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Abstract. We show that the space of expanding maps contains an open and dense subset where
smooth conjugacy classes of expanding maps are determined by the values of the Jacobians of
return maps at periodic points.
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1. Introduction

Let M be a smooth closed manifold. Recall that a C r , r � 1, map f WM ! M is called
expanding if

kDf vk > kvk

for all non-zero v 2 TM and some choice of Riemannian metric on M . It is easy to see
that an expanding map is necessarily a covering map.

Recall that expanding maps have been classified up to topological conjugacy. Shub
[33] proved that M is covered by the Euclidean space and also that an expanding endo-
morphism of M is topologically conjugate to an affine expanding endomorphism of an
infranilmanifold if and only if the fundamental group �1.M/ contains a nilpotent sub-
group of finite index. Franks [15] showed that if M admits an expanding endomorphism
then �1.M/ has polynomial growth. Finally, in 1981, Gromov [19] completed the clas-
sification by showing that any finitely generated group of polynomial growth contains a
nilpotent subgroup of finite index. Hence any expanding endomorphism is topologically
conjugate to an affine expanding endomorphism of an infranilmanifold.

Let fi WMi!Mi beC r -smooth, r � 1, expanding maps i D 1;2. Also we will assume
that f1 and f2 are conjugate via a homeomorphism hWM1 ! M2, i.e., h ı f1 D f2 ı h.
For example, homotopic expanding maps on the same manifold are always conjugate.
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It is well known that h and its inverse are Hölder continuous. However, a priori h is
notC 1-smooth with obvious obstructions carried by the eigendata of periodic points. That
is, when h is C 1, the differential of the return map Df n1 .x/ is conjugate to Df n2 .h.x//
whenever x D f n1 .x/. A weaker necessary assumption is coincidence of Jacobian data,
i.e.,

Jac.f n1 /.x/ D Jac.f n2 /.h.x//

for all periodic points x D f n1 .x/.
In this paper we offer the following progress for higher-dimensional expanding maps:

For any r � 2 there exists aC r -dense andC 1-open subset U in the space ofC r expanding
maps such that if f1 2 U and f2 is an expanding map which is conjugate to f1 and
has the same Jacobian data then the conjugacy is C r�1. In the proof we use the fact
that f1 lives on an infranilmanifold. In the next section we will give precise statements
which, in particular, explicitly describe the set U in the next section. Our proof of this
result was partially inspired by the Embedding Theorem (or Reconstruction Theorem) of
Takens [36].

In dimension 1 smooth classification was already known. Indeed, Shub and Sullivan
showed that for C r , r � 2, expanding maps of the circle S1 the above condition on coin-
cidence of Jacobians implies that the conjugacy h is C r -smooth [34]. In fact, they proved
a stronger result that an absolutely continuous conjugacy (which is not, a priori, even con-
tinuous) must coincide a.e. with a smooth conjugacy provided that the Jacobian of one of
the expanding maps is not cohomologous to a constant.

The analogous “smooth conjugacy problem” in the setting of Anosov diffeomor-
phisms was completely resolved by de la Llave, Marco and Moriyón in dimension 2
[6,7,9]. In higher dimensions there was much partial progress: see e.g. [8,18,23] and ref-
erences therein. However, progress was made only for certain special classes of Anosov
diffeomorphisms such as conformal ones or with a fine dominated splitting. When com-
pared to this body of work, the current paper is very different. It relies on a fundamentally
different approach – to examine matching functions rather than matching measures. And
it yields a smooth classification on a large open set as opposed to characterization of
smooth conjugacy classes of certain special maps.

The next section contains the statement of our main technical result, Theorem 2.1.
Then we state a number of corollaries for the smooth conjugacy problem and discuss
necessity of various assumptions. Section 3 is devoted to preliminaries on properties of
the transfer operator associated to an expanding map. Section 4 contains the proof of the
main theorem under an additional simplifying assumption that the underlying manifold
is a torus; that assumption makes the proof much shorter and more transparent. Then in
Section 5 we prove Theorem 2.1 in full generality. In Section 6 we derive all the corollaries
on the smooth classification problem. Then, in Section 7, we give a number of examples of
expanding maps illustrating various features of our results and proofs. Finally, in Section 8
we state a generalized factor version of Theorem 2.1 and also give an application.
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2. The results

We adopt the standard convention and call a map f WM ! M C r -smooth, r � 0, or
just C r , if it is brc times continuously differentiable and its brc-th differential is Hölder
continuous with exponent r � brc. We also allow r D1 and r D ! (real analytic maps).
One defines C r -smooth functions on M in a similar way.

Recall that we denote by fi WMi !Mi , i D 1; 2, C r -smooth expanding maps and we
assume that f1 and f2 are conjugate by h, h ı f1 D f2 ı h. Given functions 'i WMi ! R,
i D 1; 2, we say that .f1; '1/ is equivalent to .f2; '2/ and write

.f1; '1/ � .f2; '2/

if there exists a function uWM1 ! R such that

'1 � '2 ı h D u � u ı f1:

Then, by the Livshits theorem [26], .f1; '1/ � .f2; '2/ if and only if for every periodic
point x 2 Fix.f n1 /,

n�1X
kD0

'1.f
k
1 .x// D

n�1X
kD0

'2.f
k
2 .h.x///:

Further, if the functions 'i areC r -smooth then the transfer function u is alsoC r -smooth.1

The following is our main technical result.

Theorem 2.1. Assume thatMi , i D 1;2, are closed manifolds homeomorphic to a nilman-
ifold. Let fi WMi !Mi , i D 1; 2, be C r -smooth, r � 1, expanding maps and assume they
are conjugate via a homeomorphism hWM1!M2. Then there exist manifolds NMi .which
are homeomorphic to nilmanifolds/ and C r fibrations pi WMi ! NMi , i D 1; 2, .whose
fibers are homeomorphic to a nilmanifold/ and C r expanding maps Nfi W NMi ! NMi , such
that fi fibers over Nfi , i.e.,

pi ı fi D Nfi ı pi ; i D 1; 2:

The conjugacy h maps fibers to fibers, i.e.,

p2 ı h D Nh ı p1;

where the induced conjugacy NhW NM1 ! NM2, Nh ı Nf1 D Nf2 ı Nh, is a C r diffeomorphism.
Further, the fibrations pi , i D 1; 2, have the following property. If 'i WMi ! R,

i D 1; 2, are C r -smooth functions such that .f1; '1/ � .f2; '2/ then there exist C r func-
tions N'i W NMi ! R, i D 1; 2, such that 'i is cohomologous to N'i ı pi over fi , i D 1; 2,
and

N'2 ı Nh D N'1:

1The Livshits theorem for expanding maps can be proved using the standard transitive point
argument [26]. There is no loss of regularity in the bootstrap argument for the transfer function; see
e.g. [22].



A. Gogolev, F. Rodriguez Hertz 3292

All manifolds in the above theorem, including the fibers of the fibrations, are con-
nected. All manifolds are homeomorphic to nilmanifolds but could carry exotic smooth
structures.

At this point we recommend that the reader looks at Example 7.1 to better understand
the statement of the above theorem.

Remark 2.2. The manifold NM1 may be equal toM1 or may be a point or may have some
dimension inbetween. In the first case we find that f1 and f2 are C r -smoothly conjugate
and in the second case we find that the functions '1 and '2 are both cohomologous to a
constant.

Also notice that the regularity of the fi ’s and 'i ’s may be different to start with. Then
naturally one takes r to be the minimal value. Moreover, for a given pair of fi , i D 1; 2,
but different choices of r � 1, the resulting fibrations pi , i D 1; 2, may in fact depend on
the value of r .

Remark 2.3. It will become clear from the proof of Theorem 2.1 that the fibrations pi
are uniquely determined by fi , h, and r . However, if one does not require the last property
in the statement, i.e., that the “matching” functions 'i are cohomologous to N'i ı pi , then
the choice of fibrations, in general, is not unique. For example, there is always the trivial
fibration whose fibers are points. In general there are finitely or infinitely many distinct
smooth fibrations for a given expanding map and the maximal number of possible fibra-
tions occurs when h is smooth. This maximal number of fibrations is determined by the
linearization of fi (see also Remark 7.2). There is also a naturally defined partial order on
the set of fibrations with the trivial one being subordinate to any other fibration and the
one given by Theorem 2.1 being the maximal one.

Remark 2.4. If one does not assume that the manifolds Mi are homeomorphic to nil-
manolds then, instead of fibrations, the construction in the proof of Theorem 2.1 yields
compact foliations Fi , i.e., foliations with all leaves compact. Further, by improving the
argument used to show that the leaves of Fi are compact, one can check that these foli-
ations are generalized Seifert fibrations. The argument for compactness and the Seifert
property of the foliation is independent of the classification of expanding maps. Ex-
ample 7.8 (Klein bottle) shows that such foliations can indeed have exceptional leaves
on infranilmanifolds, that is, they are not necessarily locally trivial fibrations. Hence the
assumption that the manifolds Mi are homeomorphic to nilmanifolds is necessary. How-
ever, in practice, this assumption is not a big restriction. Indeed, by the classification,
any manifold which supports an expanding map is homeomorphic to an infranilmanifold.
Hence, one can always lift given expanding maps to finite nilmanifold covers and study
the problem on the cover.

Remark 2.5. Recall that there exist expanding maps on exotic nilmanifolds, i.e., mani-
folds homeomorphic but not diffeomorphic (or even not PL-homeomorphic) to nilmani-
folds [13, 14]. Our theorem applies to such examples. Moreover, by using Gromoll’s fil-
tration and following the strategy of [12], one can construct expanding map f1WM1!M1
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on a nilmanifold M1 and an expanding map f2WM2 !M2 on an exotic nilmanifold M2

in such a way that the fibrations pi WMi ! NMi are non-trivial, i.e., dimMi > dim NMi > 0.
Also note that our theorem applies to the case when both M1 and M2 are exotic. We
elaborate on this remark in Example 7.9.

An expanding linear endomorphism L of a d -dimensional torus M is called irre-
ducible if the characteristic polynomial of the integer matrix defining L is irreducible
over Z; equivalently, L does not have non-trivial invariant rational subspaces. Recall that
any expanding map f WM ! M is conjugate to an expanding linear endomorphism L.
We will say f is irreducible if L is irreducible.

Corollary 2.6. Let Mi be manifolds homeomorphic to the d -dimensional torus. Assume
that fi WMi !Mi are C rC1-smooth, r � 1, expanding maps. Assume that they are conju-
gate via h. Also assume that f1 is irreducible and that the entropy maximizing measure for
f1 is not absolutely continuous with respect to the Lebesgue measure. If Jac.f n1 /.x/ D
Jac.f n2 /.h.x// for all x 2 Fix.f n1 / and n, then h is a C r diffeomorphism.

We make four remarks pertaining to this corollary.

Remark 2.7. The condition on the measure of maximal entropy can be detected from a
pair of periodic points. Hence the space of expanding maps which satisfy this assumption
is C rC1-dense and C 1-open in the space of expanding maps.

Remark 2.8. The analogue of Corollary 2.6 for non-abelian nilmanifolds is vacuous. This
is because every expanding linear map on a nilmanifold leaves invariant the fibration given
by the center of the corresponding nilpotent Lie group. Indeed, the proof of Corollary 2.6
relies on absence of such fibrations (which is guaranteed by irreducibility in the toral
case).

Remark 2.9. Recall that an infratorus M is a closed manifold covered by the torus Td .
The deck transformations of the covering Td !M have the form x 7! Qx C v and the
linear partsQ form the so called holonomy group ofM . We can define an expanding map
f WM !M to be irreducible if its lift to Td is irreducible. Then Corollary 2.6 holds for
such irreducible expanding maps of infratori by first passing to the torus cover and then
arguing in the same way.

However, the supply of irreducible examples of expanding endomorphisms of infratori
which are not tori is rather limited. Notice that any Q ¤ id from the holonomy group has
1 for an eigenvalue. Indeed, otherwise the corresponding affine map x 7! Qx C v of the
torus would have a fixed point by the Lefschetz formula. Further L acts on the holonomy
group by conjugation. Hence, because the holonomy group is finite, for a sufficiently
large k, Lk and Q commute, and hence Lk leaves invariant a non-trivial rational sub-
space, the eigenspace of eigenvalue 1 forQ. Hence all irreducible examples must become
reducible after passing to a finite power. Still, examples like that exist and we present one
in Example 7.7.
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Remark 2.10. Define the critical regularity r0 of f1 by

r0.f1/ D min
n�1

max
x2M1

log kDxf n1 k
logm.Dxf n1 /

wherem is the conorm. Then by the argument of de la Llave [7, Section 6] one can rectify
the loss of one derivative and bootstrap the regularity of the conjugacy. That is, if r > r0
then the C r conjugacy given by Corollary 2.6 is, in fact, C rC1. The same observation
applies to other statements in this section.

In fact, the number r0.f1/ admits an alternative expression

r0.f1/ D max
p2Per.f1/

�C.p/

��.p/

where �˙.p/ are, respectively, the largest and the smallest Lyapunov exponents of f1
at p. Therefore r0.f1/ can be computed directly from the Lyapunov exponents along
periodic orbits. To see that the two formulae give the same value r0.f1/ one can pass to
the invertible solenoid diffeomorphism and apply the approximation result of [38].

Notice also that a priori it does not follow from the hypothesis of Corollary 2.6 that
r0.f1/ D r0.f2/, but a posteriori one obtains this equality from smoothness of the conju-
gacy.

We say that an expanding map f WM ! M is very non-algebraic if for every � 2 Z
and every m, 1 � m � dimM , there exists a periodic point x of period n such that �n is
not an eigenvalue of the m-fold exterior power

Vm
Dxf

n. Notice that this condition is
open and dense.

Corollary 2.11. Assume that fi WMi ! Mi are C rC1-smooth, r � 1, expanding maps.
Assume that they are topologically conjugate, f1WM1 ! M1 is very non-algebraic, and
for every n-periodic point x of f1,

Jac.f n1 /.x/ D Jac.f n2 /.h.x//:

Then h is a C r diffeomorphism.

Remark 2.12. It will be clear from the proof that the very non-algebraic assumption can
be weakened to asking that for m D 1; : : : ; dimM if � 2 Z appears in the spectrum ofVm

Df1�

then �n does not appear in the spectrum ofVm
Dxf

n
1

for some periodic point x, x D f n1 .x/. Here f1� stands for the expanding linear auto-
morphism induced by f1 on the nilpotent Lie group and Df1� is the corresponding Lie
algebra automorphism.

Note that the very non-algebraic condition prevents f1 from being linear.
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Given two linear maps Di WRd ! Rd , i D 1; 2, we say that D1 and D2 have disjoint
spectrum if for every m D 1; : : : ; d , the m-th exterior powers

Vm
D1 and

Vm
D2 do

not share any real eigenvalues. Given two periodic points x D f k.x/ and y D f l .y/ we
say that they have disjoint spectrum if the differentials Dxf kl and Dyf kl have disjoint
spectrum.

Corollary 2.13. Assume that fi WMi ! Mi are C rC1-smooth, r � 1, expanding maps.
Assume that they are conjugate and there exist f1-periodic points x and y which have
disjoint spectrum. If for every n-periodic point x of f1 the Jacobians Jac.f n1 /.x/ and
Jac.f n2 /.h.x// coincide then f1 is C r -conjugate to f2.

Corollary 2.13 follows directly from Corollary 2.11 since the property of having two
periodic points with disjoint spectrum directly implies the very non-algebraic property.

Recall that a homeomorphism is called absolutely continuous if it sends the Lebesgue
measure to a measure which is absolutely continuous with respect to the Lebesgue mea-
sure.

Corollary 2.14. Let r � 1. If two C rC1 very non-algebraic expanding maps are conju-
gate via an absolutely continuous homeomorphism h then h is in fact C r -smooth.

Corollary 2.14 follows directly from Corollary 2.11. Indeed, by ergodicity hmust map
the smooth absolutely continuous measure of f1 to the smooth absolutely continuous
measure for f2. It follows that the Jacobians at corresponding periodic points must be
equal.

3. Krzyżewski–Sacksteder theorem for expanding maps

Given a C r , r � 1, expanding map f WM !M and a C r potential 'WM !R the transfer
operator L';f WC

k.M/! C k.M/ given by

L';fw.x/ D
X

y2f �1x

e'.y/w.y/

is defined for C k functions w, where k � r . When no confusion is possible we abbreviate
L';f to L' .

Theorem 3.1 (Ruelle–Perron–Frobenius/Krzyżewski–Sacksteder). Let f WM ! M be
a C r , r � 1, expanding map and let 'WM !R be a C r potential; let 0� k � r . Then the
transfer operator L' WC

k.M/! C k.M/ has a unique maximal positive eigenvalue ec

with
L'e

u
D ecCu:

The eigenfunction eu is positive and is unique up to scaling. The eigenvalue ec and
the eigenfunction eu are independent of the choice of k 2 Œ0; r�. Furthermore, eu is
C r -smooth.
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Remark 3.2. Originally this theorem was established by Ruelle for a more general
class of expanding maps and in Hölder regularity [30, 31] (see also [3, 1.7]). Sacks-
teder [32] and Krzyżewski [24] independently established regularity of the eigenfunction.
Krzyżewski [25] handled the analytic case as well. We note that both Sacksteder and
Krzyżewski only considered the case when ' D � log Jac.f / because they were inter-
ested in regularity of the smooth invariant measure for f . However, the proofs work
equally well for arbitrary smooth potentials. Note that the uniqueness of the eigenspace
occurs already among continuous functions provided that the potential is at least Hölder.

Another comment is that when r is an integer, the proof of Sacksteder only yields
.r � 1/C Lip regularity of the eigenfunction eu. The C r regularity of eu was established
by Szewc [35]; see also [4, Theorem 8.6.3] for an exposition in the one-dimensional case.

Corollary 3.3. Let f and ' be as in Theorem 3.1. Then there exists a unique C r -smooth
function O'WM ! R and a unique constant c given by Theorem 3.1 such that

(1) O' C c is cohomologous to ';

(2) 1 is the maximal eigenvalue of the transfer operator L O';

(3) L O'1 D 1.

Proof. Let ec be the maximal eigenvalue with eigenfunction eu for L' given by Theo-
rem 3.1,

L'e
u
D ecCu:

Let O' D ' � c C u � u ı f . Then

L O'1 D 1:

It is also clear that 1 is the maximal eigenvalue of L O' since otherwise ec would not be the
maximal positive eigenvalue for L' .

Further, assume that c0 2 R and O'0 continuous also satisfy the conclusion of the corol-
lary with

O'0 D ' � c0 C u0 � u0 ı f:

Then by the same calculation we have

L'e
u0
D ec

0Cu0

with ec
0

being the maximal positive eigenvalue. Hence, by the uniqueness part of Theo-
rem 3.1 we find that c D c0 and u D u0.

Such normalized potentials O' have recently been studied in the context of thermody-
namic formalism [17].

Remark 3.4. The constant c equals the topological pressure P.'/. It follows that if
.f1; '1/ � .f2; '2/ then the maximal eigenvalue is the same for the corresponding oper-
ators and hence .f1; O'1/ � .f2; O'2/. (But we will not use this fact.)
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Remark 3.5. Let ec be the maximal positive eigenvalue for L' with eigenfunction eu and
assume that ew is another positive continuous eigenfunction for L' , i.e., L'e

w D �ew

for some � 2R. ThenwD uC k for some k 2R and � is the maximal eigenvalue. Notice
that it follows that condition (2) of Corollary 3.3 is automatic from condition (3) because
a positive eigenfunction necessarily corresponds to the maximal eigenvalue. (But we will
not use this fact.)

4. Proof of the Main Theorem: the torus case

The proof of Theorem 2.1 consists of two steps. The first step is to build the fibrations and
the second step is to verify the posited property of the fibrations. In this section will prove
Theorem 2.1 under the additional assumption that the manifoldsMi are homeomorphic to
a torus. This assumption simplifies the construction of fibrations quite a bit. The second
step is general and does not rely on the homotopy type of Mi . Building fibrations in
the case when Mi are general nilmanifolds requires a more complicated argument that
involves an inductive procedure on the degree of nilpotency of the fundamental group.
This more general argument appears in Section 5.

4.1. Fibrations

We begin by explaining the construction of fibrations pi , i D 1; 2, which appear in The-
orem 2.1.

Recall that h ı f1 D f2 ı h and consider the following space of pairs of smooth func-
tions:

V D ¹. 1;  2/ 2 C
r .M1/ � C

r .M2/ W  1 D  2 ı hº:

This is a closed subspace of C r .M1/ � C
r .M2/. Note that if . 1;  2/ 2 V then

. 1 ı f1;  2 ı f2/ 2 V . Also note that V always contains constants .c; c/ and is an al-
gebra. We denote by Vi the projection of V on C r .Mi /, i D 1; 2.

Define the subspace fields Ei .x/ � TxMi , i D 1; 2, by

Ei .x/ D
\
 i2Vi

ker dx i :

Notice that if xn ! x as n!1, then lim supEi .xn/ � Ei .x/. This property implies
that dimEi .x/ is upper semicontinuous. Let mi D minx2Mi dimEi .x/; then upper semi-
continuity implies that the set

Ui D ¹x 2Mi W ki .x/ D miº

is open.

Lemma 4.1. Ui DMi , i D 1; 2, and hence Ei is in fact a distribution.
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Proof. Let �ni be the group of deck transformations of the covering map f ni WMi !Mi ,
i D 1; 2. Deck transformations are C r diffeomorphisms. By definition

�ni D ¹T 2 Diff r .Mi / W f
n
i ı T D f

n
i º;

and hence h#W �
n
1 ! �n2 given by h#.T / D h ı T ı h�1 is an isomorphism. Indeed, if

T 2 �n1 then f n2 ı .h ı T ı h
�1/ D h ı f n1 ı T ı h

�1 D h ı f n1 ı h
�1 D f n2 and vice

versa.
Now it is easy to see that Vi is �ni -invariant, that is, if . 1;  2/ 2 V then . 1 ı T;

 2 ı h#.T // 2 V for all T 2 �n1 . Indeed,

 2 ı h#.T / ı h D  2 ı h ı T D  1 ı T:

Hence, for all T 2 �ni we have

Ei .T .x// D
\
 2Vi

ker dT.x/ D
\
 2Vi

ker dT.x/. ı T / D
\
 2Vi

DT.ker dx /

D DT.Ei .x//:

Hence Ei is �ni -invariant, and in particular Ui is �ni -invariant.
Because �1Mi D Zd is abelian, the covering f ni is normal and �ni .x/ D f �ni .x/.

Hence the orbits �ni .x/ become arbitrarily dense as n!1 and because Ui is open, for
a sufficiently large n we have Ui D �ni .Ui / DMi :

It is easy to see now that the distributions Ei integrate to C r foliations Fi . Indeed, for
every x 2Mi there exist finitely many functions  1i ; : : : ;  

d�mi
i 2 Vi such that

Ei .x/ D

d�mi\
jD1

ker dx 
j
i :

Indeed, just take  ji such that ¹dx 
j
i ºj is a maximal linearly independent subset of

¹dx º 2Vi .
By continuity of d ji and since Ei has constant dimension, the same formula holds

on a small neighborhood of x. That is, there exists a neighborhood Ui;x of x such that

Ei .y/ D

d�mi\
jD1

ker dy 
j
i for all y 2 Ui;x .

Therefore, by the implicit function theorem, the maps ‰i;x WUi;x ! Rd�mi ,

‰i;x.y/ D . 
1
i .y/; : : :  

d�mi
i .y//;

define a foliation atlas of a C r foliation which is tangent toEi . We denote these foliations
by Fi , i D 1; 2.
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Lemma 4.2. The leaves of Fi are compact. In fact, the leaf Fi .x/ for x 2 Mi is the
connected component of x of the intersection\

 2Vi

 �1. .x//:

Proof. Let  be a function in Vi and let x 2Mi . Then by the definition

TFi .y/ D Ei .y/ � ker dy 

for every y 2 Fi .x/. Hence  is constant on Fi .x/ and Fi .x/ �  
�1. .x//. Hence

Fi .x/ �
\
 2V r

i

 �1. .x//:

On the other hand, recall that, locally, for a sufficiently small neighborhood Ui;x 3 x we
have the foliation chart and hence

Fi .x/\Ui;x D‰
�1
i;x .‰i;x.x//D

d�mi\
jD1

. 
j
i /
�1. 

j
i .x//\Ui;x �

\
 2V r

i

 �1. .x//\Ui;x ;

and the main claim of the lemma follows.

Recall that for every function  1 2 V1 there is  2 2 V2 such that  2 ı h D  1 and
vice versa. This implies that h.F1.x//DF2.h.x// for every x 2M1. Hence by invariance
of domain we obtain m1 D m2, i.e., the dimensions of the foliations F1 and F2 are the
same. Also note that Lemma 4.2 and Vi ı fi � Vi immediately imply that Fi is invariant
under fi .

To conclude that compact C r foliations Fi are, in fact, fibrations we need to rely
on global structural stability of expanding maps and complete the argument on the “lin-
ear side”. Namely, hi ı f ı h�1i D AWT

d ! Td is an expanding endomorphism. Then
F D hi .Fi / is an A-invariant compact continuous foliation on Td . The action of �ni is
conjugate via hi to the translation action by the set A�n.¹x0º/, where x0 is a fixed point
of A which we identify with 0 2 Td . Because the set

S
n�0 A

�n.¹x0º/ is dense in Td

we conclude that F is invariant under the Td -action on itself by translations. Hence,
for all y 2 F.x0/ we have y C F.x0/ D F.y C x0/ D F.y/ D F.x0/ and F.�y/ D
�y C F.x0/D �y C F.y/D F.�y C y/D F.x0/; that is, F.x0/ is a subgroup of Td .
Also recall that F.x0/ is compact and connected. Hence, one can easily check (or use Car-
tan’s closed subgroup theorem) that F.x0/ is a linearly embedded subtorus Tm � Td .
And because F is invariant under translations, we conclude that F is a linear fibration
Tm!Td !Td�m. It remains to recall that Fi D h

�1
i .F /, and therefore Fi is a fibration

whose fiber is homeomorphic to Tm and whose base NMi is a C r manifold homeomorphic
to Td�m.

Since h sends F1 to F2, it induces a homeomorphism NhW NM1 ! NM2. To see that Nh is
smooth, consider foliation charts around x and h.x/, x 2M1, given by

‰1;x.y/D . 
1
1;x.y/; : : : ; 

d�m1
1;x .y// and ‰2;h.x/.y/D . 

1
2;h.x/.y/; : : : ; 

d�m2
2;h.x/

.y//
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respectively. In these local coordinates Nh is given by Nh.‰1;x.y// D ‰2;h.x/.h.y//. How-
ever, by definition, there exist C r functions  j

1;h.x/
which satisfy  j

1;h.x/
D  

j

2;h.x/
ı h,

j D 1; : : : ; d �m2. Hence, Nh is given by

Nh. 11;x.y/; : : : ;  
d�m1
1;x .y// D . 11;h.x/.y/; : : : ;  

d�m2
1;h.x/

.y//

and since‰1;x is a C r submersion we conclude that Nh is C r on a neighborhood of p1.x/.
A symmetric argument proves that Nh�1 is C r .

4.2. Second step of the proof of Theorem 2.1: verifying the matching property

Finally, we need to show that if .f1; '1/ � .f2; '2/ then the functions 'i are cohomolo-
gous to functions in Vi .

By Corollary 3.3 there are C r functions O'i and constants ci 2 R such that 'i is fi -
cohomologous to O'i C ci , and also L O'1;f11 D 1, L O'2;f21 D 1. Moreover such O'i and ci
are unique. We know that O'2 ı h is cohomologous to O'1 C c2 � c1. In fact, we will show
that

O'2 ı h D O'1:

By direct calculation, we have

.L O'2;f2v/ ı h D L O'2ıh;f1.v ı h/

for every function v. In particular, for the constant function v D 1 we have

1 D 1 ı h D .L O'2;f21/ ı h D L O'2ıh;f1.1 ı h/ D L O'2ıh;f1.1/:

Since O'2 ı h is cohomologous to '1 up to a constant we find that O'2 ı h D O'1. Hence
. O'1; O'2/ 2 V and, by the definition of the foliations Fi , we conclude that O'i is constant
on Fi , i D 1; 2. It remains to set N'i .pi .x// D O'i .x/C ci .

5. Proof of the Main Theorem: building fibrations on nilmanifolds

In this section we build the fibrations in the general case when the manifolds Mi are both
homeomorphic to a nilmanifold N=� . Recall that, by classification, there is an expand-
ing automorphism AWN ! N , A.�/ � � , which induces an algebraic expanding map
N=� ! N=� topologically conjugate to fi WMi !Mi , i D 1; 2: The rest of the proof of
Theorem 2.1, that is, verification of the matching property of fibrations, was already done
in the second half of Section 4.

Define the subspace fields Ei .x/ � TxMi , i D 1; 2, and level sets as follows:

Ei .x/ D
\
 2Vi

ker dx ; Pi .x/ D
\
 2Vi

 �1. .x//;

and let Fi .x/ D ccx.Pi .x//, where ccx stands for the “connected component of x”. Our
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goal is to show that the maps Fi are, in fact, C r fibrations with fiber and base both
homeomorphic to nilmanifolds.

Remark 5.1. If dimE1.x/ D 0 at one point x 2M1 then it is easy to conclude using the
inverse function theorem that the conjugacy h is C r on a neighborhood of x and then,
using dynamics, that h is C r globally. Thus the main interest of the proof to follow is in
the case when dimEi � 1.

5.1. Algebraic lemmas

Recall that � is a lattice in a simply connected nilpotent Lie group N , and hence � is
torsion free and nilpotent. Let �0 D � let �j D Œ�; �j�1� be the lower central series.
Denote by k the smallest number such that �kC1 D ¹0º. Recall that A.�/� � , and hence
also A.�j / � �j . Now define the following lattice:

A��j D A�1.�j / � �:

Note that A��0 D A�1.�/ and A��kC1 D � . The following lemma implies that A��j

is indeed a well-defined group.

Lemma 5.2. A�1.�j / � � D � � A�1.�j /, j D 0; : : : ; k C 1.

Proof. Let ˛ 2 �j and 
 2 � . Then

A�1.˛/
 D A�1.˛A.
// D A�1.A.
/˛c/

where c is a commutator, c 2 Œ�; �j � D �jC1 � �j . Hence A�1.˛/
 D 
A�1.˛c/ 2

� � A�1.�j /. This proves the inclusion A�1.�j / � � � � � A�1.�j /, and the reverse
inclusion follows from a similar calculation.

Lemma 5.3. The group A��jC1 is a normal subgroup of A��j , j D 0; : : : ; k.

Proof. We will use a group element ˛
 2 A�1�j � � to conjugate an element ˇı 2
A�1�jC1 � � and we will see that the result is in A��jC1:

˛
ˇı
�1˛�1 D .˛
˛�1
�1/
.˛ˇ˛�1ˇ�1/ˇ.˛ı
�1˛�1
ı�1/
�1ı:

Indeed, we have written it as a product of elements in A��jC1 and commutators from
ŒA�1.�j /; �� D A�1Œ�j ; A.�/� � A�1Œ�j ; �� D A�1.�jC1/ � A��jC1.

We also recall that �j � A�1�j and � � A��j are finite index subgroups.

5.2. The setup on universal covers

The expanding maps fi are conjugate to the algebraic expanding map via conjugacies
hi WMi ! N=� . Let xi D h�1i .idN�/ and let �i W . QMi ; Qxi /! .Mi ; xi / be the universal
covers, i D 1; 2. We denote by �i D ¹T W �i ı T D �iº ' � the group of deck transfor-
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mations of �i , which we can also identify with the fundamental group �1.Mi ; xi /. Next
we lift hi and fi to the universal covers in such a way that Qhi . Qxi /D idN and Qfi . Qxi /D Qxi .
Then we have

Qhi ı Qfi D A ı Qhi ; Qh ı Qf1 D Qf2 ı Qh;

where Qh D Qh�12 ı Qh1W QM1 ! QM2. We also have Qfi ı T D A.T / ı Qfi for T 2 �i .
The groupA�1.�/ acts onN by left translations x 7!A�1.T / � xD .A�1 ıT ıA/.x/,

T 2 � . Following the same idea as in Section 4 we can conjugate this action using Qhi and
obtain actions on QMi :

A�1�i D ¹ Qf
�1
i ı T ı Qfi W T 2 �iº:

Furthermore, we can similarly consider the following groups for any j D 0; : : : ; k C 1:

A�1�
j
i D ¹

Qf �1i ı T ı Qfi W T 2 �
j
i º;

A��
j
i D A

�1�
j
i ı �i D ¹f

�1
i ı T ı fi ı S W T 2 �

j
i ; S 2 �iº:

Clearly the actions of A��j1 and A��j2 are conjugate via Qh. Consider the orbits

QO
j
i .x/ D A

��
j
i .x/; x 2 QMi :

It is immediate that the orbits are �i -invariant: QOj
i .T .x//D

QO
j
i .x/ for T 2 �i . Hence the

projection of the orbit O
j
i .�i .x// D �i .

QO
j
i .x// is a finite set of cardinality jA��j =�j.

Further these partitions into orbits are invariant under the expanding maps: Qfi . QO
j
i .x// �

QO
j
i .
Qfi .x// and fi .O

j
i .x// � O

j
i .fi .x//. Indeed, let T 2 �ji and S 2 �i ; then

Qfi .. Qf
�1
i ı T ı Qfi ı S/.x// D .T ı Qfi ı S/.x/ D .T ı A.S//. Qfi .x// 2 QO

j
i .
Qfi .x//

because T 2 �ji � A
�1�

j
i .

Note that QOkC1
i .x/ is just the �i -orbit of x, and hence OkC1

i .x/ D ¹xº; and QO0
i .x/

is the A�1�i -orbit of x, and hence O0
i .x/ D f �1i .fi .x//, while O

j
i .x/, j D 1; : : : ; k,

interpolate in between.

Remark 5.4. The fact that O0
i .�i .x// are not orbits of a finite deck group action on Mi

is forcing us to work on the universal cover; cf. Section 4.

We now make an observation which will be very important in the sequel. Namely, we
take any n � 1 and apply all prior constructions to the expanding maps f n1 , f n2 and the
endomorphism An. In this way we obtain actions of A�n�ji and of A�n�ji D A

�n�
j
i � �i

on the universal covers QMi , i D 1; 2, which are conjugate via Qh. Also, the action of
A�n�0i D A�n�i is conjugate via Qhi to the action by left translations by elements of
A�n� on N . Hence we can consider the group

A�1� D
[
n�1

A�n�;

which is a dense subgroup of N , and its versions A�1�i acting on QMi , i D 1; 2.
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5.3. Invariance of the level set partition

To set up an induction argument we introduce “interpolating” subspace fields and level
sets as follows. Recall that

V D ¹. 1;  2/ 2 C
r .M1/ � C

r .M2/ W  1 D  2 ı hº:

Denote by QV the corresponding space of lifted pairs,

QV D ¹. 1;  2/ 2 C
r . QM1/ � C

r . QM2/ W  i ı T D  i 8T 2 �i ; i D 1; 2I  1 D  2 ı Qhº;

and denote by QVi the projection of V on the i -th coordinate.
Now consider the filtration QV 0 � QV 1 � � � � � QV kC1 D QV given by

QV j D ¹. 1; 2/ 2C
r . QM1/�C

r . QM2/ W i ı T D i 8T 2A
��

j
i ; i D 1;2I  1D 2 ı

Qhº

As before, we will use QV ji to denote the projection of QV j on the i -th coordinate. Let
V j D .��11 ; ��12 / ı QV j , which is well defined due to equivariance. Hence we have the
corresponding filtration onMi , V 0i � V

1
i � � � � � V

kC1
i D Vi . Note that functions on V ji

are precisely those functions from Vi which are constant on O
j
i .x/, x 2Mi .

Define

QE
j
i .x/ D

\
 2 QV

j

i

ker dx ; QP
j
i .x/ D

\
 2 QV

j

i

 �1. .x//; QF
j
i .x/ D ccx. QP

j
i .x//:

In the same way define

E
j
i .x/ D

\
 2V

j

i

ker dx ; P
j
i .x/ D

\
 2V

j

i

 �1. .x//; F
j
i .x/ D ccx.P

j
i .x//:

Also given a set O define
QP
j
i .O/ D

[
x2O

QP
j
i .x/;

and similarly define P
j
i .O/.

Immediately from the definitions we have the following properties:

� EkC1i D Ei , P kC1
i D Pi and F kC1

i D Fi ;

� P
j
i and F

j
i are well-defined partitions of Mi , and QP j

i and QF j
i are well-defined parti-

tions of QMi ;

� QE
j
i , QP j

i and QF j
i are A��ji -invariant;

� Dfi .E
j
i .x//�E

j
i .fi .x//, fi .P

j
i .x//�P

j
i .fi .x// and fi .F

j
i .x//�F

j
i .fi .x//, x 2

Mi , and similarly for QEji , QP j
i and QF j

i ;

� h.P
j
1 .x// D P

j
2 .h.x// and h.F j

1 .x// D F
j
2 .h.x//, and similarly for QP j

i and QF j
i ;

� Ei .x/ D E
kC1
i � Eki .x/ � � � � � E

0
i .x/, x 2Mi , and similarly for QEji ;

� Pi .x/DP kC1
i .x/�P k

i .x/�� � ��P 0
i .x/, x 2Mi , and similarly for QP j

i , F
j
i and QF j

i ;
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� O
j
i .x/ � P

j
i .x/, x 2Mi , and QOj

i .x/ �
QP
j
i .x/, x 2 QMi ;

� D�i . QE
j
i / D E

j
i ;

� ��1i .P
j
i .�i .x/// D

QP
j
i .x/ and �i . QF

j
i .x// � F

j
i .�i .x//, x 2Mi .

Lemma 5.5. For all j D 0; 1; : : : ; k and all T 2 A��ji we have T . QP
jC1
i .x// D

QP
jC1
i .T .x// and DT. QEji .x// D QE

j
i .T .x// for x 2 QMi .

Proof. It is sufficient to show that if  2 QV jC1i then  ı T 2 QV jC1i for all T 2 A��ji ,
which implies that QV jC1i D QV

jC1
i ı T . Indeed,

QP
jC1
i .T .x// D

\
 2 QV

jC1

i

 �1. .T .x/// D T
� \
 2 QV

jC1

i

. ı T /�1
�
. ı T /.x//

��
D T

� \
 2 QV

jC1

i

 �1. .x//
�
D T . QP

jC1
i .x//:

Similarly, DT. QEji .x// D QE
j
i .T .x// (cf. the proof of Lemma 4.1).

Let h#WA
��

j
1 !A��

j
2 be the isomorphism given by conjugation, h#.T /D QhıT ı Qh

�1.
To complete the proof we have to show that if . 1; 2/ 2 QV

jC1
i then . 1 ıT; 2 ıh#.T //

2 QV
jC1
i . We have

 2 ı h#.T / ı Qh D  2 ı Qh ı T D  1 ı T;

and it remains to check that the function  1 ı T , T 2 A��ji , is A��jC1i -equivariant.
Indeed, for S 2 A��jC1i we have

 i ı T ı S D  i ı .T ı S ı T
�1/ ı T D  i ı T;

where the last equality holds because T ı S ı T �1 2 A��jC1i by Lemma 5.3.

Lemma 5.6. Let X and Y be finite subsets ofMi . If X \P
jC1
i .Y /D ; then there exists

a function  2 V jC1i such that  jX D 0 and  jY D 1.

Proof. The proof is based on the observation that if  2 V jC1i then ' ı  2 V jC1i for
any C r function 'WR! R.

First consider the case when X D ¹xº and Y D ¹y1; : : : ; ypº. Then because
x … P

jC1
i .Y / it can be separated from every point in Y by a function from V

jC1
i ; that

is, for all t D 1; : : : ; p there exists  t 2 V
jC1
i such that  t .x/ ¤  t .yt /. By replacing

 t with an appropriate linear combination A t C B , we can assume that  t .x/ D 0 and
 t .yt / D 1. Now let

 x D

pX
tD1

 2t :

Then  x.x/D 0 and  x.yt /� 1 for all t D 1; : : : ; p. Finally, we replace  x with ' ı x ,
where ' is a C r function such that '.0/ D 0 and '.�/ D 1 for all � � 1. This completes
the proof when X D ¹xº.
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In the general case we haveX D ¹x1; : : : ; xqº and Y D ¹y1; : : : ; ypº and we can apply
the above construction to each xs , s D 1; : : : ; q, to obtain a function �s 2 V

jC1
i such that

�s.xs/ D 0 and �s.yt / D 1 for all t D 1; : : : ; p. Consider

� D

qX
sD1

.1 � �s/
2:

Obviously, �.yt / D 0 for all t and �.xs/ � 1 for all s. We can use the C r function ' to
define the posited separating function as  D 1 � ' ı �.

Lemma 5.7. QP jC1
i . QO

j
i .x// D

QP
j
i .x/ for x 2 QMi and P

jC1
i .O

j
i .x// D P

j
i .x/ for

x 2Mi , for all j D 0; 1; : : : ; k.

Proof. The inclusion QP jC1
i . QO

j
i .x//�

QP
j
i .x/ is straightforward. Indeed, QOj

i .x/�
QP
j
i .x/

and QP jC1
i .y/ � QP

j
i .y/ D

QP
j
i .x/ for all y 2 QOj

i .x/.
Assume the reverse inclusion does not hold. Then there exists a point x and y 2 QP j

i .x/

such that y … QP jC1
i . QO

j
i .x//. By Lemma 5.5 the set QP jC1

i . QO
j
i .x// is A��ji -invariant and

hence QOj
i .y/\

QP
jC1
i . QO

j
i .x// D ;. Then also O

j
i .�i .y//\P

jC1
i .O

j
i .�i .x/// D ; and

we can apply Lemma 5.6 to O
j
i .�i .y// and O

j
i .�i .x//, and obtain a function  2 V jC1i

such that  j
O
j

i
.�i .x//

D 0 and  j
O
j

i
.�i .y//

D 1. We now lift  to QMi and consider the
finite sum

N D
X

ŒT �2A��
j

i
=A��

jC1

i

 ı �i ı T:

Note that the summands are well-defined because ı�i 2 QV
jC1
i , and hence areA��jC1i -

equivariant. Notice that N j QOj
i
.x/
D 0 and N j QOj

i
.y/
D jA��

j
i =A

��
jC1
i j> 0: Finally, notice

that for any ŒS� 2 A��ji =A
��

jC1
i ,

N ı S D
X

ŒT �2A��
j

i
=A��

jC1

i

 ı �i ı T ı S D
X

ŒT �2A��
j

i
=A��

jC1

i

 ı �i ı T D N :

Hence N belongs to QV ji and separates x and y, which yields a contradiction.

We finally arrive at the main lemma of this subsection. Recall that QFi D QF kC1
i .

Lemma 5.8. For all j D 0; 1; : : : ; k, QF j
i D

QFi and QFi is an A�1�i -invariant partition
of Mi , i D 1; 2.

Proof. Recall that ccx stands for “connected component of x”. Applying the previous
lemma we have

QF
j
i .x/ D ccx. QP

j
i .x// D ccx

� [
y2 QO

j

i
.x/

QP
jC1
i .y/

�
D ccx

� [
ŒT �2A��

j

i
=A��

jC1

i

T . QP
jC1
i .x//

�
D ccx. QP

jC1
i .x// D QF

jC1
i .x/;
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where the first equality in the second line is due to invariance of QP jC1
i .y/ under the

action of A��jC1i . By induction on j we conclude that QF j
i .x/D

QF kC1
i .x/. In particular,

QF 0
i D

QFi . It remains to recall that QF 0
i is A��0i D A

�1�i -invariant.

Using higher iterates of expanding maps we can prove, using exactly the same argu-
ments, that the partitions QFi are invariant under the action of A�n�i for all n � 1. Hence
we have the following corollary. (Recall that A�1�i D

S
n�1A

�n�i .)

Corollary 5.9. The partition QFi of QMi is invariant under the action of A�1�i .

5.4. Upgrading to a foliation

Now we will prove that QFi is in fact a C r -smooth foliation.
Consider the dimension function dim QEi and let mi D minx2 QMi dim QEi .x/. Pick a

point x 2 QMi such that dim QEi .x/ D mi . Then, by definition of QEi .x/, we can find func-
tions  1; : : : ;  d�mi 2 QVi such that

QEi .x/ D

d�mi\
jD1

ker dx j :

From the continuity of dx j and the fact that mi is the minimal dimension, we also have
the same formula

QEi .y/ D
\
 2 QVi

ker dy D
d�mi\
jD1

ker dy j

for all y in a sufficiently small open neighborhood B of x.
Consider the map ‰WB ! Rd�mi given by ‰.y/ D . 1.y/; : : : ;  d�mi .y//. It is

clear that the plaque‰�1.‰.y// is tangent to QEi at every point of the plaque. By choosing
B appropriately we may assume that the plaques ‰�1.‰.y// are path-connected for all
y 2 B .

Lemma 5.10. For every y 2 B we have ‰�1.‰.y// D QFi .y/ \ B .

Proof. If a point z 2 B does not belong to a plaque ‰�1.‰.y// then one of the func-
tions  j separates z and y. Hence z … QPi .y/ � QFi .y/.

Now take z 2 ‰�1.‰.y// and consider any function  2 QVi . Connect z to y by
a path. If  .z/ ¤  .y/ then for some point q on the path the restriction of  to this
path has non-zero derivative, and hence QEi .q/ š ker dq , giving a contradiction. Hence
 .z/D  .y/ for all  2 QVi , which implies that ‰�1.‰.y// � QPi .y/. Thus we also have
‰�1.‰.y// � Fi .y/ because ‰�1.‰.y// is connected.

Now the restriction QFi jB is a foliation and we would like to spread the foliation struc-
ture to the whole QMi . For that we have to see that A�n�i .B/ D QMi . If we have it, then
using invariance under A�n�i provided by Corollary 5.9, we can conclude that Fi has
a C r foliation structure in the neighborhood of every point. Hence, Fi is indeed a C r

foliation.
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Recall that the action of A�n�i on QMi is conjugate via Qhi to the action by left transla-
tions by A�n.�/ � N on N . To guarantee that A�n�i .B/ D QMi it suffices to choose
a sufficiently large n so that the set Qhi .B/ covers a fundamental domain of the lat-
tice A�n.�/.

5.5. Upgrading to a fibration and completing the proof

Now we know that both QF1 and QF2 are C r foliations. Also, Qh. QF1/ D QF2, and hence by
invariance of domain, these foliations have the same dimension. It remains to show that
�i . QFi / (which is clearly also a C r foliation) is, in fact, a C r fibration. We also need
to show that the fibers �i . QFi /.x/ and the bases of the fibrations are homeomorphic to
nilmanifolds and that the induced conjugacy on the base is a C r diffeomorphism. To do
that we go to linearized dynamics on N=� , similarly to the argument in Section 4.

Let QF D Qh1. QF1/ D Qh2. QF2/. Then QF is a topological foliation with closed leaves
which is invariant under the expanding automorphism AWN ! N . By Corollary 5.9 the
foliation QF is also invariant under left translations by A�1.�/. Because QF is continu-
ous and A�1.�/ is dense we conclude that QF is invariant by all left translations on N .
This allows us to argue that QF .idN / is a group. Indeed, for all x; y 2 QF .idN / we have
QF .xy/D x QF .y/D x QF .idN /D QF .xidN /D QF .idN /, and similarly for all x 2 QF .idN /we

have QF .x�1/D x�1 QF .idN /D x�1 QF .x/D QF .x�1x/D QF .idN /. We can now apply Car-
tan’s closed subgroup theorem (see e.g. [20]) to conclude that QF .idN / is a Lie subgroup
of N .

So we denote the leaf through the identity by G D QF .idN /. Hence, using translation
invariance again, we conclude that QF is a smooth foliation by cosets of G.

Lemma 5.11. Let F be the projection of QF on N=� . Then each leaf of F is either com-
pact or it “accumulates on itself”, that is, there exists x 2N=� such that for an arbitrarily
small neighborhoodB of x the intersection F.x/\B has infinitely many connected com-
ponents.

Proof. The leaves of F are orbits of the action of G, which is a nilpotent Lie group
onN=� . So one can refer to Ratner theory, specifically to [29], which implies in particular
that the closures of orbits of such a unipotent action are affinely embedded nilmanifolds.
Hence each orbit is either compact or dense in its higher-dimensional closure, which
implies the needed recurrence. It is also not hard to derive this lemma from earlier work
of Parry on homogeneous flows on nilmanifolds: one needs to choose orbits which escape
to infinity in non-compact leaves and use [28, Theorem 5].

However, the lemma can also be derived from more basic topological dynamics using
work of Ellis and Furstenberg on distal actions [10, 16], which we proceed to explain.
It is a well-known and simple fact that the nilpotent action of G on N=� is distal (this
follows from the fact that a nil-translation is an iterated isometric extension). Based on
work of Ellis, Furstenberg proved that a distal action can be decomposed into a disjoint
union of minimal sets [16, Theorem 3.2]. Hence each leaf of F is either compact or has a
non-trivial closure and is dense in the closure and hence recurrent.



A. Gogolev, F. Rodriguez Hertz 3308

Lemma 5.12. There exists a non-empty open set U � N=� such that each leaf of F that
meets U is compact.

Proof. We begin by noticing that the properties of being compact and of “accumulating
on itself” are topological. Hence we have the property given by Lemma 5.11 on the non-
linear side as well by applying h�1i : for all x 2 Mi either �i . QFi /.x/ is compact or for
all small neighborhoods B of x the intersection .�i . QFi /.x// \ B has infinitely many
connected components.

Now we will argue in the same way as in Section 5.4, but on Mi instead of QMi . Let
Ui � Mi be the set where dimEi achieves its minimum mi . Recall that the dimension
function x 7! dimEi .x/ is upper semicontinuous, which implies that Ui is open.

Take a point x 2 Ui . Then we can construct a foliation chart for Fi about x which we
denote by ‰WB ! Rd�mi , B � Ui , such that ‰�1.‰.x// is a connected subset of Fi .x/

and for each z 2 B which does not belong to ‰�1.‰.x// we have z … Pi .x/ (see the
proof of Lemma 5.10). Then we have

.�i . QFi /.x// \ B � Fi .x/ \ B � Pi .x/ \ B D ‰
�1.‰.x//:

On the other hand, recalling thatD�i . QEi /D Ei and by the discussion at the beginning of
Section 5.4, �i . QFi / is a .d �mi /-dimensional foliation; that is, it has the same dimension
as the plaque ‰�1.‰.x//, so �i . QFi /.x/ \ B D ‰�1.‰.x//. Hence �i . QFi /.x/ \ B has
only one connected component and we conclude, by the dichotomy of Lemma 5.11, that
�i . QFi /.x/ is compact. Going back to the foliationF via hi we obtain the same conclusion:
all leaves of F which meet the non-empty open set U D hi .Ui / are compact.

Lemma 5.13. The group G is a normal subgroup of N .

Proof. By Lemma 5.12 there exists a small open ball B � U � N=� such that every leaf
F.x�/D Gx� , x 2 B , is compact. We consider the stabilizer group �x of the leaf QF .x/:

�x D ¹
 2 � W Gx D Gx
º D ¹
 2 � W x
x
�1
2 Gº

D � \ x�1Gx � �:

Thus F.x�/D QF .x/=�x is homeomorphic to x�1Gx=�x , and hence �x is a cocompact
lattice in x�1Gx, x 2 B .

Now assume that for some x0; x1 2 B we have x�10 Gx0 ¤ x�11 Gx1. Then we can
find a path xt 2 B , t 2 I , such that x�1t Gxt , t 2 I , are all mutually distinct subgroups
of N . (Indeed, just connect x0 to x1 by a path in B and then choose a small subpath in a
neighborhood of a point where x�1t Gxt varies infinitesimally linearly with t .)

We can also see that all �xt D � \ x
�1
t Gxt are mutually distinct. To see this, notice

that because the exponential map provides a one-to-one correspondence between subal-
gebras of the Lie algebra of the simply connected nilpotent Lie groupN and its connected
Lie subgroups, the intersection subgroup .x�1t Gxt /\ .x

�1
s Gxs/, s¤ t , is of codimension

at least 1 in both x�1t Gxt and x�1s Gxs . Because �xt is cocompact in x�1t Gxt it must have
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a non-trivial image in the non-compact quotient space x�1t Gxt=..x
�1
t Gxt /\ .x

�1
s Gxs//.

Hence, indeed �xt contains elements which are not in �xs .
Thus we have obtained an uncountable family �xt , t 2 I , of mutually distinct sub-

groups of � , which gives a contradiction. Indeed, � is finitely generated and nilpotent,
and hence any subgroup of � is also finitely generated. So � only has countably many
distinct subgroups. We conclude that x�10 Gx0 D x�11 Gx1 for all x0; x1 2 B . Hence
.x1x

�1
0 /�1Gx1x

�1
0 D G for all x1x�10 is a small neighborhood of idN . And because

such a neighborhood generates N , we conclude that G is normal.

Let �G D � \G. Normality ofG implies that �x D �G for all x, and �G is a cocom-
pact lattice in G by Lemma 5.12. Again using normality of G (and of �G in �) it is easy
to check that the quotient homomorphism N ! GnN induces a well-defined fibration
map pWN=� ! NM with compact nilmanifold base NM D .GnN/=.�Gn�/ and nilmani-
fold fiber G=�G . Conjugating back to Mi we obtain the posited fibrations pi WMi ! NMi

whose fibers are the leaves of �i . QFi / which are homeomorphic to G=�G and whose
base NMi is homeomorphic to NM . Note that pi is C r -smooth because we already know
that �i . QFi / is C r .

It remains to check that NhW NM1! NM2 induced by h is a C r diffeomorphism. The argu-
ment follows closely the corresponding argument in Section 4. The only difficulty comes
from the fact that we still do not know that T .�i . QFi // D Ei (and that Fi is a foliation).
However, we do know, from the proof of Lemma 5.12, that Ei D TFi D T .�i . QFi // on
an open and dense set – the set where Ei achieves the minimal dimension mi . Indeed,
recall thatmi denotes the minimal dimension of Ei . We have shown thatm1 D dim F1 D

dim F2 D m2. Let Ui D ¹x 2 Mi W dimEi .x/ D miº. Recall that Ui is open (cf. Sec-
tion 4.1). Further if x 2 Ui and fi .y/ D x then, using Vi ı fi � Vi , we have

Dfi .Ei .y// D Dfi

� \
 2Vi

ker dy 
�
� Dfi

� \
 2Vi

ker dy. ı fi /
�

D

\
 2Vi

Dfi .ker dy. ı fi // D
\
 2Vi

ker dx D Ei .x/:

Hence, as dimEi .x/ is minimal, the above inclusion is in fact an equality and y 2 Ui .
We obtain f �1i .Ui / � Ui , which implies that Ui is dense in Mi . Therefore we can pick a
point x 2 U1 such that h.x/ 2 U2. Consequently, both points admit nice foliation charts
and we can show, repeating verbatim the arguments of the last paragraph of Section 4.1,
that Nh is a C r diffeomorphism on a neighborhood B of p1.x/.

Now recall that Nh conjugates the induced C r expanding maps, Nh ı Nf1 D Nf2 ı Nh. We
can lift all the maps to the universal covers and express the lift of Nh as follows:

QNh D QNf n1 ı
QNh ı QNf �n2 :

If QB is the lift of B , then the above equation implies that QNh is a C r diffeomorphism
on QNf n2 . QB/. For a sufficiently large n the set QNf n2 . QB/ contains a fundamental domain of the
cover and we conclude that Nh is indeed a C r diffeomorphism.
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Remark 5.14. Once the proof is finished we can actually conclude that Fi D �1. QFi /

and Ei D TFi . This fact would have been helpful in the proof, but it was out of reach
and we can only obtain it a posteriori. To see that Fi D �1. QFi / and Ei D TFi one can
characterize Vi as the space of C r functions which are constant on the fibers of pi . Such
a characterization easily follows from the fact that Nh is a C r diffeomorphism. Note, how-
ever, that this fact is not needed in the statement of Theorem 2.1.

6. Proofs of corollaries

Proof of Corollary 2.6. We denote by L the linear endomorphism to which both f1 and
f2 are conjugate.

By passing to the second iterate we may assume Jac.fi / > 0, i D 1; 2. Let 'i D
� log Jac.fi /. By Theorem 2.1 we have C r fibrations (with connected fiber) pi WMi ! NMi

and functions N'i W NMi ! R such that N'i ı pi is cohomologous to 'i and the induced con-
jugacy NhW NM1 ! NM2, Nh ı p1 D p2 ı h, is a C r diffeomorphism.

If dim NM1 D 0, then N'1 is constant, and hence '1 is cohomologous to a constant.
Then the equilibrium state for '1, which is an absolutely continuous measure, equals the
equilibrium state for the constant function, which is the entropy maximizing measure [3],
contradicting the assumption of the corollary.

If dim NM1 D d , then p1 and p2 are diffeomorphisms (in fact, identity diffeomor-
phisms), and hence h is a C r diffeomorphism since h D p�12 ı Nh ı p1.

It remains to consider the case when 0 < dim NM1 < d . However, this is impossible
due to irreducibility. Indeed, from the proof of Theorem 2.1 in Section 4.1 it is clear that
L leaves invariant a torus of a positive dimensionm< d , which contradicts irreducibility.
We also provide an alternative self-contained short argument below.

Abbreviate M D M1 and NM D NM1. Let x be a fixed point of f1 and let F be the
fiber of p1 which contains x. Recall that, by Theorem 2.1, NM supports an expanding
map Nf1, and hence is aspherical. Therefore the fundamental groups fit into the short exact
sequence

0! �1.F /! �1.M/! �1. NM/! 0:

Note that taking tensor product with R leaves the sequence exact.
Because f1.F /D F we have .f1/�.�1.F //DL�.�1.F // < �1.F / < �1.M/'Zd .

Since dim NM < d we have dimF > 0 and F is compact and also aspherical (because it
supports the expanding map f1jF ). It follows that �1.F /˝ R gives a non-zero rational
invariant subspace for L. Because L is irreducible we conclude that �1.F /˝ R D Rd .
Hence �1. NM/˝ R D 0, i.e., �1. NM/ is a torsion finitely generated abelian group, hence
finite. But any closed aspherical manifold of dimension > 0 has an infinite fundamental
group, a contradiction.

Proof of Corollary 2.11. By the classification of expanding maps, the manifolds Mi are
homeomorphic to infranilmanifolds. Therefore we can pass to the nilmanifold covers and,
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accordingly, pass to the lifts of expanding maps. It is easy to see that the very non-
algebraic assumption still holds for the lifted maps. From now on we assume that the
manifolds Mi are homeomorphic to nilmanifolds, and hence Theorem 2.1 applies.

Recall that fi are C rC1, r � 1, very non-algebraic expanding maps and hWM1!M2

is a conjugacy. We apply Theorem 2.1 to fi and r (not r C 1!). Let pi WMi ! NMi ,
Nfi W NMi ! NMi , NhW NM1 ! NM2 be the C r maps given by Theorem 2.1. We shall show that

dim NMi D dimMi . Then h D Nh and, by Theorem 2.1, the conjugacy is C r .
Assume that dimMi � dim NMi D m > 0. Recall that by Theorem 2.1 the fibers

Fi;x D p
�1
i .pi .x// are nilmanifolds, and hence are orientable. Moreover, the fibers can

be simultaneously coherently oriented because the base space NMi is also an orientable
nilmanifold. We fix a choice of orientation on the fibers and on the base. The expanding
map fi does not necessarily preserve any of the orientations. (And we cannot pass to finite
iterates because such operation would not preserve the “very non-algebraic” condition.)
Let d be the absolute value of the degree of the map between the fibers,

d D
ˇ̌
deg.fi jFi;x WFi;x ! Fi;fi .x//

ˇ̌
:

Note that d is indeed independent of x by continuity and is independent of i because the
mapsfi are conjugate. Further, if dimFi;x > 0 then d > 1 because the expanding map on
the fiber through a fixed point is a self-cover of degree > 1.

In the rest of the proof write Jf WD jJac.f /j. Let  i D log.Jfi jkerDpi /. We note that
these functions are only C r�1 because the distributions kerDpi are merely C r�1.

First we pick Riemannian metrics on NMi , i D 1; 2, so that Nh is volume preserving
(e.g., an isometry), and hence

logJ Nf1 D logJ Nf2 ı Nh:

Then pick smooth connections Ei for pi (subbundles transverse to kerDpi ) and then lift
the Riemannian metrics from NMi to Ei . Then consider Riemannian metrics on Mi which
are direct sums of metrics on kerDpi and the lifted metrics on Ei . By construction, the
differentials Dfi have upper-triangular form and we have

 i D logJfi � logJ Nfi ı pi :

The Livshits theorem for expanding maps together with the assumption on Jacobians at
periodic points implies that logJf1 is cohomologous to logJf2 ı h. Note that logJfi is a
C r function. Hence, by the main property of .pi ; Nfi ; Nh/ given by Theorem 2.1, log Jfi is
fi -cohomologous to a C r function which is constant on the fibers. Because log J Nfi ı pi
is also constant on the fibers, it follows that  i is cohomologous to N i ı pi .

In other words, there exists a C r function ui such that

log.Jfi jkerDpi / � ui C ui ı fi D
N i ı pi :

Therefore by replacing the volume form ! on the fibers F1;x with the volume form

N! D eu1!
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we can assume that the absolute value of the Jacobian of f1jkerDp1 equals e N 1ıp1 . Denote
by vol.F1;x/ the total N!-volume of F1;x . For any x 2M1 we have

e
N 1ıp1.x/ D

1

vol.F1;x/

Z
F1;x

e
N 1ıp1 N! D

1

vol.F1;x/

Z
F1;x

Jf1jkerDp1 N! D d :

Hence for every periodic point x, with f k1 .x/D x we have Jf k1 jkerDp1 D dk . This means
that either dk or .�d/k belongs to the spectrum of

Vm
Df k1 .x/, which contradicts f1

being very non-algebraic. We conclude that m D 0, i.e., dim NM1 D dimM1 and we are
done.

Note that even though the regularity of fi is r C 1, we use Theorem 2.1 with regular-
ity r because we work with the Jacobian of fi .

7. Examples

Example 7.1 (Basic example). Here we give an explicit example where non-trivial fibra-
tions pi WMi ! NMi , i D 1; 2, with dim NMi ¤ 0; dimMi appear. Consider the expanding
maps L; f WT2 ! T2 given by L.x; y/ D .2x; 2y/ and f .x; y/ D .g.x/; 2y/, where
g is conjugate to the �2 map via a nowhere differentiable conjugacy h0, h0 ı g D 2h0.
For simplicity we may assume that g.0/ D 0 and g0.0/ < 2. Then h D .h0; idS1/ is the
conjugacy between f and L. Recall that the fibrations pi arise from the space of pairs
of C r functions . 1;  2/ which satisfy '1 D  2 ı h, i.e.,

 1.x; y/ D  2.h0.x/; y/:

Clearly any C r function  1.x; y/ D  .y/ belongs to this space. We will show that these
are the only functions which could appear. Then it immediately follows that p1.x; y/ D
p2.x; y/ D y, that is, pi are circle fibrations over S1.

Denote by @infh0 the lower derivative of h0 defined via lim inf. All periodic points
which spend a sufficiently large proportion of time near 0 have Lyapunov exponent
< log 2. Such periodic points p are dense in S1 and it is easy to see that @infh0.p/ D 0

for any such p. Hence differentiating the relation between  1 and  2 with respect to x
yields

@

@x
 1.p; y/ D

@

@x
 2.h0.p/; y/@infh0.p/ D 0

for a dense set of p. Hence, indeed,  1 and  2 are functions of y only.

Remark 7.2. Any primitive vector .m; n/ 2 Z2 yields a fibration S1 ! T2 ! S1

whose fibers in the universal cover R2 are lines parallel to the vector .m; n/. This gives
infinitely different fibrations each of which is preserved by the conformal map L from
Example 7.1. Further, similarly to the construction of Example 7.1, one can construct per-
turbations f.m;n/ such that the fibration given by Theorem 2.1 is precisely the fibration
coming from .m; n/.
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Example 7.3 (de la Llave example). A non-trivial fibration may appear in a more subtle
way when full periodic Jacobian data match. Of course, this can only happen for expand-
ing maps which are not very non-algebraic. The example presented here is due to de la
Llave [7].

Consider the maps

L.x; y/ D .dx; ay/; d � 2; a � 2;

f .x; y/ D .dx C ˛.y/; ay/:

Then the conjugacy between L and f has the form

h.x; y/ D .x C ˇ.y/; y/

where ˇ can be expressed explicitly as the series [7]

ˇ.y/ D
1

d

X
i�0

1

d i
˛.aiy/:

Notice that ˇ is a Weierstrass function. Let

r0 D
log d
log a

and let r0 D nC � where n 2 N0 and � 2 .0; 1�.
To analyze the regularity of ˇ there are several cases to consider which give different

answers.

Lemma 7.4. Assume that ˛ 2C r , r D kC ı with k 2N0 and ı 2 Œ0;1/ and let r0D nC �
with n 2 N0 and � 2 .0; 1�. Consider the following cases:

Case I: r < r0 and ˇ 2 C r ,

Case II: r > r0, r0 … N and ˇ 2 C r0 ,

Case III: r > r0, r0 D nC 1 2 N and ˇ 2 C nCxjlogxj,

Case IV: r D r0 and ˇ 2 C nCx
� jlogxj.

In all cases, there is a generic set of ˛ 2 C r where the regularity is optimal, in particular
for such ˛, we have ˇ … C r0C" for any " > 0.

Proof. We give the proof for Case IV, all other cases being analogous.
By termwise differentiation we have

ˇ.n/.y/ D
1

d

X
i�0

�
an

d

�i
˛.n/.aiy/;

which is convergent because r0 > n. Comparing the series for ˇ and ˇ.n/, we can clearly
assume n D 0 because the argument for n > 0 would be the same with ˇ.n/ in place of ˇ.
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Let A D max j˛j and C the � -Hölder constant for ˛. Take x ¤ y and let N be such
that

1

aN�1
� jx � yj �

1

aN
:

Then

jˇ.x/ � ˇ.y/j �

N�1X
kD0

1

a�k
j˛.akx/ � ˛.aky/j C

X
k�N

1

a�k
j˛.akx/ � ˛.aky/j:

The first summand is smaller than

C

N�1X
kD0

1

a�k
a�kjx � yj� � CN jx � yj� � C jx � yj�

ˇ̌
log jx � yj

ˇ̌
:

The second summand is smaller than

2A

1 � a�
1

aN�
� C jx � yj� :

Hence we obtain the posited x� jlog xj modulus of continuity for ˇ.
On the other hand, assume, to simplify notation, that ˛.0/ D 0, and say ˛.x/ > 0

for x > 0, and lim infx!0
j˛.x/j

jxj�
> 0. Pick "0 > 0 sufficiently small so that K D

infjxj<"0 j˛.x/j=jxj
� > 0. Then, taking x > 0 very close to 0 and N > 0 first such that

aNx � "0, we obtain

jˇ.x/ � ˇ.0/j �

N�1X
kD0

1

a�k
˛.akx/ �

X
k�N

1

a�k
˛.akx/

�

�
KN �

2A

1 � a�

�
jxj� �

�
KC"0

ˇ̌
log jxj

ˇ̌
�

2A

.1 � a� /"�0

�
jxj� :

So, by taking x close enough to 0 we see that ˇ is not C � at 0.
Now notice that

ˇ.x/ D
1

d
ˇ.ax/C

1

d
˛.x/

and ˛ 2 C r0 . Let S be the set of x such that ˇ is not C r0 at x. Then, from the above
equation, if ax 2 S then x 2 S , i.e., S is backward invariant (and non-empty) and hence
dense.

To show the genericity property we will use the following functional analysis lemma
(a consequence of the proof of the open mapping theorem).

Lemma 7.5. Let X and Y be Banach spaces and LWX ! Y be a bounded linear map.
Then either L is onto or the image of L is a first category set.

Now consider X D Y D C � and L.ˇ/ D dˇ � ˇ ı a. The image of L is the set of
˛ 2 C � such that the corresponding ˇ belongs to C � . We have just showed that L is
not surjective, hence the set of ˛ such that the corresponding ˇ belongs to C � is a first
category set and so its complement is a second category set.
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Remark 7.6. Notice that if r0 2 N, then d D ar0 . Further, if ˇ 2 C r0 then we can dif-
ferentiate the above equation to find that ˇ.r0/ solves the equation

dˇ.r0/.x/ � ar0ˇ.r0/.ax/ D ˛.r0/.x/;

meaning that ˛.r0/=d is cohomologous to 0, which does not happen for generic ˛.

With Lemma 7.4 at hand we return to the discussion of Example 7.3. If we apply
Theorem 2.1 to L, f and r < r0 then the fibrations pi are trivial with point fibers.

If r � r0 we will have p1.x; y/ D p2.x; y/ D y, i.e., we get fibrations with circle
fibers. Let us show this fact.

Differentiating  1.x; y/ D  2.x C ˇ.y/; y/ with respect to y yields

@y 1.x; y/ D @y 2.x C ˇ.y/; y/C @x 2.x C ˇ.y/; y/ˇ
0.y/:

Notice that @x 2.x C ˇ.y/; y/ is C r0�1, and in particular continuous. Let

U D ¹y W @x 2.x C ˇ.y/; y/ ¤ 0 for some xº:

Then U is open and for y 2 U and appropriate x,

ˇ0.y/ D
@y 1.x; y/ � @y 2.x C ˇ.y/; y/

@x 2.x C ˇ.y/; y/
:

So, for y 2 U the right hand side is locally C r0�1 and hence ˇ0 is locally C r0�1 in U .
Hence by Lemma 7.4, U is empty and hence @

@x
 2.xC ˇ.y/;y/D 0 for all x and a dense

set of y 2 S1. We conclude that 2 (and similarly 1) depends solely on the y-coordinate.

Example 7.7 (Irreducible automorphism of an infratorus). We have explained in
Remark 2.9 that (non-trivial) infratori do not support totally irreducible affine automor-
phisms. Here we show that one can still construct irreducible examples (which become
reducible after passing to a finite iterate).

Define an expanding endomorphism of T3 by

L D

0@0 0 3

1 0 0

0 1 0

1A :
Note that L3 is diagonal. Define the holonomy group ¹id; 
1; 
2; 
3º as follows:


1 D

0@1 0 0

0 �1 0

0 0 �1

1A ; 
2 D

0@�1 0 0

0 1 0

0 0 �1

1A ; 
3 D

0@�1 0 0

0 �1 0

0 0 1

1A :
Finally, let

v1 D .1=2; 0; 1=2/
t ; v2 D .1=2; 1=2; 0/

t ; v3 D .0; 1=2; 1=2/
t ;
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and Ti .x/ D 
i .x/ C vi , i D 1; 2; 3. We let � be the group of affine diffeomorphisms
of T3 generated by the Ti ’s. It is easy to see that, in fact, � D ¹idT3 ; T1; T2; T3º, and
hence � acts freely on T3.

Finally,L�L�1�� , and hence induces an expanding endomorphism of the infratorus
T3=� . Indeed, L ı T1 ı L�1 D T2 C .1; 0; 0/t , L ı T2 ı L�1 D T3 and L ı T3 ı L�1 D
T1 C .1; 0; 0/

t .

Example 7.8 (Seifert fibration). Recall that in Theorem 2.1 we assume that the man-
ifolds Mi are homeomorphic to nilmanifolds. If they are not, then the construction of
compact foliations in the proof of Theorem 2.1 still works, but these foliations might fail
to be fibrations. The example below illustrates this point.

Consider the Klein bottle K given as a quotient of the torus T2 D R2=Z2 by
the involution T .x; y/ D .x C 1=2; �y/. We can also model K as the rectangle
Œ0; 1=2� � Œ�1=2; 1=2� where the sides are identified by .x; y/ 7! .x � 1=2; �y/ and
.x; y/ 7! .x; y C 1/. One can easily check that the expanding linear map

L D

�
3 0

0 2

�
induces an expanding map LWK! K. We foliate K by horizontal curves ¹y D constº.
More precisely, for every y 2 Œ�1=2; 1=2� define the circles

Cy D ¹.t; y/ W t 2 Œ0; 1=2�º [ ¹.t;�y/ W t 2 Œ0; 1=2�º :

Notice that if y ¤ 0; 1=2 then Cy consists of two segments on the rectangle. For y D 0,
C0 is a singular curve that consists of only one segment Œ0; 1=2� � ¹0º and hence has half
the length of the other leaves. The same happens for y D 1=2: C1=2 is a singular curve that
consists of only one segment Œ0; 1=2�� ¹1=2º � Œ0; 1=2�� ¹�1=2º. Moreover, Cy D C�y .

We have defined a foliation on K which is obviously not a fibration. Indeed, the quo-
tient map � WK! S1=Œy � �y� yields an orbifold structure on S1=Œy � �y�.

Notice that L.Cy/ D C.2ymod1/, hence the foliation is L-invariant.
We now define expanding maps fi WK! K, i D 1; 2. We let fi .x; y/ D .gi .x/; 2y/,

where gi .x/ D 3x C ˛i .x/ with ˛i .0/ D 0 and ˛i .x C 1=2/ D ˛i .x/ for every x 2 S1.
Such formulae define maps on the Klein bottle which are homotopic to L. Moreover,
these maps are expanding provided that the C 1 norms of ˛i are sufficiently small. Also
notice that the maps fi preserve the foliation C .

The conjugacy h between f1 and f2, hıf1Df2ıh, has the form h.x;y/D .h0.x/;y/,
where h0 ıg1D g2 ıh0. Notice that by the symmetries of fi , h0.xC1=2/D h0.x/C1=2,
and hence h is indeed a conjugacy on the Klein bottle. We can assume that the functions
˛i are chosen so that h0, and hence h, is not C 1.

Take any '0WR!R such that '0.yC 1/D '0.y/ and '0.�y/D '0.y/, e.g., '0.y/D
cos2�y. Then '.x;y/D '0.y/ defines a function on K and ' ı hD '. On the other hand,
if '1 D '2 ı h for some smooth functions '1 and '2 then both '1 and '2 must be constant
on the leaves of C because h0 is non-differentiable on a dense set of x 2 S1. So defining
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'i D ' for i D 1; 2 we are under the hypotheses of Theorem 2.1. We conclude that C is
precisely the compact foliation given by the construction in the proof of Theorem 2.1.

Example 7.9 (Exotic examples). Here we explain that the fiber bundle structure given
by Theorem 2.1 could be non-trivial even when the ambient manifold is an exotic
torus. Examples of expanding maps on exotic tori were first constructed by Farrell and
Jones [14] in dimensions d � 7. We explain how, with some extra care, the beautiful
construction of Farrell–Jones can be adapted to our setting.

Let†d be a d -dimensional, d � 7, homotopy sphere and let Td be the standard torus.
A simple way of constructing an exotic torus is by taking the connected sum Td #†. If
†d is not homeomorphic to the standard sphere then Td # †d is not homeomorphic
to Td [37, §15A]. Further, it is well-known that for d � 7, one can realize Td # †d

as Td with a disk Dd removed and then glued back in using an orientation preserving
“twist diffeomorphism” ' 2 Diff.Sd�1/,

Td #†d D .Td
nDd / [' Dd :

It is easy to check that if '0 is isotopic to ' then the corresponding exotic tori are diffeo-
morphic.

We view the sphere Sd�1 D @Dd as the standard sphere in Rd ,

Sd�1 D
°
.x1; : : : ; xd / W

X
i

x2i D 1
±
:

Cerf [5] showed that for every homotopy sphere †d one can realize Td # †d using a
diffeomorphism 'WSd�1 ! Sd�1 which preserves the first coordinate, i.e., has the form

'.x1; x2; : : : ; xd / D .x1; x
0
2; x
0
3; : : : ; x

0
d /:

Then ' can viewed as a path of diffeomorphisms and gives a representative of an element
of �1.Diff.Sd�2//. More generally, one can consider the space Diffk.Sd�1/ of orienta-
tion preserving diffeomorphisms which preserve the first k coordinates x1; : : : ; xk , and
hence give an element of �k.Diff.Sd�1�k//. Isotopy classes of such diffeomorphisms
form a subgroup �d

kC1
of the group ‚d of isotopy classes of all orientation preserving

diffeomorphisms (which is identified with the group of homotopy spheres equipped with
the connected sum operation). It is known that �d

kC1
is non-trivial in a certain range of

pairs .k; d/ [1].
Now we formulate the extra property of ' 2 Diffk.Sd�1/ which we will need (and

which is not needed in the original Farrell–Jones construction). Consider the obvious
homomorphism


 W�k.Diff.Sd�1�k//! �0.Diff.Sd�1// ' ‚d :

Lemma 7.10 ([2, Proposition 1.2.3; §1.3]). There exist pairs .k; d/ 2 and a torsion ele-
ment Œ'� 2 �k.Diff.Sd�1�k//, Œ'p� D 0, whose image in �0.Diff.Sd�1// is non-trivial,
i.e., 
Œ'� ¤ 0.

2For specific arithmetic conditions see [2, Corollary 1.3.6].
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We proceed to briefly recall the Farrell–Jones construction [11, 14] and then explain
how the above lemma allows us to produce an exotic example which admits invari-
ant fibrations with .d � k/-dimensional fibers. The construction yields the �s map on
�1.Td #†d / for a sufficiently large s which must also satisfy a certain congruence arith-
metic condition.

We pick a ' 2 Diffk.Sd�1/ given by Lemma 7.10 and realize Td #†d by removing
a disk Dd from Td and then attaching it back with a twist [' Dd . Given an integer s � 2
consider the manifold Ms which is diffeomorphic to Td # †d and which is obtained
by removing the conformally scaled disk 1

s
Dd and then attaching it back with a twist

['
1
s
Dd . Because of our choice of ' both manifolds are naturally total spaces of smooth

torus bundles

Td�k
! Td #†d

p1
�! Tk ; Td�k

!Ms ! Tk ;

where the base space Tk corresponds to the first k coordinates fixed by '.
Let N ! Td # †d be the locally isometric cover which induces the �s map on the

fundamental group. And let Ns be a copy of N with the Riemannian metric conformally
scaled by 1=s. Clearly bothNs andN smoothly fiber over Tk . Then the posited expanding
map is the composition

Td #†d
Fs
�!Ms

Gs
��! Ns

�s
�! N ! Td #†d :

The diffeomorphisms Fs and Gs are constructed with a uniform (in s) lower bound on
minimal expansion. It immediately follows that for sufficiently large s the composite map
f WTd #†d ! Td #†d is uniformly expanding.

The diffeomorphism Fs which “shrinks” the exotic sphere is constructed using the
“commutator trick” and it is easy to check that Fs is fiber preserving and fibers over the
identity map idTk . We claim that the same is true for the diffeomorphism Gs . The pur-
pose of Gs is to introduce a certain number of scaled exotic spheres [' 1sDd , and thus
create Ns . These exotic spheres are introduced in groups of size b which is divisible by
the order of ' in ‚d [14, Lemma 3]. Alternatively one can think of G�1s as a diffeo-
morphism which removes exotic spheres in groups of size b. To remove one such group
one uses a diffeomorphism given by the isotopy between 'b and idSd�1 . A priori such an
isotopy does not preserve the fibers. However, we can require b to be divisible by the p
which is given by Lemma 7.10. Then 'b is isotopic to idSd�1 in the space Diffk.Sd�1/
and hence the resulting diffeomorphism Gs WMs ! Ns is fiber preserving and fibers over
idTk . Finally, we notice that the covering map N ! Td # †d and the expanding map
�sWNs ! N are fiber preserving as well. We conclude that the expanding map f fibers
over the �s map on Tk :

Td #†d

p1
��

f
// Td #†d

p1
��

Tk �s // Tk
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The same diagram holds for the standard �s expanding map Es WTd ! Td :

Td

p2
��

Es // Td

p2
��

Tk �s // Tk

and it is easy to see that the conjugacy hWTd #†d ! Td , h ı f D Es ı h, maps fibers
to fibers and the induced conjugacy on Tk is the identity, i.e., Nh D idTk .

We claim that one can perturb f along the fibers so that the fibrations p1 and p2
are precisely the ones appearing in Theorem 2.1. Indeed, consider the restrictions of
fpWTd�k

p ! Td�k
p and Es WTd�k

h.p/
! Td�k

h.p/
to the fibers through the corresponding fixed

points. Denote by p0i , i D 1; 2, the fibrations produced by Theorem 2.1 applied to f
and Es . Then the fibers of p0i refine the fibers of pi , and hence we can restrict p01 and p02
to Td�k

p and Td�k
h.p/

, respectively. Denote by ` the dimension of the base space for these
restricted fibrations. Recall that the induced conjugacy on the base space is smooth. It
follows that

V`
Dfp has s` as an eigenvalue. Hence we perturb f in the neighborhood

of p so that
V`

Dfp does not have s` for an eigenvalue for `D 1; : : : ; d � k. Then `D 0,
which means that p0i D pi .

Remark 7.11. Similarly, one can perturb f along the fibers to an expanding map
f2WTd # †d ! Td # †d such that both p0i given by Theorem 2.1 when applied to f
and f2 are equal to p1.

Remark 7.12. An easier way of constructing an exotic expanding map with non-trivial
fibration would be to take the product f �L of an exotic expanding map f WTd #†d !
Td # †d and a linear expanding map LW Tm ! Tm. Smoothing theory implies that
.Td #†d / � Tm is not diffeomorphic to TdCm. Then .Td #†d / � Tm fibers over Tm

and one can arrange this fibration to be the fibration given by Theorem 2.1 in a simi-
lar way. The example which we described above is more interesting because the smooth
structure on Td # †d is irreducible, that is, Td # †d is not diffeomorphic to a smooth
product of two lower-dimensional smooth closed manifolds [12, Proposition 1.3].

8. Factor version

We formulate the following generalization of Theorem 2.1, where we replace the topolog-
ical conjugacy by a continuous factor map. The proof follows the same lines with routine
modifications and we omit it.

Theorem 8.1. Assume thatMi , i D 1; 2, are closed manifolds homeomorphic to nilmani-
folds. Let fi WMi !Mi , i D 1; 2, be C r -smooth, r � 1, expanding maps and assume that
f2 is a topological factor of f1, that is, there exists a continuous map hWM1 !M2 such
that h ı f1 D f2 ı h.
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Then there exists a C r expanding map Nf W NM ! NM where NM is homeomorphic to
a nilmanfold, and C r fibrations .with connected fiber homeomorphic to a nilmanifold/
pi WMi ! NM , i D 1; 2, such that

pi ı fi D Nf ı pi ; i D 1; 2;

Further the map h sends fibers to fibers:

p2 ı h D p1;

and the fibrations pi , i D 1; 2, have the following property. If 'i WMi ! R, i D 1; 2, are
C r -smooth functions such that for every periodic point x 2 Fix.f n1 /,

n�1X
kD0

'1.f
k
1 .x// D

n�1X
kD0

'2.f
k
2 .h.x///;

then there exist a C r function N'W NM ! R such that 'i is cohomologous to N' ı pi over fi .

Using Theorem 7.1 one can naturally study regularity properties of factor maps. We
proceed to describe an application.

LetM1DN �M2, whereN andM2 are nilmanifolds, and letLD .A;B/WM1!M1

be a product expanding map. Then, clearly, L factors over B . Hence if f1 is an expanding
map homotopic to L and f2 is an expanding map homotopic to B then f1 factors over f2,
h ı f1 D f2 ı h.

To define nice invariants of smooth conjugacy we need to introduce a restriction on L
and f1. Namely, we assume that the maximal expansion of A is greater than the minimal
expansion of B . Then the “vertical foliation” N � ¹xº, x 2 M2, is a weakly expanding
foliation. It is easy to see that for any sufficiently C 1 small perturbation f1 of L the
weakly expanding foliation survives as an f1-invariant foliation W wu.

Corollary 8.2. Consider C rC1 expanding maps L; f1, f2 and a factor map h, h ı f1 D
f2 ı h. Assume that f1 belongs to a sufficiently small C 1 neighborhood of L and f2 is
very non-algebraic. If for any periodic point x D f k1 .x/,

Jac.f k1 /.x/

Jac.f k1 jWwu/.x/
D Jac.f k2 /.h.x//

then the factor map h is C r -smooth.

The proof is very similar to the proof of Corollary 2.11 and we merely provide a
sketch. Also one can replace the very non-algebraic assumption on f2 by requiring f2 to
be an irreducible toral diffeomorphism and assuming that the entropy maximizing mea-
sure for f2 is not absolutely continuous.

Sketch of the proof. Let pi WMi ! NMi be fibrations given by Theorem 8.1 when applied
to fi and r . If dim NM D dimM2 then p2 is a diffeomorphism and so hD p�12 ı p1 is C r .
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Hence we need to rule out the possibility that dim NM < dimM2, i.e., the case when
the fiber of p2 has dimension � 1. In this case, following the proof of Corollary 2.11, we
can apply Theorem 8.1 to log Jac.f2/ to conclude that log Jac.f2jkerp2/ is cohomologous
to a function which is constant along the fibers of p2, which yields a contradiction again,
similarly to the proof of Corollary 2.11.

One subtle detail, however, is that in order to apply Theorem 8.1 one needs to
have a pair of C r functions .'1; '2/. We let '2 D log Jac.f2/ and '1 D log Jac.f1/ �
log Jac.f1jWwu/. (Assume for simplicity that fi ’s are orientation preserving.) It is clear
from the assumption of the corollary that the sums of 'i agree along the periodic orbits
and it is clear that '2 is C r . However, one also has to argue that '1 is C r which is equiv-
alent to log Jac.f1jWwu/ being C r .

Smoothness of logJac.f1jWwu/ can be established as follows. Pick a lift Qf1W QM1! QM1

to the universal cover QM1. The foliation W wu lifts to QW wu. Because Qf1 is invertible,
the fast foliation QW uu is also well defined by the standard cone argument. Notice that
QW uu is not equivariant under the group of deck transformations but this is not going to be

important for what follows. Then, by the usual application of the C r section theorem [21],
we find that QW uu is C rC1 and hence log Jac. Qf1j QW uu/ is C r . Finally, extending QW uu to a
smooth coordinate system, we see that Df1 has an upper-triangular form and hence

log Jac. Qf1/ D log Jac. Qf1j QW uu/C log Jac. Qf1j QWwu/;

which implies that log Jac. Qf1j QWwu/, and hence log Jac.f1jWwu/, is C r .
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