'2if
V
.ck/

; 
.ck/;n.s; ıu0.1;

�g// U .u0/ du0 dg: (3.8)

Indeed, consider one of the summands appearing in Corollary 3.7 with l < n. Set U lR D
wl .

|l ul /.1; |.cC1/lUR/, with the notation of the proof of Proposition 2.14. The Fourier
coefficient of f along .V.ck/;  .ck/;l / is left invariant under U lR.A/. To see this consider
a second Fourier expansion of this coefficient, along U lR. All terms but the constant one
vanish, because by Lemma 2.15, at the nonarchimedean places v of F0 the action of
U lR..F0/v/ on JV

.ck/
; �1
.ck/;l

..E� /v/ is trivial. Since �2 is cuspidal, the summand itself

vanishes.
Of course (3.8) is plainly the main global identity of [18]: the left hand side is the

global doubling integralZ.s;'1;'2;f /, and it is nontrivial when �1D�2 according to the
computations of the local integrals appearing in the Euler product on the right hand side.
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One can include low rank cases, e.g., cD 2 andGD SO2, by globalizing the argument
from Lemma 2.16 (the constant term of the Eisenstein series defining E� along V.1;kc�1/
vanishes when k > 1). The low rank arguments of Propositions 2.25 and 2.26 can be
globalized using the constant term computation of E� given by [61, Lemma 4.1].

The results of this section also hold in the covering case of [64], but to formulate them
properly one must check the validity of certain properties of the global covering, which
are the analogs of the list from §3.1 (this was carried out in [64]).

Avraham Aizenbud and Dmitry Gourevitch
Appendix A. Vanishing of vector-valued distributions on smooth manifolds

Let a Lie group C act on a smooth manifoldX . LetZ �X be a locally closed C -invariant
subset. Let F be a possibly infinite-dimensional C -equivariant bundle on X (see §A.1.3
below for this notion). Assume that for any z 2 Z and k 2 Z�0 we have

..F jz ˝ Symk.CNX
z;Cz/˝ ..�C /jCz=�Cz //

�/Cz D 0 : (A.1)

In this appendix we show that
D 0Z.X;F /

C
D 0; (A.2)

under certain additional finiteness conditions, generalizing Theorem 1.4.
In §A.1 we will explain the notation of (A.1)–(A.2), and give the definitions of the

main notions used in this appendix, as well as some basic properties of these objects.
In particular, we use the theory of infinite-dimensional bundles developed in [69], define
generalized sections of such bundles, and construct pullbacks and pushforwards for such
sections.

In the case when C has finitely many orbits on Z, and the bundle is trivial, the impli-
cation (A.1))(A.2) is classical (see [15]). In [24] a cohomological version of the implica-
tion is proven, in a semialgebraic setting and assuming finitely many orbits. In [1] a similar
implication is proven in the semialgebraic setting, with F finite-dimensional. In [68]
several special cases of the implication are proven, in particular the case in which F

has the form E ˝ V , where E is finite-dimensional and V is a fixed representation in
a Fréchet space, and the action of C on X , E and F can be extended to an action of a
group G that includes C as a normal subgroup, preserves Z and acts on it with finitely
many orbits, each orbit locally closed.

We prove that (A.1))(A.2) in a similar generality, but with two essential differences.
First, we allow E to be a general Fréchet bundle (which makes V obsolete). Second,
we allow twisting the action by an additional C -equivariant line bundle L on which the
C -action does not necessarily extend to G. However, we put an additional finiteness con-
dition on the pullbacks of L under the action of G on X . The twist by a line bundle L is
crucial for our application. We use both the result and the method of [68] in our proof.

We do not know whether the vanishing (A.1) implies the vanishing (A.2) in general.
This is probably a very difficult analytic question.
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Structure of our proof. Let us first describe the finiteness condition we require. For any
z 2 Z denote by Cz and Gz the stabilizers of z in C and G respectively. Let Lz denote
the character of Cz defined by L. For any g 2 G denote by Lgz the character of Cz given
by Lgz .c/ WD Lgz.gcg�1/. We require that for any z 2 Z, the set ¹Lgz W g 2 Gº is a finite
union of locally closed orbits of Gz .

We first solve the case in which G acts trivially on X , and E is constant as a G-
equivariant bundle. For this case we remove the assumption thatZ lies in a finite union of
G-orbits. Localizing the problem, we assume X to be Rn, and let it act on itself by trans-
lations, and on E trivially. We translate the problem to a problem on X � C -equivariant
distributions on X � OCC , where OCC denotes the set of all (continuous) characters of C . In
this new problem, the X �C -equivariant structure on the line bundle extends to an action
of X �G, and thus the space of equivariant distributions vanishes by [68].

The next case we resolve is when G acts transitively on X . Then we have X D
G=H . We construct a bundle F1 on X1 WD CnG such that the space of C -invariant F -
distributions on X is isomorphic to the space of H -invariant F1-distributions on X1. We
show that already the space of H \ C -invariant distributions vanishes, using the previ-
ous case. The argument here is somewhat similar to the argument in [68]. However, it is
complicated by the presence of the line bundle L, and by F not being constant.

The next case we treat is the case of Z being a single G-orbit. As in [68], it reduces
to the previous one using the transverse symbol of distributions.

Finally, we prove the general case by induction on the number of G-orbits on Z.

A.1. Preliminaries

A.1.1. Topological vector spaces. All topological vector spaces considered in this
appendix will be complete, Hausdorff, and locally convex. For such a space V , V � will
denote the strong dual, and for two spaces V and W , V b̋ W will denote the completed
projective tensor product (this is the same tensor product denoted ˝ in the body of the
paper, for convenience). The projective topology on V b̋ W is generated by the family of
seminorms which are the largest cross-norms corresponding to pairs of generating semi-
norms on V and W [107, §43]. In particular, if V and W are Fréchet spaces, then so is
V b̋ W . If V (or W ) is nuclear then the projective tensor product is naturally isomor-
phic to the injective one [107, Theorem 50.1]. This is the case in all our theorems. The
tensor product of nuclear spaces is nuclear. A Fréchet space is nuclear if and only if its
dual space is. For more information on nuclear spaces we refer the reader to [107, §50] or
[23, Appendix A].

A.1.2. General topology. We will use the following elementary lemma.

Lemma A.1. LetX be a topological space, and let ¹XiºkiD1 be disjoint locally closed sub-
sets such that X D

Sk
iD1Xi . Then there exists i such that the interior of Xi is nonempty.

Corollary A.2. Let a topological group G act continuously on a topological space X
with finitely many locally closed orbits. Then one of the orbits is open.
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A.1.3. Infinite-dimensional smooth bundles over smooth manifolds. We will use the
results and terminology from [69], which considers infinite-dimensional smooth mani-
folds and bundles over them. In our case the base manifolds will be finite-dimensional,
but we will consider infinite-dimensional bundles. All the vector spaces we consider are
complete, thus sequentially complete, and thus c1-complete [69, Lemma 2.2 and The-
orem 2.14]. Therefore all the results of [69] are applicable to them. We use the notion
of infinite-dimensional vector bundles and their spaces of smooth sections and spaces of
compactly supported sections [69, §§29, 30].

Let X be a smooth manifold and E be a vector bundle over X , possibly infinite-
dimensional. We define the space D 0.X;E/ of E-distributions to be the continuous dual
space C1c .X; E/

� equipped with the strong topology. For a closed subset Z � X , we
denote by D 0Z.X; E/ � D 0.X; E/ the subspace of distributions supported on Z. For a
locally closed subset Z � X , we denote

D 0Z.X;E/ WD D 0Z.U;E/; where U WD X n .Z nZ/: (A.3)

By [49, II.§3.3], if E is a trivial bundle with Fréchet fiber V , then C1c .X; E/ Š
C1c .X/ b̋ V .

For any smooth map � W Y ! X and a bundle E over X , the pullback bundle ��E
over Y is defined in [69, §29.6]. For a smooth section f of E we denote the corresponding
section of ��E by ��f .

We define �ŠE WD ��E ˝DY ˝D�1X , whereDX ,DY denote the bundles of densities
on X and Y respectively. In case � is a submersion and E has Fréchet fibers, we can also
define �� W C1c .Y; �

ŠE/! C1c .X;E/ in the following way. For a trivial bundle E with
Fréchet fiber V , we use the identification

C1c .X;E/ Š C
1
c .X; V / Š C

1
c .X/ b̋ V;

and the classical pushforward �� W C1c .Y;DY ˝ �
�D�1X /! C1c .X/. For a locally trivial

bundle we use the partition of unity to trivialize E .
We denote the map dual to �� W C1c .Y; �

ŠE/! C1c .X;E/ by

�� W D 0.X;E/! D 0.Y; �ŠE/:

IfZ is a smooth submanifold regularly embedded inX , and V is a Fréchet space, then
for any � 2 DZ.X; V / and z 2 X , [68, §2] defines a transversal degree d 2 Z�0 and a
transverse symbol �d .�/ 2 V � ˝ Symd .NX

z;Z/, where Symd denotes symmetric power,
NX
z;Z denotes the normal space to Z in X at z, and CNX

z;Z WD .N
X
z;Z/

� is the conormal

bundle. Denote by D 0Z
�d
.X; V / the space of distributions that have transversal degree at

most d for any z 2 Z. By [68, Theorem 2.1], �d defines a natural embedding

�d W D
0
Z
�d
.X; V /=D 0Z

�d�1
.X; V / ,! D 0.X; V ˝ Symd .CNX

z;Z// :

Using a partition of unity, this construction extends to any bundle E with Fréchet fibers.



D. Gourevitch, E. Kaplan 76

Let a Lie group G act on X , let a W G � X ! X denote the action map and p W
G � X ! X denote the projection. A G-equivariant bundle E on X is a bundle E on X
together with an isomorphism a�E ' p�E satisfying the usual cocycle condition. Note
that this structure also defines an isomorphism aŠE ' pŠE . Note also that the dual of an
equivariant bundle has a canonical equivariant structure.

We denote by �G the modular function of G.
We define a smooth representation of G to be a G-equivariant bundle on a point. Note

that a smooth Fréchet representation of moderate growth is also a smooth representation
according to this definition.

Note that ifG is a Lie group,X is aG-manifold, p WX ! Y is aG-invariant map (i.e.
p.gx/ D p.x/), and F is a bundle on Y , then pŠF has a natural G-equivariant structure.

Lemma A.3. Let G be a Lie group, Y be a smooth manifold, and p W X ! Y be a G-
principal space over Y . Let E be aG-equivariant bundle onX . Then there exists a natural
bundle F over Y and an isomorphism of G-equivariant bundles pŠF Š E such that p�

defines an isomorphism D 0.Y;F / Š D 0.X;E/G .

The proof is standard, but we will include it here since our bundles are infinite-
dimensional.

We will need the following notation and lemmas.

Notation A.4. For any continuous representationA ofG, denoteA.G/ WD Span¹v � gv W
g 2 G; v 2 Aº, and AG WD A=A.G/.

Lemma A.5. Let A be a continuous representation of G, and B be a nuclear space. Let
G act on A b̋ B by acting on A. Then the natural map ˛ W .AG b̋ B/� ! ..A b̋ B/�/G
is an isomorphism.

Proof. We have .AG b̋ B/� Š Bil.AG ; B/ and .A b̋ B/� Š Bil.A;B/, where Bil.A;B/
denotes the space of continuous bilinear maps A � B ! C (see e.g. [107, Ch. 41]). The
map ˛ is defined by the map ˛0 W Bil.AG ; B/! Bil.A;B/G which in turn is given by the
projection pr W A�B ! AG �B . Since pr is onto, ˛0 is injective. To show that ˛0 is onto,
choose ! 2 Bil.A; B/G . Since the left kernel of ! includes A.G/, ! factors through a
bilinear map !0 W AG �B! C. Since pr W A�B! AG �B is open and surjective, !0 is
continuous.

Lemma A.6. Let G be a Lie group, and Y be a smooth manifold. Let G act on Y � G
by left shifts on G, and let p W Y � G ! Y denote the projection. Then p� defines an
isomorphism of topological vector spaces

C1c .Y �G;DG/G Š C
1
c .Y /:

Proof. Denote by C1c .Y �G;DG/0 the kernel of p�. Let us first show that

C1c .Y �G;DG/.G/ D C
1
c .Y �G;DG/0: (A.4)
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Since p� is a G-invariant morphism, the inclusion � follows. For the other inclusion,
let f 2 C1c .Y � G; DG/0, and approximate it by a sequence f j of the form f j DPnj
jD1 q

j
i ˝ h

j
i , with qji 2 C

1
c .Y / and hji 2 C

1
c .G; DG/. Fix � 2 C1c .G; DG/ with´

G
� D 1 and let F j WD f j � p�.f j /˝ �. Then we have

F j D f j �

� njX
iD1

�ˆ
G

h
j
i

�
q
j
i

�
˝ �

D

njX
iD1

q
j
i ˝

�
h
j
i �

�ˆ
G

h
j
i

�
�

�
2 C1c .Y /˝ C

1
c .G;DG/0;

where C1c .G; DG/0 denotes smooth compactly supported measures on G with zero
integral.

By [13, Theorem 1] we have

C1c .G;DG/0 D C
1
c .G;DG/.G/;

and thus F j 2 C1c .Y � G;DG/.G/. Now, since p�.f / D 0, we have p�.f j /! 0, so
F j � f j ! 0, and thus F j ! f . Hence f 2 C1c .Y �G;DG/.G/ and (A.4) holds.
This shows that p� defines a continuous linear isomorphism between C1c .Y �G;DG/G
and C1c .Y /. To see that its inverse is continuous, it is enough to construct a continuous
section of p�. One such section is given by f 7! f ˝ �.

Proof of Lemma A.3. Let us first consider the case of X D Y � G. Let i W Y ! X be
defined by i.y/ WD .y; 1/ and F WD i ŠE . The isomorphism pŠF Š E is given by the
G-equivariant structure of E . By a partition of unity, we can assume that F is a con-
stant bundle and denote its fiber by V . We have to show that p� defines an isomorphism
D 0.Y; V / Š D 0.Y �G;V ˝DG;1/

G , where DG;1 is the fiber of the bundle DG at 1. By
Lemma A.6 we have

C1c .Y �G;DG;1/G Š C
1
c .Y /:

Then the map p� decomposes as

D 0.Y; V / D .C1c .Y; V //
�
Š .C1c .Y / b̋ V /� Š .C1c .Y �G;DG;1/G b̋ V /�

Š ..C1c .Y �G;DG;1/ b̋ V /�/G Š .C1c .Y �G; V ˝DG;1/�/G
D D 0.Y �G; V ˝DG;1/

G :

We now turn to the general case.
Note that if there exists an F and an isomorphism � W pŠF Š E of G-equivariant

bundles then such F and � are unique, in the sense that for any other such pair .F 0; �0/
there exists an isomorphism � W F Š F 0 such that � D �0 ı pŠ.�/, and such that � is
unique. Thus it is enough to construct F locally, which is done in the first case considered
above. Now, p� W D 0.Y;F / Š D 0.X;E/G is an isomorphism by a partition of unity and
the first case.
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A.2. Distribution vanishing theorems and their proofs

Theorem A.7. Let X be a smooth manifold and Z � X be a locally closed subset. Let
C be a Lie group with finitely many connected components. Let C act trivially on X .
Let L be a C -equivariant line bundle on X . Let H be a Lie group with a smooth action
on C . For any z 2 Z let Lz denote the character by which C acts on the fiber Ljz . LetbCC denote the manifold of all characters of C . Assume that the set ¹Lz W z 2 Zº lies in a
finite union of locally closedH -orbits in bCC . Let V be a smooth representation ofH ËC
in a Fréchet space. Assume that for any z 2 Z we have ..V ˝ Ljz/�/C D 0. Then

D 0Z.X; V ˝ L/
C
D 0:

Proof. By a partition of unity, we may assume that L is trivial as a line bundle, that
X D Rn and Z is compact. Let L0 denote the natural C -equivariant line bundle on bCC .
There exists a unique smooth map  W X ! bCC such that L Š  �.L0/. Define � �
Z � bCC � X � bCC to be the graph of the restriction  jZ . Let QL WD CX � L0. It is
enough to show that D 0�.X �

bCC; V ˝ QL/
C D 0:

Assume the contrary. Let 0 ¤ � 2D 0�.X �
bCC; V ˝ QL/

C . Let G WD X �H Ë C act
on X � bCC by

.x; h; c/.y; �/ WD .x C y; � ı a.h�1//

where a.h/ denotes the action of H on C . Define a structure of a G-equivariant bundle
on QL through the action on the total space by

.x; h; c/.y; �; ˛/ WD .x C y; � ı a.h�1/; �.c/˛/:

Define a representation of G on V by letting X act trivially. By our assumptions, Supp.�/
lies in the union of finitely many locally closed G-orbits on X � bCC . By Corollary A.2,
for one of those orbits O, the intersection O \ Supp.�/ is open and nonempty in Supp.�/.
Let x 2 O \ Supp.�/. There exists a cutoff function � such that x 2 Supp.��/ � O. This
leads to a contradiction since by [68, Theorem 3.15 (i)], �� D 0.

By a partition of unity, we obtain the following corollary.

Corollary A.8. Let X; Z; C; H; and L be as in Theorem A.7. Let H Ë C act trivially
onX , and let E be a locally constantH ËC -equivariant bundle onX , i.e. an equivariant
bundle that is locally given by a single representation of H Ë C . Assume that for any
z 2 Z we have ...E ˝ L/jz/�/C D 0. Then

D 0Z.X;E ˝ L/
C
D 0:

We will need the following corollary of Lemma A.3.

Corollary A.9. Let G be a Lie group and H1; H2 be closed Lie subgroups. Consider
the two-sided action of H1 � H2 on G, and let E be an H1 � H2-equivariant bundle
on G. Let p W G ! G=H2 denote the natural projection. Then there exists a natural H1-
equivariant bundle F onG=H2 and a natural isomorphism pŠF Š E such that p� defines
an isomorphism

D 0.G=H2;F /
H1 Š D 0.G;E/H1�H2 :
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Corollary A.10. Let G be a Lie group and H1; H2 be closed Lie subgroups. Let F1 be
an H1-equivariant bundle on G=H2. Let p1 W G ! H1nG and p2 W G ! G=H2 denote
the natural projections.

Then there exists a natural H2-equivariant bundle F2 on H1nG such that pŠ1F2 Š
pŠ2F1 as H1 �H2-equivariant bundles, and

D 0.G=H2;F1/
H1 Š D 0.H1nG;F2/

H2 :

Notation A.11. Let a Lie groupG act on a smooth manifoldX . LetC �G be a subgroup.
Let L be a C -equivariant line bundle on X . Then for any x 2 X and g 2 G we define
a character Lgx W Cx ! C� by letting Lgx .c/ be the scalar by which gcg�1 acts on the
fiber Lgx .

Definition A.12. Let a Lie group C act on a smooth manifold X . Let F be a C -equiv-
ariant Fréchet bundle over X . Let Z � X be a locally closed C -invariant subset. We call
the quadruple .C;X;Z;F / convenient if there exist

� a Lie group G � C acting smoothly on X extending the action of C ,

� a G-equivariant Fréchet bundle E on X , and

� a C -equivariant line bundle L on X

such that the following holds:

(i) F Š E ˝ L as a C -equivariant bundle.

(ii) C is a normal subgroup of G.

(iii) For any z 2 Z, the collection ¹Lgz 2 b.Cz/C W g 2 Gº lies in a finite union of locally
closed Gz-orbits.

(iv) Z is contained in a union of finitely many locally closed G-orbits.

Theorem A.13. Let .C;X;Z;F / be a convenient quadruple. Suppose that for any z 2Z
and any k � 0 we have

.F j�z ˝ Symk.NX
Cz;z/˝ .�

�1
C /jCz ˝�Cz /

Cz D 0: (A.5)

Then D 0Z.X;F /
C D 0.

Proof. We divide the proof into several cases.

(1) G acts transitively on X . Fix x0 2 X and let � W G ! X be the corresponding action
map. LetG0 WDX1 WDCnG andZ1 WDCn��1.Z/. By Corollary A.10, there exists aGx0 -
equivariant bundle F1 on X1 such that D 0.X;F /C Š D 0.X1;F1/

Gx0 and �ŠF Š pŠF1,
where p W G ! X1 is the projection. We construct bundles E1 and L1 on X1 in a similar
way, and have F1 D E1 ˝ L1.

LetH1 WDGx0 and C1 WDH1 \C . Then it is enough to show that D 0.X1;F1/
C1 D 0.

We deduce this from Corollary A.8. For this we need to show that

(a) E1 is locally constant as a C1-equivariant bundle.

(b) The action of C1 on the fibers of E1 extends to H1.
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(c) The set ¹.L1/z W z 2 X1º lies in a finite union of locally closed H1-orbits in b.C1/C .

(d) For any z 2 Z1 we have ...E1 ˝ L1/jz/�/C1 D 0.

Proof of (a). It is enough to show that E 01 WD E1 ˝ D
�1
X1

is locally constant as a C1-
equivariant bundle. Since p locally has a section, it is enough to show that p�.E 01/ is
constant as an H1-equivariant bundle with respect to the action of H1 on G by right
multiplications. We have p�.E 01/D �

�.E 0/, where E 0 WD E ˝D�1X . This gives a structure
of a G � H1-equivariant bundle on p�.E 01/ with respect to the two-sided action. This
implies that p�.E 01/ is constant as an H1-equivariant bundle.

Proof of (b). The fiber of E1 at Œ1� is isomorphic to Ejx0 ˝�H1 jC1 ˝�
�1
C jC1 as a repre-

sentation ofC1. SinceC is normal inG, we have�C D�G jC , and thus the representation
Ex0 ˝�H1 jC1 ˝�

�1
C jC1 extends to H1.

Proof of (c). L satisfies condition (iii) of Definition A.12. Thus so does L0 WD L˝D�1X ,
since the action of C on D�1X can be extended to G. It is enough to show (c) with L1
replaced by L01 WD L˝DX1 . Now, we have p�.L01/ D �

�.L0/. Thus for any g 2 G we
have .L0/gx0 D .L

0
1/Œg� and thus

¹.L01/y 2
bCC W y 2 X1º D ¹.L

0
x0
/g 2 bCC W g 2 Gº:

Statement (d) follows from (A.5) by a straightforward computation.

(2)Z lies in a single closedG-orbit O. Suppose by way of contradiction that there exists
0 ¤ � 2 D 0Z.X;F /

C and let z 2 Supp.�/. Let X1 WD O. Let d be the transversal degree
of � to O at z. Let Z1 WD ¹p 2 Z W degp;O.�/ � dº: Consider

�d .�jZ1/ 2 D 0Z1.X1;F ˝ Symd .CNX
X1
//C :

By the previous case we obtain �d .�jZ1/ D 0, a contradiction.

(3) The general case. We prove this step by induction on the number n of orbits of G
in GZ. When n D 0, Z is empty and the statement is obvious. For n � 1, Corollary A.2
implies that there exists an open orbit O � Z. Let Z0 WD Z nO, X 0 WD X nZ0. Then we
have the exact sequence

0! D 0Z0.X;F /
C
! D 0Z.X;F /

C
! D 0O.X

0;F /C :

We have D 0
O
.X 0;F /C D 0 by the previous case, and D 0Z0.X;F /

C D 0 by the induction
hypothesis.

Remark A.14. Substituting for E the constant bundle with fiber V and for L a constant
line bundle, we obtain Theorem 1.4.
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