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Abstract. We show that for Chevalley groups G.R/ of rank at least 2 over an integral domain
R each root subgroup is (essentially) the double centralizer of a corresponding root element. In
many cases, this implies that R and G.R/ are bi-interpretable, yielding a new approach to bi-
interpretability for algebraic groups over a wide range of rings and fields.

For such groups it then follows that the groupG.R/ is (finitely) axiomatizable in the appropriate
class of groups provided R is (finitely) axiomatizable in the corresponding class of rings.
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1. Introduction

A Chevalley–Demazure group scheme G assigns to each commutative ring R

a group G.R/. If R is an integral domain with field of fractions k, one can realize G.R/
as the group of R-points of G.k/, where G.k/ is taken in a given matrix representation
(see e.g. [1, §1]). Group-theoretic properties ofG.R/ tend to reflect ring-theoretic proper-
ties of R. In this paper we consider properties that are expressible in first-order language;
specifically, we establish sufficient conditions for G.R/ to be bi-interpretable with R.
This is a slightly subtle concept, defined in [29, Def. 3.1] (cf. [20, Chapter 5]); see §3
below. A bi-interpretation sets up a bijective correspondence between first-order proper-
ties of the group and first-order properties of the ring. Results of this nature for R a field
go back to Mal’tsev [24] and Zilber [40].

Theorem 1.1. Let G be a simple adjoint Chevalley–Demazure group scheme of rank at
least 2, and letR be an integral domain. ThenR andG.R/ are bi-interpretable, assuming
in case G is of type E6; E7; E8, or F4 that R has at least two units.
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For convenience, we will refer to the final assumption as ‘the units condition’; it is
automatically satisfied when char.R/¤ 2. The condition is used in the proof, but may not
be essential.

Throughout the paper, G will denote a simple Chevalley–Demazure group scheme
defined by a root system ˆ of rank at least 2, and R will be a commutative integral
domain. The group scheme G is not assumed to be adjoint; indeed, the proof yields the
same result without this assumption, under the alternative condition that G.R/ have finite
elementary width: that is, there exists N 2 N such that every element of G.R/ is equal to
a product of N elementary root elements x˛.r/, ˛ 2 ˆ; r 2 R. (When referring below to
Theorem 1.1, we will mean both versions of the result.)

In particular, we have (see §5):

Corollary 1.2. The – not necessarily adjoint – group G.R/ is bi-interpretable with R in
each of the following cases:

(i) R is a field;

(ii) G is simply connected, and R is .1/ a local domain, .2/ the ring of S -integers in a
number field k with respect to a finite set S of places of k, or .3/ the ring of integers
in a global function field.

For related results (in some ways less general, in some ways more) see [26], [11]
and [6].

These results have consequences related to ‘first-order rigidity’. A group (or ring)X is
first-order rigid (or relatively axiomatizable) in a class C if any member of C elementarily
equivalent to X is isomorphic to X . For example, Avni, Lubotzky and Meiri [5] prove
that all higher-rank non-uniform arithmetic groups are first-order rigid in the class of f.g.
groups.

A stronger condition is relative finite axiomatizability, or FA: X is FA in C if there
is a first-order sentence such that X is the unique member of C (up to isomorphism)
that satisfies this sentence. When C is the class of finitely generated groups, resp. rings,
the latter property is often called QFA, or quasi-finitely axiomatizable; see [3, 27], and
for recent variations on this theme [28]. (This should not be confused with the notion of
quasi-finite axiomatizability used in model theory; see e.g. [29, Chapter 3], [2].)

Suppose that G.R/ is bi-interpretable with R. Then G.R/ is first-order rigid, resp. FA
in C if and only if R has this property relative to C 0, provided the ‘reference classes’ C

and C 0 are suitably chosen. In particular, in §4 we establish

Corollary 1.3. Assume that G and R satisfy the hypotheses of Theorem 1.1. If R is first-
order rigid, resp. FA, in (a) the class of finitely generated rings, (b) the class of profinite
rings, (c) the class of locally compact .or t.d.l.c./ topological rings, then G.R/ has the
analogous property in (a) the class of finitely generated groups, (b) the class of profinite
groups, (c) the class of locally compact .or t.d.l.c./ topological groups.

In most cases the converse of this corollary is also valid; see §4.
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It is important to note that in cases (b) and (c), the first-order axioms can a priori only
determine the group up to isomorphism as an abstract group (cf. [28, §1.2]); in most of
the cases under consideration, this is sufficient to determine the group as a topological
group; see Proposition 4.4.

In §5 we deduce

Corollary 1.4. (i) Let R be an integral domain. If G is adjoint and the group G.R/
is finitely generated then G.R/ is FA among f.g. groups, assuming that the units
condition holds.

(ii) Let oS be the ring of S -integers in a global field (S � S1, with S D S1 in the
function-field case). If G is adjoint or simply connected then the S -arithmetic group
G.oS / is FA among f.g. groups.

(iii) If G is adjoint or simply connected and R is one of the complete local rings
FqŒŒt1; : : : ; tn��, oqŒŒt1; : : : ; tn�� .n � 0/ then G.R/ is FA in the class of profinite
groups.

(iv) If k is a local field then G.k/ is FA in the class of locally compact groups.

(Here oq D ZpŒ��, where q D pf and � is a primitive .q � 1/th root of unity). For the
fact that the S -arithmetic groups in (ii) are indeed finitely generated see [8, 9].)

Our final result moves away from integral domains. The model theory of adèle rings
and some of their subrings has attracted some recent interest [14, 16, 17], and it seems
worthwhile to extend the results in that direction.

Let A denote the adèle ring of a global field K, with char.K/ ¤ 2; 3; 5. We consider
subrings of A of the following kind:

A D A; A D
Y
p2P

op (1)

where o is the ring of integers ofK and P may be any non-empty set of primes (or places)
of K. For example, A could be the whole adèle ring of Q, or bZ DQp Zp:

Theorem 1.5. LetG be a simple Chevalley–Demazure group scheme of rank at least 2, or
else one of the groups SL2, SL2=h�1i, PSL2. LetA be as in (1). ThenA is bi-interpretable
with the group G.A/.

When jP j D 1, this is included in Theorem 1.1 for groups of higher rank, and is
established in [28, §4] for groups of type SL2.

The main point of the paper is to show how results like Theorem 1.1 may be deduced
from the fact that root subgroups are definable. This in turn is a (relatively straightfor-
ward) consequence of our main structural result.

The root subgroup of G associated to a root ˛ is denoted U˛ . It seems to be part of
the folklore that for a field k, the subgroup U˛.k/ is equal to its own double centralizer
inG.k/. We will need a more general version of this; as we could not find a reference, and
the result for some rings is perhaps somewhat unexpected, we will present three different
approaches to the proof, each applicable to a slightly different range of cases.
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Theorem 1.6. Assume thatR satisfies the units condition. Let U be a root subgroup of G
and let 1 ¤ u 2 U.R/. Write Z for the centre of G. Then

CG.R/CG.R/.u/ D Z.CG.R/.u// D U.R/Z.R/ (2)

unlessG is of type Cn .including B2 D C2/, U belongs to a short root ˛ and R� D ¹˙1º,
in which case

Z.CG.R/.u// � U.R/U1.R/U2.R/Z.R/ (3)

where U1 and U2 are root subgroups belonging to long roots adjacent to ˛ in a B2 sub-
system.

In the exceptional case, Z.CG.R/.u// actually turns out to be two-dimensional: the
precise description is given in §8.

If one assumes that R has at least four units, the theorem can be proved very quickly,
and we do this in §2 below. Remaining cases are dealt with in §§6, 7 and 8; these can be
skipped by the reader unconcerned with ‘difficult’ rings such as Z.

As for definability, we shall deduce

Corollary 1.7. Assuming the units condition, for each root ˛ the root subgroup U˛.R/
is definable, unless possibly G D Sp4.R/, char.R/ D 0 and R=2R is infinite; in any case
U˛.R/Z.R/ is definable.

Definable here means ‘definable with parameters’: a subset H in a group � is defin-
able if there are a first-order formula ' and elements g1; : : : ; gm 2 � such that

H D ¹h 2 � j '.h; g1; : : : ; gm/ holdsº:

This is good enough for the proof of Theorem 1.1, which appears in §3.

Remark. Essentially the same proof establishes Corollary 1.7 whenever G is a k-iso-
tropic algebraic group with the maximal k-torus defined over R, provided R has at least
four units. Whether the other results can be extended in this direction remains to be seen
(cf. [5, 6, 21]).

Regarding Chevalley groups of rank 1. It is easy to verify both Theorem 1.6 and Corol-
lary 1.7 for groups G of type A1.

It is shown in [28, §4] that SL2.R/ is bi-interpretable with R if R is a profinite local
domain; thus Corollary 1.4(iii) holds also for G D SL2.

We do not know if the other cases hold for SL2. It seems extremely unlikely that
SL2.Z/ can be FA or even first-order rigid, as it is virtually free; results of Sela [30, 31]
concerning free products imply that PSL2.Z/ is not first-order rigid, and so not bi-
interpretable with Z.

In the proofs we have frequent recourse to the Chevalley commutator formula, sum-
marized for convenience in the Appendix.
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2. Double centralizers and definability of root groups

Following [1] we denote by T the distinguished maximal torus of G determined by ˆ.
Let N denote the normalizer of T in G, so that the Weyl is group W D N=T . We will
sometimes use the fact that W permutes the root subgroups, and acts transitively on the
set of short roots and on the set of long roots. Each w 2 W has a coset representative
nw 2 N.R/ (in fact, in the subgroup generated by root elements of the form xa.˙1/)
[12, §7.2 and Lemma 6.4.4]. Thus all long (resp. short) root subgroups are conjugate
in G.R/.

The field of fractions of R will be denoted k, and its algebraic closure k. Sometimes
we identify G with G.k/. We write � W G ! G=Z for the quotient map.

We begin by clarifying the relation between the R-points of the algebraic group U˛
and the 1-parameter group x˛.R/; this is the link between Corollary 1.7 and the main
theorems.

Lemma 2.1. Let U D U˛ be a root subgroup. Then

U \G.R/ D U.R/ D x˛.R/; (4)

UZ \G.R/ D U.R/Z.R/: (5)

Proof. (4): If R is a PID, or more generally an intersection of PIDs such as a Dedekind
ring, this follows from [34, Lemma 49 (b)]. In the general case, it is a consequence of the
fact that the morphism x˛ from the additive group scheme to G is a closed immersion
([13, Thm. 4.1.4]; [15, exp. XX, remark following Cor. 5.9]).

(5): Say g D x˛.�/z 2 G.R/ where � 2 k and z 2 Z. Then

x˛.�/� D g� 2 G.R/� � .G=Z/.R/;

whence � 2 R by (4) applied to the group scheme G=Z. Thus x˛.�/ 2 U.R/ and so
z 2 Z.R/.

The main step in the proof of Theorem 1.6 is

Lemma 2.2. Assume that if G is of type En or F4 then R� ¤ 1, and if G is of type Cn
then R� ¤ ¹˙1º. Then there exists a finite set Y � CG.R/.U / such that CG.Y / � UZ.

To deduce the main case of the theorem, observe that Z is contained in

V WD CG.CG.u// � CG.CG.R/.u// � CG.Y / � UZ:

Thus if V has positive dimension we have equality throughout. This is obvious if
char.k/ D 0; if G is of classical type, it is easy to see in a matrix representation that
V � U (cf. §8). In all other cases, the results of [22, 32, 33] show that dim.V / D 1. Now
(2) follows by (5). The proof of Theorem 1.5 for groups of type Cn is completed in §8.
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The slickest proof of Lemma 2.2 uses what we call ‘torus witnesses’. Let ˛ and ˇ
be linearly independent roots. A torus witness for .˛; ˇ/ is an element s 2 T .R/ that
centralizes U˛ and acts effectively on Uˇ :

s 2 CT.R/.U˛/; CUˇ .s/ D 1:

Note that s centralizes, respectively acts effectively on, a root group U
 if and only if it
does the same to U
 .R/.

In most cases we can use ‘elementary torus elements’ h
 .t/ 2 T .R/, defined by

h
 .t/ D x
 .t/x�
 .�t
�1/x
 .t/ � x
 .1/x�
 .�1/x
 .1/

([34, Lemma 20], [12, Lemma 6.4.4]). Now h
 .t/ acts on Uˇ by

xˇ .r/
h
 .t/ D xˇ .t

�A
ˇ r/

where

A
ˇ D
2.
; ˇ/

.
; 
/
2 ¹0;˙1;˙2;˙3º

(see [12, p. 194]).
We first deal with the case where R contains at least four units:

Proposition 2.3. Assume that jR�j � 4. Then for each pair .˛;ˇ/ of linearly independent
roots there is a torus witness s˛;ˇ .

Proof. Let r 2 R� be such that r2 ¤ 1 ¤ r3. If ˇ is orthogonal to ˛, then we put
s˛;ˇ D hˇ .r/. Now suppose ˛ and ˇ are non-orthogonal. If ˛ and ˇ span a diagram
of type A2, then there is a root 
 ¤ ˙˛;�ˇ such that .˛; ˇ/ ¤ .˛; 
/. In this case, the
actions of hˇ .r/ and h
 .r/ on U˛ are inverse to each other and so s˛;ˇ D hˇ .r/h
 .r/ is
as required. If ˛; ˇ span a diagram of type B2 or G2, there is a root 
 orthogonal to ˛ and
non-orthogonal to ˇ and we put s˛;ˇ D h
 .r/.

Other cases will be considered later.

Proposition 2.4. Let ˛ be a positive root. Suppose that for every positive root ˇ ¤ ˛

there exists a torus witness sˇ for .˛; ˇ/. Set Y D ¹sˇ j ˇ 2 ˆCº. Then

CG.Y / � U˛Z:

Proof. We recall the Bruhat decomposition ([12, Thm. 8.4.3], [34, p. 21]). Order the
positive roots as ˛1; : : : ; ˛m and write Ui D U˛i . For w 2 W put

S.w/ D ¹i j w.˛i / 2 ˆ�º

where ˆ� is the set of negative roots. Then each element of G can be written uniquely in
the form

g D u1 : : : um � tnw � v1 : : : vm (6)

where w 2 W , t 2 T , ui ; vi 2 Ui and vi D 1 unless i 2 S.w/.
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We may suppose that ˛ D ˛1. For each i � 2 there is a torus witness si 2 Y for
.˛1; ˛i /. Now let g 2 CG.Y /, and write g in the form (6). Then for each j � 2 we have

g D gsj D u
sj
1 : : : u

sj
m � tn

sj
w � v

sj
1 : : : v

sj
m :

Now sj fixes u1 and v1, and moves each non-identity element of Uj ; it also normalizesN
and each Ui . It follows by the uniqueness of expression that uj D vj D 1. This holds for
each j � 2, and we conclude that

g D u1tnwv1:

As tnw D v�11 gu�11 fixes u 2 U˛ , but conjugates U˛ to Uw.˛/, it follows that
w.˛/ D ˛; in particular, 1 … S.w/, and so v1 D 1.

It remains only to prove that tnw 2 Z D Z.G/. Let 
 be a root. If ˛ C 
 … ˆ then
U
 � CG.U˛/. If ˛C 
 and ˛ � 
 are both roots then either 2˛C 
 … ˆ or 2˛ � 
 … ˆ,
and then U˛˙
 � CG.U˛/. It follows that tnw centralizes at least one of

U
 ; U�
 ; U˛˙
 :

As w.˛/ D ˛ this implies that w.
/ D 
 , and as 
 was arbitrary it follows that w D 1.
Thus tnw D t 2 T , and acts on root subgroups in the following manner:

x
 .�/
t
D x
 .�.
/�/

for a certain character �. Now � is trivial on ˛ and on one of 
 , �
 , ˛ C 
 , ˛ � 
 so it
is trivial on all of them. Thus t acts trivially on every root subgroup, and so t 2 Z.G/ as
required.

The ‘generic case’ of Theorem 1.6, where jR�j � 4, is now completely established.
For the remainder of this section, we will take as given the conclusion of this theorem

(in its general form), and show that it implies Corollary 1.7.
Fix a root ˛, set U D U˛ and fix u 2 U , u ¤ 1. We begin with

Lemma 2.5. U.R/Z.R/ is a definable subgroup of G.R/.

Proof. It is clear that the double centralizer of an element u is definable, taking u as a
parameter. So if U satisfies (2) we are done.

Otherwise, (3) holds, ˆ D Cn and ˛ is a short root. Set V D Z.CG.R/.u//. Thus

U.R/Z.R/ � V � U�ˇ .R/U.R/U2˛Cˇ .R/Z.R/

where ˛; ˇ make a pair of fundamental roots in a B2 subsystem of ˆ.
Let g D x�ˇ .r/x˛.s/x2˛Cˇ .t/z 2 V where z 2 Z. The commutation relations give

Œg; x˛Cˇ .1/� D x˛.˙r/x2˛Cˇ .˙r/x2˛Cˇ .˙2s/;

Œg; x�˛�ˇ .1/� D x�ˇ .˙2s/x˛.˙t /x�ˇ .˙t /:
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Now g lies in U.R/Z.R/ if and only if r D t D 0, which holds if and only if

Œg; x˛Cˇ .1/� 2 U2˛Cˇ .R/Z.R/ and Œg; x�˛�ˇ .1/� 2 U�ˇ .R/Z.R/:

As 2˛ C ˇ and �ˇ are long roots, each of the two groups on the right is definable, as
is V . Hence U.R/Z.R/ is definable in this case too.

Now we can complete the

Proof of Corollary 1.7. If G is adjoint then Z D 1 and U.R/ D U.R/Z.R/ is definable,
by Lemma 2.5. This holds in particular when ˆ D G2 [34, p. 23].

If ˆ is not of type An; D2mC1 or E6 we have Z2 D 1 (loc. cit.), so in all these cases
we have

U.2R/ D .U.R/Z.R//2;

which is definable. If also R=2R is finite, then U.R/ is the union of finitely many cosets
of U.2R/, and so definable with the help of a few parameters. If ˆ D B2 then either G
is adjoint or G Š Sp4. If the characteristic of R is odd then 2R D R. If char.R/ D 2 and
Z2 D 1 then Z D 1, and there is nothing to prove. The case where char.R/ D 0, R=2R
is infinite and G Š Sp4 is the special case in the statement of the corollary. Thus we may
assume that ˆ … ¹G2; B2º:

Now we separate cases. Note that if Uˇ .R/ is definable for some root 
 , then so is
U
 .R/ for every root 
 of the same length as ˇ, as these subgroups are all conjugate
in G.R/. This will be used repeatedly without special mention.

Case 1: There is a root ˇ such that ˛ and ˇ make a pair of fundamental roots in a subsys-
tem of type A2. Now the commutator formula shows that

U˛Cˇ .R/ D ŒU˛.R/Z.R/; xˇ .1/�;

so U˛Cˇ .R/ is definable; and ˛ C ˇ has the same length as ˛.

Case 2: There is no such ˇ. Then there exist roots ˇ and 
 such that ˛, ˇ, 
 form a
fundamental system of type B3 or C3, with ˇ in the middle and of the same length as 
 .
Moreover, Uˇ .R/ is definable by Case 1.

Now if ˛ is short and ˇ is long, then 2˛C ˇ is a long root, so U2˛Cˇ .R/ is definable.
The formula

Œx˛.1/; xˇ .r/z� D x˛Cˇ .˙r/x2˛Cˇ .˙r/ .z 2 Z/

shows that if g 2 U˛Cˇ .R/ then there exist v 2 Uˇ .R/Z.R/ and w 2 U2˛Cˇ .R/ such
that gw�1 D Œx˛.1/; v�. As

U˛CˇU2˛Cˇ \ U˛CˇZ D U˛Cˇ

it follows that g 2 U˛Cˇ .R/ if and only if g 2 U˛Cˇ .R/Z.R/ and there exist v; w as
above satisfying gw�1 D Œx˛.1/; v�. Thus U˛Cˇ .R/ is definable; as ˛ C ˇ is short the
result follows for U˛.R/:
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Suppose finally that ˛ is long and ˇ is short. The preceding argument, swapping the
roles of ˛ and ˇ, shows that g 2 U2ˇC˛.R/ if and only if g 2 U2ˇC˛.R/Z.R/ and there
exist v 2 U˛.R/Z.R/ and w 2 UˇC˛.R/ such that gw�1 D Œx˛.1/; v�. Also UˇC˛.R/ is
definable becaue ˇ C ˛ is short like ˇ, and so U2ˇC˛.R/ is definable. This finishes the
proof as 2ˇ C ˛ is long like ˛.

3. Bi-interpretation

In this section we shall assume Corollary 1.7 and deduce Theorem 1.1.
A bi-interpretation between R and G.R/ has four ingredients, which we describe in

the form they occur here (which is not the most general form). ‘Definability’ will be in
one of two first-order languages, the language Lgp of group theory and the language Lrg

of ring theory. We set � D G.R/, in an attempt to avoid a forest of symbols.

(1) An interpretation of R in �I in most cases, this consists in an identification of R with
a definable abelian subgroup R0 of � such that addition in R0 is the group operation
in � , and multiplication in R0 is definable in � (thus the ring structure on R0 is Lgp-
definable); in one special case, we instead take R0 to be the image in �=Z.�/ of a
definable abelian subgroup of � (the target of an interpretation can be the quotient of
� by a definable equivalence relation, see [20, §5.3]).

(2) An interpretation of � in R; namely, for some d 2 N an identification of � with a
subgroup �� of GLd .R/, where �� is definable inLrg (thus the group structure on ��

is Lrg-definable, being just matrix multiplication).

(3) An Lgp-definable group isomorphism from � to ��0, the image of �� in GLd .R0/.

(4) An Lrg-definable ring isomorphism from R to R0�, the image of R0 in GLd .R/:

We assume to begin with that each root group U˛.R/ is definable; the small changes
needed to deal with the exceptional case in Corollary 1.7 are indicated at the end of this
section.

Interpreting R in G.R/

Lemma 3.1. If U1; : : : ; Uq are distinct positive root subgroups then the mapping �1 W
U1.R/ : : : Uq.R/ ! U1.R/ that sends u1 : : : uq to u1 .in the obvious notation/ is
definable.

Proof. If g D u1 : : : uq then

¹u1º D gUq.R/ : : : U2.R/ \ U1.R/

(cf. [34, Lemma 18, Cor. 2]).

Lemma 3.2. Let ˛ and ˇ be any two roots. Then the mapping

c˛ˇ W U˛.R/! Uˇ .R/; x˛.r/ 7! xˇ .r/;

is definable.
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Proof. Suppose first that ˛ and ˇ are the same length. Then there exist an element w in
the Weyl group such that w.˛/ D ˇ, and a representative nw for w, with nw 2 N.R/,
such that x˛.r/nw D xˇ .�r/ for all r 2 R, where � D ˙1 [12, Lemma 7.2.1]. So we can
define c˛ˇ .g/ D g�nw .

Now suppose that ˛ is long and ˇ is short. We can find a short root � and a long root �
such that �C � D 
 is a short root. The commutator formula gives (for a suitable choice
of sign)

Œx�.˙1/; x�.s/� D x
 .s/u3 : : : uq

where ui 2 Uj�Cl� , j C l D i (and q � 5) , so by Lemma 3.1 the map c�
 is definable.
It follows by the first case that c˛ˇ D c˛�c�
c
ˇ is definable.

Finally, if ˛ is short and ˇ is long we have c˛ˇ D c�1ˇ˛ .

Lemma 3.3. Let ˛, ˇ and 
 be any roots. The mapping

m˛ˇ
 W U˛.R/ � Uˇ .R/! U
 .R/; .x˛.r/; xˇ .s// 7! x
 .rs/;

is definable.

Proof. By the preceding lemma we may suppose that ˛ and 
 are short and that 
 D
˛ C ˇ. Then apply the same argument to the formula

Œx˛.˙r/; xˇ .s/� D x
 .rs/u3 : : : uq :

Now we interpret R in � as follows: fix a root ˛0, set R0 D U˛0.R/ and identify
r 2 R with r 0 D x˛0.r/. Then m˛0˛0˛0 defines multiplication in R0. Since addition in R0

is simply the group operation, we may infer

Corollary 3.4. Let f be a polynomial over Z. Then the mapping U˛0.R/ ! U˛0.R/

given by r 0 7! f .r 0/ is Lgp-definable.

Interpreting G.R/ in R

The group scheme G is defined as follows (see e.g. [1, §1]). Fix a faithful representation
of the Chevalley group G.C/ in GLd .C/. The ring ZŒG� D ZŒXij I i; j D 1; : : : ; d � is the
Z-algebra generated by the co-ordinate functions on G, taken with respect to a suitably
chosen basis for the vector space Cd . For a ring R we define

G.R/ D Hom.ZŒG�; R/:

Thus an element g 2 G.R/ may be identified with the matrix .Xij .g//, and the group
operation is given by matrix multiplication.

Let Tij be independent indeterminates. The kernel of the obvious epimorphism
ZŒT�! ZŒG� is an ideal, generated by finitely many polynomials Pl .T/, l D 1; : : : ; s,
say. For a matrix g D .gij / 2 Md .R/, we have

g 2 G.R/ ” Pl .gij / D 0 .l D 1; : : : ; s/: (7)

Thus G.R/ is Lrg-definable as a subset of Md .R/.
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Definable isomorphisms

To complete Step (3), we exhibit a definable isomorphism � WG.R/!G.R0/�Md .R
0/.

The definition of such a � is obvious; the work is to express this definition in first-order
language.

We recall the construction of G.R/ in more detail (cf. [34, Chapters 2 and 3]). For
each root ˛ there is a matrix X˛ 2 Md .Z/ such that

x˛.r/ D exp.rX˛/ D 1C rM1.˛/C � � � C r
qMq.˛/ .r 2 R/ (8)

where Mi .˛/ D X
i
˛=iŠ has integer entries, and q is fixed (usually q � 2).

We have chosen a root subgroup U0 D U˛0.R/ and identified it with the ring R by
r 7! r 0 D x˛0.r/. We have identified � D G.R/ with a group of matrices. Now define
� W � ! Md .R

0/ D U d
2

0 � �
d2 by

g� D .g0ij /:

If we give R0 the ring structure inherited from R, this map is evidently a group isomor-
phism from � to its image in GLd .R0/.

Lemma 3.5. For each root ˛ the restriction of � to U˛.R/ is definable.

Proof. Let ˛ be a root, fix i and j , and write �ij for the map g 7! g0ij . Let ml denote the
.i; j / entry of the matrix Ml .˛/. Then for g D x˛.r/ we have

g�ij D .1Cm1r C � � � Cmqr
q/0:

As r 0 D x˛0.r/D gca˛0 , it follows from Corollary 3.4 that the restriction of �ij to U˛.R/
is definable, and as this holds for all i; j it establishes the claim.

Say the roots are ˛1; : : : ; ˛q . For a natural number N put

XN D
� qY
iD1

U˛i .R/
�
: : :
� qY
iD1

U˛i .R/
�

with N factors. Thus XN is a definable set, every product of N elementary root elements
lies in XN , and the preceding lemma implies that the restriction of � to XN is definable.

If G.R/ has finite elementary width N then G.R/ D XN and so � is definable.
Suppose alternatively that G is adjoint. Then

q\
iD1

CG.x˛i .1// D Z.G/ D 1 (9)

(see Lemma 2.2 and the discussion following it).
We quote

Lemma 3.6 ([35, Cor. 5.2]). There exists L 2 N such that for each root ˛ and every
g 2 G.R/ the commutator Œx˛.1/; g� is a product of 3L elementary root elements.
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Taking N D 3LC 1 we see that each x˛.1/g 2 XN . Set vi D x˛i .1/� . Now let g 2
G.R/ and h 2 G.R0/: If g� D h then for i D 1; : : : ; q there exists xi 2 XN such that

x˛i .1/
g
D xi ; xi� D v

h
i :

Conversely, if this holds then vhi D v
g�
i for each i , so g� � h�1 centralizes each vi I as

� is an isomorphism it follows from (9) that g� D h. Thus the statement ‘g� D h’ is
expressible by a first-order formula, and � is definable.

To complete Step (4), define  W R ! U0 � Md .R/ by r D r 0 D x˛0.r/. This is
a ring isomorphism by definition, when U0 is given the appropriate ring structure. The
expression (8) now implies

Lemma 3.7. The map  is Lrg-definable.

When U˛.R/ is not definable

SetK D Z.�/ and write ~ W �! �=K for the quotient map. Corollary 1.7 shows that each
of the subgroups U˛.R/K is definable. Lemmas 3.1–3.3 remain valid, with essentially
the same proofs, if each U˛.R/ is replaced by U˛.R/K. As U˛.R/ \K D 1 the map ~
restricts to an isomorphism U˛.R/!CU˛.R/K D AU˛.R/, and we define R0 WD BU˛0.R/,
setting r 0 D Ax˛0.r/. Then Corollary 3.4 remains valid if U˛0.R/ is replaced by BU˛0.R/.

The interpretation of � in R is as above.
We have a definable ring isomorphism  W R!fU0 as in Lemma 3.7.
Similarly, the group isomorphism � W � ! Md .R

0/ D fU0d2 � z�d2 is definable: in
the proof of Lemma 3.5, we replace each Ui by UiK, and then apply the map ~ to each
root element that appears in the discussion.

The bi-interpretability of � with R is now established in all cases.

4. Axiomatizability

In §3 we set up a bi-interpretation of a specific shape between a group � and a ring R,
spelt out explicitly in points (1)–(4) at the beginning of the section. As is well known, this
implies a close correspondence between first-order properties of the two structures; here
we explore some of the consequences (professional model theorists are invited to skip the
next few paragraphs!).

The interpretation ofR in � involves two or three formulae: one, and if necessary two,
define the subset (it was U˛.R/), or its quotient (U˛.R/Z.�/=Z.�/), which we called R0I
the third defines a binary operationm on R0. Let P1 be a sentence that expresses the facts

(1) each of the definable mappings denoted �1 in Lemma 3.1 actually is a well defined
mapping;

(2) the definition of m does define a binary operation on the set R0;
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(3) .R0;C;m/ is a commutative integral domain, whereC is the group operation inherited
from � .

Let us call this ring A� .
The sentence P1 D P1.g/ involves some parameters g1; : : : ; gr from G.R/. Let P 01

denote the sentence 9h1; : : : ; hr P1.h/. We shall use this convention for other sentences
later.

Now if H is any group that satisfies P 01, the same formulae define a ring AH . For
each Lrg formula ˛ there is an Lgp formula ˛� such that AH ˆ ˛ iff H ˆ ˛�, since ring
operations in AH are expressible in terms of the group operation in H . (Note that ˛� will
involve parameters, obtained by substituting hi for gi :)

Analogously, the equations on the right-hand side of (7) may be expressed as a formula
in Lrg, that for any ring S defines a subset G.S/ of Sd

2
; and if S is an integral domain,

the setG.S/ with matrix multiplication is a group. For each Lgp formula ˇ there is an Lrg

formula ˇ� such that G.S/ ˆ ˇ iff S ˆ ˇ�.
Now in §3 we give (i) an Lgp formula that defines a group isomorphism � W � !

G.A�/, and (ii) an Lrg formula that defines a ring isomorphism  W R ! AG.R/. The
assertions that these formulae actually define such isomorphisms can be expressed by (i)
an Lgp sentence P2 and (ii) an Lrg sentence P3, say.

The results of §3 amount to this: if the group G and the ring R satisfy the hypotheses
of Theorem 1.1, then G.R/ satisfies the conjunction of P 01 and P 02, and R satisfies P 03,
where P 03 is obtained from P3 by adding an existential quantifier over the (ring) variables
corresponding to the matrix entries of the original parameters gi .

The correspondence ˛ ! ˛� implies that any ring axioms satisfied by R can be
expressed as properties of the group � D G.R/. If these axioms happen to determine the
ring up to isomorphism, the existence of � then shows that the corresponding properties
of � , in conjunction with P 01 and P 02, determine � up to isomorphism. In the same way,
if G.R/ happens to be determined by some family of group axioms, then a corresponding
family of ring properties, together with P3, will determine R.

To apply this observation we need

Proposition 4.1. (i) If G.R/ is a finitely generated group then R is a finitely generated
ring.

(ii) If G.R/ is a Hausdorff topological group then R is a Hausdorff topological ring, and
R is profinite, locally compact or t.d.l.c. if G.R/ has the same property.

Proof. (i) Suppose G D hg1; : : : ; gmi. The entries of the matrices g˙1i generate a sub-
ring S of R, and then G.R/ D G.S/. Choose a root ˛. Then

U˛.R/ D U˛.k/ \G.R/ D U˛.k/ \G.S/ D U˛.S/:

As the map r 7! xa.r/ is bijective it follows that R D S .
(ii) Suppose that G.R/ is a (Hausdorff) topological group. Let U0 D U˛0 be the root

group discussed in §3. Then U0.R/ is closed in the topology, by Lemma 2.1. Thus with
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the subspace topology U0.R/ is a topological group; it is locally compact, compact or
totally disconnected if G.R/ has the same property.

We have seen that R is isomorphic to a ring R0, where the additive group of R0 is
U0.R/. It remains to verify that the ring multiplication in R0 is continuous. This in turn
follows from the facts (a) the commutator defines a continuous map G.R/ � G.R/ !
G.R/ and (b) the projection mapping �1 described in Lemma 3.1 is continuous, because
U1.R/ : : : Uq.R/ is a topological direct product.

We have stated the proposition for G.R/ for the sake of clarity. However, a more
general version is required:

Proposition 4.2. Let H be a group that satisfies P 01 and P 02, and put S D AH . Then (i)
and (ii) of Proposition 4.1 hold with S in place of R and H in place of G.R/.

Proof. (i) P1 and P2 ensure that S is a commutative integral domain and thatH ŠG.S/.
Now the result follows from the preceding proposition.

(ii) We have S D U (or S D UZ=Z/ where U (or UZ/ is defined as a double cen-
tralizer (or similar, cf. Lemma 2.5) in H (and Z D Z.H/ ). It follows that U (or UZ) is
closed in the topology of H . Thus S inherits a topology, which makes .S;C/ a topologi-
cal group with the given properties. The continuity of multiplication follows as before: the
assumption that the mapping �1 is well defined implies that the corresponding product of
definable subgroups is actually a topological direct product, and hence that �1 is contin-
uous; the other ingredients in the definition of multiplication are clearly continuous.

Now we can deduce Corollary 1.3, in a slightly more general form.

Theorem 4.3. Assume that G and R satisfy the hypotheses of Theorem 1.1. Let † be a
set of sentences of Lrg such that R ˆ †. Then there is a set z† of sentences of Lgp, finite
if † is finite, such that G.R/ ˆ z† and such that:

(i) Suppose that G.R/ is a finitely generated group. If R is the unique f.g. ring .up to
isomorphism/ satisfying † then G.R/ is the unique f.g. group .up to isomorphism/
that satisfies z†:

(ii) If R is the unique profinite, locally compact, or t.d.l.c. ring .up to isomorphism/
satisfying † then G.R/ is the unique profinite, locally compact, or t.d.l.c. group .up
to isomorphism/ that satisfies z†:

Proof. For each � 2 † there is a formula �� such that for any group H that satisfies P 01,
we haveH ˆ �� iff AH ˆ � . We take z†D †� [ ¹P 01; P

0
2º. The result now follows from

Proposition 4.2 by the preceding discussion.

Remark. Theorem 4.3 has a converse, in most cases. If G.R/ is axiomatizable .or FA/
among groups that are profinite, l.c. or t.d.l.c. then R is similarly axiomatizable in the
corresponding class of rings. The proof is the same, using a suitable analogue of Propo-
sition 4.2 (ii): in this case, it is easy to see that for a ring S , the group G.S/ � Md .S/

defined by the polynomial equations (7) inherits an appropriate topology from S .
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We are not entirely sure whether the analogue of (i) holds in all cases. Assume that
G.R/ is generated by its root subgroups, and either (i) the root system ˆ is simply laced
or (ii) jR=2Rj is finite and ˆ ¤ G2 or (iii) jR=6Rj is finite. Then using the idea of
Lemma 3.3 one can show that if R is finitely generated as a ring then G.R/ is a finitely
generated group. Thus we can assert: Let R be a f.g. integral domain and assume (i), (ii)
or (iii). If G.R/ is first-order rigid, resp. FA, among f.g. groups, then R has the same
property among f.g. rings.

Topological vs. algebraic isomorphism

In Theorem 4.3, the phrase ‘up to isomorphism’ refers to isomorphism as abstract groups.
In part (ii), to infer thatG.R/ is first-order rigid, or FA, in the appropriate class of topolog-
ical groups, one needs to show that abstract isomorphism with G.R/ implies topological
isomorphism. In most of the cases under discussion, this is true.

A ‘local field’ means one with a non-discrete locally compact topology, and a locally
compact group means one that is not discrete.

Proposition 4.4. (i) Let k be a local field. Then any locally compact group abstractly
isomorphic to G.k/ is topologically isomorphic to G.k/:

(ii) Let R be a complete local domain with finite residue field �, and assume that G is
simply connected. Then any profinite group abstractly isomorphic to G.R/ is topo-
logically isomorphic toG.R/, unless possibly char.�/D 2 andG is of type Bn or Cn,
or char.�/ D 3 and G is of type G2.

Proof. (i) This is equivalent to the claim that G.k/ is determined up to topological iso-
morphism by its algebraic structure.

The Bruhat decomposition of G.k/ is algebraically determined (e.g. by the proof of
Corollary 1.7), and it expresses G.k/ as a finite union of products of copies of k (the
root subgroups) and of k� (the torus). It follows that any topology on G is determined by
its restriction to the root sugroups, identified with k. It follows from Lemma 3.3 that the
algebraic stucture of k is determined by that of G. Now a local field that is algebraically
isomorphic to k is topologically isomorphic to k: this is clear from the classification of
local fields (see e.g. [39, Chapter 1]).

In many cases a stronger result holds: every isomorphism with G.k/ is continuous.
This holds when k ¤ C (it may be deduced from [34, Lemma 77]; cf. [10, §9]), but
obviously not for k D C.

(ii) This follows from the congruence subgroup property: ifK is a normal subgroup of
finite index inG.R/ thenK contains the congruence subgroup ker.G.R/!G.R=I // for
some ideal I of finite index inR; see [1, Thm. 1.9]. Thus every subgroup of finite index in
G.R/ is open. Hence if f W G.R/!H is an isomorphism, whereH is a profinite group,
then f �1.K/ is open in G.R/ for every open subgroup K of H , so f is continuous; and
a continuous isomorphism between profinite groups is a homeomorphism.
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Alternatively, it follows from [23, Cor. 3.4] that G.R/ is finitely generated as a profi-
nite group provided the Lie algebra over � associated toˆ is perfect. AsG.R/ in this case
is virtually a pro-p group, this in turn implies that every subgroup of finite index is open
[18, Thm. 1.17].

5. Applications

As before, G is a simple Chevalley–Demazure group scheme defined by a root system ˆ

of rank at least 2 and R is a commutative integral domain.
The group G.R/ has finite elementary width in the following cases:

(1) WhenR is a field, by the Bruhat decomposition ([12, Thm. 8.4.3], [34, Cor. 1, p. 21]).

(2) When R is a local ring andG is simply connected, by a theorem of Abe [1, Prop. 1.6]
together with [19, Cor. 1].

(3) WhenG is simply connected andR is the ring of S -integers in a global field (S � S1
a finite set of places, S D S1 in the function-field case): Tavgen [36, Thm. A], Trost
[36, Thm. 1.3].

To apply Theorem 4.3, we need to pick out from this list those rings that are also FA.
Now [3, Prop. 7.1] says that every f.g. commutative ring is FA in the class of f.g. rings;
it is shown in [28, Thm. 4.4] that every regular, unramified complete local ring with
finite residue field is FA in the class of profinite rings. (These rings are FqŒŒt1; : : : ; tn��,
oqŒŒt1; : : : ; tn��, n � 0, where oq D ZpŒ��, q D pf , � a primitive .q � 1/th root of unity).

It is also the case that every locally compact field is FA in the class of all locally
compact rings. We are grateful to Matthias Aschenbrenner for supplying the proof of
Proposition 5.2 sketched below.

Thus we may deduce – invoking Proposition 4.1 (i) for part (i) –

Corollary 5.1. (i) IfG.R/ is finitely generated andG is adjoint thenG.R/ is FA among
f.g. groups .assuming that the units condition holds/.

(ii) If R is a ring of S -integers as in .3/ above then the S -arithmetic group G.R/ is FA
among f.g. groups, assuming that G is simply connected.

(iii) The profinite groups G.R/, R D FqŒŒt1; : : : ; tn�� or R D oqŒŒt1; : : : ; tn��, n � 0, are
FA among profinite groups, if G is adjoint or simply connected.

(iv) If k is a local field then G.k/ is FA among locally compact groups.

Proposition 5.2 (M. Aschenbrenner). Let k be a locally compact field. Then k is deter-
mined up to isomorphism within the class of locally compact rings by finitely many
first-order sentences.

Proof. The first axiom asserts that k is a field. Now we consider the cases.
1. If k D R, then k is axiomatized by saying that k is Euclidean, that is, (a) �1 is not

of the form x2 C y2 and (b) for every x 2 k either x or �x is a square. (This implies that
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k is an ordered field for a (unique) ordering whose set of non-negative elements is given
by the squares; and no other local field is orderable.)

2. If k D C, then k is axiomatized by saying that every element is a square.
3. Let k D Fq..t// where q is a power of a prime p: Ax [7] provides a formula 'p

that defines the valuation ring in any henselian discretely valued field of residue charac-
teristic p. We can then make a sentence which expresses that the characteristic of the field
is p and the residue field of the valuation ring defined by 'p has size q. This sentence
determines k up to isomorphism among all local fields.

4. The remaining case is where k is a finite extension of Qp . Then we use Ax’s for-
mula 'p again to express that the ramification index and residue degree of k have given
values e and f . Then .k WQp/D ef . Let h be the minimal polynomial of a primitive ele-
ment for k over Qp , and let g 2QŒt �, of degree ef D deg.h/, have coefficients sufficiently
close to those of h that Krasner’s Lemma applies, i.e. g has a zero ˇ 2 k and k DQp.ˇ/.
Then k is determined among local fields by: p ¤ 0; the formula 'p defines in k a valua-
tion ring with residue field of characteristic p, ramification index e, and residue degree f ;
and the polynomial g has a zero in k.

6. Torus witnesses in some exceptional groups

Returning to the proof of Lemma 2.2, begun in §2, we now establish the existence of the
required torus witnesses for some exceptional groups, under the blanket assumption that
R� ¤ ¹1º. A similar approach works for the other groups as well, but different methods
will enable us in §§7 and 8 to dispense with any conditions on R�.

We begin with the following basic observation:

Lemma 6.1. Suppose that ˆ is a root system of rank at least 2 and r 2 R� n ¹1º. If
˛; ˇ 2 ˆ and 
 is orthogonal to ˛ and non-orthogonal to ˇ, then s˛;ˇ D h
 .r/ is a torus
witness for .˛; ˇ/ unless A
ˇ D ˙2 and r D �1, or A
ˇ D ˙3 and r3 D 1.

Note also that if char.R/¤ 2 and ˛;ˇ are non-orthogonal with A˛ˇ ¤ 2, then s˛;ˇ D
h˛.�1/ is a torus witness.

Lemma 6.2. Letˆ 2 ¹E6;E7;E8; F4º and suppose ˛;ˇ 2 ˆ are orthogonal. Then there
is a root 
 orthogonal to ˛ and non-orthogonal to ˇ unless ˆ D F4 and ˛; ˇ are both
long.

Proof. LetˆDEn; nD 6; 7; 8. Let a1; : : : ; an, n 2 ¹6; 7; 8º, be a set of fundamental roots
where an�3 is the branching point. We may assume that ˛ D a1. If ˇ does not involve a2,
we can choose 
 as a root in the subdiagram spanned by a3; : : : ; an and non-orthogonal
to ˇ.

Now suppose ˇ is a positive root involving a2 and orthogonal to ˛. If there is a funda-
mental root ai , 3 � i � n, which is non-orthogonal to ˇ, put 
 D ai . Otherwise an easy
calculation (starting from an) shows that for n D 7; 8 we have

ˇ D �n
�
a1 C 2a2 C 2an�5 C

5
2
an�4 C

3
2
an�2 C 3an�3 C 2an�1 C an

�
;



D. Segal, K. Tent 3342

whereas for n D 6 we must have

ˇ D �6
�
5
4
a1 C

5
2
a2 C

3
2
a4 C 3a3 C 2a5 C a6

�
:

In either case, ˇ is non-orthogonal to a2. For n D 6; 7; 8 let


 D a1 C 2.a2 C � � � C an�3/C an�2 C an�1:

Then 
 is orthogonal to ˛, but not to ˇ.
Let now ˆ D F4. Let a1; : : : ; a4 be a set of fundamental roots where a1 is long and

a4 is short. First assume that ˛ D a1. If ˇ is short and orthogonal to ˛ then either it is
contained in the subdiagram spanned by a3; a4 and we choose 
 in this A2-subdiagram
non-orthogonal to ˇ; or else we have ˇ 2 ¹a1 C 2a2 C 2a3 C a4; a1 C 2a2 C 3a3 C a4;
a1 C 2a2 C 3a3 C 2a4º and 
 D a4 or 
 D a3 C a4 is as required.

Next assume ˛ D a4 is short. If ˇ is a positive root orthogonal to ˛ and contained
in the subdiagram spanned by a1; a2, then we find 
 as before. Otherwise we have ˇ 2
¹a2C 2a3C a4; a1C a2C 2a3C a4; a1C 2a2C 2a3C a4º and 
 D a1 or 
 D a1C a2
is as required.

Lemma 6.3. Let ˆ 2 ¹E6; E7; E8; F4º and suppose ˛; ˇ 2 ˆ are non-orthogonal and
R� ¤ ¹1º. Then there is a torus witness for .˛; ˇ/.

Proof. If ˛; ˇ are non-orthogonal, then (replacing ˇ by �ˇ if necessary) we may assume
that they form a basis for the rank 2 subdiagram spanned by ˛ and ˇ. By [4, Thm. 7],
˛; ˇ can be extended to a system of fundamental roots for ˆ. If in the associated diagram
there is a neighbour 
 of ˇ with A
ˇ ¤ ˙2 and 
 is not a neighbour of ˛, then h
 .r/,
r 2 R� n ¹1º, is as required. We now deal with the remaining situations separately either
by finding a suitable 
 or by giving the witness directly.

Let ˆ D En, n D 6; 7; 8. Since any pair of adjacent fundamental roots is contained
in an A3 subdiagram, we may assume that ˛ D a2, ˇ D a1 so 
 D a1 C a2 C a3 is as
required.

LetˆD F4. Let a1; : : : ; a4 be the resulting fundamental system where a1 is long and
a4 is short. First assume ˛ D a2, ˇ D a1, so 
 D a2 C 2a3 is as required. If ˛ D a3,
ˇ D a4, then 
 D a2 C a3 is as required. If ˛ D a1, ˇ D a2, and char.R/ ¤ 2, then
h˛.�1/ is as required. If char.R/ D 2, then ha3.r/ for r 2 R� n ¹1º works.

We can now summarize the existence of torus witnesses as follows:

Proposition 6.4. Supposeˆ 2 ¹E6;E7;E8;F4º and let ˛;ˇ 2ˆ be linearly independent.
Then there is a torus witness for .˛; ˇ/ except possibly if R� D ¹˙1º, ˆ D F4, and ˛; ˇ
are orthogonal and both long.

This completes the proof of Lemma 2.2 for ˆ 2 ¹E6; E7; E8º:
Assume finally that G is of type F4. Let a1; : : : ; a4 be fundamental roots of ˆ where

a1;a2 are long, a3;a4 are short and ˛D a1. By Proposition 6.4 there is a torus witness s˛;ˇ
for each root ˇ ¤ ˙˛, with the exception of the following long roots:
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(1) b2 D a1 C 2a2 C 2a3;

(2) b3 D a1 C 2a2 C 2a3 C 2a4,

(3) b4 D a1 C 2a2 C 4a3 C 2a4.

Note that the root subgroups U1; : : : ; U4 corresponding to a1; b2; b3; b4 commute
elementwise.

To complete the proof of Lemma 2.2 for G D F4 set

Y D
®
s˛;ˇ j ˇ 2 ˆC n ¹ a1; b2; b3; b4º

¯
[ ¹x�bi .1/ j i D 1; 2; 3º:

Note that each x�bi .1/ centralizes each Uj (j ¤ i ), and commutes with no element of
Ui n ¹1º.

Let g 2 CG.Y /. We have to show that g 2 U1Z.
Arguing as in the proof of Proposition 2.4 we conclude that g is of the form

g D u1u2u3u4z where ui 2 Ui ; i D 1; 2; 3; 4; z 2 Z:

Since x�b3.1/ centralizes g and U1; U2; U4, we have u3 D 1. We see similarly that
u2 D u4 D 1, and the result follows.

7. The building for G2

Another way to study centralizers is to examine the action of G D G.k/ on the building
associated to G. This method is practical for groups of rank 2; we illustrate it here in the
case of G2, by proving

Proposition 7.1. Let G be of type G2 and let U be a root group of G. Then there exists a
finite set Y � CG.R/.U / such that CG.Y / � U .

IfG is a Chevalley group of typeG2, we have Z.G/D 1 (see [34, p. 23]), and the asso-
ciated spherical building � is a generalized hexagon, i.e. a bipartite graph of diameter 6,
girth 12 and valencies at least 3 (see [25] for more details).

For vertices x0; : : : ; xm in �;
GŒi�x0;:::;xm

denotes the subgroup of G fixing all elements at distance at most i from some xj 2
¹x0; : : : ; xmº.

For i D 0, this is just the pointwise stabilizer of ¹x0; : : : ; xmº in G and we omit the
superscript. In this notation, a root subgroup for a generalized hexagon � is of the form

U D GŒ1�x1;:::;x5

for a simple (i.e. without repetitions) path .x1; : : : ; x5/ in �. Thus our aim is to construct
a finite set Y � G.R/ centralizing GŒ1�x1;:::;x5 such that

g 2 CG.Y / implies g 2 GŒ1�x1;:::;x5 :
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The generalized hexagon � associated to a Chevalley group of type G2 is a Moufang
hexagon, i.e. for any simple path x0; : : : ;x6 in� the root subgroupGŒ1�x1;:::;x5 acts regularly
on the set of neighbours of x0 different from x1 and regularly on the set of neighbours
of x6 different from x5 (see [37]). As a consequence, we have

GŒ1�x0;x1;:::;x5 D 1: (10)

We will repeatedly use the following:

Remark 7.2. For any vertex x 2 �, the stabilizer Gx is a parabolic subgroup of G and
acts on the set of neighbours of x as the Zassenhaus group PSL2.k/. In particular, if g 2G
fixes at least three neighbours of x, then it fixes all neighbours of x.

Furthermore, for a path .x; y/ the stabilizer Gx;y contains a regular abelian normal
subgroup acting as the additive group of k on the set of neighbours of y different from x.

Most arguments rely on the following observation:

Remark 7.3. Let H be a group acting on a set X , let g 2 H and let A be the set of fixed
points of g. Any h 2 H centralizing g leaves the set A invariant.

In light of (10) this remark immediately implies

Corollary 7.4. For any root element u 2 GŒ1�x1;:::;x5 n ¹1º, each g 2 CG.u/ fixes x3.

For any 12-cycle .x0; : : : ; x12 D x0/ in �, the group Gx0;:::;x12 is a maximal torus
in G. We let Ui D G

Œ1�
xi ;:::;xiC4 (i D 0; : : : ; 11) denote the corresponding root subgroups

(where addition is modulo 12), so U1 D U . In this notation we see that for 1 ¤ v 2 Ui
and g 2 CG.v/ we have g 2 GxiC2 by Corollary 7.4.

The bipartition of the vertices leads to two types of paths .x0; : : : ; x6/ depending on
the type of the initial vertex x0 (note that x0 and x6 have the same type). Since G acts
transitively on ordered cycles of length 12 (of the same bipartition type), the isomorphism
type of a root subgroup only depends on the type of the root group with respect to this
bipartition.

It follows easily from the commutation relations that the root subgroups corresponding
to long roots consist of central elations, i.e. for one type of path .x0; : : : ; x6/ we have
G
Œ1�
x1;:::;x5 D G

Œ3�
x3 .

First assume that U D U1 D G
Œ3�
x3 . Since U centralizes Uj for j D 10; 11; 0; 1; 2; 3; 4,

we may choose Y to contain a non-trivial element from each of the Uj .R/; j D
10; 11; 0; 1; 2; 3; 4. We add five further elements yi D v

hi
i to Y where

v1; v2 2 U3.R/; v3 2 U4.R/; v4 2 U11.R/; v5 2 U10.R/;

h1 2 U11.R/; h2; h3 2 U0.R/; h4 2 U3.R/; h5 2 U2.R/;

and vi ¤ 1, hi ¤ 1 for each i . These centralize U because for i D 1; 2 we have ŒU; yi � �
G
Œ3�

x
hi
5

\G
Œ3�
x3 D 1, ŒU; y3� � G

Œ3�

x
h3
6

\G
Œ3�
x3 D 1, ŒU; y4� � G

Œ3�

x
h4
1

\G
Œ3�
x3 D 1 and ŒU; y5� �

G
Œ1�

x
h5
0

\G
Œ3�
x3 D 1.
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Now suppose that g centralizes Y . Then g 2 Gx0;:::;x6 . We claim that g 2 GŒ1�xi for
i D 1; : : : ; 5. Since g commutes with y1, g fixes xh15 ¤ x3; x5. By Remark 7.2 this implies
that g 2 GŒ1�x4 . Using y4 we see similarly that g 2 GŒ1�x2 .

Similarly, since g commutes with y2, g fixes xh25 and hence also xh24 ¤ x2; x4. This
implies that g 2 GŒ1�x3 . Finally, g fixes xh36 and xh50 because g commutes with y3 and y5;
as before we conclude from Remark 7.2 that g 2 GŒ1�x1;x5 , and the claim follows.

Now assume that U D U1 ¤ G
Œ3�
x3 , and so U2i D G

Œ3�
x2iC2 for i D 0; : : : ; 5. Then U

commutes elementwise with U10; U0; U2; U4, and we choose Y to contain a nontrivial
element from each of U10.R/; U0.R/; U2.R/; U4.R/:

This ensures, by Remark 7.3, that any element centralizing Y must lie in

Gx0;x2;x4;x6 D Gx0;x1;x2;x3;x4;x5;x6 :

As in the previous case, we extend Y by four or six further elements yi D v
hi
i , where

vi ¤ 1, hi ¤ 1 for each i ,

v1 2 U4.R/; v2 2 U2.R/; v3 2 U1.R/; v4 2 U10.R/;

h1 2 U0.R/; h2 2 U10.R/; h3 2 U3.R/; h4 2 U2.R/;

and if char.R/ D 3 also

v5 2 U10.R/; v6 2 U4.R/; h5 2 U3.R/; h6 2 U11.R/:

Note that y1 and y2 centralize U because

ŒU; y1� 2 G
Œ3�

x
h1
6

\GŒ1�x2 D 1; ŒU; y2� 2 G
Œ3�

x
h2
4

\GŒ1�x0 D 1:

Now let g 2 CG.Y /. Then g centralizes y1, and therefore fixes xh6 ¤ x4; x6. By
Remark 7.2 we get g 2 GŒ1�x5 . In a similar way we find that g 2 GŒ1�x1 and g 2 GŒ1�x3 .

It remains to show that g 2 GŒ1�xi for i D 2 and i D 4. We distinguish two cases
according to the characteristic of R. First assume that char.R/ ¤ 3 and extend the path
.x1; : : : ; x5/ to a simple path .x1; : : : ; x7/. For any v 2 GŒ1�x3;:::;x7 n ¹1º and 1 ¤ u 2 U1
the commutator relations (see §10) with char.k/ ¤ 3 imply that Œu; v� ¤ 1. This shows
that x1; x3 are the only neighbours y of x2 such that GŒ1�y meets U1 non-trivially.

On the other hand, for any simple path .x01; x2; x3; x4; x5/ the actions of the root
groups U1 and U 01 D G

Œ1�

x0
1
;x2;x3;x4;x5

on the neighbours of x6 agree, by Remark 7.2. Since

the root groups are abelian, we therefore have ŒU;w� D 1 for any w 2 U 01.
This shows in particular that y3 2 CG.R/.U /. By the previous remark x01 D x

h3
1 and

x3 are the only neighbours of x2 such that y3 2 G
Œ1�

x0
1
;x3

, and so g fixes x01. Again by

Remark 7.2 we conclude that g 2 GŒ1�x2 . Similarly, we see that y3 2 CG.R/.U /, and find
that g 2 GŒ1�x4 as required.
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Finally, assume that char.R/ D 3. Then the commutation relations show that
ŒU1; U3� D 1 and hence

U1 D G
Œ2�
x2;x4

:

As h5 2 U3 and v5 2 U10 D G
Œ3�
x0 , we have ŒU; y5� 2 U1 \G

Œ3�

xh
0

D 1, so y5 2 CG.R/.U /.

Now Corollary 7.4 implies that g fixes xh50 and hence also xh51 ¤ x1; x3. As before we
infer that g 2GŒ1�x2 . The same argument using y6 shows finally that g 2GŒ1�x4 , and concludes
the proof.

8. Root witnesses in the classical groups

In this section we establish Lemma 2.2 for the groups of classical type, and complete the
proof of Theorem 1.6.

Proposition 8.1. LetG be a Chevalley group of type An, Bm; Cm orDm .n� 1,m� 2/,
and let R be an integral domain. Let U be a root subgroup of G. Write Z for the centre
of G. There exists a set Y � CG.R/.U / consisting of root elements such that

CG.Y / � UZ; (11)

unless G is of type Cn, U belongs to a short root ˛ and R� D ¹˙1º, in which case

CG.Y / � UU1U2Z (12)

where U1 and U2 are root subgroups belonging to long roots adjacent to ˛ in a C2 sub-
system.

Proof. Suitable sets Y are exhibited in the lemmas below for particular forms of G: the
universal groups SLn and Sp2m for An, Cm respectively, and for orthogonal versions
ofBm andDm. Now if v is a unipotent element and vg 2 vZ then vg D v, becauseZ con-
sists of semisimple elements (Jordan decomposition); hence both statements involving Y
remain true if CG.R/ is replaced by ‘centralizer modulo Z’. It follows easily that if (11)
or (12) holds, then it remains valid when G is replaced by G=Z. In particular, they hold
for the adjoint form of each group, and any group ‘between’ SLn and PSLn.

The result for the universal forms (in cases Bm and Dm) follows directly from the
established cases because root elements in G.R/ lift to root elements in the covering
group.

The precise description of Z.CG.R/.u// for 1 ¤ u 2 U in case (12) is given below in
Proposition 8.4.

We use the notation of [12, §11.3] for the classical groups. Throughout, R denotes an
integral domain, and eij the matrix with one non-zero entry equal to 1 in the .i; j / place.
We call a set Y � CG.R/.U˛/ satisfying (11), resp. (12) a witness set for U˛ .

In most cases, the verification that Y has the required properties is a relatively straight-
forward matrix calculation, which we omit. Of course it will suffice to consider just one
root of each length.
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The special linear group

The root subgroups in SLn are

Uij D 1C keij ; i ¤ j:

Lemma 8.2. Let G D SLn, n � 2. Then a witness set for U12 is

Y D ¹1C epq j p ¤ 2; q ¤ 1º:

Symplectic groups and even orthogonal groups

Now we consider Cm.k/ and Dm.k/ as groups of 2m � 2m matrices, as described in
[12, §11.3]. Here n D 2m and we re-label the matrix entries writing �i in place ofmC i
(i D 1; : : : ; m). For 1 � ji j < jj j � m set

˛ij D eij C "e�j;�i ; (13)

where " D ˙1 depends on .i; j / in a manner to be specified.
We now separate cases.

Case 1: G D Cm D Sp2m: In this case, " is �1 or 1 according as i and j have the same
or opposite signs. The root subgroups in G are

Ui D 1C kei;�i (long roots); 1 � ji j � m;

Uij D 1C k˛ij (short roots); 1 � ji j < jj j � m;

taking " D �1 if ij > 0, and " D 1 if ij < 0:

Lemma 8.3. Let G D Sp2m. A witness set for the long root group U1 is

X1 D
®
1C ei;�i j i … ¹�1; 2º

¯
[ ¹1C ˛1j j 2 � j � mº

and a witness set for the short root group U12 is

X2 D ¹1C ei;�i j i ¤ �1; 2º [ ¹1C ˛1j j j ¤ ˙1;�2º:

Now let v D 1C r˛12 2 U12, 0¤ r 2 R. To identify the subgroup Z.CG.R/.v//more
precisely, set

� D .e1;�2 � e2;�1/ � .e�1;2 � e�2;1/C
X
ji j>2

ei i :

Then � 2 CG.R/.v/. If g 2 ZUU1U2 and g commutes with � we find that

g D ˙.1C c˛12/.1C ae1;�1/.1 � ae�2;2/ D ˙.1C c˛12/ � '.a/ (14)

for some a; c 2 k, where ' W k ! U1U�2 is the ‘diagonal’ homomorphism

r 7! 1C r.e1;�1 � e�2;2/ D .1C re1;�1/.1 � re�2;2/:

Now we can state
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Proposition 8.4. Let G and v be as above. Then

Z.CG.R/.v// � ˙U12.R/ � '.R/; (15)

Z.CG.R/.v// D ˙U12.R/ if R� ¤ ¹˙1º; (16)

Z.CG.R/.v// D ˙U12.R/ � '.R/ if R� D ¹˙1º and char.R/ ¤ 2: (17)

Proof. We have already established that CG.CG.R/.v// � ˙U12 � '.k/. If g is given
by (14), both c and a appear as entries in the matrix g, so if g 2 G.R/ then a; c 2 R
and (15) follows.

Suppose now that R� ¤ ¹˙1º and pick t 2 R� with t2 ¤ 1. The torus element

� WD h1;�2.t/ D t .e11 C e22/C t
�1.e�2;�2 C e�1;�1/

lies in CG.R/.v/. So if g in (14) is in Z.CG.R/.v// then � commutes with '.a/, and hence
with '.a/ � 1 D r.e1;�1 � e�2;2/. But

��1 � r.e1;�1 � e�2;2/ � � D t
�2re1;�1 � t

2re�2;2;

so
t�2r D t2r D r;

hence r D 0 and we conclude that g 2 ˙U12.R/. This proves (16).
Assume now that R� D ¹˙1º and char.R/ ¤ 2. To establish (17) it will suffice to

show that e1;�1 � e�2;2 commutes with every matrix in CG.R/.v/:
For clarity we take n D 3; the argument is valid for any n � 2. A matrix commuting

with v is of the form

g D

266666664

x � � � �b �

0 x 0 b 0 0

0 � � � 0 �

0 a 0 y 0 0

�a � � � y �

0 � � � 0 �

377777775 ;

where the blank entries are arbitrary. If g is symplectic then

2ax D 2by D 0; xy C ab D 1:

It follows that either x D 0, in which case ab D 1, whence a D ˙1 D b and y D 0, or
x ¤ 0, in which case a D 0, xy D 1 and similarly then x D ˙1 D y and b D 0. Thus in
any case x D y and a D b. This now implies that g commutes with e1;�1 � e�2;2.

Remark. The precise nature of Z.CG.R/.v// in the remaining case where R� D 1 and
char.R/ D 2 we leave open.

Case 2: G D Dm � O2m: In this case, " D �1 for all i; j . The root subgroups in G are

Uij D 1C k˛ij ; 1 � ji j < jj j � m:
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Lemma 8.5. Let G D Dm � O2m. A witness set for the root group U12 is

X3 D ¹1C ˛ij j .i; j / 2 Sº (18)

where
S D ¹.i; j / j 3 � ji j < jj j or i D 1 < jj jº [ ¹.�1; 2/º: (19)

Remark. The same calculation actually establishes a little more:

CO2m.X3/ � ˙U12: (20)

This will be used below.

Odd orthogonal groups

Now we take G D Bm � O2mC1, and write elements of G as matrices

g D

�
x a

bT h

�
DW .x; a; bI h/

where x D x.g/ 2 k, a D a.g/ and b D b.g/ are in k
2m

and h D h.g/ 2 M2m.k/. For
h 2M2m.k/ we write

h� D .1; 0; 0I h/:

The rows and columns are labelled 0; 1; : : : ; m;�1; : : : ;�m:
We begin with a couple of elementary observations.

Lemma 8.6. Let g D .x; 0; 0I h/. Then g 2 O2mC1.k/ if and only if h 2 O2m.k/ and
x D ˙1.

Lemma 8.7. Let w 2M2m.k/. Then g D g.x; a; bI h/ commutes with w� if and only if

hw D wh; aw D a; bwT D b:

The root elements are

ui .r/ D 1C r.2ei0 � e0;�i / � r
2ei;�i (short roots); 1 � ji j � m;

uij .r/ D 1C r˛ij (long roots); 1 � ji j < jj j � m;

where ˛ij are as in (13) with " D �1 for all pairs i; j .
Now let r ¤ 0 and consider the long root element v� D u12.r/ (so v is the corre-

sponding root element in Dm). We have

CG.v�/ � X�3

where X3 is defined above in (18). Now Lemma 8.7 implies: if g D g.x; a; bI h/ 2

Z.CG.v�// then a˛ij and b j̨ i are zero for all pairs .i; j / 2 S (see (19)). This now implies
that a D b D 0.
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It follows by Lemma 8.6 that x D ˙1 and h 2 O2m.k/, and then by (20) that

h 2 ˙U12

(here U12 is the corresponding root group in Dm).
Thus

g D .˙1; 0; 0I˙.1C s˛12// D ˙u12.s/ � .�; 1; : : : ; 1/

for some s 2 k and � D ˙1.
Finally, we note that u1.1/ 2 CG.v�/. It follows that .�; 1; : : : ; 1/ commutes

with u1.1/, which forces � D 1. Thus g D ˙u12.s/. We have established

Lemma 8.8. Let G D Bm � O2mC1. A witness set for the long root group U12 is

X4 D X
�
3 [ ¹u1.1/º:

Assume henceforth that m � 3. We consider finally the short root group U1. We see
that CG.U1/ contains the set

X5 D ¹uij .1/ j i ¤ �1; j ¤ 1º [ ¹u1.1/º:

Now let g D g.x; a; bI h/ 2 CG.X5/. One finds after some calculation that

g D .x; se�1; 2e1I x12m C ye1;�1/:

(This calculation requires m � 3; the conclusion is false when m D 2.)
Then det.g/ D x2mC1 so x is invertible; replacing s by �x�1s and y by x�1y we

have
g D x.1;�se�1; 2se1I 12m C ye1;�1/: (21)

Then
g � u1.�s/ D x.1C .s2 C y/e1;�1/ 2 O2mC1;

which implies x2 D 1 and 2.s2 C y/ D 0.
If char.k/ ¤ 2 we infer that g D ˙u1.s/:
Suppose now that k has characteristic 2. In this case the mapping � W g 7! h.g/ is an

injective homomorphism [12, p. 187]. If g is of the form (21) and y D w2 then g� D
u1.w/� 2 U1� , and so g 2 U1.

Thus in any case we have g 2 ˙U1. We have established

Lemma 8.9. Let G D Bm � O2mC1, where m � 3. Then a witness set for the short root
group U12 is

X5 D ¹uij .1/ j i ¤ �1; j ¤ 1º [ ¹u1.1/º:

9. Adelic groups

Let A denote the adèle ring of a global field K with char.K/ ¤ 2; 3; 5. We consider
subrings of A of the following kind:

A D A; A D
Y
p2P

op
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where o is the ring of integers of K and P is a non-empty set of primes (or places) of K.
Here we establish

Theorem 9.1. The ring A is bi-interpretable with each of the groups SL2.A/,
SL2.A/=h�1i; PSL2.A/.

Theorem 9.2. Let G be a simple Chevalley–Demazure group scheme of rank at least 2.
Then A is bi-interpretable with the group G.A/.

For a rational prime p we write Ap D
Q

p2P ;pjp op.

Lemma 9.3. A has a finite subset S such that every element of A is equal to one of the
form

�2 � �2 C s (22)

with �; � 2 A� and s 2 S .

Proof. In any field of characteristic not 2 and size > 5, every element is the difference
of two non-zero squares. It follows that the same is true for each of the rings op with
N.p/ > 5 and odd.

If N.p/ is 3 or 5 then every element of op is of the form (22) with �; � 2 o�p and
s 2 ¹0;˙1º. If p divides 2, the same holds if S is a set of representatives for the cosets
of 4p in o.

Now by the Chinese Remainder Theorem (and Hensel’s lemma) we can pick a finite
subset S1 of A2 � A3 � A5 such that every element of A2 � A3 � A5 is of the form (22)
with �; � 2 o�p and s 2 S1. Finally, let S be the subset of elements s 2 A that project
into S1 and have op-component 1 for all p − 30 (including infinite places if present).

Remark. If K D Q one could choose S � Z (diagonally embedded in A). The plethora
of parameters in the following argument can then be replaced by just three – h.�/; u.1/,
v.1/ – or even two when A D A, in which case we replace h.�/ by h.2/; which can be
expressed in terms of u.1/ and v.1/ by the formula (27) below. Also the formula (26) can
be replaced by the simpler one: y2 D uxu�yus ^ y3 D yx1 y

�y
1 ys1.

For a finite subset T of Z let

AT D ¹r 2 A j rp 2 T for every pº:

This is a definable set, since r 2AT if and only if f .r/D 0where f .X/D
Q
t2T .X � t /.

Choose S as in Lemma 9.3 with 0; 1 2 S , and write S2 D S � S .
Let � D SL2.A/=Z where Z is 1, h�1i or the centre of SL2.A/. For � 2 A write

u.�/ D

�
1 �

0 1

�
; v.�/ D

�
1 0

�� 1

�
; h.�/ D

�
��1 0

0 �

�
.� 2 A�/

(matrices interpreted modulo Z; note that � 7! u.�/ is bijective for each choice of Z).
Fix � 2 A� with �p D 2 for p − 2; �p D 3 for p j 2. It is easy to verify that

C�.h.�// D h.A�/ DW H: (23)
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Proposition 9.4. The ring A is definable in �:

Proof. We take h WD h.�/ and ¹u.c/ j c 2 S2º as parameters, and put u WD u.1/. ‘Defin-
able’ will mean definable with these parameters. For � 2 A and � 2 A� we have

u.�/h.�/ D u.��2/:

Now (23) shows thatH is definable. If �D �2 � �2C s and x D h.�/; y D h.�/ then
u.�/ D uxu�yu.s/; thus

U WD u.A/ D
[
s2S

¹uxu�yu.s/ j x; y 2 H º

is definable.
The map u W A! U is an isomorphism from .A;C/ to U . It becomes a ring isomor-

phism with multiplication � if one defines

u.ˇ/ � u.˛/ D u.ˇ˛/: (24)

We need to provide an Lgp formula P such that for y1; y2; y3 2 U ,

y1 � y2 D y3 ” � ˆ P.y1; y2; y3/: (25)

Say ˛ D �2 � �2 C s and ˇ D �2 � �2 C t . Then

u.ˇ˛/ D u.ˇ/xu.ˇ/�yu.s/zu.s/�ru.st/

where x D h.�/; y D h.�/; z D h.�/ and r D h.�/.
So we can take P.y1; y2; y3/ to be a formula expressing the statement: there exist

x; y; z; r 2 H such that for some s; t 2 S ,

y1 D u
zu�ru.t/; y2 D u

xu�yu.s/; y3 D y
x
1 y
�y
1 u.s/zu.s/�ru.st/: (26)

Proposition 9.5. The group � is interpretable in A.

Proof. When � D SL2.A/, clearly � is definable as the set of 2 � 2 matrices with deter-
minant 1 and group operation matrix multiplication. For the other cases, it suffices to note
that the equivalence relation ‘moduloZ’ is definable byB ÏC iff there existsZ 2 ¹˙12º
with C D BZ, resp. Z 2 H with Z2 D 1 and C D BZ.

To complete the proof of Theorem 9.1 it remains to establish Step 1 and Step 2 below.
We take v D v.1/ as another parameter, and set w D uvu D

�
0 1
�1 0

�
. Then u.�/w D

v.�/, so V WD v.A/ D Uw is definable. Note the identity (for � 2 A�)

h.�/ D v.�/u.��1/v.�/w�1 D w�1u.�/w � u.��1/ � w�1u.�/: (27)
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Step 1: The ring isomorphism from A to U � M2.A/ is definable. Indeed, this is just the
mapping

r 7!

�
1 r

0 1

�
:

Step 2: The map � sending g D .a; bI c; d/ to .u.a/; u.b/Iu.c/; u.d// 2 �4 is definable;
this is a group isomorphism when U is identified with A via u.�/ 7! �.

Assume for simplicity that � D SL2.A/. We start by showing that the restriction of �
to each of the subgroups U; V ; H is definable. Recall that u.0/ D 1 and u.1/ D u.

If g 2 U then g� D .u; gI 1; u/. If g D v.��/ 2 V then g�w D u.�/ 2 U and g� D
.u; 1Ig�w ; u/:

Suppose g D h.�/ 2H . Then g D w�1xwyw�1x where x D u.�/; y D u.��1/, and
g� D .y; 1I 1; x/. So g� D .y1; y2Iy3; y4/ if and only if

y4 � y1 D u; y2 D y3 D 1; g D w�1y4wy1w
�1y4:

Thus the restriction of � to H is definable.
Next, set

W WD
®
x 2 � j xp 2 ¹1;wº for every p

¯
:

To see that W is definable, observe that an element x is in W if and only if there exist
y; z 2 u.A¹0;1º/ such that

x D yzwy and x4 D 1:

Note that u.A¹0;1º/ is definable by (the proof of) Proposition 9.4.
Put

�1 D ¹g 2 � j g11 2 A
�
º:

If g D .a; bI c; d/ 2 �1 then g D zv.g/zh.g/zu.g/ where

zv.g/ D v.�a�1c/ 2 V;

zh.g/ D h.a�1/ 2 H;

zu.g/ D u.a�1b/ 2 U:

This calculation shows that in fact �1 D VHU , so �1 is definable; these three functions
on �1 are definable since

x D zv.g/ ” x 2 V \HUg;

y D zu.g/ ” y 2 U \HVg;

z D zh.g/ ” z 2 H \ VgU:

Let g D .a; bI c; d/. Then gw D .�b; aI �d; c/. We claim that there exists x 2 W
such that gx 2 �1. Indeed, this may be constructed as follows: If ap 2 o�p take xp D 1. If
ap 2 pop and bp 2 o�p take xp D w. If both fail, take xp D 1 when ap ¤ 0 and xp D w
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when ap D 0 and bp ¤ 0. This covers all possibilities since for almost all p at least one
of ap, bp is a unit in op, and ap, bp are never both zero.

As gx 2 �1, we may write

gx D zv.gx/zh.gx/zu.gx/.

We claim that the restriction of � to W is definable. Let x 2 W and put P D
¹p j xp D 1º,Q D ¹p j xp D wº. Then .ux/p is u for p 2 P and v for p 2Q, so ux 2 �1
and

zu.ux/p D

´
u .p 2 P /;

1 .p 2 Q/:

Recalling that u D u.1/ and 1 D u.0/ we see that

x� D

�
zu.ux/ zu.ux/�1u

u�1zu.ux/ zu.ux/

�
:

We can now deduce that � is definable. Indeed, g� D A holds if and only if there
exists x 2 W such that gx 2 �1 and

A � x� D zv.gx/� � zh.gx/� � zu.gx/�

(of course the products here are matrix products, definable in the language of � in view
of Proposition 9.4).

This completes the proof of Theorem 9.1 for � D SL2.A/. When � D SL2.A/=Z, the
same formulae now define � as a map from � into the set of 2 � 2 matrices with entries
in U modulo the appropriate definable equivalence relation.

Now we turn to the proof of Theorem 9.2. This largely follows §3, but is simpler
because we are dealing here with ‘nice’ rings. Henceforth G denotes a simple Chevalley–
Demazure group scheme of rank at least 2. The root subgroup associated to a root ˛ is
denoted U˛ , and Z denotes the centre of G. Put � D G.A/.

Let S be any integral domain with infinitely many units. According to Theorem 1.6
we have

U˛.S/Z.S/ D Z.CG.S/.v//

whenever 1¤ v 2 U˛.S/. This holds in particular for the rings S D op. Take u˛ 2 U˛.A/
to have p-component x˛.1/ for each p 2 P (or every p when A D A); then

U˛.A/Z.A/ D Z.CG.A/.u˛//:

Given this, the proof of Corollary 1.7 now shows that U˛.A/ is a definable subgroup of �
(the result is stated for integral domains but the argument remains valid, noting that in the
present case A=2A is finite).

Associated to each root ˛ there is a morphism '˛ W SL2 ! G sending u.r/ to x˛.r/
and v.r/ to x�˛.�r/ (see [12, Chapter 6] or [34, Chapter 3]). This morphism is defined
over Z and satisfies

K˛ WD SL2.A/'˛ � G.A/:
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Lemma 9.6. K˛ D U�˛.A/U˛.A/U�˛.A/U˛.A/U�˛.A/U˛.A/U�˛.A/U˛.A/:

Proof. This follows from the corresponding identity in SL2.A/, which in turn follows
from (27) and the fact that w D uvu.

We may thus infer that each K˛ is a definable subgroup of G.A/. Fixing a root 
 , we
identify A with U
 .A/ by r 7! r 0 D x
 .r/. Proposition 9.4 now shows that A is definable
in G.A/.

As above, G.A/ is A-definable as a set of d � d matrices that satisfy a family of
polynomial equations over Z, with group operation matrix multiplication.

To complete the proof of Theorem 9.2 we need to establish

Step 10: The ring isomorphism A! U
 .A/, r 7! r 0 D x
 .r/ 2 Md .A/, is definable in
ring language. This follows from (8) in §3.

Step 20: The group isomorphism � W G.A/! G.A0/ �Md .U
 .A// is definable in group
language.

To begin with, Lemma 3.5 shows that for each root ˛, the restriction of � to Ua.A/ is
definable (this is established for A an integral domain, but the proof is valid in general).
Next, we observe that G.A/ has finite elementary width:

Lemma 9.7. There is a finite sequence of roots ˇi such that

G.A/ D

NY
iD1

Uˇi .A/:

Proof. This relies on results from [34, Chapter 8]. Specifically, [34, Cor. 2 to Thm. 18]
asserts that ifR is a PID, then (in the above notation)G.R/ is generated by the groupsK˛ .
It is clear from the proof that each element of G.R/ is in fact a product of bounded length
of elements from various of the K˛; an upper bound is given by the sum N1, say, of the
following numbers: the number of positive roots, the number of fundamental roots, and
the maximal length of a Weyl group element as a product of fundamental reflections. If
the positive roots are ˛1; : : : ; ˛n and R is a PID it follows that

G.R/ D
� nY
jD1

K
j̨

�
: : :
� nY
jD1

K
j̨

�
.N1 factors/:

As each of the rings op is a PID (or a field), the analogous statement holds with A in place
of R.

The result now follows by Lemma 9.6, taking N D 8nN1.

Thus � is definable as follows: for g 2 G.A/ and M 2 Md .U
 .A//, g� D M if and
only if there exist vi 2 Uˇi .A/ and Mi 2 Md .U
 .A// such that g D v1 : : : vN , M D
M1 : : :MN andMi D vi� for each i . HereM1 �M2 etc. denote matrix products, which are
definable in the language of G because the ring operations on A0 D U
 .A/ are definable
in G.

This completes the proof of Theorem 9.2.
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10. Appendix

We recall some commutator formulae ([12, Thms. 5.2.2 and 4.1.2], or [34, Chapter 3,
Cor. to Lemma 15]). Here ˆ is a root system and ˛; ˇ 2 ˆ. If ˛ C ˇ … ˆ then
Œx˛.r/; xˇ .s/� D 1: If ˛ C ˇ 2 ˆ then ˛ and ˇ span a root system ˆ1 of rank 2 and
there are three possibilities (assuming without loss of generality that ˛ is short, if ˛ and
ˇ are of different lengths). Here " D ˙1.

If ˆ1 D A2 then

Œx˛.r/; xˇ .s/� D x˛Cˇ ."rs/;

Œx�˛.r/; x˛Cˇ .s/� D xˇ ."rs/:

If ˆ1 D B2 then

Œx˛.r/; xˇ .s/� D x˛Cˇ ."rs/x2˛Cˇ .˙r
2s/;

Œx˛.r/; x˛Cˇ .s/� D x2˛Cˇ .˙2rs/;

Œx�˛.r/; x˛Cˇ .s/� D xˇ .˙2rs/;

Œx�˛.r/; x2˛Cˇ .s/� D x˛Cˇ .˙rs/xˇ .˙r
2s/;

Œx˛Cˇ .r/; x�ˇ .s/; � D x˛."rs/x2˛Cˇ .˙r
2s/:

If ˆ1 D G2 then

Œxˇ .r/; x˛.s/� D x˛Cˇ ."rs/x2˛Cˇ .�"rs
2/x3˛Cˇ .�rs

3/x3˛C2ˇ .˙r
2s3/;

Œx˛Cˇ .r/; xa.s/� D x2˛Cˇ .�2rs/x3˛Cˇ .�3"rs
2/x3˛C2ˇ .˙3r

2s/;

Œx2˛Cˇ .r/; xa.s/� D x3˛Cˇ .3"rs/;

Œx˛Cˇ .r/; x�ˇ .s/� D x˛.�"rs/x2˛Cˇ .˙r
2s/x3˛C2ˇ .˙r

3s/x3˛Cˇ .˙r
3s2/:

(There are other possible combinations of signs, depending on the choice of Chevalley
basis. We assume for convenience that the basis is chosen so as to obtain this particular
form for the commutator formulae.)
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