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Abstract. We prove the local multiplicity at most one theorem underlying the definition and theory
of local y-, e- and L-factors, defined by virtue of the generalized doubling method, over any local
field of characteristic 0. We also present two applications: one to the existence of local factors
for genuine representations of covering groups, the other to the global unfolding argument of the
doubling integral.
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The doubling method of [18,20,90] constructs an integral representation for the ten-
sor product of a pair of irreducible cuspidal automorphic representations of G(A) and
GL, (A), for a range of reductive groups G defined over a number field Fy with a ring of
adeles A. One of the advantages of this method is that it does not rely on the existence of
a model (or a nonzero Fourier coefficient) for the representation of G(A); it is applicable
to any cuspidal representation. The family of local integrals can be used to define local
y-, €- and L-factors. These factors are defined for arbitrary irreducible admissible rep-
resentations, and as such, generalize the corresponding (tensor product) factors defined
by Shahidi [96] for irreducible generic representations, using his method of local coeffi-
cients. We prove the local multiplicity at most one theorem underlying the definition of
the local factors.

Let F be a local field of characteristic 0. Let G be one of the split groups Sp,, SO,
GSpin, or GL, where in the symplectic case c is even. For an integer k, let H be the split
group of the same type as G, which is either Sp,;., SOzkc, GSpiny,, or GLog.. There
is a unipotent subgroup U of H, and a character ¢y of U which is generic with respect
to the unipotent orbit ((2k — 1)€1¢) associated with H, such that G x G can be mapped
into the normalizer of U and stabilizer of {¥/y. We denote the image of G x G under this
map by (G, G) and let D be the subgroup U x (G, G) of H.

We identify F-groups with their F-points. The underlying principle of the doubling
construction is the multiplicity at most one property of the restriction to D of representa-
tions of H parabolically induced from certain degenerate representations of GLg,.

A representation p of GLg, is called a (k, ¢) representation if its wave-front set con-
tains (k¢) as the unique maximal orbit, and its degenerate Whittaker model with respect
to this orbit is unique. The simplest examples are the representation det of GL. or its
twist by a quasi-character of F*, which is a (1, ¢) representation, or irreducible generic
representations of GLg, which are (k, 1). The generalized Speh representation p(7) of
GLg, attached to ¢ copies of an irreducible unitary representation t of GLy is (k, ¢)
[19, Theorem 4].

Let P be a maximal parabolic subgroup of H which is a Siegel parabolic subgroup if
G # GLg,.. Denote the Levi part of P by Mp. If Mp = GLg,, let p be a (k, ¢) represen-
tation of Mp. For a complex parameter s, consider the space V (s, p) of the representation
of H parabolically induced from |det|*~'/2p and P to H. In the other cases of subgroups
Mp the representation V(s, p) slightly varies: for Mp = GLg. x GL; we induce from
0 ® n with a quasi-character n of F*, and for Mp = GLg. X GLg,, p is the (exterior)
tensor product of two (k, ¢) representations of GLy,.

Theorem A (see Theorem 2.1). Let 1 and m, be irreducible admissible representations
of G, and p be an admissible finite length (k, c) representation of GLy.. Outside a discrete
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subset B C C of s,
dim Homp (V (s, p), ¥5' ® m1 ® m2) < dimHomg (1), 775).

Over nonarchimedean fields, for supercuspidal representations w1 and 1, the result holds
for all s, under certain additional conditions.

Here ¢ is a certain involution of G; when G = Sp,, #* = 7V, and for GL., ¢ is trivial.
As usual, if the field is nonarchimedean and its residue field contains ¢ elements, the
set B consists of finitely many values of ¢ . For the stronger statement for supercuspidal
representations we must exclude minimal rank cases where G does not contain nontrivial
unipotent subgroups, and for GL, there is an additional condition on p. In the setup of the
doubling method of [18,20], (1, m2) = (¥, #*) and the dimension is precisely 1 outside
a discrete subset of s. Note that there is no canonical isomorphism between the spaces
appearing in the theorem. For the definitions of all objects, notation and for the more
precise statement, see §1, in particular §1.5 where we recall the generalized doubling
setup, and Theorem 2.1 (e.g., ¢ is defined in §1.5).

The case k = 1 of the theorem for supercuspidal representations was proved by Harris
etal. [51, §4], but the general setting of the theorem (even for k = 1) has not been studied.
In this sense we close a historical gap.

Theorem A is the local counterpart of the global unfolding argument in [18]. We
briefly recall the global result, focusing on the parts relevant to us here. For more detail
on the global setting see §3.2.

Let 7 be an irreducible cuspidal automorphic representation of GLg(A), and &; be
the generalized Speh representation of GLg.(A) corresponding to ¢ copies of t, defined
by Jacquet [55]. The representation &; is a global (k, ¢) representation, in the sense that
it does not support any Fourier coefficient along an orbit greater than or incomparable
with (k€), it supports a Fourier coefficient along (k¢), and all of its local components are
(k,c) [18-20,41,60]. Let E(h;s, f) denote the Eisenstein series attached to a suitable sec-
tion f in the space of the representation of H (A parabolically induced from |det|[S~1/2¢&,
and P(A). One can consider the Fourier coefficient EVYU (h;s, f) of E(h;s, f) along
(U, ¥ry) (see (3.7)) as an automorphic function on G(A) x G(A). The global integral was
defined in [18] by integrating EYYU (h; s, f) against two cusp forms in the space of a
unitary irreducible cuspidal automorphic representation = of G(A). In a right half-plane
Re(s) > 0, one can rewrite the integral as a sum (of integrals) parametrized by repre-
sentatives of P(Fo)\H(Fo)/D(Fp). All summands but one vanish, and the remaining
summand was shown to produce an Eulerian integral.

There are three methods for showing the vanishing of a summand. The first is by
finding a subgroup U’ < U such that ¥y is nontrivial on U’(A), and showing that the
summand admits an inner integral of ¥y over U’ (Fo)\U’(A), which is then zero. Second,
if the summand admits an inner integral which constitutes a Fourier coefficient of &; that
is greater than or incomparable with (k¢). This summand vanishes because &; is (k, ¢).
Third, if one can obtain an inner integral of one of the cusp forms along a unipotent
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radical Ug of a parabolic subgroup R = Mg x Ug of G, then the summand vanishes
because 7 is cuspidal.

Our local result is, in some sense, parallel to the global unfolding. We consider distri-
butions on the orbits of P\ H/D. The argument involving ¥y can be applied locally. The
second case, where we use the (k, ¢) representation alone, is not difficult to carry out in
the nonarchimedean setting, using the local “exchange of roots” arguments of Ginzburg et
al. [44] and the theory of derivatives of Bernstein and Zelevinsky [11, 12]. Results involv-
ing the Jacquet functor are in general more difficult and subtle over archimedean fields.
Fortunately, we are able to benefit from the recent (partial) extension of the theory of
derivatives to archimedean fields by Aizenbud et al. [3,4]. In fact, our argument in this
case is greatly simplified and streamlined using the precise reformulation of Gomez et al.
[46] of the connection between the wave-front set and the theory of derivatives, over both
archimedean and nonarchimedean fields.

The class of double cosets, where the global vanishing follows using the fact that
the representations of G are cuspidal, requires a different approach. The difficulty arises
because in the local setting one must consider non-supercuspidal representations of G as
well. This is where we lose the subset B.

In more detail, if the global summand was treated using, say, Ur < R < G, the cor-
responding orbit should be handled by analyzing the action of the center Cps,, of Mg.
Consider the nonarchimedean setting. Following the method of Jacquet et al. [58], if
the local representations (which are usually Jacquet modules of m; and p) restrict to
finite length representations of Mg, the action of Cypy, is filtered by a finite sequence
of quasi-characters, combined with a quasi-character determined by |det|*. This produces
a compatibility condition that rules out a discrete subset of s, i.e., there are no distri-
butions on the orbit unless s belongs to a discrete set. This argument was carried out
in several works, including [40, 44, 66,97]. The main difficulty was to show that indeed
the representations involved restrict to finite length representations of a Levi subgroup,
or more precisely in those works, of the reductive part of the appropriate mirabolic sub-
group, and the key tool in the proofs was the theory of derivatives [11, 12]. By contrast,
here the Jacquet modules of p that occur in the analysis do not afford a representation of
the mirabolic subgroup, but we are still able to show that they restrict to finite length rep-
resentations of M. Moreover, while in the previous aforementioned works the number
of double cosets was finite, here there are in general uncountably many (unless k = 1).
Therefore we must be careful to apply this argument to only finitely many representatives.

In fact, treating uncountably many orbits is another difficulty. In the nonarchimedean
case, in principle if there are no distributions (satisfying certain equivariance properties)
on the orbits, there are no global distributions (see, e.g., [11, §6]). Over archimedean
fields this is considerably more complicated. Kolk and Varadarajan [68] extended parts
of the archimedean Bruhat theory to this case using transverse symbols. In Appendix A
by the first named author and Avraham Aizenbud, we will present a generalization of the
main result of [68], which is sufficiently strong for our application and is of independent
interest, using tools from functional analysis.
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The proof here clarifies several arguments of [18], and is applicable to a wide class
of groups, in particular all groups treated in [20] (the unfolding argument in [18] was
presented only for symplectic groups). The original doubling method of [90] was stated
for a slightly different class of groups, e.g., the full orthogonal groups O, and also unitary
groups; general spin groups, as well as the double cover of the symplectic group, were
mentioned in [90, §4.3] but not treated in any way. The extension of the present proof to
other classes of groups would be straightforward.

Note that the aforementioned proof in [51, §4] does not involve Yy nor the structure
of p (at any rate p for k = 1 is plainly a character), and involves only finitely many
orbits. Once the proof here is reduced to the open orbit, it “mirrors” the arguments of loc.
cit. when the representations are supercuspidal, but again in the general case it is more
difficult and relies on the deep properties of p.

Our work has two immediate applications. The first concerns covering groups (topo-
logical central extensions by finite cyclic groups). The classical doubling method (k = 1)
was extended by Gan [34] to the double cover of the symplectic group. In the recent work
[64], the doubling method was extended to m-fold coverings Sp('") (A) of Sp,(A) (defined
by [80]) for all m, and any k, providing an integral representation for the tensor product
of a palr of genuine irreducible cuspidal automorphic representations 7 of Sp(”‘) (A) and
T of GLg (A), where GLy (A) is a covering group of GLj (A) defined by restriction from

(m) © (A). Alongside, the local doubling construction for GL, was developed as well
(for all m and k). The construction of [64] is still subject to local and global conjectures
regarding generalized Speh representations, but the local theory for unramified data over
nonarchimedean fields does not depend on these conjectures.

Theorem A can be reformulated for covering groups, granted certain conditions hold
(see §3.1 for details). In the particular cases of Sp(m) and GLC, Theorem A is applicable
and as a consequence, we can define local factors using uniqueness, at least when data
are unramified. Specifically, define the y-factor as the proportionality factor between two
integrals, then use it to define €- and L-factors; see (0.2) and the explanation below in the
linear setting. To the best of our knowledge, at present no other method for an analytic
definition of these factors is known (see below; of course, for a formal abstract definition
of local factors for unramified data one can use the Satake parametrization). Moreover,
granted the conjectures of [64], Theorem A is expected to imply the existence of local y-,
€- and L-factors in general, i.e., also in the ramified case, for Spg’”) x(f}\I:k (and additional
covering groups).

As explained above, the doubling method does not rely on the existence of a model for
the representation of G. This is advantageous for linear groups, but even more so when
considering covering groups. As a rule, Whittaker models are not unique for representa-
tions of covering groups (the double cover of Sp,. is an exception), first and foremost, for
genuine irreducible unramified principle series representations. This means that Shahidi’s
theory of local coefficients is no longer applicable, even in the unramified setting. The fact
that one can still define local factors using analytic methods and uniqueness, is perhaps a
surprise.
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We note that the number of Whittaker models is still finite. In recent works, Gao et al.
[38,39] and Szpruch [106] studied generalizations of Shahidi’s local coefficients, namely
a local coefficients matrix and a scattering matrix, and extracted interesting representa-
tion-theoretic invariants.

The second application is global. Since the local components of &, are (k, ¢) rep-
resentations, our local analysis expresses the Fourier coefficient of the Eisenstein series
as a sum over a finite number of cosets in (the infinite space) P(Fo)\H (Fo)/D(Fp).
Then it is visible that the integral of this coefficient against two cusp forms reduces to a
single summand, explicating the unfolding process. In this sense we fill out the gap of the
unfolding for the cases of groups considered in [20]. Note that our arguments also readily
globalize.

The original doubling method of Piatetski-Shapiro and Rallis [90] produced an inte-
gral representation for the standard automorphic L-function of an irreducible cuspidal
automorphic representation of a classical group, or its rank-1 twists, which is the case
k = 1. The local theory for k = 1 was fully developed by Lapid and Rallis [73]. The
doubling construction was extended to arbitrary k in [18], and the corresponding theory
of local factors was developed in [20].

We briefly explain how Theorem A is used for the definition of the local factors. Fix
a nontrivial additive character ¥ of F. Let & be an irreducible admissible representa-
tion of G, and t be an irreducible admissible and generic representation of GLg. If 7 is
unitary, the representation p.(7) was introduced above; in general p.(t) is defined using
Langlands’ classification and the tempered case. The local doubling integral Z(s, w, f)
is defined for a matrix coefficient @ of 7" and a holomorphic section f of V(s, pc(7)). In
its domain of absolute convergence (a right half-plane), Z(s, w, f) defines a morphism in

Homp (V (s, pc (7)), ¥ @ n¥ @ 7). 0.1)
Applying a standard intertwining operator
M(S’ w) : V(S’ IOC(T)) - V(l =5, pr(T))»

where
Yoe(t) = pe(tY) for G = Sp,, SO,

we obtain a second integral Z(1 — s, w, M (s, w) f), absolutely convergent in a left half-
plane, which still defines a morphism in (0.1). In fact, M (s, w) is further normalized using
a second functional equation, M *(s, w) = C(s, ¢, T, ¥)M(s, w), where C(s, c, T, V) is
a meromorphic function of s (see [20, §4]). By Theorem A we can define the y-factor
y(s, T X 1,v%) by

y(s.m x T Y)Z(s,0, f) = Z*(s. 0. f),

0.2)
Z¥ s, 0, f)=Z(1 —s,0, M*(s,w) f).

The main local result of [20] was the characterization of this factor, according to the pre-
scribed list of properties formulated by Shahidi in the context of generic representations
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[96, Theorem 3.5] (see also [73, Theorem 4]). In turn, the y-factor was used in [20] to
define the local €- and L-factors, following Shahidi’s method [96, §7] (see also [92-95]).
The main motivation of [20] was to find a new proof of global functoriality from G(A) to
the appropriate general linear group, via the Converse Theorem of Cogdell and Piatetski-
Shapiro [27, 28], thereby extending the global result of [6,25,26] from globally generic
representations to arbitrary cuspidal ones. Note that the endoscopic functorial transfer for
quasi-split orthogonal or symplectic groups was obtained by Arthur [5] using the twisted
stable trace formula, and extended to quasi-split unitary groups by Mok [84].

We mention that if 7 is supercuspidal (under certain additional assumptions), our
uniqueness results imply, using Bernstein’s continuation principle [7], that the integral
is holomorphic (see Corollary 2.4). Using the fact that the integral can always be made
constant, it follows that the only poles appearing in y (s, 7 X 7, {) are poles of M *(s, w).
This observation hints that a “g.c.d. definition” of the L-function using the generalized
doubling method must involve “good sections™ (see, e.g., [65, pp. 589-590]). Indeed,
this was the approach of Yamana [113], who studied this definition of the L-function for
k=1.

Similar multiplicity at most one theorems exist in the literature. In the context of
Rankin-Selberg integrals for representations of G x GLj admitting unique Whittaker
models, where G is a classical group, see [40, 44, 66,97, 98]. See also [2, 35, 62, 74,
102, 104, 108, 109] where strong general uniqueness results were proved (which in par-
ticular imply multiplicity one for the same Rankin—Selberg constructions with irreducible
generic representations). Our proof technique resembles Soudry’s [97, §8] and [98].

In a more general context, for a representation p of an arbitrary group H, a sub-
group D < H and a representation £ of D, one can consider the space Homp (p, &).
Typical questions involve the multiplicity of this space, or the structure of £ for which
Homp (p, &) # 0. In certain cases, the nonvanishing is related to special values of L-
functions. Globally, one is often interested in a period integral of an automorphic form
on H(A) over D(Fy)\D(A) (with § = 1). There is a vast amount of research on such
problems; let us mention [32,33,56,57,59,75-79,86-89, 114, 115].

For other works involving the doubling method see, e.g., [14,31,36,51-53,72]. The
doubling method is not the only integral representation to lift the barrier of globally
generic representations: other constructions of similar generality were developed, thus
far without complete local theory, in [10,42,43,63,99, 100]. While the local ramified the-
ory is probably within reach (see, e.g., [99, Theorem 4.2]), it will require an abundance
of work. For example, these integrals are far less uniform than the doubling method, and
for orthogonal groups one uses the Bessel model of = which involves an auxiliary repre-
sentation.

The rest of this work is organized as follows. In §1 we provide some general prelim-
inaries, define (k, ¢) representations and recall the doubling construction of [18,20]. The
proof of our main result is given in §2. Section 3 contains our main applications.

Parts of the nonarchimedean version of Theorem A for supercuspidal representations
appear in [17]; Cai and the present authors were working independently.
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1. Preliminaries

1.1. The groups

Let / > 1 be an integer. Let Bgr, = Tor, X Ngi, denote the Borel subgroup of upper
triangular invertible matrices, where Ng;, is its unipotent radical. The standard parabolic
subgroups of GL; can be identified with the set of compositions 8 = (81, ..., B4) of
(Bi = 0, a > 1), where Pg = Mg x Vg denotes the parabolic subgroup with Mg =
GLg, x---x GLg, and Vg < Ngi,. Let J; be the permutation matrix with 1 on the anti-
diagonal and 0 otherwise. For g € GL;, ’g denotes the transpose of g, and g* = J; g~ J;.

For x € R, | x| (resp., [x]) denotes the largest (resp., smallest) integer smaller (resp.,
greater) than or equal to x.

For an even /, define

J J
S = {g Gl : g (—J//z [/z)g - (—Jl/z 1/2)}'

Let Bsp, = Sp; NBgy,. For any /, let SO; = {g € SL; : 'gJ;¢ = J;} and fix Bso, =
SO; NBgr,. Let Spin; be the algebraic double cover of SO;, with the Borel subgroup
which is the preimage of Bso,. This defines the set of simple roots ao, ..., 01/2)-1
where «; = ¢; —€;41 for0 <i < |[//2] — 1, and GSpin; can be defined as the Levi sub-
group of Spin, , , obtained by removing ag. For / = 0, 1, GSpin; = GL, and GSpin, =
GL; x GL;.

Henceforth we fix one of the families of groups GL;, Sp; (when [ is even), SO; or
GSpiny, and for a given / denote the member by §;, e.g., §; = Sp;. Write the Borel sub-
group in the form Bg, = Tg, x Ng,, where Ng, is the unipotent radical. For a parabolic
subgroup R < §;, §r denotes its modulus character, and we write R = Mg x Ug where
M is the Levi part and Ug is the unipotent radical. If U < § is a unipotent subgroup, U~
denotes the opposite subgroup. The Weyl group of §; is denoted W (%), and similar nota-
tion is used for any reductive group. The center of an algebraic group X is denoted Cy,
and its connected component by Cy.

The unipotent subgroups of GSpin; are isomorphic (as algebraic groups) to the unipo-
tent subgroups of SO;, and W(GSpin;) is isomorphic to W(SO;). Also Caspiny,, 18
connected and for [ > 2, CSSpin, ~ GL;.

Let F be a local field with characteristic 0. Throughout, we identify F-groups with
their F-points, e.g., § = §;(F). The additive group of / x [’ matrices (over F) is denoted
Mat;;» and Mat; = Mat; ;. The trace map is denoted tr. If F' is nonarchimedean, we let
q denote the cardinality of its residue field. When we say that a property holds outside a
discrete subset of s, over a nonarchimedean field we mean for all but finitely many values
of g~5. Forany group X, x,y € Xand Y < X,*y = xyx land*Y = {*y:y e Y}.

1.2. Representations

We describe the general notation involving representations that appear in this work. In
this section §; can be replaced with any reductive algebraic group. By a representation
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of a closed subgroup of §; we always mean a smooth representation on a complex vector
space. Over archimedean fields, an admissible representation is understood to be admis-
sible Fréchet of moderate growth. If 7 is a representation of a closed subgroup ¥ < §;,
Y is the representation contragredient to 7, and for x € §;, * & denotes the representation
of *Y on the same space as 7, with the action given by *7(y) = Jr(x_1 y). Parabolic
induction is normalized. Morphisms are continuous and induction is smooth, and ® is the
complete tensor product, over archimedean fields.

In this work supercuspidal representations are not automatically irreducible (or uni-
tary). When the field is nonarchimedean, a representation of a group which does not have
unipotent subgroups is also (trivially) supercuspidal. By definition, supercuspidal repre-
sentations only exist over nonarchimedean fields.

For a closed unipotent subgroup U < §, denote the set of (unitary) characters of U
by U.Letwbea representation of U on a space V. For ¢ € U, let V(U,y) C V be the
subspace spanned by the vectors 7 (u)§ — ¢ (u)§ for all v € U and £ € 'V over nonar-
chimedean fields, and over archimedean fields V(U, v) is the closure of this subspace.
The Jacquet module Jy () is the quotient V(U, ¢)\'V. Assume R < §; is a closed
subgroup containing U . Denote the normalizer of U in R by Ng(U). If & is a representa-
tion of R, Jy y () is a representation of the subgroup of Nz (U) which stabilizes . We
do not twist the action, i.e., we do not multiply by a modulus character. For any r € R, we
have an isomorphism " Jy y () = Jry,ry (1) of representations of "U (use & > w(r)§).
In particular, if r € Ng(U), then " Jy 4 () = Jy,ry ().

Over nonarchimedean fields, if U is abelian and Ng(U) acts on U with finitely many
orbits, by [11, §§5.9-5.12] if Jy 4/ () = 0 when y’ varies over a complete set of repre-
sentatives for the nontrivial orbits, U acts trivially on the space of &, i.e., m = Jy,1 (7).

Let Jy, ()* be the algebraic dual of Jy y (;r) over a nonarchimedean field, and the
continuous dual over archimedean fields. By definition Homy (7, ¥) = Jy,y (7)*.

Over archimedean fields we will also need the notion of generalized Jacquet modules.
Let 7 be arepresentation of §;, and R = Mg x Ur < §; be a parabolic subgroup. Denote
the Lie algebra of Ug by u = ug. For any positive integer i, we call n/ﬁ the i-th
generalized Jacquet module of .

Lemma 1.1. If 7w is an admissible finite length representation of §;, the i-th generalized
Jacquet module is an admissible finite length representation of Mg.

This lemma is proven in the same way as the classical case (i = 1); see Wallach
[110, Lemma 4.3.1].

Lemma 1.2. Assume 7 is an admissible finite length representation of §;. The set of
central exponents of w /', i.e., the central characters of the irreducible constituents of
7 /uim as a representation of Mg, where i varies over the positive integers, belong in a
discrete set.

Proof. Let V denote the Harish-Chandra module of 7, i.e., the space of K-finite vectors,
where K C §; is a maximal compact subgroup. By [22, Proposition 2.2], V is dense in 7,
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and by [22, Proposition 5.1 and Lemma 5.3], V/uV has finitely many central exponents.
In other words, for any X in the Lie algebra of the center of §; there exists a polynomial p
such that p(X) acts by zero on V/uV.

Now, V/ui V is filtered by the modules u/ V/uj+1 V,0 < j < i, and each of these
is a quotient of u/ ® V/uV. When i varies, the set of central exponents of V/u'V is
contained in the set of central exponents of 1/ ® V/uV, j > 0. Regarding u/, its central
exponents can be computed using the adjoint action, and when j varies they belong in a
lattice. Since V/uV admits only finitely many central exponents, the central exponents
of V/u'V for all i lie in a finite union of lattices.

Finally, note that for any i, the set of central exponents of 7 /u’x lies in the set of
central exponents of V/u’ V. Indeed, if p(X) acts by zero on V/u'V then it acts by zero
on 7r/n'm, since V is dense in 7. n

Remark 1.3. In particular, the set of central exponents of the i-th generalized Jacquet
modules of 7, where i varies over the positive integers, belongs in a discrete set.

Let ¥ be a nontrivial additive character of F. For v € V(.1), write v = (vi,j)1<i,j<I
with v; ; € Mat.. Denote

Yi(v) = w(l_Z1 (v 41)).
i=1

For a representation 7 of GSpin; which admits a central character, let y, be the
restriction of the central character of 7 to Cggi, -

1.3. Distribution vanishing theorem

Let a real algebraic group C act on a real algebraic manifold X. Let £ be a smooth
representation of C in a Fréchet space. Assume the actions of C on X and on E extend
to a Lie group A, which contains C as a closed normal subgroup.

Let Z C X be a closed subset which is a union of finitely many locally closed A4-
orbits. For any v € Z~ and z € Z let A} be the symmetric v-th power of the conormal
space at z to the orbit Cz in X. Let C, denote the stabilizer of z in C, and § be the ratio
of modular functions of C and C;.

Denote the space of E-valued distributions on X, i.e., functionals on the space of com-
pactly supported smooth E-valued functions on X, by O'(X, E), and let D, (X, E) C
D’ (X, E) denote the subspace of distributions supported on Z. For a smooth character y
of Z,let D, (X, E )Ex ¢ D% (X, E) be the subspace of (C, y)-equivariant distributions.

The following theorem follows from Theorem A.13 in the appendix:

Theorem 1.4. Assume that for any z € Z, the set {x*|c, : a € A} is a union of finitely
many locally closed orbits under the action of the stabilizer A; of z in A. Suppose also
that for any z € Z and any v > 0,

(EQ® A, ® 8" = 0. (1.1)
Then DY (X, E)¢X = 0.
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Remark 1.5. If y is trivial or A = C, the theorem already follows from [68, Theorem
3.15, Cases (i, ii)]. Note that in both cases y* = y forany a € A.

Remark 1.6. If A, X and the action of A on X are semialgebraic, the A-orbits in X are
automatically locally closed. If in addition C is semialgebraic and C, is unipotent, the
condition (1.1) is equivalent to (E*)€=X = 0, independently of v (see [103]).

In order to check the conditions of the theorem we will need the following lemma.

Lemma 1.7. Let H be a real reductive group and Q < H be a parabolic subgroup with
a unipotent radical U = Ug. The set U (the unitary characters of U) is a finite union of
locally closed Q-orbits.

Proof. Let u denote the Lie algebra of U. There exists a hyperbolic semisimple element
S € H such that u is the sum of positive eigenspaces of the adjoint action ad(S). The
eigenspace 1y corresponding to the smallest positive eigenvalue of ad(S) is called the
first internal Chevalley module of Q. Clearly, 11; projects onto (and in fact identifies
with) the space of characters of 1, which in turn identifies with U by multiplying by i and
exponentiation. By [91, Theorem E’], Q has finitely many orbits on 11, and each orbit is
locally closed since the action is algebraic. ]

1.4. Representations of type (k,c)

Let k and ¢ be positive integers. For a partition o of kc, let V(o) < Ng,,. denote the
corresponding unipotent subgroup, and ,17(0) gen denote the set of generic characters. If o’
is another partition of k¢, write o’ = o if o’ is greater than or incomparable with o, with
respect to the natural partial ordering on partitions. See [41], [29, §5] and [21] for details
on these notions. For convenience, we provide the definition of V(o). Identify o with an

[-tuple (aq,...,a;) of integers such that a; > --- > q; > 0. Let p, be the kc-tuple of
integers obtained by arranging the multi-set {¢; —2j +1:1<i <[, 1 <j <a;}in
decreasing order. For any x € F*, put x?o = diag(x?e (D .. . xPoke)y ¢ Ty, The

one-parameter subgroup {x?? : x € F'*} acts on the Lie algebra of Ngr . by conjugation,
and V(o) is the subgroup generated by the weight subspaces of weight at least 2.

For the orbit (k¢), V((k°)) = V{cx), the group M k) acts transitively on the set
f/\((kc))gen, and Y € ?((k”))gen. The stabilizer of Y in M k) is then the diagonal
embedding GLZ of GL, in M(,x).

Let p be a representation of GLg.. We say that p is a (k, ¢) representation if
Homy ) (p,¥') = 0forallo X (k¢) and ¥’ € /I)(O')gen, and dim HomV(ck)(p, Yr) = 1.

We briefly recall the definition of the wave-front set (see e.g., [48, §4.1] for some
more details). When p is admissible of finite length, its character defines a distribution on
a neighborhood of 0 in the Lie algebra of GLg,. This distribution (in the nonarchimedean
case) or the leading term of its asymptotic expansion near 0 (archimedean case) is a com-
bination of Fourier transforms of Haar measures of nilpotent coadjoint orbits ([54], [50,
p- 1801, [9, Theorems 1.1 and 4.1]). For a nilpotent orbit O, let ¢ denote its coefficient in
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this expansion (for a suitable normalization of the measures). The wave-front set WF(p)
of p is defined to be the set of orbits O such that c9 # 0 and for every other orbit O’
containing O in its closure, cgr = 0.

In this case, an equivalent definition of a (k, ¢) representation can be given in terms of
WE(p): Now p is (k, ¢) if (k€) is the unique maximal orbit in WF(p) and the dimension
of the space of degenerate Whittaker functionals on p with respect to Vi xy and ¥ is 1
(see [46, Theorem EJ).

For ¢ = 1, arepresentation is (k, 1) if and only if it affords a unique Whittaker model.
On the other end, a representation is (1, ¢) if and only if dim Homy,, (p, 1) = 1, equiva-
lently p is a character (V{, is the trivial group).

For a (k, ¢) representation p, dim ‘]V(ck),Wk (p)* = 1, hence dim JV(Ck)ﬂ#k (p) =1s0
that SLCA acts trivially on JV(c Ky Vi (p) and GLCA acts on J Vieky i (p) by a character.

We recall the map p. defined (implicitly) in [19, §2.2] from irreducible admissible
generic representations of GL to admissible finite length (k, ¢) representations of GLy,.
For an irreducible tempered representation 7 of GLg, p.(7) is the generalized Speh rep-

resentation, i.e., the unique irreducible quotient of Ind(;?k"f)((r R+ ® r)S},,ﬁ 181:) ) (see

[55, 83]). Then if T = IndIG,;k (®§1=1 |det|% 7;) where B is a composition of d parts of
k, a; > --- > ag and each t; is tempered, p.(t) = Indg;’cw ((X)?L1 |det|% p.(t;)). By
[19, Theorem 4] the representation p.(t) is (k, ¢). The definition of p.(r) was also
extended to unramified principal series IndglG"L‘k ((X)f.;1 |det|% ;), where 7; are unram-
ified unitary quasi-characters of F* and a; > --- > ag, again by letting p.(t) =
Indgi“f‘;’) ((X)i-‘=l |det|% p. (7)) (note that p.(t;) = t o detg,.). While p.(7) might be
reductible in the general case, it is still admissible, of finite length and admits a cen-
tral character. Also note that (over any local field) GLCA acts on JV(Ck)a‘//k (pc(7)) by
g+ t((detg)ly) [19, Lemma 12].

We mention that over nonarchimedean fields, certain structural properties of irre-
ducible (k, ¢) representations follow from [82, §I1.2]. For principal series representations,
irreducible or not, over any local field, a representation is (k, ¢) if and only if it takes the
form Indg](“ckk") (®f~€=1 xi detgr, ) for quasi-characters y; of F'*. This follows from [3,4,46]
(their focus was archimedean; the nonarchimedean case essentially follows from [11,82]).

1.5. Doubling setup

We define the basic setup for the doubling method: the groups G and H, the image of
G x G in H, and the definition of the local integral. The precise details depend on G.

Let ¢,k > 1 be integers, G = §, and H = k. (if G = Sp,., ¢ must be even). Let
n = |c/2] if G # GL., otherwise n = ¢. Also set ¢¢ = —1 for G = Sp, and €y = 1
otherwise, and if G = SO, GSpin, and c is odd, define (€1, €2) = (1, 1/2) if k is even
and (€1,¢€) = (1/2,1) if k is odd.

Recall By = Ty x Ng is our fixed Borel subgroup in H (see §1.1). Set Hy = §5..
Let O = Mg x Ug be the standard parabolic subgroup of H such that its Levi part Mg
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is isomorphic to GL, X --- x GL, xHgy if H # GLj,, otherwise Q = Pek—1 5 ck—1y.
Denote U = Ug. We construct the following character Yy of U.
For k > 1, denote the middle 4¢ x 4¢ block of an element in U by

Ie u v
( ~ ) (12)
I.

Let u'>! be the top left n x n block of u, and if H # GLy., denote the bottom right n x n
block of u by u?2. For H = GLyy,, u*? is defined to be the top ¢ x ¢ block of u’. If
H = SOy, GSpiny;,. and c is odd, denote the middle two coordinates of row n + 1 of u
by 3, u*) € Mat;x».

If H # GLogc and k > 1, the character Yy restricts to Yx—; on the group Vi x-1y,
identified with a subgroup of U via the embedding v + diag(v, I¢,v*) € U.For H =
GLyke and k > 1, Yy restricts to wk__ll on each of the two copies of V( k-1, embedded
in U via (v1, v2) > diag(v1, l2¢, v2) (v1, v2 € Viek—1)). The character Yy is given on
(1.2) by

y(tr(—ut +u*?)), H = GLggec.
V(b +u?2?)), H = Spsyc> SOskc, GSpinyy,., even ¢,
Y (tr(u'! + u??) + equ® — equ*), H = SOy, GSpiny,., odd c.

For k = 1, U and thereby yry are trivial.
Now consider the case H # GSpin,;,. In this case G x G is embedded in the stabi-
lizer of Yy in Mg. Explicitly, assume k > 1 and g1, g2 € G. If H = Sp,y., SO2k With

an even ¢, write g1 = (g}; 512 ) g1,i € Maty; then

. g1.1 81,2
(g1.82) = dlag<g1,---,g1, (g1,3 82 g1‘4) ,gf,---,g]k),

where g appears k — 1 times. For H = GL,,

(g1,82) = diag(gy,...,£1.81,82:81.---,81)-

Here g1 appears k times on the left of g, and k — 1 on the right.
For odd ¢ and H = SO, take column vectors e+;, 1 <i < ¢, whose Gram matrix
is Jo¢ (ie., eje—; = &; ;). Let

b=(e1,....ec—1,€1€c — €20, €1€c + €26 ¢,€ ¢41,...,6-1),
by =(e1,....ep,€16c —€2e_¢,e_y,...,e_1),
by = (ent1,---,€c—1,€1€c + €26_c,€ci1,...,6—pn_1),

m = diag(lc_l, (_6612 2 ), 10_1).

The Gram matrices of (b, b1, by) are (Ja., diag(l,, —1, I,)Jc, J.). The left (resp., right)
copy of SO, acts on the subspace spanned by b; (resp., b,); the left copy is defined by

{g1 € SL. : 'g1diag(I,. —1,1,)J g1 = diag(I,,—1,1,)J.},
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and the right copy is defined using the convention of §1.1 (the Gram matrix of b, is J.).
Extend g; by letting it fix the vectors of b3_;, then write this extension as a matrix
g; € SOy, withrespectto b, i = 1,2. The matrices g} and g, commute and the embed-
ding is given by

(g1.82) = diag(g1.....81."¢1"82.81. - . &1)-
The notation (1, g) or (g, 1) is used for the embedding of one of the copies of G in H,
where 1 denotes the identity element of G.

Example 1.8. Here are a few examples for the embedding in the odd orthogonal case,
adapted from [20, Example 15]. Consider the standard Siegel parabolic subgroup R of G.
Fora,b € GL,, =~ Mg,

(a,b) = diag(diag(a. 1,a*)?", diag(a. b, I,,b*,a*)).

where A’ denotes the diagonal embedding of GL. in GL ()., and we omitted, here and
below, the bottom right (k — 1)c x (k — 1)c block of (a, b) (it is uniquely defined by the
given blocks and H). The images of (Ug, 1) and (1, Ug) take the form

I €2X —€1X y
A In
Iy xy ,
: 1 €1x
diag 1 x , 1 S ,
I 2
I
In
Iy
In eox €1x  y
. 1 e1x’
dlag I(k—l)c» 1 ex’ s
Iy
In

where x’ is uniquely determined given x and H. We also note that
In—1

In—1 L
1
In—1
A I,

In—1
= dia 1 ! 27
= diag 1 ’ 263 ’
In— In

I
Inp—

I ,1
(1,( -1 ! )) = diag| Tge_1ye. e
2
In_ 1

Iop—

The case of H = GSpin,;. is slightly more complicated: we have an embedding of

{(z.2):2 € CSN\G x G (1.3)
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in Mg, in the stabilizer of /. Here, with a minor abuse of notation, (z, z) is regarded as
an element of G x G. For details see [20, §3.5].

We define the space of the induced representation of H, which is used for the con-
struction of the integral. First assume H = Sp,y., SOzk.. Let P = Mp x Up be a stan-
dard maximal parabolic subgroup of H such that Mp = GLg. and Mp < M ¢ kc). Let
p be a representation of GL.. For a complex parameter s, let V(s, p) be the space
of Indf.ﬁl (|det|s='/2p). For H = GSpin,; ., we take the standard parabolic subgroup P
obtained by removing the simple root c., then Mp = GLg. x GL;, and note that GL; is
identified with C;. Let p be as above, and 7 be a quasi-character of F*. Then V(s, p ® 1)
is the space of the induced representation Ind¥ (|det|*"'/2p ® 1). For H = GLy. we
take P = P(kc kc), P = p1 ® p2 for two representations p; and p, of GLg,, and V(s, p)
denotes the space of Ind (|det|*~'/2p; ® |det|™*+1/2p,).

Assume H # GSpin,,.. Take 8o € H satisfying oUp = Up if kcisevenor H =
GLyk.; otherwise take & € O, With SUp =U p and let & be the product of §;, and a
representative of the transposition in Oz, which normalizes Ng (to obtain det§y = 1).
Let §; € Ho N Up (Hyp < Mg) be such that its natural identification with a matrix in
Mat, is of rank ¢, unless H = SO, and c is odd, in which case the rank is ¢ — 1 (this
is the maximal rank). Put § = 8¢8;. Then let ¢ be an involution of G such that 4{(g,'g) :
g < G} < Mp.

One concrete choice of 8¢, §; and ¢ was given in [20]:

(folkc Te ) H # SOy or ¢ = 2n,

S0 = I . In In
0= (Ik(, ke ) dlag(l(k—l)c, ( I, (—1)k) s ((—l)k In) s I(k—l)c)]kc,

H = SO0y, c =2n+1,
where e = diag(Tke—1. (1 1) Tre—1). 81 = diag(Ige—ne. (7 1), Tg—1)c) with
I, H = Spyi., GLoke,
. (—’" ,n), H = SOupe, ¢ = 21,
(0_1,, 1,,), H = SOpke,c =21 + 1,
and

I, _ o
(_GOIn ) ’ H = Sp2kc’ SOcha ¢ =2n,
I, H = GLyg,,

I
, I ), H = SOy, c =2n + 1, k is odd,

In
_ne2
( 22 i . H =803, c=2n+1,kiseven.
%2
N

Alsoset Uyg = U
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For H = GSpiny,, 8o € H is defined using the isomorphism W(H) = W(SOz.),
81 is the element taken for SO»., and ¢ satisfies the same condition as above (the concrete
examples of ¢ extend to involutions of GSpin, as well). The important observation for
us here concerning GSpin,;. is that the images of unipotent subgroups, and subgroups
GL; occurring as direct factors of standard Levi subgroups, can be read off from the
corresponding orthogonal cases.

For any representation 7 of G, 7' is the representation on the space of 7, with the
action defined by 7'(g) = 7 (‘g). The definitions imply (7*)¥ = (7V)".

We define the (local) doubling integral. Let & be an irreducible admissible represen-
tation of G. If H # GL,g,, let p be an admissible finite length (k, ¢) representation of
GLy, which admits a central character. Otherwise p = p; ® x~!p, where p; and p, are
admissible finite length (k, ¢) representations of GLg., each admitting a central character,
and such that the central character of p; is the inverse of the central character of p;, and
X is a quasi-character of F*.

Let @ be a matrix coefficient of V. Let f be a holomorphic section of V (s, p) if
H # GSpin,y,., and for GSpin,;,, f is a holomorphic section of V(s, p ® yr). The
doubling integral for & x p is defined by

Z(s.0. f) = /G /U o(9) /(5. Suo(1.'g)) Vv (o) duo dg. (1.4)

Here if H = GSpin,;., the domain of integration is C;\ G instead of G.

Theorem 1.9 ([20, Propositions 17, 20, 21]). Integral (1.4) enjoys the following proper-
ties.

(1) Formally, it belongs to the space

Hom(g, g) (JU,x//l_/' Vs, p® xz)), )(_kTL’V & JTL). (1.5)

Here x5 and y are omitted for the cases where they are undefined.
(2) It is absolutely convergent for Re(s) > 0, independent of the data (w, f).

(3) Over nonarchimedean fields there is data (w, f), where f is a polynomial section
in q75, such that Z(s, w, f) is absolutely convergent in C and equals a nonzero
constant (independent of s). Over archimedean fields for each s there is w and a
smooth section f such that the integral is nonzero at s.

Proof. The theorem was proved in loc. cit., for the representation p = p.(t) (H # GLyk.)
or p = pc(t) ® x 'pc(tV) (pe(tr) was defined in §1.4). However, the proofs of these
statements remain valid when we take the more general representation p as described
above. ]

Over nonarchimedean fields, once we prove that (1.5) is at most one-dimensional out-
side a discrete subset of s, Theorem 1.9 together with Bernstein’s continuation principle
(in [7]) imply that for a rational section f, Z(s, @, f) admits meromorphic continuation
to a rational function in ¢—*. Over archimedean fields for the choice of p in [20], the
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meromorphic continuation of the integral and continuity of this continuation in the input
data were proved in [20, §6.13].

2. Uniqueness results

2.1. Outline of the proof of Theorem A

Let 7r; and 5 be admissible finite length representations of G. If H # GLyg,, let p be an
admissible finite length (k, ¢) representation of GLg.. For H = GLyg, put p = p1 ® p2
where each p; is an admissible finite length (k, ¢) representation of GLg., and let yo
be the quasi-character of F* such that the diagonal action of GLCA on JV(ck),wk (p1) ®
JV(CM,W (p2) is given by g — yo(detg) (g € GL.). If H = GSpin,y,., assume in addition
that x,, Xz, exist and )(;ll = Xn,,and put n = )(;ll. To preserve uniform notation the
characters yg, y»; and n are simply ignored in all other cases.

Let D =U x(G,G) < H. We will prove our main result by analyzing distributions on
the orbits of the right action of D on the homogeneous space P\ H. The space P\H/D
is finite if k = 1 (see [90, Lemma 2.1]) or ¢ = 1 (then either n = 0 and U = Ny, or
G = GL; and U contains all the roots of Ny but one, on which (G, G) acts with two
orbits). Otherwise it is infinite, even uncountable (e.g., for H = Spy;,. and k > 2), but
contains a unique Zariski open orbit which is P§D. This follows by showing that the
dimension of P3§D is equal to the dimension of PU,. For h,h’ € H, write h ~ I’ if
PhD = PK' D, otherwise h ~ h'.

Regard Yy ® ) ® ) as a representation of D. For H = GSpiny,, (G, G) is a
homomorphic image of G x G (see (1.3)), and the condition )(;11 = X, above implies
that 7" ® 7, is a representation of (G, G).

Consider the space

HOTI](G,G)(JU,W[—JI (V(s,p®n)). 71 @ m2) = Homp (V(s.p® 1) ® Yy ® 7y @ 7, 1),
2.1)
which is isomorphic to

Homp (Ind{,’;g((weqs—l”p @ ® Yy @r) ®my)), 1). 2.2)

Here the action of D on the space of functions & on H x D is givenby d - £(h',d’) =

g(h'd,d'd); and if H = GLyg, |det|*~'/2p is short for |det|*"1/2p; ® |det|=+1/2p,.
For any h € H, denote P, = h'p A D. We will study (2.2) by considering the fol-

lowing spaces of distributions on the orbits Ph D (this is well defined, see below):

Homp (ind?h " ((det 20 @ MENH ® (Yu @ 7Y @ 1Y ® Ay)), 1). 2.3)

Here over nonarchimedean fields, ind denotes the compact nonnormalized induction,
while for archimedean fields, ind is the Schwartz induction of [30, §2] (see also [47,
§2.3]); and Ay is the trivial character. If the field is nonarchimedean or 2z ~ §, we only



D. Gourevitch, E. Kaplan 3024

have v = 0. Over archimedean fields when & ~ §, we further have, for each integer v > 0,
a finite-dimensional algebraic representation A, which is the algebraic dual of the sym-
metric v-th power of the normal bundle to the double coset. Note that when i ~ §, i.e., for
the open orbit P§D, the tangent space to the double coset coincides with the total tangent
space, and thus the normal space is trivial.

By the Frobenius reciprocity (2.3) is isomorphic to

6, () = Homp, (""'(|det "> p @ ) ® (yu @ 7Y ® 1)) & Ay, 0). (2.4)

Here 6),(x) = 8p, (x)85' (x)85"/2("x) (x € Py). We define # (h) = Ho(h) if F is nonar-
chimedean or i ~ §, otherwise J (h) = €D, #, (h).

Our main result (Theorem 2.1 below) is that (2.1) is at most one-dimensional outside
a discrete subset of 5. We will prove there is a discrete subset 8 C C such that for all
s & B, H(h) =0forall h ~ §, and dim #(5) < 1.

Over nonarchimedean fields this already implies (2.1) is at most one-dimensional out-
side 8B. Indeed, this follows from the theory of distributions on /-sheafs of [11]. In more
detail, let ¥ be the /-sheaf of the induced representation in (2.2). The right action of D on
P\ H is constructive, by [11, Theorem A] applied to X(F) where X is the algebraic F-
variety P\ H. Each # (h) (see (2.3)) is the space of distributions on the restriction of
to the orbit Ph D (the orbits are locally closed, hence this restriction is well defined). Fix
s ¢ B and let T, T/ be nonzero distributions in (2.2). Since P§D is open, by [11, §1.16]
both 7 and T restrict to distributions on J# (§), which is one-dimensional, hence there
is o € C such that T |psp = T'|psp. Then aT — T’ is well defined on the quotient
[-sheaf ¥ (PSD)\F (see [11, §1.16] for the definition and notation), which is an /-sheaf
on the complement of P§D in H. Since there are no nonzero distributions on any ¢ (/)
for h ~ §, by [11, Theorem 6.9] we deduce 7 — 7 vanishes on ¥, i.e., T = 7.

Over archimedean fields the argument also depends on the precise methods we use in
order to handle each # (h). We describe this below.

2.1.1. Basic properties of # (h). In general every algebraic representation of a unipotent
group is unipotent, i.e., admits a (finite) filtration such that the group acts trivially on
each of its quotients. We can hence filter each A, and consider these quotients. If (2.4)
is nonzero, it is nonzero when A, is replaced by one of these quotients. Since we will
prove J,(h) = 0 for all v > 0, we can consider each of these quotients, re-denoted A,
(at the cost of relabeling the index set of v), separately, so that we assume A, is a trivial
representation of U for all v > 0.

In general if Y <"U N Mp, then hly < Py, and by definition any morphism in # (/)
factors through Jy » v (p). Indeed, since Wy < U, for y € Y we have

h1 (|det|5—1/2p ® n)(h_ly) _ ,O(y), ('WU ® 7{1\/ ® 7'[;/ ® Av)(h_ly) _ wU(h—ly)’

so if T e J, (h) for some v, and £, ®§ is a pure tensor in the space of p® (1) @) ®A,),
then

Yo DT (p()E ® 8 = TWu ™ )p(1)E ® §) = T(E, ® §).
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Thus
T(p(0Ep —"¥i" (1)E) ® E) = 0. (2.5)

This means that T factors through Jy, hy ! (p), where in the archimedean case note that
T is continuous, and because the argument is applicable to all v, we conclude that any
morphism in J# (h) factors through Jy vg! (p).

2.1.2. The vanishing of J¢(h). One can prove the vanishing of J (%) using three types
of arguments. First we have an incompatibility condition: assume /4 is such that

wUl(Jnh*lUP 7& 1. (2.6)

In this case we can take a subgroup ¥ < U such that #Y < Up and yy|y # 1. Then
Y < Pj, and both "~'(|det|*"'/2p ® 1) and Y ® my ® A, are trivial on Y (because
hYy < Up and Y < U), hence the action on the left hand side in #, (h) is given by ¥y,
which is nontrivial by (2.6). However, the action on the right hand side is trivial, because
it is given by a modulus character and Y < U. Thus #, (h) = 0 for all v, and # (h) = 0.

Note that while a priori (2.6) depends on /&, we will actually prove it only depends on
the double coset P Q (this is only important for the archimedean parts).

Second, if any morphism in J¢(h) factors through Jy (s 4 (p), Where o X (k€) and
Y e ,V(o)gen, then Jy (¢),47(p) = 0 because p is (k, ¢), and a fortiori # (h) = 0.

Let us remark that these two methods for proving vanishing will be applied to all but
finitely many representatives. In fact, consider the Bruhat decomposition H =[[,, Pw’Q
where w’ are representatives for Weyl elements of H, and let wg denote the representative
of the longest reduced Weyl element. Then the orbit Pwg Q is open. The above arguments
prove vanishing on H — Pwy Q. The remaining orbit PwoQ is the disjoint union of
finitely many orbits P/ D, namely n + 1 orbits when H # GLg. and (¢ + 1)(c +2)/2
orbits for H = GLyg,. In particular, as explained in §1.5, one can choose § = §¢8; with
80 = wo and 8; € Ng,, so P6D C PwoQ. The orbits in PwoQ must be handled using
the third method, which we now describe.

Third, assume there is a composition 8 of kc and a character ¥ of Vg, which may
depend on /, such that any morphism in J () factors through Jy, y (o). The vanishing
argument in this case will be applicable to all but a discrete subset of s.

We first describe the nonarchimedean case. Assume there is a proper parabolic sub-
group R = Mg x Ugr < G, with Mg containing GL; as a direct factor, [ > 1, such that
Jvg.y(p) is a trivial representation of (1, Ug). Therefore any morphism in # (k) also
factors through Jy, (7)), which is an admissible finite length representation of Mg (if
7T, is supercuspidal, we immediately deduce J (h) = 0). On each irreducible constituent
of Jy, (nzv ), as a representation of Mg, Cgr, < Cpy acts by a character, and there are
only finitely many such characters possible, depending only on 7z, and Ug (thereby on £).

Also assume Jy, 4 (p) admits a finite length filtration as a representation of h(1,GL)),
and on each of the (not necessarily irreducible) constituents, h(l, CaL,) acts by a charac-
ter. Again this character belongs to a finite set, now depending only on p and on the
character ¥ (which depends on #).
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If 0 # T € H(h), we can take constituents V of Jy, y (p) and V' of Jy, (r;') such
that 7 is well defined and nonzeroon V ® n;’ ® V’. We then obtain a relation

p@lal™ 7@ = 7 (" (et 0 0 1) ® (v ® 7}’ © 1)) (1, @)§ )
0((1.a)T (&), @7

where p is a quasi-character of F* which belongs to a finite set depending only on
(72, n, p, h), and b is a constant which depends only on /, and we assume b # 0. We
deduce ju(a)|al? = 6,((1,a)) for all a € F*. This excludes at most a discrete subset
of s, and if we apply this argument to only finitely many representatives /, the set of these
values of s can be taken to be our 3.

Now assume the field is archimedean. Let u g denote the Lie algebra of Ug. Assume
h(1,ug) acts locally nilpotently on Jy, y(0)*. Then there is a countable increasing fil-
tration of (closed subspaces) ‘W; of Jy, y (0)* by the order of nilpotency. The orthogonal
complements V; = (W;) L C Jy, ¢ (p) form a decreasing filtration of Jy, y (p), exhaust-
ing in the sense that [); V; = 0. For each i, Jy, y(p)/V; is a quotient of a generalized
Jacquet module of p with respect to #(1,ug). Since any morphism in J, (%) lies in
some W;, it is annihilated by u’k. Thus it factors through a generalized Jacquet module

) /ulmy . The latter is an admissible finite length representation of Mg by Lemma 1.1,
in particular it admits a finite filtration such that Cgr, acts by a character on each con-
stituent.

Assume in addition that there exists a parabolic subgroup of GLg., whose Levi part
contains " (1, GL;) as a direct factor, such that the Lie algebra v of its unipotent radi-
cal acts locally nilpotently on Jy, y(0)*. Repeating the argument in the last paragraph,
any morphism in #, (h) factors through a generalized Jacquet module p/t)T,o, and the
latter—by Lemma 1.1—has a finite filtration with (1, Car,) acting by a character on its
constituents.

Now if 0 # T € J,(h), there are constituents 'V of p/v/p, V' of ny Jubmy and
V" of A, (considering A, as a representation of (1, GL;)) such that T is well defined
and nonzero on V ® 7y’ ® V' ® V”. Again we can apply (2.7) and obtain a relation
w(@)|al?s = 0,((1,a)) (with b # 0) for all @ € F*. Here y is uniquely determined by
V.V, V" and h. In the archimedean case this condition excludes one s.

As we vary V and V' over the finite filtrations of p/v/ p and ny [ulymy, and also vary
j and i, the actions of h(l, Cgr,) and Cgr, are given by a discrete set of characters, by
Lemma 1.2. The action of (1, Cgr,) on V" is also given by a discrete set of characters,
because the central characters of the set of irreducible constituents of {A,}, as represen-
tations of (1, GL;) form a lattice. Thus the total subset of s we exclude is still discrete (for
each h). Again, repeating this for finitely many &, we will obtain a discrete set B.

2.1.3. The space (2.1) is at most one-dimensional outside 8B: archimedean case. Let the
Bruhat cells appearing in the decomposition P\H/Q be Yy, ..., Y;, numbered so that
if Y; C ?] then i > j. In particular, Yy is the open Bruhat cell (i.e., Yo = Pwo Q). We
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have

Homp (V(s,p ® 1), ¥g' @ 11 @ m2) = (V(s,p ® 1) ® Yy ® w1y ® 7y )*)AP

= O'(H. (et p 0 @ vy @ ny @ 1))

First we show that outside 8B,

Dy(H, (ldetp@ ) @ yy 7y @ 7y) " =0. 2.8)

Foranyi > 0,let X; = Uj‘:o Y;;itis an open subset of H, and Y; is a closed submanifold
of X;. It is enough to show that for any i > 0, outside 8 we have

Dy, (X;. (detPp@n) @ yy @ 7y @ 7y) > = 0. (2.9)
Indeed, we show by induction on i that for any distribution 7 belonging to the left hand
side of (2.9), the restriction T |x; vanishes. The base case i = 0 holds by definition, and
the induction step is (2.9). Since X = H we get T = 0.

To prove (2.9), we divide Y; into two cases depending on the first two vanishing
arguments from §2.1.2 (which apply to all s). Assume (2.6) holds and recall this condition
only depends on the double coset (this is proved in Proposition 2.7 below). In this case
we show, for all s,

)UXUP

Dy (X, (et p @) @ Yy @ 7y @ m) =0.

Indeed, by [68, §2, p. 70], the left hand side can be identified with the subspace of
(U x Up)-invariant maps from C(X;, Yy) supported on ¥; to ((|det|*""/2p ® 1) ®
7'[;/ ® nzv )* (recall that over archimedean fields * denotes the continuous dual). Since
U x Up acts trivially on (|det|*"1/2p ® n) ® 7y ® 7y, such a nonzero map £ would
define a nonzero distribution in @;,i (X;, 1//U)UXUP (e.g., fix some functional which is
nonzero on the image of £). But JD;G_ (X, yp)¥*Ur =0 by [68, Theorem 3.15, case (iii)]
(in their notation My(r) = A, which can be taken to be trivial as explained above, and
O =Y;).
Now assume (2.6) does not hold. We prove a more general result: for all s,

Dy (Xi. (et p@n) @ yy @7y @ 7y) " =o0. (2.10)
We deduce it from Theorem 1.4 as follows. Let X = X;, Y =Y;, C = U x P;
E = (|det]""2p ® n) ® 7Y ® my with U acting trivially and P acting only on
|det|*~1/2p ® n;and x = ;' x 1. Let A = Q x P and extend the action of C on E to an
action of A by letting Q act trivially. Condition (1.1) follows from our proof of # (h) = 0
in this case (which uses the fact that p is (k, ¢)). Note that J (%) can indeed be identified
with the space of distributions on the orbit Ph D by, e.g., [111, Theorem 5.2.4.5]. The set
{x*|c. :a € A} is finite: first, Yu |, 1 Up = 1 and because this condition is independent
of the representative /4 in the double coset PhQ, y is trivial on U N h! Up; and second,
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0 N""" Mp is a parabolic subgroup of #~' Mp and U N~ Mp is its unipotent radical
(see (2.27) below). From this and Lemma 1.7 we deduce that the set {y*|c, : a € A}isa
finite union of orbits. All these orbits are locally closed since they are orbits of an alge-
braic action of an algebraic group (note that the characters are unitary). Thus Theorem 1.4
implies (2.10).

Altogether we have shown (2.8). Therefore restriction of D x P-equivariant distri-
butions from H to Y is injective. Now D x P acts on Y, with finitely many orbits
Zo, ..., Z,, enumerated such that Z; C Z_, implies i > j, in particular, Zy = P3D
is the open orbit. As above is suffices to prove that for any i > 0, but for s ¢ 3,

i DxP
Dz, (U Zj. (et ?p@n) @ Yy @ 1y ® 1y ) = 0. (2.11)
j=0

LetA=C =D x P, E = (|det|’ V2p® ) ® 7 ® wy with D acting only on 77}/ ® 1)
(U acting trivially), P acting only on |det|*"'/2p ® n; and y = ¥p x 1, where ¥p is the
character of D defined by v ! extended trivially to (G, G). Our proof of # (k) = 0 in this
case (using (2.7)) implies (1.1) for s ¢ B, and Theorem 1.4 implies (2.11). It then follows
that restriction of D x P-equivariant distributions from H to Zj is injective. Combining
this with the fact that dim #(§) < 1, we are done.

2.1.4. The main result. We now formulate our main result. Define

d(s,p,n, 71, m2) = dim Hom(c,c)(JU,wl;l (V(s.p® ), m1 ® m2).

Theorem 2.1. Let 1, 7w and p be as above.

(1) Outside a discrete subset of s, d(s, p. 1, 1, 72) < dimHomg (o7, , 775).

(2) If my and 1y are irreducible, outside a discrete subset of s, d(s, p,n, w1, mw2) =0
unless wy = yo()", in which case d(s, p,n, w1, w2) < 1.

Furthermore, assume 1, is supercuspidal and p is not necessarily of finite length. Then

the assertions of (1) and (2) hold for all s, granted one of the following:

(@) H # GLyke and c > 2; or H = Spyy (G = Sp,); or H # Gloge, ¢ =2 and p =
pc () for an irreducible supercuspidal representation T of GLy and k > 1.

(b) H = GLog, ck > 1, my is also supercuspidal, and p; = p¢(t;) for irreducible super-
cuspidal representations 11 and 12 of GLg.

Remark 2.2. If n # )(7_,11, then d (s, p, 1, 1, m2) = 0 outside a discrete subset of s.

The proof of the theorem occupies §2.2—§2.3. Note that the case of GL; x GLj over
nonarchimedean fields was proved in [18, Lemma 35] for 71 = 75’ and yo = 1 (P\H/D
is finite in this case).

Recall the representations 7 and p defined in §1.5: & is an irreducible admissible
representation of G, and p is either an admissible finite length (k, ¢) representation of
GLy, which admits a central character, or the tensor product p; ® y~!p, of two such
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representations p; of GLy., with a quasi-character x of GLy, in which case yo = y %

(the central character of p; is the inverse of the central character of p;). This is a minor

generalization of [20], where p was taken to be p.(7) (or p; = pc(t;), i = 1,2).
Combining Theorem 2.1 with the doubling integral, we obtain the following.

Corollary 2.3. Let F be nonarchimedean and consider (1.4) for the representations 1
and p defined in §1.5.

(1) If f is a rational section in q—5, then Z(s,w, f) admits meromorphic continuation
to a rational function in q~*.

) d(s,p, xz, xor”, ") > 1foralls.

Proof. For part (1), by Theorem 2.1 with 71 = yom¥ and 7, = 7" (then n = )(;11 = ¥x)
the dimension of (1.5) is at most 1 outside a discrete subset of s. Now the meromorphic
continuation follows from Theorem 1.9 and Bernstein’s continuation principle [7].

For part (2), fix some s¢. Consider the family 4 of integrals Z(s,w, f), where w varies
over the matrix coefficients of 7V, and f varies over the sections of V(s, p ® y) that
are polynomial in ¢ 7. The set of poles of Z(s,w, f) € 4 belongs to a finite set of values
of ¢~° which depends only on the representations 7 and p, by [7] (we do not claim the
multiplicity of a pole is bounded independently of w and f). Therefore, there is r > 0
such that all integrals of J are holomorphic in the punctured disk of radius 2r around sy.
Let y be the boundary of the disk of radius r around s¢. Moreover, by Theorem 1.9 (3),
there is Z (s, w, f) € 4 which is a nonzero constant at s¢. Thus Cauchy’s integral formula

gives a nonzero morphism (w, f) > ﬁ 9Sy Z(ss,__a;(,)f) ds in (1.5). m

Corollary 2.4. Consider (1.4) for the representations w and p defined in §1.5. Assume
7 is irreducible supercuspidal and the additional assumptions (a) or (b) of Theorem 2.1
hold.

(1) d(s,p, x> xor”,7") = 1 foralls.

(2) If f is a polynomial section in g %5, then Z(s, w, f) admits analytic continuation to
a polynomial function in q ™.

Proof. The first assertion follows from Theorem 2.1 combined with Corollary 2.3 (2). The
second holds because when d (s, o, xx, o ¥, ") = 1 for all s, by the corollary in [7] the
continuation is to a polynomial. ]

2.2. The case H # GLyg,

As explained in §2.1, we will consider each # (k) separately. We prove that all but finitely
many spaces J (h) vanish using the first two methods, show the vanishing of the remain-
ing # (h) with i ~ § outside a discrete subset 8B, then prove dim J(§) < 1.

Recall n = |¢/2], and since we prove the result for both odd and even ¢ simultane-
ously, we also use [c¢/2], which is n when c is even and n + 1 otherwise.

We start by describing a choice of representatives. Since P\H/Ng can be identi-
fied with W(Mp)\W(H) and Q = Mg x U, we can write P\H/D = ][, PhD with
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h = wu, where w is a representative from W(Mp)\W(H) and u € Mg N Ng. Since
W(Mp)\W(H) is embedded in ZX¢, we can identify w with a kc-tuple of 0’s and 1’s,
where the i-th coordinate (from the left) corresponds to the permutation matrix
Tge—i
0 1
Iai-1
€0
Tye—i
(E.g., (0%¢) is the identity.) If H # Sp,., only even products of such matrices can appear
in w. In this case denote for an integer a > 0, j, = (1, Okc_l) if a is odd otherwise
Ja = (0%¢). Note that j, normalizes Ny . If H = Spoke> We set jg = (0K¢) for uniformity.
We use * in an expression for w to signify an undetermined coordinate (either O or 1).
For the case k = 1, we can parametrize P\H/D = P\ H/(G, G) using the elements

(0 Oy, 0<1<n,

where

c—1 11y _ i
01 = Dyc—1) (2.12)
€oJy

and

u; = Iy >(m+n . (2.13)

I; -1

In—;

I
Here if | < [c¢/2],7'u; = u; (always the case for an odd ¢). The double cosets for k = 1
were described in [90, §2]; see also [45, §4] for Sp,.; SO, and GSpin,, with even ¢
are similar, and for odd ¢ also refer to the description of the embedding of SO, x SO, in

SO, given in [20, Example 15] (see Example 1.8).

We start by generalizing this description, to some extent, to all k¥ > 1. For x € My,
denote its projection into the direct product of k — 1 copies of GL, by £(x); then x =

£(x)lo(x), where £o(x) € Ho. Fork =1, x = £o(x) and £(x) is trivial. If y € Mg, then
(Fy) =), LoFy) =2Dto(y).
For any (g1, g2) € (G, G),
(81.82)  — g((gl,gz)x)go((gl,gz)x) (2.14)
but because (1, g») € Ho,
2y = 0(x0) (124 (x)). 2.15)

Proposition 2.5. Let h = wu, where w is a representative from W(Mp)\W(H) and
u € Mg N Ng. Then h ~ Wit with the following properties. There is 0 < | < n such that

W = 7a(0°7 1 wa, . we), Vi, wi € {0, 1)°, (2.16)
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where a is the sum of coordinates 1 in (Oc_l, 1, Wa, ..., Wg). Additionally 1 € My,
there is 0 = (g, 1) € (G, 1) such that g is a representative of an element in W(G) and
N € Mg N Ny, 74Ly(1i) takes the form

De—2m+n

) (2.17)

and there are no zero rows in Aj.

Proof. Let E = Mg x Ug denote the standard parabolic subgroup of Hy such that Mg =
GL, x§,(c—n), and identify Ng,, with its natural image in M. According to the descrip-
tion of (G, G) in §1.5, Ngr,, X Cy, < £o((G, 1)). Let g € Ng be with £o((g, 1)) €
Ngr,, % Cy,, and such that the projection of £o(u(g, 1)) into Np, is trivial on Ngi,,. Put
uy =u(g,1) € Mg N Ny, wu ~ wu;. We also have some control over the projection of
the unipotent part of the representative into Cy . (see below).

If ¢ is even, then also Ng,._,, < (1,G), and for g € Ng,._,, such that the projection
of £o(u1(1, g)) into Ngz(c,ﬂ” is trivial, wu, ~ wu, with u, = u;(1, g). The projection
of £o(u2) into Ngi,, X Cy, coincides with that of o (u1).

If ¢ is odd, Ngz([y,fn)/(l, Ng) = Mat, ;. Choosing g € Ng and taking u, = u;(1, g),
we can assume the projection of £o(u2) into Ng,_,, takes the form

In y1 y2 5"

1 7
1y € Ngsiusny» (2.18)

Iy

where y/, y” uniquely depend on yi, y, and H, and we can choose either y; = 0 or
y2 = 0 (see Example 1.8). Observe that w conjugates precisely one of the columns y;
or y, in (2.18) into P, so that if we choose the other column to be zero (i.e., define
g € Ng accordingly), then now we already have both zero. In other words, we can write
u3 =z~ u, for z defined by y, or y, suchthat ¥z € P, so wu; ~ Wiy = WZU3 ~ WU3.
If ¢ is even, put u3 = u,, so that the projection of £y (u3) into Ng,(._,, is trivial now for
both odd and even c.
One can take a representative g of an element in W(G) such that

wy = w(l,g) = ja(01¢/21, ske=le/2ly (2.19)

Then wusz ~ wus(l,g) = wl((l’g)_1 us). Putuy = e~ u3; it is of the same form as us:
this conjugation merely permutes the columns in the projection of £¢(u3) into Cy, \UE.
Now we can write

v v

I,
Lo(us) = ( Ioc—n) v/) € Np,,

n

where v € Maty,x2(c—n) is arbitrary and v, v” are uniquely defined given v and H.
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Put v = (v, v2), v1 = (21, 22) and vy = (z3, 24), wWhere z1, z4 € Mat,x[¢/2]—1 and
Z5,z3 € Mat, «1. The element w; does not permute any column of z; or z4, and conjugates
the block z4 into P. Hence one can write u5 = z " luy4, where z € N, H, is defined by z4,
and the corresponding block z4 of £¢(u5) is 0, SO wWiUg = W1ZU5 ~ W1Us5.

Next we see that w; also conjugates precisely one column z; out of {z, z3} into P.
If a is even, then j = 3 and we can assume z3 = 0. Otherwise j = 2, and we can assume
zp = 0. In both cases we multiply u5 on the left by a suitable matrix z71 and wius ~
wiue with ug = z 7 1us. We deduce

I, v 0 v

Ja _ Ie—pn 0
Lo(ue) = Loy v | € No-

In

If ¢ is odd, v contains 7 + 1 columns. We show that the rightmost column of 74 £ (u¢)
can be made 0. Indeed, we can take g € Ng such that

Iy €E2X —€1X y
I
l ’
lo((g, 1)) = 1 e | €N,
In
I

(see Example 1.8). The element w; permutes precisely one of the middle two columns
into P, either the column with €;x or with —eyx. Then if £4((g, 1)) is chosen such that
the other column is 0 in u¢(g, 1), and z; € Npg, is defined by the column of £o((g, 1))
which is permuted by w; into P (thus ¥'z; € P), then

wike ~ wikg(g, 1) = wlz_,-zj_lu6(g, 1) ~ w12j_1u6(g, 1).

Put u; = zj_lu6(g, 1). Then

I, v v”
I
Jafo(us) = Iyc—2m) € Np,.
I, v
I

For uniformity, denote 7 = ug when c is even.

By the definition of H, the block v” in J4£((u7) above can be taken independently
of v. Hence we can multiply u7 on the right by (g, 1) with g € Ng, where £4((g, 1)) € Cy,
is defined using v”, and obtain ug = u7(g, 1) such that /2 £y(ug) is of the form

I, v
In
Ic—2n) € Hy. (2.20)
I, v
In
Then wyu7 ~ wyug. If ¢ is odd, £¢(ug) commutes with j, (since then 2(¢c — 2n) = 2).

At this point we still have ug € Mg N Np, since the only changes from u to ug
involve multiplying by elements of Mo N Ny (on the right or left).

For any matrix uq of the form (2.20), denote the block of v by v(ug). For any repre-
sentative w’ = (+¥¢), let R(w’) denote the set of 1 < i < n such that w’ permutes the
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i-th row of the block v of a general matrix (2.20). Note that R (w’) only depends on the
coordinates [¢/2] + 1,...,c of w’ (enumerating the coordinates of w’ from left to right).

For each row i of v(/2£y(ug)), one can always write ug = zi_lug, where the i-th
row of v(/4£y(ug)) is zero, /4z; is of the form (2.20) and any row j # i in v(/4z;) is
zero. Moreover, z; € P, and if i ¢ R(w;), then w; commutes with z;. Hence wiug =
ZjWwiUg ~ Wilg. Since we can apply this separately to each row, we can assume that for
each 1 < i < n, either the i-th row of v(Y4£o(u9)) is zero or i € R(wy). The difference
between ug and ug is that the nonzero rows of v(/4£((ug)) occur only at rows i which
w; permutes.

Consider i such that both the i-th row of v(V4£y(u9)) is zero and i € R(wq). In this
case take 07 = (g, 1) where g € G is a representative of an element of W(G) of minimal
length such that R (07) = {i }. More specifically, take g with £y((g, 1)) = ;1 (0°7, 1,0~ 1)
(if ¢ is odd, the right hand side is multiplied by diag(/c—1, 2¢7, 2€2, I.—1), see Ex-
ample 1.8). Since 07 = £(01)€o(01) and £(0) € P,

—1 —1 —1
Wity ~ Witteo = w101 (°1 ug) = £(01) (V" w1)lo(01) (1 uo)

~ (O ) 0o (1) (T o).
Put w, = ([("1)_1 w1){o(07), it is again a representative from W(Mp)\W(H ) and
R(w2) = R(wilo(01)) = R(wr) —{i}.

Let uj9 = or! ug. We have £o(u10) = Lo(ug) if H = Spyy, or ¢ is odd, otherwise
Lo(uq9) differs from £o(ug) only in the middle two columns: these columns are exchanged
because of j;. The element £(110) need not be in Ny anymore, only in Mg, but “u o €
Mg N Ny and by (2.14), also o p(uyg) € (Ho\Mp) N Ng. Since we can apply this
procedure separately to each row i, we can assume the i -th row of v(/4£¢(u1¢)) is nonzero
if and only if i € R(w,). However, we can no longer assume £(u19) € Ny.

Regard GL,, as the direct factor of the standard Levi subgroup GL,, x §._,, of G. For
any representative g of an element of W(GL,,), set 05 = (g, 1). Given arbitrary sets R (w’)

and R’ C {l,...,n} of the same size, one can find o, for which <‘R("2_l w’) = R'. Because
i € R(wy) if and only if the i-th row of v(/4£((u19)) is nonzero, we can choose o, such
that J?("z_1 wy) = {1,...,1}, where 0 <[ < n is the size of R(w,), and simultaneously
I[ v
In—;
—1 Iy
Lo(P4(°2 uqg)) = I(c—2n) 2.21)
In ’
In—; ’
I

—1 —1 .
where none of the rows of v are zero. Set w3 = %2 w, and U1 = 92 uq9. Since 0, €
(G,1) N P, we have

—1 —1
Wkl 1o ~ Wal1002 = 02(°2 w2)(°2 u19) ~ waky;.
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Now R(wsz) = {1,...,1} and note that wj is still of the form (2.19) (with possibly a
different a, but of the same parity), because when we pass to w, and then to w3, we
do not change the coordinates 2, ..., [¢/2] of wy (¢ —i > [c/2] for i < n). Moreover,
W3(Ja(1, g)) € Mp for any g € GL,, (where GL,, < GL,, X §.—2, < G); if j, is trivial,
w3 simply commutes with (1, GL,). Also

01021411 =U]M10€MQHNH. (222)

The rank of v in (2.21) is at most /, whence we can further use /4 (1, go) with gg € GL,
to reduce v to an / x [ block (e.g., in a column reduced echelon form). Denote w0 = w3
and i = 71807 11 Now R() = {1,...,1} and ¥ takes the form (2.16), namely
Ja(0°7E 11 «%*=Dey Since w3Ja(1, g) € Mp for any g € GL,,, we have wsuq, ~ Wil.

Regarding 1, /2 £y(11) takes the form (2.17) with A; = v. Denote ¢ = 010, with
the notation above. We claim °#i € Ny (clearly “ii € Mp). Since the conjugation by
Ja(1, go)~! only affects the columns of v and rows of v’ in (2.21), the result follows from
(2.22). L]

While it is relatively straightforward to obtain condition (2.6) when & = w, the repre-
sentatives wu are more difficult to describe, because of the form of £(u). The following
lemma implies that (with our current structure of u) it is sufficient to obtain (2.6) for w.

Lemma 2.6. Let h = wu, where w and u are given by Proposition 2.5. Assume

Vulyqu-ty, #1- (2.23)
Then (2.6) holds as well, that is, Yy |Umh*1 Up # 1.

Proof. By (2.23) there exists a root in U, such that for the subgroup ¥ < U generated by
this root, Y'Y < Up and yy|y # 1. Since u € My, it normalizes U, whence Ty < U,
and also h(’r1 Y) ="Y < Up. It remains to show Yy |,~1, # 1, since then (2.6) holds.

We can identify the quotient of U by its commutator subgroup with the direct product
of k — 2 copies of Mat,, and one copy of Mat,.x>.. The root defining Y corresponds to a
coordinate (i, j) in one of these copies. Looking at the definition of 1y, we can be more
specific. Either (7, j) belongs to one of the k — 2 blocks of size ¢ x ¢, on which ¥y is
given by ¥ o tr, or (i, j ) belongs to one of two 1 x n blocks inside Matgxs. (u'! or u?2,
see (1.2)), and again Yy restricts to ¥ o tr on these blocks. Denote the block by B. In both
cases, since Yy |y # 1, the coordinate (i, j) appears as a diagonal coordinate of B. When
¢ is odd there is a third possibility, that (i, j) appears in the block B € Mat;x, on which
Yy is given by ¥ (€1 B1,1 — €2B1,2), and (i, j) is either the coordinate of B; ; or B; . In
this case also note that w of the prescribed structure cannot permute both By ; and Bj
into Up.

Write u = uy! € Mg N Ny, where o € (G, 1) is given by Proposition 2.5. Then
9Y is again a root subgroup, and since conjugation by ¢ permutes the coordinates of U
and stabilizes Yy, 9V is still defined by a coordinate (i, j) which belongs to one of the
blocks B’ described above. In fact, if B € Mat,., we must have B’ = B; if B € Mat,,,
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there are two options for B’, one of which is B; and for B € Mat;x», B’ = B. Of course
Yy is nontrivial on 7Y .

Conjugation of °Y by 1y must be performed with more care, because uo normalizes U
but may not stabilize Y. First consider the case where B = B’ € Mat,. Then ?Y is the
root subgroup defined by the (d, d)-th diagonal coordinate in B, for some 1 < d < c.
For a fixed element y € Y, assume the (d, d)-th coordinate of °y is x # 0. It is the only
nonzero coordinate in the projection of y to B. Since ug € M, the nontrivial coordinates
of *0(9y) are still contained in B. This means that the only nonzero coordinates of “0(°y)
on which ¥y can possibly be nontrivial are coordinates in the block B. Because ug €
Mg N Ny, the (d, d)-th coordinate of *0 (%) is still x, and all other nontrivial coordinates
belong to the set of coordinates in B of the form {(i’, j') # (d.d) :i’ <d,j > d},ie.,
are above or to the right of the (d, d)-th coordinate. Therefore ¥y (*©(°y)) = ¥ (x), hence
Yy is nontrivial on #09Y,

Next assume B’ € Mat,, and proceed with similar notation. Now “0(°y) can con-
tain nontrivial coordinates outside B’. Assume B’ is the top left # x n block in Mat,. x>
(i.e., u™1). Then *0(°y) contains x in the (d, d)-th coordinate, 1 < d < n, and arbitrary
elements in the coordinates (i’, j') # (d,d), where i’ < d only varies over the rows of B’,
but j’ varies over all columns j' > d of B’ and also the columns to the right of B’, up
to the rightmost column of Mat,x. (this is the (k + 1)c-th column for a matrix in U).
Otherwise B’ is the bottom right block (which is u??). Then ¥°(%y) contains x in the
(d, d)-th coordinate and may contain nontrivial coordinates for (i’, j') # (d, d), where
i’ varies over the rows i’ < d of B’ and the rows above B’, up to the first row of Mat,. x>
(row (k — 2)c + 1 for matrices in U), and j’ > d only varies over columns of B’. In both
cases Y is trivial on all of the possibly nonzero coordinates (i’, j’), and the (d, d)-th
coordinate is x, thus Yy |vpoy 7# 1.

If ¢ is odd we also consider B = B’ € Mat;x,. Observe that now Yy is trivial on all
coordinates above or to the right of By », and also on all coordinates above or to the right
of By, except By . Hence if the nonzero coordinate x of °y is in By, Yy|uecy # 1,
but also if x is in B ; we have Yy |uooy # 1, because multiplying u¢(°y) on the right
by uo_l leaves B, zero (when c is odd, the (kc, k¢ + 1)-th coordinate of any element
of Ny is zero).

Now because o € (G, 1), it immediately follows that ¥y is nontrivial on o lugo y

=uly, completing the proof of the lemma. |

Let now h = wu where w and u satisfy the properties of Proposition 2.5. In particular,
w defines the integer 0 </ < n.

Proposition 2.7. We have # (h) = 0 unless
w; = (1121 =1 1h, V1 <i <k, (2.24)

Proof. For k = 1 there is nothing to prove, so assume k > 1. Write w, = (w5, wj) with
wh €40, 1}1¢/21 wY € {0, 1} If w} is not of the form (17, ¥[¢/21=7) then ! > 0 (for/ =0,
w}, is automatically of the form (17, x[¢/21=7) = (x[¢/21)) Let ¥ < U be the subgroup of
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elements with the middle 2(¢ 4 /) x 2(c + [) block of the form
I y pZ Y
1 _A/y/

1; y
Lye—2m+n

In—
I
I
Recall ¥y restricts to v o tr on the block u?? (see (1.2)). The block yAj above occupies
the bottom right [ x [ block of u%?2. Since there are no zero rows in A;, there are no
zero columns in A}. Hence for each 1 <i </, the form y (yAg)i,i on Mat; is not
identically 0. Then if one of the first / coordinates of w is 0, we can take a subgroup
Y, <Y with yyly, # 1 and hy, < Up, hence J(h) = 0 by (2.6). Thus we can write
wh = (17, [¢/21=1) (whether I > 0 or I = 0).

If w) # (1", +I¢/217) one of the rows from the top left n — I x n — [ block of u>2
is conjugated by w into Up. Hence we can take a subgroup ¥ < U such that Y|y # 1
and Y < Up, then J(h) = 0 by (2.23).

If ¢ is odd, Yy restricts to a nontrivial character on the middle two coordinates
(u3, u*) of row n + 1 in (1.2), and the columns of u> and u* are either swapped or
remain unchanged by w. Then if w} # (1 fe/21)  one of these coordinates is conjugated by
w into Up, and if Y < U is defined by this coordinate, we have Y|y # 1 and VY < Up.
Thus # (h) = 0 by (2.23). (Because 2¢ —2(n + 1) > 2,*Y =Y and we can also apply
(2.6) directly.) Thus w) = (1 fe/21) whether ¢ is even or odd. We proceed for all c.

Recall ¥y restricts to ¥ o tr on the top left / x [ block of u':!. Since the first ¢
coordinates of w are j,(0°~!, 1%), w permutes the columns of this block into columns
in Up, hence if w # (+"~!, 1), we can again find ¥ < Up such that Y|y # 1 and
Wy < Up, so that #(h) = 0 by (2.23). Altogether, w, = (17¢/21 sn=1 1),

If k = 2 we are done, so assume k > 2. We show w3 = (11¢/21 s~ 11). Recall
Viek—1y < U. Because wy = (17721 4n=1 1), w conjugates the last [¢/2] and first
columns of vi_, x— (see §1.2 for this notation) into Up . Hence if w3 # (1 fe/2] yn—l 11),
a diagonal coordinate of one of the blocks inside vg_; x—1, namely the bottom right
[c/2] x [c/2] block if w3 # (17¢/21, %™), or the top left [ x I block if w3 # (x¢~, 1), is
conjugated by w into Up, so thatif Y < U is generated by this coordinate, then J¢ (h) = 0
by (2.23). Proceeding in this manner for 3 < i < k, each time using vg—_; 41 k—i+2 and
(2.23), we deduce w; = (17¢/21 sn=1 1), "

Foreach 1 <i <k, since w; takes the form (2.24), we can uniquely identify a maximal
integer 0 < d;_; < n — [ such that w; = (11¢/21 yn—=I=di—1 1l+di—1) By maximality
(¥" 141y = (x*~I=di1=1 0) (if d;_; < n — 1), but the remaining coordinates are still
undetermined. As we show next, if # (k) # 0, we can replace /1 by a representative for
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which (+77!=4i-1) = (0"~!~4i-1) (this may mean the integers d;_, are larger), and even
fix an ascending order on d;_;. Note that for k = 1, the integers d;_1 are undefined.

Proposition 2.8. We have # (h) = 0 unless h ~ Wi where

W = ]a(Oc_l, 1wy, ., W),

(2.25)
V1 <i <k, w = 1/2 gridiz IHdicyy g << dpy,

and 1 satisfies the conditions of Proposition 2.5, in particular Lo (21) takes the form (2.17)
(and A does not have any zero row).

Proof. Write w; = (17e/21, w;, 1') with w; € {0, 1}”_1. The rightmost d;_; coordinates
of w] are 1. We start with the following observation. Let 1 < j < n — [ and assume
1 < ip < k is minimal such that wlfo [/] (the j-th coordinate of wlfo) equals 1. We claim
H(h) = 0 unless w;[j] =1 for all i > io. Otherwise, assume i > i is minimal with
w;[j] = 0. Write the top left n x n block of the block vg—;jt1,—i+2 Of Vicx—1) in the
form (Zi 3‘2‘) with v! € Mat; and v* € Mat,,_;. Then a unipotent subgroup Y containing
coordinates from v* will satisfy Y|y # 1 and Y'Y < Up, whence # (h) = 0 by (2.23).

We proceed to show that we can sort the coordinates of wy, ..., wy to obtain (2.25).
Identify GL,,_; with its natural image in the middle factor of the standard Levi sub-
group GL; x GL,_; x §._5, of G. Then P N (GL,_;, 1) contains a full set of rep-
resentatives for W(GL,_;). Given such a representative g, we have & ~ h(g, 1)™! ~
(@Dw)(&-Dy) where 1 = @Dy still satisfies the conditions of Proposition 2.5 and
Lo(t) = Lo(u) ((g, 1) commutes with (2.17)). Hence one can use such conjugations to
permute the entries in each w;, while maintaining the prescribed structure of u. Using
transpositions from W(GL,_;) we can permute each consecutive pair (w;[;], w;[j + 1]).
If wi[j] = w;[j + 1], the conjugation has no affect on this pair. Choose some ;j such
that there is a minimal ip with (w; [/]. w [j + 1]) = (1,0). If j does not exist, then
w; = (07~1=di—1 19i-1) for all 1 <i < k, and by what we have proved, if #(h) # 0,
then dy < --- < dj_ so that (2.25) holds. If j exists, then again by the above obser-
vation (assuming # (h) # 0), for i > io, either (w}[j], wi[j + 1]) = (1,0), in which
case the order is swapped, or w;[j] = w;[j + 1] = 1. Proceeding in this manner we
obtain (2.25). [

Let now & = wu, with w and u given by Proposition 2.8, in particular w satisfies
(2.25). Recall that in general if ¥ < hunm P, hly < Py, and by definition any mor-
phism in # (h) factors through JY’/M//EI (p) (see §2.1.1). We turn to computing U N Mp.
To simplify the presentation we slightly alter w, using multiplication on the left by rep-
resentatives of W(Mp), which we identify with permutation matrices in GLg.. First, we
multiply w on the left by diag(/—1)c, J1, Ic—); this changes the innermost block J;
into /; (see (2.12)). Then for w;, 1 <i <k, we multiply w on the left by

diag({(k—iye» J14d;—y» In—i—d;_y» I1es21 Lei—1))-
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For example if k = 2,

Iita,
In—1—a,
Ire/m
I
W= Ja D1 . (2.26)
€ol;
€olre/2 ,
n—I—dy
€olita,

For 1 < j <k — 1, define y; € GLg, by

’

) Tie—[e/21—(i—e—n )
. — diae( 1 .
vi=d ag( n—l—dy_;+>121 (n—1—di_;)’ (Iwzw

- Z -: — )
I+dk ]+ 1/ ll( 6/2 +l+dk f)
IkL'—(j—l)C—l—dk j )

<oyt (1o, Ty e )

For example,

: Tke—fe/21- Tke—1—dy_,
V1=d1ag(1n—z—dk,1,(1(c/2] ) g Lya,_, )

Further multiply w on the left by yx_; - ... - y; (henceforth we only use this form for w).
For the computation of hunm p also note that hy = %U. Now we see that "U N M P
= Vg, where B is the composition of k¢ given by

B=(—1—dg_i,....n—1—dic.[c/2] +1+dr,....[c/2] +1+de_r). (227

(The purpose of the elements y; was to obtain an upper triangular U N Mp.) The char-
acter "y is a character of Vg by restriction; denote Yy, = hlﬂU|Vﬁ- We cannot fully
describe Yy, without determining £(u), but the lemma below will provide the informa-
tion we need. First we describe @t0®) Vulv,. Forv € Vg write

In—i—aj_; b

In—i—a, bk—1

v = Ie by . (2.28)
‘ 1r¢»/21+1.+dk,2 bog—>
Ire/21+14dy
Here
(bi)1<i<ok—2 = (b1, ... br—2, bx—1,bi b1, - - . bog—2)
is a general element of the product

2
1_[ Maty—;—d; xn—i—-d;_, X Maty—j—d,xc X Matexre/21+i1+4,
j=k—1
k—2
X l_[ Matre/21+1+d; x[c/21+1+d; 41 -
j=1

Note that for k = 2, (b;)1<i<2k—2 € Mat,_j_g,xc X Matex[c/21+1+4, - Then
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0/ 4dy xn—I—d,

2
0g:—d:  xn—i—d:
oyy @) =y | 3 (b (CUETT)) e e || e

j=k—1 Orc/21xn—1—d;
0 0 —€0A; 0 0
0 eoly—y 0 0 0
—tr bk 0 0 0 0 Ie—2p
0 0 0 O4yxn—; O
I; o 0 0 0
k=2 It/ Ore/21xdj +1
— E tr| g4 | Od)jq1—djxrc/21 Odjyy—djxd;+i . (2.29)
=1 0a;+ixre/21 La;+1

Here the sum ij»:k_l is omitted if k = 2; andif c —2n =1 (0 < ¢ —2n < 1), the
coordinate /._,, = 1 initially depends on the constants €, €, (see §1.5; 2€;6, = 1),
but we can use another conjugation of w by an element of Mp to fix this coordinate to
be 1 (without otherwise changing (2.29)). Additionally, for / = n and A; of rank /, the
character (2.29) belongs to the orbit of ¥/~ L

Example 2.9. For k = 2 and an even a, after multiplying (2.26) on the left by y; we have

0 Iy—j—aq, O 0 0 0 0 0 0 0
0 0 0 0 0 o0 I 0 0 0
0 0 0 0 I._;, 0 0 0 0 0
0 0 0 0 0 0 01l O 0
0 0 0 0 0 0 0 0 0 Iiya,
w €oli4a, 0 0 0 0 0 0 0 0 0 ) (2.30)
0 0 601[5/2] 0 0 0 0 0 0 0
0 0 0 0 0 I._;0 0 0 0
0 0 0 eI, 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Iyy_q O
In—i1—a, b1 *
Ve = Vin-i-di.c.le/21+1+d)) = e b
Ire/21+14a,

and Yy, depends only on by and b,. For example, if u = £o(u), its restriction to b is
given by ¥ composed with the trace of the n — [ — d; x n — [ — dj block of b; starting
at column / + dj + 1 of by. For k = 3 and again an even a, after multiplying w on the
left by y,y1 we obtain

0 Iy_j_qy 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 In_i—a; © 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 o I 0 0 0 0 0 0
0 0 0 0 0 0 0 I._; O 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 Ifey21 O 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 Ijya, © 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 Ifesy; O 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Iy,

€0litay O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
0 0 eglfe/21 O 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 €oljya, O 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 eolfe/2] O 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I._; O 0 0 0 0 0 0
0 0 0 0 0 0 el; O 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 In_j—q; 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 In_j—a, O

ﬂ:(n_l_d29n_l_dlvcs|—c/2-|+l+d1»|—c/2-|+l+d2)'
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Remark 2.10. It is convenient to compute Vg in two steps: first compute “U N Mp
using w without the elements y;, e.g., (2.26), then conjugate by these elements in order to
obtain Vg.

Proposition 2.11. Assume k > 1 and | <n. If J(h) # 0, then Yy, belongs to the orbit of

2 *I4+dy xn—I—dq
vy 3 tr(bk_,-<*n_z_d,_lxn_z_d,))+tr(bk_1( Tnra
. ’ ’ *[c/21xn—1—d,
Jj=k—1
0 0 —€0A; 0 0
0 6()1,1_] 0 0 0
—tr bk 0 0 0 0 Ie—2p
0 0 0 0d1><n—l 0
I, o0 0 0 0
k=2 Ite/ Orc/21xd; +1
—E | bicyj | *dj1—djxTe/21 *djqy—d;xd;+1 . (23D
i=1 *dj41x[c/2] *dj+1

Here x means undetermined block entries. When £(u) is the identity element, all coordi-
nates were computed above and (2.31) coincides with (2.29).

Proof. We introduce notation for blocks of unipotent matrices in Mg and U. Recall from
Lemma 2.6 that ¢y is defined by k — 2 blocks B; € Mat., 1 <i <k — 2, two blocks

1» B5 € Mat,, and when c is odd also by B” € Mat;x». Set do = 0 and dy = dj—;. For
each 1 <i <k — 2, B; is further divided into subblocks by writing it as the upper right
block of

1.1 1.2 1.3 1.4

Il+dk—i—l B; B; B; B;
2,1 2,2 2.3 2.4

Idk*iidkfi*] B[ B[ B[ Bi
3.1 3.2 3.3 3.4

Iy_i—a, . B B B: B>

k—i i i i i
4.1 4.2 43 4.4

Ire/1 By B; B; B;

litdr_i—4
di—j—dg—i—1
In—i—ay_;

Ire/2
The blocks B}, B} are contained in the following blocks:

71,1 71,2 /1.3
Il Bl2 1 Bl2 2 BIZ 3
72, 72, 72,
Idl B1 B1 B1
In—l—dl Bi3.1 B;3’2 Bi3.3
74,1 4.2 4.3
I"L‘/Z-\ Bl Bl Bl ’
I
Idl
In—i1—a,
71,1 /1.2 pr1.3
I[erl B, B, B,
In,[,dl Béz‘l B£242 352,3
3.1 3.2 3.3
Ite/21-1 B! B> B
14,1 14,2 pr4.3
1; B2 32 32
Ipe—n—i
I
In—;

I;
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If ¢ is odd, we also have the ¢ x 2 block containing B” which we write in the form

B//3

B//l
2
(B” ) . B"' e Matj14,x2, B"* € Maty,__4,x2, B"> € Mat;x2, B" € Mat,x>.
B//4

For 1 <i <4, B”" = (B""!, B”"?). In terms of the blocks B;, B! and B”, Yy is given

by
k—2 4
(ZZtT(B”HZtr(B” 7Y 4 te((Onmre—2nu—s ) By?)+te(By?) + B (& )).
i=1j=1 j=

(2.32)

Let .#/p, %p and %y denote the lists of blocks Bit’t/, B’f”/, B""" conjugated by w
into Mp, Up and Uy, respectively (these can still be computed using (2.25); w differs
from (2.25) by an element of Mp). If ¢ is odd, let ag € {1, 2} be the column of B” which w
conjugates into column k¢ + 1, it consists of the blocks (B”1:%0, B"?-40 B"3.a0 B"4.a0)
We see that

= ("' B B> B> B> B> B BM:1<i<k-2)
1, 1 2.1 /3.2 p3.3 pal pll pil2 p2,3 pi3d p32 pral pr2
U {B\"', B> B> B>, B," B, B, By, By, By By By %)
1I {B//l ,ao B//2,3—a0 B//3,ao B//4,a0}
Up = {BS,I 34 Nl <i<k-—2)1I {3/31 /21 B;Z,Z’B/IZ,GO}’

12 13 2,2 p2,3 4,2

Up ={B; ,B;", B, B;” ,Bi :1§z§k—2}
/12 /13 2,2 pr2,3 14,2 4,3 /1,3 /3,3 4,3 —

11 {B; ,BP? B BM, B By B By, BV1A T,

B//3,3—a0 B//4,3—a0 }
s .

Since {@¢(u) € Mo N Ng with o € (G, 1), we can write £(u) = diag(z, ..., zg—;) for
z; = You; where w, € W(GL,) corresponds to the projection of (o, 1)~! into the i-th
copy of GL, and v; € NgL,.. Note that if we write a general element of o N, in the

form

X1 X2 X3

X4 X5 Xo

(X7 Xg Xo )
where X, X5 and Xo are square matrices (of arbitrary sizes), then X;, X5, Xo are
already invertible, and so are (_§(4 )?) and <_§(8 )§6 ), whence I + X7 X4, I + X4 X5,
I + X6Xg and I + X3 X¢ are also invertible (X;, X; need not be square matrices).
Since the left coset of w in W(Mp)\W(H) is still represented by (2.25), we can write

z; = z;m; where “diag(z{],... ,zl/c_l, De,zi", .. .,z,’(*_l) € Mp and
Liya, ;+M!M? M} (]
m; = M? Inp—ap_;+MPM} M} € GL.,
4
0 M; Ire/21

Iija, ; + M!M? €GLiyq ;. In—i—a, , + MPM € GL,_j_q, ;.
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These matrices are invertible because m; = %o vl’. where vl’. € Ngi.. We have

. Iita_; -M} M}im?
m; = -M? In—i—ay_; +M?M} ~Un—i—ay_; +MIM} )M} .
MAM? =M}y gy, +MPM}) Ity +MPFUn g, +MPM} M}

Since h ~ ph for any p € P, we can already assume z; = m;.

We show that ¥y, belongs to the orbit of a character whose restriction to the blocks
bi—1, bk, bx+1,---,bag—o agrees with (2.31), otherwise # (h) = 0. This will complete
the proof. To this end it suffices to compute *v¢; on the blocks of U conjugated by w
into bg_1, bg, bg41,--.,brk—a. The contribution of £y(u) is easy to compute and was
essentially given in (2.29). To determine ‘™) (thereby “v/7) we compute

mit By, mil B5, mil/B", mi'Bimit1, VY1<i<k-2.

Columns / + dy + 1,...,n of by_q (the only columns of bg_; where (2.31) is deter-
mined) consist of the block B ;3’3, conjugated to bx_1 by w (other columns are conjugated

13,2 12,3
, B
2

from B and columns between the columns of u'! and u2-2). The coordinates

of by are uniquely defined by

Bil’l, B;Z’I,BT’I,B;J,B;’Z, B;3,17B;3,2’ B;4,1, 3;4’2,3//]"10,

B//Z,a(), B//3,3—a0, B//4,a0
and by additional [ + d; + [¢/2] x n — [ coordinates appearing to the left of B/1 !
Bf ''B ;4 ! (Y and 0™ yy are trivial on the corresponding columns, thereby also ¥ I/IU
because multiplying on the left by m;ll cannot introduce a character on a column where
L@y, was trivial, so we do not provide notation for these), as well as the form defin-
ing H. Note that B” is omitted if ¢ is even.

When we multlply m kl B} we see that if the top / rows of M k1—1 are nonzero, “Yy
is nontrivial on B1 ' ¢ %p and then H (h) = 0 by (2.6). Hence we can assume the top
! rows of Mk1 , are 0, which implies vy is trivial on the coordinates of by obtained
from B}, namely B'1 ! Biz’l /4 ! (Yy and ©0® vy are also trivial there). Additionally
“Yry restricts to Y (tr((Ly—1—q, + Mkz_lel_l)B;3 3)) on Bf' 3. and since

Ydiag(l—2ye+i+dys In—i-a;, + ME_ ME_,. Iae/2140)s (Inmi—ay + MZ_ M_)*,
I14d,+(k-2)c) € Mp,
Yy, belongs to the orbit of a character which agrees with (2.31) on by—1 and the coordi-

nates of by conjugated from Bj.
The character “©0®) vy, is given on the blocks of B}, which w conjugates into by, by

W(tr(kaéo)), or = ( Orxi4d;  Oixn—i—d, 0/xrc/21—1 A(X) )

0n—ixi+d; On—ixn—i—dy (On—ixc—2n In—1) On—ixi

Here BJ’ is the ¢ x n block consisting of Bg’t/ with1 <7 <4and 1<t <2 (all of
these blocks except for t = 2 are conjugated into b ). Multiplying gokmgil we deduce
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H (h) = 0, unless the product of ¢ and columns / +d; + 1,...,n of m;il defines a

trivial character on (B;z’l, B;z’z) € %p, which amounts to

dems AKX
(o, 0217 ) b N (=M (nmtmay + M M) = Opepon.

(0n—ixc—2n In—1) Op—yx1

Hence the product of ¢ and the last [¢/2] columns of m,:ll equals

0/x[c/21— A(X) 4 2 1 3
((On—l]xg—/;n—‘ Iln—l) 0p—ix1 ) (1[0/2] + Mk_l(ln_l_dl + Mk_le_l)Mk_l)
— ( O7xre/21—1 A(X) )
(On—ixc—2n In—1) Op—ixi )’
thus *yy agrees with ¢y on the blocks contained in B).
If ¢ is odd, the restriction of vy to B” is given by

¥ (((0nr (£8) 020 ", B)).

Since B"?% ¢ 9p and €e; # 0, we deduce the first row of —M,?fl(ln_l_d1 +
MZ M} |)is 0, and because I,_;_q, + MZ_ M} | is invertible we find that the first
row of M]:‘_l is 0. Then the first row of m;ll is (0, 1 0,), whence *y and Yy agree
on B”.

Altogether we have shown that vy, belongs to the orbit of a character which agrees
with (2.31) on by_; and by.

Consider bg4;, 1 <i <k — 2. The coordinates of by; are uniquely defined by the
blocks

1,1 1,4 2,1 2.4 4,1 4.4
Bk—i—l’ Bk—i—l’ Bk—i—l’ Bk—i—l’ Bk—i—l’ Bk—i—l‘

More precisely, if we denote for X € Mat,xp, X' = —Jp X J,, then

B (BEY_)Y By
biyi = i o g ) 233
ko (<Bifﬁ_0’(8££p_o'<B;£F4>f (2.33)

We multiply m;ii_l By_i_1my_;. Since Yy restricts to ¥ o tr on Bx_;_1, the restriction
of ¥y to Bx_;_1 is given by w(tr(mk_im;li_lBk_i_l)). If this restriction is nontrivial
3,1 3,4 .
on B, _, ;Bk—i—l € %p, we obtain # (h) = 0.
On B,f’_i_l, ¥4y is given by the product of the last [¢/2] rows of m_; and columns

I 4+diy1+1,...,nof m,:i_l; J(h) = 0 unless this product vanishes:
1
_Mk—zi—l .
(Ore/21x14d; ME_; Ires21) In—i—a; T Mj_j My =0.
4 2 1
=My Un—i—a;  TMi_j My )

Thus the product of the last [¢/2] rows of mj_; and the last [¢/2] columns of m,:i i_p 18

1 3
Mk*izflefilfl 3
(Ore/211+a; Mg_; Tre21) ~Un—i—dy g M My_;_DMi_; = I¢/2]-

4 2 1 3
Treym+Mi i Un—i—a; M My DME_;_,

This means that the restriction of ¥ ¥y to B,‘:’_“i_l, which corresponds to the bottom right
[c/2] x [c/2] block of mk_,-m,:li_l, is ¥ o tr, so that it agrees with ¥y on this block.
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On B,i’_li_l, ¥4y is defined by the product of the first [ 4+ d; rows of my_; and

columns !/ +d;j41 +1,...,n ofm,:i_l. Then J(h) = 0 unless

1
_Mk—zi—l .
(Zr4a; +ME_ ME_; Mi_; O1a;xre/21) Tn—t—dj T Mj_j 1 My =0.

4 2 1
M Un—i—a; g TMp_j My _y)

Hence

1 a2 |
(Tra; +Mg_; ME_; Mg_; Ora;xre/21)
| 3
Mk—iz—le—[l—l ,
X ~n—t—ay g M My DME_; =0.
4 2 | 3
Treyn+ My n—t—ay Mg My DME_;

Therefore the restrictions of vy and Yy to B;’_ll._l, which correspond to the top right
[ 4+ d; x [c¢/2] block of mk_,-m,:il._l, are both trivial.

Finally, using (2.33) and noting that the leftmost / columns of X are the bottom / rows
of X’ (and the entries are permuted), we find that iy is given on the blocks which w
conjugates into by y; by

e Bt (B )y Byt ( Ire/2 Ore/21xI+d; )
By (BEY )y (BLY )y ) \FidigixTe/2] Fidyy g xitd; :
We conclude that 47 belongs to the orbit of (2.31). [

Proposition 2.12. Assume di < n — I (in particular k > 1 and | < n, because dy > 0).
Then JVﬂﬂ/f;ﬁl (p) = 0, in particular ¥ (h) = 0.

Proof. Any morphism in J (k) factors through JVB"//;; (p). We show JVﬁ, 1//‘7; (p) = 0.

Suppose otherwise. The subgroup Vg and character 1//1731 define a degenerate Whittaker
model in the sense of [46, 82]. The character w;ﬁl uniquely defines a nilpotent element
"¢ € Maty, such that 1//1751 (v) = Y (tr(v(*p))) forall v € Vg. Then ¢ € Maty, is an upper
triangular nilpotent matrix. We prove ¢ is nilpotent of order at least k 4+ 1. By [46, Theo-
rem E], the orbit of ¢ belongs to the closure of the wave-front set WF(p) of p, but this orbit
is greater than or incomparable with (k¢), contradicting the fact that p is (k, ¢). When 7,
is supercuspidal (in particular, the field is nonarchimedean) and p is not necessarily of
finite length, we derive the same contradiction from [46, Theorem A].

By Proposition 2.11, we can assume ¥y, is given by (2.31). Since ¢ + I € Vg, we
let by, ..., byx—p denote the blocks of ¢ above the principal diagonal (see (2.28)). These
can be read off from (2.31), namely b; is the transpose of the block appearing to the right
of b; in (2.31) (one should include the signs appearing in (2.31) before tr). For example,

bi_1 = — (*n—i—ayxi+a; In—i—ay *n—i—ayxrc/21).
We apply a sequence of conjugations to ¢, conjugating k nonzero coordinates from ¢,
one coordinate from each block bx_1, bg, . . ., bag—p: since di < n — [, Yy, is nontrivial

on by_1, so that the block by _1 of ¢ is nonzero.
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The only nonzero blocks of ¢ are the blocks by, . .., byr_>, and these blocks contain
nonzero entries at the coordinates defined by (2.31). Define the following partial sums d/
of the integers appearing in the composition 8, from right to left (see (2.27)):

I ([e/21+1+dyy), 1<j<k—1,
d/ =14 c+d- 1, j =k,
n—1—d +d*, j=k+1.

First we conjugate ¢ by

1
&1 = diag(lkc_dk—l_rc/z'l_l, (1 Iy'c/2'\fl ) s Idk—l).

Note that &1 normalizes Vg. The (n, n)-th coordinate of by, which is €9 = %1 because
| < n, becomes the (c, n)-th coordinate, and the (n — [ — dy, n)-th coordinate of by_1,
which is —1, becomes the (n — [ — dy, c¢)-th coordinate—the bottom right coordinate.
Both of these coordinates are independent of the blocks where ¥y, is undetermined
(denoted * in (2.31)), and are the only nonzero entries on their columns. We can further
conjugate ¢! ¢ by an element of the group

. b b .
{dlag(l(ZfF;II(n—l—di))+c’ ( Iiya, ) sy ( Iigay_, )) b e GL[C/z]} < Mﬁ,

to take the (c, n)-th coordinate of b into the (c, 1)-th coordinate, without affecting any
of the blocks bg_1, ..., byr_» of ¢ except the block by (the diagonal embedding of
b € GL, instead of b € GL[/2] in each of the last k — 1 blocks is sufficient). Now let

1 1
=di I _ Ire _
& dlag(l(zf;ll(n_l_di))ﬂ, (1 Te/21+1+dy—2 ) R (1 Te/21 41 +dj_1—2 )) €Mg,

where if [¢/2] + 1 + dy_; = 1, the corresponding block of size 1+ ([¢/2] + ! + dx—; —2)
+ 11is /;. Again & normalizes Vg. Conjugating °! ¢ by &5, the (c, 1)-th coordinate of by
is taken into the (c, [¢/2] + [ + d1)-th coordinate (the bottom right coordinate), and
the top left coordinate of by ;, which is independent of the undetermined blocks and is
the only nonzero coordinate on its column, is taken into the bottom right coordinate for
each 1 <i <k — 2. We conclude that the bottom right coordinate of each of the blocks
bi—1,...,bar_» of ©2°1 ¢ is nonzero (—1 for by _1, € for by, 1 for all other blocks), and in
each of these blocks, the bottom right coordinate is the only nonzero entry in its column.
Therefore ¢ is nilpotent of order at least k + 1. |

Example 2.13. Consider c =k =2, G = Sp,, H = Spg and / = 0. Then 0 < d; <
n—I1=1Ford, =0, w e Mp(0% wy) with w, = (1, 0). One can take

1
1
w:( Iy )
—1
1

I, x y 1YI1,1 X1.1 X1,2
‘e ( N }C,) o Yu) =Y (xin +x24), “UNMp = x4 1 .

2 x2.3 1
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Multiplying w on the left by y; = diag(l, ( , I )) we see that

1 X1,1 X1.2 y1.1 0-10 0
1 _
Vﬂ = V(1,2,1) = 1 ;i;‘ , = ( 0 8 81) .
1

The nilpotency order of ¢ is 3, and since p is a (k, ¢) = (2, 2) representation, we have
JVB,W;;} (p) = 0.

Now consider the cases d1 = n — [ or k = 1. There are only finitely many represen-
tatives (i.e., representatives h;, h; with h; ~ h;j) satisfying this condition. This is trivial
when k = 1. For k > 1 recall h = wu with £o(u) of the form (2.17). Since dy = n — [,
and thereby dy = -+ = dx—; = n — [, we finally have for any m € Mo, Y{(m) € P,in
particular ¥ £(u) € P hence h ~ w{o(u). We simplify £¢(u) and deduce that there are only
finitely many representatives remaining. Regard GL; as the direct factor of the standard
Levi subgroup GL; x §._,; of G. For g1, g» € GL;, because (finally) * (g1, g2) € P,

wlo(u) ~ wlo(u) (g1, g2) ~ w(©4)™ Lo (u)).

Looking at (2.17), we can now assume A; = diag(/;s, 0;_;/), where [’ <[ is the rank
of A;. There are only finitely many such representatives. Furthermore if [’ < [, take a
representative g of an element of W(G) such that wf(((g, 1)) does not permute the rows
I"+1,...,1 of (2.17). Since (as opposed to the proof of Proposition 2.5) *£((g, 1)) € P,
we have w(g, 1) ~ wfp((g, 1)). Then

w(@8 7 o)) ~ w(g DSV EE T ) ~ wio (g, D)(E DT EED T (),

Since I’ <1, wlo((g, 1)) now trivially satisfies (2.25) for I’ withd| =---=dr_1 =n—-1'
(the multiplications on the left by elements of W(Mp) do not matter for this), and if we
reset w := wlo((g, 1)) and [ := I’, we have h = w(/%—De+iy;). If ¢ is odd, then u;
commutes with any j,, otherwise j—1)c+; = ;. Hence h = w(’'u;) (as in the k = 1
case).

Thus there are only n + 1 representatives / to consider, and note that the representative
w(/"u,) satisfies h ~ 4.

Proposition 2.14. Assume dy =n —1[ ork = 1, and | < n. Then J(h) = 0 outside a
discrete subset of s. Moreover, under each one of the conditions of (a), e.g., when 1, is
supercuspidal (and ¢ > 2 or G = Sp,), H(h) = 0 for all s.

Proof. Now Vg = V(Ck), which is trivial when k& = 1, in which case we set WVB =1.1f
k > 1, since now £(u) is trivial, one can read off ¥y, directly from (2.29), then

0

0 0 —EQI[ 0 k—2
( ) b 0 eol,—; 0 0 0 Z (b ) (2 34)
va (V) = —tr 0 0 0 0 I.» — tr 1. .
Vv 14 o I S . k+j
I, o 0 0 0 =1

(Note that A; was replaced by /; in the first matrix.)
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Consider the parabolic subgroup R = Mg x Ugr < G where Mg = GL,,_; X §._2(n—1)
and

I u;y 0

uy Iy—; u4 usz u/]
Je+D! UR = Ic—2p uﬁ;
In—;

u'z Il

Here if ¢ is even, then j41); = Ji, otherwise jc41); is trivial. Since [ < n, this is a
nontrivial parabolic subgroup unless ¢ = 2 and G # Sp,. If ¢ is odd, the image of Ug in
H)j is given by (see Example 1.8)

I[ €2U4 €E1U4 U] 0
ur I,y uz  uj
1 €u)
1 eu)y
In—l
w, I

Denote the Lie algebra of Ugr by ug.
Lemma 2.15. The following holds for all s.

() If F is nonarchimedean, then Jvﬁ,wal(p) is a trivial representation of
h(1, e+ UR). B

(2) For an archimedean field, " (1,7«+Viug) acts locally nilpotently on JVB:‘/’[;‘; (p)*.

The proofs of this lemma and the following one appear after the proof of the propo-
sition. If m, is supercuspidal (nontrivially), the proposition follows immediately from
Lemma 2.15, in particular we do not need to exclude any s (see also the discussion pre-
ceding (2.7)).

Identify the group GL,,_; with its image in Mg,

h(l’ GL,—;) = {diag(I+:.a, [c—2n+(k—1)c) :a € GL,—},
where the right hand side is implicitly regarded as a subgroup of Mp. By (2.34),
h(l, GL,—;) stabilizes ¥y,, and because it also normalizes Vg, h(l, GL,_;) acts on
J Vs ,w;ﬁ} (0)-
Lemma 2.16. The following holds for all s.
(1) If F is nonarchimedean, then JVB vy (p) admits a finite length filtration as a repre-
Ve
sentation of "(1,GL,,_;), where "(1, Cat,,_,) acts by a character on each constituent.
(The constituents need not be irreducible.)

(2) Over archimedean fields, there is a maximal parabolic subgroup of GL. whose Levi
part contains "(1,GL,_;) as a direct factor, such that the Lie algebra v of its unipo-
tent radical acts locally nilpotently on JVB yp! (p)*.

Vg

(3) Ifc =2 and p = pc () for an irreducible supercuspidal representation t of GLy with
k > 1, then JVB,VIE; (p) = 0.



D. Gourevitch, E. Kaplan 3048

This implies # (7) =0 outside a discrete subset of s, because K (|det)*~V2)(1,al,—;)
= |a|®=D6=1/2) foralla € F*, and [ < n, then we can apply (2.7). Also Lemma 2.16 (3)
implies J¢ (h) = O for all s, in the remaining case of (a). |

Proof of Lemma 2.15. First consider a nonarchimedean field. We show J Vgury! (p) is a
Ve

trivial representation of #(1,/+0: Ug). For z € Ug, (1,7 +1i z) = m,z’ where z’ € Up
and
It
m; = diag , I . I(k—l)c
U up I,—; €uy
Ic—n

Here € = € or €, depending on j;; also for the computation note that since [ < n, j; com-
mutes with u;. When [ = 0 and c is even, m,, is trivial, whence h(l, Je+DIUR) < Up, so
that JVB,w;l (p) is immediately a trivial representation of (1, 7+ Ug).

Let Z be the subgroup of Mp generated by the matrices m, as z varies in Ug. It is
an abelian group. The rank of Z is (2] + ¢ —2n)(n —[). Since w;ﬁl restricts to a trivial
character on rows 2n,...,2n + 1 — (n — ) of by (which are the last n — [ rows if ¢ is
even), Z stabilizes w;ﬁl (it clearly normalizes Vg). Thus JVBJP‘?; (p) is a representation
of Z and for each character y of Z,

JZ,)((JVBJ/,;BI (p) = JVBxZ,w;[;@((p)'

A similar identity holds for any subgroup of Z.

For b € GL,, denote b2 = diag(b, bA/) € M(Ck) where b2 is the diagonal embed-
ding of GL, in M(.k—1). The group diag(/, GLCA/) stabilizes the restriction of %751 to
the blocks by 41, ..., bax—_s (but not to by). The group GL; x GL; x GL,,_; x GL,_2,
embedded in M k) by

X1 X2 A
. I, I,
[x1, X2, X3, x4] = diag ( " “ ) , ( " x , ) ; (2.35)
x4 n—I x|

where x1, x, € GL;, x3 € GL,,_; and x4 € GL._5,, acts on the set of characters of Z
with infinitely many orbits, but precisely two orbits separately on each block Z" = u/, u»
and €uq4, and stabilizes w;ﬁl It is enough to prove that each block Z’ acts trivially on
JVB,I//;[; (p). By [11, §85.9-5.12], it suffices to show that for each nontrivial character y’

of Z,
Jvﬂxz/,w;;®x/ (p) =0, (2.36)
. , _ _
since then for e.acﬁ Z., JVB’Z/;!;(IO) = JVBXz/,,/,;.é.(P), and thus JVB,v/;;(P) =
Jvﬁxz,w;[; (p). This implies that " (1, /+D! Ug) acts trivially on JVB,]//;BI (p).

Let y’ be a nontrivial character of Z’. As in the proof of Proposition 2.12, we let
¢ denote the transpose of the nilpotent element defined by the character w;ﬁl ® x' of
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Vg x Z’, and show that ¢ is nilpotent of order at least k + 1, then (2.36) essentially
follows from [46, Theorems A, E] because p is (k, ¢), but an additional argument is used
because Vg x Z’ does not correspond to a unipotent orbit (see below).

Conjugating ¢ by a suitable element (2.35), we can assume the bottom left coordi-
nate of Z’ in ¢ is 1, and all other coordinates in the same column of Z’ are 0. Assume
(momentarily) ¢ is even or / > 0. One can permute €u4 (for odd ¢) with the first column
of u, using conjugation by

I 1 A’
diag ( - _1) , (1 In—1 ) .
-1 I,

This element normalizes Vg and stabilizes the blocks by, ..., byx—, of ¢. Moreover, we
can exchange the blocks 1/, and u, using conjugation by

I
. I
dlag<<1, ! ) , I(kl)c)7 (2.37)
Ire/2-1

hence we can always assume, for any Z’, that after a conjugation the bottom left coor-
dinate of the block u of ¢ is 1. The matrix (2.37) normalizes Vj, fixes the blocks
bk+41, .., bag—n of @, but permutes the coordinates of the block by of ¢. In particu-
lar, the (n + 1, 1)-th coordinate in the block by of ¢, which is —eg, is conjugated into the
(1, 1)-th coordinate of this block. If Z" = u/| we can skip this conjugation. When c is odd
and [ = 0, in which case Z’ = €uy4 (evidently “/1 and u, are trivial when ! = 0), we use

conjugation by
diog(( 12 "). ()"
14 c— , c— s
e\, T e

so that the (c, n + 1)-th coordinate of the block by of ¢, which is 1, is permuted to the
(1, n + 1)-th coordinate, and the bottom left coordinate of Z’ in ¢ is permuted to the
(2n, 1)-th coordinate of ¢. At any rate, ¢ has a nonzero coordinate in the first row of by.

Conjugating ¢ by an element of diag(/,, GLCA/), we can always assume ¢ contains 1
in the top right coordinate of by, and additionally (still) contains 1 in the (2n, 1)-th coordi-
nate (the bottom left coordinate of u/y if / > 0). If ¢ is odd, we can permute this coordinate
to the (c, 1)-th coordinate using conjugation by diag(Zc—2. (; ), I(k=1)c)-

Now conjugating ¢ by
1
i I —1c )
(") )

the top right coordinate of by is permuted into its bottom right, so that now ¢ has 1 in the
bottom right coordinate of each of the blocks by, . . ., bax—3, and the (c, 1)-th coordinate of
@ is permuted into the (1, ¢)-th coordinate. Moreover, the only nonzero entry in column
¢ is the (1, ¢)-th coordinate, and in each by, ..., byr_, the only nonzero entry in the
rightmost column is the bottom right one. This brings us to the situation in the proof of
Proposition 2.12, with two exceptions. First, instead of —1 in the bottom right coordinate
of the block bx_1, we have 1 in the (1, ¢)-th coordinate (the first coordinate to the left of
the top left coordinate of by ). It again follows that ¢ is nilpotent of order at least k + 1.
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Second and more importantly, the unipotent subgroup V3 x Z’ does not correspond to
a unipotent orbit (i.e., it is not of the form V (o), see §1.4). However, we reduced (2.36)
to the vanishing of JVBKZ”"/'E}; o, (P). where Z" < Ngp,., corresponds to the (1, ¢)-th

coordinate and y” is a nontrivial character of Z". We see that Vg x Z" < V(q ._q k1)
and any character ¥ of V{; ._; .x—1) which extends w;ﬁl ® x” is still nilpotent of order
k + 1. Also, the torus 7L, _, acts on the added ¢ —2 new coordinates of V(; ._; .x—1y with
finitely many orbits (one can identify each diagonal coordinate from Tgr,._, with an ele-
ment of Tgr,, wWhich fixes w;ﬁl ® x”). Thus (by [11, §§5.9-5.12]) JVBxZ“,x/f;; oy (P) =0
if for any ¥’ as above, JV(1 et ek—1)s . (p) = 0. The latter holds by [46, Theorems A, E]
because p is (k, ¢). We conclude (2.36) for any nontrivial y” and any block Z’.

For the archimedean case, again the result is trivial if / = 0 and c is even. The (abelian)
Lie algebra 3 of Z decomposes into the direct sum of one-dimensional Lie algebras 3;,;,
corresponding to the coordinates Z; ; of Z (which can be identified with roots of GLy).

For each (i, j), there is a subgroup of (2.35) which acts on the characters of Z; ;
with two orbits; one can identify this subgroup with Tgr,. Then we can proceed as in
the nonarchimedean case and prove Jv,,x Zi Wy ; ®x (p) = 0 for any nontrivial charac-
ter y’, where to deduce this from the vanishing of JV(l,c—l.ck_l)’v//(p) = 0 for all ¥’ we
apply [47, Corollary 3.0.2] (instead of [11]). By the transitivity of the Jacquet functor, this
implies that there are no continuous distributions on J Vet ; (p) that transform on the left

under Z; ; by x/, ie., (JVB vy (p)*)%i.i-X) = 0. Hence by [47, Proposition 3.0.1], 3i,]
Vg

acts locally nilpotently on J V! (p)*. Note that for the proof of (2.36) above we really
Vg

used only one coordinate, the bottom left one, for each block, and using conjugation we
can assume this coordinate is Z; ;.

We deduce that each 3; ; acts locally nilpotently, hence so does 3. ]

Proof of Lemma 2.16. Consider a nonarchimedean field. We prove that J Vs 1 (p)

admits a finite length filtration as a representation of (1, GL,,_;), and on each constltuent
h(1, Cat,,_,) acts by a character, by showing J Vo) (p) factors through a Jacquet mod-
Ve

ule along a unipotent radical of a certain parabolic subgroup, with respect to a trivial
character.
After conjugating JVﬁ,w‘?; (p) by

In—l
K = diag((,, In ) ,I(k—l)c),
Ie—2p

we regard JV5 ! (p) as a representation of “(*(1, GL,_;)) = diag(GL,,_;, Tke——1))-
Vg

In addition, this conjugation only changes the restriction of ¥}, Bl to by, now given by

0 0 —el; 0 0
0 601,,_[ 0 0 0
vt b | o 0 0 0 Ic_2p
0,_; O 0 0 0
0 0 0o I, 0
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_1 . . . .
(use (2.34)). Now 1//VB is trivial on the top n — [ rows of by, hence JVBJFV; (p) is a

representation of V,_; c—(»—1)), which we identify with its image in the top left ¢ x ¢
block of GLy,.
We claim

VB vy 1 () = 1(p)- (2.38)

(n le—tn=ty.ck—1) Vg

Here w;ﬁl is extended trivially to V(;,—; c—n—1)). Before proving (2.38), we explain how
it leads to the result. Because Vin—i ke—(n—1)) < Vin—1,c—(n—1),ck—1)» the right hand side of
(2.38) becomes

‘]dlag(ly, /s (C (n—1y.ck— 1)),1/f17[]3 (‘]V(n—l.kc'—(n—l))(p))'

Since p is an admissible finite length representation of GLkc, Jv(,_; cc—n_s, (P) is an
admissible finite length representation of M,_; xc—n—1))- As such, it admits a finite fil-
tration with irreducible admissible constituents. On each constituent V, Cu,_; 1 o—us)
acts by a character, and because “*(1, Cgy,, _,) < CM iyt ke—n-i)> “h(1,Cqr,_,) also acts
by a character. Note that 'V may certainly be reducible (or not admissible) as a repre-
sentation of “(1, GL,_;). By the exactness of the Jacquet functor, JV vy 1(p) admits

a finite filtration where on each constituent <% (1, Cat,,_,) still acts by the same charac-
ter. This completes the proof of the main assertion—part (1)—for the nonarchimedean
case. Regarding (3), when ¢ = 2, p = p,(7) for an irreducible supercuspidal representa-
tion of GLg and k > 1, the Jacquet module Jy,,_, ._,_;, (p) vanishes since n — [ =1
[12, Theorem 2.13 (a)].

Write v € Vip—1,c—(n—1)) in the form v = (vq, v2, v3, v4) with v; € Mat,,_;, v2,v3 €
Mat,_;x; and v4 € Mat,_jxc—2,. The group “[x1, X2, X3, X4] (see (2.35)), together with
the group GL,,_; embedded in Mk by x5 > diag(I—;. X5, Ioj4c—2n)*, stabilizes I/f;ﬁl
and acts on the set of characters of V(,,_; .—(,—7)) with infinitely many orbits, but only two
on each block v; separately. Using the transitivity of the Jacquet functor and [11, §§5.9—
5.12], (2.38) follows at once if we prove separately, that for each block Z’ = v; and
nontrivial character y’ of Z’,

JVﬁKZ/ﬂ/I;; ®x’ (p) =0. (239)

Let ¢ denote the transpose of the nilpotent element defined by the character 1//1751 Q¥
of Vg x Z'. We prove ¢ is nilpotent of order at least k + 1; then since p is (k, c), the
results of [46, Theorems A, E] imply (2.39).

First we show that, after possibly a suitable conjugation, ¢ is nontrivial on the (1, c)-th
coordinate, and all other blocks remain unchanged except the block by, where there is a
nonzero entry in the bottom right coordinate.

We can assume the top right coordinate of Z’ in ¢ is nonzero, and it is the only nonzero
entry in that column. If Z’ = vy, the (1, ¢)-th entry of ¢ is nonzero. Using conjugation
by an element of diag(/,, GLCA/), the (¢, n + 1)-th coordinate of by becomes its (c, ¢)-th
coordinate, and the other blocks b1, ..., byx—» are unchanged.
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For Z' = v,, we conjugate ¢ by

I
. In— I; af
diag I , I )
I I
Ie—2n
and for Z’ = v; we conjugate by
L N
. ’ I & I
diag I , !
) ——
In—; I
Io—on n—I
Both conjugations preserve bg 11, ..., bar—_», the (1,2n)-th coordinate of ¢ becomes non-

trivial, and the rightmost column of b has (precisely) one nontrivial coordinate, which
is the (¢ — 1, ¢)-th coordinate if ¢ is odd, otherwise it is the bottom coordinate (the
(c, c)-th coordinate). For an even c, ¢ is of the prescribed form; if ¢ is odd, using another
conjugation by diag (16_2, (l 1) , I(k_l)c), the (¢ — 1, ¢) entry of block by is permuted
into its bottom right coordinate, and the (1, 2n)-th coordinate of ¢ becomes its (1, ¢)-th
coordinate.

We conclude that in all cases of Z’, when y’ is nontrivial, the (1, ¢)-th coordinate
of ¢ and the bottom right coordinate of each block by, . .., byr—_, of ¢ are nonzero (these
coordinates are all 1 except for b, where the coordinate is +1), and the corresponding
nonzero entry is the unique one in its column. Thus as in the proof of Lemma 2.15 (and
again considering all extensions to characters of V(; ._; .«—1) in order to “adjust” Vg x Z’
to a unipotent radical), ¢ is nilpotent of order at least k + 1 and (2.39) follows.

Over archimedean fields, as in the proof of Lemma 2.15, we deduce that the Lie al-
gebra v,y c—m-1)) Of Viu—i,c—n—-1)) acts locally nilpotently on JVB, w;‘; (p)* by carrying

out the proof of (2.39) and applying [47, Proposition 3.0.1] separately for each coordinate
of each v;. Let v’ denote the Lie algebra of the unipotent subgroup Viu—; ke—m—1y) N V.
Since v’ acts trivially on JVB’%?[; (0)s V(=L ke—(n—1)) = O(n—1,c—(n—1y) P 0" acts locally

nilpotently on J Vo /; (p)*. |

Example 2.17. Consider c =4,k =2, G = Spy, H = Spyg and [ = 1. Assume d; =
n—1I1=1.Thenw € Mp(03,1,w;), w, = (1*) and u = £o(u) € Hy is given by

u :diag(l4,<l i i),]z,(ll_ll),14>.

The element w is given by (2.30), note that y; = diag(( L L4 ) , 12) (12 Is ) (see Remark
Iy x
14 )
Vv, (v) = Y (—x1,4 + x2,2 — x3,1). The Jacquet module JVB vyl (p) is a representation
Ve

of "(1, Ug) with
1 u; 0
UR={<u21ul3 ul)}
—up 1

2.10). We have f = (4?), and if we write an element of V3 in the form v = (
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We see that for z € Ug,

1 uj
'y
uj
“(1,z) = diag| 14, uz 1 N
—Uun 1

1
1

Then #(1,z) = m,z’ withm, € Mp and z’ € Up, and such that as an element of GLg,

1
m, = diag(( 1 1 ),14).
up usxl

Denote the subgroup of elements of this form by Z, then JV w—l (p) is a representa-
tion of Z. We proceed over nonarchimedean fields. To show that JV ik 1(p) is a trivial
representation of (1, Ug) amounts to proving JV,,x Zy ®X(p) =0 for any nontrivial

character y of Z. Combining Z and Vg together we are considering the following unipo-
tent subgroup and character:

1 X1,1 X1,2 X1,3 X1,4

1 X2,1 X2,2 X2,3 X2.4

1 x3,1 X3,2 X3,3 X3,4

V= | ur u21lx41 X42 X43 X4.4

1
1
1

(%7,31 ® )W) = Y (x1,4 — X220 + X3,1 + 01Uy + Q2U2).

We have an action of TG, on u; and u, separately, given by diag(xi, I2, x3, I3, x1)
(for uy) and diag(/,, x2, x3, X2, I3). When considering each coordinate separately, there
are two orbits. The corresponding ¢ takes the form

00000O0OTO01

00000-100

00001 O0O00O

— @1 0 00 0 00
(p_ 0 ’

0
0
0

and a nontrivial y means (o1, ®z) # (0, 0). Using conjugations by diag(Js, I5) and by
diag(/4, g) for a permutation matrix g € GL4 if necessary, we can assume the (4, 1)-th
and (1, 8)-th coordinates of ¢ are nonzero; then conjugating by diag(( I 1) 14)

see that ¢ is nilpotent of order at least 3. Thus JV Vil 1(p) is a trivial representation of

"(1,UR) (pis (k,c) = (2,4)).
The Jacquet module JV[; vy (p) is also a representation of
Vg

h(1,GL,—;) = {diag(I3.a,1s) 1 a € F*}.

1
Conjugating by k¥ = diag(( I> ) ,14) we can regard JV vy (p) as a representation
1
of diag(V(1,3), 14). Combining the coordinates of V(; 3y and Vg, we then have
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1 vy v2 V3 X4,1 X4.2 X4,3 X4.4

1 X2,1 X2,2 X2,3 X2.4

1 X3,1 X3,2 X33 X3,4

V= 1 x11 X1.2 X1,3 X1,4 s
1
1
1
1

and note that we permuted the coordinates of x; ; (so that 1//;B1 remains as above). The

tensor product of an arbitrary character y of V{; 3) with w;ﬁl takes the form

(Wﬁ,l ® x)(v) = ¥ (x14 — x22 + x3,1 + V1 + D02 + F303).

As above, we have the action of T, on each of the coordinates v;: diag(x3, x5, I3, X5, I2)
for vy, diag(xs, 1, x2, 1, x2, I3) for vy, and diag(x3, 15, x1, I3, x1) for v3. The correspond-
ing ¢ is then nilpotent of order at least 3 when #;9,93 # 0. This is immediate when
3 # 0, using x; 4. If ¥3 = 0 and ¥, # 0, we conjugate by diag(lz, Ja, (1 I 1)) and
use x3,1, otherwise ¢; # 0 and we conjugate by diag(1, J3, 1, J3) and use x2 5.
Therefore JVB,W;; (p) factors through V{; 7), so that the original module JVB,W;; (p)

factors through ! V(1,7)- Since det(diag(/3, a, 14)) = a, we can use (2.7) to deduce
H(h) = 0.

Propositions 2.5-2.14 imply #(h) = 0 for all & such that 4 ~ §. Finally, consider
h = w("u,) ~ §. We prove that for all s, dim #(5) = dim Homg (7}, ). In this case
Ps = (G' x Cpp) X Viexy, where G* = {(g,'g) : g € G}, 1//;; belongs to the orbit of Y
(the choice of § of [20] gives precisely ), and any morphism in #(§) factors through
IV i,k (). Note that Cy; is trivial unless H = GSpin,,., in which case Cp, < P
because Cg is mapped by the embedding g +— (g, 1) bijectively into Cp; (see also (1.3)).
Therefore

—1
H(8) = Homguxcs, O Iy (0) @ @ 1) @ 75, 1).

Here |det|*~'/2 and 6}, are absent because they are trivial on G* x C -

For H = GSpin,;, we assumed Y, , ¥, exist; then #(§) = Ounless n = )(;11 = Xrna»
because for z1, z5 € Cg, (21, z2) is the element 21_122 of Cp;. When this condition holds,
we can finally ignore Cj; and n altogether.

Recall that GLZ denotes the diagonal embedding of G in Mcky, and Jy, oy (p) is
a trivial representation of SL2. Since *G' < SL2 (for H # GSpiny,., *G' = G*), the
action of G* on S_IJV(Ck),W (p) is trivial, and because dim IV iy i (p) =1 (see §1.4),

HomGL(‘g_lJV(ck),wk (p) ® 1 ® m,/, 1) = Homg () ® (7,)", 1) = Homg (', 7r5).

This completes the proof of the first part of the theorem. For the second part, clearly
when m; and m, are irreducible, dim Homg (711/ ,m5) < 1 and is zero unless 7; = (né)v.
Under the assumptions of (a) (e.g., m» is supercuspidal and ¢ > 2), we do not need to
exclude any s, by Proposition 2.14 (which is the only case where the vanishing depends
ons).
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2.3. The case H = GLyj.

Write P\H/D = [[, PhD with h = wu, where w is a representative from
W(Mp)\W(H) and u € Mg N Ng. Throughout this section we fix the standard identifi-
cation of W(H) with permutation matrices in H. One can still describe w as a 2kc-tuple
of {0, 1}: if the i-th coordinate of w is 1, w permutes the i-th row into one of the
first k¢ rows, and if it is 0, then w permutes this row into one of the last k¢ rows. Of
course only vectors whose total sum of coordinates is k¢ are permissible (Up contains
kc nontrivial rows). Let po(w) denote the middle 2¢ coordinates of w, and p; (w) (resp.,
p2(w)) denote the first (resp., last) (k — 1)c coordinates. Also note that in general, w
permutes row i into Up if and only if w™! permutes column i out of Up.
For the case k = 1, we can parametrize P\ H/(G x G) using the elements

o, 170 iy ;, 0<l<e, 0<j<I,

where

1; 1; Al,j )
(Ol, 17, 0¢7, ll) = I s U= Ip(c—1) . Ay = (0 L ) .
I[ Il

The choice of matrix for (01 J1et o, ll) is not canonical, but can be used for conve-
nience.
Assume k > 1. Recall

Mg =GL; x---xGLe xHog x GL, x--- x GL,, Hy = GLy.

Given x € Mg, denote its projection into the left (resp., right) direct product of k — 1
copies of GL. by £1(x) (resp., £2(x)), put £(x) = £1(x)€2(x), and let £y(x) be the pro-
jection into Hy. We have the analogs of (2.14) and (2.15), in particular since (1, G) < Hy,
conjugation by elements of (1, G) does not affect £(x).

Proposition 2.18. Let h = wu, where w is a representative from W(Mp)\W(H) and
ue Mg N Ng. Then h ~ Wit, where po(W) = 0, 1¢71,0¢71" 1Y) for some 0 < 1,1’ < ¢,
i€ Mo, thereiso € (W(G), W(G)) with°ii € Mg N Ny, and £o(1i) takes the form

I; X
( Lye_j—p ) (2.40)

Il/

for some X.

Proof. ldentify Ngr, X Ngr,. with its image in M ) < Hp. Since Ngr, X Ngr,. <
Lo((G, G)), one can assume £o(u) € V(¢ ), possibly multiplying £(u) by an element in
Mg N Np.

One can find o € (W(G), W(G)) such that wo = w; satisfies po(w;) =
o, 174, o=, 11/) for some 0 < [,!” < c. Denote u; = o'y, Since Lo((G, G)) <
M ), we have £o(u1) € Vic,). Also £(u1) is in Mg, but might not be in Ng. Then
WU ~ WU = W1U].
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Write the top right ¢ x ¢ block of £o(uy) in the form (;ﬁ; ;{i ), X? € Mat; ;. Now
w; conjugates the blocks Xt # 2,into P. Hence if u, = z7lu; with z € Vic,c) defined
by these blocks, then wiu; = wyizuy ~ wiua. Now £o(uy) takes the form (2.40). Note
that £(u2) = £(u1), whence £(°uz) = £(°u1) = €(u) € Mo N Ny, and £,(°u2) € Ng,
because £o((G. G)) < M ). Thus “uy € Mg N Ng. Then b = w; and & = u, satisfy

the required properties. ]

Lemma 2.19. Let h = wu, where w and u are given by Proposition 2.18. Assume

wU|Uﬂw_lUp #* 1. (2.41)
Then (2.6) also holds, i.e., WU|Unh—1 Up # 1.

Proof. The proof is a repetition of the proof of Lemma 2.6, with only one case to consider.
In the notation of that proof, we only have to consider the case where the coordinate (i, j)
defining Y belongs to a block B € Mat.. Then ?Y is also defined by a coordinate in the
same block B. One change here is that ¢ is in (W(G), W(G)) instead of (W(G), 1), but
this does not make any difference. In fact, (1, G) commutes with all of the blocks of U
where Yy is nontrivial. ]

Let now & = wu where w and u satisfy the properties of Proposition 2.18. In partic-
ular, w defines the integers 0 < I’,] < ¢. Write

w=(wg,...,wi,wi,...,w), Vi, jw €{0,1}.
With this notation
po(w) = wl w?), w!=@©" 17, w?=©"1").
Proposition 2.20. We have # (h) = 0 unless
wh =0« wr=L1¢Th), Vi<i<k (2.42)

Proof. For k = 1 there is nothing to prove, so assume k > 1. Since wl1 = (01, l"'_l),
conjugation by w leaves the last ¢ — [ rows of u?*2 (see (1.2)) in Up; these are rows

(k—Dec+1+1,... kec.

The character Yy is nontrivial on the bottom right ¢ — [ x ¢ — [ block of u?2, whence
H(h) = 0by (2.41) unless w~! permutes the last ¢ — / columns of u?2, columns

k+De+1+1,....(k+2)c
outside of Up. This means w permutes rows

(k+De+1+1,....(+2)c
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into Up, i.e., w% = (*l, 1“’_1). But these are also the last ¢ — / rows of the block v; 5 of
the bottom right copy of V{ x-1) in U. Since Yy restricts to ¥ o tron vy,2, #(h) = 0 by
(2.41) unless w1 permutes the last ¢ — [ columns of v , columns

k+2)c+1+1,....(k+3)c
outside of Up. Thus w permutes rows
(k+2)c+1+1,...,(k+3)c

into Up, i.e. w% = (*l, 1"_’), and these are the bottom ¢ — [ rows of v, 3. Proceeding
similarly (Y is ¥ o tron vj,j41) we obtain w? = (!, 1¢7!) forall 1 <i <k.
In addition, w! = (0/,1¢7%) implies w™! permutes the first/ columns of u !, columns

(k—Dec+1,....(k— e +1,

into Up. Since Yy restricts to ¥ o tr on u™!, #(h) = 0 by (2.41) unless w permutes the
first / rows of u!>! outside of Up; these are rows

k=2)c+1,....,(k—=2)c +1,

and we obtain w) = (0%, %), Then w~! permutes the first / columns of the block vg_; k
of the top left copy of V x-1y in U, columns

k—=2)c+1,...,(k—2)c+1
into Up, so that #(h) = 0 by (2.41) unless w permutes the first / rows of vg_; x, rows
k=3)c+1,...,(k=3)c+1,

outside of Up, i.e., w} = (0, x°~7). Similarly, we deduce w! = (0, %!y forall 1 <i
<k. [

Foreachl <i <k,let0 < a’il_1 <c—/land0 < diz_1 < [ be maximal such that for
alll <i <k,

1 1 2 2
wil — (Ol+di—l’ *Cflfdi_])’ w12 — (*lfdi_l’ lc‘*l+di_1).

The integer dij_1 is defined since wij takes the form (2.42).

Proposition 2.21. We have J(h) = 0 unless h ~ Wit, po(®) = (0, 1¢71, 0= 1Y), for
eachl <i <k,
1 (Ol+di'_1 , 1e—1=d;}_, ),

1 1 2 2
di - =dp_y, di =--=d_,,

2 _ (Ol_d?—l, 1c_l+di2—1)

w;

3

(2.43)

and U satisfies the conditions of Proposition 2.18, in particular £o(it) takes the form
(2.40).



D. Gourevitch, E. Kaplan 3058

Proof. Foreach 1 <i <k, putw? = ((w?);, 1°7) with (w?); € {0,1}!. Let1 < j <1
and assume 1 < iy < k is minimal such that (w2);0 [/] = 1. Assume i > ip is minimal
with (w?)/[j] = 0. Since (w?):_,[j] = 1, w permutes row (k +i — 2)c + j into Up.
This row contains coordinates of a row from v;_»;—1, and Yy is ¥ o tr on v;—3;_1, SO
that on row (k + i —2)c + j it is nontrivial on column (k + i — 1)c + j. Thus (2.41)
implies # (h) = 0, unless w™~! permutes column (k + i — 1)c + j outside of Up, which
means that w permutes row (k + i — 1)c + j into Up, contradicting the assumption
(w?)![j] = 0. Therefore (w?)/[j] = 1 foralli > iy (or #(h) = 0).

Now we are in a situation similar to the proof of Proposition 2.8. If iy is
minimal with (w?); [j] = 1 and (w?)] [j + 1] = 0, then for each i > i, either
W)[j] =1, W?![j + 1] = 0or (w?):[j] = (w?):[j + 1] = 1. Using transpositions
from (diag(W(GLy;), I.—;), 1), one can sort the coordinates of the blocks wi2 so that
d} <---<d?_,. Any b € (diag(W(GL;), I.—;), 1) fixes the last ¢ — [ rows of w/ and
keeps the first / rows of w; in w/, for each 1 < i < k, and since w; starts with (0%,
we have p;(Pw) = pi(w) (for brevity, we identify u)il with the rows it is affecting:
(k—i)e+1,...,(k—i)c + c). Additionally b fixes the last 2c — [ rows of po(w) while
keeping the first  rows in po(w), thus po(Pw) = po(w).

Similarly denote w}! = (0, (w!)}) with (w?')! € {0,1}°~, and consider 1 < j <c¢ —1.
Suppose ip > 1 is minimal with (w')] [j] = 0 andi > iy is minimal with (w');[/] = 1.
On the one hand, (w');_,[j] = 0, hence w permutes row (k —i + 1)c + j outside of Up,
so that w™! permutes column (k —i + 1)c + j into Up. On the other hand, (wl); j1=1,
whence w permutes row (k —i)c + j into Up. Again J#(h) = 0 because of (2.41), oth-
erwise we deduce that if io exists then (w!)/[j] = 0 foralli > i.

This means that unless #(h) = 0, if ip is minimal with (w'); [j] = 1 and
(whi [/ + 1] = 0, then for each i > ip, either (w')j[j] = 1, (whi[j + 1]
=0 or (wH![j] = (wh);[j + 1] = 0. Again we use transpositions, now from
(diag({;, W(GL,—;)), 1), to rearrange the coordinates of the blocks wi1 and obtain d] <
- < dkl_l. For b € (diag(l;, W(GL.—;)), 1), b fixes the first [ rows of wi2 and leaves the
last ¢ — [ rows in wl.2 for 1 <i < k, and because wi2 (still) ends with (1°7!), we have
p2(Pw) = w. Also po(Pw) = po(w).

Now condition (2.43) holds, and note that the conjugations affect u, but it still satisfies
the conditions of Proposition 2.18. As opposed to the proof of Proposition 2.8, we do
not claim £o(11) = £o(u), it might not hold because (diag(W(GL;), I.—;), 1) does not
commute with (2.40). ]

Let now & = wu, with w and u given by Proposition 2.21. Since the total sum of
coordinates of w must be k¢, we have

k—1 k—1
c—14+1I'+Y (c=1—-d" Y+ ) (c—1+d?) =ke,
i=1 i=1

hence
k—1

Y —dhy=k-D@ -c)+1-1. (2.44)

i=1
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We can multiply w on the left by an element of W(Mp), so that the matrix corresponding

to w takes the form

0 1
1 0

. 2
c=l+dg_y

. 1
cflfdk_]

1
Loy
1

0 11—412
0
0
11+d,§71 0
For example, if k = 2, then
0 0 0 0 0 o Ic_1+d12
0 I(:—z—dll 0 0 0 0 0
0 0 0 o I, o0 0
w = 0 0 0 Iy 0 0 0 ,
0 o Iy 0 0 0 0
0 0 0 0 0 szdf 0
Il+d11 0 0 0 0 o0 0
and for k = 3,
0 0 0 0 0 0 o0 0 107””1%
0 Ic—z—d2' 0 0 0 0 0 o0 0 0 0
0 0 0 0 0 0 0 o0 Ic—l+d12 0 0
0 0 0 Ic-—z—dll 0 0 0 o 0 0 0
0 0 0 0 0 o Iy 0 0 0 0
w = 0 0 0 0 0 Iyeyyy 0 0 0 0 0
0 0 0 [\ 0 0 o0 0 0 0
0 0 0 0 0 0 01, 0 0 0
|
0 0 1[+d]1 0 0 0 0 o 0 0 0
0 0 0 0 0 0 0 o0 0 I,_.2 0
%2
Il+d21 0 0 0 0 0 0 o 0 0 0

For 1 < j <k — 1, denote

I
ke=@j=D(e=D—d}_;+¥{Z{@}_;—a}_p

Vi = dlag Isz;l] (C_l_d/é,,‘)’ I s

c—z-s-dlf_j
] lj;]] (C_l“l'd]%,i) (S W(Gch),
I, 1
I+d}_ .
/ . k—Jj
y; = diag| I«,;-1 1 s ) ,
J g i U+dg_) Ikc—(Zj—l)/—d,l_j--&-Z"-’:_ll @_j—al_p
Ij—1 € W(GLg),

IZia=dg_p
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and multiply w on the left by diag(yx—1 - ... y1,¥4_; ... ¥1). Now it follows that
hunMp = Vg x Vs, where 8 and B’ are the compositions of k¢ given by

B=(c—1-d}_|,....c=1—d},I'"+c—l,c—1+di . ....c—1+d} ),
B =U+dl_, ... +di,c=1'+11—d} ... .1-d})).

Both B and B’ are indeed compositions of kc, by (2.44). Put Yy, xv,, = hWU|V/3><VBH
WV[, = hWU|VﬂkaC and 1//Vﬂ, = hwU|1kc><V5H and note that

JV3XV,9/,¢V5><VB, (p) = JVB,VIVB (p1) ® JVB/J/fVﬂ, (p2)- (2.45)

We start with describing *¢0 )y, [vgxvy - Forv € Vg and v’ € Vi, write

1 1 b
c—l—dk_1
N SR R T
C—l—d2
I(:—l—dll e br—1
v = Iy 0 by P
Ie—; brt1
1 2 boj—1
c—l+d}_,
Ic—H—d,%_l
1 1 b
I+dal_ 71
. *e ,
11+d21 by
4
, Il+d11 e bk—l
v = Iy 0 f
I; b}
I 5 b
1—daz_, "2k—2
I, >
[=dj_y

The dimensions of the blocks b; and b; are clear; note that by and by 1 (resp., b; ) have
c—1+ d12 (resp., | — dlz) columns. Then

wlo(u) Yy (diag(v, Ixe))
2

0,1_,1 gl 0,1 1
al—al_ xc—1-a) dlxc—i—a
=y |- Z tr(bk—j( T o / ))—tr(bk—l( I gl ! ))
k-2 (L) 2 2
A(X) 0421 djqr—djxe=itd;
—tr( b ( )) tr(b ( i ))— tr| b ; ,
(k Oc—rx17 + k+1 I._; Zl k14 I(,-71+d]2
J=

(2.46)



Multiplicity one theorems for generalized doubling 3061

Wbty (diag(lke, v'))

2
- I//(_ Z tr(bl/c—j (IH'd/!—l 01+d}—1x‘1}_d}—1 )) _tr(bl/c—l (II O1xal ))

j=k—1

k—2
+ tr(b,’C (11—412 0_a2xa? )) — Z tr(b,’c_i_j (Iz—dj?+1 Ol—djz+l><d12+l—d]2 ))) (2.47)
j=1

In both formulas, the sums 212= 1 are omitted when k =2. The matrix A(X)eMat A2’
in (2.46) is uniquely defined given the block X of £y(u), and in particular A(0) = 0 and
whend? =1 =1, A(I}) = I;.Forl = ¢, we have d! = 0forall i, and since d? < ¢ and
I < ¢, (2.44) implies a,’l.2 =c forall i and [ = [’, then (2.47) becomes 1//k_1, and when
X = I, (2.46) also becomes ¥ !

Proposition 2.22. Assume k > 1 and J (h) # 0. The character Yy, belongs to the orbit

of
2 *alxc—1—al
vi> | — tr(b— i %) —tr| br— ! !
w( 3wl (k 1( e
j=k—1
k—2 * 2 2 2
*a2x1! 0o d? | | —d?xc—i+d?
—tl'(b < dixl )) tr(b ( dixc l))_ trl b R J J J ,
ko' + et 2} k+1+4 IHH}
]=

(2.48)

and Yy, belongs to the orbit of

2
v w(— Z tr(b;c_j (Il+dj!71 *1val_xal-al_, ) —tr(br_y (¥ O%xal))

j=k—1
k—2

+t6(b) (Uaz *rmazea? ) = 3 w(bpy ). (249)
j=1

Here x means undetermined block entries. When £(u) is the identity, (2.48)—(2.49) coin-
cide with (2.46)—(2.47).

Proof. The proof is similar to the proof of Proposition 2.11. Now ¥y is defined by
2(k — 1) blocks in Mat.. Let By x—, (resp., B2) be the block corresponding to u'-!
(resp., u>?), and By g, ..., By g—3 (resp., By 1, ..., By x—») be the blocks corresponding
to the top left (resp., bottom right) embedding of V( x-1y < Mp (see §1.5).

Setdy = dg = 0.For0 <i <k — 2, write By ; as the upper right block of

1.1 1.2 1.3
I Bl Bl Bl
I+d}l__, 1,i 1. 1.
2.1 2,2 2.3
11 1 By B7: By
dkfiflidkfifz 1.i 1.i 1.i
3.1 3.2 3.3
Tecia) ., Bii By By
Il+d,§7i72
1,1 |
dp i1 9—i—2
I,
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and B, ; as the upper right block of

1.1 1,2 1,3
Il—d,.2+1 By By B,
I, 5 21 22 23
di+1_di 2.i 2.i 2,i
3.1 3.2 3.3
Icfl+di2 By By B3
I, >
I=diy
I,
dip1—4;
I(:—z+di2
Recall ¢y is given by
k-2 3 3 k-2 3
1, 1, t,t
1//(— NN uB + Y wBs) -3 :tr(Bz’i)>. (2.50)
i=0r=1 t=1 i=11=1

Let .#p (resp., %p, %p ) denote the list of blocks conjugated by w into Mp (resp.,
Up,Up):

Mp ={Bj;' B} B B :1<j<20<i=<k-2}

Up ={B}}':1<j<20<i<k-2},

- 1,2 51,3 2.2 p2,3. . .
Up ={B/}. B} BB 1<j<20<i<k-2}.

We can assume ¢; (u) = diag(zj,....,Zjk—2), J] = 1,2, with z;; € Yo Ng.. Here wy is
the projection of (, 1)~! into the i-th copy of GL. ((1,¢) commutes with £(u)). We can

itez: i =2/ .m;;
then write z;; = z;;mj; where

W
diag(mi,0,...,M1 k-2, l2¢c,M2,0,..., M2 k—2) € Mp

andforall0 <i <k —2,

I, Ml
1+d}_i_, 1,i
my,; = > > 1 € GLC,
My, g MM
k—i—1
I, » ML
I—d- 2.i
i+1
mp; = > > 1 € GLC,
My, 142 M5 M, ;
i+1
I | + M2 M. eGL,, 1
c=l—d;_;_, 1,0 1,i I+d,_;_,

2 1
Iecivaz,, + My iMy; € GLe_pyp2 -

Then
1 2 1
_1 Dipap ,  TMOME —My
my; = ey 7 € GL.,
1.i c—l—d} .
’ k—i—1
1 2 1
4 Tiaz *Ma Mz =My,
my; = ”2 s € GL..
’ —Mai c—1+d,.2+l

Henceforth we assume z;; = m; ;. To compute ((M)WU we calculate

—1 —1 —1 -
My g_oBik—2, my;Biimiiy1. Baomao. my;Bsitimzitr, VO<i<k-3.
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We start with ¥y, and show that it belongs to the orbit of (2.48), otherwise J (h) = 0.
This amounts to the description of its restriction to bg_1, ..., box—1 and e. The rightmost
¢ — [ columns of by_; consist of B13,,l§—2 and 313:13—2 (the leftmost !’ columns are con-
jugated from the ¢ x ¢ block to the right of u'!). Looking at ml_,}c—zBl,k—Z’ if the top

[ rows of M11,k—z are nonzero, ¥y is nontrivial on 313,’1:—2 € %p. Hence #(h) = 0 by
(2.6) in this case. Also ¥y restricts to ¥ o tr on 313:12—2' Hence Yy, agrees with (2.48)
on by_;.

The block by consists of (B;,’g, B;”’S) and we consider B; gm> o. If the last ¢ —/
columns of M21,0 are nonzero, *vy is nontrivial on B;:S € %p. Unless J(h) = 0, we
find that the last ¢ — [ columns of le,o are 0; then it follows that ¥y and ¥y coincide
on (B35, B3g)-

Regarding by, it is conjugated by w from the ¢ x ¢ block below u?*2. Denote this
block by By; we further divide it by writing it as the upper right block of

1.1 pl2 pl.3
Iy By' By B}
2.1 p2.2 p2.3
Iy_q2 B! B3? B§
3,1 p3.2 p3.3
1d12 By By~ By
Il—dlz
%)
i
I(:—l

Here
1,1 p22 p23 p32 p3,3 2,1 p3,1 1,2 pl,3 -
By, By, By, By, By € Mp, By By € Up, By, By” € Up .

The blocks conjugated into by are Bg 2 Bg 3, Bg,z and Bg’3. The conjugation of U
by £(u) multiplies By on the right by m;},. The restriction of 0@ yr; to Bg 2 and Bg 2 s
defined by A(X), but ©0®yr; can also be nontrivial on Bg 1 or Bg 2 (or we could have,
e.g., d? = 0,1). We can assume “0@ vy, is given on By by

B! B BY? 0 g2ue—yr A1)
v | o | B2 B22 B2 C o= Oy AX) ] Al(X)eMat,_dlle/.

B3l B2 B33
(2.51)

Here A;(X) defines the restriction of €@y to 302 1 and Bg’l. When we consider
ma 0@k We see that the restriction of ¥y to 302 1 Bg 1e p is given by the first [ — d12
rows of m; ¢ multiplied by the last I’ columns of ¢y ; this restriction should vanish, and
the restriction to the blocks conjugated into by corresponds to the last ¢ — [ + d? rows
of m3 o multiplied by the last /" columns of ¢y . Since the last ¢ — [ columns of M3 , are 0,

Oc—ixc—17 Oc—rxi’

1
we can denote M, o = (* %—a?xc—1). Also put M3, = (22) with B! € Matgz,;_;2:
then
A1(X) I’_dl2 * 0 A1(X) : Al(X)+0tA()f)
M2o( A(X) )= B! Ip+B'a 0 ( A(X) ): Bl AN o +BlaAX) |
’ i

Oc—rx1’ ﬂ2 /320( Ioes Oc—75q7 ﬂ2A1(X)+ﬂ2aA(X)
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Now if J#(h) # 0, we must have A1(X) + a¢A(X) = 0, so B2A1(X) + B2aA(X) = 0,
in which case Yy, agrees with (2.48) on by. Thus both characters agree on bg_1, by
and by 1.

Consider bk+,, 2<i<k-1. We multiply m;} »Bai—1m3 ;1. The block by,
consists of B _, and 32 - Recall B _1 € %p. Then J¢(h) = 0 unless the top right
l—d?xc— l + d? , block of mz,l_lmzj_z is 0:

M1

I g2 M3, 272 ) =0,
( ! di N ) IC l+d2

i—1

In this case the restriction of vy to (323 12 1 323 o 1) which corresponds to the bottom
right ¢ — [ + d? x ¢ — 1 + d?_| block of m3 ; lmz,l_z, is defined by

-M}. -M!.

2 2 1 2.i—2 2,i—2
(Mz.i—l I(,-71+d,2+M2,i My iy ) I - = (06—1+dl-2><l—dl.2 Ic—l+dl.2) I =
i e—l+d?_, c—l+d?_

Therefore Yy, agrees with (2.48) on by ;.

Also ¥y, e = 1, because e is conjugated from the ¢ x ¢ block to the right of ull
This completes the proof for yry,.

We turn to the restriction of ¥y, to bi.....b,, e and f’, and prove that unless
J(h) = 0, Yy, and (2.49) coincide. The block b corresponds to le”é and Bzz,’é . Con-
sidering By om2,0, the restriction of ¥y to these blocks is given by the top left / — d 12 x [

block of m3 o, namely
3y
v (tr ((Iz—dl2 *I—dlzxdlz) (Bg'(l) ))) .

Hence ¢y, and (2.49) coincide on b/

The block by _, is conjugated from B1 k , and B*
1k ,B1,k—2 and if the first / rows of M1 k2
on 313 ,1 , € %p whence J (h) = 0. Henceforth we can assume the first / rows of M k2
are 0; then the top leftl x 1 +d| block of m}_, equals (17 %xi1a} ), so that the restric-
tion of Yy to B1 k , and Bl,k—2 coincides with the restriction of ¥y (Y o tr on the
former, trivial on the latter).

Consider b;, 1 <i <k —2. We multiply ml_} B1,i—1my ;. The block b] is conjugated
from (Bl1 11 . 1 i 1) This is similar to the case of by ;. Since Bl’l LEUp, H(h) =0
unless the top right [ + d}_,_ x ¢ —1—d}_, block ofml,,ml’}_1 is 0, ie.,

1 k ,- This is similar to bg1;. We

multiply m7 are nonzero, ¥y is nontrivial



Multiplicity one theorems for generalized doubling 3065

Then the restriction of “yy to (Bl1 ”il_l, 312 ”il_l), which corresponds to the top left [ +
d 1

1 R
i1 X +d;_; block ofml,lml’i_1 becomes

1 2
(1l i) Dpa)  FML M0\ (Lsa M) liva)
I+a}_;_, ML M2, =ita) Tl Oc—l_dll N
Jd— C—1 -l

= (1, n *, 1 | 1 )
_( Idp_jy Itdp_j yxdg_j=di_i_y ) >

hence Yy, agrees with (2.49) on b;.

The character Yy, is trivial on f’, because f’ is conjugated from Bé’l (see (2.51),
the top left / — d? x ¢ — I’ block of g). It is also trivial on e’ since it is conjugated from
the ¢ x ¢ block to the right of u!>! (this is similar to e). n

Proposition 2.23. Consider k > 1. Assume d} < ¢ —1 (in particular | < ¢) or d? <1
(in particular 0 < 1). Then JVBXVB”w;;xVﬁ/ (p) = 0and #H(h) = 0.

Proof. We argue as in the proof of Proposition 2.12. By Proposition 2.22, we can
assume 1//V5 (resp., 1/fV5/) is given by (2.48) (resp., (2.49)). Let ¢ be the transpose of
the nilpotent element defined by 1//;; (resp., ¥y, ﬁl,). By (2.45) and [46, Theorems A, E],
because p; (resp., p2) is (k, ¢), it is enough to show that ¢ is nilpotent of order at least
k+1.

Consider dl1 < ¢ —[. Looking at (2.48), we have k nontrivial blocks bg_1, bx+41,.- -,
bog—1, and for each block, the bottom right coordinate is nontrivial and the other coordi-
nates in its column in ¢ are 0. This does not depend on the undetermined coordinates of
the character. To see this use the assumption ¢ — [ — d11 > 0 for bx_q and / < ¢ for by,
and the bottom right coordinate of by 11 is the only nonzero coordinate in its column in ¢
because onthe [’ x ¢ — [ + d12 block by above by 11, ¢ is 0 in the last ¢ — I columns (if
I’ = 0, this is trivially true). It follows that ¢ is nilpotent of order at least k + 1.

For the case d12 < [, the blocks b’l, e, b,’c are k nontrivial blocks, the top left coor-
dinate of each block is nontrivial (use / > 0 and d{ < I) independently of undetermined
coordinates, and is the only nonzero coordinate in its row (for b,/c_1 use the fact that (2.49)
is trivial on e’!). Again ¢ is nilpotent of order at least k + 1. ]

Remark 2.24. If / = ', the conditions d| = ¢ — [ and (2.44) already imply d? = [ for
all i.

For the remaining cases k = 1 or both dl1 =c¢—1[ and d12 = [, in which case di1 =
¢ —1[ and dl.2 = [ for all i, whence by (2.44) we have, for all k > 1, [’ = [. Up to left
multiplication by an element of W(Mp), w equals

Ie



D. Gourevitch, E. Kaplan 3066

so that “£(u) € P and h ~ wlo(u) (we still do not change w, in order to use 8, 8’ and
the formulas for the characters given above). Therefore ¥y, and Yy, are already given
by (2.46) and (2.47). Considering the action of (GL;, GL;), where GL; is the natural
subgroup of M(; .y, we can already write X = A; ; = (Ol—j I; ) with0 < j <I.We
deduce there are only finitely many more representatives to analyze, but as opposed to
§2.2, we must handle each 0 < j <[ separately (i.e., we cannot easily reduce to j = /).
The form of representatives is finally similar to the case k = 1. For the representative h
such that j =/ = ¢ we have h ~ 4.

Proposition 2.25. Assume d! =c—1ork =1,and 0 <1 < c. Then ¥ (h) = 0 outside
a discrete subset of s. Furthermore, if | > 0 (forcing ¢ > 1) and 7y is supercuspidal, or
ck > 1,1 =0, my and 7, are supercuspidal and py = p.(t2) for an irreducible super-
cuspidal representation 1, of GLyg, then #(h) = 0 for all s.

Proof. Now Vg = Vg = V| k). Consider the parabolic subgroup R < G with Mg =
M_;yand Ug = V(Z—l,l)' Note that V(Z—l,l) is trivial if / = 0. Identify the group GL._;
(nontrivial for 0 </ < ¢) with its natural image in Mg.

For convenience, we multiply w on the left by diag (Izkc,c, ( Ioss h )) This permu-
tation normalizes Vg x Vg, fixes Yy, and conjugates Yy, into

Ie b
2
o oy v Hw(— 3" te(b_ ;) — by (1 Opes ))). (2.52)
1 j=k—1

Ie—

Now (1,GL._;) = diag(/2kc—(c—1), GL¢—1), and since the character (2.52) is trivial on e/,
JV,,xVﬁ/,a//; ; vy (p) is a well defined representation of (1, GL._;).

Over nonarchimedean fields, we simultaneously prove that JVBXVﬁ's'WI - (p) is,
for all s, a trivial representation of h(l, UR), and admits a finite length filtration as
a representation of (1, GL,_;), where " (1, Cat,,_,;) acts by a character on each con-
stituent. For archimedean fields we prove that #(1, ug) acts locally nilpotently on

‘]V XV L (p)*, and the Lie algebra V((k—1)c+1,c—1) of diag(/g., V((k—l)c-i—l,c—l))
BrVgs VgxVgr
,w;;ngﬂ/ (p)*. Note that h(1,GL,_;) is a direct factor

of diag(Ixc, M((k—1)c+1,c—1))- (Cf. Lemmas 2.15 and 2.16.)

Granted that, since "' (|det|S"V/2)(1,al,_;) = |a|~€=D6=1/2) one can apply (2.7)
to deduce # (h) = 0 outside a discrete subset of s. For [ > 0, if m, is supercuspidal,
H (h) = 0 for all s (because Jy, (7,) = 0).

Henceforth we identify GLg. with the bottom right block of Mp. For u € Ug,
h, u) = myu’ with v’ € Up and m, = diag(I(k_l)c, (I’ /}ii/u)) Let Z =
diag({(k—1)c, Vi1,c—1))- This (abelian) group stabilizes (2.52). In addition, the subgroups
diag({gc—(c—1)» GLc—;) and diag(GL;, I._1)® < GLg, stabilize (2.52), and act on the
characters of Z with two orbits.

acts locally nilpotently on J VexVy
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Over nonarchimedean fields, we show that for any nontrivial character y of Z,
JVB/ ><Z,1//‘7BI/®X(P2) = 07 (253)
which implies (by [11, §§5.9-5.12])
Wyt (02) = Iz 1, (02)- (2.54)

Thus JVB/ ! (p2) is a trivial representation of (1, Ug) and this Jacquet module fac-
Vg

tors through Jy, . _; .4, ._; (p2), which is an admissible finite length representation of
M((k=1)c+1,c~1)- By exactness JV/,/ vy (p2) admits a finite length filtration such that on
Vg,

each constituent, (1, CqL,._,) acts by a character. Now by (2.45), JvﬁxVB, vl (p) is
V<V

a trivial representation of #(1, Ug) and admits a finite filtration with (1, CoL._,) acting
by a character on each constituent.

For the proof of (2.53) we can assume / > 0, otherwise (2.54) is trivial. Identifying Z
with Mat;x._;, we can assume y is nontrivial on the bottom right coordinate of Z, and
trivial on the other coordinates of the rightmost column. Let ¢ be the transpose of the
nilpotent element defined by the inverse of (2.52) and by y. Note that ¢ is independent

N ,
of Ay, ;. After conjugating ¢ by diag(( 5 I ) N C) (GL2' is the diagonal embedding

of GL, in GL(%—1)c), it has nontrivial entries on the bottom right coordinates of k blocks:
bi, . ,b,’c_1 and Z, and in each block there is only one nontrivial entry in the rightmost
column. Therefore ¢ is nilpotent of order at least k + 1 and (2.53) holds, because p,
is (k, c).

Over archimedean fields we repeat the proof of (2.53) and apply [47, Proposition
3.0.1] for each coordinate of Z separately, exactly as in the proofs of Lemmas 2.15
and 2.16.

It remains to prove the stronger assertion when ck > 1, [ = 0, both m; and 7, are
supercuspidal and p, = p.(t2) for an irreducible supercuspidal 7,. Since 7, is supercus-
pidal and JVﬂ/,w;;, (p2) factors through Jy, ..o, (02) = IV _1ye.c) (P (T2)), We obtain

J(h) = 0 for all s, unless ¢ = tk for some integer ¢t > 1 (use [12, Theorem 2.13 (a)]).
If ¢ > 1, in particular ¢ > k, and we claim Jy,_,,. ., (02) is trivial on h(1, V) for
some composition § of ¢, then because 7, is supercuspidal, #(h) = 0 for all s. This
follows by repeatedly applying the derivatives of Bernstein and Zelevinsky [11, 12] to
IV —1ye.c) (p2)- Indeed, for 1 <i < c, let x; be the character of Vi(x_1)c c—;,1i) given by

Xi(2) = W (i1 Zke—i’ ke—i7+1)- Then either
IViw—1re.0(P2) = IVgeiye.c—1.1) (P2):

in which case our claim is proved with § = (¢ — 1, 1), or

IVk—1re.00(02) = IVige—nye.c—1. 11 (P2)-
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We proceed with i = 2. After i steps, our claim is either proved with § = (¢ — i, 1?), or

JV((k*l)C,C) (102) = JV((k—l)c,c—[,li)’Xi (Pz)

However, since ¢ > k, for i = ¢ we already obtain J Vith—1)e.1¢)sXe (p2) = 0, because the
highest derivative of p; is k (put differently, the suitable ¢ is nilpotent of order at least
k+1).

Lastly, forc =k > 1, Jy )., (p2) = |det|* p.—1(72) ® |det|*2 12, where a1, a2 €
%Z (see [115, Theorem 3.4]) and p.—1(72) is (k, ¢ — 1), then (because [ = 0)

JVB/,W;; (p2) = |det|*! JV((»k—l)"/’k—l (p2) ® |det|*> 1.

Hence diag(SLcA,, I.) acts trivially on JV[;/ vy (p2). Additionally because 1//17ﬂ1 belongs
Vg
to the orbit of Y (I = 0, see (2.46)), SLCA acts trivially on JVﬁ up! (p1). Thus #(SL,, 1)
Vg

acts trivially on J (p), in particular J¢ (h) = O for all s, because 7 is super-

—1
VexVe Wi gy,
cuspidal. ]

For the remaining cases, / = ¢ and 0 < j < ¢ (recall j is the rank of Ay, ;). The cases
J < c are similar to [ < ¢, but involve Vg and ¢ry,.

Proposition 2.26. Assume 0 < j <[ = ¢ ork = 1. Then #(h) = 0 outside a discrete
subset of s. Furthermore, if j > 0 and 1, is supercuspidal, or ck > 1, j = 0, m; and 7,

are supercuspidal and p1 = p¢(t1) for an irreducible supercuspidal representation ty of
GLy, then J#(h) = 0 for all s.

Proof. In this case X = A.,; = (Oc—j 1 ) so that if we consider R < G with Mg =
M_jjyand Ug = V(;_j,j), we can repeat most of the proof of Proposition 2.25 (with j
instead of /), except we use Vg instead of Vg (hence, e.g., 7; instead of ).

Identify GL._; with its natural image in Mpg. We note that h(l, GL.—j) =

diag(GLc—, I(2k—1)c)- The character ¥y, is now given by

I by
I(r bk+2 k-1
L > w(_tr(bkAc,,-) - Ztr(bk+j)>,
Ic bog— j=2

c

and 1//% =Y 1 Then JVﬁxVﬁ/ (p) is a well defined representation of

h(1,GL.—)).
We proceed over nonarchimedean fields, and prove that for all s, J. VaxVy

—1
’WVBXVB/

"/’ﬂéxvﬂ/ (p)
is a trivial representation of #(1, Ug) and factors through J Vie jj+ k1o (P1)-

Since " (|det|sY/2)(1,al._ ;) = |a| € DE=1/2 3¢ (h) = 0 outside a discrete subset
of s by (2.7). For j > 0 (then [ = ¢ > 1), if 75 is supercuspidal, then J¢ (k) = 0 for all s.
For more details and the archimedean case see the proof of Proposition 2.25.
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Identify GLg. with the top left block of Mp. Let Z = diag(Vic—j,j), lk—1)c) =
Mat._ ;. For u € Ugr we have h(1,u) = myuu’ with m,, € Z and u’ € Up. The group
Z stabilizes Yy, , and the set of characters of Z is partitioned into two orbits with respect
to the action of diag(GLc—;, Ix¢—(—j)) and {diag(/.—;, g, diag(g. Ic_j)A/) : g € GL;}.
We show that for any character y # 1 of Z,

JVsz,l/,;[;@X(Pl) =0. (2.55)

This implies that JVBXVB's (p) is a trivial representation of (1, Ug) and factors

W;l;xvﬁ/
through Jv._; ; 1 k—1)e) (P1)-

For the proof of (2.55) assume j > 0. We can assume y is nontrivial on the bot-
tom right coordinate of Z, and trivial on the other coordinates in the rightmost col-
umn. Let ¢ be the transpose of the nilpotent element defined by 1//17/31 ® x, which now
depends on A; ; (as opposed to the proof of Proposition 2.25). Using a conjugation by

o\ A
diag (1 cs ( I, fe=j ) ), we obtain ¢ which has nontrivial entries on the bottom right
J

coordinates of by, bxys,...,ba—1 and Z (k blocks). This proves (2.55), because p; is
(k,c).

The proof of the assertion for the case ck > 1, j = 0, supercuspidal representations 7y
and 75, and p; = p.(t1) for an irreducible supercuspidal 7y, proceeds as in the proof of
Proposition 2.25. Since now Jy,._; .\ x_1)e, (P1) = Jvie k—1ye) (P1), We have FH(h) =0
for all s unless ¢ =tk,t > 1. Fort > 1 we use derivatives along V(li,c_,-,(k_l)c), 1<i<c.
Forc =k > 1, Jy, _1) (P1) = |det|*3 71 ® |det|* pc—1(71) and pe—1(71) is (k,c — 1),
hence #(SL¢, 1) acts trivially on JVBXVB/’WE;,xvﬁ, (p). |

Propositions 2.18-2.26 imply # (h) = 0 for all / unless # ~ §. We prove dim # (§) =
dim Homg (xo7,’, m2), for all s. Now Ps = G* x (Vieky X Viery) with G* = {(g, &) :
g € G} (for H = GLy, one can take « = I.; we keep the notation G* for uniformity)
and any morphism in # (§) factors through J Veioy<Viok, Wk Vi (p)- Hence

—1
%(5) = HOI’I]GL (8 JV(Ck)XV(Ck)=Wk®Wk (p) & T[;/ [039] N;l, ])

Note that |det|*~'/2 ® |det|™**1/2 and 6}, are trivial on G*.
We can assume § commutes with G* (G* is simply the diagonal embedding of G
in H). Then as a representation of G*,
-1
’ JV(,,k>><V((,k)ﬂ//k oy (P) = JV(ck)A//k (p1) ® ‘]V(Ck)awk (p2).
Recall that the action of G* on JV(Ck),Wk (p) ® JV(ck)s‘//k (p2) is given by g — xo(detg)
(g € G) for some quasi-character yo of F* (see §2.1), therefore

-1
Homg (" Iy, xVi, i 0w (0) ® 1) ® 5/, 1) = Homg (xomy’, 72).

The remaining parts of the proof now follow as in §2.2, and note that when ck > 1, m;
and 7, are supercuspidal and p; = p.(z;) for irreducible supercuspidal representations z;
of GLg, i = 1,2, we do not need to exclude any s.
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3. Applications

3.1. Covering groups

In this section we describe the extension of Theorem 2.1 to certain covering groups. We
proceed with the definitions and notation of §1.5. Let m > 1. Assume F* contains the
full group w,, of m-th roots of unity. A topological central extension of G(F) by fy, is
an exact sequence of topological groups

1 = i = G™ L G(F) > 1,

where i and p are continuous, i (i) is closed and belongs to the center of G, and p
induces an isomorphism 7 (j1,)\G" = G(F) of topological groups. We call G™ an
m-fold covering group of G(F'); it is in general not unique, but for G(F) = Sp_(F) it is
uniquely defined given a Steinberg symbol (e.g., a Hilbert m-th order symbol). The cov-
ering groups under consideration here were constructed, in increasing level of generality,
through a series of works including [16,67,70,71,80,85,101, 112]. For further references
see [8,81].

In this section we assume the field is nonarchimedean; then G is an [-group in
the sense of [11]. For m > 2, an archimedean field is already complex; then the cover is
split over the group so that the results in this case are immediate from the linear case. As
above, we identify F-groups with their F-points. Of course this only applies to G and its
subgroups; G ™ is not an algebraic group.

In general for X < G, X denotes the covering of X (more precisely, of X (F')) defined
by restriction from G ™. This covering depends on the embedding of X inside G. We say
that X is split over X if there is a group embedding X — X.If X is perfect (as an F-
group), such a splitting, if it exists, is unique. Note that since F is of characteristic 0,
Sp. and SL. are perfect. The coverings under consideration are split canonically over
unipotent subgroups, hence the notions of Jacquet functors and unipotent orbits extend
to the covering in the obvious way. If Y is a unipotent subgroup of G, denote by ¢y :
Y — Y the splitting of Y. Since gy is canonical, we usually omit it from the notation,
e.g., if R < G is a parabolic subgroup and we consider a genuine representation o of Mg,
for the induced representation Ind%(m) (o) we extend o trivially on Ug, more precisely

on gy (Ug). Since we are considering central coverings, G acts on G by conjugation.
In particular,

hoy (v) = ony (*y), VyeY. 3.1)

We describe a general system of assumptions for covering groups, under which the
doubling construction is well defined, and then state the analog of Theorem 2.1. For the
particular cases of the covering Spgm) of [80] and the covering GT,C obtained by restriction
from Spgz), these assumptions were verified in [64]. More details are given below; see
also Corollary 3.5.

Fix a covering group G ™ Assume there is a covering Hof H (typically H = Hm™)
with the following properties.
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(1) Iior H = GSpin,y,., the preimage C y of Cp in H belongs to the center (lf H, and
C ;1~is split over C;. The same properties are satisfied by the preimage Cg of C¢
inG.

(2) Letej(g) = (g.1) and ez(g) = (1, g). These are the embeddings of G into My in
the linear case. Assume they extend to embeddings ¢; : G — eE).

(3) The restriction of €5 to iy, is the identity. (Here we regard ., as a subgroup of Gm )

(4) The images of €; and €, commute in H, and give rise to a homomorphism
{(e1.€2) € ttm X ptm : €1 = @\G™ x G™ — M. (3.2)

This is (automatically) an embedding unless H = GSpin,,., in which case we further
assume that €1 (z)e,(z) is the identity for z € C; then the left hand side of (3.2) is
further divided by the subgroup {(z,z) : z € Cg } (a subgroup by (1)). Cf. (1.3). Denote
the left hand side of (3.2) by (G, G)™.

(5) For H = GL,, the preimages of the direct factors GLg,. of Mp commute in H,and
the coverings GLg. of each copy of GL. are isomorphic.

(6) Identify Gch with M pif H # GszC, or with the covering of one of the copies of
GLg. in Mp for H = GL,j.. Assume GLkC is split over SLA

(7) For H = GLyg,, assume Mp is split over {diag(g®,g?) : g € GL.}.

(8) The involution ¢ extends to an involution of G and for a genuine representation 7
of G (V) = (x)V.

(9) For any maximal parabolic subgroup R < G whose Levi part contains GL;, the cov-
ering GL; has the property that for a sufficiently large integer d, the preimage of
Cg'L] ={x?:xe CaL, } belongs to the center of GL;.

First we use these properties to construct the basic data for the doubling method.
Define GIkC by (6). Let p be a genuine representation of ﬁkc. We say that p is a
(k, ¢) representation if Homy)(p, ') = 0 for all o = (k¢) and ¥’ € IA/(a)gen, and
dim HomV((rk)(p, Yx) = 1. By (6), the action of SLCA on JV((rk)’,/,k (p) is well defined,
then it is trivial.

If H # GLjg,, let p be a genuine admissible finite length (k, c) representation of
GLkC For H = GSpin,;., by (1) the irreducible representations of C > are the lifts of
quasi-characters of F'* to genuine characters; therefore, if 7 is a quasi-character of F*
which we regard also as a character of Cg,, the representation p ® 7 is well defined. For
H = GLy,, by (5) we have

{(€1,€2) € Um X U : €162 = 1}\6]:kc X GI:kc ~ Mp.

Hence p = p; ® p» is defined for genuine representations p; and p,, which we take to be
admissible finite length and (k, ¢). The space V(s, p ® 1) is now defined as in §1.5, with
induction from P to H.

If H = GLyg,, according to (7) there is a quasi-character yo of F* such that the
action of {diag(g®,g”) : g € GL.} on S_I(JV(C,(),W (1) ® IV ey (p2)) is given by
g+ xo(detg).
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Let m; (resp., m») be an anti-genuine (resp., genuine) finite length admissible repre-
sentation of G If H = GSpin,;, ., we assume 771 and 7, admit central characters. Then
by (1) these characters restrict to genuine characters of Cg;, denoted y,, and y,, which

. . . . _1 _ _ _1
we can identify with quasi-characters of F*. We assume Xz, = Xmp and putn = y7-.
Consider the space

Homg gyom (JU"VEI Vs, p®n), 11 Q nz). (3.3)

The representation V (s, p ® 1) is a priori a representation of (G, G)™ by (4). Since m;
is anti-genuine and 5 is genuine, 7; ® 7, factors through (G, G)(m), and it follows that
(3.3) is well defined.
Recall D = U x (G, G) and denote D™ = U x (G, G)™. Then (3.3) is isomorphic
to
Hompom (V (s, p ® 1), wgl QR m ® m2). (3.4)

By (3), V(s, p ® 1) is a genuine representation of the right copy of G, and so is 7.
Combining (3) with (4), €1 € U, is mapped to 61_1 under €1, whence V(s, p ® 1) is an
anti-genuine representation of the left copy of G, as is 7. Therefore the representation

Vis,p®n) ® Wu @ ny @ 1)

of D factors through D. Hence (3.4) equals

Homp (V(s.p @ 1) ® (Yu @ 1y ® 15),1)

4 (m) _
— Homp (Indg:g(m) (et 2p & n) ® (Yyu ® ny ® 1y)), 1)

(cf. (2.2)). Recall Py, = "'p A D. The covering ﬁh obtained by restriction from H
coincides with the covering restricted from D by (4). The space of distributions on
PhD™ corresponds to

. D) =1 -
Homp (mdgh (h ((|det]?p ® 17)8},,/2) ® (Yu @ my ® 1)), 1),
which by the Frobenius reciprocity is equal to
J(h) = Homp, (""(ldet ™ ?p@n) ® (yu @ 7y @ 1)), 6) (35

(cf. (2.4)). We can now use the theory of distributions on /-sheafs of [11]. Recall that the
right action of D on P\ H is constructive, i.e., the graph of the action is a finite union of
locally closed sets (see [11, §§6.1-6.6] for more details on these notions). This follows
from [11, Theorem A], because P\ H is an algebraic F-variety. Since

(P x D")\(H x D™) ~ P\H =~ P\H

(as topological spaces), the right action of D on (13 X D(’”))\(I-I x D) is also con-
structive, justifying the application of [11, Theorem 6.9] (note that the action of D on
the quotient factors through D).
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The arguments of §2.1 showing the vanishing of J# (%) also remain valid. We explain
this in more detail. First, if ¥ < "U N Mp, then by 3.1), " oy (Y) = ¢,—1,(""'Y) =
YU (h_lY). Hence (2.5) holds and any morphism in J¢ (k) factors through Jy 4, —1(p).

Condition (2.6) is independent of the covering. Since p ® 7 is trivial on 90[1]\71_[ (Up),
the condition ”Y < Up and (3.1) imply K (|det]*~'/2p ® n) is trivial on @y (¥), so we
can deduce # (h) = 0. The second method, where we show that any morphism in J (/)
factors through Jy (¢, (p) With 0 Z (k€) and ¥’ € f/\(o)gen, also implies # (h) = 0, as
in the linear case.

The only change concerns the third condition, where it is not necessarily true that
the preimage of (1, Ca,) in H acts by a character, because this preimage might not be
abelian. However, we can instead use the preimage égL , of cd , (for a large integer d),
which is abelian and belongs to the center of (?I:h by assumption (9). Then éng acts by a
character on each irreducible constituent of Jy, (7)), and the preimage of h(1, Cng) in

H acts by a character on each of the finitely many constituents. The only change to (2.7) is
that now we replace a € F* with @, but this still implies the vanishing outside a discrete
subset of s.

Define

d(s,p,n,m,m) = dimHom(G,G)(m) (JU,WEI V(s,p®n), 1 ® m2).

We are ready to prove Theorem 2.1 for covering groups.

Theorem 3.1. Let 1, 7, and p be as above.
(1) Outside a discrete subset of s, d(s, p, n, w1, w2) < dimHomgom) ()(07{;’, 5).

(2) If my and 75 are irreducible, then outside a discrete subset of s, d(s, p, 1,71, 72) =0
unless w1 = yo(ns)Y in which case d (s, p,n, w1, m2) < 1.

Furthermore, assume 1, is supercuspidal and p is not necessarily of finite length. Then
the assertions of (1) and (2) hold for all s, granted either H # Gl and ¢ > 2, or
H = Spyy.

Remark 3.2. Evidently, there is no essential difference between the statements in the
linear setting and the covering (for m = 1, G™ = G), except the supercuspidal cases,
where we excluded the conditions depending on p. This is because we are not discussing
pe(7) for covering groups here; the definition of this representation is thus far clear only
when 7 is a genuine unramified principal series (see [64]). Once the details are worked
out, the arguments here are expected to extend to these cases as well.

Proof of Theorem 3.1. Since P\H /D™ = P\H/D, we can use the same description
for the representatives /. The arguments of Propositions 2.5-2.11 and Propositions 2.18—
2.22 extend to the covering.

For Propositions 2.12, 2.14, 2.23, 2.25-2.26 we used two types of arguments. First,
we showed that the Jacquet module J, Vo ; (p) vanishes, because the order of nilpotency

of ¢ is at least k + 1. The arguments involving the action of a normalizer on the set of
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characters of an abelian unipotent subgroup carry over to the covering. This is because
in general, if a subgroup A < H normalizes a unipotent subgroup ¥ < H, and thereby
acts on its set of characters, then A also acts on the set of characters of ¥ with the same
orbits (because H is split canonically over Y). The arguments of [11, §§5.9-5.12] still
apply. Then we used [46, Theorems A, E], in which strictly speaking covering groups
were not discussed. However, one can still use conjugations and [11, §§5.9-5.12] to show
that J VBJW; (p) factors through a Jacquet module with respect to a unipotent orbit which

is greater than or incomparable with (k¢). See Example 3.3 below. Second, we used (2.7),
which is still applicable with the minor change explained above.
It remains to consider J¢(h) where h ~ §. Consider H # GLy.. Then

—1
H(8) = Homgixcy, ¢ TV iy (P) @1 ® r) ® ), 1).

For H = GSpin,. the assumption n = X;ll = X, implies that this space equals
Homg: (" Iy un (0) ® 7y ® 7y, 1).
Then since J Ve,V (p) is a trivial representation of SLCA (see (6)) and by virtue of (8),
H(8) = Homg: () ® ,/, 1) = Homg () ® (7,)", 1) = Homgum (), 75).
For H = GLy. we first have
H(8) = Homai (" Iy 4 xv s, o (0) ® Ty ® 73, 1),

The action of G* on 8" (JV((’,k),Wk (p1) ® IV k) i (02)) is given by g — yo(det g), and
we obtain Homgom (xomy’, m2). The remaining parts of the proof now follow as in the
linear case. |

Example 3.3. Consider a Jacquet module of a (2, 2) representation p with respect to the
unipotent subgroup ¥ < GL4 and character y given by

IX1 X2 X3
Y = {y =( ey xs)}’ () = ¥(x1 + xs).

1
It suffices to show the vanishing with respect to the subgroup of ¥ with x4 = 0. Using
conjugation by diag(l, ( - ) , 1), we obtain

, lxlzx1x3
b))
1

The Jacquet module Jy’ y (p) (¥ does not change) is a representation of

()

The preimage of the subgroup {diag(l,¢, I2) : ¢ € F*}, which also acts on Jy- 4 (p),
acts on the set of characters of X with two orbits (for an action of Tgr, use
diag(t’,z, ', t')). Both orbits can be conjugated into Jy/xx,y (p) with still the same
using diag(1, (1), 1). It remains to prove Jy ux,y(p) = 0. Passing to the subgroup
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with x, = 0 and conjugating by diag(( - ) , 12), it is enough to prove Jy~ y (p) = 0 with

1 X6
Y' = {y = ( lxll ;;)} V() = ¥(x1 + xs).

1

As with xg, one can fill in the missing coordinate above x; using

X/:{(llxlo )} {diag(r, I3) : 1 € F*), diag((} ). I2)-
1

We have shown that Jy,y (o) factors through Jy,, , .y (p). This module is filtered by
the third and fourth derivatives of p (in the sense of [11]), both of which vanish because
pis (2,2).

We briefly describe the applicability of Theorem 3.1 to the construction of [64].
Henceforth assume —1 is an m-th root of unity in F* (this is a technical assumption,
used in [64] and several other works, to simplify some of the computations). For any inte-
ger [, let Spgl") denote the covering of [80] defined using the m-th order Hilbert symbol
(', )m. For GLy, let GLgm) denote the covering obtained by restriction from Spg;'), when
we identify GL; with the standard Siegel Levi subgroup of Sp,; by g — diag(g, g%).

Let r = m if m is odd, otherwise r = m/2. Let k¢ be a positive integer, and put
k = rko. The above list of properties were verified in [64] when G = Sp,. or GL,, for the
covering G with H=Hm,

Remark 3.4. The group GL;m) was denoted GL;m’r) in [64], to underline the difference
between this covering and the coverings of [67], and k of [64] is k¢ here.

Assume we have a (k, c) = (rkg, c) representation p (admissible of finite length). It
is at present not clear how to construct such representations in general (e.g., from rep-
resentations of a covering of GLj), but in the unramified setting this was obtained in
[64] (following [105]). Note that here the “unramified setting” includes the assumptions
|m| = 1 and ¢ > 4. Briefly, given a genuine unramified principal series representation ©
of GL](:(’)'), one can choose an unramified character of TGLkO associated with the induc-
ing data of 7 (the correspondence is not unique). Using this character and an exceptional
representation of GL%’) (exceptional in the sense of [67], see [37]), the prescribed p was
constructed in [64, §2.2].

For H = GLg., xo Was taken to be trivial (see [64, (3.34)]).

Also let  be a genuine irreducible representation of G The integral Z(s, w, f),
with a holomorphic or rational section f, was defined in [64] (using notation similar
to §1.5). Formally, it belongs to (3.3) with 7; = 7V and 7, = #‘. This was proved in
[64, Propositions 68, 75] (in [64, (3.21) and (3.36)], G x G should be replaced
with (G, G)™).

Corollary 3.5. Z(s,w, f) admits meromorphic continuation to a function in q—°.

Proof. This follows from Theorem 3.1 and Bernstein’s continuation principle [7]; see
[64, Remark 72] and [64, §3.3] (cf. Corollary 2.3 here). [
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Corollary 3.6. One can define a local y-factor y(s, w X t,¥) by virtue of (0.2).

Note that the additional normalization of the intertwining operator appearing in (0.2)
can be applied to the covering case as well; but we are not proving the multiplicativity
properties of the y-factor here, and at any rate, we are still limited to the unramified
setting. The point here is that the proportionality factor exists.

3.2. Global unfolding

The global doubling construction in the linear case for arbitrary k was first described in
[18] mainly for the symplectic group, with some details also for the special even orthogo-
nal group, then briefly explained in [20] for the other cases appearing here. The covering
version for the symplectic group was described in [64].

Let Fy be a number field with a ring of adeles A. Let 7 be an irreducible cuspidal auto-
morphic representation of GLg (A), and let &; denote the generalized Speh representation
of GLg(A) corresponding to ¢ copies of t, constructed by Jacquet [55]. According to
[18-20,41,60], the representation &; is a global (k, ¢) representation: it does not support
any Fourier coefficient along an orbit greater than or incomparable with (k¢), it supports
a Fourier coefficient along (k¢), and all of its local components are (k, c). See [18, §2.2]
and the references therein for more details on the global notions. Moreover, if T = ®/, 7,
as a restricted tensor product, (§;), = p.(t,) for any place v of Fj.

One can readily globalize our arguments used for the proof of Theorem 2.1 to obtain
a proof of the unfolding of the global doubling integral, for all of the groups under con-
sideration here (and in [20]). At the same time, since local vanishing of Jacquet modules
implies global vanishing of the corresponding Fourier coefficients (even one local (k, ¢)
component suffices for this), the proof of Theorem 2.1 also provides a proof of the global
unfolding. In addition we obtain the following corollary, which for brevity, is stated here
in the symplectic or special orthogonal cases, but the other cases are evident as well.

We use the notation and definitions of § 1.5, in the global context. Let K be a standard
maximal compact subgroup, in a “good position” with respect to Ty . Let f be a Ky -finite
section of Indg((ﬁ)) (|det|[*~1/2&,), whose restriction to K is independent of 5. We regard
f as a complex-valued function.

Recall the definition (2.34) of a character ¥y, when 8 = (ck), defined with respect
to 0 <[ < n, which we rename here as w(ck)’l (in the context of (2.34), [ was fixed). In
particular, ¥y , is in the orbit of vt Y(ckyn = ¥ ' when ¢ is even). Fork =1, Yk
is trivial. Then we have the Fourier coefficients of f along (Vi .y, ¥ (k) ), defined by

fV(ckM//(ck).z (s,x) = / S(s,0x) Yery 1 (v) dv.

ViekyFNV ky (A)

In particular, f YiekyV(ck).n is the coefficient Jwe,) appearing in [18, Theorem 1], i.e., the
composition of f with the global (k, ¢) functional on the space of &; given by a Fourier

coefficient (if ¢ is odd, this is true up to a conjugation which identifies ¥ x) , with ¥~ 1.
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The Eisenstein series corresponding to f is defined by
E(x:s, f) = > f(s.yx), x e H(A). (3.6)
y€P(Fo)\H (Fo)

The series is absolutely convergent for Re(s) >> 0 and admits meromorphic continuation
to C. Consider the Fourier coefficient of E(x;s, f) along (U, ¥r), given by

EUYO (xis, f) = / EGux:s. /)y () du. 3.7)

U(Fo\U(A)

The definitions imply that EY-¥ (; s, f) is an automorphic form on G(A) x G(A).
For 0 < < n, let w; be the representative w chosen after the proof of Proposition 2.8

(used for the computation of (2.27)), but with dy =--- = dr_; =n —[. Using Example 2.9
we see that

0 0 0 o0 I, o

0 0 I._; 0 0 0O

. 0 0 0 0 0 Ig_pe
wy = €colik—1)e O 0 0 0 0 J(k—1)c+1-
0 0 0 I._;0 0
0 Eo[] 0 0 0 0

A quick computation implies ¥/ 1 Vieky = w” V(cky» where
. Io_
w” = ](k—l)c+ld13g<1(k—1)c+lv (eolc_; ’) sl(k—l)c+l>~

—1
Then U = "1 V| ky x U,—; for the subgroup
Ik—1)c 0 uy 0 ux u3
Il M’Z
J(k—1)c+1
Upy =""(UNUp) ="*""7 fet y

TIk—1)e

(if we replace w; by 8o, Up = U N 7k<Up), and Py, NU = wy! V(cky- Denote P&)I =
Py, N (G,G).

Corollary 3.7. InRe(s) > 0,

EUvu (x;s, )
n
= > / fleo Ve (s w (upuyx)yy (u) du.
1=0 yePl, (FO\(G(Fo),G(Fp)) * Un—1 ™)

Proof. We can assume x = Ipi.. Write the sum (3.6) over P(Fy)\H(Fo)/D(Fp) x
Py (Fo)\D(Fp). In aright half-plane we can exchange summation and integration. Thus

EUYU (I2kes s, f)

= Y fehiysde

heP(Fo)\H(Fo)/D(Fo) Y€PL(Fo)\D(Fo)
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Next because w™'h € Mg and P NYQ = (P N¥Mg) x (P N*U), we have
Ppno=""Pnv0)=""PnMy)x (" 'PnU).
Since P, < Q and (G, G) < Mg, we deduce
P, =(PyN(G.G)x (P,NU)= P, x P/,
whence we can collapse the du-integral, exchange yu +— uy and take the integral inside:

EYVY (Iykes s, f)

= > 2

he P(Fo)\H (Fo)/D(Fo) y€P; (Fo)\(G(Fo),G(Fo))

/ s huy) o () du.
P/ (Fo)\U(A)

Now the proof of Theorem 2.1, more specifically Propositions 2.5, 2.7-2.12, imply the
inner du-integral vanishes unless & ~ w;(Y'u;), 0 <[ < n. The corresponding summand
is

b / Fresr Ve (s wy (g yuy) o () du,
Up—i (A)

YEPy, (Fo)\(G(Fo),G(Fo))

This completes the proof. ]

Now let 7 and 75 be irreducible cuspidal automorphic representations of G(A), and
@1 and @, be two cusp forms in the corresponding spaces. Assume G admits nontrivial
unipotent subgroups (i.e., exclude some low rank cases). Denote ‘@2 (g) = ¢2(‘g) and

(p1.92) = / 1(8)e2(g) dg.
G(Fo)\G(A)

Then by Corollary 3.7 and Lemma 2.15, (3.7) pairs with ¢, and ¢, in the sense that for
Re(s) > 0,

/ 01 (6D EYY (g1.82):5. f) dgi dgo
G(Fp)\G(A)xG(Fp)\G(A)

- / / (01 72()¢2) £ VeV s, Suo(1. ')y uo) duo dg.  (3.8)
G(A) JUy(A)

Indeed, consider one of the summands appearing in Corollary 3.7 with [ < n. Set UL =
wi(tur) (1 Je+1 Ug), with the notation of the proof of Proposition 2.14. The Fourier
coefficient of f along (V{.ky, ¥(.k),) is left invariant under U }e (A). To see this consider
a second Fourier expansion of this coefficient, along U 111- All terms but the constant one
vanish, because by Lemma 2.15, at the nonarchimedean places v of Fy the action of
U 113 ((Fo)v) on JV(L.k),W’}( l((é“,)v) is trivial. Since 7, is cuspidal, the summand itself
vanishes. “r

Of course (3.8) is plainly the main global identity of [18]: the left hand side is the
global doubling integral Z(s, ¢1, 2, f), and it is nontrivial when 71 = 7, according to the
computations of the local integrals appearing in the Euler product on the right hand side.
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One can include low rank cases, e.g., ¢ = 2 and G = SO, by globalizing the argument
from Lemma 2.16 (the constant term of the Eisenstein series defining &; along V(1 xc—1)
vanishes when k > 1). The low rank arguments of Propositions 2.25 and 2.26 can be
globalized using the constant term computation of &; given by [61, Lemma 4.1].

The results of this section also hold in the covering case of [64], but to formulate them
properly one must check the validity of certain properties of the global covering, which
are the analogs of the list from §3.1 (this was carried out in [64]).

Avraham Aizenbud and Dmitry Gourevitch
Appendix A. Vanishing of vector-valued distributions on smooth manifolds

Leta Lie group C act on a smooth manifold X . Let Z C X be alocally closed C -invariant
subset. Let ¥ be a possibly infinite-dimensional C -equivariant bundle on X (see §A.1.3
below for this notion). Assume that for any z € Z and k € Z>( we have

(Fl: ® Sym* (CNX.,) ® (Ac)lc./Ac.)*) = 0. (A.1)

In this appendix we show that
D,(X, )¢ =0, (A.2)

under certain additional finiteness conditions, generalizing Theorem 1.4.

In §A.1 we will explain the notation of (A.1)—(A.2), and give the definitions of the
main notions used in this appendix, as well as some basic properties of these objects.
In particular, we use the theory of infinite-dimensional bundles developed in [69], define
generalized sections of such bundles, and construct pullbacks and pushforwards for such
sections.

In the case when C has finitely many orbits on Z, and the bundle is trivial, the impli-
cation (A.1)=(A.2) is classical (see [15]). In [24] a cohomological version of the implica-
tion is proven, in a semialgebraic setting and assuming finitely many orbits. In [1] a similar
implication is proven in the semialgebraic setting, with ¥ finite-dimensional. In [68] sev-
eral special cases of the implication are proven, in particular the case in which ¥ has the
form & ® V, where & is finite-dimensional and V is a fixed representation in a Fréchet
space, and the action of C on X, & and ¥ can be extended to an action of a group G that
includes C as a normal subgroup, preserves Z and acts on it with finitely many orbits,
each orbit locally closed.

We prove that (A.1)=(A.2) in a similar generality, but with two essential differences.
First, we allow & to be a general Fréchet bundle (which makes V' obsolete). Second,
we allow twisting the action by an additional C-equivariant line bundle L on which the
C -action does not necessarily extend to G. However, we put an additional finiteness con-
dition on the pullbacks of L under the action of G on X. The twist by a line bundle L is
crucial for our application. We use both the result and the method of [68] in our proof.

We do not know whether the vanishing (A.1) implies the vanishing (A.2) in general.
This is probably a very difficult analytic question.
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Structure of our proof. Let us first describe the finiteness condition we require. For any
z € Z denote by C,; and G the stabilizers of z in C and G respectively. Let L, denote
the character of C, defined by L. For any g € G denote by L% the character of C, given
by L3 (c) := Lg(gcg™"). We require that for any z € Z, the set {L$ : g € G} is a finite
union of locally closed orbits of G,.

We first solve the case in which G acts trivially on X, and & is constant as a G-
equivariant bundle. For this case we remove the assumption that Z lies in a finite union of
G -orbits. Localizing the problem, we assume X to be R”, and let it act on itself by trans-
lations, and on & trivially. We translate the problem to a problem on X x C-equivariant
distributions on X x C’C, where é@ denotes the set of all (continuous) characters of C. In
this new problem, the X x C-equivariant structure on the line bundle extends to an action
of X x G, and thus the space of equivariant distributions vanishes by [68].

The next case we resolve is when G acts transitively on X. Then we have X =
G/H. We construct a bundle 7 on X; := C\G such that the space of C-invariant ¥ -
distributions on X is isomorphic to the space of H -invariant ¥7-distributions on X;. We
show that already the space of H N C-invariant distributions vanishes, using the previ-
ous case. The argument here is somewhat similar to the argument in [68]. However, it is
complicated by the presence of the line bundle L, and by ¥ not being constant.

The next case we treat is the case of Z being a single G-orbit. As in [68], it reduces
to the previous one using the transverse symbol of distributions.

Finally, we prove the general case by induction on the number of G-orbits on Z.

A.l. Preliminaries

A.l.1. Topological vector spaces. All topological vector spaces considered in this
appendix will be complete, Hausdorff, and locally convex. For such a space V, V* will
denote the strong dual, and for two spaces V and W, V ® W will denote the completed
projective tensor product (this is the same tensor product denoted ® in the body of the
paper, for convenience). The projective topology on V & W is generated by the family of
seminorms which are the largest cross-norms corresponding to pairs of generating semi-
norms on V and W [107, §43]. In particular, if V and W are Fréchet spaces, then so is
V ® W.If V (or W) is nuclear then the projective tensor product is naturally isomor-
phic to the injective one [107, Theorem 50.1]. This is the case in all our theorems. The
tensor product of nuclear spaces is nuclear. A Fréchet space is nuclear if and only if its
dual space is. For more information on nuclear spaces we refer the reader to [107, §50] or
[23, Appendix A].

A.1.2. General topology. We will use the following elementary lemma.

Lemma A.1. Let X be a topological space, and let { X; }f.‘zl be disjoint locally closed sub-
sets such that X = Ule Xi. Then there exists i such that the interior of X; is nonempty.

Corollary A.2. Let a topological group G act continuously on a topological space X
with finitely many locally closed orbits. Then one of the orbits is open.
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A.1.3. Infinite-dimensional smooth bundles over smooth manifolds. We will use the
results and terminology from [69], which considers infinite-dimensional smooth mani-
folds and bundles over them. In our case the base manifolds will be finite-dimensional,
but we will consider infinite-dimensional bundles. All the vector spaces we consider are
complete, thus sequentially complete, and thus ¢*°-complete [69, Lemma 2.2 and The-
orem 2.14]. Therefore all the results of [69] are applicable to them. We use the notion
of infinite-dimensional vector bundles and their spaces of smooth sections and spaces of
compactly supported sections [69, §§29, 30].

Let X be a smooth manifold and & be a vector bundle over X, possibly infinite-
dimensional. We define the space D’(X, &) of &-distributions to be the continuous dual
space C°(X, 8)* equipped with the strong topology. For a closed subset Z C X, we
denote by D7 (X, &) C D'(X, &) the subspace of distributions supported on Z. For a
locally closed subset Z C X, we denote

D, (X,8):=D,(U,E), where U:=X\(Z\2). (A3)

By [49, 11.§3.3], if & is a trivial bundle with Fréchet fiber V, then C°(X, &) =
CRX)RV.

For any smooth map v : ¥ — X and a bundle & over X, the pullback bundle v*&
over Y is defined in [69, §29.6]. For a smooth section f of & we denote the corresponding
section of v*& by v* f.

We define v'€ := v*€ ® Dy ® D;l, where Dy, Dy denote the bundles of densities
on X and Y respectively. In case v is a submersion and & has Fréchet fibers, we can also
define vy : C2°(Y, V'€ ) = C°(X, &) in the following way. For a trivial bundle & with
Fréchet fiber V', we use the identification

CE(X,8)=CXX,V)=CP(X)® YV,

and the classical pushforward v« : CZ°(Y, Dy ® v* Dy 1) - C2°(X). For alocally trivial
bundle we use the partition of unity to trivialize &.
We denote the map dual to vy : C2°(Y, '8) — CX (X, &) by

V¥ DX, 6) > DY 'E).

If Z is a smooth submanifold regularly embedded in X, and V is a Fréchet space,
then forany £ € Dz (X, V) and z € X, [68, §2] defines a transversal degree d € Z>¢ and
a transverse symbol 04 (§) € V* ® Symd (N z),(Z)’ where Symd denotes symmetric power,
Nz}fZ denotes the normal space to Z in X at z, and C N;fZ = (Nz},(z)* is the conormal
bundle. Denote by JD’ZSd (X, V) the space of distributions that have transversal degree at
most d for any z € Z. By [68, Theorem 2.1], o7 defines a natural embedding

o DX, V) D55 T (X, V) > DX,V @ Sym? (CNXY)).

Using a partition of unity, this construction extends to any bundle & with Fréchet fibers.
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Let a Lie group G act on X, let a : G x X — X denote the action map and p :
G x X — X denote the projection. A G-equivariant bundle & on X is a bundle & on X
together with an isomorphism a*& ~ p*§& satisfying the usual cocycle condition. Note
that this structure also defines an isomorphism a'€ ~ p'€. Note also that the dual of an
equivariant bundle has a canonical equivariant structure.

We denote by Ag the modular function of G.

We define a smooth representation of G to be a G-equivariant bundle on a point. Note
that a smooth Fréchet representation of moderate growth is also a smooth representation
according to this definition.

Note that if G is a Lie group, X is a G-manifold, p : X — Y is a G-invariant map (i.e.
p(gx) = p(x)), and ¥ is a bundle on Y, then p'¥ has a natural G-equivariant structure.

Lemma A.3. Let G be a Lie group, Y be a smooth manifold, and p : X — Y be a G-
principal space over Y . Let & be a G-equivariant bundle on X . Then there exists a natural
bundle ¥ over Y and an isomorphism of G-equivariant bundles p'¥ = & such that p*
defines an isomorphism D' (Y, ¥) =~ D'(X, &)°.

The proof is standard, but we will include it here since our bundles are infinite-
dimensional.
We will need the following notation and lemmas.

Notation A.4. For any continuous representation A of G, denote A(G) := Span{v — gv :
g€G,veE A}, and Ag := A/A(G).

Lemma A.5. Let A be a continuous representation of G, and B be a nuclear space. Let
G act on A® B by acting on A. Then the natural map « : (Ag ® B)* — ((A ® B)*)¢
is an isomorphism.

Proof. We have (Ag ® B)* = Bil(4g, B) and (A ® B)* = Bil(4, B), where Bil(4, B)
denotes the space of continuous bilinear maps A x B — C (see e.g. [107, Ch. 41]). The
map « is defined by the map o’ : Bil(Ag, B) — Bil(A, B)C which in turn is given by the
projection pr: A x B — Ag x B. Since pr is onto, ¢’ is injective. To show that &’ is onto,
choose w € Bil(A4, B). Since the left kernel of w includes A(G), @ factors through a
bilinear map w’ : Ag X B — C. Sincepr: A x B — Ag x B is open and surjective, o’ is
continuous. ]

Lemma A.6. Let G be a Lie group, and Y be a smooth manifold. Let G act on Y x G
by left shifts on G, and let p : Y x G — Y denote the projection. Then p, defines an
isomorphism of topological vector spaces

CX(Y x G, Dg)g = CX(Y).

Proof. Denote by C°(Y x G, Dg)o the kernel of p,. Let us first show that

CX®(Y xG,Dg)(G) = CZ(Y x G, Dg)o. (A4)
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Since ps« is a G-invariant morphism, the inclusion C follows. For the other inclusion,
let f € C(Y x G, DG)(), and approximate it by a sequence f J of the form f/ =
Z 29l ® hlj, with ¢/ € C2(Y) and h] € CX(G, Dg). Fix p € CX(G, Dg) with
pr =landlet F/ := f/ — p.(f’) ® p. Then we have

nj

- )e)e

i=1
nj;
=§jﬂ®(%—(/w)066?00®6Wa0mm
i=1 G

where C°(G, Dg)o denotes smooth compactly supported measures on G with zero
integral.
By [13, Theorem 1] we have

C(G,Dg)o = CZ(G, DG)(G),

and thus F/ € CX(Y x G, Dg)(G). Now, since p«(f) = 0, we have p*(fj) — 0, so
FJ/ — fJ — 0, and thus F/ — f. Hence f € C®(Y x G, Dg)(G) and (A.4) holds.
This shows that p, defines a continuous linear isomorphism between C>°(Y x G, Dg)g
and C2°(Y). To see that its inverse is continuous, it is enough to construct a continuous
section of p,. One such section is given by f — f ® p. |

Proof of Lemma A.3. Let us first consider the case of X =Y x G. Leti : Y — X be
defined by i(y) := (v, 1) and ¥ := i'€. The isomorphism p'F = & is given by the
G-equivariant structure of &. By a partition of unity, we can assume that ¥ is a con-
stant bundle and denote its fiber by V. We have to show that p* defines an isomorphism
DY, V)=D' (Y xG,V® DG,I)G, where Dg,; is the fiber of the bundle D¢ at 1. By
Lemma A.6 we have

CX(Y xG,Dg,1)g = CX(Y).

Then the map p* decomposes as

;D’(Y, V)= (C°°(Y V))* ~ (C°°(Y) <§> V)* ~ (C°°(Y x G,Dg,1)c @ V)*
= ((C2(Y x G, Dg,1) ® V)" = (CX(Y x G,V ® Dg1)*)°
=D'(Y xG,V ® Dg,1)°.

We now turn to the general case.

Note that if there exists an ¥ and an isomorphism v : p'F 2 & of G-equivariant
bundles then such ¥ and v are unique, in the sense that for any other such pair (¥, V")
there exists an isomorphism p : ¥ = ¥’ such that v = v’ o p'(u), and such that j is
unique. Thus it is enough to construct F locally, which is done in the first case considered
above. Now, p* : D/(Y, F) = D'(X, €)C is an isomorphism by a partition of unity and
the first case. ]
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A.2. Distribution vanishing theorems and their proofs

Theorem A.7. Let X be a smooth manifold and Z C X be a locally closed subset. Let
C be a Lie group with finitely many connected components. Let C act trivially on X.
Let L be a C-equivariant line bundle on X. Let H be a Lie group with a smooth action
on C. For any z € Z let L, denote the character by which C acts on the fiber L|;. Let
6@ denote the manifold of all characters of C. Assume that the set {L, : z € Z} liesina
finite union of locally closed H -orbits in C c. Let V be a smooth representation of H x C
in a Fréchet space. Assume that for any z € Z we have (V ® L|;)*)€ = 0. Then

DL,(X,V®L)C =o.

Proof. By a partition of unity, we may assume that L is trivial as a line bundle, that
X =R”" and Z is compact. Let L denote the natural C-equivariant line bundle on Cec.
There exists a unique smooth map ¢ : X — C ¢ such that L =~ y*(Ly). Define I' C
Z x 5«: C X x 5«: to be the graph of the restriction v|z. Let L :=Cyx = Lg. It is
enough to show that Df.(X x Cc,V®LYE =o0.

Assume the contrary. Let 0 # £ € D (X x Cc.Ve® L)C. LetG := X x H x C act
onX xC c by

(x.h.c)(y.p) = (x+y, yoa(h™)

where a(h) denotes the action of H on C. Define a structure of a G-equivariant bundle
on L through the action on the total space by

(x.h. )y, x @) i= (x + y, yoa(h™), x(c)a).

Define a representation of G on V' by letting X act trivially. By our assumptions, Supp(§)
lies in the union of finitely many locally closed G-orbits on X x Cec. By Corollary A.2,
for one of those orbits (@, the intersection @ N Supp(§) is open and nonempty in Supp(§).
Let x € O N Supp(§). There exists a cutoff function p such that x € Supp(pé&) C O. This
leads to a contradiction since by [68, Theorem 3.15 (i)], p& = 0. ]

By a partition of unity, we obtain the following corollary.

Corollary A8. Let X, Z,C, H, and L be as in Theorem A.7. Let H x C act trivially
on X, and let & be a locally constant H x C -equivariant bundle on X, i.e. an equivariant
bundle that is locally given by a single representation of H x C. Assume that for any
z € Z we have ((§ ® L)|;)*)€ = 0. Then

D, (X, ® L)¢ =0.
We will need the following corollary of Lemma A.3.

Corollary A.9. Let G be a Lie group and Hy, Hy be closed Lie subgroups. Consider
the two-sided action of Hy x Hy on G, and let & be an Hy x Hy-equivariant bundle
on G. Let p : G — G/H, denote the natural projection. Then there exists a natural H-
equivariant bundle ¥ on G/ H, and a natural isomorphism p'¥ 2 & such that p* defines
an isomorphism

D'(G/H,, ) =~ D/(G, §)H>H2,
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Corollary A.10. Let G be a Lie group and Hy, H, be closed Lie subgroups. Let ¥1 be
an H-equivariant bundle on G/H,. Let py : G — H\G and p> : G — G/H; denote
the natural projections.

Then there exists a natural Hp-equivariant bundle ¥, on H1\G such that p’lsz ~
p’2371 as Hy x Hjy-equivariant bundles, and

D'(G/Hy, 7)) = D' (H\\G, 7).

Notation A.11. Leta Lie group G act on a smooth manifold X. Let C C G be a subgroup.
Let L be a C-equivariant line bundle on X. Then for any x € X and g € G we define
a character L§ : Cy — C* by letting L (c) be the scalar by which gcg™! acts on the
fiber Lgy.

Definition A.12. Let a Lie group C act on a smooth manifold X. Let ¥ be a C-equiv-
ariant Fréchet bundle over X. Let Z C X be a locally closed C -invariant subset. We call
the quadruple (C, X, Z, ¥) convenient if there exist

e aLie group G D C acting smoothly on X extending the action of C,
e a G-equivariant Fréchet bundle & on X, and
e a C-equivariant line bundle L on X
such that the following holds:
(i) ¥ = & ® L as a C-equivariant bundle.
(i) C is a normal subgroup of G.

(iii) For any z € Z, the collection {L¢ € (6;)@ : g € G} lies in a finite union of locally
closed G;-orbits.

(iv) Z is contained in a union of finitely many locally closed G-orbits.

Theorem A.13. Let (C, X, Z, ¥ ) be a convenient quadruple. Suppose that for any z € Z
and any k > 0 we have

(F I3 ® Sym* (V& ) ® (Achle. ® Ac.) =0. (A.5)
Then D, (X, F)€ = 0.
Proof. We divide the proof into several cases.

(1) G acts transitively on X. Fix xo € X and letv : G — X be the corresponding action
map. Let G’ := X, := C\G and Z; := C\v~1(Z). By Corollary A.10, there exists a G-
equivariant bundle %7 on X; such that D’'(X, 7)€ =~ D'(X,. 371)Gx0 and V' ~ p’?l,
where p : G — X is the projection. We construct bundles &; and L on X; in a similar
way, and have ¥1 = &1 ® L.

Let H; := Gy, and C; := H; N C. Then it is enough to show that D’ (X1, F1)C1 =0.
We deduce this from Corollary A.8. For this we need to show that

(a) & is locally constant as a Cy-equivariant bundle.

(b) The action of C; on the fibers of &1 extends to H;.
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(c) Theset {(L1); :z € X1} lies in a finite union of locally closed H;-orbits in (a)@.
(d) Forany z € Z; we have (((§; ® L1)|;)*)¢' = 0.

Proof of (a). It is enough to show that & := &; ® D;ll is locally constant as a Cy-
equivariant bundle. Since p locally has a section, it is enough to show that p*(&7) is
constant as an Hjp-equivariant bundle with respect to the action of H; on G by right
multiplications. We have p*(&]) = v*(&’), where §' := & ® Dy . This gives a structure
of a G x Hj-equivariant bundle on p*(&]) with respect to the two-sided action. This
implies that p* (&) is constant as an H,-equivariant bundle.

Proof of (b). The fiber of &; at [1] is isomorphic to &|x, ® Ag, |c, ® AEI |c, as arepre-
sentation of Cj. Since C is normal in G, we have A¢ = Ag|c, and thus the representation
Exo ® Amlc, ® Agt|c, extends to Hj.

Proof of (¢). L satisfies condition (iii) of Definition A.12. Thus so does L’ := L ® D!,
since the action of C on Dy ! can be extended to G. It is enough to show (c) with L
replaced by L} := L ® Dx,. Now, we have p*(L}) = v*(L’). Thus for any g € G we
have (L)%, = (L)[e) and thus

{(L)y € Cc iy e Xi} = {(L},)* € Cc: g € G}.
Statement (d) follows from (A.5) by a straightforward computation.

(2) Z lies in a single closed G-orbit @. Suppose by way of contradiction that there exists
0#¢&eD,(X, )€ and let z € Supp(£). Let X; := O. Let d be the transversal degree
of §toQatz. Let Zy :={p € Z : deg), 9(§) < d}. Consider

04(Elz,) € DYy, (X1, F ® Sym? (CN ).

By the previous case we obtain 0,4 (§|z,) = 0, a contradiction.

(3) The general case. We prove this step by induction on the number #n of orbits of G
in GZ. When n = 0, Z is empty and the statement is obvious. For n > 1, Corollary A.2
implies that there exists an open orbit @ C Z.Let Z’' :=Z \ O, X' := X \ Z’'. Then we
have the exact sequence

0— DL(X,F)¢ - DL(X,F)€ — Dp(X', F)E.

We have Dy, (X', F)C¢ = 0 by the previous case, and D/, (X, )€ = 0 by the induction
hypothesis. ]

Remark A.14. Substituting for & the constant bundle with fiber V' and for L a constant
line bundle, we obtain Theorem 1.4.
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