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Abstract. We consider conditional McKean–Vlasov stochastic differential equations (SDEs), as
the ones arising in the large-system limit of mean field games and particle systems with mean field
interactions when common noise is present. The conditional time-marginals of the solutions to these
SDEs are governed by non-linear stochastic partial differential equations (SPDEs) of the second
order, whereas their laws satisfy Fokker–Planck equations on the space of probability measures.
Our paper establishes two superposition principles: The first asserts that any solution of the SPDE
can be lifted to a solution of the conditional McKean–Vlasov SDE, and the second guarantees that
any solution of the Fokker–Planck equation on the space of probability measures can be lifted to
a solution of the SPDE. We use these results to obtain a mimicking theorem which shows that the
conditional time-marginals of an Itô process can be emulated by those of a solution to a conditional
McKean–Vlasov SDE with Markovian coefficients. This yields, in particular, a tool for converting
open-loop controls into Markovian ones in the context of controlled McKean–Vlasov dynamics.
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1. Introduction

We consider stochastic differential equations (SDEs) with random coefficients:

dXt D b.t; !;Xt / dt C � .t; !;Xt / dWt C 
.t; !;Xt / dBt ; t 2 Œ0; T �: (1.1)

This SDE is posed on a filtered probability space .�;FD.Ft /t2Œ0;T �;P / supporting two
independent d -dimensional F -Brownian motionsB andW , as well as a subfiltration GD
.Gt /t2Œ0;T � � F , with respect to which B is adapted andW is independent. Additionally,
the coefficients .b; � ;
/ W Œ0; T � �� �Rd ! Rd �Rd�d �Rd�d are measurable with
respect to the product of the G-progressive � -algebra on Œ0; T � � � and the Borel � -
algebra on Rd . We assume also that

E

�Z T

0

�
jb.t; !;Xt /j C j.��

>
C 

>/.t; !;Xt /j

�
dt
�
<1: (1.2)

The diffusion matrix a D ��> C 

> will feature prominently in our main results. In
Proposition 1.2, the model inputs are given by the triple .b; � ;
/, but in most of our sub-
sequent results, such as Theorem 1.3, we instead treat .b; a;
/ as given, and if a � 

>

is positive semidefinite then we can reconstruct � as its symmetric square root.

Remark 1.1. Fitting into the framework of (1.1) above is the important special case of
the conditional McKean–Vlasov SDEs, in which the dependence on ! is through the
conditional law of Xt given Gt , denoted L.Xt jGt /:

dXt D b.t;L.Xt jGt /;Xt / dt C � .t;L.Xt jGt /;Xt / dWt

C 
.t;L.Xt jGt /;Xt / dBt ; t 2 Œ0; T �: (1.3)

Indeed, if X solves (1.3), then by freezing the non-linear term L.Xt jGt /.!/ we see that
X also solves an equation of the form (1.1).

The SDE (1.3) describes the state process of a representative player in the large-
population limit of mean field games and control problems with common noise (see [17,
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Section 2.1], and also [1, 2, 8, 10, 18–20, 36, 38, 46, 53, 55, 57]), as well as the dynamics
of a particle in the large-scale limit of a particle system with mean field interactions and
common noise (see, e.g., [24, 27, 47, 51, 67]). Often, as in [51], the filtration G is the one
generated by .Bt /t2Œ0;T �, but the general case corresponds to a notion of weak solution;
see [38] and [56, Section 8] for further discussion.

1.1. Superposition from SPDE to SDE

Our first results iron out the connection between the SDE (1.1) and the associated SPDE
which should govern the evolution of the conditional measure flow �t D L.Xt jGt /:

dh�t ; 'i D h�t ; L
b;a
t;!'i dt C h�t ; .r'/

>
.t; !; �/i dBt ; t 2 Œ0; T �; ' 2 C1c .R
d /;

(1.4)
where a D ��> C 

>, C1c .R

d / is the set of compactly supported smooth functions
from Rd to R, and the operator Lb;at;! acts on ' 2 C1c .R

d / by

L
b;a
t;!' WD b.t; !; �/ � r' C

1
2
a.t; !; �/ W r2':

Here r and r2 D rr> denote the gradient and Hessian, and s � r D s>r and S W R D
TrŒSR>� denote the usual inner products in Rd and Rd�d .

We state first a form of a fairly well known proposition asserting that the condi-
tional measure flow of a solution of the SDE (1.1) is a solution of the SPDE (1.4).
In the following, we use the symbol ?? to stand for “independent of” or “is indepen-
dent of” depending on the grammatical context. In addition, for � -algebras A1, A2, and
A3, we write A1 ?? A2 jA3 to mean that A1 and A2 are conditionally independent
given A3. For two � -algebras A1 and A2 we write A1 _A2 for �.A1 [A2/ as usual.
If Z D .Zt /t2Œ0;T � is a stochastic process, we write FZ D .F Z

t /t2Œ0;T � for the filtration
it generates. Recall that a filtered probability space .�;F D .Ft /t2Œ0;T �;P / is said to be
complete if F0 contains every set A � � which is a subset of an FT -measurable set of
P -measure zero.

Proposition 1.2. Suppose .�;F D .Ft /t2Œ0;T �;P / is a complete filtered probability space
supporting independent d -dimensional F -Brownian motions B and W , together with a
subfiltration G D .Gt /t2Œ0;T � with respect to which B is adapted and W is independent.
Suppose the triple .b; � ; 
/ W Œ0; T � � � � Rd ! Rd � Rd�d � Rd�d is measurable
with respect to the product of the G-progressive � -algebra on Œ0; T � �� and the Borel
� -algebra on Rd . Let X D .Xt /t2Œ0;T � be a continuous F -adapted Rd -valued process
satisfying (1.1) and (1.2), as well as F X

t ?? F W
T _ GT jF

W
t _ Gt for each t 2 Œ0; T �.

Then the process .�t WD L.Xt j GT //t2Œ0;T � admits a continuous version (in the sense
that t 7! �t is a.s. continuous with respect to the topology of weak convergence) and the
following hold:

(1) �t D L.Xt jGt / a.s. for each t 2 Œ0; T �.

(2) The SPDE (1.4) holds with a D ��> C 

>.
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Proposition 1.2 is well known in various forms; see, e.g., [27, 38, 51]. It is fairly
straightforward to prove by applying Itô’s formula to '.Xt /, taking the conditional expec-
tations with respect to GT , and then interchanging the stochastic integration and the condi-
tional expectation. We give the proof in Appendix B, because our statement appears to be
somewhat more general than its relatives in prior literature, and because there is more sub-
tlety than one might expect in the aforementioned interchange. The latter is one purpose of
the conditional independence or compatibility assumption, F X

t ?? F W
T _ GT jF

W
t _ Gt

for each t 2 Œ0; T �. This compatibility condition takes several equivalent forms, compiled
in Lemma 2.1, and is natural from the perspective of prior work on weak solutions of
SDEs with random coefficients [41, 49].

Our first main result is the following superposition theorem, which establishes that,
conversely, each solution of the SPDE (1.4) gives rise to a solution of the SDE (1.1).

Theorem 1.3. Suppose .�;G D .Gt /t2Œ0;T �;P / is a filtered probability space supporting
a d -dimensional G-Brownian motionB. Suppose the triple .b;a;
/ W Œ0;T ����Rd !
Rd � Rd�d � Rd�d is measurable with respect to the product of the G-progressive
� -algebra on Œ0; T � � � and the Borel � -algebra on Rd , .�t /t2Œ0;T � is a continuous
G-adapted probability measure-valued process satisfying (1.4), and GT is countably gen-
erated. Suppose finally that

E

�Z T

0

�
kb.t; !; �/k

p

Lp.�t /
C ka.t; !; �/k

p

Lp.�t /

�
dt
�
<1 (1.5)

for some p > 1, and that a � 

> is symmetric and positive semidefinite with sym-
metric square root � . Then there exists a complete filtered probability space . z�;F D
.Ft /t2Œ0;T �; zP /, extending .�;G;P /, which supports a d -dimensional F -Brownian motion
W independent of GT and a continuous F -adapted d -dimensional process X such that:

(1) The SDE (1.1) holds.

(2) �t D L.Xt jGT / D L.Xt jGt / a.s. for each t 2 Œ0; T �.

(3) F X
t ?? F W

T _ GT jF
W
t _ Gt for each t 2 Œ0; T �.

(4) B is an F -Brownian motion.

For classical SDEs with bounded coefficients and the corresponding Fokker–Planck
equations, the seminal paper [34] develops a general “superposition” theory that asso-
ciates to each solution of a Fokker–Planck equation a weak solution of the SDE. The
results of [34] have been extended to a wide range of SDEs with unbounded coeffi-
cients in [66] (see also [12, 61] and the comparison with the previous work [58] in [66,
Remark 3.4]). The precursors to this line of research can be traced back to the analogous
results in [4, 28] for ordinary differential equations. Moreover, superposition principles
for controlled SDEs and two classes of (particularly singular) McKean–Vlasov SDEs can
be found in [50] and [6, 7], respectively. Theorem 1.3 gives the first superposition prin-
ciple for SDEs with random coefficients, in which the SPDE (1.4) plays the role of the
Fokker–Planck equation, and covers, in particular, the conditional McKean–Vlasov SDEs
of the special form (1.3). Our proof of Theorem 1.3 employs, in addition to many of the
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approximation techniques developed in [34,66], novel tools in the context of superposition
principles to address the randomness of the coefficients: the stable convergence topology,
the measurable maximum theorem, and a new strong existence theorem for SDEs with
random coefficients.

1.2. Superposition from Fokker–Planck equation on P .Rd / to SPDE

Our next results pertain to the SPDE corresponding to the McKean–Vlasov SDE (1.3):

dh�t ; 'i D h�t ; L
b;a
t;�t

'i dt C h�t ; .r'/>
.t; �t ; �/i dBt ; t 2 Œ0; T �; ' 2 C1c .R
d /;

(1.6)
where

L
b;a
t;m' WD b.t; m; �/ � r' C

1
2
a.t; m; �/ W r2'; t 2 Œ0; T �; m 2 P .Rd / (1.7)

and aD ��>C 

> as before. To be clear, a solution of the SPDE (1.6) is, by definition,
an a.s.-continuous P .Rd /-valued process .�t /t2Œ0;T �, defined on some filtered probabil-
ity space .�;G D .Gt /t2Œ0;T �; P / supporting a d -dimensional G-Brownian motion B,
such that

E

�Z T

0

�
kb.t;�t ; �/kL1.�t /Cka.t;�t ; �/kL1.�t /Ck
.t;�t ; �/k

2
L1.�t /

�
dt
�
<1; (1.8)

and also for each ' 2 C1c .R
d / we have a.s. for all t 2 Œ0; T �,

h�t � �0; 'i D

Z t

0

h�s; L
b;a
s;�s

'i ds C
Z t

0

h�s; .r'/
>
.s; �s; �/i dBs :

Throughout the paper, for a Polish space E we let P .E/ be the space of Borel probability
measures on E equipped with the topology of weak convergence and the corresponding
Borel � -algebra; this clarifies the meaning of “a.s.-continuous” in the above definition.
We denote by Pt the law L.�t / of �t , for t 2 Œ0; T �, and note that P D .Pt /t2Œ0;T �
then belongs to C.Œ0; T �IP .P .Rd ///, the space of continuous functions from Œ0; T � to
P .P .Rd //.

First, let us describe the easier direction, which lies in deriving an equation for
P from the equation for �. For m 2 P .Rd /, k 2 N, and a vector of test functions
' D .'1; : : : ; 'k/ 2 .C

1
c .R

d //k , we write hm; 'i WD .hm; '1i; : : : ; hm; 'ki/ 2 Rk . If
we assume that (1.8) holds, then, for f 2 C1c .R

k/, we may apply Itô’s formula to
f .h�t ; 'i/ and take the expectation to find that .Pt /t2Œ0;T � satisfies a Fokker–Planck
equation on P .Rd /:Z

P .Rd /
f .hm;'i/.Pt � P0/.dm/ D

Z t

0

Z
P .Rd /

� kX
iD1

@if .hm;'i/ hm;L
b;a
s;m'i i

C
1

2

kX
i;jD1

@ijf .hm;'i/ hm; .r'i /
>
.s;m; �/i � hm; .r'j /

>
.s;m; �/i

�
Ps.dm/ ds;

t 2 Œ0; T �; k 2 N; f 2 C 2c .R
k/; ' 2 .C1c .R

d //k : (1.9)
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Indeed, (1.8) ensures that the local martingale in the Itô expansion of f .h�t ;'i/ is a true
martingale, and the expectations are well-defined. This proves the following:

Proposition 1.4. Let .b; a; 
/ W Œ0; T � � P .Rd / � Rd ! Rd � Rd�d � Rd�d be mea-
surable. Suppose .�;G D .Gt /t2Œ0;T �; P / is a filtered probability space supporting a
d -dimensional G-Brownian motion B and a continuous G-adapted P .Rd /-valued pro-
cess .�t /t2Œ0;T � which satisfies the SPDE (1.6) and the integrability condition (1.8). Let
Pt WDL.�t / for t 2 Œ0; T �. Then .Pt /t2Œ0;T � satisfies the Fokker–Planck equation (1.9).

Our second main result is the next superposition theorem, which says that, conversely,
each solution of the Fokker–Planck equation (1.9) in the space C.Œ0; T �IP .P .Rd ///
stems from a solution of the SPDE (1.6).

Theorem 1.5. Suppose that P 2 C.Œ0; T �I P .P .Rd /// and measurable .b; a; 
/ W

Œ0; T � �P .Rd / �Rd ! Rd �Rd�d �Rd�d are such that (1.9) holds andZ T

0

Z
P .Rd /

�
kb.t; m; �/k

p

Lp.m/
C ka.t; m; �/k

p

Lp.m/
C k
.t; m; �/k

2p

Lp.m/

�
Pt .dm/ dt <1

(1.10)

for some p > 1. Then there exists a filtered probability space .�;G;P /, with GT count-
ably generated, supporting a d -dimensional G-Brownian motion B and a continuous
G-adapted P .Rd /-valued process .�t /t2Œ0;T � solving (1.6) with L.�t / D Pt for each
t 2 Œ0; T �.

Superposition principles in infinite-dimensional spaces, specifically in R1 and gen-
eral metric measure spaces, have been established very recently in [65] (see also [5, 62]
for certain deterministic counterparts). In Theorem 1.5, the infinite-dimensional space
under consideration is P .Rd /, and even if one were to replace Rd by a compact subset,
restrict the attention to the subspace of probability measures with finite second moments
and equip the latter with the 2-Wasserstein distance, the associated metric measure spaces
(see [64,68]) do not seem to admit a �-calculus (cf. [35, Remark 5.6]) as required for the
superposition principle in general metric measure spaces [65, Theorem 7.3]. Instead, our
proof of Theorem 1.5 relies on the specifics of the space P .Rd / and the Fokker–Planck
equation (1.9) to define suitable test functions on P .Rd /, allowing us to deal with solu-
tions in C.Œ0; T �IP .P .Rd /// and to reduce Theorem 1.5 to the superposition principle
in R1 of [65, Theorem 7.1].

Combining Theorems 1.5 and 1.3 shows that to any continuous solution P D

.Pt /t2Œ0;T � of the Fokker–Planck equation (1.9) one can associate continuous processes
� D .�t /t2Œ0;T � and X D .Xt /t2Œ0;T �, with values in P .Rd / and Rd , respectively,
and solving the SPDE (1.6) and the McKean–Vlasov SDE (1.3), respectively, with the
time-marginal relations Pt D L.�t / and �t D L.Xt j Gt /. Thus, P and � represent
successive marginalizations of the process X . For a different perspective on this hier-
archy, we may regard P , L.�/, and L.L.X jGT // as elements of C.Œ0; T �IP .P .Rd ///,
P .C.Œ0; T �IP .Rd ///, and P .P .C.Œ0; T �IRd ///, respectively. The relations between
P , �, and X are summarized in the following diagram:
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X D .Xt /t2Œ0;T �

Rd -valued
solves SDE (1.3)

� D .�t /t2Œ0;T �

P .Rd /-valued
solves SPDE (1.6)

P D .Pt /t2Œ0;T �

P .P .Rd //-valued
solves Fokker–Planck (1.9)

Proposition 1.2

Proposition 1.4

Theorem 1.3

Theorem 1.5

L.L.X jGT // 2

P .P .C.Œ0; T �IRd ///

L.�/ 2

P .C.Œ0; T �IP .Rd ///

P 2

C.Œ0; T �IP .P .Rd ///

1.3. Mimicking theorem

In addition to being of interest on their own, Theorems 1.3 and 1.5 can be used to obtain
the following “mimicking” theorem.

Corollary 1.6. Suppose .�; F ; P / is a filtered probability space supporting d -dimen-
sional F -Brownian motions B and W , as well as a subfiltration G with respect to which
B is adapted and W is independent. Let .b; � / be an F -progressive process with val-
ues in Rd � Rd�d , and y
 W Œ0; T � � P .Rd / � Rd ! Rd�d be measurable. Suppose
.Xt ; �t /t2Œ0;T � is a continuous F -adapted process with values in Rd � P .Rd / and sat-
isfying:

(a) EŒ
R T
0
.jbt j

p C j�t�
>
t C y
 y


>.t; �t ;Xt /j
p/ dt � <1 for some p > 1.

(b) Ft ?? F W
T _ GT jF

W
t _ Gt for each t 2 Œ0; T �.

(c) The following SDE holds:

dXt D bt dt C �t dWt C y
.t; �t ;Xt / dBt ;

�t D L.Xt jGT /; t 2 Œ0; T �: (1.11)

Then�t DL.Xt jGt / a.s. for each t 2 Œ0;T �, and there exist measurable functions .yb; y� / W
Œ0; T � �P .Rd / �Rd ! Rd �Rd�d such that

yb.t;�t ;Xt /DEŒbt j�t ;Xt �; y� y�
>.t;�t ;Xt /DEŒ�t�

>
t j�t ;Xt � a.s., for a.e. t 2 Œ0;T �:

Finally, for any such functions .yb; y� /, there exists a filtered probability space . y�; yF ; yP /
supporting a subfiltration yG � yF , two d -dimensional yF -Brownian motions yW and yB with
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yB adapted to yG and yW independent of yGT , and a continuous yF -adapted Rd � P .Rd /-
valued process . yXt ; y�t /t2Œ0;T � such that:

(1) The McKean–Vlasov SDE holds:

d yXt D yb.t; y�t ; yXt / dt C y� .t; y�t ; yXt / d yWt C y
.t; y�t ; yXt / d yBt ;

y�t D L. yXt j yGT / D L. yXt j yGt / a.s.; t 2 Œ0; T �:

(2) . yXt ; y�t /
d
D .Xt ; �t / for each t 2 Œ0; T �.

(3) F
yX
t ?? F

yW
T _

yGT jF
yW
t _

yGt for each t 2 Œ0; T �.

The proof is given in Section 7. The idea is that an Itô process of the form (1.11) can
be “mimicked”, in terms of the time-marginals .L.Xt ; �t //t2Œ0;T �, by a process solving a
Markovian conditional McKean–Vlasov equation. We allow extra randomness in only the
.b; � / coefficients of (1.11), whereas the y
 term is assumed to already be in Markovian
form; one can generalize this easily to allow a process 
 satisfying 
t ?? Gt j .Xt ; �t / for
all t 2 Œ0; T �.

Theorems on mimicking aspects (such as the time-marginal distributions) of an Itô
process by those of a diffusion process go back to the seminal papers [37,48] (see also [45]
for an independent development). A very general result on mimicking aspects of Itô
processes, including the distributions of their marginals, running maxima and running
integrals, is given in [14, Theorem 3.6] (see also [33, Theorem 1.13] for a mimicking theo-
rem in another degenerate setting). The analogue of this question in the context of optimal
control of Markov processes has been studied in [50]. Related results have appeared in
[44, 59], where Markov (sub)martingales with given fixed-time distributions have been
constructed. Corollary 1.6 differs from the previous mimicking theorems in that both the
fixed-time distributions and the fixed-time conditional distributions of an Itô process are
being mimicked.

The idea of using a superposition principle to prove a mimicking theorem seems to be
new, and to illustrate the idea we record here a simple proof of the classical mimicking
theorem [14, 37] using the superposition principle of Trevisan [66] (or Figalli [34] if the
coefficients are bounded). Indeed, suppose a filtered probability space .�;F ;P / supports
an F -Brownian motionW and an F -progressive process .bt ;�t /t2Œ0;T � of suitable dimen-
sion satisfying EŒ

R T
0
.jbt j C j�t�

>
t j/ dt � <1. Consider a d -dimensional Itô process X

with

dXt D bt dt C �t dWt :

Apply Itô’s formula to a test function ' 2 C1c .R
d / and take expectations to find

EŒ'.Xt /� D EŒ'.X0/�C E

�Z t

0

�
bs � r'.Xs/C

1
2
�s�

>
s W r

2'.Xs/
�

ds
�
:
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If we define yb.t; x/ D EŒbt jXt D x� and y� .t; x/ D EŒ�t�>t jXt D x�
1=2, then Fubini’s

theorem and the tower property in the above equation yield

EŒ'.Xt /� D EŒ'.X0/�C E

�Z t

0

�
yb.s;Xs/ � r'.Xs/C

1
2
y� y�>.s;Xs/ W r

2'.Xs/
�

ds
�
:

This shows that the marginal flow .�t DL.Xt //t2Œ0;T � is a solution of the Fokker–Planck
equation

h�t � �0; 'i D

Z t

0

˝
�s; yb.s; �/ � r' C

1
2
y� y�>.s; �/ W r2'

˛
ds; t 2 Œ0; T �; ' 2 C1c .R

d /;

(1.12)
which is associated with the SDE

d yXt D yb.t; yXt / dt C y� .t; yXt / d yWt : (1.13)

According to the superposition principle of Trevisan [66, Theorem 2.5], since .�t /t2Œ0;T �
solves the Fokker–Planck equation, there must exist a weak solution of the SDE (1.13)
which shares the same marginal flow, i.e., L. yXt / D �t D L.Xt / for all t 2 Œ0; T �. This
recovers precisely the classical mimicking theorem in the form of [14, Corollary 3.7].
Our method of proving Corollary 1.6 is completely analogous, using a combination of
Theorems 1.5 and 1.3 in place of [66, Theorem 2.5], and the Fokker–Planck equation
(1.9) on P .Rd / in place of the Fokker–Planck equation (1.12) on Rd .

1.4. Mean field games and control

Our specific setup in Corollary 1.6 is motivated in part by questions from the theory
of mean field games and controlled McKean–Vlasov dynamics, also known as mean field
control. In particular, we show in Section 8 how to use Corollary 1.6 to convert an optimal
control into a Markovian one, in the sense that the control is a function of .t;Xt ; �t /
only, in the context of controlled McKean–Vlasov dynamics with common noise. For
.�t /t2Œ0;T � non-random, this has been done using the classical mimicking theorem, but
the case of stochastic .�t /t2Œ0;T �, as in any model with common noise, seems to be out of
reach of prior methods. See Section 8 for more details.

1.5. Further remarks on the Fokker–Planck equation on P .Rd /

The Fokker–Planck equation (1.9) is stated in terms of test functions F W P .Rd /! R of
the form

F.m/ D f .hm; '1i; : : : ; hm; 'ki/; (1.14)

where k 2 N, f 2 C1c .R
k/, and '1; : : : ; 'k 2 C1c .R

d /. Alternatively, we can write the
equation in terms of a larger class of test functions, specified through differentiation for
real-valued functions on P .Rd /, known in some recent literature as the L-derivative. See
[17, Chapter I.5] for a careful and thorough development of this notion of derivative. The
test functions of interest for us are the following:
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Definition 1.7. Let C 2
b
.P .Rd // be the set of bounded continuous functions F W

P .Rd /! R such that:

� There exists a bounded continuous function @mF W P .Rd / �Rd ! R satisfying

lim
h#0

F.mC h.m0 �m// � F.m/

h
D

Z
Rd
@mF.m; v/ .m

0
�m/.dv/;

for all m;m0 2 P .Rd /. Given that such a function @mF exists, it is unique provided
we impose the additional requirement thatZ

Rd
@mF.m; v/m.dv/ D 0; m 2 P .Rd /:

� The function v 7! @mF.m; v/ is continuously differentiable, with a uniformly (in
.m; v/) bounded gradient DmF.m; v/.

� For every fixed v0 2Rd , each component of the Rd -valued functionm 7!DmF.m;v
0/

satisfies the properties described in the first two bullet points, resulting in some
D2
mF.m; v

0; v/ 2 Rd�d . The function D2
mF is bounded and continuous.

� For m 2 P .Rd /, we let DvDmF.m; v/ be the Jacobian of the map v 7! DmF.m; v/

and assume it continuous and bounded in .m; v/.

An equivalent form of the Fokker–Planck equation (1.9), under the above integrability
assumption (1.10), is then

hPt � P0; F i D

Z t

0

hPs;MsF i ds; t 2 Œ0; T �; F 2 C 2b .P .R
d //; (1.15)

where we define, for t 2 Œ0; T � and m 2 P .Rd /,

MtF.m/ WD

Z
Rd

�
DmF.m; v/ � b.t; m; v/C

1
2
DvDmF.m; v/ W a.t; m; v/

�
m.dv/

C
1

2

Z
Rd

Z
Rd
D2
mF.m; v; v

0/ W Œ
.t; m; v/
>.t; m; v0/�m.dv/m.dv0/:

One direction of this equivalence is easy: If F is of the form (1.14), then straightforward
calculus shows that F 2 C 2

b
.P .Rd // and

DmF.m; v/ D

kX
iD1

@if .hm; '1i; : : : ; hm; 'ki/r'i .v/;

D2
mF.m; v; v

0/ D

kX
i;jD1

@ijf .hm; '1i; : : : ; hm; 'ki/r'i .v/r'j .v
0/>;

DvDmF.m; v/ D

kX
iD1

@if .hm; '1i; : : : ; hm; 'ki/r
2'i .v/:
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It is then easy to see that for these test functions equation (1.15) reads exactly as (1.9).
On the other hand, suppose we start from some P D .Pt /t2Œ0;T � 2 C.Œ0; T �IP .P .Rd ///
satisfying (1.9). Applying Theorems 1.5 and 1.3, we find processes � and X following
(1.6) and (1.3), respectively, along with �t D L.Xt j Gt / and Pt D L.�t /. For F 2
C 2
b
.P .Rd //, we may then apply a recent form of Itô’s formula for conditional measure

flows of Itô processes [17, Theorem II.4.14]. This yields

F.�t / D F.�0/C

Z t

0

MsF.�s/ ds CRt

for a certain mean-zero martingale R which can be identified explicitly, but we have
no need to do so. Taking expectations and using Pt D L.�t / gives the Fokker–Planck
equation in the form of (1.15).

1.6. Existence and uniqueness

An obvious implication of our superposition principles, Theorems 1.5 and 1.3, is that the
following are equivalent:

� There exists a solution of the Fokker–Planck equation (1.9), or its equivalent form
(1.15).

� There exists a solution of the SPDE (1.6).

� There exists a solution of the conditional McKean–Vlasov SDE (1.3).

Uniqueness is somewhat more subtle. Using Theorems 1.5 and 1.3, we see that uniqueness
for the conditional McKean–Vlasov SDE (1.3)1 implies uniqueness for the SPDE (1.6),
and uniqueness for the SPDE (1.6) implies uniqueness for the Fokker–Planck equation
(1.9). The reverse implications are likely true but would require much more machinery
to prove; one must show, for example, that the law of a solution .Xt /t2Œ0;T � of the SDE
(1.3) is uniquely determined by its marginal conditional laws L.Xt j Gt /. In the uncon-
ditional case studied by Figalli [34] and Trevisan [66], this relies on a result of Stroock
and Varadhan [63, Theorem 6.2.3], which shows a martingale problem is determined by
its marginals in a certain carefully specified sense.

Under suitable assumptions (e.g., Lipschitz coefficients), existence and uniqueness
results are known for McKean–Vlasov SDEs like (1.3) (see [38, 51] or [17, Section
II.2.1.3]) and for the SPDE (1.6) (see [27,51]). From such results we may, rather remark-
ably, deduce corresponding existence and uniqueness results for the Fokker–Planck equa-
tion on P .Rd / given by (1.9) or (1.15), which appear to be the first of their kind.

Moreover, our Theorem 1.5 allows us to recover and extend prior results on well-
posedness for stochastic Fokker–Planck equations. For instance, if we were to assume

1Here and more generally for SDEs with random coefficients such as (1.1), the appropriate
notion of uniqueness in law is in the sense of the very good solution measures of [41], i.e., the
uniqueness of the measure induced on � � C.Œ0; T �IRd / by appending the solution process X .
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the coefficients .b; � ; 
/ from (1.1) are Lipschitz in x uniformly in .t; !/, and the inte-
grability condition EŒ

R T
0
.jb.t; !; 0/j2 C ja.t; !; 0/j/ dt � <1, then standard arguments

yield existence and uniqueness for the SDE (1.1). Using Theorem 1.5 we immediately
deduce existence and uniqueness for the stochastic Fokker–Planck equation (1.4). This
quickly recovers and extends results of [25, 51] on linear SPDEs of Fokker–Planck type.
Likewise, the conditional McKean–Vlasov equation (1.3) is well-posed under Lipschitz
assumptions, using a Wasserstein metric for the measure argument; see [17, Propositions
II.2.8 and II.2.11], [38, Theorem 3.3], [51, Theorem 3.1], or [25, Theorem 3.3]. From
well-posedness of (1.3) and our superposition principle, Theorem 1.5, we immediately
deduce well-posedness for the corresponding nonlinear SPDE (1.6), which again recov-
ers results of [25, 51].

We also stress that our results apply to many cases of singular or local interactions,
thanks to the minimal regularity required. For instance, suppose the SPDE (1.6) is local in
the sense that b.t;m; x/ D zb.t;m.x/; x/ for some zb W Œ0; T � �RC �Rd ! R, whenever
m 2 P .Rd / admits a density with respect to Lebesgue measure (denotedm.x/), and sup-
pose a and 
 take similar forms. Indeed, to apply Theorem 1.5, we may extend the domain
of the coefficients in an arbitrary (measurable, bounded) fashion to include all of P .Rd /,
not just those measures which admit a Lebesgue density. Hence, if there exists a solution
of the (local, in this case) SPDE (1.6) with �t .!/ absolutely continuous with respect to
Lebesgue measure for a.e. .t; !/ and satisfying the requisite integrability conditions, then
there exists a solution of the corresponding (density-dependent) McKean–Vlasov SDE
(1.3). Similarly, if there is a unique solution of the (density-dependent) SDE (1.3), we
again deduce existence and uniqueness for the (local) SPDE.

The Fokker–Planck equation on P .Rd / given in (1.15) can be compared to certain
backward PDEs on Wasserstein space studied in recent literature on McKean–Vlasov
equations and mean field games. Equation (1.15) is a Fokker–Planck or Kolmogorov for-
ward equation associated with the process .�t /t2Œ0;T � of (1.6), and we are not aware
of any prior studies of this equation in the literature. On the other hand, there have
been a number of recent studies of the Kolmogorov backward equation (i.e., Feynman–
Kac formulas) associated with .Xt ; �t /t2Œ0;T � from (1.3), (1.6). That is, the functions
.t; x; m/ 7! EŒF .XT ; �T / jXt D x; �t D m� should satisfy a certain linear PDE on
Œ0; T � � Rd � P .Rd /, provided F is sufficiently nice [23, 26], and regularity estimates
on the solution are useful for quantitative propagation of chaos arguments [21, 22]. Non-
linear analogues of these backward PDEs appear in the guise of the master equation from
the theory of mean field games [15, 16] and in mean field control problems [17, 60].

Remark 1.8. It is worth noting that we always interpret the SPDE (1.4) in the weak PDE
sense, i.e., in the sense of distributions. In general, we are also interpreting this SPDE in
the weak probabilistic sense, with � not necessarily adapted to the filtration generated by
the driving Brownian motion B. If � is adapted to FB (i.e., if G D FB), then we might
say we have a (probabilistic) strong solution of the SPDE (1.4). We will not dwell on this
point, because whether we have a strong or weak solution is irrelevant to our purposes.
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1.7. Outline of the paper

The rest of the paper is structured as follows. We begin with a short discussion of com-
patibility conditions in Section 2. Section 3 proves Theorem 1.3 first under additional
smoothness restrictions on the coefficients. In this regime, the claimed superposition fol-
lows from the well-posedness (which we establish) of the SDE (1.1) and SPDE (1.4).
Before turning to the general case, Section 4 then develops some preliminary results on
tightness and stable convergence which will aid in our successive approximations in the
subsequent Section 5. Section 5 contains the main line of the proof of Theorem 1.3, which
follows a sequence of reductions to the aforementioned smooth case. Next, Section 6 is
devoted to the (surprisingly short) proof of Theorem 1.5. Our mimicking result, Corol-
lary 1.6, is derived in Section 7 from Theorems 1.3 and 1.5. The final Section 8 details
applications to controlled McKean–Vlasov dynamics. Lastly, three short appendix sec-
tions give less central proofs omitted from the body of the paper.

Notably, Section 6, Section 7, and Section 8 are independent of each other and also of
Sections 2–5. That is, after this introduction, one could read either Sections 2–5, Section 6,
Section 7, or Section 8, without loss of continuity.

2. Compatibility preliminaries

This short section collects a few elementary implications pertaining to the recurring con-
dition that F X

t ?? F W
T _ GT jF

W
t _ Gt for all t 2 Œ0; T �. We continue here with our

notational conventions for � -algebras and filtrations. Given a stochastic process X D
.Xt /t2Œ0;T �, we write FX D .F X

t /t2Œ0;T � for the filtration it generates. For two filtrations
G D .Gt /t2Œ0;T � and H D .Ht /t2Œ0;T �, we let G _ H WD .Gt _Ht /t2Œ0;T �. We should
stress that, as usual, a process W is said to be a Brownian motion with respect to a fil-
tration H D .Ht /t2Œ0;T � if W is a Brownian motion which is adapted to H and also has
independent increments with respect to H, meaning Wt �Ws ??Hs for 0 � s < t � T .
The following is proven in Appendix A.

Lemma 2.1. Suppose .�;F D .Ft /t2Œ0;T �;P / is a filtered probability space supporting a
d -dimensional F -Brownian motion W as well as two subfiltrations G D .Gt /t2Œ0;T � and
HD .Ht /t2Œ0;T �. AssumeW is independent of GT . Then the following five statements are
equivalent:

(1) Ht ?? F W
T _ GT jF

W
t _ Gt for each t 2 Œ0; T �.

(2) The following three conditions hold:

(2a) Ht ??H0 _ F W
T _ GT jH0 _ F W

t _ Gt for each t 2 Œ0; T �.

(2b) Ht ?? GT jGt for each t 2 Œ0; T �.

(2c) W ??H0 _ GT .

(3) The three � -algebras Ht , GT , and F W
T are conditionally independent given F W

t _Gt
for each t 2 Œ0; T �.

(4) The following two conditions hold:
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(4a) W is a Brownian motion with respect to the filtration .GT _ F W
t _Ht /t2Œ0;T �.

(4b) Ht _ F W
t ?? GT jGt for all t 2 Œ0; T �.

(5) Ht _ F W
T ?? GT jGt for each t 2 Œ0; T �.

We will most often apply Lemma 2.1 with H D FX for a given process X . Hence, in
Proposition 1.2, the assumption F X

t ??F W
T _ GT jF

W
t _ Gt , for each t 2 Œ0; T �, implies

that F X
t ?? GT jGt , for each t 2 Œ0; T �, which in turn yields L.Xt jGT /DL.Xt jGt / a.s.

Despite possibly appearing tangential at first glance, carefully chosen compatibility
conditions are essential for dealing with weak solutions for SDEs [41], McKean–Vlasov
equations [38,56], control problems [29,30], and mean field games [17,18]. For this paper,
we favor the most concise formulation F X

t ?? F W
T _ GT jF

W
t _ Gt for all t 2 Œ0; T �.

3. Superposition from SPDE to SDE: smooth case

In this section, we establish Theorem 1.3 in the case where the coefficients b; a; 
 are
sufficiently smooth in the x-variable. In this case we are able to construct a strong solution
of the SDE (1.1), which is not feasible in general.

We use the following notation for norms throughout the paper. We let jxj denote the
Euclidean norm of a vector x 2 Rd and jAj the Frobenius norm of a matrix A. For a
real-valued function f W Rd ! R, we set

kf kCb.Rd / D sup
x2Rd

jf .x/j; kf kC1
b
.Rd / D kf kCb.Rd / C sup

x2Rd
jrf .x/j;

kf kC2
b
.Rd / D kf kC1

b
.Rd / C sup

x2Rd
jr
2f .x/j:

Set kf kC1
b
.Rd /D1 if f is not continuously differentiable, and similarly for kf kC2

b
.Rd /.

We extend these norms to vector-valued functions in the natural way; for instance, for
f D .f1; : : : ; fk/ W R

d ! Rk , we take kf k2
Cb.Rd /

WD kf1k
2
Cb.Rd /

C � � � C kfkk
2
Cb.Rd /

.

Lastly, for a Lipschitz function f W Rd ! Rk , we denote by kf kLip.Rd / its Lipschitz
constant, i.e., the smallest constant c � 0 such that jf .x/ � f .y/j � cjx � yj for all
x;y 2 Rd . If f is not Lipschitz, then kf kLip.Rd / WD 1.

Proposition 3.1 (Theorem 1.3, smooth case). In the setting of Theorem 1.3, suppose that,
for a.e. .t; !/ 2 Œ0; T � ��, the functions b.t; !; �/; a.t; !; �/;
.t; !; �/ are bounded and
twice continuously differentiable with bounded derivatives of the first and second order.
Then there exists a positive constant Dp <1 such that the following holds: If

max
iD1;:::;N

Z iT=N

.i�1/T=N

�
kb.t; !; �/k

p

C1
b
.Rd /
C ka.t; !; �/k

p

C2
b
.Rd /
C k
.t; !; �/k

2p

C2
b
.Rd /

�
dt

� Dp a.s. (3.1)

for some N 2 N, and �0 admits a density � 2 L2.Rd / with EŒk�k22� < 1, then the
conclusion of Theorem 1.3 applies.
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Proof. Let k� .t; !; �/kLip.Rd / denote the Lipschitz constant of x 7! � .t; !; x/. Since
� 2 D a � 

>, by [63, Theorem 5.2.3] we haveZ T

0

k� .t; !; �/k
2p

Lip.Rd /
dt �

Z T

0

.2d2/p k� .t; !; �/2k
p

C2
b
.Rd /

dt

� .2d2/p
Z T

0

�
ka.t; !; �/kC2

b
.Rd / C 2k
.t; !; �/k

2

C2
b
.Rd /

�p dt

� .8d2/p
Z T

0

�
ka.t; !; �/k

p

C2
b
.Rd /
C k
.t; !; �/k

2p

C2
b
.Rd /

�
dt

� .8d2/pNDp a.s.

Our construction starts with an extension of the probability space to support a random
vector X0 such that L.X0 j GT / D �0, as well as a d -dimensional Brownian motion
W independent of GT _ �.X0/. We endow this extended probability space z� with the
filtration F D .Ft /t2Œ0;T � defined by Ft DF W

t _ Gt _ �.X0/ for t 2 Œ0;T �. Then, we face
the SDE (1.1) with random coefficients which are Lipschitz in the x-variable, with the
Lipschitz constants satisfying an integrability condition in t uniformly in the randomness.
Under these circumstances, the existence of a strong solution (adapted to F ) to the SDE
(1.1) can be shown along the lines of [63, proof of Theorem 5.1.1], and we postpone the
proof to Appendix C for the sake of continuity of exposition.

To summarize, we have extended the probability space to . z�; F ; zP /, where B is an
F -Brownian motion which is adapted to G. This extended probability space supports
a GT -independent F -Brownian motion W and a continuous F -adapted d -dimensional
process X such that

dXt D b.t; !;Xt / dt C � .t; !;Xt / dWt C 
.t; !;Xt / dBt :

Since B is an F -Brownian motion, assertion (4) of Theorem 1.3 holds, and clearly so
does assertion (1). To check the compatibility assertion (3) of Theorem 1.3, it suffices to
check property (2) of Lemma 2.1 with Ht WD �.X0/ for all t 2 Œ0; T �. Property (2a) holds
trivially because Ht D H0 for all t 2 Œ0; T �. Property (2c) is immediate by construction.
Noting that L.X0 j GT / D �0 implies L.X0 j GT / D L.X0 j G0/, we deduce that prop-
erty (2b) holds, and finally Lemma 2.1 ensures that F X

t ?? F W
T _ GT jF

W
t _ Gt for all

t 2 Œ0; T �. Note that we may enlarge the filtration F to its completion, and the properties
(1)–(4) clearly remain valid.

It remains to prove that �t D L.Xt j GT / D L.Xt j Gt / a.s., for each t 2 Œ0; T �. To
this end, define �t D L.Xt j GT / for t 2 Œ0; T �, and note that �0 D �0. By Proposition
1.2, � satisfies �t D L.Xt jGt / for each t and the SPDE

dh�t ; 'i D h�t ; L
b;a
t;!'i dt C h�t ; .r'/

>
.t; !; �/i dBt ; t 2 Œ0; T �; ' 2 C1c .R
d /:

Recall that � satisfies the exact same linear SPDE (1.4). Thus, the proof is complete up
to the following proposition, which establishes uniqueness for this SPDE.
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Proposition 3.2 (Uniqueness for linear SPDEs with coefficients smooth in x). Suppose
�.1/; �.2/ are two probability-measure-valued processes solving the SPDE

dh�.i/t ; 'i D h�
.i/
t ; L

b;a
t;!'i dt C h�

.i/
t ; .r'/

>
.t; !; �/i dBt ; t 2 Œ0; T �; ' 2 C1c .R
d /;

(3.2)
for i D 1; 2, where the coefficients satisfyZ T

0

�
kb.t; !; �/kC1

b
.Rd / C ka.t; !; �/kC2

b
.Rd / C k
.t; !; �/k

2

C2
b
.Rd /

�
dt <1 a.s.,

(3.3)

E

�Z T

0

�
kb.t; !; �/kCb.Rd / C ka.t; !; �/kCb.Rd /

�
dt
�
<1; (3.4)

and a � 

> is positive semidefinite and symmetric with symmetric square root � . Here,
a solution of the SPDE (3.2) is understood in the sense explained after (1.6). If �.1/0 D �

.2/
0

admits a density � 2 L2.Rd / with EŒk�k22� <1, then �.1/t D �
.2/
t for all t 2 Œ0; T � a.s.,

and each �.1/t a.s. admits a density function belonging to L2.Rd /.

Proof. The proof is similar to that of [51, Theorem 3.4], but requires the use of an
additional Lyapunov function. We start by introducing the Gaussian densities Gı.x/ D
.2�ı/�d=2e�jxj

2=.2ı/, ı > 0 and the (random) functions

Zı.t/.x/ WD .Gı � �t /.x/ D

Z
Rd
Gı.x � y/ �t . dy/; ı > 0; t 2 Œ0; T �;

for an arbitrary � 2 ¹�.1/; �.2/; �.1/ � �.2/º. Then Zı.t/ 2 L2.Rd /. Using the definition
of Zı.t/, Fubini’s theorem, (3.2) and integration by parts we find further

hZı.t/; 'i D hZı.0/; 'i C

Z t

0

�
1

2

dX
i;jD1

@ij .Gı � .a
ij
s �s// �

dX
iD1

@i .Gı � .b
i
s�s//; '

�
ds

�

Z t

0

dX
jD1

D dX
iD1

@i .Gı � .

ij
s �s//; '

E
dBjs ;

with the shorthand notations bit ; a
ij
t ; 


ij
t for bi .t; !; �/; aij .t; !; �/; 
ij .t; !; �/, respec-

tively. Next, letting kf kW 1;1.Rd / WD kf kCb.Rd / C kf kLip.Rd / for bounded Lipschitz
functions f on Rd , we define

Kt .!/ D K
�
�
kb.t; !; �/kC1

b
.Rd / C ka.t; !; �/kC2

b
.Rd /

C k
.t; !; �/k2
C2
b
.Rd /
C k� .t; !; �/k2

W 1;1.Rd /

�
;

Yt .!/ D exp
�
2

Z t

0

Ks.!/ ds
�
;

(3.5)

for a constant K� <1 to be chosen later. The estimates at the beginning of the proof of
Proposition 3.1 show that YT <1 a.s. Thus, Itô’s formula yields
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hZı.t/; 'i
2

Yt
D
hZı.0/; 'i

2

Y0
C

Z t

0

1

Ys

dX
jD1

D dX
iD1

@i .Gı � .

ij
s �s//; '

E2
ds

C

Z t

0

2hZı.s/; 'i

Ys

�
1

2

dX
i;jD1

@ij .Gı � .a
ij
s �s// �

dX
iD1

@i .Gı � .b
i
s�s//; '

�
ds

�

Z t

0

dX
jD1

2hZı.s/; 'i

Ys

D dX
iD1

@i .Gı � .

ij
s �s//; '

E
dBjs �

Z t

0

2KshZı.s/; 'i
2

Ys
ds;

where the functions inside the inner products belong to L2.Rd / for a.e. s. We take the
expectation (thereby removing the martingale terms thanks to (3.4)), sum over ' in an
orthonormal basis of L2.Rd /, and use aijs D

Pd
kD1.


ik
s 


jk
s C �

ik
s �

jk
s / to get

E

�
kZı.t/k

2
2

Yt

�
DE

�
kZı.0/k

2
2

Y0

�
C

Z t

0

E

�
1

Ys

dX
kD1

D
Zı.s/;

dX
i;jD1

@ij .Gı �.

ik
s 


jk
s �s//

E�
ds

C

Z t

0

E

�
1

Ys

dX
kD1

D
Zı.s/;

dX
i;jD1

@ij .Gı � .�
ik
s �

jk
s �s//

E�
ds

�

Z t

0

E

�
2

Ys

dX
iD1

hZı.s/; @i .Gı � .b
i
s�s//i

�
ds

C

Z t

0

E

�
1

Ys

dX
jD1




 dX
iD1

@i .Gı � .

ij
s �s//




2
2

�
ds �

Z t

0

E

�
2KskZı.s/k

2
2

Ys

�
ds: (3.6)

We abbreviate the latter equation as

d
dt

E

�
kZı.t/k

2
2

Yt

�
D E

�
kGı � j�t jk

2
2

Yt
bZt

�
� E

�
2KtkZı.t/k

2
2

Yt

�
upon combining the first four integrals together (notice that kGı � j�t jk2 D 0 implies
that all inner products involved are 0). By [51, (3.8) in Lemma 3.3, (3.7) in Lemma 3.2]
(taking H to be a singleton therein) and writing Cd for constants depending only on d
we haveD

Zı.s/;

dX
i;jD1

@ij .Gı � .

ik
s 


jk
s �s//

E
C




 dX
iD1

@i .Gı � .

ik
s �s//




2
2

� Cdk
.s; !; �/k
2

C2
b
.Rd /



Gı � j�sj

22;D
Zı.s/;

dX
i;jD1

@ij .Gı � .�
ik
s �

jk
s �s//

E
� Cdk� .s; !; �/k

2
W 1;1.Rd /



Gı � j�sj

22;
jhZı.s/; @i .Gı � .b

i
s�s//ij � Cdkb.s; !; �/kC1

b
.Rd /



Gı � j�sj

22:
(3.7)
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According to these inequalities we can choose the constantK� in (3.5) such that bZt �Kt
a.s. Moreover,

d
dt

E

�
kZı.t/k

2
2

Yt

�
D E

�
kGı � j�t jk

2
2

Yt
.bZt � 2Kt /

�
C E

�
2Kt

Yt
.kGı � j�t jk

2
2 � kZı.t/k

2
2/

�
: (3.8)

Applying (3.8) for the positive measures �D �.1/ and �D �.2/ we get d
dt EŒ

kZ
.i/

ı
.t/k2

2

Yt
�� 0,

where Z.i/
ı
.t/ WD Gı � �

.i/
t for i D 1; 2. Thus,

E

�
kZ

.i/

ı
.t/k22

Yt

�
� EŒkZ.i/

ı
.0/k22� � EŒk�k22�; i D 1; 2:

Letting ' range over an orthonormal basis of L2.Rd / consisting of continuous bounded
functions and using Fatou’s lemma we find that

E

�X
'

h�
.i/
t ; 'i

2

Yt

�
D E

�X
'

limı!0 hZ
.i/

ı
.t/; 'i2

Yt

�
� lim inf

ı!0
EŒkZ.i/

ı
.0/k22� � EŒk�k22�; i D 1; 2:

In particular, for any i and t ,
P
' h�

.i/
t ; 'i

2 <1 a.s., which means that �.i/t has a density

�
.i/
t 2 L2.R

d / a.s. In addition, kZ.i/
ı
.t/k2 � k�

.i/
t k2 a.s. Plugging back into (3.8) and

relying on the dominated convergence theorem, for EŒ
k�
.i/
t k

2
2

Yt
� we have

0 � E

�
k�
.i/
t k

2
2

Yt

�
D lim
ı!0

E

�
kZ

.i/

ı
.t/k22

Yt

�
D lim
ı!0

�
E

�Z t

0

kZ
.i/

ı
.s/k22

Ys
.bZs � 2Ks/ ds

�
C EŒkZ.i/

ı
.0/k22�

�
� lim sup

ı!0

�
�E

�Z t

0

kZ
.i/

ı
.s/k22

Ys
Ks ds

�
C EŒk�k22�

�
� EŒk�k22� � E

�Z t

0

k�
.i/
s k

2
2

Ys
Ks ds

�
;

where the second to last inequality is due to bZs � Ks and kZ.i/
ı
.0/k2 � k�k2; the last

inequality follows from Fatou’s lemma. All in all,

E

�Z t

0

k�
.i/
s k

2
2

Ys
Ks ds

�
� EŒk�k22�: (3.9)

Taking � D �.1/ � �.2/ in (3.8) we see that, as �.1/t ; �
.2/
t 2 L2.R

d /, also �.1/t � �
.2/
t

2 L2.Rd /. Consequently, both kZı.t/k22 and kGı � j�
.1/
t � �

.2/
t jk

2
2 are bounded by
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2k�
.1/
t k

2
2 C 2k�

.2/
t k

2
2 and converge to k�.1/t � �

.2/
t k

2
2 as ı ! 0. Passing to the ı ! 0

limit in (3.8) and using the dominated convergence theorem with the help of (3.9) we get

d
dt

E

�
k�
.1/
t � �

.2/
t k

2
2

Yt

�
� 0:

Recalling that �.1/0 D �
.2/
0 D � and Yt 2 .0;1/ a.s., we deduce that �.1/t D �

.2/
t a.s. for

each t . By the continuity of t 7! h�.i/t ; 'i for all ' 2 C1c .R
d / and i D 1; 2 (cf. (3.2)), we

must have �.1/t D �
.2/
t for all t 2 Œ0; T � a.s.

4. Preliminaries on stable convergence

The proof of Theorem 1.3 follows an approximation-tightness-limit scheme similar to the
one in [34, proof of Theorem 2.6] and [66, proof of Theorem 2.5]. In our case, however,
we must keep track of the given probability space .�;F ;P / throughout, and this compli-
cates matters. To do this, we work with the notion of stable convergence, which is quite
natural in the context of SDEs with random coefficients [41]. We summarize here the
minimal definitions and results we need for our purposes; see [40], [11, Section 8.10 (xi)]
for further background and references, or [41, Section 3-a] for a summary.

Consider a measurable space .S; �/ and a Polish space E equipped with its Borel
� -algebra, and endow S � E with the product � -algebra. We write P .S �s E/ for the
set of probability measures on S � E equipped with the stable topology, which is the
coarsest topology such that the maps P .S �s E/ 3 m 7! hm; hi are continuous, where
h W S �E!R is bounded and measurable with h.s; �/ continuous for each s 2 S . With the
stable topology, P .S �s E/ is not metrizable in general. But, if � is countably generated,
then every compact set K � P .S �s E/ is metrizable [11, Proposition 8.10.64]. (In fact,
this is precisely why we assume in Theorem 1.3 that GT is countably generated.) For any
probability measure � on .S;�/ and any setK � P .E/ which is compact with respect to
the topology of weak convergence, the set

¹m 2 P .S �s E/ W m.� �E/ D �; m.S � �/ 2 Kº

is compact in the stable topology (and thus also metrizable); see [40, Theorem 2.8]. In
particular, a set K � P .S �s E/ is sequentially precompact with respect to stable con-
vergence if all elements share the same S -marginal and their E-marginals are tight.

We write P .S �s E/, instead of simply P .S � E/, to emphasize the different roles
played by S and E in the stable topology. For example, in the following lemma, the
stable topology on P .� � C.Œ0; T �IRd / �s C.Œ0; T �IRd // is the one generated by the
functionals P 7! hP; hi, where h W � � C.Œ0; T �IRd / � C.Œ0; T �IRd /! R is bounded,
measurable and continuous in its final argument.

Throughout this section and the next, we take the filtered probability space .�;G;P /
described in Theorem 1.3 as given, and we make frequent use of the canonical space

z� WD � � C.Œ0; T �IRd / � C.Œ0; T �IRd /: (4.1)
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Any function g on � extends naturally to z�, as does any � -algebra on �, and we use
the same notation in each case. The processes � and B defined on � thus also live on z�.
Further, we define the canonical processesW D .Wt /t2Œ0;T � and X D .Xt /t2Œ0;T � on z�:

Wt .!;w;x/ WD wt ; Xt .!;w;x/ WD xt :

As usual, the filtrations generated by these canonical processes are denoted FW and FX ,
respectively. We will work with various probability measures zP on z�. We write EzP for
the expectation with respect to a given zP , as well as LzP .Z/ for the law of a random
variable Z defined on z�. An expectation symbol E without a subscript will always mean
the expectation under P of a random variable on .�;GT ;P /.

Definition 4.1. Let P . z�IP / denote the set of probability measures zP on z� such that:

(1) The �-marginal of zP equals P .

(2) W and B are independent G _ FW _ FX -Brownian motions under zP .

(3) F X
t ?? F W

T _ GT jF
W
t _ Gt for each t 2 Œ0; T �.

(4) W is independent of GT .

We always equip P . z�I P / with the stable topology it inherits as a subset of the space
P .� � C.Œ0; T �IRd / �s C.Œ0; T �IRd //.

The first lemma will ensure that conditions (2) and (3) of Definition 4.1 are preserved
by our approximation arguments in Section 5.

Lemma 4.2. As a subset of P .� � C.Œ0; T �IRd / �s C.Œ0; T �IRd //, the set P . z�IP / is
closed in the stable topology.

Proof. This is immediate once one notices that conditions (2) and (3) of Definition 4.1
may be recast as requiring that zP ı .W ;B/�1 is the product of two Wiener measures and

0 D EzP
�
ft .!;W ;X/

�
gtC.W ;B/ � EzP ŒgtC.W ;B/�

��
;

0 D EzP
�
ft .!;W ;X/

�
 .!;W / � EzP Œ .!;W / jF W

t _ Gt �.!;W /
��
;

for each t 2 Œ0; T � and bounded functions ft , gtC, and  which are measurable with
respect to Gt _ F W

t _ F X
t , �..Ws �Wt ;Bs �Bt / W s 2 Œt; T �/, and GT _ F W

T , respec-
tively, and with x 7! ft .!;w; x/ continuous for each .!;w/. These are clearly closed
constraints under the stable topology of P .� � C.Œ0; T �IRd / �s C.Œ0; T �IRd //. Indeed,
the conditional expectation term presents no difficulty because, in light of conditions (1)
and (4) of Definition 4.1, it does not in fact depend on the choice of zP 2 P . z�IP /.

Our next lemma shows that the conditional measures LzP .Xt j GT / are sufficiently
well-behaved under stable convergence:

Lemma 4.3. Suppose .zPn/n2N is a sequence in P . z�IP / which converges in the stable
topology to some zP . Let�nt DLzPn.Xt jGT / for each n, which may be viewed as a random
variable on .�;GT ;P /. If �nt ! �t weakly a.s. for all t 2 Œ0; T �, then �t DLzP .Xt jGT /

a.s. for all t 2 Œ0; T �.



Superposition and mimicking theorems 3249

Proof. For t 2 Œ0; T �, a bounded GT -measurable random variable Z W � ! R, and a
bounded continuous function f W Rd ! R, we have

EŒZh�t ; f i� D lim
n!1

EŒZh�nt ; f i� D lim
n!1

EzPn ŒZf .Xt /� D EzP ŒZf .Xt /�:

The following proposition is a precompactness criterion for the stable topology, which
we will use repeatedly.

Proposition 4.4. For n2N, suppose .bn;� n;
n/ W Œ0;T ����Rd!Rd�Rd�d�Rd�d

is measurable with respect to the product of the G-progressive � -algebra on Œ0; T � ��
and the Borel � -algebra on Rd . Let zPn 2 P . z�IP / be such that

dXt D bn.t; !;Xt / dt C � n.t; !;Xt / dWt C 

n.t; !;Xt / dBt ; t 2 Œ0; T �; zPn-a.s.;

and let an WD � n.� n/> C 
n.
n/>. If the family ¹zPn ıX�10 W n 2 Nº � P .Rd / is tight,
and if for some p > 1 we have

C WD sup
n2N

EzPn

�Z T

0

�
jbn.t; !;Xt /j

p
C jan.t; !;Xt /j

p
�

dt
�
<1; (4.2)

then the sequence .zPn/n2N admits a convergent subsequence in P . z�IP /.

Proof. As discussed above, compact sets in the stable topology are metrizable since GT
is countably generated by assumption. Every element of P . z�I P / is a probability mea-
sure on P .� � C.Œ0; T �IRd / �s C.Œ0; T �IRd // with the � � C.Œ0; T �IRd /-marginal
equal to the product of P and the Wiener measure. Hence, all we need to show is that
¹zPn ıX�1 W n 2 Nº � P .C.Œ0; T �IRd // is tight. To this end, for any ı > 0 and stopping
times 0 � �1 � �2 � T with �2 � �1 � ı a.s., we estimate EzPn ŒjX�2 � X�1 j

p� with the
help of the Burkholder–Davis–Gundy inequality by

2p�1EzPn

�ˇ̌̌̌Z �2

�1

bn.u;!;Xu/du
ˇ̌̌̌p
C

ˇ̌̌̌Z �2

�1


n.u;!;Xu/dBuC
Z �2

�1

� n.u;!;Xu/dWu/
ˇ̌̌̌p�

� Cp;dEzPn

��Z �2

�1

jbn.u; !;Xu/j du
�p
C

�Z �2

�1

jan.u; !;Xu/j du
�p=2�

� Cp;d

�
EzPn

�
ıp�1

Z �2

�1

jbn.u; !;Xu/j
p du

�
CEzPn

�
ıp�1

Z �2

�1

jan.u; !;Xu/j
p du

�1=2�
� Cp;d .ı

p�1C C
p

ıp�1C/;

where Cp;d <1 is a constant depending only on p and d . Therefore,

lim
ı!0

lim sup
n!1

sup
0��1��2�T W �2��1<ı

EPn ŒjX�2 �X�1 j
p� D 0:

In view of the Aldous tightness criterion (see [42, Lemma 16.12, Theorems 16.11, 16.10,
16.5]), the sequence .zPn ıX�1/n2N in P .C.Œ0; T �IRd // is indeed tight.

To pass to the limit, we repeatedly use the following proposition.
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Proposition 4.5. Let .b;a;
/ be as in Theorem 1.3, and assume that b.t; !; �/, a.t; !; �/,
and 
.t; !; �/ are continuous bounded functions for a.e. .t; !/. If a P . z�I P /-valued
sequence .zPn/n2N converges to some zP in the stable topology, and if

sup
n2N

EzPn

�Z T

0

�
kb.t; !; �/k

p

C.Rd /
C ka.t; !; �/k

p

C.Rd /
C k
.t; !; �/k

2p

C.Rd /

�
dt
�
<1;

(4.3)

then for any GT -measurable random variable g W�! Œ�1; 1�, 0� s < t � T , continuous
hs W C.Œ0; s�IRd /2 ! Œ�1; 1�, and ' 2 C1c .R

d /, one has along a subsequence2

lim
n!1

EzPn

�
ghs.W ;X/

�
'.Xt /�'.Xs/�

Z t

s
L
b;a
u;!'.Xu/ du�

Z t

s
r'.Xu/

>
.u; !;Xu/ dBu

��
D EzP

�
ghs.W ;X/

�
'.Xt /�'.Xs/�

Z t

s
L
b;a
u;!'.Xu/ du�

Z t

s
r'.Xu/

>
.u; !;Xu/ dBu

��
:

Proof. Truncating .b;a/ to be uniformly bounded, exploiting the stable convergence, and
removing the truncation with the help of (4.3) we get

lim
n!1

EzPn

�
ghs.W ;X/

�
'.Xt / � '.Xs/ �

Z t

s

Lb;au;!'.Xu/ du
��

D EzP

�
ghs.W ;X/

�
'.Xt / � '.Xs/ �

Z t

s

Lb;au;!'.Xu/ du
��
:

To justify the convergence of the Itô integral part, we extend the probability space
further to y� WD z� � C.Œ0; T �IR/, where the last factor accommodates the Itô integral
process

Mt WD

Z t

0

r'.Xu/
>
.u; !;Xu/ dBu; t 2 Œ0; T �

(which is a well-defined G _ FX -martingale under any probability measure in P . z�IP /).
Writing yPn for the probability measure on

z� � C.Œ0; T �IR/ D � � C.Œ0; T �IRd / � C.Œ0; T �IRd / � C.Œ0; T �IR/;

we see that the marginal of yPn on z� coincides with zPn. Following the strategy of the proof
of Proposition 4.4 with .X ;M/ in place of X , we find a subsequential limit point yP with
respect to the stable topology on P .� � C.Œ0; T �IRd / �s C.Œ0; T �IRd / � C.Œ0; T �IR//.
For ease of exposition, we denote by .yPn/n2N a subsequence converging to yP .

Next, we claim that the process M is actually a G _ FW _ FX -martingale under yP .
By (4.3), for each t 2 Œ0; T �, the random variables Mt , M 2

t , and MtBt are uniformly

2We abuse notation by writing hs.w; x/ in place of hs.wjŒ0;s�; xjŒ0;s�/, for .w; x/ 2
C.Œ0; T �IRd /2.
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integrable under .yPn/n2N , since by the Burkholder–Davis–Gundy inequality,

EyPn ŒjMt j
2p� � Cp;d;t EyPn

�Z t

0

jr'.Xu/
>
.u; !;Xu/j

2p du
�

� Cp;d;t k'k
2p

C1
b
.Rd /

EzPn

�Z t

0

k
.u; !; �/k
2p

C.Rd /
du
�
;

for a constant Cp;d;t depending on p, d and t . The uniform integrability together with the
stable convergence imply that, for 0 � s < t � T and any random variable  which is
the product of a bounded .�;Gs/-random variable and a bounded continuous function of
.Wu;Xu/u2Œ0;s�, we have

EyP Œ.Mt �Ms/ � D lim
n!1

EyPn Œ.Mt �Ms/ � D 0;

so M is a G _ FW _ FX -martingale under yP .
We lastly argue that M equals the Itô integral process

R t
0
r'.Xu/

>
.u; !;Xu/ dBu.
To find the quadratic variation of M under yP we compute, for  as above,

EyP Œ.M
2
t �M

2
s / � D lim

n!1
EyPn Œ.M

2
t �M

2
s / �

D lim
n!1

EyPn

�Z t

s

jr'.Xu/
>
.u; !;Xu/j

2 du 
�

D EyP

�Z t

s

jr'.Xu/
>
.u; !;Xu/j

2 du 
�
;

where the last equality is due to stable convergence and (4.3). Similarly, we deduce that

EyP Œ.MtB
>
t �MsB

>
s / � D lim

n!1
EyPn Œ.MtB

>
t �MsB

>
s / �

D lim
n!1

EyPn

�Z t

s

r'.Xu/
>
.u; !;Xu/ du 

�
D EyP

�Z t

s

r'.Xu/
>
.u; !;Xu/ du 

�
:

Hence, under yP , we have

d
dt
hM it D jr'.Xt /

>
.t; !;Xt /j
2;

d
dt
hM;B>it D r'.Xt /

>
.t; !;Xt /:

At this point, we apply [43, Chapter 3, Theorem 4.2] to find (possibly on a further
extension of the underlying probability space) a standard .d C 1/-dimensional Brown-
ian motion yB and an R.dC1/�.dC1/-valued adapted process A such that

Mt D

Z t

0

AdC1;�s d yBs; B it D

Z t

0

Ai;�s d yBs; i D 1; : : : ; d;

AtA
>
t D

�
Id 
.t; !;Xt /

>r'.Xt /

r'.Xt /
>
.t; !;Xt / jr'.Xt /

>
.t; !;Xt /j
2

�
;
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where Ai;�s denotes the i th row of As . Simple linear algebra then yields

A
dC1;�
t D

dX
iD1

r'.Xt /
>
 �;i .t; !;Xt /A

i;�
t ;

with 
 �;i denoting the i th column of 
 . This indeed reveals that M is nothing but the Itô
integral process

R t
0
r'.Xu/

>
.u; !;Xu/ dBu. By the uniform integrability of Mt under
¹zPnºn2N we have

EzP

�
ghs.W ;X/

Z t

s

r'.Xu/
>
.u; !;Xu/ dBu

�
D EyP Œgh

s.W ;X/.Mt �Ms/� D lim
n!1

EyPn Œgh
s.W ;X/.Mt �Ms/�

D lim
n!1

EzPn

�
ghs.W ;X/

Z t

s

r'.Xu/
>
.u; !;Xu/ dBu

�
:

The conclusion of the proposition readily follows.

5. Superposition from SPDE to SDE: general case

With preparations out of the way, in this section we show the superposition principle in
the sense of Theorem 1.3, imposing gradually weaker additional conditions on the behav-
ior of the coefficients in the x-variable: smoothness in Proposition 5.1, boundedness in
Proposition 5.2, and local boundedness in Proposition 5.3. Similarly to [34, proof of The-
orem 2.6] and [66, proof of Theorem 2.5], each weakening of the conditions is achieved
by a suitable approximation-tightness-limit argument.

Proposition 5.1 (Theorem 1.3, smooth case). In the setting of Theorem 1.3, suppose that
for a.e. .t; !/ the functions b.t; !; �/, a.t; !; �/, and 
.t; !; �/ are bounded and twice
continuously differentiable with bounded derivatives of the first and second order. IfZ T

0

�
kb.t;!; �/k

p

C1
b
.Rd /
Cka.t;!; �/k

p

C2
b
.Rd /
Ck
.t;!; �/k

2p

C2
b
.Rd /

�
dt <1 a.s.; (5.1)

and �0 has a density � 2 L2.Rd / with EŒk�k22� <1, then the conclusions of Theorem
1.3 hold.

Proof. Step 1 (Approximation). For n 2 N and t 2 Œ0; T �, define

btcn D max
®
2�nkT W k 2 ¹0; 1; : : : ; 2nº; 2�nkT � t

¯
:

For a constant Dp <1 as in Proposition 3.1 and for n 2 N, let

�n.!/ WD inf
²
t 2 Œ0; T � WZ t

btcn

�
kb.s; !; �/k

p

C1
b
.Rd /
C ka.s; !; �/k

p

C2
b
.Rd /
C k
.s; !; �/k

2p

C2
b
.Rd /

�
ds > Dp

³
^ T
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and set �n� .!/ D ��^�n.!/.!/. Then �n is a G-stopping time for each n, and limn!1 �n
D T a.s. by (5.1). Moreover, each process �n is G-adapted and satisfies

dh�nt ; 'i D h�
n
t ;L

bn;an

t;! 'idt C h�nt ; .r'/
>
n.t; !; �/idBt ; t 2 Œ0; T �; ' 2 C1c .R

d /;

where .bn; an; 
n/.t; !; x/ WD 1¹t��n.!/º .b; a; 
/.t; !; x/. Thanks to Proposition 3.1
the superposition principle holds for every fixed n. Transferring to the canonical space z�
introduced in (4.1), we find ¹zPn W n 2 Nº � P . z�IP / (see Definition 4.1) such that, for
each n 2 N,

dXt D bn.t; !;Xt / dt C � n.t; !;Xt / dWt C 

n.t; !;Xt / dBt zPn-a.s.,

with �nt D LzPn.Xt j GT / D LzPn.Xt j Gt / a.s. for all t 2 Œ0; T �, and where � n is the
symmetric square root of an � 
n.
n/>.

Step 2 (Tightness). Next, we verify the tightness condition (4.2) of Proposition 4.4:

EzPn

�Z T

0

�
jbn.t; !;Xt /j

p
C jan.t; !;Xt /j

p
�

dt
�

D E

�Z T

0

h�nt ; jb
n.t; !; �/jp C jan.t; !; �/jpi dt

�
� E

�Z T

0

h�t ; jb.t; !; �/j
p
C ja.t; !; �/jpi dt

�
;

and the latter is finite by (1.5). In view of Proposition 4.4, we can find a limit point
zP 2 P . z�I P / with respect to stable convergence. We relabel the subsequence so that
.zPn/n2N converges to zP . Recall from Lemma 4.2 that the set P . z�I P / is closed in the
stable topology, and in particular we have F X

t ??F W
T _ GT jF

W
t _ Gt for each t 2 Œ0;T �

under zP . By Lemma 2.1 (with H D FX ), this implies in particular that F X
t ?? GT j Gt

for each t 2 Œ0; T �, which we will use only at the very end of the proof. Finally, since
�nt converges weakly a.s. to �t for each t , Lemma 4.3 ensures that �t D LzP .Xt jGT / D

LzP .Xt jGt / a.s. for each t .

Step 3 (Limit). We proceed to derive an appropriate martingale problem for X under zP ,
in which we “forget” the canonical Brownian motion W defined on z�. To start, we use
Itô’s formula under zPn to obtain

'.Xt / � '.Xs/ �

Z t

s

Lb
n;an

u;! '.Xu/ du

D

Z t

s

r'.Xu/
>
n.u;!;Xu/dBu C

Z t

s

r'.Xu/
>� n.u;!;Xu/dWu; ' 2 C1c .R

d /:

Now, fix a GT -measurable random variable g W � ! Œ�1; 1�, 0 � s < t � T , as well
as a continuous function hs W C.Œ0; s�IRd / ! Œ�1; 1�. Since W is a Brownian motion
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independent of GT , we have (e.g., by Lemma B.1)

EzPn

�
ghs.X/

�
'.Xt / � '.Xs/

�

Z t

s

Lb
n;an

u;! '.Xu/ du �
Z t

s

r'.Xu/
>
n.u; !;Xu/ dBu

��
D 0:

Further, for all m � n � 1 we have �n � �m, and thusˇ̌̌̌
EzPm

�
ghs.X/

Z t

s

r'.Xu/
>.bm � bn/.u; !;Xu/ du

�ˇ̌̌̌
� k'kC1

b
.Rd / E

�Z t

s

h�mu ; jb
m
� bnj.u; !; �/i du

�
D k'kC1

b
.Rd / E

�Z t

s

h�mu ; 1¹�n<u��mºjb.u; !; �/ji du
�

� k'kC1
b
.Rd / E

�Z t

s

h�u; 1¹�n<uºjb.u; !; �/ji du
�
:

Similarly,ˇ̌̌̌
EzPm

�
ghs.X/

Z t

s

r
2'.Xu/ W .a

m
� an/.u; !;Xu/ du

�ˇ̌̌̌
� k'kC2

b
.Rd / E

�Z t

s

h�u; 1¹�n<uºja.u; !; �/ji du
�
:

For the stochastic integral part, we combine Itô’s isometry and Jensen’s inequality to getˇ̌̌̌
EzPm

�
ghs.X/

Z t

s

r'.Xu/
>.
m � 
n/.u; !;Xu/ dBu

�ˇ̌̌̌
� k'kC1

b
.Rd / E

�Z t

s

h�mu ; j

m
� 
nj.u; !; �/2i du

�1=2
� k'kC1

b
.Rd / E

�Z t

s

h�u; 1¹�n<uºj
.u; !; �/j
2
i du

�1=2
:

Putting everything together yieldsˇ̌̌̌
EzPm

�
ghs.X/

�
'.Xt / � '.Xs/

�

Z t

s

Lb
n;an

u;! '.Xu/ du �
Z t

s

r'.Xu/
>
n.u; !;Xu/ dBu

��ˇ̌̌̌
� k'kC2

b
.Rd / E

�Z t

s

h�u; 1¹�n<uº.jb.u; !; �/j C ja.u; !; �/j/i du
�

C k'kC1
b
.Rd / E

�Z t

s

h�u; 1¹�n<uºj
.u; !; �/j
2
i du

�1=2
:
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Take the m ! 1 limit by means of Proposition 4.5, noting that (4.3) holds for
.bn; an;
n/, to getˇ̌̌̌
EzP

�
ghs.X/

�
'.Xt /�'.Xs/�

Z t

s

Lb
n;an

u;! '.Xu/du�
Z t

s

r'.Xu/
>
n.u;!;Xu/dBu

��ˇ̌̌̌
� k'kC2

b
.Rd / E

�Z t

s

h�u; 1¹�n<uº.jb.u; !; �/j C ja.u; !; �/j/i du
�

C k'kC1
b
.Rd / E

�Z t

s

h�u; 1¹�n<uºj
.u; !; �/j
2
i du

�1=2
: (5.2)

As noted in Step 2, we have �t D LzP .Xt jGt /, and henceˇ̌̌̌
EzP

�
ghs.X/

Z t

s

�
r'.Xu/

>.bn � b/.u;!;Xu/C
1
2
r
2'.Xu/ W .a

n
� a/.u;!;Xu/

�
du
�ˇ̌̌̌

� k'kC2
b
.Rd / E

�Z t

s

h�u; 1¹�n<uº.jb.u; !; �/j C ja.u; !; �/j/i du
�
;

and, again by using Itô isometry and Jensen’s inequality,ˇ̌̌̌
EzP

�
ghs.X/

Z t

s

r'.Xu/
>.
n � 
/.u; !;Xu/ dBu

�ˇ̌̌̌
� k'kC1

b
.Rd / E

�Z t

s

h�u; 1¹�n<uºj
.u; !; �/j
2
i du

�1=2
:

Consequently, returning to (5.2), we haveˇ̌̌̌
EzP

�
ghs.X/

�
'.Xt /� '.Xs/�

Z t

s

Lb;au;!'.Xu/du�
Z t

s

r'.Xu/
>
.u;!;Xu/dBu

��ˇ̌̌̌
� 2k'kC2

b
.Rd / E

�Z t

s

h�u; 1¹�n<uº.jb.u; !; �/j C ja.u; !; �/j/i du
�

C 2k'kC1
b
.Rd / E

�Z t

s

h�u; 1¹�n<uºj
.u; !; �/j
2
i du

�1=2
:

Finally, the a.s. convergence �n
n!1
����! T in conjunction with the dominated convergence

theorem (recall (1.5)) yield

EzP

�
ghs.X/

�
'.Xt /�'.Xs/�

Z t

s

Lb;au;!'.Xu/du�
Z t

s

r'.Xu/
>
.u;!;Xu/dBu

��
D0:

Step 4 (Martingale problem to SDE). We have thus shown that, for all ' 2 C1c .R
d /,

the process

'.Xt / � '.X0/ �

Z t

0

Lb;as;!'.Xs/ ds �
Z t

0

r'.Xs/
>
.s; !;Xs/ dBs; t 2 Œ0; T �;
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is a .GT _ F X
t /t2Œ0;T �-martingale under zP , and note that it is also adapted to the smaller

filtration G _ FX D .Gt _ F X
t /t2Œ0;T �. Using linear and quadratic test functions as in

[43, Chapter 5, Proposition 4.6] we see further that

Dt WD Xt �X0 �

Z t

0

b.s; !;Xs/ ds �
Z t

0


.s; !;Xs/ dBs; t 2 Œ0; T �;

Qt WD XtX
>
t �

Z t

0

�
Xsb.s; !;Xs/

>
C b.s; !;Xs/X

>
s C a.s; !;Xs/

�
ds

�

Z t

0

Xs.
.s; !;Xs/ dBs/> �
Z t

0


.s; !;Xs/ dBs X>s ; t 2 Œ0; T �;

are both local martingales with respect to .GT _ F X
t /t2Œ0;T � under zP .

We claim next that the covariation ŒD;B� is identically zero (noting that quadratic
variation does not depend on the underlying filtration). Indeed,D is a .GT _F X

t /t2Œ0;T �-
local martingale, so there is an increasing sequence of .GT _ F X

t /t2Œ0;T �-stopping
times �n such that Dt^�n is a square-integrable martingale. For i; j D 1; : : : ; d and
0 � s < t � T , the GT -measurability of Bjt implies

EzP ŒD
i
t^�n

B
j
t jGs _ F X

s � D EzP
�
B
j
t EzP ŒD

i
t^�n
jGT _ F X

s �
ˇ̌

Gs _ F X
s

�
D Di

s^�n
EzP ŒB

j
t jGs _ F X

s � D D
i
s^�n

Bjs :

We deduce that the covariation ofD�^�n and B is identically zero for each n, and thus so
is the covariation ofD and B.

Using ŒD; B� � 0 and some simple stochastic calculus (in the smaller filtration
G _ FX ), we deduce

Qt D Q0 C

Z t

0

Xs dD>s C
Z t

0

dDs X>s C ŒD�t �
Z t

0

� .s; !;Xs/
2 ds; t 2 Œ0; T �:

Since D and Q are continuous local martingales with respect to G _ FX under zP , we
infer that the finite variation process

ŒD�t �

Z t

0

� .s; !;Xs/
2 ds; t 2 Œ0; T �;

is also a continuous local martingale (in the same filtration), thus it is constant. Hence,

ŒD�t D

Z t

0

� .s; !;Xs/
2 ds; t 2 Œ0; T �:

By [43, Chapter 3, Theorem 4.2], the .GT _ F X
t /t2Œ0;T �-local martingale D admits the

representation

Dt D

Z t

0

� .s; !;Xs/ d yWs; t 2 Œ0; T �; (5.3)
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where yW is a d -dimensional Brownian motion. The construction of yW in general requires
enlarging the probability space . z�;G _ FX ; zP /, but, following [43, Chapter 3, proof of
Theorem 4.2], this additional randomness can be achieved by appending an independent
Brownian motion yW 0; the desired Brownian motion yW is then constructed to be adapted
to the filtration .GT _ F X

t _ F
yW 0

t /t2Œ0;T �. (We point out here, as we did in the proof of
Theorem 3.1, that we may at the end of the proof enlarge the filtration to its completion,
and conclusions (1)–(4) of Theorem 1.3 remain intact.) From the definition of D and its
representation in (5.3) we deduce that X solves the desired SDE

Xt D X0 C

Z t

0

b.s; !;Xs/ ds C
Z t

0


.s; !;Xs/ dBs C
Z t

0

� .s; !;Xs/ d yWs :

This completes the proof that the conclusions (1) and (4) of Theorem 1.3 are valid.
Moreover, conclusion (2) has been shown in Step 2 above. To deduce the compatibil-
ity condition (3) of Theorem 1.3, it suffices to check condition (4) of Lemma 2.1 (with
H D FX and yW in place of W ). We know that yW is a Brownian motion with respect
to the filtration .GT _ F X

t _ F
yW 0

t /t2Œ0;T �. Thus yW is a Brownian motion in the smaller
filtration .GT _ F X

t _ F
yW
t /t2Œ0;T �, with respect to which it is adapted. This is condition

(4a) of Lemma 2.1. Finally, recalling that yW 0 ?? GT _ F X
T and F X

t ?? GT j Gt for all

t 2 Œ0; T �, we easily deduce that F
yW
t _ F X

t ?? GT jGt for all t 2 Œ0; T �, which is exactly
condition (4b) of Lemma 2.1.

Proposition 5.2 (Theorem 1.3, bounded case). In the setting of Theorem 1.3, ifZ T

0

�
sup
x2Rd

jb.t; !;x/jp C sup
x2Rd

ja.t; !;x/jp
�

dt <1 a.s.; (5.4)

then the conclusions of Theorem 1.3 hold.

Proof. Our proof strategy is similar to the one in [34, proof of Theorem 2.6] and [66,
Section A.4, case of bounded coefficients]. We are going to construct from � a sequence
of probability-measure-valued processes .�n/n2N associated to SPDEs with smooth and
bounded coefficients and again perform a tightness-limit argument.

Step 1 (Approximation). Let % be a probability density function belonging to C1
b
.Rd /,

symmetric about 0, and such that jDk%.x/j � Mk%.x/ for some constant Mk <1 for
each k 2 N. (For example, take % to be a multiple of e�

p
1Cjxj2 .) For each n 2 N, we set

%n.x/ D n
d%.nx/ and define the probability-measure-valued process �n� D �� � %n, as

well as

b
%n
i .t; !; �/ D

.bi .t; !; �/�t / � %n

�t � %n
D

R
Rd %n.� � y/bi .t; !;y/ �t .dy/R

Rd %n.� � y/ �t .dy/
;

a
%n
ij .t; !; �/ D

.aij .t; !; �/�t / � %n

�t � %n
D

R
Rd %n.� � y/aij .t; !;y/ �t .dy/R

Rd %n.� � y/ �t .dy/
;



%n
ij .t; !; �/ D

.
ij .t; !; �/�t / � %n

�t � %n
D

R
Rd %n.� � y/
ij .t; !;y/ �t .dy/R

Rd %n .� � y/ �t .dy/
;

(5.5)
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for i; j D 1; : : : ; d . Then, noting that j
j �
p
d
p
jaj, we have

kb%n.t; !; �/kC1
b
.Rd / � 2nM1 sup

x2Rd
jb.t; !;x/j;

ka%n.t; !; �/kC2
b
.Rd / � 2n

2.M2 C 2M
2
1 / sup
x2Rd

ja.t; !;x/j;

k
%n.t; !; �/kC2
b
.Rd / � 2n

2.M2 C 2M
2
1 / sup
x2Rd

p
ja.t; !;x/j:

It now follows from (5.4) that, for each n 2 N,Z T

0

�
kb%n.t; !; �/k

p

C1
b
.Rd /
C ka%n.t; !; �/k

p

C2
b
.Rd /
C k
%n.t; !; �/k

2p

C2
b
.Rd /

�
dt <1 a.s.

Moreover, by Hölder’s inequality,Z
Rd
jb
%n
i .t; !;x/j

p �nt .x/ dx D
Z

Rd

j
R

Rd %n.x � y/bi .t; !;y/ �t .dy/j
p

j
R

Rd %n.x � y/ �t .dy/j
p�1

dx

�

Z
Rd

Z
Rd
%n.x � y/jbi .t; !;y/j

p �t .dy/ dx

D

Z
Rd
jbi .t; !;y/j

p �t .dy/; (5.6)Z
Rd
ja
%n
ij .t; !;x/j

p �nt .x/ dx �
Z

Rd
jaij .t; !;y/j

p �t .dy/; (5.7)

so that (1.5) holds for b%n , a%n and �n.
In addition, a repeated application of Fubini’s theorem gives

dh�nt ;'iDh�
n
t ;L

b%n ;a%n

t;! 'idtCh�nt ; .r'/
>
%n.t;!; �/idBt ; t 2 Œ0;T �; '2C1c .R

d /;

with EŒk�n0k
2
2� � supx2Rd %n.x/ thanks to Jensen’s inequality. Further, abbreviating

a%n.t; !; �/, 
%n.t; !; �/, a.t; !; �/, 
.t; !; �/, and � .t; !; �/ to a%nt , 
%nt , at , 
t , and �t ,
respectively, we find, for any c D .c1; : : : ; cd /> 2 Rd ,

c>.a
%n
t � 


%n
t .


%n
t /
>/c

D
..c>atc �t / � %n/.�t � %n/ � j.c

>
t�t / � %nj
2

.�t � %n/2

D
..jc>
t j

2�t C jc
>�t j

2�t / � %n/.�t � %n/ � j.c
>
t�t / � %nj

2

.�t � %n/2

�
.jc>
t j

2�t � %n/.�t � %n/ � j.c
>
t�t / � %nj

2

.�t � %n/2
� 0;

where the final estimate is due to the Cauchy–Schwarz inequality. Thus, a%n �
%n.
%n/>

is positive semidefinite and symmetric, and we can let � %n be its symmetric square root.
All in all, the smoothed coefficients adhere to the conditions of Proposition 5.1, and thus
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the superposition principle applies for each n. Transferring to the canonical space z� intro-
duced in (4.1), we find zPn 2 P . z�IP / for n 2 N (see Definition 4.1) such that, for each
n 2 N,

dXt D b%n.t; !;Xt / dt C � %n.t; !;Xt / dWt C 

%n.t; !;Xt / dBt zPn-a.s.,

with�nt DLzPn.Xt jGT /DLzPn.Xt jGt /, t 2 Œ0;T �, and with F X
t ??F W

T _GT jF
W
t _Gt

under zPn for each t 2 Œ0; T �.

Step 2 (Tightness). We aim to apply Proposition 4.4 to .zPn/n2N . Since zPn ıX�10 con-
verges weakly to EŒ�0.�/�, we only need the existence of a uniform (in n) bound on

EzPn

�Z T

0

�
jb%n.t; !;Xt /j

p
C ja%n.t; !;Xt /j

p
�

dt
�
:

Since �nt D LzPn.Xt j GT / a.s., this follows from (5.6), (5.7) and (1.5). Using Proposi-
tion 4.4 we get a limit point zP 2P . z�IP / with respect to stable convergence. Once again,
we relabel the subsequence so that .zPn/n2N converges to zP . Recall from Lemma 4.2 that
P . z�IP / is closed in the stable topology, and in particular F X

t ?? F W
T _ GT jF

W
t _ Gt

for each t 2 Œ0; T � under zP . By Lemma 2.1 (with H D FX ), this implies that F X
t ??

GT jGt for each t 2 Œ0; T �. Lemma 4.3 shows that also �t DLzP .Xt jGT /DLzP .Xt jGt /

a.s. for each t .

Step 3 (Limit). As in Step 3 in the proof of Proposition 5.1, our goal is now to derive an
appropriate martingale problem for X under zP . With ', g, s, t , and hs as therein,

EzPn

�
ghs.X/

�
'.Xt / � '.Xs/

�

Z t

s

Lb
%n ;a%n

u;! '.Xu/ du �
Z t

s

r'.Xu/
>
%n.u; !;Xu/ dBu

��
D 0: (5.8)

Below we define a triple .zb; za; z
/ W Œ0; T � �� �Rd ! Rd �Rd�d �Rd�d measurable
with respect to the product of the G-progressive � -algebra on Œ0; T � �� and the Borel
� -algebra on Rd such that all .zb; za; z
/.t; !; �/ are continuous and compactly supported
in Rd , with their supremum norms being bounded uniformly by a constant M <1. For
these, set

zb
%n
i .t; !; �/ D

.zbi .t; !; �/�t / � %n

�t � %n
D

R
Rd %n.� � y/

zbi .t; !;y/ �t .dy/R
Rd %n.� � y/ �t .dy/

;

za
%n
ij .t; !; �/ D

.zaij .t; !; �/�t / � %n

�t � %n
D

R
Rd %n.� � y/zaij .t; !;y/ �t .dy/R

Rd %n.� � y/ �t .dy/
;

z

%n
ij .t; !; �/ D

.z
ij .t; !; �/�t / � %n

�t � %n
D

R
Rd %n.� � y/z
ij .t; !;y/ �t .dy/R

Rd %n.� � y/ �t .dy/
:

(5.9)

Next, we use the tower rule, a stochastic Fubini theorem (cf. Lemma B.1), Jensen’s
inequality, and Itô isometry to estimate an expectation similar to the one in (5.8) but with
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the new coefficients, for 0 � s < t � T :ˇ̌̌̌
EzPn

�
ghs.X/

�
'.Xt / � '.Xs/

�

Z t

s

L
zb%n ;za%n

u;! '.Xu/ du �
Z t

s

r'.Xu/
>
z
%n.u; !;Xu/ dBu

��ˇ̌̌̌
�

ˇ̌̌̌
EzPn

�Z t

s

EzPn
�
ghs.X/r'.Xu/

>.
%n � z
%n/.u; !;Xu/
ˇ̌

GT
�

dBu

�ˇ̌̌̌
C EzPn

�Z t

s

j.Lb
%n ;a%n

u;! � L
zb%n ;za%n

u;! /'.Xu/j du
�

� EzPn

��Z t

s

ˇ̌̌
EPn

�
ghs.X/r'.Xu/

>.
%n � z
%n/.u; !;Xu/
ˇ̌

GT
�ˇ̌̌2

du
�1=2�

C EzPn

�Z t

s

j.Lb
%n ;a%n

u;! � L
zb%n ;za%n

u;! /'.Xu/j du
�

� E

�Z t

s

h�nu; j.r'/
>.
%n � z
%n/.u; !; �/ji2 du

�1=2
C E

�Z t

s

h�nu; j.L
b%n ;a%n

u;! � L
zb%n ;za%n

u;! /'ji du
�
;

where we have exploited jgj � 1 and jhsj � 1. Moreover, we control the latter term via
the pointwise bound

h�nu; j.b
%n � zb%n/.u; !; �/ � r'ji

D

Z
Rd

ˇ̌̌̌ Z
Rd
%n.x � y/.b � zb/.u; !;y/ � r'.x/ �u.dy/

ˇ̌̌̌
dx

� k'kC1
b
.Rd / h�u; jb �

zbj.u; !; �/i;

where we have relied on the definitions of b%n and zb%n . Putting this together with an
analogous bound for the a-terms we arrive at

E

�Z t

s

h�nu; j.L
b%n ;a%n

u;! � L
zb%n ;za%n

u;! /'ji du
�

� k'kC2
b
.Rd / E

�Z t

s

h�u; jL
b�zb;a�za
u;! ji du

�
;

with the shorthand notation

jLb�
zb;a�za

u;! j.x/ D jb.u; !;x/ � zb.u; !;x/j C ja.u; !;x/ � za.u; !;x/j: (5.10)

Similarly, for the 
-terms we have the pointwise bound

h�nu; j.r'/
>.
%n � z
%n/.u; !; �/ji � k'kC1

b
.Rd /h�u; j
 � z
j.u; !; �/i:
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All in all, we conclude thatˇ̌̌̌
EzPn

�
ghs.X/

�
'.Xt / � '.Xs/

�

Z t

s

L
zb%n ;za%n

u;! '.Xu/ du �
Z t

s

r'.Xu/
>
z
%n.u; !;Xu/ dBu

��ˇ̌̌̌
� k'kC2

b
.Rd /

�
E

�Z t

s

h�u; j
 � z
j.u; !; �/i
2 du

�1=2
C E

�Z t

s

h�u; jL
b�zb;a�za
u;! ji du

��
:

(5.11)

We aim to take the n!1 limit on the left-hand side of (5.11). To this end, note thatˇ̌̌̌
EzPn

�
ghs.X/

Z t

s

.L
zb%n ;za%n

u;! � L
zb;za
u;!/'.Xu/ du

�ˇ̌̌̌
�

Z t

s

EzPn
�
j.L
zb%n ;za%n

u;! � L
zb;za
u;!/'.Xu/j

�
du

� k'kC2
b
.Rd /

Z t

s

E
�
h�nu; jL

zb%n�zb;za%n�za
u;! ji

�
du; (5.12)

and alsoˇ̌̌̌
EzPn

�
ghs.X/

Z t

s

r'.Xu/
>
�
z
%n.u; !;Xu/ � z
.u; !;Xu/

�
dBu

�ˇ̌̌̌
� EzPn

�Z t

s

EzPn
�
ghs.X/r'.Xu/

>.z
%n � z
/.u; !;Xu/
ˇ̌

GT
�2 du

�1=2
� k'kC2

b
.Rd / E

�Z t

s

h�nu; jz

%n � z
j.u; !; �/i2 du

�1=2
: (5.13)

In addition, the definition of za%nij yields

h�nu; jza
%n
ij � zaij j.u; !; �/i

D

Z
Rd

Z
Rd

ˇ̌̌̌ R
Rd %

n.x � y/zaij .u; !;y/ �t .dy/R
Rd %

n.x � y/ �t .dy/
� zaij .u; !;x/

ˇ̌̌̌
%n.x � z/ �t .dz/ dx

�

Z
Rd

Z
Rd
jzaij .u; !;y/ � zaij .u; !;x/j%

n.x � y/ �t .dy/ dx:

Fubini’s theorem, the continuity of zaij , and the dominated convergence theorem (recall
jzaij j � M ) imply that the latter upper bound tends to 0 as n!1, and so do the cor-
responding zb- and z
-terms. Another application of the dominated convergence theorem
gives the convergence to 0 of the upper bounds in (5.12) and (5.13) as n!1. Thus, the
n!1 limit of the left-hand side in (5.11) is the same as that ofˇ̌̌̌
EzPn

�
ghs.X/

�
'.Xt /�'.Xs/�

Z t

s

L
zb;za
u;!'.Xu/ du�

Z t

s

r'.Xu/
>
z
.u; !;Xu/ dBu

��ˇ̌̌̌
:



D. Lacker, M. Shkolnikov, J. Zhang 3262

At this point, we can pass to the n!1 limit by means of Proposition 4.5, which in
view of (5.11) results inˇ̌̌̌
EzP

�
ghs.X/

�
'.Xt /� '.Xs/�

Z t

s

L
zb;za
u;!'.Xu/du�

Z t

s

r'.Xu/
>
z
.u;!;Xu/dBu

��ˇ̌̌̌
� k'kC2

b
.Rd /

�
E

�Z t

s

h�u; j
 � z
j.u; !; �/i
2 du

�1=2
C E

�Z t

s

h�u; jL
b�zb;a�za
u;! ji du

��
:

(5.14)

Now, as noted in Step 2, we have �u D LzP .Xu jGT / D LzP .Xu jGu/ a.s. Using this and
the same method as in (5.12) and (5.13), we may change .zb; za; z
/ to .b; a; 
/ on the
left-hand side of (5.14):ˇ̌̌̌
EP

�
ghs.X/

�
'.Xt /� '.Xs/�

Z t

s

Lb;au;!'.Xu/du�
Z t

s

r'.Xu/
>
.u;!;Xu/dBu

��ˇ̌̌̌
� 2 k'kC2

b
.Rd /

�
E

�Z t

s

h�u; j
 � z
j.u; !; �/i
2 du

�1=2
C E

�Z t

s

h�u; jL
b�zb;a�za
u;! ji du

��
:

(5.15)

We now specify the way we choose the triple .zb; za; z
/. Take zaij .t;!; �/ as an example.
For any desired bound M <1 on jzaij j and any fixed " > 0, we define, for each K 2 N,

CKc .R
d / D ¹� 2 Cc.R

d / W k�kC.Rd / �M; k�kLip.Rd / � K; supp.�/ � Œ�K;K�d º;

fK W Œ0; T � �� � C
K
c .R

d /! R;

.t; !; �/ 7! .k� � 1¹jaij .t;!;�/j�M º aij .t; !; �/kL1.�t .!// � "/C;

mK.t; !/ D inf
�2CKc .Rd /

fK.t; !; �/:

Then CKc .R
d / is compact in the Polish space C.Œ�K;K�d /, and f .t; !; �/ is continu-

ous in �. Therefore, by the measurable maximum theorem [3, Theorem 18.19], mK is
measurable and there exists a measurable selection ��K such that

fK.t; !; �
�
K.t; !// D mK.t; !/; .t; !/ 2 Œ0; T � ��:

Further, we let S0 WD ; and

SK WD ¹.t;!/ W 9� 2C
K
c .R

d / W k�� 1¹jaij .t;!;�/j�M º aij .t;!; �/kL1.�t .!// � "º; K 2N;

and notice that every SK is measurable as the preimage of ¹0º under the measurable mK .
Moreover, .SK/K2N is a non-decreasing set sequence with

S
K2N SK D Œ0; T ��� since

every L1.�t .!//-function can be approximated in the L1.�t .!//-norm by compactly
supported Lipschitz functions. Finally, we define zaij according to

zaij .t; !;x/ D �
�
K.t; !/.x/; .t; !/ 2 SKnSK�1; K 2 N: (5.16)
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The measurability of zaij follows from the measurability of the restrictions of zaij
to SKnSK�1, which in turn are measurable as compositions of the measurable map-
pings .��K ; Id/ W SKnSK�1 �Rd ! C.Œ�K;K�d /�Rd and C.Œ�K;K�d /�Rd ! Rd W
.�;x/ 7! �.x/. In addition, we have

h�t .!/; jzaij � aij 1¹jaij j�M ºj.t; !; �/i � "; .t; !/ 2 Œ0; T � ��;

and thus

EŒh�t ; jaij � zaij j.t; !; �/i� � "C EŒh�t ; jaij j 1¹jaij j>M º.t; !; �/i�:

Constructing zbi and z
ij in a similar fashion we see that the right-hand side of (5.15) can
be made arbitrarily small by choosing " > 0 small enough and M <1 large enough.

In conclusion,

EP

�
ghs.X/

�
'.Xt /�'.Xs/�

Z t

s

Lb;au;!'.Xu/du�
Z t

s

r'.Xu/
>
.u;!;Xu/dBu

��
D0;

which means that

'.Xt / � '.X0/ �

Z t

0

Lb;au;!'.Xu/ du �
Z t

0

r'.Xu/
>
.u; !;Xu/ dBu; t 2 Œ0; T �;

is a .GT _F X
t /t2Œ0;T �-martingale. We complete the proof by following Step 4 in the proof

of Proposition 5.1.

Proposition 5.3 (Theorem 1.3, locally bounded case). In the setting of Theorem 1.3, ifZ T

0

�
sup
x2A

jb.t; !;x/jp C sup
x2A

ja.t; !;x/jp
�

dt <1 a.s.; (5.17)

for each bounded Borel set A � Rd , then the conclusions of Theorem 1.3 hold.

Proof. Our proof strategy is similar to that of [66, Section A.4, case of locally bounded
coefficients]. This time, we approximate the coefficients with the help of C1.Rd / cutoff
functions �R WRd ! Œ0;1�which satisfy �R.x/D 1 for jxj<R, �R.x/D 0 for jxj> 2R,
and jr�Rj � 2R�1, jr2�Rj � 4R�2 everywhere. Define �R D .�R1 ; : : : ;�

R
d
/ WRd !Rd

by �R.x/ WD �R.x/x, so that �R.x/! x as R!1. We note for later use that

sup
R>0

kD�RkC1
b
.Rd / <1: (5.18)

Here we write D�R for the Jacobian matrix of �R, so that its .i; j / entry is @j�Ri .

Step 1 (Approximation). We let �R.x/ WD �R.x/x and introduce the pushforward mea-
sures �Rt defined by

h�Rt ; 'i D h�t ; ' ı �
R
i; ' 2 C1c .R

d /:
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A straightforward computation yields, for ' 2 C1c .R
d /,

dh�Rt ; 'i D
dX
iD1

˝
�t ; .@i'/.�

R.�//
�
.r�Ri /

>b.t; !; �/C 1
2
a.t; !; �/ W r2�Ri

�˛
dt

C
1

2

dX
i;jD1

h�t ; .r�
R
i /
>a.t; !; �/.r�Rj /.@ij'/.�

R.�//i dt

C h�t ; .r'/.�
R.�//>.D�R/
.t; !; �/i dBt : (5.19)

Define new coefficients .bR; aR;
R/ by

bRi .t; !; �/ WD E�t .!/
�
r�Ri .X/

>b.t; !;X/C 1
2
a.t; !;X/ W r2�Ri .X/

ˇ̌
�R.X/ D �

�
;

aRij .t; !; �/ WD E�t .!/Œr�
R
i .X/

>a.t; !;X/r�Rj .X/ j�
R.X/ D ��;


R.t; !; �/ WD E�t .!/Œ.D�
R/.X/
.t; !;X/ j�R.X/ D ��;

where the notation is understood to mean, for each fixed .t; !/, that we are taking the
expectations of functions of a random variable X � �t .!/, conditionally on the value of
�R.X/. Then (5.19) becomes

dh�Rt ;'iD h�
R
t ;L

bR;aR

t;! 'idt Ch�Rt ; .r'/
>
R.t;!; �/idBt ; t 2 Œ0;T �; ' 2C1c .R

d /:

Notice that the new coefficients bR and aR obey

sup
x2Rd

jbR.t; !;x/j � kD�RkC1
b
.Rd / sup

jxj�2R

�
jb.t; !;x/j C ja.t; !;x/j

�
;

sup
x2Rd

jaR.t; !;x/j � kD�Rk2
Cb.Rd /

sup
jxj�2R

ja.t; !;x/j:

Together with (5.17), these show that (5.4) holds for bR, aR. Moreover, Jensen’s inequal-
ity and (5.18) yield (1.5) for �R, bR, aR. Lastly, we compute

.aR � 
R.
R/>/.t; !; �/

D E�t .!/Œ.D�
R/.X/.a � 

>/.t; !;X/.D�R/>.X/ j�R.X/ D ��

C E�t .!/
�
..D�R/.X/
.t; !;X//

�
.D�R/.X/
.t; !;X/

�> ˇ̌
�R.X/ D �

�
� E�t .!/Œ.D�

R/.X/
.t; !;X/ j�R.X/ D ��

� E�t .!/Œ.D�
R/.X/
.t; !;X/ j�R.X/ D ��>;

where the last two terms give the conditional covariance matrix of .D�R/.X/
.t; !;X/.
Hence, aR � 
R.
R/> is positive definite and symmetric. We let �R be its symmetric
square root. All in all, �R and the coefficients bR, aR, 
R comply with the conditions
of Proposition 5.2, and the superposition principle applies for each R. Transferring to the
canonical space z� introduced in (4.1), we find zPR 2 P . z�I P / for R > 0 (see Defini-
tion 4.1) such that, for each R,

dXt D b%n.t; !;Xt / dt C � %n.t; !;Xt / dWt C 

%n.t; !;Xt / dBt zPR-a.s.,

with �Rt D LzPR.Xt j GT / D LzPR.Xt j Gt / a.s. for each t 2 Œ0; T �, and so that F X
t ??

F W
T _ GT jF

W
t _ Gt under zPR for each t 2 Œ0; T �.
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Step 2 (Tightness). To apply Proposition 4.4 it suffices to provide a uniform bound on

EzPR

�Z T

0

�
jbR.t; !;Xt /j

p
C jaR.t; !;Xt /j

p
�

dt
�
: (5.20)

By Fubini’s theorem, the tower rule, the definition of �R, and Jensen’s inequality,

EzPR

�Z T

0

�
jbR.t; !;Xt /j

p
C jaR.t; !;Xt /j

p
�

dt
�

D E

�Z T

0

h�Rt ; jb
R.t; !; �/jp C jaR.t; !; �/jpi dt

�
D E

�Z T

0

h�t ; jb
R.t; !;�R.�//jp C jaR.t; !;�R.�//jpi dt

�
� Cp max

�
kD�Rk

p

C1
b
.Rd /

; kD�Rk
2p

Cb.Rd /

�
E

�Z T

0

h�t ; jb.t; !; �/j
p
C ja.t; !; �/jpi dt

�
:

Thanks to (1.5) and since kD�RkC1
b
.Rd / remains uniformly bounded as R 2 N varies,

the expectation in (5.20) is uniformly bounded. Applying Proposition 4.4 we obtain a
limit point zP 2 P . z�IP / with respect to stable convergence. Once again we relabel the
subsequence so that .zPR/R>0 converges to zP . Recall from Lemma 4.2 that P . z�IP / is
closed in the stable topology, and in particular F X

t ?? F W
T _ GT jF

W
t _ Gt for each

t 2 Œ0; T �. By Lemma 2.1 (with H D FX ), this implies that F X
t ?? GT j Gt for each

t 2 Œ0; T �. Lemma 4.3 ensures that also �t DLzP .Xt jGT /DLzP .Xt jGt / a.s. for each t .

Step 3 (Limit). With ', g, s, t , hs as in Step 3 of the proof of Proposition 5.1, we have

EzPR

�
ghs.X/

�
'.Xt / � '.Xs/

�

Z t

s

Lb
R;aR

u;! '.Xu/ du �
Z t

s

r'.Xu/
>
R.u; !;Xu/ dBu

��
D 0:

As in Step 3 of the proof of Proposition 5.2, we define below a triple .zb; za; z
/ W
Œ0; T � �� � Rd ! Rd � Rd�d � Rd�d measurable with respect to the product of the
G-progressive � -algebra on Œ0; T � � � and the Borel � -algebra on Rd such that all
.zb; za; z
/.t; !; �/ are continuous and compactly supported in Rd , with their supremum
norms being bounded uniformly by a constant M <1. For these, we haveˇ̌̌̌
EzPR

�
ghs.X/

�
'.Xt /�'.Xs/�

Z t

s

L
zb;za
u;!'.Xu/ du�

Z t

s

r'.Xu/
>
z
.u; !;Xu/ dBu

��ˇ̌̌̌
D

ˇ̌̌̌
EzPR

�
ghs.X/

�Z t

s

.Lb
R;aR

u;! � L
zb;za
u;!/'.Xu/ du

C

Z t

s

r'.Xu/
>.
R � z
/.u; !;Xu/ dBu

��ˇ̌̌̌
: (5.21)
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In addition, we noteˇ̌̌̌
EzPR

�
ghs.X/

Z t

s

.Lb
R;aR

u;! � L
zb;za
u;!/'.Xu/ du

�ˇ̌̌̌
� EzPR

�Z t

s

j.Lb
R;aR

u;! � L
zb;za
u;!/'.Xu/j du

�
D E

�Z t

s

˝
�Ru ;

ˇ̌
.bR � zb/.u; !; �/ � r' C 1

2
.aR � za/.u; !; �/ W r2'

ˇ̌˛
du
�
:

By plugging in the definitions of �R, bR, aR and using Jensen’s inequality we bound this
further:

h�Ru ; j.b
R
� zb/.u; !; �/ � r'ji

D h�u; j.b
R
� zb/.u; !;�R.�// � r'.�R.�//ji

� k'kC1
b
.Rd /

D
�u;

� dX
iD1

ˇ̌
.r�Ri /

>b.u; !; �/C1
2
a.u; !; �/ W r2�Ri �

zbi .u; !;�
R.�//

ˇ̌2�1=2E
for .u; !/ 2 Œ0; T � ��, and similarly

h�Ru ; j.a
R
� za/.u; !; �/ W r2'ji

� k'kC2
b
.Rd / h�u; j.D�

R/ a.u; !; �/ .D�R/> � za.u; !;�R.�//ji:

From the definition of �R it is clear thatD�R converges pointwise to the identity matrix,
and all second order derivatives of �R converge pointwise to zero. Recalling (5.18), (1.5),
and that .zb; za/ are bounded and continuous, we may pass to the R!1 limit by means
of the dominated convergence theorem and get

lim sup
R!1

ˇ̌̌̌
EzPR

�
ghs.X/

Z t

s

.Lb
R;aR

u;! � L
zb;za
u;!/'.Xu/ du

�ˇ̌̌̌
� k'kC2

b
.Rd / E

�Z t

s

h�u; jL
b�zb;a�za
u;! ji du

�
;

with the shorthand notation introduced in (5.10).
For the stochastic integral term, a similar argument upon an application of the tower

rule, Jensen’s inequality, and Itô isometry yieldsˇ̌̌̌
EzPR

�
ghs.X/

Z t

s

r'.Xu/
>.
R � z
/.u; !;Xu/ dBu

�ˇ̌̌̌
� E

�Z t

s

h�Ru ; j.r'/
>.
R � z
/.u; !; �/ji2 du

�1=2
� k'kC1

b
.Rd / E

�Z t

s

h�u; j.D�
R/
.u; !; �/ � z
.u; !;�R.�//ji2 du

�1=2
;
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so that by the dominated convergence theorem,

lim sup
R!1

ˇ̌̌̌
EzPR

�
ghs.X/

Z t

s

r'.Xu/
>.
R � z
/.u; !;Xu/ dBu

�ˇ̌̌̌
� k'kC1

b
.Rd / E

�Z t

s

h�u; j.
 � z
/.u; !; �/ji
2 du

�1=2
:

We now take R!1 in (5.21) and use Proposition 4.5 to deduce thatˇ̌̌̌
EzP

�
ghs.X/

�
'.Xt /� '.Xs/�

Z t

s

L
zb;za
u;!'.Xu/du�

Z t

s

r'.Xu/
>
z
.u;!;Xu/dBu

��ˇ̌̌̌
� k'kC2

b
.Rd /

�
E

�Z t

s

h�u; jL
b�zb;a�za
u;! ji du

�
C E

�Z t

s

h�u; j.
 � z
/.u; !; �/ji
2 du

�1=2�
:

Arguing as in the paragraph between (5.14) and (5.15) we change .zb; za; z
/ to .b; a;
/:ˇ̌̌̌
EzP

�
ghs.X/

�
'.Xt /� '.Xs/�

Z t

s

Lb;au;!'.Xu/du�
Z t

s

r'.Xu/
>
.u;!;Xu/dBu

��ˇ̌̌̌
� 2k'kC2

b
.Rd /

�
E

�Z t

s

h�u; jL
b�zb;a�za
u;! jidu

�
CE

�Z t

s

h�u; j.
 � z
/.u;!; �/ji
2 du

�1=2�
:

(5.22)

It remains to construct .zb; za; z
/. We pick an approximation level " > 0 and claim
that we can find some M <1 such that bi 1¹jbi j�M º aij 1¹jaij j�M º, and 
ij 1¹j
ij j�M º
are "-good approximations of bi ; aij ; 
ij in the distance on the right-hand side of (5.22).
Indeed,

E

�Z t

s

h�u; jbi .u; !; �/ � bi .u; !; �/ 1¹jbi .u;!;�/j�M ºji du
�

D E

�Z t

s

h�u; jbi .u; !; �/ 1¹jbi .u;!;�/j>M ºji du
�
�M 1�p E

�Z t

s

h�u; jbi .u; !; �/j
p
i du

�
;

the corresponding expression for aij , and

E

�Z t

s

h�u; j
ij .u; !; �/ � 
ij .u; !; �/ 1¹j
ij .u;!;�/j�M ºji
2 du

�
� E

�Z t

s

h�u; j
ij .u; !; �/ 1¹j
ij .u;!;�/j>M ºj
2
i du

�
�M 2�2p E

�Z t

s

h�u; j
ij .u; !; �/j
2p
i du

�
can all be made arbitrarily small by choosing a large enough M < 1. We now define
.zb; za; z
/ by applying the procedure in Step 3 of the proof of Proposition 5.2 to
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bi 1¹jbi j�M º, aij 1¹jaij j�M º, 
ij 1¹j
ij j�M º, thus making the right-hand side of (5.22) arbi-
trarily small. Consequently,

'.Xt / � '.X0/ �

Z t

0

Lb;au;!'.Xu/ du �
Z t

0

r'.Xu/
>
.u; !;Xu/ dBu; t 2 Œ0; T �;

is a .GT _F X
t /t2Œ0;T �-martingale. We complete the proof exactly as in Step 4 of the proof

of Proposition 5.1.

Proof of Theorem 1.3. We are finally ready to prove the general case, Theorem 1.3. Our
strategy is similar to that of [66, Section A.4, general case]. We use the same convolution
construction as in the proof of Proposition 5.2 to reduce the general case to the locally
bounded case covered by Proposition 5.3.

Step 1 (Approximation). We define �n, b%n , a%n , and 
%n according to the formulas
in (5.5) and the line preceding it, with a strictly positive % as there. Next, we check that
b%n , a%n , 
%n satisfy the conditions in Proposition 5.3. By Jensen’s inequality, we have

jb%n.t; !;x/j D

ˇ̌̌̌ R
Rd %n.x � y/b.t; !;y/ �t .dy/R

Rd %n.x � y/ �t .dy/

ˇ̌̌̌
� k%nkCb.Rd /

R
Rd jb.t; !;y/j�t .dy/R
Rd %n.x � y/ �t .dy/

:

Since
R

Rd %n.x � y/ �t .dy/ is a strictly positive continuous function of .t; x/ a.s., it
admits a lower bound cA.!/ > 0 on Œ0; T � � A for any fixed bounded Borel A � Rd .
Hence, by Jensen’s inequality,Z T

0

sup
x2A

jb%n.t; !;x/jp dt � cA.!/�p k%nk
p

Cb.Rd /

Z T

0

Z
Rd
jb.t; !;y/jp �t .dy/ dt:

Carrying out the same estimates for a%n and recalling (1.5) we deduce thatZ T

0

sup
x2A

�
jb%n.t; !;x/jp C sup

x2A

ja%n.t; !;x/jp
�

dt <1 a.s.;

for each n. The other conditions in Proposition 5.3 can be verified for �n, b%n , a%n , and

%n exactly as in Step 1 of the proof of Proposition 5.2. Therefore, the superposition
principle of Proposition 5.2 allows us to find probability measures zPn 2 P . z�I P / for
n 2 N such that, under zPn,

dXt D b%n.t; !;Xt / dt C � %n.t; !;Xt / dWt C 

%n.t; !;Xt / dBt zPn-a.s.,

with �nt D LzPn.Xt j GT / D LzPn.Xt j Gt / a.s. for each t 2 Œ0; T �, and so that F X
t ??

F W
T _ GT jF

W
t _ Gt under zPn for each t 2 Œ0; T �.

Step 2 (Tightness). Step 2 in the proof of Proposition 5.2 can be repeated literally.



Superposition and mimicking theorems 3269

Step 3 (Limit). We derive inequality (5.15) as in the proof of Proposition 5.2 and pick
the coefficients zb; za; z
 therein as in Step 3 of the proof of Proposition 5.3. This renders

'.Xt / � '.X0/ �

Z t

0

Lb;au;!'.Xu/ du �
Z t

0

r'.Xu/
>
.u; !;Xu/ dBu; t 2 Œ0; T �;

a .GT _F X
t /t2Œ0;T �-martingale, for ' 2 C1c .R

d /. We then complete the proof exactly as
in Step 4 of the proof of Proposition 5.1.

6. Superposition from Fokker–Planck equation on P .Rd / to SPDE

Proof of Theorem 1.5. The main idea of the proof is to recast .Pt /t2Œ0;T � as probability
measures on R1 and to use the superposition principle of [66, Theorem 7.1].

Step 1 (Reduction from P .Rd / to R1). We start by establishing the following lemma
which yields a countable collection of suitable test functions.

Lemma 6.1. There exists a set ¹'n W n 2 Nº � C1c .R
d / such that for all ' 2 C1c .R

d /

one can find a sequence .nk/k2N such that .'nk ;r'nk ;r
2'nk /k2N converges uniformly

to .';r';r2'/.

Proof. It suffices to show that the space C1c .R
d / is separable under the norm

k'k� WD max
j˛j�2

kD˛'kCb.Rd /;

where we have adopted multi-index notation. We first prove that C1c .R
d / is separable

under the uniform norm. By the Stone–Weierstrass theorem, C.Œ�K;K�d / is separable
under the uniform norm for every K 2 N, e.g., the polynomials with rational coefficients
form a countable dense set. Therefore, as a subspace of a separable space,C1c ..�K;K/

d /

is also separable under the uniform norm for every K 2 N. Suppose SK is a count-
able dense subset of C1c ..�K;K/

d /. Then
S
K2N SK forms a countable dense subset

of C1c .R
d / under the uniform norm.

Further, for each m 2 N, the space C1c .R
d /m is separable under the norm

k'k1 WD max
1�i�m

k'ikCb.Rd /; ' D .'1; : : : ; 'm/ 2 C
1
c .R

d /m:

Consider the mapping M WC1c .R
d /!C1c .R

d /d
2CdC1, ' 7! .';r';r2'/. Then k'k�

D kM.'/k1, so M is an isometry from .C1c .R
d /; k � k�/ to .M.C1c .R

d //; k � k1/.
Since .M.C1c .R

d //; k � k1/ is a subspace of a separable space, it is itself separable,
which proves that .C1c .R

d /; k � k�/ is separable.

Henceforth, we fix ¹'n W n 2Nº � C1c .R
d / as in Lemma 6.1 and define the mapping

� W P .Rd /! R1; m 7! .hm;'ni/n2N . It is straightforward to see that � is an injection.
The next step is to lift the PDE (1.9) to P .R1/.
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Step 2 (Identifying the PDE in P .R1/). Let Qt D Pt ı ��1, i.e., Qt is the law of
�.�t / when L.�t / D Pt . Let us write C1c .R

1/ for the set of smooth cylindrical func-
tions on R1, that is, functions of the form f .z/ D zf .z1; : : : ; zk/ for some k 2 N and
zf 2 C1c .R

k/. Applying (1.9) with ' D .'n/n2N we find, for every f 2 C1c .R
1/ and

t 2 Œ0; T �,Z
R1

f .z/ .Qt �Q0/. dz/

D

Z t

0

Z
R1

� 1X
iD1

@if .z/ ˇi .s; z/C
1

2

1X
i;jD1

@ijf .z/ ˛ij .s; z/

�
Qs. dz/ ds; (6.1)

where ˇ W Œ0; T � �R1 ! R1 and ˛ W Œ0; T � �R1 ! R1 �R1 are given by

ˇi .t; z/ D h�
�1.z/; L

b;a

t;��1.z/
'i i;

˛ij .t; z/ D h�
�1.z/; .r'i /

>
.t; ��1.z/; �/i � h��1.z/; .r'j /
>
.t; ��1.z/; �/i:

Note that the summations in (6.1) are in fact finite sums, since f is cylindrical, and that we
only need to define ˇ.t; �/ and ˛.t; �/ on �.P .Rd //, sinceQs is supported on �.P .Rd //.

Step 3 (Using the superposition principle in R1). We use [66, Theorem 7.1] upon
checking that, for i; j 2 N,Z T

0

Z
R1
jˇi .t; z/j

pQt . dz/ dt D
Z T

0

Z
P .Rd /

jhm;L
b;a
t;m'i ij

p Pt . dm/ dt

� 2p�1k'ik
p

C2
b
.Rd /

Z T

0

Z
P .Rd /

�
kb.t;m; �/k

p

Lp.m/
C ka.t;m; �/k

p

Lp.m/

�
Pt .dm/dt <1;

and similarlyZ T

0

Z
R1
j˛ij .t; z/j

pQt . dz/ dt

D

Z T

0

Z
P .Rd /

jhm; .r'i /
>
.t; m; �/i � hm; .r'j /

>
.t; m; �/ijp Pt . dm/ dt

� k'ik
p

C1
b
.Rd /
k'j k

p

C1
b
.Rd /

Z T

0

Z
P .Rd /

k
.t; m; �/k
2p

Lp.m/
Pt . dm/ dt <1:

By [66, Theorem 7.1], there exists a solution Q 2 P .C.Œ0; T �IR1// of the martingale
problem associated to the system of SDEs

dZit D h�
�1.Zt /;L

b;a

t;��1.Zt /
'i idt C h��1.Zt /; .r'i />
.t;��1.Zt /; �/idBt ; i 2 N;

(6.2)
for which the corresponding marginal flow .L.Zt //t2Œ0;T � equals .Qt /t2Œ0;T �.

Step 4 (Mapping back to C.Œ0; T �IP .Rd //). We claim that Q gives rise to a weak
solution of (6.2). Indeed, by following [43, Chapter 5, proof of Proposition 4.6] the claim
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can be reduced to a martingale representation theorem in the form of [43, Chapter 3,
Theorem 4.2], but in our case with countably infinitely many local martingales. To deal
with this discrepancy we choose, for each t 2 Œ0; T �, the smallest nt � d such that the top
nt � d submatrix of the matrix .h��1.Zt /; .r'i />
.t; ��1.Zt /; �/i/i2N has the same
(finite) rank as the full matrix. We can now carry out the constructions in [43, Chapter 3,
proof of Theorem 4.2] on the sets ¹t 2 Œ0; T � W nt D nº for n � d separately (picking the
square root of the diffusion matrix as the one in (6.2) padded by n� d zero columns), and
combine them in the natural way to defineB. Thanks to (6.2), for .�t WD ��1.Zt //t2Œ0;T �
we have

dh�t ; 'i i D h�t ; L
b;a
t;�t

'i i dt C h�t ; .r'i />
.t; �t ; �/i dBt ; i 2 N:

For an arbitrary ' 2 C1c .R
d /, we use Lemma 6.1 to find a sequence .'nk /k2N such

that .'nk ;r'nk ;r
2'nk / converges uniformly to .';r';r2'/. Then h�t ; 'nk i

k!1
����!

h�t ; 'i a.s. for every t 2 Œ0; T �. In addition,ˇ̌̌̌ Z t

0

h�s; L
b;a
s;�s

'nk i ds �
Z t

0

h�s; L
b;a
s;�s

'i ds
ˇ̌̌̌

� k'nk � 'kC2
b
.Rd /

Z t

0

�
h�s; jb.s; �s; �/j C ja.s; �s; �/ji

�
ds

k!1
����! 0 a:s:

for every t 2 Œ0; T �, since (1.10) and Jensen’s inequality imply that the latter integral has
finite expectation and is therefore finite a.s. For the stochastic integral term, we apply the
Itô isometry:

E

��Z t

0

h�s; .r'
nk />
.s; �s; �/i dBs �

Z t

0

h�s; .r'/
>
.s; �s; �/i dBs

�2�
D E

�Z t

0

jh�s; .r'
nk � r'/>
.s; �s; �/ij

2 ds
�

� k'nk � 'k
2

C1
b
.Rd /

E

�Z t

0

h�s; j
.s; �s; �/ji
2 ds

�
k!1
����! 0;

where the latter expectation is finite by (1.10) and Jensen’s inequality. All in all,

h�t ; 'i D h�0; 'i C

Z t

0

h�s; L
b;a
s;�s

'i ds C
Z t

0

h�s; .r'/
>
.s; �s; �/i dBs a:s:;

for every t 2 Œ0; T �. In view of the a.s. continuity of both sides in t (for the left-hand side,
we exploit that uniform limits of continuous functions are continuous), we conclude that

dh�t ; 'i D h�t ; L
b;a
t;�t

'i dt C h�t ; .r'/>
.t; �t ; �/i dBt ; t 2 Œ0; T �; ' 2 C1c .R
d /;

as desired. We note lastly that we may take the probability space here to be the canon-
ical one, C.Œ0; T �IP .Rd // � C.Œ0; T �IRd /, housing the process � and the Brownian
motionB, equipped with its canonical filtration G D .Gt /t2Œ0;T �. In particular, GT is then
countably generated, as the Borel � -algebra on a Polish space.



D. Lacker, M. Shkolnikov, J. Zhang 3272

7. Proof of the mimicking result, Corollary 1.6

The assumption F X
t ??F W

T _ GT jF
W
t _ Gt for all t implies F X

t ?? GT jGt for all t , by
Lemma 2.1. This implies that�t DL.Xt jGT /DL.Xt jGt / a.s. The existence of a jointly
measurable version of .t;m;x/ 7! EŒbt j�t Dm;Xt D x� follows by general arguments,
and similarly for � : Let � be an independent uniform random variable in Œ0; T �, and take
a measurable version of .t;m;x/ 7! EŒb� j � D t , �� D m, X� D x�. See [14, Section 5]
for full details.

We turn to the main line of proof. By Itô’s formula, for all ' 2 C 2c .R
d / and t 2 Œ0; T �,

'.Xt / � '.X0/ D

Z t

0

�
r'.Xs/ � bs C

1
2
r
2'.Xs/ W .�s�

>
s C y
 y


>.s; �s;Xs//
�

ds

C

Z t

0

r'.Xs/
>�s dWs C

Z t

0

r'.Xs/
>
y
.s; �s;Xs/ dBs :

Next, we take the conditional expectation with respect to GT , usingW ?? GT , the assump-
tion that F X

t ??F W
T _ GT jF

W
t _ Gt for all t 2 Œ0;T �, and the stochastic Fubini theorem

(see Lemma B.1) to get

h�t ; 'i�h�0; 'i D

Z t

0

E
�
r'.Xs/�bsC

1
2
r
2'.Xs/ W .�s�

>
s Cy
 y


>.s; �s;Xs//
ˇ̌

Gs
�

ds

C

Z t

0

EŒr'.Xs/
>
y
.s; �s;Xs/ jGs� dBs

D

Z t

0

E
�
r'.Xs/�bsC

1
2
r
2'.Xs/ W .�s�

>
s Cy
 y


>.s; �s;Xs//
ˇ̌

Gs
�

ds

C

Z t

0

h�s; .r'/
>
y
.s; �s; �/i dBs :

Thus, for any f 2 C 2c .R
k/ and ' D .'1; : : : ; 'k/ 2 C 2c .R

d /k , Itô’s formula yields

f .h�t ;'i/ � f .h�0;'i/

D
1

2

Z t

0

kX
i;jD1

@ijf .h�s;'i/ h�s; .r'i /
>
y
.s; �s; �/i � h�s; .r'j /

>
y
.s; �s; �/i ds

C

Z t

0

kX
iD1

@if .h�s;'i/E
�
r'i .Xs/�bsC

1
2
r
2'i .Xs/ W .�s�

>
s Cy
 y


>.s; �s;Xs//
ˇ̌

Gs
�

ds

C

Z t

0

kX
iD1

@if .h�s;'i/ h�s; .r'i /
>
y
.s; �s; �/i dBs : (7.1)

We now take the expectation on both sides of (7.1) and recall that �s is Gs-measurable,
so that the expectation of the second term on the right-hand side of (7.1) evaluates to
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Z t

0

kX
iD1

E
�
@if .h�s;'i/E

�
r'i .Xs/�bsC

1
2
r
2'i .Xs/ W .�s�

>
s Cy
 y


>.s;�s;Xs//
ˇ̌
Gs
��

ds

D

Z t

0

kX
iD1

E
�
@if .h�s;'i/

�
r'i .Xs/ � bs C

1
2
r
2'i .Xs/ W .�s�

>
s C y
 y


>.s;�s;Xs//
��

ds:

In view of the tower rule with respect to the � -algebra generated by �s and Xs ,

E
�
@if .h�s;'i/

�
r'i .Xs/ � bs C

1
2
r
2'i .Xs/ W .�s�

>
s C y
 y


>.s; �s;Xs//
��

D E
�
@if .h�s;'i/

�
r'i .Xs/ � yb.s; �s;Xs/C

1
2
r
2'i .Xs/ W .y� y�

>
C y
 y
>/.s; �s;Xs/

��
D E

�
@if .h�s;'i/ h�s;r'i � yb.s; �s; �/C

1
2
r
2'i W .y� y�

>
C y
 y
>/.s; �s; �/i

�
:

Now let Pt WD L.�t / for t 2 Œ0; T �, set ya D y� y�> C y
 y
>, and define L
yb;ya
t;m from .yb; ya/

as in (1.7). Take expectations in (7.1) to get

Z
P .Rd /

f .hm;'i/ .Pt � P0/. dm/ D
Z t

0

Z
P .Rd /

h kX
iD1

@if .hm;'i/hm;L
yb;ya
s;m'i i

C
1

2

kX
i;jD1

@ijf .hm;'i/hm; .r'i /
>
y
.s;m; �/i � hm; .r'j /

>
y
.s;m; �/i

i
Ps. dm/ ds:

We aim to apply Theorem 1.5, and for this purpose we claim thatZ T

0

Z
P .Rd /

hm; jyb.t; m; �/jp C j.y� y�> C y
 y
>/.t; m; �/jpiPt . dm/ dt <1:

Indeed, using �t D L.Xt jGT / and the definition of yb along with Jensen’s inequality,Z T

0

Z
P .Rd /

hm; jyb.t; m; �/jpiPt . dm/ dt D E

�Z T

0

h�t ; jyb.t; �t ; �/j
p
i dt

�
D E

�Z T

0

EŒjyb.t; �t ;Xt /j
p
jGt � dt

�
D E

�Z T

0

jEŒbt j�t ;Xt �j
p dt

�
� E

�Z T

0

jbt j
p dt

�
<1;

and similarlyZ T

0

Z
P .Rd /

hm; j.y� y�> C y
 y
>/.t; m; �/jpiPt . dm/ dt

� E

�Z T

0

j�t�
>
t C y
 y


>.t; �t ;Xt /j
p dt

�
<1:
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We may now apply Theorem 1.5 to construct a filtered probability space . z�; yG; zP /,
with yGT countably generated, supporting a d -dimensional yG-Brownian motion yB and
a yG-adapted P .Rd /-valued process .y�t /t2Œ0;T � solving

dhy�t ; 'i D
˝
y�t ;r' � yb.t; y�t ; �/C

1
2
r
2' W .y� y�> C y
 y
>/.t; y�t ; �/

˛
dt

C hy�t ; .r'/
>
y
.t; y�t ; �/i d yBt (7.2)

with L.y�t / D Pt D L.�t /, t 2 Œ0; T �.
Next, we apply Theorem 1.3 with the choice of coefficients as in Remark 1.1:

.t; !; x/ 7!
�
yb.t; y�t .!/; x/; ya.t; y�t .!/; x/; y
.t; y�t .!/; x/

�
:

This yields an extension . y� D z� � �0; yF ; yP / of the probability space . z�; yG; zP / sup-
porting yF -Brownian motions yW and yB, with yW independent of yGT , and a continuous
yF -adapted d -dimensional process yX which satisfies

d yXt D yb.t; y�t ; yXt / dt C y� .t; y�t ; yXt / d yWt C y
.t; y�t ; yXt / d yBt ;

with y�t D L. yXt j yGT / D L. yXt j yGt / a.s. and such that F
yX
t ?? F

yW
T _

yGT jF
yW
t _

yGt for
each t 2 Œ0; T �. Finally, for all g 2 Cb.Rd /, h 2 Cb.P .Rd //, and t 2 Œ0; T � we have

Œ�EŒg.Xt /h.�t /� D E
�
EŒg.Xt / jGt � h.�t /

�
D EŒh�t ; gi h.�t /� D EŒhy�t ; gih.y�t /�

D E
�
EŒg. yXt / j yGt � h.y�t /

�
D EŒg. yXt /h.y�t /�: (7.3)

Thus . yXt ; y�t /
d
D .Xt ; �t / for all t 2 Œ0; T �, which completes the proof.

8. Application to controlled McKean–Vlasov dynamics

The original mimicking theorem of [14,37] can be used to prove both (1) the existence of
optimal Markovian controls in classical stochastic optimal control problems and (2) the
equivalence of open-loop and Markovian formulations of the said control problems. The
early references on this topic [32, 39] use an alternative but related approach often called
Krylov’s Markov selection rather than the mimicking theorem (though see also [50]). To
carry out this approach one typically first establishes the existence of an optimal control
in a weak or relaxed sense, in which controls are allowed to include additional random-
ization; this relaxation facilitates compactness arguments. With a weak optimal control in
hand, the second step is to apply the mimicking theorem to project away the additional
randomness and obtain a Markovian control which, under suitable convexity assumptions,
achieves a lower cost.

Let us sketch a simple illustration of this second step. Suppose we are given a filtered
probability space .�;F ;P / supporting a controlled SDE of the form

dXt D ˛t dt C dWt ;
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where W is an F -Brownian motion and ˛ an F -progressively measurable and square-
integrable process. Then, defining the Markovian control y̨.t; x/ D EŒ˛t jXt D x�, the
mimicking theorem of [14, Corollary 3.7] ensures that there exists a weak solution of

d yXt D y̨.t; yXt / dt C d yWt

such that yXt
d
D Xt for all t . If f D f .x; a/ and g D g.x/ are suitably integrable cost

functions, and a 7! f .x; a/ is convex for each x, then applying the identity yXt
d
D Xt

followed by Jensen’s inequality yields

E

�Z T

0

f . yXt ; y̨.t; yXt // dt C g. yXT /
�
� E

�Z T

0

f .Xt ;˛t / dt C g.XT /
�
:

In other words, starting from any open-loop control ˛ as above (that is, progressively
measurable with respect to some filtration with respect to whichW is a Brownian motion),
we can construct a Markovian control achieving a lower cost. In particular, the optimal
value over open-loop controls equals that over Markovian controls, and if the open-loop
problem admits an optimizer then so does the Markovian problem.

This procedure has been applied in the setting of mean field control in [54]. The cost
functions therein depend non-linearly on the law of the state process, i.e., f .Xt ;˛t / and
g.XT / are replaced with f .L.Xt /;˛t / and g.L.Xt //. The argument given above applies
essentially without change, because the construction of a Markovian control does not alter
the time-t marginal laws. Similarly, this method works well for proving the existence of
Markovian equilibria for mean field games [9, 52]. It should be stressed that the results
cited in this subsection are limited to settings without common noise.

For mean field control problems with common noise, the situation is substantially
more complex because the measure flow involved is stochastic. The following explains
how our mimicking result, Corollary 1.6, can be used in this setting. We are given a
Polish space A (the control space), an initial distribution �0 2 P .Rd /, and measurable
functions

.b; � ; f / W Œ0; T � �Rd �P .Rd / � A! Rd �Rd�d �R;


 W Œ0; T � �Rd �P .Rd /! Rd�d ;

g W Rd �P .Rd /! R:

The common noise coefficient 
 is uncontrolled, as is the case almost universally in the
literature for technical reasons. We assume a form of Roxin’s condition, namely that the
subset of Rd �Rd�d �R given by®

.b.t;x; m; a/; ��>.t;x; m; a/; z/ W z 2 R; a 2 A; z � f .t;x; m; a/
¯

is closed and convex, for each .t;x; m/ 2 Œ0; T � �Rd �P .Rd /: (8.1)

For example, this holds if � is uncontrolled, b is linear in a, and f is convex in a (with A
a convex subset of a vector space). Alternatively, this includes relaxed control setups in



D. Lacker, M. Shkolnikov, J. Zhang 3276

which A D P . zA/ for some other Polish space zA and .b; ��>; f / is linear in the sense
that .b; ��>; f /.t;x; m; a/ D

R
zA
.zb; z� z�>; zf /.t;x; m; za/ a.d za/.

The mean field control problem with common noise is, roughly speaking, to choose a
control ˛ to minimize the objective

E

�Z T

0

f .t;Xt ; �t ;˛t / dt C g.XT ; �T /
�
;

where the state process X is given by

dXt D b.t;Xt ; �t ;˛t / dt C � .t;Xt ; �t ;˛t / dWt C 
.t;Xt ; �t / dBt ;

�t D L.Xt jGt /:

HereW is independent of the filtration G, and B is a G-Brownian motion.
The few recent papers on mean field control with common noise, such as [29, 60],

have proposed various notions of admissible controls, usually with the goal of deriving a
dynamic programming principle and an associated Hamilton–Jacobi–Bellman equation.
See also [17, Chapter I.6] for the case without common noise. The following definition
of a weak control is essentially [29, Definition 2.1], which is closely related to the weak
solution concept introduced for mean field games in the earlier papers [18, 53].

Definition 8.1. A weak control is a tuple R D .�;F ;G;P ;B;W ; �;X ;˛/ such that:

(1) .�;F ;P / is a filtered probability space and G a subfiltration of F .

(2) W and B are independent F -Brownian motions of dimension d .

(3) B is G-adapted.

(4) � is a continuous G-adapted P .Rd /-valued process satisfying �t D L.Xt j GT / D

L.Xt jGt / a.s. for each t 2 Œ0; T �.

(5) ˛ is an F -progressively measurable A-valued process.

(6) X is a continuous F -adapted Rd -valued process satisfying

dXt D b.t;Xt ; �t ;˛t / dt C � .t;Xt ; �t ;˛t / dWt C 
.t;Xt ; �t / dBt ; X0 � �0:

(7) For some p > 1, we have

E

�Z T

0

�
jb.t;Xt ; �t ;˛t /j

p
C j��>.t;Xt ; �t ;˛t /j

p
C j
.t;Xt ; �t /j

2p
�

dt
�
<1;

E

�Z T

0

�
jf .t;Xt ; �t ;˛t /j C jg.XT ; �T /j

�
dt
�
<1:

(8) X0,W , and GT are independent.

(9) .Xs;˛s/s2Œ0;t� ?? F W
T _ GT jF

W
t _ Gt for each t 2 Œ0; T �.

The cost of the weak control R is the quantity

J.R/ WD E

�Z T

0

f .t;Xt ; �t ;˛t / dt C g.XT ; �T /
�
;
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which is well-defined thanks to property (7). A Markovian control is a weak control for
which there exists a measurable function y̨ W Œ0; T � �Rd � P .Rd /! A such that ˛t D
y̨.t;Xt ; �t / a.s. for a.e. t 2 Œ0; T �.

Remark 8.2. In [30, Definition 2.3], a weak control is defined similarly. The single sig-
nificant difference is that instead of (9) they require that Ft _ F W

T ?? GT j Gt for each
t 2 Œ0; T �. But, by Lemma 2.1, this is equivalent to Ft ?? F W

T _ GT jF
W
t _ Gt for all

t 2 Œ0; T �, which implies (9). If F D FX _ F˛ _ FW _G is the minimal filtration, these
conditions are equivalent.

Our main result in this section shows that a weak control can be turned into a superior
Markovian control without changing the marginal flow .L.Xt ; �t //t2Œ0;T �.

Theorem 8.3. Assume the convexity condition (8.1). Then for every weak control R D

.�;F ;G;P ;B;W ;�;X ;˛/ there is a Markovian control yRD. y�; yF ; yG; yP ; yB; yW ; y�; yX ; y̨/

satisfying yP ı . yXt ; y�t /�1 D P ı .Xt ; �t /�1 for all t 2 Œ0; T �, and also J. yR/ � J.R/.
In particular, the optimal cost over Markovian controls equals the optimal cost over weak
controls, and the existence of an optimal weak control implies the existence of an optimal
Markovian control.

Proof. Let R D .�; F ;G; P ;B;W ; �;X ; ˛/ be a weak control. Using the convexity
assumption (8.1), we may find a measurable3 function y̨ W Œ0; T � � Rd � P .Rd /! A

such that

b.t;Xt ; �t ; y̨.t;Xt ; �t // D EŒb.t;Xt ; �t ;˛t / jXt ; �t �;

��>.t;Xt ; �t ; y̨.t;Xt ; �t // D EŒ��>.t;Xt ; �t ;˛t / jXt ; �t �;

f .t;Xt ; �t ; y̨.t;Xt ; �t // � EŒf .t;Xt ; �t ;˛t / jXt ; �t �

(8.2)

a.s., for a.e. t 2 Œ0; T �. By Corollary 1.6, there exists a filtered probability space . y�; yF ; yP /
with a subfiltration yG � yF , two yF -Brownian motions yW and yB with yW independent
of yGT and yB adapted to yG, and a weak solution yX of

d yXt D b.t; yXt ; y�t ; y̨.t; yXt ; y�t // dtC� .t; yXt ; y�t ; y̨.t; yXt ; y�t // d yWtC
.t; yXt ; y�t / d yBt ;

y�t D L. yXt j yGT / D L. yXt j yGt /; t 2 Œ0; T �;

such that . yXt ; y�t /
d
D .Xt ; �t / for all t 2 Œ0; T �. Moreover, F

yX
t ?? F

yW
T _

yGT jF
yW
t _

yGt

for each t 2 Œ0; T �. Let y̨ t WD y̨.t; yXt ; y�t / and yR WD . y�; yF ; yG; yP ; yB; yW ; y�; yX ; y̨/.
It is immediate that yR satisfies conditions (1)–(6) of Definition 8.1. Condition (7)

follows from Jensen’s inequality and (8.2). To check (8), note first that since X0 ?? GT

we have �0 D L.X0 jGT / D L.X0/. Since y�0
d
D �0, this implies L. yX0 j yGT / D y�0 D

L.X0/ D L. yX0/, which shows that yX0 ?? yGT . Next, use Lemma 2.1 (the implication
(1))(2) with H D F

yX , F
yW and yG) to deduce that yW is independent of �. yX0/ _ yGT .

3This requires a measurable selection argument; cf. [39, Theorem A.9] or [31, Lemma 3.1].
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These two facts combined yield (8), the mutual independence of yX0, yW , and yGT . To check
condition (9), simply use the conditional independence of F

yX
t ?? F

yW
T _

yGT jF
yW
t _

yGt
for each t 2 Œ0; T � along with the expression y̨ t D y̨.t; yXt ; y�t /.

We have thus shown that yR is a Markovian control. Finally, we use (8.2) along with

Fubini’s theorem and the fact that . yXt ; y�t /
d
D .Xt ; �t / for all t 2 Œ0; T � to conclude that

J. yR/ D E

�Z T

0

f .t; yXt ; y�t ; y̨.t; yXt ; y�t // dt C g. yXT ; y�T /
�

D E

�Z T

0

f .t;Xt ; �t ; y̨.t;Xt ; �t // dt C g.XT ; �T /
�

� E

�Z T

0

f .t;Xt ; �t ;˛t / dt C g.XT ; �T /
�
D J.R/:

Theorem 8.3 is useful in understanding the relationships between the various natural
formulations of the mean field control problem, a delicate matter in the case of com-
mon noise [30]. In addition, the very recent results of [30] characterize limits of n-player
optimal control problems in terms of weak controls; Theorem 8.3 then implies that the
limits can be characterized instead in terms of Markovian controls, at least if one is only
interested in the convergence of the time-t marginals of the measure-valued process.

Similar arguments may be possible for mean field games with common noise; see [17]
for a recent comprehensive overview. General results on existence, uniqueness, and limit
theory require working with a notion of weak equilibrium which is well-suited for weak
convergence arguments [17, 18, 53]. A reduction from such a weak equilibrium to some
form of Markovian equilibrium is a much more delicate task than for the control problems
described in this section, and we leave it for future work.

Appendix A. Proof of compatibility lemma

Here we give the proof of Lemma 2.1. We start with a few alternative characterizations of
the compatibility condition, also known as immersion, or the H-hypothesis, in the litera-
ture. Given two filtrations F1 D .F 1

t /t2Œ0;T � and F2 D .F 2
t /t2Œ0;T � defined on the same

space, with F 1
t � F 2

t for all t , the following are well known to be equivalent [13, Theo-
rem 3]:

� F 2
t ?? F 1

T jF
1
t for each t 2 Œ0; T �.

� F1 is immersed in F2, in the sense that every bounded F1-martingale is also an F2-
martingale.

� EŒZ j F 2
t � D EŒZ j F 1

t � a.s., for each t 2 Œ0; T � and each bounded F 1
T -measurable

random variable Z.

Note that if F2 D F1 _ F3 for some auxiliary filtration F3 D .F 3
t /t2Œ0;T �, then the first

bullet point can be rewritten as F 3
t ?? F 1

T jF
1
t for all t 2 Œ0; T �. We will use these char-

acterizations in the proof of Lemma 2.1.
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Proof of Lemma 2.1. We first show that (1))(2a). We use the fact that (1) and (2a) are
respectively equivalent to

(10) EŒZ jHt _F W
t _ Gt �DEŒZ jF W

t _ Gt � a.s., for each t 2 Œ0;T � and each bounded
F W
T _ GT -measurable random variable Z.

(2a0) EŒZ jHt _ F W
t _ Gt � D EŒZ jH0 _ F W

t _ Gt � a.s., for each t 2 Œ0; T � and each
bounded H0 _ F W

T _ GT -measurable random variable Z.

Fix t 2 Œ0; T �. Consider Z of the form Z D ZH0 Z
W
T Z

G
T , where ZH0 , ZWT , and ZGT are

bounded random variables, measurable with respect to H0, F W
T , and GT , respectively.

Then factoring out ZH0 and applying (10) yields

EŒZ jHt _F W
t _ Gt �D Z

H
0 EŒZWT Z

G
T jHt _F W

t _ Gt �D Z
H
0 EŒZWT Z

G
T jF

W
t _ Gt �:

This shows that EŒZ jHt _ F W
t _ Gt � is H0 _ F W

t _ Gt -measurable, which in turn
implies EŒZ jHt _F W

t _ Gt �D EŒZ jH0 _F W
t _ Gt � a.s. As this holds for allZ of the

formZ DZH0 Z
W
T Z

G
T described above, by a monotone class argument the same holds for

any bounded H0 _ F W
T _ GT -measurable random variable Z. This proves (2a0), which

in turn implies (2a).
In showing that both (1))(2b) and (2))(1) we rely on the fact (mentioned above)

that (1), (2a), and (2b) are respectively equivalent to:

(100) Every bounded FW _G-martingale is also an H _ FW _G-martingale.

(2a00) Every bounded .H0 _F W
t _ Gt /t2Œ0;T �-martingale is also an H _ FW _G-mar-

tingale.

(2b00) Every bounded G-martingale is also an H _G-martingale.

Now, to prove that (1))(2b), we instead show that (100))(2b00). Since F W
T ?? GT , it is

straightforward to check that every bounded G-martingale is also an FW _G-martingale
and thus, by (100), also an H _ FW _ G-martingale. But any H _ FW _ G-martingale
which is adapted to the smaller filtration H _G must also be an H _G-martingale. This
shows that (100))(2b00).

To prove that (1))(2c), note first that F W
0 is the trivial � -algebra. Hence, (1) implies

that H0 ?? F W
T _ GT j G0. For random variables ZH0 , ZWT , and ZGT , measurable with

respect to H0, F W
T , and GT , respectively, we thus have

EŒZH0 Z
W
T Z

G
T � D E

�
EŒZH0 jG0�Z

W
T Z

G
T

�
D EŒZWT �E

�
EŒZH0 jG0�Z

G
T

�
D EŒZWT �EŒZ

H
0 Z

G
T �:

Indeed, the second step follows from the assumed independence of W and GT , and the
other two steps from the conditional independence H0??F W

T _GT jG0. This proves (2c).
Next, we show that (2))(1). With (100) and (2a00) in mind, it suffices to check

that every bounded FW _ G-martingale is also an .H0 _ F W
t _ Gt /t2Œ0;T �-martingale,

since then (2a00) will show that it is therefore also an H _ FW _ G-martingale. In
light of the equivalences summarized before the proof, it suffices to instead show that
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H0 ?? F W
T _ GT jF

W
t _ Gt for each t 2 Œ0; T �. To prove this, note that for any bounded

H0-measurable random variable Z we may use the independence of W and H0 _ GT
from (2c) to deduce

EŒZ jF W
T _ GT � D EŒZ jGT � D EŒZ jG0�;

where the last step follows from (2b). The same argument applies with t in place of T :

EŒZ jF W
t _ Gt � D EŒZ jGt � D EŒZ jG0�:

This shows that EŒZ j F W
T _ GT � D EŒZ j F W

t _ Gt �. We deduce H0 ?? F W
T _

GT jF
W
t _ Gt , which completes the proof of (1).

It is clear that (3))(1). To prove that (1))(3), note that F W
T D F W

t _ �.Ws �Wt W

s 2 Œt; T �/. With this in mind, the independence of W and GT then easily implies that
F W
T ?? GT given F W

t _ Gt , which is enough to deduce (3) from (1).
We turn to (3))(4a). In this and the remaining steps of the proof we write

F W
>t WD �.Ws �Wt W s 2 Œt; T �/; t 2 Œ0; T �:

It suffices to verify that GT _ F W
t _Ht ?? F W

>t for each t 2 Œ0; T �. Fix t 2 Œ0; T �, and
let Z be a bounded F W

>t -measurable random variable. Independence ofW and GT yields
EŒZ jF W

t _ Gt � D EŒZ�. Using (3) we have Z ??Ht _ GT jF
W
t _ Gt , and thus

EŒZ jF W
t _Ht _ GT � D EŒZ jF W

t _ Gt � D EŒZ�:

Next, we prove (1))(4b). As discussed above, (1) implies (100), that every bounded
FW _G-martingale is also an H_ FW _G-martingale. BecauseW ?? GT , it is straight-
forward to check that every bounded G-martingale is also an FW _G-martingale. Thus,
every bounded G-martingale is an H _ FW _G-martingale, which is equivalent to (4b).

We next show that (4))(1). Fix t 2 Œ0; T � and bounded random variables ZHt , ZWt ,
ZWtC, ZGT , ZGt , which are measurable with respect to Ht , F W

t , F W
>t , GT , and Gt , respec-

tively. The independence ofW and GT easily implies

EŒZWtCZ
G
T jF

W
t _ Gt � D EŒZWtC�EŒZ

G
T jGt �:

From (4a) we know that ZWtC ?? GT _Ht _ F W
t , and we compute

EŒZHt Z
W
tCZ

G
T Z

W
t Z

G
t � D EŒZWtC�EŒZ

H
t Z

G
T Z

W
t Z

G
t �

D EŒZWtC�E
�
ZHt Z

W
t EŒZGT jGt �Z

G
t

�
D E

�
ZHt Z

W
t EŒZWtCZ

G
T jF

W
t _ Gt �Z

G
t

�
D E

�
EŒZHt jF

W
t _ Gt �EŒZ

W
tCZ

G
T jF

W
t _ Gt �Z

W
t Z

G
t

�
:

Indeed, the second step follows from (4b). It follows that Ht and GT _ F W
>t are condi-

tionally independent given F W
t _ Gt . Since F W

T D F W
t _ F W

>t , we deduce (1).
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Next, we show that (5))(3). Fix t 2 Œ0; T �. Since Ht _ F W
T ?? GT j Gt by (5), we

infer that

EŒZ jHt _ F W
T _ Gt � D EŒZ jGt �

for all bounded GT -measurable random variables Z. Using independence of W and GT ,
for such Z we easily deduce EŒZ jGt � D EŒZ jF W

t _ Gt �, and thus

EŒZ jHt _ F W
T _ Gt � D EŒZ jF W

t _ Gt �:

This shows GT ??Ht _ F W
T jF

W
t _ Gt . Writing F W

T D F W
>t _ F W

t , we deduce that
GT ?? Ht _ F W

>t j F
W
t _ Gt . But F W

>t ?? Ft and H _ FW _ G � F imply also that
F W
>t ??Ht jF

W
t _ Gt . Hence, the three � -algebras F W

>t , Ht , and GT are conditionally
independent given F W

t _ Gt . This proves (3).
Finally, we show that (4))(5). Fix t 2 Œ0;T �. Consider any bounded random variables

Z
H;W
t , ZWtC, ZGT , and ZGt , measurable with respect to Ht _ F W

t , F W
>t , GT , and Gt ,

respectively. Then

EŒZH;Wt ZWtCZ
G
T Z

G
t � D EŒZWtC�EŒZ

H;W
t ZGT Z

G
t �

D EŒZWtC�E
�
Z
H;W
t EŒZGT jGt �Z

G
t

�
D E

�
Z
H;W
t ZWtCEŒZGT jGt �Z

G
t

�
:

Indeed, the first and third step use F W
>t ?? GT _F W

t _Ht , which is (4a), and the second
step uses Ht _ F W

t ?? GT j Gt , which is (4b). We conclude that Ht _ F W
T ?? GT j Gt ,

which is (5).

Appendix B. Derivation of SPDE from SDE

In this section we give the proof of Proposition 1.2. We first state a stochastic version of
Fubini’s theorem, which can be found in various references, such as [38, Lemma 1.11]
or [56, Lemma A.1], in different degrees of generality. We include a short proof in our
setting for the sake of completeness.

Lemma B.1. Use the notation and assumptions of Lemma 2.1, and assume one .and
thus all/ of the equivalent conditions (1)–(5) therein holds. Assume also that .�; F ; P /
supports an F -Brownian motion B of dimension d which is adapted to G. Then, for any
G_H-progressively measurable process � of dimension d satisfying EŒ

R T
0
j�t j

2 dt � <1,
we have

E

�Z t

0

�s � dBs

ˇ̌̌̌
Gt

�
D

Z t

0

EŒ�s jGs� � dBs and E

�Z t

0

�s � dWs

ˇ̌̌̌
Gt

�
D 0

a.s., for each t 2 Œ0; T �.
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Proof. By linearity and a routine approximation in L2.Œ0; T � � �; dt � dP / by simple
predictable processes, it suffices to prove the claims in the case �u D Z 1Œr;s�.u/, where
0 � r � s � t and Z is a Gr _Hr -measurable Rd -valued random variable. For the first
claim, use property (2b) from Lemma 2.1 to deduce that Z ?? GT jGr , which yields

E

�Z t

0

�u � dBu

ˇ̌̌̌
Gt

�
D EŒZ � .Bs �Br / jGt � D EŒZ jGt � � .Bs �Br /

D EŒZ jGr � � .Bs �Br /:

For the second claim, apply property (4a) from Lemma 2.1 to get

E

�Z t

0

�u � dWu

ˇ̌̌̌
Gt

�
D EŒZ � .Ws �Wr / jGt � D EŒWs �Wr � � EŒZ jGt � D 0:

Proof of Proposition 1.2. First note that we may view L.X j GT / as a (regular version
of) the conditional law of the C.Œ0; T �IRd /-valued random variable X given GT , which
explains why .�t WD L.Xt jGT //t2Œ0;T � admits a continuous version. We use Lemma 2.1
to deduce that F X

t ?? GT j Gt for each t 2 Œ0; T �, which then implies claim (1). Indeed,
this conditional independence yields �t DL.Xt jGt / a.s. More generally, we deduce that

�s D L.Xs jGt / a.s.; 0 � s � t � T: (B.1)

Note also that the completeness of the filtered probability space .�; F ; P / along with
the a.s.-equality �t D L.Xt j Gt / ensure that the continuous version of .�t /t2Œ0;T � is in
fact F -adapted. Now, starting from the SDE (1.1), apply Itô’s formula to '.Xt /, where
' 2 C1c .R

d /, to get

'.Xt / D '.X0/C

Z t

0

Lb;as;!'.Xs/ ds C
Z t

0

.r'/>.Xs/
.s; !;Xs/ dBs

C

Z t

0

.r'/>.Xs/� .s; !;Xs/ dWs; t 2 Œ0; T �: (B.2)

For fixed t 2 Œ0; T �, we will take conditional expectations with respect to Gt . Noting that
�t D L.Xt jGt / a.s. and �0 D L.X0 jGt / a.s., the first two terms become

EŒ'.Xt / jGt � D h�t ; 'i; EŒ'.X0/ jGt � D h�0; 'i:

In view of Fubini’s theorem and (B.1), the third term yields

E

�Z t

0

Lb;as;!'.Xs/ ds
ˇ̌̌̌

Gt

�
D

Z t

0

EŒLb;as;!'.Xs/ jGt � ds D
Z t

0

h�s; L
b;a
s;!'i ds:

For the dWs and dBs integrals we use Lemma B.1, with H D FX , to get

E

�Z t

0

.r'/>.Xs/� .s; !;Xs/ dWs

ˇ̌̌̌
Gt

�
D 0
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and

E

�Z t

0

.r'/>.Xs/
.s; !;Xs/ dBs

ˇ̌̌̌
Gt

�
D

Z t

0

EŒ.r'/>.Xs/
.s; !;Xs/ jGs� dBs

D

Z t

0

h�s; .r'/
>
.s; !; �/i dBs :

Note that (1.2) ensures that all of the above integrals and expectations are well-defined.
Altogether, taking conditional expectations in (B.2) leads to

h�t ; 'i D h�0; 'i C

Z t

0

h�s; L
b;a
s;!'i ds C

Z t

0

h�s; .r'/
>
.s; !; �/i dBs :

In differential form, this is exactly the SPDE (1.4).

Appendix C. Strong existence for (1.1) in the setting of Proposition 3.1

Let X .0/ � X0 on Œ0; T=N � and define X .n/ on Œ0; T=N � by

X
.n/
t D X0 C

Z t

0

b.s; !;X .n�1/
s / ds C

Z t

0

� .s; !;X .n�1/
s / dWs

C

Z t

0


.s; !;X .n�1/
s / dBs :

Setting
�n D E

h
sup

Œ0;T=N�

jX .nC1/
�X .n/

j
p
i
;

we have

�n � 3
p�1 E

�
sup

t2Œ0;T=N�

ˇ̌̌̌ Z t

0

�
b.s; !;X .n/

s / � b.s; !;X .n�1/
s /

�
ds
ˇ̌̌̌p �

C 3p�1 E

�
sup

t2Œ0;T=N�

ˇ̌̌̌ Z t

0

�
� .s; !;X .n/

s / � � .s; !;X .n�1/
s /

�
dWs

ˇ̌̌̌p �
C 3p�1 E

�
sup

t2Œ0;T=N�

ˇ̌̌̌ Z t

0

�

.s; !;X .n/

s / � 
.s; !;X .n�1/
s /

�
dBs

ˇ̌̌̌p �
:

By Jensen’s inequality,

E

�
sup

t2Œ0;T=N�

ˇ̌̌̌ Z t

0

�
b.s; !;X .n/

s / � b.s; !;X .n�1/
s /

�
ds
ˇ̌̌̌p �

�

�
T

N

�p�1
E

�
sup

Œ0;T=N�

jX .n/
�X .n�1/

j
p

Z T=N

0

kb.s; !; �/k
p

C1
b
.Rd /

ds
�

� Dp T
p�1�n�1:
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Moreover, thanks to the Burkholder–Davis–Gundy and the Jensen inequalities,

E

�
sup

t2Œ0;T=N�

ˇ̌̌̌ Z t

0

�
� .s; !;X .n/

s / � � .s; !;X .n�1/
s /

�
dWs

ˇ̌̌̌p�
� Cp;d E

��Z T=N

0

j� .s; !;X .n/
s / � � .s; !;X .n�1/

s /j2 ds
�p=2�

� Cp;d

�
T

N

�p�1
2

E

�
sup

Œ0;T=N�

jX .n/
�X .n�1/

j
p

�Z T=N

0

k� .t; !; �/k
2p

Lip.Rd /
dt
�1=2�

�

q
.8d2/pDpT p�1 Cp;d �n�1;

where Cp;d < 1 is a constant depending only on p and d . Another application of the
Burkholder–Davis–Gundy and the Jensen inequalities yields

E

�
sup

t2Œ0;T=N�

ˇ̌̌̌ Z t

0

�

.s; !;X .n/

s / � 
.s; !;X .n�1/
s /

�
dBs

ˇ̌̌̌p �
�

q
DpT p�1 Cp;d �n�1:

With

Dp WD min
�
1

6
�

1

3p�1 T p�1
;

�
1

6
�

1

3p�1 Cp;d

�2
1

.8d2/p T p�1

�
;

we have

3p�1DpT
p�1
�
1

6
; 3p�1Cp;d

q
.8d2/pDpT p�1 �

1

6
; 3p�1Cp;d

q
DpT p�1 �

1

6
:

Thus, �n � 1
2
�n�1.

Similarly, for �1 and upon increasing the value of Cp;d if necessary,

E

�
sup

t2Œ0;T=N�

ˇ̌̌̌ Z t

0

�
b.s; !;X .1/

s / � b.s; !;X .0/
s /

�
ds
ˇ̌̌̌p �

� 2p�1
�
T

N

�p�1
E

�Z T=N

0

kb.t; !; �/k
p

Cb.Rd /
dt
�
� 2p�1Dp T

p�1;

E

�
sup

t2Œ0;T=N�

ˇ̌̌̌ Z t

0

�
� .s; !;X .1/

s / � � .s; !;X .0/
s /

�
dWs

ˇ̌̌̌p �
� 2p�1 Cp;d

�
T

N

�p�1
2

E

�Z T=N

0

k� 2.s; !; �/k
p

Cb.Rd /
ds
�1=2
� 2p�1 Cp;d

q
Dp T p�1;

E

�
sup

t2Œ0;T=N�

ˇ̌̌̌ Z t

0

�

.s; !;X .1/

s / � 
.s; !;X .0/
s /

�
dBs

ˇ̌̌̌p �
� 2p�1Cp;d

�
T

N

�p�1
2

E

�Z T=N

0

k
.s; !; �/k
2p

Cb.Rd /
ds
�1=2
� 2p�1 Cp;d

q
Dp T p�1:

Hence, �1 � 2p�1 and, by induction, �n � 2p�n. This and Markov’s inequality give
1X
nD1

P
�

sup
Œ0;T=N�

jX .nC1/
�X .n/

j
p
� 2�n=2

�
�

1X
nD1

2p�n=2 <1:



Superposition and mimicking theorems 3285

We now use the Borel–Cantelli lemma to extract an a.s. uniform limit of .X .n//n2N on
Œ0; T=N �, and we easily verify that the latter is a strong solution of (1.1) on Œ0; T=N �.
Iterating the construction we build a strong solution of (1.1) on Œ0; T �.

Funding. M. Shkolnikov is partially supported by the NSF grant DMS-1811723 and a Princeton
School of Engineering and Applied Science innovation research grant.
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