
© 2022 European Mathematical Society
Published by EMS Press and licensed under a CC BY 4.0 license

J. Eur. Math. Soc. 25, 3177–3228 (2023) DOI 10.4171/JEMS/1212

Timothy Candy · Sebastian Herr · Kenji Nakanishi

The Zakharov system in dimension d � 4

Received November 12, 2020

Abstract. The sharp range of Sobolev spaces is determined in which the Cauchy problem for the
classical Zakharov system is well-posed, which includes existence of solutions, uniqueness, per-
sistence of initial regularity, and real-analytic dependence on the initial data. In addition, under
a condition on the data for the Schrödinger equation at the lowest admissible regularity, global
well-posedness and scattering are proved. The results cover energy-critical and energy-supercritical
dimensions d � 4.
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1. Introduction

Consider an at most weakly magnetized plasma with ion density fluctuation v WR1Cd!R
and complex envelope u W R1Cd ! C of the electric field. In [37] Zakharov derived the
equations for the dynamics of Langmuir waves, which are rapid oscillations of the electric
field in a conducting plasma. A scalar version of his model, called the Zakharov system,
is given by

i@tuC�u D vu;

�v D �juj2 (1.1)

with the d’Alembertian � D @2t � �. We refer to [8, 36, 37] and the books [17, 35] for
more details of the model and its derivation.
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The Zakharov system is Lagrangian, and formally the L2-norm of u and the energy

EZ.u.t/; v.t/; @tv.t//

WD

Z
Rd
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jru.t/j2 C 1
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ˇ̌
jrj
�1@tv.t/

ˇ̌2
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jv.t/j2 C 1

2
v.t/ju.t/j2

�
dx

are constant in time.
The Zakharov system (1.1) is typically studied as a Cauchy problem by prescribing

initial data in Sobolev spaces, i.e.

u.0/D f 2H s.Rd / and .v; jrj�1@tv/.0/D .g0;g1/2H
`.Rd /�H `.Rd /: (1.2)

In recent years, this initial value problem has attracted considerable attention, partly
driven by the close connection with the focusing cubic nonlinear Schrödinger equation
(NLS) which arises as a subsonic limit of the Zakharov system (1.1) [1, 26, 29, 32, 34]. In
addition, bound states for the focusing cubic NLS are closely intertwined with the global
dynamics of (1.1). More precisely, ifQ! WRd !R is a bound state for the focusing cubic
NLS, in other words if Q! solves

��Q! C !Q! D Q
3
! ;

then .u; v/D .eit!Q! ;�Q2
!/ is a global (non-dispersive) solution of (1.1). This connec-

tion has been used to analyze the blow-up behaviour [15,16,30] in dimension d D 2, and
also in the periodic case [28]. Furthermore, we can write the Zakharov energy as

EZ.u.t/; v.t/; @tv.t// D ES .u.t//C
1

4

Z
Rd

ˇ̌
.1 � i jrj�1@t /v.t/C juj

2
ˇ̌2
dx

where
ES .u.t// WD

Z
Rd

�
1
2
jru.t/j2 � 1

4
ju.t/j4

�
dx

is the energy for the focusing cubic NLS. As the cubic NLS is energy-critical in d D 4,
the Zakharov system is also frequently referred to as energy-critical in dimension d D 4,
although, in contrast to the cubic NLS, the Zakharov system lacks scale-invariance;
see [20] for further discussion.

In the Zakharov system, the interplay between the different dispersive effects of solu-
tions to Schrödinger and wave equations leads to a rich local and global well-posedness
theory [1–5, 9, 12, 13, 26, 27, 31]. In particular, it turned out that the required regularity
of the Schrödinger component can go below the scaling critical one (s D d=2 � 1) for
the cubic nonlinear Schrödinger equation. Concerning the asymptotic behaviour of global
solutions, scattering results have been proven in certain cases [2, 14, 18–22, 24, 33].

The aim of this paper is twofold. First, we give a complete answer to the question of
local well-posedness in dimension d � 4, i.e. the energy-critical and supercritical dimen-
sions. Second, we prove that these local solutions are global in time and scatter, provided
that the Schrödinger part is small enough. To be more precise, consider the case d � 4,
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and .s; `/ satisfying
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:

(1.3)
Our first main result is

Theorem 1.1. The Zakharov system (1.1) with initial condition (1.2) is locally well-posed
with a real-analytic flow map if and only if .s; `/ 2 R2 satisfies (1.3).

To be more precise, we consider mild solutions to an equivalent first order system
(2.1), as usual. For this we show a local well-posedness result, Theorem 7.6, which applies
to the non-endpoint case, and Theorem 7.7, for the endpoint case. Finally, we provide two
examples in Section 9.1, which show that if the flow map exists for .s; `/ in the exterior
of the region defined by (1.3), it does not have bounded directional derivatives of second
order at the origin. Partial ill-posedness results have been obtained earlier in [4,11,13,23].
At the specific point .s; `/ D .2; 3/ in d D 4 a stronger form of ill-posedness was proved
in [2, Section 7], namely that there is no distributional solution of this regularity.

Fig. 1. In dimension d D 4: Local well-posedness and small data global well-posedness within grey
region, ill-posedness elsewhere.

Our second main result is

Theorem 1.2. Let d � 4 and .s; `/ satisfy (1.3). For any data .g0; g1/ 2 H `.Rd / �
H `.Rd /, there exists " > 0 such that for any f 2 H s.Rd / satisfying kf kH .d�3/=2 � ",
we have a global solution u2C.R;H s.Rd //, .v; jrj�1@tv/2C.R;H `.Rd /�H `.Rd //
to (1.1) and (1.2), which is unique under the condition

u 2 L2t;loc.R; W
d�3
2 ; 2d

d�2
x .Rd //;

and depends real-analytically on the initial data. This solution scatters as t !˙1.
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Theorem 1.2 is a consequence of Theorems 7.6, 7.7 and 8.1, which again apply to
the first order system (2.1) in the mild formulation (see Section 9.2). In fact, we prove
something stronger: the smallness condition in Theorem 1.2 can be replaced with the
weaker condition

kf k
H
d�3
2
keit�f k7

L2tW
d�3
2
; 2d
d�2

x

� ":

We remark that Theorems 7.6 and 7.7 (with g� D 0) also imply that the smallness
condition on f does not depend on .g0; g1/ provided it is also sufficiently small, i.e.
k.g0; g1/kH .d�4/=2 � 1. For readers interested in this important and much easier case
only, we provide a simplified approach and results in Section 5.

In general, " > 0 in Theorem 1.2 must depend on the wave initial data .g0; g1/, and
it is not even uniform with respect to its norm, at least when .s; `/ is on a segment of the
lowest regularity (` D d=2 � 2 and .d � 3/=2 � s < d=2 � 1): Take any non-negative
f0 2 C

1
0 .R

d / n ¹0º. Multiplying it by a large number a � 1, we can make the NLS
energy negative, ES .af0/ < 0. Imposing g0 D �jaf0j2 and g1 D 0 makes the Zakharov
energy the same: EZ.af0; g0; g1/ D ES .af0/. When the energy is negative, scattering is
impossible, because the global dispersion would send the negative nonlinear part to zero
as t !1. Finally, to make the Schrödinger data small, we can use the scaling-invariance
of the NLS: Let f .x/ D �af0.�x/ with �!1. Since this is the PHd=2�1-invariant scal-
ing, all PH s norms with s < d=2 � 1 tend to zero as the data concentrate, including the
L2 norm (s D 0). For the wave component, the scaling leaves PHd=2�2 invariant, which is
the lowest (critical) regularity. In other words, we can make the Schrödinger data as small
in H s as we like for s < d=2 � 1, while keeping the wave norm in PHd=2�2.

Further, in the energy-critical case (d D 4), we observe that there exist non-scattering
solutions as long as kg0kL2 > kW 2kL2 , where W.x/ D .jxj2=.d.d � 2//C 1/�1 is the
ground state of the NLS. To see this, start with f .x/D aW�.x=R/ with a smooth cut-off
function � (which is needed since W barely fails to be in L2.R4/). Choosing a > 1, and
then R > 1 large enough depending on a, we obtain ES .f / < ES .W / and kjf j2kL2 >
kW 2kL2 , so that we can apply the grow-up result (with g0 D�jf j2 and g1 D 0 as above)
in the radial case obtained in [20]. The large data case in the energy-critical dimension
d D 4 is addressed in a follow-up paper [7].

The key contributions of Theorems 1.1 and 1.2 are firstly that we give a complete
characterisation of the region of well-posedness in arbitrary space dimension d � 4, and
secondly that we obtain global well-posedness and scattering for wave data of arbitrary
size, only requiring the Schrödinger data to be small enough. In particular, in the energy-
critical dimension d D 4 this extends [2] to the subregion where .s; `/ D .1; 0/ or s �
4` C 1 or s > 2` C 11

8
and the scattering to wave data of arbitrary size. Note that [2]

covers the energy space .s; `/ D .1; 0/ but by a compactness argument, from which it is
not immediately clear whether the solution map is analytic. Further, if d D 4, the large
data threshold result in [20] is restricted to radial data. In higher dimensions, this is an
extension of the local well-posedness results in [13], which apply in the subregion where
` � s � ` C 1 and 2s > ` C d�2

2
, and the global well-posedness and scattering result
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in [24], which applies if .s; `/ D .d�3
2
; d�4
2
/ and both the wave and the Schrödinger data

are small.
The recent well-posedness results cited above rely on a partial normal form trans-

formation. This strategy introduces certain boundary terms which are non-dispersive and
difficult to deal with in the low regularity setup. In this paper, we introduce a new per-
turbative approach which is based on Strichartz and maximal L2t;x norms with additional
temporal derivatives allowing us to exploit the different dispersive properties of the wave
and the Schrödinger equation. Further, the global well-posedness result allows for wave
data of arbitrary size, which is achieved by treating the free wave evolution as a potential
term in the Schrödinger equation.

One of the main challenges in proving the global well-posedness results in Theorems
1.1 and 1.2 in the range s > ` C 1 lies in the fact that it seems impossible to control

the endpoint Strichartz norm, i.e. to prove that hrisu 2 L2tL
2d
d�2
x . To some extent, this is

explained by considering
.i@t C�/u D �� �

as a toy model for (1.1), where �� D eit jrjf� is a free wave,  � D eit�g� is a free
solution to the Schrödinger equation, the wave data f� has spatial frequencies j�j � �,
and the Schrödinger data g� has spatial frequencies j�j � � with �� �. Note that this is
essentially the first Picard iterate for (1.1). A computation shows that the product �� �
has space-time Fourier support in the set ¹j� j � �2; j�j � �º and hence (modulo a free
Schrödinger wave) we can write

u � .i@t C�/
�1.�� �/ � �

�2.�� �/:

In particular, we expect that (in the case d D 4 for ease of notation)

khri
sukL2tL

4
x.R1C4/

� �s�2k�� �kL2tL
4
x.R1C4/

:

If we assume the wave endpoint regularity, in d D 4 we can only place �� 2 L1t L
2
x . Thus

applying Hölder’s inequality together with the sharp Sobolev embedding and the endpoint
Strichartz estimate for the free Schrödinger equation we see that

k�� �kL2tL
4
x.R1C4/

. k��kL1t L4x.R1C4/k �kL2tL1x .R1C4/ . �kf�kL2.R4/�kg�kL2.R4/:

Note that the above chain of inequalities is essentially forced if we may only assume the
regularity �� 2 L1t L

2
x . Consequently, we obtain

khri
sukL2tL

4
x
.
�
�

�

�s�1
kf�kL2kg�kH s :

Again, as we can only place f� 2 L2x , this imposes the restriction s � 1. It is very difficult
to see a way to improve the above computation, and in fact this high-low interaction is
essentially what led to the restriction s < 1 in [2, 24]. Note however that this obstruction
only leads to hrisu 62 L2tL

4
x.R

1C4/, and is not an obstruction to well-posedness. In other
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words, provided only that s � 2 we still have u 2 L1t H
s
x since similar to the above

computation,

kukL1t H
s
x.R1C4/

� �s�2k��u�kL1t L
2
x
.
�
�

�

�s�2
kf�kL2xkg�kH

s :

In summary, the above example strongly suggests that it is not possible to construct solu-
tions to the Zakharov system by iterating in the endpoint Strichartz normsL2tW

s;4.R1C4/,
or even any space which contains the endpoint Strichartz space. Thus an alternative space
is required, and this is what we construct in this paper.

A partial solution to the above problem of obtaining well-posedness in the regularity
region s � `C 1 was given in [2]. The approach taken there was to replace the endpoint
Strichartz space L2tW

s;4
x with the intermediate Strichartz spaces LqtW

s;r
x for appropriate

(non-endpoint, i.e. q > 2) Schrödinger admissible .q; r/. However, the argument given
in [2] requires additional regularity for the wave component v as it exploits Strichartz
estimates for the wave equation to compensate for the loss in decay in the intermediate
Schrödinger Strichartz spaces, and thus misses a neighbourhood of the corner .s; l/ D
.d=2; d=2 � 2/.

The key observation that gives well-posedness in the full region (1.3) is that the out-
put of the above high-low interaction has small temporal frequencies. Consequently, the
endpoint Strichartz space only loses regularity at small temporal frequencies. This obser-
vation can be exploited by using norms of the form

k.hri C j@t j/
auk

L2tW
s�2a;4
x .R1C4/: (1.4)

Note that if uD eit�f is a free solution to the Schrödinger evolution, then u has temporal
Fourier support in ¹j� j � j�j2º and hence

k.hri C j@t j/
auk

L2tW
s�2a;4
x .R1C4/ � kukL2tW

s;4
x
:

Thus the norm (1.4) is equivalent to the standard endpoint Strichartz space for free
Schrödinger waves. On the other hand, if u has Fourier support in ¹j� j . j�jº, i.e. u has
only small temporal frequencies, then

k.hri C j@t j/
auk

L2tW
s�2a;4
x .R1C4/ � kukL2tW

s�a;4
x

:

In other words, we only have hris�au 2 L2tL
4
x.R

1C4/ and thus we allow for a loss
of regularity in the small temporal frequency region of the Strichartz norm. More-
over, again considering the above high-low interaction, we can control the output
.i@t C �/

�1.�� �/ in the temporal derivative Strichartz space (1.4) provided that a �
s � 1. In particular choosing a � 1 gives the full range s < 2. Thus roughly speaking,
the norm (1.4) matches the standard endpoint Strichartz space for the Schrödinger-like
portion of the evolution of u (i.e. when j� j � j�j2), but allows for a loss of regularity
in the small temporal frequency regions j� j � j�j2 of u which are strongly influenced
by nonlinear wave-Schrödinger interactions. We refer to estimate (2.5) and Remark 7.3
below for further related comments.
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1.1. Outline of the paper

In Section 2, notation is introduced, the crucial function spaces are defined, and their
key properties are discussed. Further, a product estimate for fractional time-derivatives is
proved. Bilinear estimates for the Schrödinger and the wave nonlinearities are proved in
Sections 3 and 4, respectively. In Section 5 we provide a shortcut to simplified local and
small data global well-posedness and scattering results which do not use the refined results
of the following sections. Local versions of the bilinear estimates in the endpoint case are
proved in Section 6. In Section 7 the technical well-posedness results are established,
most notably Theorems 7.6 and 7.7. Persistence of regularity is established in Section 8.
Finally, the proofs of Theorems 1.1 and 1.2 are completed in Section 9.

2. Notation and preliminaries

The Zakharov system has an equivalent first order formulation which is slightly more con-
venient to work with. Suppose that .u;v/ is a solution to (1.1) and let V D v � i jrj�1@tv.
Then .u; V / solves the first order problem

i@tuC�u D <.V /u;

i@tV C jrjV D �jrj juj
2: (2.1)

Conversely, given a solution .u; V / to (2.1), the pair .u; <.V // solves the original
Zakharov equation (1.1).

2.1. Fourier multipliers

Let ' 2 C10 .R/ be such that ' � 0, supp' � ¹1=2 < r < 2º and

1 D
X
�22Z

'

�
r

�

�
for r > 0:

Let N D ¹0; 1; 2; : : :º. For � 2 2N , define the spatial Fourier multipliers

P� D '

�
jrj

�

�
if � > 1; P1 D

X
�22Z; ��1

'

�
jrj

�

�
:

Thus P� is (inhomogeneous) Fourier multiplier localising the spatial Fourier support to
the set ¹�=2 < j�j < 2�º if � > 1 and ¹j�j < 2º if � D 1. Further, for � 2 2Z, we define

P
.t/

�
D '

�
j@t j

�

�
; C� D '

�
ji@t C�j

�

�
:

P
.t/

�
localises the temporal Fourier support to the set ¹�=2 < j� j < 2�º, and C� localises

the space-time Fourier support to distances� � from the paraboloid.
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To restrict the Fourier support to larger sets, we use the notation

P�� D
X

�22Z; ���

'

�
jrj

�

�
; P

.t/

��
D

X
�22Z; ���

'

�
j@t j

�

�
;

C�� D
X

�22Z; ���

'

�
ji@t C�j

�

�
;

and define C>� D I � C��. For ease of notation, for � 2 2N we often use the shorthand
P�f D f�. In particular, note that u1 D P1u has Fourier support in ¹j�j < 2º, and we
have the identity

f D
X
�22N

f� for any f 2 L2.Rd /:

For brevity, let us denote the frequently used decomposition into high and low modulation
by

PN� u WD C�.�=28/2P�u; P F� u WD C>.�=28/2P�u; (2.2)

so that u� D PN� uC P
F
�
u. Similarly, we take

PN WD
X
�22N

PN� ; P F D
X
�22N

P F� ; P F
�� D

X
�22N ; ���

P F� ; etc.

Note that u D PNuC P F u, and these multipliers all obey the Schrödinger scaling, for
instance

.PN� u/.t=�
2; x=�/ D PN2 .u.4t=�

2; 2x=�//; (2.3)

where PN2 is a space-time convolution with a Schwartz function, so that we can easily
deduce that PN

�
and P F

�
are bounded on any Lpt L

q
x uniformly in � 2 2N , and that PN

and P F are bounded on any L2tB
s
q;2.

2.2. Function spaces

In what follows, by default we consider tempered distributions. We define the inhomoge-
neous Besov spaces Bsq;r and Sobolev spaces W s;p via the norms

kf kBsq;r D
� X
�22N

�srkf�k
r
Lq

�1=r
; kf kW s;p D khri

sf kLp :

We use the notation 2�D 2d
d�2

and 2�D .2�/0D 2d
dC2

for the endpoint Strichartz exponents
for the Schrödinger equation. Thus for d � 3 we have

keit�f k
L1t L

2
x\L

2
tL
2�
x
C

Z t

0

ei.t�s/�F.s/ ds


L1t L

2
x\L

2
tL
2�
x

. kf kL2x C kF kL2tL2�x
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by the (double) endpoint Strichartz estimate [25]. To control the frequency localised
Schrödinger component of the Zakharov evolution, we take parameters s;a;b 2R, �2 2N

and define
kuk

S
s;a;b
�

D �skukL1t L
2
x
C �s�2ak.�C j@t j/

auk
L2tL

2�
x

C �s�1Cb
� �C j@t j�2 C j@t j

�a
.i@t C�/u


L2t;x

:

The parameters a; b 2 R are required to prove the bilinear estimates in the full admis-
sible region (1.3). Roughly speaking, a measures a loss of regularity in the small temporal
frequency regime j� j � h�i, for instance (when b D 0) if suppeu� ¹� . h�i � �ºwe have

�s�2ak.�C j@t j/
auk

L2tL
2�
x
C �s�1Cb

� �C j@t j�2 C j@t j

�a
.i@t C�/u


L2t;x

� ��a
�
�skuk

L2tL
2�
x
C �s�1k.i@t C�/ukL2t;x

�
:

Thus, when the temporal frequencies are small, the non-L1t H
s
x component of the norm

S
s;a;b
�

loses ��a derivatives when compared to the standard scaling for the Schrödinger
equation. On the other hand, the b parameter simply gives a gain in regularity in the high
modulation regime, for instance we have kP F uk

L1t H
sCb
x
. kukSs;0;b .

The choice of a and b will depend on .s; `/, there is some flexibility here, but one
option is to choose

a D a� WD

´
3
4
.s � `/ � 1

2
if s � ` � 1;

0 if s � ` < 1;
b D b� WD

´
0 if s � ` > 0;
1
2
.` � s/C 1

2
if s � ` � 0:

(2.4)
Thus in the region `C 1 � s � `C 2, when the Schrödinger component of the evolution
is more regular, we require a > 0 (depending on the size of s � `) and can take b D 0. On
the other hand, in the “balanced region” ` < s < `C 1 we can simply take a D b D 0.
In the final region ` � 1 � s � `, when the wave is more regular, we can take a D 0 and
require b > 0.

Remark 2.1. It is worth noting that due to the factor .�2 C j@t j/�a.�C j@t j/a, the norm
k � k

S
s;a;b
�

only controls the endpoint Strichartz estimate without loss when a D 0. In
particular, if 0 � a � 1, we only have

�s�aku�kL2tL
2�
x
. �s�2ak.�C j@t j/au�kL2tL2�x . ku�kSs;a;0�

: (2.5)

In view of the choice (2.4), this means that in the region s � ` � 1 we no longer have
control over the endpoint Strichartz spaceL2tW

s;2�

x . On the other hand, in the small modu-
lation regime, we retain control of the endpoint Strichartz space. More precisely, provided
that 0 � a � 1, an application of Bernstein’s inequality gives the characterisation

ku�kSs;a;b
�

� �s
�
ku�kL1t L

2
x
C kPN� ukL2tL

2�
x

�
C �s�1Cb

� �C j@t j�2 C j@t j

�a
.i@t C�/u�


L2t;x

: (2.6)
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To control the Schrödinger nonlinearity we take

kF k
N
s;a;b
�

D �s�2kP
.t/

�.�=28/2
F kL1t L

2
x
C �skC�.�=28/2F kL2tL

2�
x

C �s�1Cb
� �C j@t j�2 C j@t j

�a
F


L2t;x

:

Remark 2.2. In the special case 0 � a < 1=2 we have

kF�kN s;a;b
�

� �skC�.�=28/2F�kL2tL
2�
x
C �s�1Cb

� �C j@t j�2 C j@t j

�a
F�


L2t;x

: (2.7)

To see this, let 1=r D 1=2� a and apply Bernstein’s inequality together with the Sobolev
embedding to obtain

�s�2kP
.t/

�.�=28/2
F�kL1t L

2
x
. �s�2C2=rkP .t/

�.�=28/2
F�kL2xLrt

. �s�1�2ak.�C j@t j/aP .t/�.�=28/2F�kL2t;x ;

which implies the claim, since b � 0.

We also require a suitable space in which to control the evolution of the wave compo-
nent. To this end, for `; ˛; ˇ 2 R, we let

kV k
W
`;˛;ˇ

�

D �`kV kL1t L
2
x
C �`�˛k.�C j@t j/

˛P
.t/

�.�=28/2
V kL1t L

2
x

C �ˇ�1k.i@t C jrj/V kL2t;x
:

Thus for small temporal frequencies we essentially take .�Cj@t j
�

/˛V 2 L1t H
`
x , while for

large temporal frequencies (in the Schrödinger-like regime) the wave component V has
roughly ˇ derivatives. Eventually we will take ˛ D a and ˇ D s � 1=2. Consequently,
in the high temporal frequency regime, the wave component V essentially inherits the
regularity of the Schrödinger evolution u. To bound the right hand side of the half-wave
equation at frequency �, we define

kGk
R
`;˛;ˇ

�

D �`�2kGkL1t L
2
x
C �`�˛k.j@t j C �/

˛P
.t/

�.�=28/2
GkL1tL

2
x
C �ˇ�1kGkL2t;x

:

Lemma 2.3 (Nested embeddings). Let s; a; a0; b; b0 2 R with a0 � a and b0 � b. Then

ku�kSs;a;b
�

. ku�kSs;a0;b
�

; ku�kSs;a;b
0

�

� ku�kSs;a;b
�

:

Similarly, if `; ˛; ˛0; ˇ; ˇ0 2 R with ˛0 � ˛ and ˇ0 � ˇ, we have

kV�kW `;˛0;ˇ

�

. kV�kW `;˛;ˇ

�

; kV�kW `;˛;ˇ0

�

� kV�kW `;˛;ˇ

�

:

Proof. The first claim follows from the characterisation (2.6). The remaining inequalities
are clear from the definitions.
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To control the evolution of the full solution, we sum the dyadic terms in `2, and define
the norms

kukSs;a;b D
� X
�22N

ku�k
2

S
s;a;b
�

�1=2
; kF kN s;a;b D

� X
�22N

kF�k
2

N
s;a;b
�

�1=2
;

kV kW `;˛;ˇ D

� X
�22N

kV�k
2

W
`;˛;ˇ

�

�1=2
; kGkR`;˛;ˇ D

� X
�22N

kG�k
2

R
`;˛;ˇ

�

�1=2
C kG�216kL1tL

2
x
:

Then, we define the corresponding spaces as the collection of all tempered distributions
with finite norm.

Let I � R be an open interval, i.e. a connected open subset of the real line R. We
localise the norms and spaces to time intervals I � R via restriction norms. For instance,
we define the restriction norm

kukSs;a;b.I / D inf
u02Ss;a;b and u0jIDu

ku0kSs;a;b ;

provided that such an extension u0 2 S s;a;b exists. The norms k � kN s;a;b.I /, k � kW `;˛;ˇ.I /,
and k � kR`;˛;ˇ.I / and the corresponding spaces are defined similarly.

2.3. Duhamel formulae and energy inequalities

The solution operator for the inhomogeneous Schrödinger equation is denoted by

I0ŒF �.t/ D �i

Z t

0

ei.t�s/�F.s/ ds:

For a general potential V 2 L1t L
2
x , we let

IV ŒF �.t/ D �i

Z t

0

UV .t; s/F.s/ ds

where UV .t; s/f denotes the homogeneous solution operator for the Cauchy problem

.i@t C� �<V /u D 0; u.s/ D f:

We show later that the operators UV and IV are well-defined on suitable function spaces,
provided only that V � eit�f 2 L1t H

.d�4/=2
x , i.e. V is close to a L1t H

.d�4/=2
x solution

to the wave equation.
Similarly, we define the solution operator for the inhomogeneous half-wave equation

by

J0ŒF �.t/ D �i

Z t

0

ei.t�s/jrjF.s/ ds:

We record here two straightforward energy inequalities which we exploit in what fol-
lows.
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Lemma 2.4. Let s 2 R, 0 � a; b � 1. For any � 2 2N we have

keit�f�kSs;a;b
�

. �skf�kL2x ; kI0ŒF��kSs;a;b�

. kF�kN s;a;b
�

:

Moreover, if 0 2 I � R is an open interval and F 2 N s;a;b.I /, then I0ŒF � 2 C.I;H
s/.

Proof. The estimate for the free solutions follows from the fact that the temporal fre-
quency is of size �2 and the endpoint Strichartz estimate.

In order to prove the estimate for the Duhamel term, in view of the characterisation
(2.6) it suffices to bound the high modulation contribution �skI0ŒP F� F �kL1t L2x due to the
(double) endpoint Strichartz estimate. To this end, we first claim that for any � > 0 and
G 2 L1t L

2
x we have

kI0ŒC>�G�kL1t L
2
x
. ��1kC>�GkL1t L2x : (2.8)

Assuming (2.8) for the moment, we conclude that

kI0ŒC>.�=28/2F��kL1t L
2
x
. ��2kC>.�=28/2F�kL1t L2x : (2.9)

To improve this, we again use (2.8) and observe that

kI0ŒP
.t/

>.�=28/2
C>.�=28/2F��kL1t L

2
x
�

X
�&�2

kI0ŒP
.t/
� C��C>.�=28/2F��kL1t L

2
x

.
X
�&�2

��1kP .t/� C>.�=28/2F�kL1t L
2
x
.
X
�&�2

��1=2kP .t/� C>.�=28/2F�kL2t;x

. ��s�bkF�kN s;a;b
�

:

Hence the claimed inequality follows.
To complete the proof of the norm bounds, it only remains to verify the claimed bound

(2.8). Define H.t/ D .@�1t P
.t/
>�Œe

�it�G�/.t/. A computation gives the L1t L
2
x bound

kHkL1t L
2
x
. ��1ke�it�GkL1t L2x D �

�1
kGkL1t L

2
x

and, since C>�G D eit�P
.t/
>�Œe

�it�G�, the identity

@tH.t/ D P
.t/
>�Œe

�it�G�.t/ D e�it�C>�G:

Then (2.8) follows by writing I0ŒC>�G�.t/D I0Œe
it�@tH�.t/D �ie

it�.H.t/�H.0//.
We now turn to the proof of continuity. In view of the definition of the time restricted

spaceN s;a;b.I /, it suffices to consider the case I DR. Moreover, the norm bound proved
implies that it is enough to prove that if � 2 2N and F� 2 N 0;a;b then I0ŒF�� 2 C.I;L

2/.
If kF�kN s;a;b

�

<1 for a; b � 0, then F� 2 L1t;locL
2
x and the continuity follows from the

dominated convergence theorem.

The energy inequality has the following useful consequence.



The Zakharov system in dimension d � 4 3189

Lemma 2.5. Let s; a; b 2 R with b � 0. If F 2 N s;a;b then

lim
t;t 0!1

 Z t 0

t

e�is�F.s/ ds


H s
D 0:

Proof. After writing
R t 0
t
e�is�F.s/ ds D e�it

0�I0ŒF �.t
0/ � e�it�I0ŒF �.t/, the energy

inequality in Lemma 2.4 implies that it suffices to prove that for every � 2 2N we have

lim
t;t 0!1

 Z t 0

t

e�is�F�.s/ ds


L2x

D 0:

We decompose into low and high modulation contributions, F� D PN� F CP
F
�
F . For the

former term, we observe that the endpoint Strichartz estimate gives Z t 0

t

e�is�PN� F.s/ ds


L2x

. kPN� F kL2tL2�x ..t;t 0/�Rd /
;

which vanishes as t; t 0 !1 since PN
�
F 2 L2tL

2�
x . For the remaining high modulation

contribution P F
�
F , we let G.t/ D @�1t P

.t/

&�2
.e�it�P F

�
F /. Then e�it�P F

�
F D @tG and

therefore an application of Sobolev embedding gives, uniformly for M � 1, Z t 0

t

e�is�P F� F.s/ ds


L2x

D kG.t 0/ �G.t/kL2x

� k.P
.t/
�MG/.t

0/kL2x C k.P
.t/
�MG/.t/kL2x C k.P

.t/
>MG/.t

0/kL2x C k.P
.t/
>MG/.t/kL2x

.� k.P .t/�MG/.t
0/kL2x C k.P

.t/
�MG/.t/kL2x C kC>MP

F
� F kL2t;x

:

Since B
P
.t/
�MG 2 L

1
�L

2
�

and P F
�
F 2 L2t;x , for any " > 0, by choosing M sufficiently large

and letting t; t 0 !1 the Riemann–Lebesgue lemma implies that

lim sup
t;t 0!1

 Z t 0

t

e�is�P F� F.s/ ds


L2x

� ":

As this holds for every " > 0, the result follows.

We also require an energy type inequality for the wave equation.

Lemma 2.6. Let 0 � ˛ � 1 and ˇ; ` 2 R. Then, for all � 2 2N ,

keit jrjg�kW `;˛;ˇ

�

. �`kg�kL2 ;

and for � > 216,
kJ0ŒG��kW `;˛;ˇ

�

. kG�kR`;˛;ˇ
�

:

Moreover, if 0 2 I � R is an open interval and G 2 R`;˛;ˇ .I /, then J0ŒG� 2 C.I;H
`/.

Proof. The estimate for free solutions follows from the fact that their temporal frequen-
cies are of size �.
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For the Duhamel integral we have

�`kJ0ŒP
.t/

��2
G��kL1t L

2
x
. �`kP .t/

��2
G�kL1tL

2
x
. �`�˛k.�C j@t j/˛P .t/��2G�kL1tL2x :

Similarly to (2.8) above we also obtain, for � > 216,

�`kJ0ŒP
.t/

&�2
G��kL1t L

2
x
. �`�2kP .t/

&�2
G�kL1t L

2
x
;

and deduce

�`kJ0ŒG��kL1t L
2
x
.�`�˛k.�Cj@t j/˛P .t/��2G�kL1tL2xC�

`�2
kP

.t/

&�2
G�kL1t L

2
x
: (2.10)

Since the bound for the L2t;x component of the norm k � kW `;˛;ˇ follows directly from the
definition, it only remains to bound

�`�˛k.�C j@t j/
˛P

.t/

��2
J0ŒG��kL1t L

2
x

. �`kP .t/
.�

J0ŒG��kL1t L
2
x
C �`�˛k.�C j@t j/

˛P
.t/

��2
P
.t/

��
J0ŒG��kL1t L

2
x
: (2.11)

The first term on the right hand side of (2.11) can be bounded directly from (2.10). We
turn to the second contribution in (2.11) and write

P
.t/

��2
P
.t/

��
J0ŒG�� D P

.t/

��2
P
.t/

��
J0ŒP

.t/

��2
G��;

where the identity is due to the fact that d� D P
.t/

��2
P
.t/

��
J0ŒP

.t/

&�2
G�� solves the equation

.i@t C jrj/d� D 0, therefore d� D eit jrjd�.0/ and since d� has temporal frequencies
� � it must vanish identically.

Let e� WD J0ŒP
.t/

��2
G�� and f� WD J0Œ.� C j@t j/

˛P
.t/

��2
G��. Then it follows that

.i@t C jrj/..�C j@t j/
˛e� � f�/ D 0, and therefore

.�C j@t j/
˛e� � f� D e

it jrjz�; z� D
�
.�C j@t j/

˛e� � f�
�ˇ̌
tD0
:

Again, since the temporal frequencies of eit jrjz are� �, we conclude that

.�C j@t j/
˛P

.t/

��
J0ŒP

.t/

��2
G�� D P

.t/

��
J0Œ.�C j@t j/

˛P
.t/

��2
G��;

hence

k.�C j@t j/
˛P

.t/

��
P
.t/

��2
J0ŒG��kL1t L

2
x
. kJ0Œ.�C j@t j/˛P .t/��2G��kL1t L2x
. k.�C j@t j/˛P .t/��2G�kL1tL2x :

Concerning the continuity, we observe that if kG�kR0;a;b
�

< 1 for a; b � 0, then

G� 2 L
1
t;locL

2
x and the continuity follows from the dominated convergence theorem as

in Lemma 2.4.

2.4. A product estimate for fractional derivatives

The definition of the norms k � k
S
s;a;b
�

involves three distinct regions of temporal frequen-
cies: the low modulation case j� C j�j2j � �2, the medium modulation case j� j � �2,
and the high modulation case j� j � �2. When estimating bilinear quantities, this leads to
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a large number of possible frequency interactions. To help alleviate the number of pos-
sible cases we have to consider, we prove the following bilinear estimate which we later
exploit as a black box.

Lemma 2.7. Let a 2 R, � > 0, and 1 � Qp; Qq; Qr; p; q; r � 1 with 1
p
D

1
q
C

1
r

and 1
Qp
D

1
Qq
C

1
Qr
. Then

k.�C j@t j/
a.vu/k

L
Qp
t L

p
x
. ��jajk.�C j@t j/jajvkLQrtLrxk.�C j@t j/

auk
L
Qq
t L
q
x
:

Proof. The proof is essentially known, and thus we shall be somewhat brief. The main
obstruction is that we allow the endpoint case Qr D 1, and, as we are working with
fractional derivatives in time, this causes the usual difficulties due to the failure of the
Littlewood–Paley theory. In particular, to avoid summation issues, we closely follow the
proof of the endpoint Kato–Ponce type inequality in [6].

To simplify notation, and in contrast to the rest of the paper, we temporarily adopt the
convention that the temporal frequency multipliers P .t/� give an inhomogeneous decom-
position over � 2 2N , thus

P
.t/
1 D

X
�22Z; ��1

'

�
j@t j

�

�
; f D

X
�22N

P .t/� f

where ' is as in Section 2.1.
We first consider the case a > 0 and prove the stronger estimate

k.1C j@t j/
a.vu/k

L
Qp
t L

p
x

. kvk
LQrtL

r
x
k.1C j@t j/

auk
L
Qq
t L
q
x
C k.1C j@t j/

avk
LQrtL

r
x
kuk

L
Qq
t L
q
x
: (2.12)

Clearly, after rescaling, this implies the required estimate for a > 0. The proof of the
estimate (2.12) is a straightforward adaption of the argument in [6]. In more detail, we
decompose

vu D
X
�22N

P .t/� vP
.t/
��uC

X
�22N

P
.t/
<�vP

.t/
� u:

By symmetry, it is enough to consider the first term. To deal with the problem of summa-
tion over frequencies, we introduce a commutator term and writeX

�22N

.1C j@t j/
a.P .t/� vP

.t/
��u/

D

X
�22N

�
.1C j@t j/

a.P .t/� vP
.t/
��u/ � ..1C j@t j/

aP .t/� v/P
.t/
��u

�
C

X
�22N

..1C j@t j/
aP .t/� v/P

.t/
��u

D

X
�22N

�
.1C j@t j/

a.P .t/� vP
.t/
��u/ � ..1C j@t j/

aP .t/� v/P
.t/
��u

�
C ..1C j@t j/

av/uC
X
�22N

..1C j@t j/
aP .t/� v/P

.t/
>�u: (2.13)
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The bound for the second term in (2.13) follows directly from Hölder’s inequality. To
bound the third term in (2.13), we note that for any M 2 2N we haveX
�22N

k.1C j@t j/
aP .t/� vP

.t/
>�ukL Qpt L

p
x

.
X
��M

�akvk
LQrtL

r
x
kuk

L
Qq
t L
q
x
C

X
�>M

��ak.1C j@t j/
avk

LQrtL
r
x
k.1C j@t j/

auk
L
Qq
t L
q
r

.M a
kvk

LQrtL
r
x
kuk

L
Qq
t L
q
x
CM�ak.1C j@t j/

avk
LQrtL

r
x
k.1C j@t j/

auk
L
Qq
t L
q
r
:

Optimising in M then gives X
�22N

.1C j@t j/
aP .t/� vP

.t/
>�u


L
Qp
t L

p
x

.
�
kvk

LQrtL
r
x
kuk

L
Qq
t L
q
x
k.1C j@t j/

avk
LQrtL

r
x
k.1C j@t j/

auk
L
Qq
t L
q
r

�1=2
;

and hence (2.12) follows for the third term in (2.13). Finally, to bound the first term in
(2.13), we first claim that for any 0 < � < 1=a we have the commutator estimates

k.1C j@t j/
a.P .t/� vP

.t/
��u/ � ..1C j@t j/

aP .t/� v/P
.t/
��ukL Qpt L

p
x

. ���ak.1C j@t j/avkLQrtLrxk.1C j@t j/
auk�

L
Qq
t L
q
x

kuk1��
L
Qq
t L
q
x

(2.14)

and

k.1C j@t j/
a.P .t/� vP

.t/
��u/ � ..1C j@t j/

aP .t/� v/P
.t/
��ukL Qpt L

p
x

. �akvk
LQrtL

r
x
kuk

L
Qq
t L
q
x
: (2.15)

Assuming these bounds for the moment, we have, for any M 2 2N ,X
�22N

.1C j@t j/a.P .t/� vP
.t/
��u/ � ..1C j@t j/

aP .t/� v/P
.t/
��u


L
Qp
t L

p
x

.
X
��M

�akvk
LQrtL

r
x
kuk

L
Qq
t L
q
x

C

X
�>M

���ak.1C j@t j/
avk

LQrtL
r
x
k.1C j@t j/

auk�
L
Qq
t L
q
x

kuk1��
L
Qq
t L
q
x

.M a
kvk

LQrtL
r
x
kuk

L
Qq
t L
q
x
CM��ak.1C j@t j/

avk
LQrtL

r
x
k.1C j@t j/

auk�
L
Qq
t L
q
x

kuk1��
L
Qq
t L
q
x

:

Optimising in M , we conclude that X
�22N

P .t/� vP
.t/
��u


L
Qp
t L

p
x

.
�
k.1C j@t j/

avk
LQrtL

r
x
kuk

L
Qq
t L
q
x

� 1
1C�

�
kvk

LQrtL
r
x
k.1C j@t j/

auk
L
Qq
t L
q
x

�1� 1
1C�

and hence (2.12) follows.
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It only remains to prove the standard commutator bounds (2.14) and (2.15). We begin
by noting that for any a 2 R, we have the related estimate.1C j@t j/a.P .t/� vP

.t/
��u/ � ..1C j@t j/

aP .t/� v/P
.t/
��u


L
Qp
t L

p
x

. �a�1kP .t/� vk
LQrtL

r
x
k@tP

.t/
��ukL Qqt L

q
x
; (2.16)

which follows by writing

.1C j@t j/
a.P .t/� vP

.t/
��u/ � ..1C j@t j/

aP .t/� v/P
.t/
��u

D �a
Z

R
� 1.s�/.P

.t/
� v/.t � s/

�
.P

.t/
��u/.t � s/ � .P

.t/
��u/.t/

�
ds

D ��a�1
Z

R

Z 1

0

�  2.s�/.P
.t/
� v/.t � s/.@tP

.t/
��u/.t � ss

0/ ds0 ds

for some  1 2 �.R/ (i.e. some smooth rapidly decreasing kernel independent of �, u,
and v),  2.s/D s 1.s/, and so applying Hölder’s inequality and using translation invari-
ance, we obtain (2.16). To conclude the proof of (2.14), we note that if a > 0, then (2.16)
also holds with P .t/��u replaced with P .t/��u (this is simply another application of Hölder
and Bernstein), and hence (2.14) follows from the interpolation type bound

k@tP
.t/
��ukL Qqt L

q
x
�

X
�022N ; �0��

�0kP
.t/
�0 ukL Qqt L

q
x

.
X

�022N ; �0��

.�0/1��ak.1C j@t j/
auk�

L
Qq
t L
q
x

kuk1��
L
Qq
t L
q
x

. �1��ak.1C j@t j/auk�
L
Qq
t L
q
x

kuk1��
L
Qq
t L
q
x

;

which holds for any 0 � � < 1=a. Finally, the second commutator bound (2.15) follows
by simply discarding the commutator structure and applying Hölder’s and Bernstein’s
inequalities. This completes the proof of (2.12) and hence the required estimate holds in
the case a > 0.

It only remains to consider the case a < 0, but this follows by arguing via duality.
Namely, the estimate (2.12) gives

k.1C j@t j/
a.vu/k

L
Qp
t L

p
x

D sup
kwk

L
Qp0

t L
p0

x

�1

ˇ̌̌̌ Z
R1Cd

..1C j@t j/
aw/vu dx dt

ˇ̌̌̌
� k.1C j@t j/

auk
L
Qq
t L
q
x

sup
kwk

L
Qp0

t L
p0

x

�1

k.1C j@t j/
jaj.v.1C j@t j/

aw/k
L
Qq0

t L
q0

x

. k.1C j@t j/aukL Qqt Lqx
� sup
kwk

L
Qp0

t L
p0

x

�1

�
kvk

LQrtL
r
x
kwk

L
Qp0

t L
p0

x
C k.1C j@t j/

jajvk
LQrtL

r
x
k.1C j@t j/

awk
L
Qp0

t L
p0

x

�
. k.1C j@t j/aukL Qqt Lqxk.1C j@t j/

jajvk
LQrtL

r
x

as required.



T. Candy, S. Herr, K. Nakanishi 3194

2.5. Decomposability of norms

Given open intervals I1; I2 � R we would like to bound the norm kukSs;a;b.I1[I2/ in
terms of the norms kukSs;a;b.I1/ and kukSs;a;b.I2/ on the small intervals I1 and I2.

Lemma 2.8 (Decomposability). There exists a constant C > 0 such that for any s 2 R,
0 � a; b � 1, any open intervals I1; I2 � R with I1 \ I2 6D ;, and any u 2 S s;a;b.I1/ \
S s;a;b.I2/ we have

kukSs;a;b.I1[I2/ � C.1C jI1 \ I2j
�a]/.kukSs;a;b.I1/ C kukSs;a;b.I2//;

for a] WD max ¹a; 1=2º.

Proof. Let � 2 C1.R/ with �.t/D 1 for t � �1, �.t/D 0 for t � 1, and for every t 2R,

�.t/C �.�t / D 1:

After a shift, we may assume that .�"; "/ � I1 \ I2 for some " > 0, and that I1 lies to
the left of I2 (i.e. inf I1 � inf I2). Define �1.t/ D �."�1t / and �2.t/ D �.�"�1t / and let
uj be an extension of ujIj to R such that kukSs;a;b.Ij / � ku

j kSs;a;b . By construction we
have u D �1u1 C �2u2 on I1 [ I2, and hence by definition of the restriction norm

kukSs;a;b.I1[I2/ � k�1u
1
kSs;a;bCk�2u

2
kSs;a;b . .1C"�a]/.ku1kSs;a;bCku2kSs;a;b /

. .1C"�a]/.kukSs;a;b.I1/CkukSs;a;b.I2//;

provided that S s;a;b enjoys a localisability estimate of the form

k�jukSs;a;b . .1C "�a]/kukSs;a;b :

Taking " > 0 as large as possible (namely " � jI1 \ I2j) leads to the desired estimate.
It remains to prove the above localisability, which follows from the product estimate

Lemma 2.7. Indeed, for every frequency � 2 2N , we have

k.�C j@t j/
a.�1u�/kL2tL

2�
x
. k��a.�C j@t j/a�1kL1t k.�C j@t j/

au�kL2tL
2�
x
;

where the norm of �1 is bounded uniformly in � by k.1C j@t j/aŒ�."�1t /�kL1t . 1C "
�a.

The L1t L
2
x component is trivially localisable. For the remaining L2t;x component of

S s;a;b , we have� �C j@t j�2 C j@t j

�a
.i@t C�/.�1u�/


L2t;x

�

� �C j@t j�2 C j@t j

�a
Œ�1.i@t C�/u��


L2t;x

C

� �C j@t j�2 C j@t j

�a
Œ P�1u��


L2t;x

:

To bound the first term, we decompose u into high and low temporal frequencies and
observe that another application of Lemma 2.7 gives
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�a
Œ�1.i@t C�/u��


L2t;x

. ��2ak.�C j@t j/aŒ�1.i@t C�/P .t/��2u��kL2t;x C k�1.i@t C�/P
.t/

&�2
u�kL2t;x

. k��a.�C j@t j/a�1kL1t �
�2a
k.�C j@t j/

a.i@t C�/P
.t/

��2
u�kL2t;x

C k�1kL1t k.i@t C�/P
.t/

&�2
u�kL2t;x

. .1C "�a/�1�s�bku�kSs;a;b
�

:

On the other hand, for the second term, we have� �C j@t j�2 C j@t j

�a
Œ P�1u��


L2t;x

. k P�1u�kL2t;x � k P�1kL2xku�kL1t L2x . "
�1=2��sku�kSs;a;b

�

;

which implies the required bound, since b � 1.

3. Bilinear estimates for Schrödinger nonlinearity

In this section we prove that we can bound the Schrödinger nonlinearity in the
space N s;a;b .

Theorem 3.1 (Bilinear estimate for Schrödinger nonlinearity). Let d � 4, 0 � s � `C 2,
ˇ � 0, and 0 � a; b � 1 such that

` � b C d�4
2
; s � ` � aC 1 � b; s C ` � 2a; ˇ � max

®
s � 1; d�4

2
C b

¯
:

and
.s; `/ 6D

�
d�2
2
C a; d�4

2
C b

�
; .ˇ; b/ 6D

�
d�2
2
; 1
�
:

Then
k<.V /ukN s;a;b . kV kW `;a;ˇkukSs;a;0 :

Proof. In view of the definition of N s;a;b and W `;a;ˇ , a short computation shows that it
suffices to prove the bounds� X

�022N

�
2.s�1�2aCb/
0 k.�0 C j@t j/

aP�0.vu/k
2

L2t;x

�1=2
.
�X
�

k.�C j@t j/
av�k

2

L1t H
`�a
x

�1=2
kukSs;a;0 ; (3.1)� X

�022N

�
�2s0 kP�0.vu/k

2

L2tL
2�
x

C �
2.s�1Cb/
0 kP�0.vu/k

2

L2t;x

��1=2
. kvk

L2tH
ˇC1
x
kukSs;a;0 ; (3.2)� X

�022N

�
2.s�2/
0 kP�0.vu/k

2

L1t L
2
x

�1=2
.
�X
�

kv�k
2
L1t H

`

�1=2
kukL1t H

s
x
; (3.3)
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and, under the additional assumption that supp zv � ¹j� j � h�i2º, to prove that�X
�0

�2s0 kP
N
�0
.vu/k2

L2tL
2�
x

�1=2
.
�X
�

k.�C j@t j/
av�k

2

L1t H
`�a
x

�1=2
kukSs;a;0 : (3.4)

More precisely, assuming that the bounds (3.1)–(3.4) hold, we decompose

V D
X
�22N

V� D
X
�22N

P
.t/

��2
V� C

X
�22N

P
.t/
��P

.t/

&�2
V� C

X
�22N

P
.t/
.�P

.t/

&�2
V�

D V1 C V2 C V3:

An application of (3.1), (3.3), and (3.4) (together with the invariance of the right hand
side with respect to complex conjugation) gives

k<.V1/ukN s;a;b .
�X
�

k.�C j@t j/
aP

.t/

��2
V�k

2

L1t H
`�a
x

�1=2
kukSs;a;0

. kV kW `;a;ˇkukSs;a;0 :

On the other hand, for the V2 contribution, we note that since

kV2kL2tH
ˇC1
x
�

�X
�

�2.ˇC1/kP
.t/
��V�k

2

L2t;x

�1=2
.
�X
�

�2.ˇ�1/k.i@t C jrj/P
.t/
��V�k

2

L2t;x

�1=2
. kV kW `;a;ˇ

an application of (3.2) and (3.3) implies that

k<.V2/ukN s;a;b . .kV2kL1t H`x C kV2kL2tHˇC1x
/kukSs;a;0 . kV kW `;a;ˇkukSs;a;0

as required. Finally, the bound for the V3 contribution follows from the fact that suppeV 3�
¹j� j C j�j . 1º together with (3.1), (3.3), and the estimate (3.6) below.

We now turn to the proof of the bounds (3.1)–(3.4). For the first estimate (3.1), we
begin by decomposing the product vu into

P�0.vu/ D
X
�122N

P�0.vu�1/

D

X
�1��0

P�0.vu�1/C
X

�1��0

P�0.vu�1/C
X
�1��0

P�0.vu�1/ (3.5)

and consider the high-low interactions �0 � �1, low-high interactions �0 � �1, and the
balanced interactions case �0 � �1.

Case 1: �0 � �1. Applying the product estimate of Lemma 2.7 together with Sobolev
embedding gives

�s�1�2aCb0 k.�0 C j@t j/
aP�0.vu�1/kL2t;x

. �s�1�2aCb0 ��a0 k.�0 C j@t j/
av��0kL1t L

2
x
�
d�2
2

1 k.�0 C j@t j/
au�1kL2tL

2�
x

. �s�`�1�aCb0 �
d�2
2 Ca�s

1 k.�0 C j@t j/
av��0kL1t H

`�a
x

�s�2a1 k.�1 C j@t j/
au�1kL2tL

2�
x
:
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Therefore, provided that

s � ` � aC 1 � b; ` � d�4
2
C b; .s; `/ 6D

�
d�2
2
C a; d�4

2
C b

�
;

we obtain� X
�022N

�
2.s�1�2aCb/
0

 X
�1��0

.�0 C j@t j/
aP�0.vu�1/

2
L2t;x

�1=2
.
� X
�022N

� X
�1��0

�s�`�1�aCb0 �
d�2
2 Ca�s

1 k.�0Cj@t j/
av��0kL1t H

`�a
x
ku�1kSs;a;0

�1

�2�1=2
.
� X
�22N

k.�Cj@t j/
av�k

2
L1t H

`�a

�1=2
sup
�1

ku�1kSs;a;0
�1

as required.

Case 2: �0 � �1. We begin by observing that an application of the Sobolev embedding
W

d�2
2 ; d

d�1 .Rd / ,! L2.Rd / implies that� X
�0.�1

�
2.s�1�2aCb/
0 kF�0k

2

L2t;x

�1=2
. kF.�1kL2tH

s�1�2aCb
x

. kF.�1k
L2tW

d�2
2
Cs�1�2aCb; d

d�1
x

. �.sC
d�4
2 �2aCb/C

1 kF k
L2tL

d
d�1
x

:

On the other hand, again applying Lemma 2.7 gives

k.�1 C j@t j/
a.v��1u�1/k

L2tL
d
d�1
x

. ��a1 k.�1 C j@t j/
av��1kL1t L

2
x
k.�1 C j@t j/

au�1kL2tL
2�
x

. �2a�s�`1 k.�1 C j@t j/
av��1kL1t H

`�a
x
ku�1kSs;a;0

�1

:

Hence, provided that
s C ` � 2a; ` � d�4

2
C b;

we see that� X
�022N

�
2.s�1�2aCb/
0

.�0 C j@t j/a X
�1��0

P�0.vu�1/
2
L2t;x

�1=2
.

X
�122N

� X
�0.�1

�
2.s�1�2aCb/
0 k.�1 C j@t j/

aP�0.v��1u�1/k
2

L2t;x

�1=2
.

X
�122N

�
.sCd�42 �2aCb/C
1 k.�1 C j@t j/

a.v��1u�1/k
L2tL

d
d�1
x

.
X
�122N

�
.sCd�42 �2aCb/CC2a�s�`

1 k.�1 C j@t j/
av��1kL1t H

`�a
x
ku�1kSs;a;0

�1

.
� X
�22N

k.�C j@t j/
av�k

2

L1t H
`�a
x

�1=2
kukSs;a;0 :
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Case 3: �0 � �1. Similar to the above, we have

�s�1�2aCb0 k.�0 C j@t j/
aP�0.vu�1/kL2t;x

. �s�1�2aCb0 ��a0 k.�0 C j@t j/
av.�0kL1t L

d
x
k.�1 C j@t j/

au�1kL2tL
2�
x

. �b�10 k.hri C j@t j/
av.�0k

L1t H
d�2
2
�a

x

�s�2a1 k.�1 C j@t j/
au�1kL2tL

2�
x
;

which is summable provided that

b � 1; ` � d�4
2
C b:

This completes the proof of (3.1).
We now turn to the proof of the second estimate (3.2). As previously, we apply the

frequency decomposition (3.5) and consider each frequency interaction separately.

Case 1: �0 � �1. We start by noting that an application of Sobolev embedding gives

sup
�022N

�
s�ˇ�1
0 .ku��0kL1t L

d
x
C �b�10 ku��0kL1t;x / . kukL1t H sx . kukSs;a;0

provided that
s � ˇ C 1; ˇ � d�4

2
C b; .ˇ; b/ 6D .d�2

2
; 1/:

Hence via Hölder’s inequality we obtain� X
�022N

�
�2s0 kP�0.vu��0/k

2

L2tL
2�
x

C �
2.s�1Cb/
0 kP�0.vu��0/k

2

L2t;x

��1=2
.
� X
�022N

�
2.ˇC1/
0 kv��0k

2

L2t;x

�1=2
sup
�022N

�
s�ˇ�1
0 .ku��0kL1t L

d
x
C �b�10 ku��0kL1t;x /

. kvk
L2tH

ˇC1
x
kukSs;a;0 :

Case 2: �0� �1. An application of Bernstein’s inequality together with the square func-
tion characterisation of Lpx gives� X
�0��1

�
�2s0 kF�0k

2

L2tL
2�
x

C �
2.s�1Cb/
0 kF�0k

2

L2t;x

��1=2
. �sCb1

� X
�022N

kF�0k
2

L2tL
2�
x

�1=2
. �sCb1

� X
�022N

jF�0 j
2
�1=2

L2tL
2�
x

. �sCb1 kF k
L2tL

2�
x
:

Therefore applying Bernstein’s inequality and Hölder’s inequality we conclude that� X
�022N

�2s0

 X
�1��0

P�0.vu�1/
2
L2tL

2�
x

C �
2.s�1Cb/
0

 X
�1��0

P�0.vu�1/
2
L2t;x

�1=2
.

X
�122N

� X
�0��1

�
�2s0 kP�0.v��1u�1/k

2

L2tL
2�
x

C �
2.s�1Cb/
0 kP�0.v��1u�1/k

2

L2t;x

��1=2
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.
X
�122N

�sCb1 kv��1u�1kL2tL
2�
x

.
X
�122N

�
sCbCd�22
1 kv��1kL2t;x

ku�1kL1t L
2
x
. kvk

L2tH
ˇC1
x
kukSs;a;0

provided that
ˇ � d�4

2
C b:

Case 3: �0 � �1. Let 1
r
D

1�b
d

. Similar to the above, an application of Sobolev embed-
ding gives

kvkL2tL
d
x
C kvkL2tL

r
x
. kvk

L2tH
ˇC1
x

provided that
ˇ � d�4

2
C b; .ˇ; b/ 6D

�
d�2
2
; 1
�
:

Consequently, via Bernstein’s inequality we have� X
�022N

�2s0 kvu��0k
2

L2tL
2�
x

C �
2.s�1Cb/
0 kvu��0k

2

L2t;x

�1=2
. .kvkL2tLdx C kvkL2tLrx /

� X
�022N

�2s0 ku��0k
2

L1t L
2
x

�1=2
. kvk

L2tH
ˇC1
x
kukSs;a;0 :

This completes the proof of (3.2).
The L1t L

2
x bound (3.3) holds provided that s � ` C 2, ` � d�4

2
, and .s; `/ 6D

.d
2
; d�4
2
/. The proof is standard, and follows by adapting the proof of the product estimate

kfgkH s�2 . kf kH`kgkH s .
We now turn to the proof of the final estimate (3.4). As before, we decompose the

inner sum into high-low interactions �0 � �1, low-high interactions �0 � �1, and the
balanced interactions case �0 � �1, and consider each case separately.

Case 1: �0 � �1. The assumption on the Fourier support of v implies the non-resonant
identity

C�.�0=28/2P�0.vu�1/ D C�.�0=28/2P�0.v��0P
.t/

��2
0

C>.�1=28/2u�1/:

Hence the disposability of the multiplier PN
�0

and Bernstein’s inequality give

kPN�0.vu�1/kL2tL
2�
x
. �d=2�11 kv��0kL1t L

2
x
kP

.t/

��2
0

C>.�1=28/2u�1kL2t;x

. �d=2�11 ��20 kv��0kL1t L
2
x

��1 C j@t j�21 C j@t j

�a
.i@t C�/u�1


L2t;x

:

Consequently, we conclude that

�s0kP
N
�0
.vu�1/kL2tL

2�
x
. �s�`�20 �

d=2�s
1 kv��0kL1t H

`
x
kukSs;a;0 ;
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which is summable provided that

s � `C 2; ` � d�4
2
; .s; `/ 6D

�
d
2
; d�4
2

�
:

Case 2: �0� �1. We first observe that the Fourier support assumption on v implies that

C�.�0=28/2P�0.vu�1/ D C�.�0=28/2P�0.v��1C��21
u�1/:

Bernstein’s inequality and the temporal product estimate in Lemma 2.7 implies

�s0kP
N
�0
.vu�1/kL2tL

2�
x
. �sC

d�2
2 �2a

0 k.�1 C j@t j/
a.v��1C��2

1
u�1/kL2tL

1
x

. �sC
d�2
2 �2a

0 ��a1 k.�1 C j@t j/
av��1kL1t L

2
x
k.�1 C j@t j/

aC
��2

1
u�1kL2t;x

. �sC
d�2
2 �2a

0 �2a�s�`�11 k.�1 C j@t j/
av��1kL1t H

`�a
x
ku�1kSs;a;0

�1

;

which is certainly summable under the assumption that

s C ` � 2a; ` � d�4
2
:

Case 3: �0 � �1. We now consider the remaining high-high interactions. Via the product
estimate in Lemma 2.7 we obtain

�s0kP
N
�0
.vu�1/kL2tL

2�
x
. �s�2a1 k.�1 C j@t j/

a.v.�1u�1/kL2tL
2�
x

. �s�2a1 ��a1 k.�1 C j@t j/
av.�1kL1t L

d=2
x
k.�1 C j@t j/

au�1kL2tL
2�
x

. k.hri C j@t j/avkL1t H`�ax
ku�1kSs;a;0

�1

; (3.6)

where we have used ` � d�4
2

for the Sobolev embedding, and the summation is trivial in
this case.

We require a local version of the bilinear estimate, with the advantage that we can
place v in dispersive norms of the form L1t L

2
x C L

2
tL

d
x .

Corollary 3.2. Let d � 4. Assume that ˇ � max ¹d�4
2
; s � 1º and

0 � a � 1; 0 � s � `C 2; ` � d�4
2
; s � ` � aC 1; s C ` � 2a; (3.7)

with .s; `/ 6D .d�2
2
C a; d�4

2
/. There exists C > 0 such that for any interval 0 2 I � R,

kI0.<.V /u/kSs;a;0.I / � CkV kW `;a;ˇ.I /CL2tW
s;d
x .I�Rd /

kukSs;a;0.I /:

Proof. In view of Lemma 2.4 and Theorem 3.1, it suffices to prove that for any s � 0 and
0 � a � 1 we have

kI0.<.V /u/kSs;a;0.I / . kV kL2tW s;d
x .I�Rd /

kukSs;a;0.I /: (3.8)
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An application of Bernstein’s inequality together with (2.6) gives

ku�kSs;a;0
�

� �s.ku�kL1t L
2
x
CkPN� ukL2tL

2�
x
/C�s�1

� �Cj@t j�2Cj@t j

�a
.i@tC�/u�


L2t;x

. �s
�
ku�kL1t L

2
x
Cku�kL2tL

2�
x
Ck.i@tC�/u�kL2tL

2�
x

�
and hence the endpoint Strichartz estimate implies that after extending F from I to R by
zero,

kI0ŒF �kSs;a;0.I / � kI0Œ1IF �kSs;a;0 .
� X
�22N

�2skF�k
2

L2tL
2�
x .I�Rd /

�1=2
. kF k

L2tW
s;2�
x .I�Rd /

:

Inequality (3.8) then follows from the elementary product estimate

kfgkW s;2� .Rd / . kf kW s;d .Rd /kgkH s.Rd /;

which holds for any s � 0.

4. Bilinear estimates for the wave nonlinearity

Here we give the bilinear estimates required to control solutions to

.i@t C jrj/v D jrj.' /; v.0/ D 0

with '; 2 S s;a;b . The main estimate we prove is the following.

Theorem 4.1 (Bilinear estimate for wave nonlinearity). Let d � 4, s; `; ˇ � 0, and 0 �
a; b � 1 satisfy

ˇ � min
®
s; 2s � d�2

2
� a

¯
; 2a � 2s � ` � d�2

2
; a � b � s � `

and

.s; `/ 6D
�
d
2
; dC2

2

�
;
�
d�2
2
C a; d�2

2
C b

�
; .s; ˇ/ 6D

�
d�2
2
C a; d�2

2
C a

�
:

If '; 2 S s;a;b , then

kJ0.jrj.' //kW `;a;ˇ . k'kSs;a;bk kSs;a;b :

Proof. An application of the energy inequality of Lemma 2.6 implies that it suffices to
prove the bounds� X

�22N

�2.`�aC1/k.�C j@t j/
aP�P

.t/

��2
.' /k2

L1tL
2
x

�1=2
. k'kSs;a;bk kSs;a;b ; (4.1)
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� X
�22N

�2.`�1/kP�.' /k
2

L1t L
2
x

�1=2
. k'kSs;a;bk kSs;a;b ; (4.2)

� X
�22N

�2ˇkP�.' /k
2

L2t;x

�1=2
. k'kSs;a;bk kSs;a;b ; (4.3)

kP�216.' /kL1tL
2
x
. k'kSs;a;bk kSs;a;b : (4.4)

We start with the proof of (4.1) and decompose the product ' into the standard
frequency trichotomy

P�.' / D P�.' ��/C
X

�1��2&�

P�.'�1 �2/C P�.'�� /: (4.5)

In view of the fact that the left hand side of (4.1) is invariant with respect to complex
conjugation, it suffices to consider the first two terms in (4.5), i.e. the high-low and high-
high frequency interactions.

Proof of (4.1), case 1: high-low interactions. Note that in this case we must have �� 1.
A computation then gives the non-resonant identity

P
.t/

��2
P�.' ��/ D P

.t/

��2
P�.C��2'��P

.t/

��2
 ��/C P

.t/

��2
P�.C&�2'�� ��/

D A1 C A2:

To bound the A1 term, we observe that

�`C1�ak.j@t j C �/
aP

.t/

��2
P�.C��2'��P

.t/

��2
 ��/kL1tL

2
x

. �`C1CakC��2'��kL2tL2�x kP
.t/

��2
 ��kL2tL

d
x

. �`�s�1Ca�s�2ak.�C j@t j/a'��kL2tL2�x k.i@t C�/P
.t/

��2
 ��kL2tH

d�2=2
x

. �`�s�1CaC.d=2�s/C�s�2ak.�C j@t j/a'��kL2tL2�x k kSs;a;0 :

Provided that
s � ` � a � b; 2s � ` � d�2

2
� a

we can sum up over �� 1 to obtain (4.1) for the A1 contribution. To bound A2, we apply
the temporal product estimate in Lemma 2.7 to obtain

�`C1�ak.�C j@t j/
aP

.t/

��2
P�.C&�2'�� ��/kL1tL

2
x

. �`C1�2ak.�C j@t j/aC&�2'��kL2t;x
k.�C j@t j/

a ��kL2tL
1
x

. �`�1
� �C j@t j�2 C j@t j

�a
.i@t C�/'��


L2t;x

X
���

�
�

�

�a
�
d�2
2 k.�C j@t j/

a �kL2tL
2�
x

. �`�s�bCa
X
���

�
d�2
2 Ca�s

� �C j@t j�2 C j@t j

�a
.i@t C�/'��


L2tH

sCb�1
x

k kSs;a;0 :
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This can be summed up over �� 1 to give (4.1) for the A2 contribution provided that

s � ` � a � b; 2s � ` � d�2
2
� 2a � b; .s; `/ 6D

�
d�2
2
C a; d�2

2
C b

�
:

Proof of (4.1), case 2: high-high interactions. An application of the product estimate in
Lemma 2.7 together with Bernstein’s inequality gives

�`C1�a1 k.�1 C j@t j/
a.'�1 �2/kL1tL

2
x

. �`C1�2a1 �
d�4
2

1 k.�1 C j@t j/
a'�1kL2tL

2�
x
k.�2 C j@t j/

a �2kL2tL
2�
x

. �`C
d�2
2 C2a�2s

1 k'�1kSs;a;0
�1

k �2kSs;a;0
�2

:

On the other hand, since `C 1 � a � 0, we have�X
�.�1

�2.`C1�a/k.�C j@t j/
aP�P

.t/

��2
F k2

L1tL
2
x

�1=2
. �`C1�a1

�X
�.�1

k.�1 C j@t j/
aP�F k

2

L1tL
2
x

�1=2
. �`C1�a1 k.�1 C j@t j/

aF kL1tL
2
x
:

Therefore summing up gives�X
��1

�2.`C1�a/
 X
�1��2&�

.�C j@t j/
aP�P

.t/

��2
.'�1 �2/

2
L1tL

2
x

�1=2
.

X
�1��2

�`C1�a1 k.�1 C j@t j/
a.'�1 �2/kL1tL

2
x

.
X
�1��2

�
`Cd�22 C2a�2s

1 k'�1kSs;a;0
�1

k �2kSs;a;0
�2

. k'kSs;a;bk kSs;a;b

where we have used the assumption

2s � ` � d�2
2
� 2a:

This completes the proof of (4.1).

Proof of (4.2). This is slightly easier than the previous estimate (4.1) as we no longer
have to deal with the temporal weight .�C j@t j/a. To bound the high-low interactions,
we observe that

�`�1kP�.' ��/kL1t L
2
x
. �`�1

X
���

�d=2k'��kL1t L
2
x
k �kL1t L

2
x

. �`�s�1
X
���

�d=2�sk'��kSs;a;0k kSs;a;0

and hence provided that

s C 1 � `; 2s � `C d�2
2
; .s; `/ 6D

�
d
2
; d
2
C 1

�
;
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we obtain�X
��1

�2.`�1/kP�.' ��/k
2

L1t L
2
x

�1=2
.
� X
�22N

�2sk'��k
2

L1t L
2
x

�1=2
k kSs;a;b

. k'kSs;a;bk kSs;a;b :

Similarly, to deal with the high-high interactions, we note that for any �1 � �2 since
`C d=2 � 1 � 0 an application of Bernstein’s inequality gives�X

�.�1

�2.`�1/kP�.'�1 �2/k
2

L1t L
2
x

�1=2
.
�X
�.�1

�2.`Cd=2�1/k'�1k
2

L1t L
2
x
k �2k

2

L1t L
2
x

�1=2
. �`Cd�2=2�2s1 k'�1kSs;a;b

�1

k �2kSs;a;b
�2

and therefore� X
�22N

�2.`�1/
 X
�1��2&�

P�.'�1 �2/
2
L1t L

2
x

�1=2
.

X
�1��2

�
`Cd�22 �2s

1 k'�1kSs;a;b
�1

k �2kSs;a;b
�2

. k'kSs;a;bk kSs;a;b

where we have used the assumption

2s � ` � d�2
2
� 0:

In view of the frequency decomposition (4.5), together with the invariance of the left
hand side of (4.2) under complex conjugation, this completes the proof of the L1t L

2
x

bound (4.2).

Proof of (4.3). We now turn to the proof of the L2t;x bound (4.3), and again decompose
the product into the standard frequency trichotomy as in (4.5). For the high-low interaction
terms, we note that

�ˇkP�.' ��/kL2t;x
. �ˇk'��kL1t L2xk ��kL2tL1x
. �ˇ

X
1����

�
d�2
2 Ca�sk'��kL1t L

2
x
k.�C j@t j/

a �kL2tL
2�
x

and hence, provided that

ˇ � s; 2s � ˇ � d�2
2
� a; .s; ˇ/ 6D

�
d�2
2
C a; d�2

2
C a

�
;

summing gives�X
��1

�2ˇkP�.' ��/k
2

L2t;x

�1=2
.
�X
��1

�2sk'��k
2

L1t L
2
x

�1=2
k kSs;a;b

. k'kSs;a;bk kSs;a;b :
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Similarly, to bound the high-high interaction terms, for any �1 � �2 we have

�
ˇ
1 k'�1 �2kL2t;x

. �ˇ1 k'�1kL2tL2�x k �2kL1t Ldx

. �ˇCaC
d�2
2 �2s

1 k'�1kSs;a;0
�1

k �2kSs;a;0
�2

:

Therefore, noting that since ˇ � 0 we have�X
�.�1

�2ˇkP�F k
2

L2t;x

�1=2
. �ˇ1

� X
�22N

kP�F k
2

L2t;x

�1=2
. �ˇ1 kF kL2t;x ;

we conclude that� X
�22N

�2ˇ
 X
�1��2&�

P�.'�1 �2/
2
L2t;x

�1=2
.

X
�1��2

�X
�.�1

�2ˇkP�.'�1 �1/k
2

L2t;x

�1=2
.

X
�1��2

�
ˇCaCd�22 �2s

1 k'�1kSs;a;b
�1

k �2kSs;a;b
�2

. k'kSs;a;bk kSs;a;b

provided that
2s � ˇ � d�2

2
� a:

This completes the proof of (4.3).

Proof of (4.4). To prove the remaining estimate (4.4), we can simply use Bernstein’s and
Hölder’s inequalities and the endpoint Strichartz estimate with loss (2.5):

kP�216.jrj.' //kL1tL
2
x
. k' k

L1tL
d
d�2
x

. k'k
L2tL

2�
x
k k

L2tL
2�
x
. k'kSa;a;bk kSa;a;b ;

since s � a.

As in the Schrödinger case, we additionally provide a local version of the bilinear
estimate which contains a dispersive norm.

Corollary 4.2. Let d � 4, s; `; ˇ � 0, and 0 � a � 1 satisfy

ˇ < min
®
s; 2s � d�2

2
� a

¯
; 2a < 2s � ` � d�2

2
; a < s � `:

There exist 0 < � < 1 and C > 0 such that for any interval 0 2 I �R, if '; 2 S s;a;0.I /,
then

kJ0Œr.' /�kW `;a;ˇ.I /

� C.k'kSs;a;0.I /k kSs;a;0.I //
1�� .k'k

L2tL
2�
x .I�Rd /k kL2tL

2�
x .I�Rd //

� :

Proof. Let �1; �2 2 2N . It suffices to show that there exist ı;N > 0 such that

kJ0Œjrj. �1'�2/�kW `;a;ˇ . .max ¹�1; �2º/�ık kSs;a;0k'kSs;a;0 (4.6)
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together with an estimate with a derivative loss, but the Strichartz norm on the right hand
side:

kJ0Œjrj. �1'�2/�kW `;a;ˇ.I /

. .max ¹�1; �2º/N
�
k k

L2tL
2�
x .I�Rd /k'kL2tL

2�
x .I�Rd /k kSs;a;0.I /k'kSs;a;0.I /

�1=2
:

(4.7)

We start with the proof of (4.6). Choose s0 < s such that

ˇ < min
®
s0; 2s0 � d�2

2
� a

¯
; 2a < 2s0 � ` � d�2

2
; a < s0 � `:

An application of Theorem 4.1 implies that

kJ0Œjrj. �1'�2/kW `;a;ˇ . k �1kSs0;a;0k'�2kSs0;a;0 . .�1�2/
s0�s
k kSs;a;0k'kSs;a;0

and hence (4.6) follows.
We now turn to the proof of (4.7). An application of the standard energy inequality for

the wave equation together with the convexity of Lpt and Bernstein’s inequality implies
that

kJ0ŒG��kW `;a;ˇ

�

. �`CakJ0ŒG��kL1t L2x C �
ˇ�1
kG�kL2t;x

. �`CaCˇCd=4
�
kG�kL1tL

2
x
C kG�k

1=2

L1tL
2
x

kG�k
1=2

L1t L
1
x

�
:

Therefore there exists N > 0 such that

kJ0Œjrj. �1'�2/�kW `;a;ˇ.I / � kJ0Œ1I jrj. �1'�2/�kW `;a;ˇ

. .max ¹�1; �2º/N
�
k �1'�2kL1tL

2
x.I�Rd /

C k �1'�2k
1=2

L1tL
2
x.I�Rd /

k �1'�2k
1=2

L1t L
1
x.I�Rd /

�
. .max ¹�1; �2º/N

�
k k

L2tL
2�
x .I�Rd /k'kL2tL

2�
x .I�Rd /k kSs;a;0.I /k'kSs;a;0.I /

�1=2
;

and the proof is complete.

5. Simplified small data global theory and large data local theory

As a warm up to the proof of the main results contained in Theorems 1.1 and 1.2, we
show how the bilinear estimates in the previous two sections can be used to prove a
simplified small data global well-posedness and scattering result and a large data local
well-posedness result in the non-endpoint case.

Recall that I0ŒF � denotes the solution to the inhomogeneous Schrödinger equation

.i@t C�/ D F;  .0/ D 0;
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and similarly J0ŒG� denotes the solution to the inhomogeneous wave equation

.i@t C jrj/� D G; �.0/ D 0:

Given data .f; g/ 2 H s �H `, define the functional

ˆ.f; gI / WD eit�f C I0Œ<.e
it jrjg/ � � I0Œ<.J0.jrj j j

2// �:

Suppose that .s; `/ lies in the region (1.3), and define the parameters .a; b/ as in (2.4).
A computation shows that the energy inequality in Lemma 2.4 together with the bilinear
estimates in Theorems 3.1 and 4.1 implies that we have the bound

kˆ.f; gI /kSs;a;b . kf kH s C k<.eit jrjg/ kN s;a;b C k<.J0.jrj j j2// kN s;a;b
. kf kH s C kgkW `;a;s�1=2k kSs;a;b C kJ0.jrj j j

2/kW `;a;s�1=2k kSs;a;b

. kf kH s C kgkH`k kSs;a;b C k k3Ss;a;b :

Therefore ˆ W S s;a;b ! S s;a;b . Repeating this argument with differences shows that pro-
vided kf kH s C kgkH` is sufficiently small, there exists a fixed point u 2 ¹ 2 S s;a;b j
k kSs;a;b . kf kH s º to ˆ. Defining

V D eit jrjg � J0.jrj juj
2/

and again applying Theorem 4.1, we then obtain a solution .u; V / 2 C.R; H s � H `/

to the Zakharov system (2.1). The scattering property follows from Lemma 2.5 and an
analogue for the wave part.

Note that the above argument requires the smallness condition kf kH s CkgkH` � 1.
Our later arguments will significantly improve this to just requiring g 2 H .d�4/=2 and
kf kH .d�3/=2 �g 1. In other words, we only require smallness of f in the endpoint
Sobolev space. In addition, we also obtain a stronger uniqueness claim, as well as per-
sistence of regularity.

Let us now sketch a simplified, large data local well-posedness result in the non-
endpoint case s > d�3

2
. Suppose that .s; `/ satisfies (1.3) with s > d�3

2
, and take .a; b/

as in (2.4). Define Q̀ D min ¹s � 1=2; `º and take the map ˆ as above. The non-endpoint
condition s > d�3

2
is due to the use of Corollary 4.2, while the choice of Q̀ is made to

ensure that we can construct a fixed point for ˆ in S s;a;0.I / via Corollary 3.2. Once
we have a fixed point u 2 S s;a;0.I /, we use an additional argument to upgrade this to
u 2 S s;a;b.I /, which is needed to get the correct regularity for the wave component V .

Fix .f; g/ 2 H s �H `. Choose an interval 0 2 I � R such that

keit�f k
L2tL

2�
x .I�Rd / C ke

it jrjgk
W Q̀;a;s�1=2.I /CL2tW

s;d
x .I�Rd /

< ";

where " > 0 is fixed later (depending on f , g, and the absolute constants in the above
bilinear estimates). Define the subset � � S s;a;0.I / as

� D ¹ 2 S s;a;0.I / W k k
L2tL

2�
x .I�Rd / . .1C kgkL2x /"; k kSs;a;0.I / . kf kH s º:
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An application of Corollaries 3.2 and 4.2 gives � > 0 such that for every  2 � we have

kˆ.f; gI /kSs;a;0.I / . kf kH s C .keit jrjgkW Q̀;a;s�1=2.I /CL2tW s;d
x .I /

C kJ0.jrj j j
2/k

W Q̀;a;s�1=2.I /
/k kSs;a;0.I /

. kf kH s C "k kSs;a;0.I / C "2� .1C kgkL2x /
2�
k k3�2�

Ss;a;0.I /
:

On the other hand, in view of the endpoint Strichartz estimate we have

kˆ.f; gI /k
L2tL

2�
x .I�Rd /

. keit�f k
L2tL

2�
x .I�Rd / C k<.e

it jrjg/ k
L2tL

2�
x .I�Rd /

C k<.J0Œjrj j j
2�/ k

L2tL
2�
x

. "C kgkL2xk kL2tL2�x .I�Rd / C kJ0Œjrj j j
2�kL1t L

2
x.I�Rd /k kL2tL

2�
x .I�Rd /

. "C "kgkL2x C "
1C2� .1C kgkL2/

1C2�
k k2�2�

Ss;a;0.I /
:

Consequently, choosing " > 0 sufficiently small, we see that ˆ W �! �. A similar argu-
ment shows that ˆ is a contraction on � (with respect to the norm k � kSs;a;0.I /), and
hence there exists a fixed point u 2 � � S s;a;0.I / for ˆ.

We now upgrade the (far paraboloid) regularity to u 2 S s;a;b.I /. Note that this is
immediate if s > ` since b D 0 in this case. If s � `, then an application of Theorem 3.1
together with Lemma 2.4 gives

kukSs;a;b.I / . kf kH s C k<.eit jrjg/ukN s;a;b.I / C k<.J0Œjrj juj2�/ukN s;a;b.I /
. kf kH s C kgkH`kukSs;a;0.I /
C kJ0Œjrj juj

2�kW s�.1�b/=2;a;s�1=2.I /kukSs;a;0.I /:

To check conditions of Theorem 3.1, it is helpful to note that a D 0 when s � `. Theo-
rem 4.1 implies

kJ0Œjrj juj
2�kW s�.1�b/=2;a;s�1=2.I / . kuk2Ss;a;0.I /

and hence we conclude that

kukSs;a;b.I / . kf kH s C kgkH`kukSs;a;0.I / C kuk3Ss;a;0.I /:

Consequently, if u 2 S s;a;0.I / is a solution toˆ.f;gIu/D u, then we have the improved
regularity u 2 S s;a;b.I /. As above, we now define

V D eit jrjg � J0.jrj juj
2/:

Since u 2 S s;a;b.I /, an application of Theorem 4.1 then gives V 2 W `;a;s�1=2.I /. In
particular, we have a local solution .u;V / 2C.I;H s �H `/ to the Zakharov system (2.1).
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6. Local bilinear estimates in the endpoint case

In this section, we deal with the endpoint case .s; `/ D .d�3
2
; d�4

2
/ and establish bilin-

ear estimates which include dispersive norms on the right hand side. We start with an
improvement of Theorem 3.1 in the endpoint case.

Proposition 6.1. Let d � 4 and .s; `/ D .d�3
2
; d�4
2
/. Let I � R be an interval. Then

kvukN s;0;0.I / . kvkW `;0;s�1=2.I /kuk
1=2

L2tW
s;2�

x .I�Rd /
kuk

1=2

Ss;0;0.I /
: (6.1)

Proof. Suppose for the moment that we can prove that for any ˛ � 1 we haveX
��˛

P�.vu�=˛/

N s;0;0.I /

. ˛1=2kvkL1t H`.I�Rd /kukL2tW
s;2�

x .I�Rd /
; (6.2)X

��˛

P�.vu�=˛/

N s;0;0

. ˛�1=2kvkW `;0;s�1=2kukSs;0;0 : (6.3)

Then sinceX
�

P�.vu&�/

N s;0;0.I /

.
�X
�

�2sk1Ivu&�k
2

L2tL
2�
x

�1=2
.
v�X

�

�2sju&�j
2
�1=2

L2tL
2�
x .I�Rd /

. kvk
L1t L

d=2
x .I�Rd /

�X
�

�2sju&�j
2
�1=2

L2tL
2�
x .I�Rd /

. kvkL1t H`x.I�Rd /kukL2tW
s;2�

x .I�Rd /

an application of (6.2) and (6.3), together with the definition of the restricted spaces
N s;0;0.I /, S s;0;0.I /, and W `;0;s�1=2.I / implies that for any M � 1 we have

kvukN s;0;0.I /

�

X
�

P�.vu&�/

N s;0;0.I /

C

X
1�˛�M

X
��˛

P�.vu�=˛/

N s;0;0.I /

C

X
˛>M

X
��˛

P�.vu�=˛/

N s;0;0.I /

.M 1=2
kvkW `;0;s�1=2.I /kukL2tW

s;2�

x .I�Rd /
CM�1=2kvkW `;0;s�1=2.I /kukSs;0;0.I /

Optimising in M then gives (6.1). Thus it remains to prove the bounds (6.2) and (6.3).
For the former estimate, we observe that since s D `C 1=2,X

��˛

P�.vu�=˛/

N s;0;0.I /

.
�X
��˛

�2skvu�=˛k
2

L2tL
2�
x .I�Rd /

�1=2
.
�X
��˛

�2sjv��j
2
ju�=˛j

2
�1=2

L2tL
2�
x .I�Rd /
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. ˛1=2
sup
�
�`jv�j

�X
�

�ju�j
2
�1=2

L2tL
2�
x .I�Rd /

. ˛1=2kvkL1t H`kukL2tW s;2�

x .I�Rd /

where the last line followed via Hölder’s inequality and Sobolev embedding. The proof
of (6.3) is more involved, and exploits the fact that the high-low interactions are non-
resonant. In particular, since � � ˛ � 1, the non-resonant identity

PN� .P
.t/

��2
vu�=˛/ D P

N
� .P

.t/

��2
v��P

.t/

��2
u�=˛/

implies thatX
��˛

P�.vu�=˛/
2
N s;0;0

.
X
��˛

�2skPN� .vu�=˛/k
2

L2tL
2�
x

C

X
��˛

�2.s�1/kP F� .vu�=˛/k
2

L2t;x

.
X
��˛

�2skP
.t/

��2
v��P

.t/

��2
u�=˛k

2

L2tL
2�
x

C

X
��˛

�2skP
.t/

&�2
v��u�=˛k

2

L2tL
2�
x

C

X
��˛

�2.s�1/kv��u�=˛k
2

L2t;x
: (6.4)

To estimate the first term in (6.4), we observe that since s D `C 1=2, we have�X
��˛

�2skP
.t/

��2
v��P

.t/

��2
u�=˛k

2

L2tL
2�
x

�1=2
D

�X
��˛

�2skP
.t/

��2
v��P

.t/

��2
u�=˛k

2

L
2�
x

�1=2
L2t

. kvkL1t H`
�X
��˛

�2.s�`/kP
.t/

��
u�=˛k

2

L2tL
d
x

�1=2
. kvkL1t H`

�X
��˛

�2.s�`�2/k.i@t C�/u�=˛k
2

L2tL
d
x

�1=2
. ˛�3=2kvkL1t H`k.i@t C�/ukL2tH s�1x

:

To bound the second term in (6.4), again using the fact that `C 1=2 D s D d�3
2

, we have�X
��˛

�2skP
.t/

&�2
v��u�=˛k

2

L2tL
2�
x

�1=2
.
�X
��˛

�2.sC1=2/kP
.t/

&�2
v��k

2

L2t;x

�1=2
sup
��˛

��1=2ku�=˛kL1t L
d
x

. ˛�1=2
�X
�

�2.s�3=2/k.i@t C jrj/P
.t/

&�2
v��k

2

L2t;x

�1=2
kukL1t H

s
x

. ˛�1=2kvkW `;0;s�1=2kukL1t H
s
x
:
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Finally, for the last term in (6.4), since s � ` � 1 D �1=2, an application of Bernstein’s
inequality gives�X
��˛

�2.s�1/kv��u�=˛k
2

L2t;x

�1=2
.
�X

��˛

�2.s�1/
�
�

˛

�d�2
kv��k

2

L2x
ku�=˛k

2

L2
�
x

�1=2
L2t

. ˛�1=2kvkL1t H`k sup
�

�sku�kL2�x
kL2t

. ˛�1=2kvkL1t H`kukL2tW s;2�

x
:

We have a related estimate to deal with the wave nonlinearity.

Proposition 6.2. Let d � 4, .s; `/ D .d�3
2
; d�4
2
/. Let 0 2 I � R be an interval. Then

kJ0.jrj.' //kW `;0;`.I /

.
�
k'k

L2tW
s;2�

x .I�Rd /
k k

L2tW
s;2�

x .I�Rd /

�1=2�
k'kSs;0;0.I /k kSs;0;0.I /

�1=2
: (6.5)

Proof. Suppose for the moment that for any ˛ � 1 we have the boundsX
��˛

jrjJ0.'� �=˛/

W `;0;`.I /

. ˛1=2k'k
L2tW

s;2�

x .I�Rd /
k k

L2tW
s;2�

x .I�Rd /

C ˛�1=2
�
k'k

L2tW
s;2�

x .I�Rd /
k k

L2tW
s;2�

x .I�Rd /
k'kSs;0;0.I /k kSs;0;0.I /

�1=2
; (6.6)X

��˛

jrjJ0.'� �=˛/

W `;0;`.I /

. ˛�1=2k'kSs;0;0.I /k kSs;0;0.I /; (6.7)X
�

jrjJ0.'� ��/

W `;0;`.I /

.
�
k'k

L2tW
s;2�

x .I�Rd /
k k

L2tW
s;2�

x .I�Rd /
k'kSs;0;0.I /k kSs;0;0.I /

�1=2
: (6.8)

Let M � 1. As in Proposition 6.1, by decomposing

' D
X
˛�1

X
��˛

'� �=˛ C
X
�

'� �� C
X
˛�1

X
��˛

'�=˛ �

and using symmetry, an application of (6.6) for ˛ < M , (6.7) for ˛ � M , and (6.8) for
the remaining high-high interactions gives

kV kW `;0;`.I / .
jrjJ0.' /W `;0;`.I /

.
X
˛�1

�X
��˛

jrjJ0.'� �=˛/

W `;0;`.I /

C

X
��˛

jrjJ0.'�=˛ �/

W `;0;`.I /

�
C

X
�

jrjJ0.'� ��/

W `;0;`.I /

.M 1=2
k'k

L2tW
s;2�

x .I�Rd /
k k

L2tW
s;2�

x .I�Rd /

C
�
k'k

L2tW
s;2�

x .I�Rd /
k k

L2tW
s;2�

x .I�Rd /
k'kSs;0;0.I /k kSs;0;0.I /

�1=2
CM�1=2k'kSs;0;0.I /k kSs;0;0.I /

C
�
k'k

L2tW
s;2�

x .I�Rd /
k k

L2tW
s;2�

x .I�Rd /
k'kSs;0;0.I /k kSs;0;0.I /

�1=2
:

Optimising in M then gives (6.5).
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It remains to prove the bounds (6.6)–(6.8). We begin by noting that an application of
Hölder’s inequality and the Sobolev embedding together with the assumptions on .s; `/
imply that�X

��˛

�2.`C1/k'� �=˛k
2

L1tL
2
x.I�Rd /

�1=2
. ˛`C1�s

�X
�

�2sj'�j
2
�1=2�X

�

�2.`C1�s/j �j
2
�1=2

L1tL
2
x.I�Rd /

. ˛`C1�sk'k
L2tW

s;2�

x .I�Rd /
k k

L2tW
`C1�s;d
x .I�Rd /

. ˛1=2k'k
L2tW

s;2�

x .I�Rd /
k k

L2tW
s;2�

x .I�Rd /
:

On the other hand, again applying a combination of Hölder’s inequality and Sobolev
embedding, we have�X
��˛

�2`k1I'� �=˛k
2

L2t;x

�1=2
. ˛`�s

�X
�

�2sj'�j
2
�1=2

sup
�

�`�sj �j

L2t;x.I�Rd /

. ˛`�s
�
k'k

L2tW
s;2�

x .I�Rd /
k k

L1t W
`�s;d
x .I�Rd /

�1=2
�

�
k'kL1t H

s
x

sup
�

�`�sk �kL1x


L2t .I /

�1=2
. ˛�1=2

�
k'k

L2tW
s;2�

x .I�Rd /
k k

L2tW
s;2�

x .I�Rd /
k'kL1t H

s
x.I�Rd /k kL1t H

s
x.I�Rd /

�1=2
:

(6.9)

The bound (6.6) now follows from the standard energy inequality as

kJ0.G/kW `;0;`.I / � kJ0.1IG/kW `;0;`

.
� X
�22N

�2`kJ0.1IG�/k
2

L1t L
2
x
C �2.`�1/k1IG�k

2

L2t;x

�1=2
.
� X
�22N

�2`kG�k
2

L1tL
2
x.I�Rd /

C �2.`�1/k1IG�k
2

L2t;x

�1=2
: (6.10)

We now turn to the proof of (6.7); this requires exploiting the fact that the high-low
interactions are non-resonant. More precisely, since � � ˛� 1, the non-resonant identity

P
.t/

��2
.'� �=˛/ D P

.t/

��2
.C&�2'� �=˛/C P

.t/

��2
.C��2'�P

.t/

��2
 �=˛/

together with�X
��˛

�2.`C1/kP
.t/

��2
.C&�2'� �=˛/k

2

L1tL
2
x

�1=2
. ˛`�s

�X
��˛

�2.sC1/kC&�2'�k
2

L2t;x

�1=2
sup
�

�`�sk �kL2tL
1
x
. ˛�1=2k'kSs;0;0k kSs;0;0



The Zakharov system in dimension d � 4 3213

and�X
��˛

�2.`C1/kP
.t/

��2
.C��2'�P

.t/

��2
 �=˛/k

2

L1tL
2
x

�1=2
. sup

�

�sk'�kL2tL
2�
x

�X
��˛

�2.`C1�s/kP
.t/

��2
 �=˛k

2

L2tL
d
x

�1=2
. ˛�3=2k'k

L2tW
s;2�

x
kP

.t/

��2
.i@t C�/ kL2tH

s�1
x

and�X
��˛

�2.`�2/k'� �=˛k
2

L1t L
2
x

�1=2
.
�X
��˛

�2.`�2/
�
�

˛

�d
k'�k

2

L1t L
2
x
k �=˛k

2

L1t L
2
x

�1=2
. ˛�3=2k'kSs;0;0k kSs;0;0

and (6.9) in the special case I D R, implies that (6.7) follows from an application of the
high frequency energy estimate in Lemma 2.6.

The final estimate is the high-high case (6.8). An application of Sobolev embedding
gives�X

�

�2.`C1/k1I'� ��k
2

L1tL
2
x

�1=2
.
�X

�

�2sj'�j
2
�1=2�X

�

�2.`C1�s/j �j
2
�1=2

L1tL
2
x

. k'k
L2tW

s;2�

x .I�Rd /
k k

L2tW
s;2�

x .I�Rd /

and hence (6.8) follows from the energy estimate (6.10) together with the L2t;x bound
(6.9) in the special case ˛ � 1.

7. Well-posedness results

7.1. Global well-posedness for the model problem

The first step in the proof of Theorem 1.2 is to prove the following global result for the
model problem

.i@t C� �<.V //u D F; u.0/ D f;

where we assume that f 2 H s and kF kN s;a;0 < 1. In particular, this shows that the
Duhamel operators IV are well-defined maps from N s;a;0 to S s;a;0, even for large wave
potentials V .

Theorem 7.1. Let 0 � s � ` C 2 and ` � d�4
2

with .s; `/ 6D .d
2
; d
2
� 2/. Let ˇ D

max ¹d�4
2
; s � 1º and a D a�.s; `/ where a�.s; `/ is as in (2.4). There exists " > 0 such

that if 0 2 I � R is an open interval, and

f 2 H s.Rd /; VL D e
it jrjg 2 L1t H

`
x ; kV � VLkW `;a;ˇ.I / < "; F 2 N s;a;0.I /
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then there exists a unique solution u 2 C.I;H s.Rd // \ L2tL
2�

x .I � Rd / to the Cauchy
problem

.i@t C� �<.V //u D F; u.0/ D f:

Moreover, there exists a constant C D C.VL/ > 0 .independent of I , f , V , and F / such
that

kukSs;a;0.I / � C.VL/.kf kH s C kF kN s;a;0.I //

and, writing I D .T�; TC/ with �1 � T� < TC � 1, there exists f˙ 2 H s such that

lim
t!T˙

ke�it�u.t/ � f˙kH sx D 0:

Remark 7.2 (Free wave potentials). The potential V in Theorem 7.1 should be thought
of as a small perturbation of the free wave VL D eit jrjg. In particular, in the special case
where the potential is simply a free wave, i.e. V D VL, the smallness condition is trivially
satisfied. Consequently, for any f 2H s , g 2H `, F 2N s;a;0, Theorem 7.1 gives a global
solution u 2 S s;a;0 to the Schrödinger equation

.i@t C� �<.VL//u D F; u.0/ D f: (7.1)

Thus no smallness condition is required on the potential VL or the data f . Moreover,
for any open interval I � R and g 2 H `, the Duhamel integral is a continuous map
IVL W N

s;a;0.I /! S s;a;0.I /, and we have the bound

kIVL ŒF �kSs;a;0.I / . kF kN s;a;0.I /:

Remark 7.3 (Strichartz control). When a > 0, the solution space S s;a;0 does not con-
trol the Strichartz space L2tW

s;2�

x . On the other hand, when 0 � s < ` C 1, we have
a�.s; `/ D 0. Therefore, an application of (2.5) and Theorem 7.1 implies that solutions to
the Schrödinger equation (7.1) satisfy the (global) Strichartz estimate� X

�22N

�2skuk2
L2tL

2�
x .R1Cd /

�1=2
. kukSs;0;0 . kf kH s C kF kN s;0;0 :

In particular, for any 0 � s < `C 1, ` � d�4
2

, and .f; g/ 2 H s �H ` we have

kuk
L2tW

s;2�

x
. kf kH s C k.i@t C� �<.VL//ukL2tW s;2�

x
:

The first step in the proof of Theorem 7.1 is to prove a local version with the additional
assumption that the potential V is small in some dispersive type norm.

Proposition 7.4. Let 0 � s � `C 2 and ` � d=2 � 2 with .s; `/ 6D .d=2; d=2 � 2/. Let
ˇ D max ¹d�4

2
; s � 1º and define a D a�.s; `/ as in (2.4). There exists " > 0 and C > 0

such that if 0 2 I � R is an open interval, and

f 2 H s.Rd /; F 2 N s;a;0.I /; V 2 W `;a;ˇ .I /; kV k
W `;a;ˇ.I /CL2tW

s;d
x .I�Rd /

< ";
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then the Cauchy problem

.i@t C�/u D <.V /uC F; u.0/ D f;

has a unique solution u 2 C.I;H s.Rd // \ L2tL
2�

x .I �Rd / and we have the bound

kukSs;a;0.I / � C.kf kH s C kF kN s;a;0.I //:

Moreover, writing I D .T�; TC/ with �1 � T� < TC � 1, there exists f˙ 2 H s
x such

that
lim
t!T˙

ke�it�u.t/ � f˙kH sx D 0:

Proof. This is a direct application of Lemma 2.4, Lemma 2.5, and Corollary 3.2. Define
the sequence uj 2 S s;a;0.I / for j � 1 by solving

.i@t C�/uj D <.V /uj�1 C F; uj .0/ D f;

and let u0 D 0. An application of Corollary 3.2 together with the smallness assumption
on V implies that

kuj kSs;a;0.I / . kf kH s C "kuj�1kSs;a;0.I / C kF kN s;a;0.I /

and
kuj � uj�1kSs;a;0.I / . "kuj�1 � uj�2kSs;a;0.I /:

Thus provided " > 0 is sufficient small (depending only on the constant in Corollary 3.2),
the sequence uj is a Cauchy sequence and hence converges to a (unique) solution u 2
S s;a;0.I /. Uniqueness in the larger spaceL1t L

2
x \L

2
tL

2�

x follows by standard arguments
from the Strichartz estimate

kI0Œ<.V /u�kL1t L
2
x\L

2
tL
2�
x .I�Rd /

. k<.V /uk
L2tL

2�
x .I�Rd /

. kV k.L1t L2xCL2tLdx /.I�Rd /kukL1t L
2
x\L

2
tL
2�
x .I�Rd /

. kV k
W `;a;ˇ.I /CL2tW

s;d
x .I�Rd /

kuk
L1t L

2
x\L

2
tL
2�
x .I�Rd /:

Finally, to prove the existence of the limits limt!T˙
e�it�u.t/, it suffices to show that

e�it�u is a Cauchy sequence as t ! TC. To this end, we first observe that by Corollary
3.2 we have G D <.V /uC F 2 N s;a;0.I /. Let G0 2 N s;a;0 be any extension of G from
I to R. Then for any t; t 0 2 I ,

ke�it�u.t/ � e�it
0�u.t 0/kH s D ke

�it�I0ŒG�.t/ � e
�it 0�I0ŒG�.t

0/kH s

D ke�it�I0ŒG
0�.t/ � e�it

0�I0ŒG
0�.t 0/kH s

D

 Z t

t 0
e�is�G0.s/ ds


H s
;

and therefore an application of Lemmas 2.4 and 2.5 implies that e�it�u.t/ is a Cauchy
sequence as required.
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To apply the previous proposition, we need to decompose R into intervals on which
VL is small. This exploits the dispersive properties of the free wave VL D eit jrjg. More
precisely, we have the following minor variation of [2, Lemma 4.1].

Lemma 7.5 ([2, Lemma 4.1]). Let `; s; a � 0, " > 0, and VL D eit jrjg 2 L1t H
`
x . Then

there exists a finite collection .Ij /jD1;:::;N of open intervals such that R D
SN
jD1 Ij ,

min jIj \ IjC1j > 0, and

sup
jD1;:::;N

kVLkW `;a;ˇ.Ij /CL
2
tW

s;d
x .Ij�Rd /

< ":

Proof. Decompose g D g1 C g2 where g2 2 C10 .R
d / and kg1kH` < ". Since g2 is

smooth and compactly supported, the dispersive estimate for the free wave equation gives
eit jrjg2 2 L

2
tW

s;d
x .R1Cd / and hence we can find a collection .Ij /jD1;:::;N of open inter-

vals such that R D
SN
jD1 Ij , min jIj \ IjC1j > 0, and

sup
jD1;:::;N

keit jrjg2kL2tW
s;d
x .Ij�Rd /

< ":

On the other hand, the definition of the norm W `;a;ˇ implies that

keit jrjg1kW `;a;ˇ.Ij /
� keit jrjg1kW `;a;ˇ . kg1kH` . ":

Therefore, for every j D 1; : : : ; N , we have

kVLkW `;a;ˇ.Ij /CL
2
tW

s;d
x .Ij�Rd /

� keit jrjg1kW `;a;ˇ.Ij /
C keit jrjg2kL2tW

s;d
x .Ij�Rd /

. ":

The proof of Theorem 7.1 now follows by repeatedly applying Proposition 7.4
together with the decomposability property in Lemma 2.8.

Proof of Theorem 7.1. Let " > 0 and suppose that

kV � VLkW `;a;ˇ < ":

An application of Lemma 7.5 gives a finite collection .Ij /jD1;:::;N of open intervals and
points tj 2 Ij�1 \ Ij such that I D

SN
jD1 Ij , min jIj \ IjC1j > 0, and

sup
jD1;:::;N

kV k
W `;a;ˇ.Ij /CL

2
tW

s;d
x .Ij�Rd /

� kV � VLkW `;a;ˇ.I / C sup
jD1;:::;N

kVLkW `;a;ˇ.Ij /CL
2
tW

s;d
x .Ij�Rd /

< 2":

Assuming " > 0 is sufficiently small, Proposition 7.4 gives a (unique) solution u 2

C.Ij ;H
s/ \ L2tL

2�

x .Ij �Rd / on the interval Ij 3 0 to the Cauchy problem

.i@t C�/u D <.V /uC F; u.0/ D f (7.2)

such that

kukSs;a;0.Ij / . kf kH s C kF kN s;a;0.Ij / . kf kH s C kF kN s;a;0.I /:
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Taking new data u.tj / and u.tj�1/, and again applying Proposition 7.4, we get a unique
solution

u 2 C.Ij�1 [ Ij [ IjC1;H
s/ \ L2tL

2�

x ..Ij�1 [ Ij [ IjC1/ �Rd /

with
sup

kDj�1;j;jC1

kukSs;a;0.Ik/ . kf kH s C kF kN s;a;0.I /:

Continuing in this manner, after at most N steps, we obtain a unique solution u 2

C.I;H s/ \ L2tL
2�

x .I �Rd / such that

kukSs;a;0.I / .N sup
jD1;:::;N

kukSs;a;0.Ij / .N kf kH s C kF kN s;a;0.I /

where the first inequality is a consequence of Lemma 2.8. Finally, to show that the claimed
limits as t ! sup I and t ! inf I exist, we simply repeat the argument at the end of the
proof of Proposition 7.4.

7.2. Local and small data global results for the Zakharov system

We first consider the non-endpoint case s > d�3
2

.

Theorem 7.6 (LWP and small data GWP: non-endpoint case). Let d � 4 and suppose
that .s; `/ satisfies the conditions (1.3) and s > d�3

2
. Let a D a�.s; `/ and b D b�.s; `/

as in (2.4). For some 0 < � < 1 and any g� 2 H `.Rd / there exists " > 0 such that if
f� 2 H

s.Rd / satisfies

kf�k
2�2�
H s ke

it�f�k
2�

L2tL
2�
x .I�Rd /

< " for an interval 0 2 I � R; (7.3)

then for all .f; g/ in

D".f�; g�/ WD
®
H s
�H `

W kf � f�kH s < "; kg � g�kH` < "
¯
;

there exists a unique solution .u; V / 2 S s;a;b.I / �W `;a;s�1=2.I / to (2.1). The flow map

H s.Rd / �H `.Rd / � D 3 .f; g/ 7! .u; V / 2 S s;a;b.I / �W `;a;s�1=2.I /

is real-analytic, where D D D".f�; g�/ is the open bi-disc defined above. Moreover, if
I D R, then there exists .f˙; g˙/ 2 H s �H ` such that

lim
t!˙1

�
ku.t/ � eit�f˙kH s C kV.t/ � e

it jrjg˙kH`
�
D 0:

Proof. Fix .s; `/ satisfying the conditions (1.3) and s > d�3
2

, and define a D a�.s; `/ and
b D b�.s; `/ as in (2.4). Let Q̀ D min ¹`; s � 1=2º and define VL D eit jrjg� to be the free
wave evolution of g� 2 H `, and similarly uL D eit�f� for f� 2 H s in the case of the
free Schrödinger evolution.
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Let us recall that IVL ŒF � denotes the solution to the inhomogeneous Schrödinger
equation

.i@t C� �<.VL// D F;  .0/ D 0;

and similarly, J0ŒG� denotes the solution to the inhomogeneous wave equation

.i@t C jrj/� D G; �.0/ D 0:

We claim there exists Cg� > 0 and 0 < � < 1 such that

kIVL Œ<.�/ �kSs;a;0.I / � Cg�k�kW Q̀;a;s�1=2.I /k kSs;a;0.I /; (7.4)

kIVL Œ<.�/ �kL2tL
2�
x .I�Rd / � Cg�k�kW Q̀;0;0.I /k kL2tL

2�
x .I�Rd /; (7.5)

kJ0Œjrj. '/�kW Q̀;a;s�1=2.I / � C
�
k k

L2tL
2�
x .I�Rd /k'kL2tL

2�
x .I�Rd /

��
�
�
k kSs;a;0.I /k'kSs;a;0.I /

�1��
: (7.6)

The estimate (7.4) follows from Theorems 7.1 and 3.1. To prove (7.5), we again apply
Theorem 7.1 and observe that via the Littlewood–Paley square function estimate and
Bernstein’s inequality,

kIVL ŒF �kL2tL
2�
x .I�Rd / .

� X
�22N

kP�IVL ŒF �k
2

L2tL
2�
x .I�Rd /

�1=2
.g� kF kN0;0;0.I / .g� kF kL2tL2�x .I�Rd /

(see also (2.7)). Therefore

kIVL Œ<.�/ �kL2tL
2�
x .I�Rd / .g� k� kL2tL2�x .g� k�kL1t Ld=2x .I�Rd /

k k
L2tL

2�
x .I�Rd /

.g� k�kW Q̀;0;0.I /k kL2tL2�x .I�Rd /

and so (7.5) follows. The final estimate (7.6) is a direct application of Corollary 4.2.
Set � D V � VL and g� D g � g�. Then we want to solve

.i@t C� �<.VL//u D <.�/u; u.0/ D f;

.i@t C jrj/� D �jrj juj
2; �.0/ D g�:

Since � D eit jrjg� � J0.jrj juj
2/, we want to solve u D ˆ.f; gIu/ for u, where

ˆ.f; gIu/ WD eit�f C IVL.<.e
it jrjg�/u/ � IVL.J0.jrj juj

2/u/:

Also, let f � D f � f�. Then, by the endpoint Strichartz estimate

keit�f �k
L2tL

2�
x
� CStrkf

�
kL2

and estimates (7.4)–(7.6) above we obtain

kˆ.f; gIu/k
L2tL

2�
x .I�Rd / � CStrkf

�
kH s C ke

it�f�kL2tL
2�
x .I�Rd /

C Cg�kg
�
k
H Q̀
kuk

L2tL
2�
x .I�Rd / C Cg�Ckuk

2�2�
Ss;a;0

kuk1C2�
L2tL

2�
x .I�Rd /

:
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Similarly, we have

kˆ.f; gIu/kSs;a;0.I / � .1C 2CStr/kf�kH s C .1C 2CStr/kf
�
kH s

C Cg�kg
�
k
H Q̀
kukSs;a;0.I / C Cg�Ckuk

3�2�
Ss;a;0

kuk2�
L2tL

2�
x .I�Rd /

:

In addition,

kˆ.f; gIu1/ �ˆ.f; gIu2/kSs;a;0.I / � Cg�kg
�
k
H Q̀
ku1 � u2kSs;a;0.I /

C 3Cg�C.ku1kSs;a;0 C ku2kSs;a;0/
2��

� .ku1kL2tL
2�
x .I�Rd / C ku2kL2tL

2�
x .I�Rd //

�
ku1 � u2kSs;a;0.I /:

Let R � 1 be chosen such that 1 C 2CStr; Cg� ; CCg� � R. Consider the complete
space K defined by all S s;a;0.I / satisfying

kukSs;a;0.I / � 2Rkf�kH s ; kukL2tL
2�
x .I�Rd / � 2Rke

it�f�kL2tL
2�
x .I�Rd /

with the distance defined by the norm kukSs;a;0.I / (which dominates kuk
L2tL

2�
x
/.

Recall that kf �kH s ;kg�kH` < ". Therefore, for small enough " > 0, we conclude that
ˆ.f;gI �/ WK!K is a contraction. Hence, there is a unique fixed point u2K � S s;a;0.I /
of ˆ.f; gI �/.

In addition, as a consequence of the above estimates, for .f;g/ 2D and u 2K, we see
that for any v 2 S s;a;0.I /, the linear map T v D v �Dvˆ.f; gIu/ is a small perturbation
of the identity, and hence T is a linear homeomorphism onto S s;a;0.I /. Furthermore,
the map ˆ is real-analytic (as a composition of linear, bi- and trilinear maps over R).
If uŒf; g� denotes the solution with initial data .f; g/, the implicit function theorem [10,
Theorem 15.3] implies that the flow mapD 3 .f;g/ 7! uŒf;g�2 S s;a;0.I / is real-analytic.
Define V D eit jrjg � J0.jrj juj

2/. Estimate (7.6) implies that V 2 W Q̀;a;s�1=2.I / and
.u; V / is a solution of (2.1). Also,D 3 .f; g/ 7! V Œf; g�D eit jrjg � J0.jrj juŒf; g�j

2/ 2

W
Q̀;a;s�1=2.I / is a composition of real-analytic maps and therefore real-analytic. In the

case s � `C 1=2 we have ` D Q̀ and b D 0, so this is the claim.
In the remaining case s < `C 1=2, we have a D 0. Define � D ` if s > ` and � D

s � 1
2
.1 � b/ if s � `. An application of Theorem 3.1 gives

kI0Œ<.�/ �kSs;0;b.I / . k�kW �;0;s�1=2.I /k kSs;0;0.I /;

while Theorem 4.1 implies that

kJ0Œjrj. '/�kW �;0;s�1=2.I / . k kSs;0;0.I /k'kSs;0;0.I /:

For .f; g/ 2 D and the solution u 2 K we have

u D eit�f C I0.<.e
it jrjg/u/ � I0.J0.jrj juj

2/u/: (7.7)

Thus, we conclude that

kukSs;0;b.I / . kf kH s C kgkH`kukSs;0;0.I / C kuk3Ss;0;0.I /
. .1C kgkH` C kf k2H s /kf kH s :
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Equation (7.7) also shows thatD 3 .f; g/ 7! uŒf; g� 2 S s;0;b.I / is a composition of real-
analytic maps, hence real-analytic. Theorem 4.1 again implies that

kJ0Œjrj. '/�kW `;0;s�1=2.I / . k kSs;0;b.I /k'kSs;0;b.I /:

We conclude

kV kW `;0;s�1=2.I / . kgkH` C .1C kgkH` C kf k2H s /
2
kf k2H s

and, as above, D 3 .f; g/ 7! V Œf; g� 2 W `;0;s�1=2.I / is real-analytic.
Finally, we remark that if I D R, then the solution scatters. This follows from an

analogous argument to that used in the proof of Theorem 7.1 (i.e. one shows that u.t/
forms a Cauchy sequence as t !1). It only remains to prove uniqueness in S s;a;b.I / �
W `;a;s�1=2.I /, but this is again a consequence of the estimates proved above.

We now consider the endpoint case .s; `/ D .d�3
2
; d�4
2
/.

Theorem 7.7 (LWP and small data GWP: endpoint case). Let d � 4 and fix .s; `/ D
.d�3
2
; d�4
2
/. For any g� 2 H ` there exists " > 0 such that if f� 2 H s and 0 2 I � R is

an interval with
keit�f�kL2tW

s;2�

x .I�Rd /
kf�k

7
H s < "; (7.8)

then for all .f; g/ in

D".f�; g�/ D ¹.f; g/ 2 H
s
�H `

W kf � f�kH s < "; kg � g�kH` < "º;

there exists a unique solution u 2 C.I;H s/\L2tW
s;2�

x .I �Rd /, V 2 C.I;H `/ to (2.1).
Moreover, .u; V / 2 S s;0;0.I / �W `;0;s�1=2.I / and the flow map

H s.Rd / �H `.Rd / � D 3 .f; g/ 7! .u; V / 2 S s;0;0.I / �W `;0;s�1=2.I /

is real-analytic, where D D D".f�; g�/ is the open bi-disc defined above. If I D R, then
there exists .f˙; g˙/ 2 H s �H ` such that

lim
t!˙1

�
ku.t/ � eit�f˙kH s C kV.t/ � e

it jrjg˙kH`
�
D 0:

Proof. Let g� 2 H ` and " > 0 to be fixed later depending only on g� and the implicit
constants in Theorem 7.1 and Propositions 6.1 and 6.2. Let f� 2H s and 0 2 I �R satisfy
the smallness condition (7.8). As in the proof of Theorem 7.6, we let VL D eit jrjg�,
� D V � VL, g� D g � g� and f � D f � f�. We want to solve u D ˆ.f; gI u/ for u,
where

ˆ.f; gIu/ WD eit�f C IVL.<.e
it jrjg�/u/ � IVL.J0.jrj juj

2/u/:

and obtain � D eit jrjg� � J0.jrj juj
2/. An application of Theorem 7.1 implies that

kIVL ŒF �kSs;0;0.I / .g� kF kN s;0;0.I /

and therefore Propositions 6.1 and 6.2 give
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kˆ.f; gIu/k
L2tW

s;2�

x .I�Rd /
.g� kf�k

1=2
H s ke

it�f�k
1=2

L2tW
s;2�

x .I�Rd /
C kf �kH s

C kg�kH`kuk
1=2

L2tW
s;2�

x .I�Rd /
kuk

1=2

Ss;0;0.I /
C kuk

3=2

L2tW
s;2�

x .I�Rd /
kuk

3=2

Ss;0;0.I /

and similarly

kˆ.f; gIu/kSs;0;0.I / .g� kf�kH s C kf �kH s C kg�kH`kuk
1=2

L2tW
s;2�

x .I�Rd /
kuk

1=2

Ss;0;0.I /

C kuk
3=2

L2tW
s;2�

x .I�Rd /
kuk

3=2

Ss;0;0.I /

and

kˆ.f; gIu1/ �ˆ.f; gIu2/kSs;0;0.I / .g� kg�kH`ku1 � u2kSs;0;0.I /
C .ku1kL2tW

s;2�

x .I�Rd /
C ku2kL2tW

s;2�

x .I�Rd /
/.ku1kSs;0;0.I / C ku2kSs;0;0.I //

� ku1 � u2kSs;0;0.I /:

As in the proof of Theorem 7.6, a routine contraction argument then implies that, pro-
vided " > 0 is sufficiently small, there is a unique fixed point u 2 S s;0;0.I /. Setting
V D VL � J0Œjrj juj

2�, we get a solution .u; V / 2 S s;0;0.I / � W `;0;s�1=2.I / due to
Proposition 6.2. Also, the flow map is real-analytic; we omit the details.

To prove that the solution scatters, we note that writing I D .T0; T1/, then as in the
proof of Theorem 7.1, a computation shows that for any sequence of times tj % T1, the
sequence .e�itj�u.tj /; e�itj jrjV.tj // forms a Cauchy sequence in H s �H `. In particu-
lar, the limits

lim
t%T1

.e�it�u.t/; e�it jrjV.t// and lim
t&T0

.e�it�u.t/; e�it jrjV.t//

exist inH s �H `. Therefore, if I DR, the solution scatters to free solutions as t !˙1.
To check the uniqueness claim, we note that the above bounds together with a conti-

nuity argument give uniqueness in S s;0;0.I / �W `;0;s�1=2.I /. If .u; V / is a solution with
u 2 S s;0;0.I /, then V 2 W `;0;s�1=2.I /. In particular, to prove uniqueness, it suffices to
show that if .u; V / with u 2 L1t H

s \ L2tW
s;2�

x .I �Rd / and V 2 L1t H
`
x is a solution,

then u 2 S s;0;0.I /. To this end, we note that a standard product estimate gives

k.i@t C�/ukL2tH
s�1
x .I�Rd / D k<.V /ukL2tH

s�1
x .I�Rd /

. kV kL1t H`.I�Rd /kukL2tW
s;2�

x .I�Rd /

and therefore

kukL1t H s.I�Rd / C kukL2tW
s;2�

x .I�Rd /
C k.i@t C�/ukL2tH

s�1
x .I�Rd / <1:

Consequently, extending u from the interval I D .T0; T1/ to R using free Schrödinger
waves

u0 D 1.�1;T0/.t/e
i.t�T0/�u.T0/C 1I .t/u.t/C 1.T1;1/.t/e

i.t�T1/�u.T1/

(u.T0/ and u.T1/ are well-defined by the above) we see that by definition of the norm
S s;0;0.I /, together with the endpoint Strichartz estimate, we have
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kukSs;0;0.I / � ku
0
kL1t H

s C ku0k
L2tW

s;2�

x
C k.i@t C�/u

0
kL2tH

s�1
x

. kukL1t H s.I�Rd / C kukL2tW
s;2�

x .I�Rd /
C k.i@t C�/ukL2tH

s�1
x .I�Rd / <1:

Therefore u 2 S s;0;0.I / as required.

8. Persistence of regularity

In this section our goal is show that under suitable assumptions on a solution .u; V / to
(2.1), any additional regularity of the data .u; V /.0/ persists in time.

Theorem 8.1. Let .s;`/ satisfy (1.3) and fix aD a�.s;`/, bD b�.s;`/ as in (2.4). Suppose
that .u; V / is a solution to the Zakharov system (2.1) on some interval I 3 0 with

kuk
L1t H

d�3
2

x .I�Rd /
C kuk

L2tW
d�3
2
;2�

x .I�Rd /
C kV k

L1t H
d�4
2

x .I�Rd /
<1:

If .u; V /.0/ 2 H s �H `, then .u; V / 2 S s;a;b.I / �W `;a;s�1=2.I /, and the flow map is
real-analytic with respect to the H s �H ` and S s;a;b.I / �W `;a;s�1=2.I / topologies.

We break the proof of Theorem 8.1 into three main steps.

(i) (Improving Schrödinger regularity when s � ` C 1=2) If .s; `/ and .Qs; `/ satisfy
(1.3) and `C 1=2 � s < Qs, then

.u; V / 2 S s;a;0.I / �W `;a;s�1=2.I / and u.0/ 2 H Qs

H) .u; V / 2 S Qs;Qa;0.I / �W `;Qa;s�1=2.I /

where a D a�.s; `/ and Qa D a�.Qs; `/.

(ii) (Improving wave regularity when s � `C 1=2) If .s; `/ and .s; Q̀/ satisfy (1.3) and
` < Q̀ � s � 1=2, then

.u; V / 2 S s;a;0.I / �W `;a;s�1=2.I / and V.0/ 2 H
Q̀

H) .u; V / 2 S s;Qa;0.I / �W
Q̀;Qa;s�1=2.I /

where now a D a�.s; `/ and Qa D a�.s; Q̀/.

(iii) (Improving wave regularity when ` > s � 1) If .s; `/ and .s; Q̀/ satisfy (1.3) and
s � 1 < ` < Q̀, then

.u; V / 2 S s;0;b.I / �W `;0;s�1=2.I / and V.0/ 2 H
Q̀

H) .u; V / 2 S s;0;
Qb.I / �W

Q̀;0;s�1=2.I /

where b D b�.s; `/ and Qb D b�.s; Q̀/.

Theorem 8.1 then follows by repeatedly applying the implications (i)–(iii) and using the
fact that the assumptions on .u; V / in Theorem 8.1 imply that .u; V / 2 S

d�3
2 ;0;0.I / �

W
d�4
2 ;0;d�42 .I /.
We give the proof of the implications (i)–(iii) in Sections 8.1–8.3 respectively. The

proof of Theorem 8.1 is then given in Section 8.4.
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8.1. Improving Schrödinger regularity

Our goal here is to prove the implication (i). Let .s; `/ and .Qs; `/ satisfy (1.3) and `C 1=2
� s < Qs. Let QaD a�.Qs; `/ and aD a�.s; `/. Clearly we may also assume that Qs < sC 1=8,
since the general case follows by repeatedly applying this special case. The key point is
to prove that there exists � > 0 such that for any interval QI � R,

kJ0.jrj juj
2/kW `; Qa;ˇ. QI/ . kuk

�

L2tW
d�3
2
;2�

x . QI�Rd /

kuk2��
Ss;a;0. QI/

(8.1)

where ˇ D max ¹d�4
2
; Qs � 1º. Supposing (8.1) holds, decomposing I D

SN
jD1 Ij with

min jIj \ IjC1j > 0, we may assume that on each interval Ij we have

kuk�

L2tW
d�3
2
;2�

x .Ij�Rd /

kuk2��
Ss;a;0.Ij /

� "

where " > 0 is as in Theorem 7.6. Choose tj 2 Ij \ IjC1. Applying (8.1) and a time
translated version of Theorem 7.6 then implies that u 2 S Qs;Qa;0.Ij / with real-analytic
dependence on .u.tj /; V .tj // for every j D 1; : : : ;N . Taking the union of the finite num-
ber of intervals Ij via Lemma 2.8 then gives u 2 S Qs;Qa;0.I / and real-analytic dependence
on .u.0/; V .0//. In particular, we have the implication (i) under the additional assumption
that s < Qs < s C 1=8. But this implies (i) after repeatedly applying the above argument.

We now turn to the proof of (8.1). In view of the bound kV kW `; Qa;ˇ . kV kW `CQa�a;a;ˇ ,
it suffices to show that

kJ0.jrj juj
2/kW `CQa�a;a;ˇ. QI/ . kuk

�

L2tW
d�3
2
;2�

x . QI�Rd /

kuk2��
Ss;a;0. QI/

: (8.2)

If s > d�3
2

, then a computation shows that

ˇ < min
®
s; 2s � d�2

2
� a

¯
; 2a < 2s � .`C Qa � a/ � d�2

2
; a < s � .`C Qa � a/

and hence (8.2) follows from Corollary 4.2. On the other hand, in the endpoint case s D
d�3
2

, we have a D Qa D 0 and ` D d�4
2

, and hence (8.2) follows from Proposition 6.2.

8.2. Improving wave regularity I

Our goal here is to prove the implication (ii). Let .s; `/ and .s; Q̀/ satisfy (1.3) and ` <
Q̀ � s � 1=2. Without loss of generality, we may additionally assume that Q̀ < `C 1=2,
as the general case again follows by repeating this special case. Let a D a�.s; `/ and
Qa D a�.s; Q̀/. A computation shows that

2a < 2s � Q̀ � d�2
2
; a < s � Q̀:

In particular, since Qa � a, an application of Corollary 4.2 implies that there exists � > 0
such that

kJ0.jrj juj
2/k

W Q̀; Qa;s�1=2.I /
� kJ0.jrj juj

2/k
W Q̀;a;s�1=2.I /

. kuk�
L2tW

d�3
2
;2�

x .I�Rd /

kuk2��
Ss;a;0.I /

(8.3)
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and hence V D eit jrjV.0/C J0.jrj juj
2/ 2 W

Q̀;Qa;s�1=2.I /. It only remains to improve
the Schrödinger regularity to u 2 S s;Qa;0.I /; but this follows by arguing as in (i). Namely,
we can decompose the interval I D

SN
jD1 Ij into a finite number of intervals Ij satisfying

min jIj \ IjC1j > 0 and

kuk�

L2tW
d�3
2
;2�

x .Ij�Rd /

kuk2��
Ss;a;0.I /

� "

where " > 0 is as in Theorem 7.6. Choose tj 2 Ij \ IjC1. Applying the estimate (8.3)
together with Theorem 7.6, we conclude that u2 S s;Qa;0.Ij /with real-analytic dependence
on .u.tj /; V .tj // for j D 1; : : : ; N and hence u 2 S s;Qa;0.I / by Lemma 2.8 and real-
analytic dependence on .u.0/; V .0//. Therefore the implication (ii) follows.

8.3. Improving wave regularity II

Our goal here is to prove the implication (iii). Let .s; `/ and .s; Q̀/ satisfy (1.3) and s � 1 <
`< Q̀. Let bD b�.s;`/ and QbD b�.s; Q̀/. Suppose that .u;V /2S s;0;b.I /�W `;0;s�1=2.I /,
we would like to improve this to .u; v/ 2 S s;0; Qb.I / � W Q̀;0;s�1=2.I /, again with real-
analytic dependence. In view of Theorem 4.1, it suffices to show that u 2 S s;0; Qb.I /.
Choose ` � `0 � Q̀ such that

max
®
d�4
2
C Qb; s � 1C Qb

¯
� `0 � min

®
2s � d�2

2
; s C b

¯
; .s; `0/ 6D

�
d�2
2
; d�2
2
C b

�
:

An application of Theorem 4.1 gives

kV kW `0;0;s�1=2.I / . kV.0/kH Q̀ C kuk
2
Ss;0;b.I /

and thus, via Theorem 3.1, we conclude that

kuk
Ss;0; Qb.I /

. ku.0/kH s C kV kW `0;0;s�1=2.I /kukSs;0;0.I /

. ku.0/kH s C .kV.0/kH Q̀ C kuk
2
Ss;0;b.I /

/kukSs;0;0.I /:

Therefore u 2 S s;0; Qb.I / as required.

8.4. Proof of Theorem 8.1

In view of the implications (i)–(iii), it suffices to show that if .u; V / 2 C.I; H
d�3
2

x �

H
d�4
2 / is a solution to the Zakharov equation (2.1) with u 2 L2tW

d�3
2 ;2�

x .I �Rd /, then
.u;V /2S

d�3
2 ;0;0.I /�W

d�4
2 ;0;d�42 .I /. But this implication is contained in the argument

used to prove uniqueness in Theorem 7.7.

9. Proofs of the main results

9.1. Proof of Theorem 1.1

Suppose that .s; `/ satisfies (1.3). Then Theorem 7.6 or Theorem 7.7 implies well-posed-
ness on a (small enough) interval I 3 0.
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Now, we prove the converse implication. More precisely, we prove that the flow map
of (2.1) is not of class C 2 for .s; `/ which do not satisfy (1.3). Fix .s; `/ and assume the
contrary. Fix t > 0 and consider

I�.t/ D �i

Z t

0

ei.t�t
0/�
�
<.eit

0jrjg�/e
it 0�f�

�
dt 0;

J�.t/ D i

Z t

0

ei.t�t
0/jrj
jrj
�
eit
0�h�eit

0�h�
�
dt 0

for certain kg�kH`.Rd / � kf�kH s.Rd / � kh�kH s.Rd / � 1, to be chosen later. .I�; J�/
corresponds to a second order directional derivative (Gâteaux derivative) at the origin,
which must be uniformly (in �) bounded by our hypothesis.

We first prove lower bounds on `. Choosecg�.�/ D ��`�d=21G�.�/; G� D ¹� 2 Rd W � � j�j � 2�º

and cf�.�/ D 1F�.�/

j�jd=2Cs log.j�j/
; F� D ¹� 2 Rd W 2 � j�j � �=4º:

We compute Z
F�

cf�.�/ d� �
8̂̂<̂
:̂
�d=2�s

log� if s < d=2;

log log� if s D d=2;

1 if s > d=2:

If 5
4
� � j�j � 3

2
� and � 2 F�, then � � � 2 G�. Therefore,

kI�.t/kH s.Rd / . kg�kH`.Rd /kf�kH s.Rd / for all �� 1

implies

��2Cs�`
Z
F�

cf�.�/ d� . kI�.t/kH s.Rd / . 1;
which is true if and only if 8̂̂<̂

:̂
` � d=2 � 2 if s < d=2;

` > d=2 � 2 if s D d=2;

` � s � 2 if s > d=2:

Second, we prove lower bounds on s. Choose h� D a� C b�, whereba�.�/ D ��s�d=2.1A�.�/C 1�A�.�//; A� D ¹� 2 Rd W j� � e1�j � �=4º;bb�.�/ D 1B�.�/

j�jd=2Cs log.j�j/
; B� D ¹� 2 Rd W 2 � j�j � �=8º:

We compute Z
B�

bb�.�/ d� D
8̂̂<̂
:̂
�d=2�s

log� if s < d=2;

log log� if s D d=2;

1 if s > d=2;
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as above. The spatial Fourier transform of eit
0�a�eit

0�a�C e
it 0�b�eit

0�b� is zero within
the set C� D ¹� 2 Rd W j� � �e1j �

1
8
�º: Further, if � 2 C� and � 2 B�, then � � � 2 A�.

Therefore, the bound

kJ�.t/kH`.Rd / . kh�kH s.Rd /kh�kH s.Rd / for all �� 1

implies �Z
C�

h�i2`jF J ab� .t/.�/j2 d�

�1=2
. 1 for all �� 1;

where

J ab� .t/ D

Z t

0

ei.t�t
0/jrj
jrj<

�
eit
0�a�eit

0�b�
�
dt 0:

Since �Z
C�

h�i2`jF J ab� .t/.�/j2 d�

�1=2
� �`�s�1

Z
B�

bb�.�/ d�
we must have 8̂̂<̂

:̂
2s � `C d�2

2
if s < d=2;

s > ` � 1 if s D d=2;

s � ` � 1 if s > d=2:

9.2. Proof of Theorem 1.2

Suppose that .s; `/ satisfies (1.3) and f 2 H s.Rd / and .g0; g1/ 2 H `.Rd / �H `.Rd /.
Define g D g0 � ig1 2 H

`.Rd /. Suppose that kf kH s � ". If " > 0 is small enough
(depending on g), due to the endpoint Strichartz estimate, we see that (7.8) is satis-
fied for I D R, and Theorem 7.7 yields a unique global solution .u; V / 2 C.R; H s/ \

L2tW
.d�3/=2;2�

x .R�Rd /�C.R;H `/ to the Zakharov equation (2.1). Note that v D<V ,
jrj�1@tv D =V have the same regularity. Also, by Theorem 8.1, the additional regularity
persists, i.e. .u; V / 2 S s;a;b �W `;a;s�1=2 and we have real-analytic dependence. Further,
this implies the scattering claim, as shown in the proof of Theorem 7.1.
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