J. Eur. Math. Soc. 25, 3177-3228 (2023) DOI 10.4171/JEMS/1212

© 2022 European Mathematical Society
Published by EMS Press and licensed under a CC BY 4.0 license

JEMS

Timothy Candy - Sebastian Herr - Kenji Nakanishi

The Zakharov system in dimension d > 4

Received November 12, 2020

Abstract. The sharp range of Sobolev spaces is determined in which the Cauchy problem for the
classical Zakharov system is well-posed, which includes existence of solutions, uniqueness, per-
sistence of initial regularity, and real-analytic dependence on the initial data. In addition, under
a condition on the data for the Schrodinger equation at the lowest admissible regularity, global
well-posedness and scattering are proved. The results cover energy-critical and energy-supercritical
dimensions d > 4.
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1. Introduction

Consider an at most weakly magnetized plasma with ion density fluctuation v : R'*¢ — R
and complex envelope u : R1t¢ — C of the electric field. In [37] Zakharov derived the
equations for the dynamics of Langmuir waves, which are rapid oscillations of the electric
field in a conducting plasma. A scalar version of his model, called the Zakharov system,
is given by

id;u + Au = vu,
Ov = Alul? (1.1)

with the d’Alembertian [0 = 8% — A. We refer to [8, 36,37] and the books [17,35] for
more details of the model and its derivation.
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The Zakharov system is Lagrangian, and formally the L2-norm of u and the energy

Ezu(r),v(r), 0,v(1))

. /Rd(%lwwz + 319790 + S OF + Jv0h)?) dx

are constant in time.
The Zakharov system (1.1) is typically studied as a Cauchy problem by prescribing
initial data in Sobolev spaces, i.e.

u(0) = f € H*R?) and (v,|V[7'3,v)(0) = (g0.g1) € H*RY) x H'RY).  (1.2)

In recent years, this initial value problem has attracted considerable attention, partly
driven by the close connection with the focusing cubic nonlinear Schrédinger equation
(NLS) which arises as a subsonic limit of the Zakharov system (1.1) [1,26,29,32,34]. In
addition, bound states for the focusing cubic NLS are closely intertwined with the global
dynamics of (1.1). More precisely, if O, : R¢ — R is a bound state for the focusing cubic
NLS, in other words if Q,, solves

—AQp + w0y = Qg»

then (u,v) = (¢''*Q,,, —0?2) is a global (non-dispersive) solution of (1.1). This connec-
tion has been used to analyze the blow-up behaviour [15, 16,30] in dimension d = 2, and
also in the periodic case [28]. Furthermore, we can write the Zakharov energy as

B2 ). 00).3,00) = Esu(®) + 5 [ [(1=i19000) + uP [

where

Esuo) = [ (Vu0)P = Huol*) dx

is the energy for the focusing cubic NLS. As the cubic NLS is energy-critical in d = 4,
the Zakharov system is also frequently referred to as energy-critical in dimension d = 4,
although, in contrast to the cubic NLS, the Zakharov system lacks scale-invariance;
see [20] for further discussion.

In the Zakharov system, the interplay between the different dispersive effects of solu-
tions to Schrodinger and wave equations leads to a rich local and global well-posedness
theory [1-5,9, 12, 13,26,27,31]. In particular, it turned out that the required regularity
of the Schrédinger component can go below the scaling critical one (s = d/2 — 1) for
the cubic nonlinear Schrodinger equation. Concerning the asymptotic behaviour of global
solutions, scattering results have been proven in certain cases [2, 14, 18-22,24,33].

The aim of this paper is twofold. First, we give a complete answer to the question of
local well-posedness in dimension d > 4, i.e. the energy-critical and supercritical dimen-
sions. Second, we prove that these local solutions are global in time and scatter, provided
that the Schrodinger part is small enough. To be more precise, consider the case d > 4,
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and (s, £) satisfying
d-2

d 14
£>—-2, max{ﬁ—l,——i—
2 2 4

} <s<{L+2, (s5,0)# (%%—2)(%%4—1)
(1.3)

Our first main result is

Theorem 1.1. The Zakharov system (1.1) with initial condition (1.2) is locally well-posed
with a real-analytic flow map if and only if (s,{) € R? satisfies (1.3).

To be more precise, we consider mild solutions to an equivalent first order system
(2.1), as usual. For this we show a local well-posedness result, Theorem 7.6, which applies
to the non-endpoint case, and Theorem 7.7, for the endpoint case. Finally, we provide two
examples in Section 9.1, which show that if the flow map exists for (s, £) in the exterior
of the region defined by (1.3), it does not have bounded directional derivatives of second
order at the origin. Partial ill-posedness results have been obtained earlier in [4,11,13,23].
At the specific point (s,£) = (2,3) in d = 4 a stronger form of ill-posedness was proved
in [2, Section 7], namely that there is no distributional solution of this regularity.
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Fig. 1. In dimension d = 4: Local well-posedness and small data global well-posedness within grey
region, ill-posedness elsewhere.

Our second main result is

Theorem 1.2. Let d > 4 and (s, £) satisfy (1.3). For any data (g9, g1) € H¢(R?) x
HY(R?), there exists & > 0 such that for any f € H®(R?) satisfying || f || ga-»/2 < &
we have a global solutionu € C(R, H*(R?)), (v,|V|7'9,v) € C(R, H{(R4) x H¢(R%))
to (1.1) and (1.2), which is unique under the condition

uel?

t,loc

d=3 2d_
(R, Wx 2 'd-—2 (Rd)),

and depends real-analytically on the initial data. This solution scatters as t — F00.
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Theorem 1.2 is a consequence of Theorems 7.6, 7.7 and 8.1, which again apply to
the first order system (2.1) in the mild formulation (see Section 9.2). In fact, we prove
something stronger: the smallness condition in Theorem 1.2 can be replaced with the
weaker condition

10, ez e 17 as 20 <.
L7Wy B
We remark that Theorems 7.6 and 7.7 (with g, = 0) also imply that the smallness
condition on f does not depend on (go, g1) provided it is also sufficiently small, i.e.
(g0, g1)|l g@—a/2 <K 1. For readers interested in this important and much easier case
only, we provide a simplified approach and results in Section 5.

In general, ¢ > 0 in Theorem 1.2 must depend on the wave initial data (gg, g1), and
it is not even uniform with respect to its norm, at least when (s, £) is on a segment of the
lowest regularity ({ = d/2 —2 and (d — 3)/2 < s < d/2 — 1): Take any non-negative
fo € C(;’O(Rd) \ {0}. Multiplying it by a large number a > 1, we can make the NLS
energy negative, Es(afy) < 0. Imposing go = —|afy|? and g; = 0 makes the Zakharov
energy the same: Ez(afo, g0, g1) = Es(afo). When the energy is negative, scattering is
impossible, because the global dispersion would send the negative nonlinear part to zero
as t — oo. Finally, to make the Schrodinger data small, we can use the scaling-invariance
of the NLS: Let f(x) = Aafo(Ax) with A — oo. Since this is the H4/2~!-invariant scal-
ing, all H* norms with s < d/2 — 1 tend to zero as the data concentrate, including the
L? norm (s = 0). For the wave component, the scaling leaves H4/2-2 invariant, which is
the lowest (critical) regularity. In other words, we can make the Schrodinger data as small
in H* as we like for s < d/2 — 1, while keeping the wave norm in H%/272,

Further, in the energy-critical case (d = 4), we observe that there exist non-scattering
solutions as long as ||go|l 2 > [|W?|| 2, where W(x) = (|x|?/(d(d —2)) + 1) ! is the
ground state of the NLS. To see this, start with f(x) = aW y(x/R) with a smooth cut-off
function y (which is needed since W barely fails to be in L?(R*)). Choosing @ > 1, and
then R > 1 large enough depending on a, we obtain Es(f) < Es(W) and ||| f|?||;2 >
|[W?2]|,2, so that we can apply the grow-up result (with go = —| f|?> and g; = 0 as above)
in the radial case obtained in [20]. The large data case in the energy-critical dimension
d = 4 is addressed in a follow-up paper [7].

The key contributions of Theorems 1.1 and 1.2 are firstly that we give a complete
characterisation of the region of well-posedness in arbitrary space dimension d > 4, and
secondly that we obtain global well-posedness and scattering for wave data of arbitrary
size, only requiring the Schrodinger data to be small enough. In particular, in the energy-
critical dimension d = 4 this extends [2] to the subregion where (s,£) = (1,0) or s >
40+ 1ors>20+ chl and the scattering to wave data of arbitrary size. Note that [2]
covers the energy space (s,£) = (1,0) but by a compactness argument, from which it is
not immediately clear whether the solution map is analytic. Further, if d = 4, the large
data threshold result in [20] is restricted to radial data. In higher dimensions, this is an
extension of the local well-posedness results in [13], which apply in the subregion where
{<s<{+1and2s>{+ % and the global well-posedness and scattering result
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in [24], which applies if (s,£) = (%, ‘12;4) and both the wave and the Schrodinger data
are small.

The recent well-posedness results cited above rely on a partial normal form trans-
formation. This strategy introduces certain boundary terms which are non-dispersive and
difficult to deal with in the low regularity setup. In this paper, we introduce a new per-
turbative approach which is based on Strichartz and maximal L? , norms with additional
temporal derivatives allowing us to exploit the different dispersive properties of the wave
and the Schrodinger equation. Further, the global well-posedness result allows for wave
data of arbitrary size, which is achieved by treating the free wave evolution as a potential
term in the Schrodinger equation.

One of the main challenges in proving the global well-posedness results in Theorems
1.1 and 1.2 in the range s > £ + 1 lies in the fact that it seems impossible to control

the endpoint Strichartz norm, i.e. to prove that (V)Su € L?L = . To some extent, this is
explained by considering

((0: + Du = dayu

as a toy model for (1.1), where ¢, = €IVl f; is a free wave, Yy = e'"%gy is a free
solution to the Schrodinger equation, the wave data fj has spatial frequencies |§]| ~ A,
and the Schrodinger data g, has spatial frequencies |£| ~ p with u < A. Note that this is
essentially the first Picard iterate for (1.1). A computation shows that the product ¢, ¥,
has space-time Fourier support in the set {|7| < A2, || ~ A} and hence (modulo a free
Schrodinger wave) we can write

U~ (3 + D) GV ~ A2 (Bavn).

itA

In particular, we expect that (in the case d = 4 for ease of notation)
-2
VY2 s sy ~ A 20030l 218 s

If we assume the wave endpoint regularity, in d = 4 we can only place ¢; € L°L2. Thus
applying Holder’s inequality together with the sharp Sobolev embedding and the endpoint
Strichartz estimate for the free Schrodinger equation we see that

||¢A‘/f,u”L2L4(Rl+4) = ||¢A||L°°L4(]R1+4)||WM||L%L§O(R1+4) S A”f)t||L2(R4)Pv||gu||L2(R4)-

Note that the above chain of inequalities is essentially forced if we may only assume the
regularity ¢, € L°L2. Consequently, we obtain

A, s—1
VY ull2pa < (ﬁ) Ay

Again, as we can only place f; € L2, this imposes the restriction s < 1. It is very difficult
to see a way to improve the above computation, and in fact this high-low interaction is
essentially what led to the restriction s < 1 in [2,24]. Note however that this obstruction
only leads to (V)Su ¢ L2L%(R'™#), and is not an obstruction to well-posedness. In other
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words, provided only that s < 2 we still have ¥ € L{°H; since similar to the above
computation,

A, s—2
-2
el oo s oy ~ A2 aull ooz S (;) 1 filz2 el

In summary, the above example strongly suggests that it is not possible to construct solu-
tions to the Zakharov system by iterating in the endpoint Strichartz norms L2 WS4 (R114),
or even any space which contains the endpoint Strichartz space. Thus an alternative space
is required, and this is what we construct in this paper.

A partial solution to the above problem of obtaining well-posedness in the regularity
region s > £ 4+ 1 was given in [2]. The approach taken there was to replace the endpoint
Strichartz space L2W;** with the intermediate Strichartz spaces L? Wy for appropriate
(non-endpoint, i.e. ¢ > 2) Schrodinger admissible (g, r). However, the argument given
in [2] requires additional regularity for the wave component v as it exploits Strichartz
estimates for the wave equation to compensate for the loss in decay in the intermediate
Schrodinger Strichartz spaces, and thus misses a neighbourhood of the corner (s,[) =
(d/2,d/2-2).

The key observation that gives well-posedness in the full region (1.3) is that the out-
put of the above high-low interaction has small temporal frequencies. Consequently, the
endpoint Strichartz space only loses regularity at small temporal frequencies. This obser-
vation can be exploited by using norms of the form

1CCV) + |at|)a“||L%W€‘2“'4(R1+4)' (1.4)

Note that if u = e/*2 f is a free solution to the Schrodinger evolution, then u has temporal
Fourier support in {|7| ~ |£|?} and hence

ICVY +19:Dul 2 gps—2a.agivay = Null 254

Thus the norm (1.4) is equivalent to the standard endpoint Strichartz space for free
Schrodinger waves. On the other hand, if u has Fourier support in {|z| < |€]}, i.e. u has
only small temporal frequencies, then

”((V> + |at|)au”ng)g—za-4(Rl+4) ~ ||u||L%W§_“’4‘

In other words, we only have (V) ™%y € L2L%(R!'™*) and thus we allow for a loss
of regularity in the small temporal frequency region of the Strichartz norm. More-
over, again considering the above high-low interaction, we can control the output
(id; + A1 (¢a¥,) in the temporal derivative Strichartz space (1.4) provided that a >
s — 1. In particular choosing a ~ 1 gives the full range s < 2. Thus roughly speaking,
the norm (1.4) matches the standard endpoint Strichartz space for the Schrodinger-like
portion of the evolution of u (i.e. when || ~ |£|?), but allows for a loss of regularity
in the small temporal frequency regions |t| < |€|? of u which are strongly influenced
by nonlinear wave-Schrodinger interactions. We refer to estimate (2.5) and Remark 7.3
below for further related comments.



The Zakharov system in dimension d > 4 3183

1.1. Outline of the paper

In Section 2, notation is introduced, the crucial function spaces are defined, and their
key properties are discussed. Further, a product estimate for fractional time-derivatives is
proved. Bilinear estimates for the Schrodinger and the wave nonlinearities are proved in
Sections 3 and 4, respectively. In Section 5 we provide a shortcut to simplified local and
small data global well-posedness and scattering results which do not use the refined results
of the following sections. Local versions of the bilinear estimates in the endpoint case are
proved in Section 6. In Section 7 the technical well-posedness results are established,
most notably Theorems 7.6 and 7.7. Persistence of regularity is established in Section 8.
Finally, the proofs of Theorems 1.1 and 1.2 are completed in Section 9.

2. Notation and preliminaries

The Zakharov system has an equivalent first order formulation which is slightly more con-
venient to work with. Suppose that (1, v) is a solution to (1.1) and let V = v —i|V|~19,v.
Then (u, V') solves the first order problem

idou+ Au=NRNV)u,
i3,V + V|V = —|V]||ul? 2.1)

Conversely, given a solution (u, V) to (2.1), the pair (u, X(V)) solves the original
Zakharov equation (1.1).

2.1. Fourier multipliers
Let ¢ € Cg°(R) be such that ¢ > 0, suppe C {1/2 <r < 2} and
1= Z r forr >0
re2Z
Let N = {0,1,2,...}. For A € 2N, define the spatial Fourier multipliers
VI . VI
Py, =¢|— fA>1, P= -]
v=o(F) it n= 2 o5
re2Z p<1

Thus P, is (inhomogeneous) Fourier multiplier localising the spatial Fourier support to
the set {1/2 < || < 2A}if A > 1 and {|§| < 2} if A = 1. Further, for A € 2Z, we define

) 0: lid; + Al
P = _— = _ ).
A (p( A ) = <p( A

Pl(t) localises the temporal Fourier support to the set {A/2 < |7| < 21}, and C} localises
the space-time Fourier support to distances ~ A from the paraboloid.
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To restrict the Fourier support to larger sets, we use the notation

e 2 AT e 8 o)

we2Z, <A ne2Z, <A H

id, + A
Coy = Z qp(%)’

ne2Z <A

and define C-.;, = I — C<,,. For ease of notation, for A € 2N we often use the shorthand
P, f = fi. In particular, note that u; = P;u has Fourier support in {|§| < 2}, and we
have the identity

f= Z fi forany f e L?(R%).

AeaN

For brevity, let us denote the frequently used decomposition into high and low modulation
by

P/{VM = CS(A/28)2PAM, PAFM = C>(A/28)2P)Lu, (22)

sothatu); = P){Vu + P{u. Similarly, we take
N ._ N F _ F F _ F
pN.=>"pY. PF=>"Pf. PL= > Pl e
Ae2N AeaN neaN <

Note that u = PNu + PFu, and these multipliers all obey the Schrodinger scaling, for
instance

(PNu)(t/A% x/A) = PN (u(4t/A%,2x /1)), (2.3)

where PZ,N is a space-time convolution with a Schwartz function, so that we can easily
deduce that P} and P} are bounded on any L? L% uniformly in A € 2V, and that PV
and P¥ are bounded on any L? Bj ,.

2.2. Function spaces

In what follows, by default we consider tempered distributions. We define the inhomoge-
neous Besov spaces By . and Sobolev spaces W*:? via the norms

/r
170sg, = (2 21l 1w = 1V F e

Ae2N
We use the notation 2* = % and 2, = (2*) = dz—_fz for the endpoint Strichartz exponents

for the Schrédinger equation. Thus for d > 3 we have

t
||€”Af||L;>°L%mL%L%* + H/ e IAF(s) ds
B 0

< + | F
L®L3nL2LY Hf”L’% ” ”L’ng*
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by the (double) endpoint Strichartz estimate [25]. To control the frequency localised
Schrodinger component of the Zakharov evolution, we take parameters s,a,b € R, A € 2N
and define

-2
lullgyar =AMl ooz +A7ZNA + 13D ull L2 2%

(l+|3z|

+As—1+b
A%+ 0]

)a(ia, + A)u

2
Lt,x

The parameters a, b € R are required to prove the bilinear estimates in the full admis-
sible region (1.3). Roughly speaking, a measures a loss of regularity in the small temporal
frequency regime |t| < (&), for instance (when b = 0) if suppu C {t < (§) ~ A} we have

A+10:\* .
—-— d; + A
()‘2 + 19¢] 10+ A L2,
~ Tl 2z + AN+ A2 ).

A2+ [0 ) ull 2 g2e + AT

Thus, when the temporal frequencies are small, the non-L ¢ H; component of the norm
Si’“’b loses A™¢ derivatives when compared to the standard scaling for the Schrodinger
equation. On the other hand, the b parameter simply gives a gain in regularity in the high
modulation regime, for instance we have || PFM”L?OH;er < Jlull gs.0.6.

The choice of a and b will depend on (s, £), there is some flexibility here, but one
option is to choose

. s—0—3 ifs—L>1, b e 0 if s —£>0,

a = da = = =
0 ifs—0 <1, i—s)+1 ifs—€=<o0.
(2.4)

Thus in the region £ + 1 < s < £ 4+ 2, when the Schrodinger component of the evolution
is more regular, we require a > 0 (depending on the size of s — £) and can take b = 0. On
the other hand, in the “balanced region” £ < s < £ + 1 we can simply take a = b = 0.
In the final region £ — 1 < s < £, when the wave is more regular, we can take ¢ = 0 and
require b > 0.

Remark 2.1. It is worth noting that due to the factor (A2 + |3,])™%(A + |3,])¢, the norm

| - Il gs.a.o only controls the endpoint Strichartz estimate without loss when @ = 0. In
A

particular, if 0 < a < 1, we only have

s—a < )185—2a a <
A uallpzper < ATTA 19D uall 2 2% S Huallgyao. (2.5)

In view of the choice (2.4), this means that in the region s — £ > 1 we no longer have
control over the endpoint Strichartz space L% Wy 2" On the other hand, in the small modu-
lation regime, we retain control of the endpoint Strichartz space. More precisely, provided
that 0 < a < 1, an application of Bernstein’s inequality gives the characterisation

N
lallgsan ~ A5 (luallpgerz + 1P ull 220

a
(—)L +104] ) (0 + A

+As—1+b
A%+ 0]

(2.6)

L2

t.x
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To control the Schrédinger nonlinearity we take

|Fllygar = 22NPE, sy Flligorz +2°1Cauiasy2 Fll 3,2+

(Al )
2+ o

Remark 2.2. In the special case 0 < a < 1/2 we have

+ As—1+b

2
Lt.x

A+ 19\
( + 19¢] ) F
A% + 104
To see this, let 1/r = 1/2 — a and apply Bernstein’s inequality together with the Sobolev
embedding to obtain

| Fallygar ~ ANCaguposyz Fall2 2 + A1 2.7)

2
Lt.x

_ (t — (t
A 2”Ps()x/28)2F*”L?°L% SA 2+2/r||Ps()A/28)2FA||L%L§

ST+ [0 PE e Falliz s
which implies the claim, since b > 0.

We also require a suitable space in which to control the evolution of the wave compo-
nent. To this end, for £, «, 8 € R, we let

IV lyewn = A0V ILgor2 + AN+ (0D PL, 5V L2012
+ 287G+ VDV 2
Thus for small temporal frequencies we essentially take ()%‘a‘l)“ Vel®H f, while for
large temporal frequencies (in the Schrodinger-like regime) the wave component V' has
roughly B derivatives. Eventually we will take « = a and f = s — 1/2. Consequently,
in the high temporal frequency regime, the wave component V' essentially inherits the

regularity of the Schrodinger evolution u. To bound the right hand side of the half-wave
equation at frequency A, we define

1G 1 geas = A6l g0z + A7) + WP, 50

B—1
Gliizy A7 G2 -
Lemma 2.3 (Nested embeddings). Lers,a,a’,b,b’ € R witha' < a and b’ < b. Then
ulggan S luillgsars. Weallgras < leallgzan
Similarly, if £, o, ', B, € Rwitha' < o and 8’ < 8, we have

WVillyeors S Wallyeas.  1Villyeas = 1Vallytas.

Proof. The first claim follows from the characterisation (2.6). The remaining inequalities
are clear from the definitions. ]
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To control the evolution of the full solution, we sum the dyadic terms in £2, and define
the norms

/2 1/2
el 5.0 =(Z ||ua||sm,,) . NI F lys.as =(Z ||FA||N”,,,) :

Ae2N Ae2N
1/2 1/2
Wlhweas = (30 1Valycan) - 1GHeas = (3 16 can)
Ae2N re2N

+ ||65216||Lt1[,)2€-

Then, we define the corresponding spaces as the collection of all tempered distributions
with finite norm.

Let I C R be an open interval, i.e. a connected open subset of the real line R. We
localise the norms and spaces to time intervals / C R via restriction norms. For instance,
we define the restriction norm

||u||53-a<b(1) = inf ||u/||ssvavb,
w'eSs-ab andu’|;=u
provided that such an extension u’ € §%%? exists. The norms || - | ns.abrys |- lweasry
and || - [| ge..8yy and the corresponding spaces are defined similarly.

2.3. Duhamel formulae and energy inequalities

The solution operator for the inhomogeneous Schrodinger equation is denoted by

Jo[F1(t) = —i /0 t ' CIAE(s) ds.

For a general potential V € L L2, we let

t
Jy[F]() = —i/ Uy (t,s)F(s)ds
0
where Uy (¢, s) f denotes the homogeneous solution operator for the Cauchy problem
(0 + A=—NRNNV)u=0, u(s)="f

We show later that the operators Uy and J are well-defined on suitable function spaces,
provided only that V ~ 2 f € L HY™2 je Visclosetoa L% HY™/2 solution
to the wave equation.

Similarly, we define the solution operator for the inhomogeneous half-wave equation
by

Jo[F1(t) = —i /0 t ' IVIE(s) ds.

We record here two straightforward energy inequalities which we exploit in what fol-
lows.



T. Candy, S. Herr, K. Nakanishi 3188

Lemma24. Lets € R, 0 < a,b < 1. Forany A € 2N we have
itA
le” Jillgganr < vl A TER 1o[Falllgsar < 1 EA Nl .t

Moreover, if 0 € I C R is an open interval and F € N*>%?(I), then Jo[F] € C(I, H®).

Proof. The estimate for the free solutions follows from the fact that the temporal fre-
quency is of size A2 and the endpoint Strichartz estimate.

In order to prove the estimate for the Duhamel term, in view of the characterisation
(2.6) it suffices to bound the high modulation contribution A*|| 4 O[PAF Fl|| 112 due to the

(double) endpoint Strichartz estimate. To this end, we first claim that for any & > 0 and
G € L L2 we have

140[C>1Glllpeo 2 < 1 HICuGllo 2 (2.8)
Assuming (2.8) for the moment, we conclude that
[40[Cs 2282 Falll oo 2 < A72Co o ya8y2 Fa lzeer2- 2.9)
To improve this, we again use (2.8) and observe that

1961PLY, 1e2Corasyz Falllpserz < 3 I40[PP CanCogayasyz Falll oo 12

VA2
< Z V_l||P1,(t)C>(A/28)2FA||L§>oL)ZC < Z V_1/2||P,)(I)C>(,1/28)2FA||LIZX
VA2 VA2 !

ST Fallygan.

Hence the claimed inequality follows.
To complete the proof of the norm bounds, it only remains to verify the claimed bound
(2.8). Define H(t) = (3;! Pf,i [e7"*AG])(t). A computation gives the L% L2 bound

”H”L‘t’oL} =S M_lne_itAG”L?OL}C = l/«_IHG”L?OL}C
and, since C=,G = /' PY) [e71"AG), the identity
3, H(t) = P72 G](t) = e A C=,G.

Then (2.8) follows by writing d¢[C-, G](t) = Jo[e!"2d, H](t) = —ie!" A (H(t) — H(0)).

We now turn to the proof of continuity. In view of the definition of the time restricted
space N° @b (1), it suffices to consider the case / = R. Moreover, the norm bound proved
implies that it is enough to prove that if A € 2N and Fj, € N%%? then Jo[F3] € C(I, L?).
If ||F)L||N)3L*.u.b < oo fora,b >0, then F) € L}, L% and the continuity follows from the
dominated convergence theorem. ]

The energy inequality has the following useful consequence.
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Lemma 2.5. Lets,a,b € Rwithbh > 0. If F € N%" then

t/
/ e SAF(s)ds =0.
t

lim '
H.S‘

t,t'—>o00

Proof. After writing ftt/ e ISAF(s) ds = eI AJo[F](t') — e "D Jy[F](¢), the energy
inequality in Lemma 2.4 implies that it suffices to prove that for every A € 2N we have

= 0.

t,t/—00 12
X

t/
lim H / e TAF () ds
t

We decompose into low and high modulation contributions, F = P/{V F + PAF F . For the
former term, we observe that the endpoint Strichartz estimate gives

t/
—isA pN N
H/ e 'S P)L F(S) ds ) s ”PA F”L%Li*((t,z/)x]Rd)’
t

X

which vanishes as ¢, — oo since P)fv F e L?L,zc*. For the remaining high modulation
contribution Pf F,weletG(t) = 8,_1P£22 (e_”AP[ F). Then e_”APfF = ;G and
therefore an application of Sobolev embedding gives, uniformly for M > 1,

t/
H/ e_”APAFF(s)ds
t

< P2z + IPE YO 2 + IPL, GV 2 + 1P GO 2
SPE GOz + I(PE GOz + I1Com P F 2

=[|G(") = G@)l|.2
L%

Since Pg},lG €L;L;and PFF e L? ., foranye > 0, by choosing M sufficiently large

and letting ¢, ¢’ — oo the Riemann—-Lebesgue lemma implies that

t/
lim sup H / e_’SAPf F(s)ds <e.
t,t’—>o0 t L%
As this holds for every ¢ > 0, the result follows. [

We also require an energy type inequality for the wave equation.

Lemma 2.6. Let 0 < « < 1 and B, £ € R. Then, for all A € 2V,

it|V 2
le"¥gallye.an < A Ngallze.

and for A > 216,
||30[GA]||W/{€.&.6 ) ||G,1||R§,a,6.

Moreover, if 0 € I C R is an open interval and G € R“*P(I), then §o[G] € C(I, HY).

Proof. The estimate for free solutions follows from the fact that their temporal frequen-
cies are of size A.
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For the Duhamel integral we have

M 90PL 26l o2 S AUPD Gl 2 S AN+ 10:) PGl 12

Similarly to (2.8) above we also obtain, for A > 216,

M g0lPOsGalllpsorz S AT2IPE),Gall oo 2
and deduce

A2

A0 90[Gallgerz SATHNA+10,)* PL

Gillyz +A NP5 Gall gz (210)

Since the bound for the Lf, . component of the norm || - ||yy¢.«.5 follows directly from the
definition, it only remains to bound

A+ 18D P FolGall 12

S AUPE Fo[Galll ooz + AN+ 10:)* PL,5 PY, J0lGalll ooz 2.1D)

The first term on the right hand side of (2.11) can be bounded directly from (2.10). We
turn to the second contribution in (2.11) and write

@) ) _ p® p@ )
P<<A2P>>Ag0[G)L] = P<<A2P>>)LgO[P<<A2G/1]a

where the identity is due to the fact that. dy = Pizu P;;)A Fo [sz
(i9; + |V|)d, = 0, therefore d; = ¢'*1Vld; (0) and since d; has temporal frequencies
>> A it must vanish identically.

Let ¢y := 20[P<(?,12Gl] and f = Jol(A + |8,|)"‘P(t) G,]. Then it follows that

<22
@9 + VDA + 19¢])¥ex — f2) = 0, and therefore
A+ 10)%n = fo =Mz zi = (A +19:D%x — f2)],20-
Again, since the temporal frequencies of e*!V!z are ~ A, we conclude that

A+ 10:)* PL, o[ PL 2 G2l = PL, ol(A + 10:)* PL . Gl

G, ] solves the equation

hence
I+ 10D P PD L 90[Galll ooz S IG0lA + 19:)* PL,5 Galll oo 2
SIA+10:D*PL oGl 2
Concerning the continuity, we observe that if |G|l go.a.0 < 00 for a,b > 0, then
A

G, € L} locL)zc and the continuity follows from the dominated convergence theorem as

in Lemma 2.4. [

2.4. A product estimate for fractional derivatives

The definition of the norms || - || ¢s..» involves three distinct regions of temporal frequen-
A

cies: the low modulation case |t + |£|?| < A2, the medium modulation case |t| < A2,

and the high modulation case |z| 3> A2. When estimating bilinear quantities, this leads to
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a large number of possible frequency interactions. To help alleviate the number of pos-
sible cases we have to consider, we prove the following bilinear estimate which we later
exploit as a black box.

Lemma 2.7. Leta e R, u>0,and1 < p,q,7, p,q,r < oowith% =
%—}—%. Then

1Ge + 18D @)l 5 < 7+ 18D 0l 7 g 1+ 180D ull 7 g

Proof. The proof is essentially known, and thus we shall be somewhat brief. The main
obstruction is that we allow the endpoint case ¥ = oo, and, as we are working with
fractional derivatives in time, this causes the usual difficulties due to the failure of the
Littlewood—Paley theory. In particular, to avoid summation issues, we closely follow the
proof of the endpoint Kato—Ponce type inequality in [6].

To simplify notation, and in contrast to the rest of the paper, we temporarily adopt the
convention that the temporal frequency multipliers P,,(t) give an inhomogeneous decom-
position over v € 2N thus

|0
P= ) w(T, f=2nf
re2Z p<1 ve2N

where ¢ is as in Section 2.1.
We first consider the case a > 0 and prove the stronger estimate

”(1'+|atDa(vu)”LfL§
Sl 1A+ 10Dl g g + N+ 10D 0Nl g,q. (212)

Clearly, after rescaling, this implies the required estimate for a > 0. The proof of the
estimate (2.12) is a straightforward adaption of the argument in [6]. In more detail, we

decompose
vu = Z POvPOu + Z POvPOy.
ve2N ve2N
By symmetry, it is enough to consider the first term. To deal with the problem of summa-
tion over frequencies, we introduce a commutator term and write

>+ 134 (POvPE)

ve2lN
= > [+ 0 POvPLU) = (1 + 10, ) POv) PE)u]
ve2N
+ 3+ 13D PPv) PO
ve2N
= Y[+ [0:)*(PPvPLU) — (1 + [8:)* POv) PEu]
ve2N
(U (0D 0+ Y (1 + 18, PO PO, (2.13)

ve2lN
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The bound for the second term in (2.13) follows directly from Holder’s inequality. To
bound the third term in (2.13), we note that for any M € 2N we have

> I+ 13D PO vPull 5y

ve2lN

< D v vl lull g e + D0 v+ 10D gz 1+ 18D ull 7,
v<M v>M

S Mol lulg g + MU+ 18D 7 10T+ 19:D%u ] g 4.

Optimising in M then gives

H S+ |8,|)“Pv(’)vP£3u‘

veaN

L?L}

)1/2

)

< (ol el g g N+ 10D 07 7 1+ 10D ull 7,0
and hence (2.12) follows for the third term in (2.13). Finally, to bound the first term in
(2.13), we first claim that for any 0 < 8 < 1/a we have the commutator estimates

1+ 18:D* (POvP L) = (1 + [0, PO v) PO 5

ST+ (0Dl 1+ Iatl)"ull L4 el 7 (2.14)
ttx

Lqu

and
1+ 18:)* (POvP L) = (1 + [8:)° PO v) PO 5
Svelvligrpgllulla g (215)
Assuming these bounds for the moment, we have, for any M € N

> A+ 18D @ L) = (1 + [0, PO PEu| 5y
ve2lN

sy vl vl pa g
v<M

+ 2 VTN 1DVl N+ 13D ull g o el
v>M
S MOl Ml g g + M7+ 0D 0l IO+ 190D g gl 3

Lqu

Lqu
Optimising in M, we conclude that

H Z p®

ve2lN

<vlU Lpr

1 1——1_
S A+ 10Dz el g ) 77 (W0l L 1O+ 10D ull g ,0) " T

and hence (2.12) follows.
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It only remains to prove the standard commutator bounds (2.14) and (2.15). We begin
by noting that for any a € R, we have the related estimate

| (1 +18:D*(POvPLD ) — (1 + 19, P <f>v)P§2vu|}LﬁLp
SV POV 19 PO ull g (2.16)
which follows by writing
(1 + 19D (POvPL ) — (1 + 18, PO v) P u
=14 fR v (sv) (PO — $)(PLu) (e —s) — (PLu) (1)) ds

1
- / / v Ya(s)(POV)(E = )0 PDu) (e — ss') ds' ds
R JO

for some ¥; € S(R) (i.e. some smooth rapidly decreasing kernel independent of v, u,
and v), Y2 (s) = s¥1(s), and so applying Holder’s inequality and using translation invari-
ance, we obtain (2.16). To conclude the proof of (2.14), we note that if @ > 0, then (2.16)
also holds with Pg,u replaced with P u (this is simply another application of Holder
and Bernstein), and hence (2.14) follows from the interpolation type bound

t t
10 PSull a0 = D VIR ullgp
veN y<y

S ) O+ 19D Mg qull

veaN v<y

S0+ 1))

Lqu

?Lq ”u”Lqu )
which holds for any 0 < 6 < 1/a. Finally, the second commutator bound (2.15) follows
by simply discarding the commutator structure and applying Holder’s and Bernstein’s
inequalities. This completes the proof of (2.12) and hence the required estimate holds in
the case a > 0.

It only remains to consider the case a < 0, but this follows by arguing via duality.

Namely, the estimate (2.12) gives
”(1 + |at|)a(vu)”L{’L§
= sup / (1 4+ 19:D*w)vu dx dt
R1+d

IIwIIL{,/Lg/Sl

I+ 10D ull g sup (410D (1 + [3, ) w)]
1

IA

g ;q
LY L%
[w]| pop =

Ly LY

SN+ 10 ulla,q

x sup (Il lwl, sy + 1 10Dl 1+ (D wll, )
lwll, v, pr<1 : £ S ¢ ¥
r Ex

S A+ 10Dl a4 1+ 13Dl

as required. ]
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2.5. Decomposability of norms

Given open intervals /1, [» C R we would like to bound the norm |[u|gs.a.6(s,u1,) in
terms of the norms ||u| gs.a.6(y,) and [|u| gs.a.5(z,) on the small intervals 7, and /5.

Lemma 2.8 (Decomposability). There exists a constant C > 0 such that for any s € R,
0 <a,b <1, any open intervals Iy, I, C R with I} N I, # 0, and any u € SS’“’b(Il) N
§5@b (1,) we have

lullgs.aocryury < CA+ [T N Ll ™) (lullssan ) + 1ullss.ab,))s
foray :== max{a,1/2}.
Proof. Letp e C*®°(R) with p(¢) = 1fort <—1, p(t) =0for¢ > 1, and for every ¢ € R,
p@) + p(=t) = 1.

After a shift, we may assume that (—¢g, &) C I; N I, for some ¢ > 0, and that /; lies to
the left of I, (i.e. inf I; < inf I5). Define p;(t) = p(¢~'t) and p,(t) = p(—e~'¢) and let

u’ be an extension of ulz; to R such that [[u| gs.a.67,) ~ lu? || gs.a.6. By construction we
have u = plul + p2u2 on I; U I,, and hence by definition of the restriction norm

lullgsaniyum < o1t lssas + o2 |gsan < U+ lgoan + |43 gsa0)
S (+e7) (lullgs.anry + [ullssan,)),

provided that S enjoys a localisability estimate of the form
losttll s < (1 + &%) ] s.0.0-

Taking ¢ > 0 as large as possible (namely ¢ ~ |I; N I5]) leads to the desired estimate.
It remains to prove the above localisability, which follows from the product estimate
Lemma 2.7. Indeed, for every frequency A € 2N, we have

I+ 10D (orua)l 2 2+ S IATA + 19D prllzse |A +10:)*uall 22+
where the norm of p; is bounded uniformly in A by || (1 + |9, |)”[p(s_lt)]||Loo S14+e74.

The L$°L2 component is trivially localisable. For the remaining L?, component of
§5:4, b

t,x
, we have

A+10:\° .
—_ A
H(A2+|az|) (0t Bow)]

A+ 100\
< H (#"a") i+ Al

A+ |3 | [ ]

2+ o) P
To bound the first term, we decompose u into high and low temporal frequencies and
observe that another application of Lemma 2.7 gives

12

r.x
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/\ + |8 | .
< A—Z“n(x +10:)*[o1 (9: + M) P oualll 2+ llpr (e + A)PEuall2

S IR+ 10D pllLae AN + 19D (9 + D) Py uallp2

1.x

+lprllegell Qe + A)PEuall2
S U+ e P ugllgg.an.

On the other hand, for the second term, we have

A+ |at| a[. u ] < ” U || , < ” , ” 5 ”u ” , < 5_1/2A_s||u ” 5
A2+ |8t| prita L? ~ llp1¥a Lix — PLILZ A L®Ly ~ A s3abs
which implies the required bound, since b < 1. .

3. Bilinear estimates for Schrodinger nonlinearity
In this section we prove that we can bound the Schrédinger nonlinearity in the
space N540.

Theorem 3.1 (Bilinear estimate for Schrodinger nonlinearity). Letd > 4,0 <s </{+ 2,
B >0 and0 < a,b <1 such that

Ezb+#, s—fb<a+1—b, s+4L>2a, ﬁzmax{s—l,%—}-b}.

and

(s.0) # (52 +a. 5% +b). (B.b)# (52.1).
Then
IRV ullysar <NV Iweasllullss.ao.

Proof. In view of the definition of N*%? and W*%#  a short computation shows that it
suffices to prove the bounds

s—1—2a 1/2
(22 AP0 + 18,7 Pa o2 )

Ape2N
1/2
S (N + 10 0l prea)  Mtllgsan, G
w
25 2 2(s—1+b) > 2
(X O3B 0012, o + 2 By )l2, )
10€2N ! '
S ol ot lutllsao,  (32)

2(s—2 1/2 1/2
(3 Ae2Pw2es) 5 (X uloone)  ulzpems.  (G3)
w

Ape2N
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and, under the additional assumption that supp ¥ C {|t| < (£)?}, to prove that

1/2 1/2
(ZA%SnPﬁ(vu)n;&*) S (I + 10D 0l prga) Nutllssan. (4
yr2

Ao

More precisely, assuming that the bounds (3.1)—(3.4) hold, we decompose

@) @) p@) @) p()
ne2lN nealN neaN ne2N

=1+V+V

An application of (3.1), (3.3), and (3.4) (together with the invariance of the right hand
side with respect to complex conjugation) gives

! 1/2
100 Dulysar S (YN + 10D PO Vil rea)  Itllgsao
"

S WV lweaslulss.ao.

On the other hand, for the V), contribution, we note that since

1/2
Vall e ~ (2001 PEL VLR, )
"

oy 1/2
< (w2 DNGa, + IVDPE VA2, ) S IVllweas
/./L X

an application of (3.2) and (3.3) implies that
IRV2)ullysar < (WVallpee e + 1V2ll 2 o+ ) ullssa0 SNV lweasullss.ao

as required. Finally, the bound for the V3 contribution follows from the fact that supp VicC
{lz| + |&| < 1} together with (3.1), (3.3), and the estimate (3.6) below.

We now turn to the proof of the bounds (3.1)—(3.4). For the first estimate (3.1), we
begin by decomposing the product vu into

Py, (vu) = Z Py (vuy,)

Are2N
= Y Puui)+ Y Pyvup)+ Y Pi(vua) (3.5)
A1 <KAo A1>Ao A &Ag

and consider the high-low interactions A¢ >> A1, low-high interactions Lo < A1, and the
balanced interactions case g ~ A1.

Case 1: Ao > A;. Applying the product estimate of Lemma 2.7 together with Sobolev
embedding gives

A(s)flfzaer”()tO + |3,|)aPAO(UM/11)”L%’X
=2
< A3_1_2a+bko_a|l(ko + |8t|)avz/lo”L,°°L§Al 2 ||()t0 + |3z|)“u,11 “L%Li*

—f—1— [ _
S AT T (o 100D 0mo e - AN 100D s, 220
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Therefore, provided that

s—l<a+1-b (>%5*4b (5,0# (52 +a. 5t +b),

2
we obtain
1/2
< Z )LZ(S 1- 2a+b)H Z (Ao + 10:))“ Py, (vuy, )
Ape2N Ao X

—l—1—a+b 422 4 g 2\1/2
(X (X AT TR0+ 10D Vo e i-a il o))
AoezN A]<</10 !

1/2
(X MR+ 10D 0o grea)  supln, g0
ne2N A !

as required.

Case 2: )LO <« A1. We begin by observing that an application of the Sobolev embedding
d 2

W75 a1 (R?) — L?(R?) implies that

1/2
2(s—1—2a+b) 2
(X AT N2 ) S Pl pyi-2ess
AoSAL '

(s+4 2 —2a+b)
< _ <
~ ”Fikl ||L?WXd22+s—l—2a+b,ﬁ ~ A’ ”F”LZL‘/ T

On the other hand, again applying Lemma 2.7 gives
(A1 +19:D* (v~ Alukl)” e
[ X

S AT+ 10D vy ooz 1A+ 10:) uay Ml 2 2>

2a—s—{
< Ala s (A1 + |at|)av%/11 ”L?OHf—a ””/11 ”S»)?la’o-

Hence, provided that

2
we see that
b 2 1/2
( Z /‘\Z(S 1—-2a+ )H(A +|a |)a Z P/\o(vukl) )
Ape2N A1>Ao

—1— b a 1/2
(2 BTG+ 19D Pay (o)1)

Are2N A=A

(s+ —2a+b) 4
S YN o 1A+ 19D (W, ua)
A]EZN th

s+945% 2a4b) 1 +2a—s—L
s 3 e

l
[+ 106D 0, o pr-a iy g ao

Are2N

1/2
< (X 1+ 10D 0l s ya) Illssian

ne2N
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Case 3: 19 &~ A;. Similar to the above, we have

A5 T2P Qo + 19: D) Pag (ua) 2
S ARG N o + 100 o e g 1+ 10e) w22
STV + DD sl az2 AN+ 1D

f X

which is summable provided that

b<l, =244,

This completes the proof of (3.1).
We now turn to the proof of the second estimate (3.2). As previously, we apply the
frequency decomposition (3.5) and consider each frequency interaction separately.

Case 1: 1o > A;. We start by noting that an application of Sobolev embedding gives

-1
sup 35 uchalliporg + 4 Tuaralliz) S luligens < ulssas
Ap€2

provided that
s<p+1, B=S44b, (B.b)#(G21).

Hence via Holder’s inequality we obtain

1/2
2(s—1+b
(X O 1Pauaa)lZ 20 + 25571 Ui, )

Aoge2N

1/2
2 1
S (0 R sl ) s A5 sl + 4 gl

/\()EZN Ao e2N
5 ”v”L%H'é_H ||u||Ss,a,0.

Case 2: 1o < A1. An application of Bernstein’s inequality together with the square func-
tion characterisation of L% gives

> 2(s—1+b) I R +b 1/2
(X & NFlZ o + 25T UE 2 ) S0P (X 102,20

Ao<KAq Aoe2N

(2 1m0r) |

Ape2N

s+b
L%L,Zc* < A1 ”F”L%L)ZC*

Therefore applying Bernstein’s inequality and Holder’s inequality we conclude that
1+b 2 12
< Z A%S H Z Py, (vuy,) L2 + )LO(S )H Z P,xo(vu,xl) )
06 2N AO x

C14b 1/2
s ) ( Z (A1 Pag (v 225 2. +A2‘S O Py i) I22 )
A]GZN Ao
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+b
s Z Ai ”v%)tlu/\] ”L[ZL)ZC*
Are2N

s+b+452
S D AT T sl ua gz S Mol 2 e lullssao
ArealN

provided that
B> L4 4+ b

Case 3: 19 &~ A;. Let } = ld;b. Similar to the above, an application of Sobolev embed-
ding gives
lolizig + I0li20, S I0l2 e

provided that
B=Gt+b. (B.b)#(521).

Consequently, via Bernstein’s inequality we have

1/2
2 2 2(s—1+b) 2
(X A8 IoumaolZs o0 + 2557 ouss I, )

Ape2N

1/2
2 2
S Uollzzg + 012 ( D A Mumaglioesz) S 10l oo lulssao.
Aoe2N

This completes the proof of (3.2).
The L‘,X’L)zc bound (3.3) holds provided that s < £ + 2, £ > 4-4 and (s, ) #

2 9
%, %). The proof is standard, and follows by adapting the proof of the product estimate

I/&lls—2 < I/ Nmeliglas-

We now turn to the proof of the final estimate (3.4). As before, we decompose the
inner sum into high-low interactions A¢ > A1, low-high interactions A9 < A1, and the
balanced interactions case A¢ &~ A1, and consider each case separately.

Case 1: 1o > A;. The assumption on the Fourier support of v implies the non-resonant
identity

Cetro/292 Pag(Witi)) = Coagasy2 Pag (Vg Pg))k% Coay/28)2Uay)-

Hence the disposability of the multiplier P)f\(]) and Bernstein’s inequality give

d/2—1
A1

N @
1P Wuall 2 20 = lrollgerz 1P 232 Co i 292, 2

(11 —+ |0¢]

< 5d/2-1
~ o l% ~+ 0]

-2
AO ||U%AO ”L‘;OL}

a
) (107 + A)uy,

L2

t.x

Consequently, we conclude that

N —{—24d/2—
APN @ua) 2 20 S 462202 omsg e e lull oo,
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which is summable provided that
s<t+2, =252 (5,0 # (5. 452).
Case 2: 1o < A;. We first observe that the Fourier support assumption on v implies that

Cs(lo/28)2 P)LO(I)M,{1 ) = Cs(lo/28)2 PAO (U%,h Czk%u,h )
Bernstein’s inequality and the temporal product estimate in Lemma 2.7 implies

N s+4z2_
Aol Pry a2 2 S Ao 2 Nt + 18D (vaa, Conzua)llz2ry

s+4 2 2a

S AN 10D vmny s 2 1A 4+ 19D Caui N2

s+452 24
S [CY L) Y Y 9 )
h 1

which is certainly summable under the assumption that

s+e>2a, =42

Case 3: Ao &~ A1;. We now consider the remaining high-high interactions. Via the product
estimate in Lemma 2.7 we obtain

N -2
AEv)”P)L()(vu/ll)||LI2L§C* =< A{ a”(ll + |at|)a(v5/\1ukl)”L%L§*
_2 —
ST+ 10eD vz oo para A+ 19D ua 22+
SNV) +19: D% vll oo prg—allun llgs.a0, (3.6)
1
where we have used £ > 4 for the Sobolev embedding, and the summation is trivial in
this case. ]

We require a local version of the bilinear estimate, with the advantage that we can
place v in dispersive norms of the form L®L2 + L2L4.

Corollary 3.2. Let d > 4. Assume that B > max {#, s — 1} and
0<a<l, 0<s<€+2, (>%* s—t<a+1, s+L>2a (3.7
with (s, £) # (% +a, %) There exists C > 0 such that for any interval 0 € I C R,

[do(R(V)w)llss.a0¢ry < ClIV || Weab (D) +L2We (IxR4) [l s5.a.0(1)-

Proof. In view of Lemma 2.4 and Theorem 3.1, it suffices to prove that for any s > 0 and
0 <a <1 we have

[oR(VYD)llss.aomy SNVl 25 g xpayllullssaoq)- (3.8)
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An application of Bernstein’s inequality together with (2.6) gives

A+10:\“ .
—_ d;+A
()\.2+|8t| (l t+ )uk

S A (heallpgorz + luall 2 pax + 1G9+ Auall 2, 24)

~ 15 N s—1
uallgsao ~ A (unllpeopz + 1P ull 2 2%) + 2 .

t,.x

and hence the endpoint Strichartz estimate implies that after extending F from / to R by
zero,

1/2
10[Fllssa0) < 1olLs Flllssao 5 (D AF7,, 2*(,XR,1))

Ae2N
< ”F”L%W_,?"Z*(IXR")'
Inequality (3.8) then follows from the elementary product estimate
[ fgllws.2x RI) ~ SN llws. d(]Rd)”g”HV(]Rd)v

which holds for any s > 0. [ ]

4. Bilinear estimates for the wave nonlinearity

Here we give the bilinear estimates required to control solutions to
(9 + Vv = [VI@@y). v(0)=0
with ¢, ¥ € §5%P_ The main estimate we prove is the following.

Theorem 4.1 (Bilinear estimate for wave nonlinearity). Letd > 4, s,£,8 > 0, and 0 <
a,b <1 satisfy
B §min{s,2s—d%2—a}, 2a §2s—€—%, a—b<s—1¢

and
(5.0 # (£ 42). (2 +a. 52 +b), 6.8) # (52 +a. 52 +a).
Ifo, ¥ € %% then

[Fo(IVI@Y D) Iweas < N@llss.anllVllgsas.

Proof. An application of the energy inequality of Lemma 2.6 implies that it suffices to
prove the bounds

_ 1/2
(X 2D+ 10 PP @Iy 2) S IellseaslVliseas. @D

ne2N
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1/2
(3 2EPIP@EN2 ;) S I0llssan W lissar, 4.2
ne2N
_ 1/2
(3 1w 1P@IZ; )" 5 lellssanl¥llsnan, (43)
ne2N )
1P<216 @)zt 12 S N@llssas |V llssas. 44)

We start with the proof of (4.1) and decompose the product @y into the standard
frequency trichotomy

Pu@V) = Pu@V<n) + Y. Pu@,Vn) + Pu@e, V). (4.5)
A=A

In view of the fact that the left hand side of (4.1) is invariant with respect to complex
conjugation, it suffices to consider the first two terms in (4.5), i.e. the high-low and high-
high frequency interactions.

Proof of (4.1), case 1: high-low interactions. Note that in this case we must have u > 1.
A computation then gives the non-resonant identity
PO Pu@Van) = PO PuCurv, PU V<) + PO Pu(Criop Vi)
= A1 + As.

To bound the A; term, we observe that

P10 + ) PL o Pu(Cpr PL V) 12

< M€+1+a ||C

t
<<,1L2§0%/L||L12L)2C* ”PL;)LZl//«M”L,zL%
L—s—1 -2 . t
S R T (19 Pl 227 G0+ D) PL Vil 2 a2

< pf TR 24 (4 18D Pl 2 2 1V o

Provided that
s—{>a—->b, 2s—£—dz;22a

we can sum up over i >> 1 to obtain (4.1) for the A, contribution. To bound A4,, we apply
the temporal product estimate in Lemma 2.7 to obtain

P A 19,0 PL o Pu(Coyz0 V) 12
S I+ 196D Crpp @l I+ 10D Vel 200

NSRS N g
1 (M—2+|8tt| (lat+A)(qu, i Z x A2 |I(A+|at|)awkl|L%L%*
LtX/l<</L

~

ésb-‘raX:)L 2+as

AL

1Vl ss.a.0-

2H)sc+b71

(M+|3|

(i0: + A)p
1>+ 10 |) ’ "l
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This can be summed up over © > 1 to give (4.1) for the A, contribution provided that
s—0>a-b, 2s—0—-L2>2a—b, (5.0)# (52 +a 52 +b).

Proof of (4.1), case 2: high-high interactions. An application of the product estimate in
Lemma 2.7 together with Bernstein’s inequality gives

AT + 19, |>“<¢sz>||L1Lz

<A 2“/\ C0n + 10:) @224 12 + 19:D* Y, Ml 22+

1+452 42425
<At s oo llas lgsao-
1 2

On the other hand, since £ + 1 — a > 0, we have

1/2
(X 2D+ 10D PP F I 12 )
WAy

1/2 _
SA (D MO0+ 10D PUFI2y 5 ) S AT G+ 10D F 2
nSA

Therefore summing up gives

_ 1/2
(X 2@ 3w+ 1007 PuP L) 2@, o) Lle)
u>1 AMAAIZU
S Y AT+ 10D @, V)l g2
A Ay
1+4952 42025
< S T loailsgaolVazlggao S lllssan ¥ lsees
A=An

where we have used the assumption
2s — 0 — % > 2a.
This completes the proof of (4.1).

Proof of (4.2). This is slightly easier than the previous estimate (4.1) as we no longer
have to deal with the temporal weight (i + |9;])?. To bound the high-low interactions,
we observe that

{—1 — -1 dj/2
NP @Y <) lpeors S 0700 2 losullpoor2 1Vl poor2
AL

l—s— d/2—
< 1Y A gl gsaoll ¥l ssao
AL

and hence provided that

sH1>4, 2s>0+ 952 (5,0 # (2,2 +1),



T. Candy, S. Herr, K. Nakanishi 3204

we obtain
1/2 1/2
2(0—1 — 2 2 2
(3 2PV Ze2) S (2 B NomulZoers) W lssan
w1 ne2N

S lellssarl¥llss.as.

Similarly, to deal with the high-high interactions, we note that for any A; ~ A, since
{4 d/2—1> 0 an application of Bernstein’s inequality gives

1/2
2({—-1) — 2
(X KCPNP@s, Vi)l )

w<Aq s
2(¢+d/2—1 2 2
S (X 12l e 2 1o 2)
KA :

L+d—2/2-2
ST oy gpan 1Vl ggan
1 2

and therefore

2 1/2
2(0—1 —
(> u )H Y Pu@i,V1) L°°L2)
peaN A~A2zu e
(+452 25
< Z Ay 2 Tlealgsan ¥y llgsan < l@llssas|¥llss.an
/11%/\2 )Ll )Lz

where we have used the assumption

2s —0— L2 > 0.

In view of the frequency decomposition (4.5), together with the invariance of the left

hand side of (4.2) under complex conjugation, this completes the proof of the L°L2
bound (4.2).

Proof of (4.3). We now turn to the proof of the L%,x bound (4.3), and again decompose
the product into the standard frequency trichotomy as in (4.5). For the high-low interaction
terms, we note that

ﬂﬁ ||P,u(¢1/f<<u)||]d%x < //v/3 ||(P~/L||LIOOL§ ||W<</L||L%L;°

d—2 _
S AT e 2 1O+ 100D Y2 2
1<AL

and hence, provided that
B<s, 25-B-52>a, (5.B)# (52 +a. 52 +a),
summing gives

_ 1/2 1/2
(X w21Pu@vanl?: ) 5 (X 0¥ lmilieyz)  Wlssas

u>1 u>1

S lelissarl¥llss.as.
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Similarly, to bound the high-high interaction terms, for any A; &~ A, we have

MIBa vz 28 0ea 2 2 1 ll oo

B+a+952-2s
ST o lggao sl gpao.

Therefore, noting that since § > 0 we have
1/2 1/2
(X w1z ) <M (X WPaFIE: ) S MIFIL;,
WA ne2N
we conclude that

(w2 ¥ Pu@ v ;)1/2 < 3 (X wnG i )

ne2lN A=A ’ AymAy Ay

B+a+452-2s
S 2N TlenlggenlVicllsar < Nellssanl¥llssar
A]%},z

provided that
2s — B — % >q.
This completes the proof of (4.3).

Proof of (4.4). To prove the remaining estimate (4.4), we can simply use Bernstein’s and
Holder’s inequalities and the endpoint Strichartz estimate with loss (2.5):

[P<216(IVI@Y D 12 < WW”L}L# Slellzpz lvl2p2r S lellsaasllVlsaas,

since s > a. n

As in the Schrodinger case, we additionally provide a local version of the bilinear
estimate which contains a dispersive norm.
Corollary 4.2. Letd > 4,s5,£,8 > 0,and 0 < a < 1 satisfy
B <min{s,2s—%— ). 2a <2s—€—%, a<s—A4.

There exist 0 < 8 < 1 and C > 0 such that for any interval 0 € I C R, if @,y € §5%0(1),
then

[ Fo[V @)l we.a.sry
< Clgllgs.aom 1V Issaoa)' ™ Ul 22 ey 1V L2 12% (rmay)’
Proof. Let A1, A, € 2N It suffices to show that there exist §, N > 0 such that

15l VIWx, ea))lweas S (max{de, o)) [ ¥l ssaoll@]ss.a0 (4.6)
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together with an estimate with a derivative loss, but the Strichartz norm on the right hand
side:
&IV, ea)llweanr

1/2
< (max {Ar, DN (v Iz212* rxmay 190 2 2% (1 may 1 ¥l 55000y @ Il ss.a.00r))
4.7

We start with the proof of (4.6). Choose s” < s such that

B <min{s’,2s’—dz;2—a}, 2a <2s’—€—d%2, a<s —4.

An application of Theorem 4.1 implies that

1FolIVIWa, o) lweas < 1Va, g5 aoll@asllssao S A1da)” = 1Y ss.0 @]l s5.00

and hence (4.6) follows.

We now turn to the proof of (4.7). An application of the standard energy inequality for
the wave equation together with the convexity of L? and Bernstein’s inequality implies
that

190Gl r.ar S AN IlGall o2 + AP IGAl 2,

L d/4 1/2 1/2
S ARGy 2 + 1G5 I1Gal = ).

Therefore there exists N > 0 such that

ol VIWa o) Mllweany < Id0[11IVIWa, 02.) I weas

< (max {Alv12})N(||W,11<P,12||L;L§(1X]Rd)
1/2 1/2
+ ||1/fA1§DAZ||L}L)2((IXRd)”VfM‘PAz”L?oL;C(IXRd))
1/2
S(maX{M,lz})N(HW”Lng*(Ide)||¢||LgL§*(1de)|W||SS-u70(1)||<P||Sw»0(1)) ;

and the proof is complete. ]

5. Simplified small data global theory and large data local theory

As a warm up to the proof of the main results contained in Theorems 1.1 and 1.2, we
show how the bilinear estimates in the previous two sections can be used to prove a
simplified small data global well-posedness and scattering result and a large data local
well-posedness result in the non-endpoint case.

Recall that J¢[ F] denotes the solution to the inhomogeneous Schrédinger equation

(0. + My =F. y(0)=0,
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and similarly $o[G] denotes the solution to the inhomogeneous wave equation
(i0: + V)¢ =G, ¢(0) =0.
Given data (£, g) € H® x H*, define the functional

O(f.g:9) = e f + Jo[R(eVIg)y] — Jo[R(Fo IV V) ¥].

Suppose that (s, £) lies in the region (1.3), and define the parameters (a, b) as in (2.4).
A computation shows that the energy inequality in Lemma 2.4 together with the bilinear
estimates in Theorems 3.1 and 4.1 implies that we have the bound

10(f g: )l gsan < Nf Nlas + IRV )Yl ysan + IR Fo (V] [PV || ys.a
< f las + lglweas2 ¥ lssas + 1V weas—1/2]¥ | gsan
S as + Iglaellvllss.as + 1Y 1 3s.as-

Therefore ® : §%%b — §590 Repeating this argument with differences shows that pro-
vided || f||zs + || gl ge is sufficiently small, there exists a fixed point u € {y € §s:ab |
|V lgsar < ||f|lms} to @. Defining

v =e"Vg—go(IV||u?)

and again applying Theorem 4.1, we then obtain a solution (u, V) € C(R, H* x HY)
to the Zakharov system (2.1). The scattering property follows from Lemma 2.5 and an
analogue for the wave part.

Note that the above argument requires the smallness condition || f||gs + ||gllze < 1.
Our later arguments will significantly improve this to just requiring g € H@~4/2 and
| £l g@-3/2 <g 1. In other words, we only require smallness of f in the endpoint
Sobolev space. In addition, we also obtain a stronger uniqueness claim, as well as per-
sistence of regularity.

Let us now sketch a simplified, large data local well-posedness result in the non-

endpoint case s > %. Suppose that (s, £) satisfies (1.3) with s > %, and take (a, b)
as in (2.4). Define £ = min {s — 1/2, £} and take the map & as above. The non-endpoint
d—3

condition § > = is due to the use of Corollary 4.2, while the choice of { is made to

ensure that we can construct a fixed point for ® in §%%9(I) via Corollary 3.2. Once

we have a fixed point u € $%%9(I), we use an additional argument to upgrade this to

u € S%%b(I), which is needed to get the correct regularity for the wave component V.
Fix (f.g) € H® x H*. Choose an interval 0 € I C R such that

itA it|V
”e” f”L%LJZC*(Ide) + ”eltl lg”WZ,a,S*1/2(1)+L12W§-d(]X]Rd) <e,

where ¢ > 0 is fixed later (depending on f, g, and the absolute constants in the above
bilinear estimates). Define the subset @ C S5%0(1) as

Q={yesU): 1Vl 2 2% (1 uray © A+ gl2)es 1V lssaoay S IS Nms s
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An application of Corollaries 3.2 and 4.2 gives 6 > 0 such that for every ¥ € Q we have

”q)(fv & W)”SS"I-O(I) < ||f||1‘1Y + (”eitlv'g”WZ.a.S—l/2(I)+L12w)?'~d(1)
1 Fo VIV Py zas-1/2) 1V lss.a0
S las + el¥llssaoqy + A+ 1l 1V 1320 -

On the other hand, in view of the endpoint Strichartz estimate we have

ID(f.8: V)12 2% (1)
<1 fll 22 (may + 18 E YDV 2,21 ey
+ IRV VDVl 2,2+
< e+ gz 1Vl 2 2% (1 umay T 1FlIVIIY T Lo 12 (rxray 1Vl L212% ()
Se+elgllpz +& 200+ lgl) 1152 )

Consequently, choosing ¢ > 0 sufficiently small, we see that ® : 2 — 2. A similar argu-
ment shows that @ is a contraction on 2 (with respect to the norm || - || gs.a.0(r)), and
hence there exists a fixed point u € Q C §%%9(I) for ®.

We now upgrade the (far paraboloid) regularity to u € S*%?(I). Note that this is
immediate if s > £ since b = 0 in this case. If s < £, then an application of Theorem 3.1
together with Lemma 2.4 gives

Il ss.avry S 1S s + 1R Y @l ys.anry + IRl TuPDll ys.an
S s + lglmellullss.aocr
+ 1olIV] [Pl ws—a-pr/2.as-172¢p) |1l ss.a.0(7),-

To check conditions of Theorem 3.1, it is helpful to note that a = 0 when s < £. Theo-
rem 4.1 implies

I ol VI u*Tllws—a-sr/2.a5-1/2(1) S IIMIIfgs.a.o(,)
and hence we conclude that
lullssany < NS ms + gl gellullss.aoqy + IIMII§S,u,o(,)-

Consequently, if u € S5%0(1) is a solution to ®( f, g;u) = u, then we have the improved
regularity u € S%%?(I). As above, we now define

v =e"Vg—go(IV]uf?).

Since u € S%%?(I), an application of Theorem 4.1 then gives V € W&s=1/2(]) In
particular, we have a local solution (u, V) € C(I, H* x H*) to the Zakharov system (2.1).
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6. Local bilinear estimates in the endpoint case

In this section, we deal with the endpoint case (s, {) = (%, d—;“) and establish bilin-
ear estimates which include dispersive norms on the right hand side. We start with an
improvement of Theorem 3.1 in the endpoint case.

Proposition 6.1. Let d > 4 and (s,{) = (d%, %). Let I C R be an interval. Then

1/2
loullysooqy 5 Iolweos—ea il o o ga Pl 500y 6D

Proof. Suppose for the moment that we can prove that for any o > 1 we have

HZ Pr(vup/a) NSOO(I) /2”v||L°°H@(I><]Rd)||u”L2Wv2*(Ide): (6.2)
A>a
|2 P, 00 S @0 lweosaullssoo. (6.3)
A>a
Then since

1/2
2s
HXA: P,x(vuzx)HN&O’O(I) S (ZX ||11vu>x||Lz z*)
1/2
< 228 2) ‘
~ H”(ZA 21 L2L3* (IxRY)

(L )|
A

) ”v”L?"H_é(IXRd)”u“L?W)fl*(Ix]Rd)

<
pY ||U||L<I>OL§/2(1><R¢1) L2LE" (IxR9)

an application of (6.2) and (6.3), together with the definition of the restricted spaces
NS00(1), §509(1), and W405=1/2(T) implies that for any M > 1 we have

lvull ps.o.0r)

< HZ Prvuz)| oo Z I3 Pivirge)

<M A>a
+ Y HZ Py (vupsa)

a>M A>a

Ns:0.0(1)

NS 00(1)

< M2 |vlleos—12) lull + M2 v llyeos—1r2qy lull gsoor

L2WE? (IxR4)

Optimising in M then gives (6.1). Thus it remains to prove the bounds (6.2) and (6.3).
For the former estimate, we observe that since s = £ 4 1/2,

1/2
2s
NTOO(I) (ZA ”vu’l/a”Lsz*(lde))

< H (Z 12S|vm|2|uua|2) ’

A>a

H D Pavuisa)
A>a

L2L2* (IxR4)
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1/2
< a2 sup o, (30 Mua ) |
12 A

1/2
< &2 o]l o e lul

L2L%* (IxR4)
L2wE? (IxR4)

where the last line followed via Holder’s inequality and Sobolev embedding. The proof
of (6.3) is more involved, and exploits the fact that the high-low interactions are non-
resonant. In particular, since A > « > 1, the non-resonant identity

P){V(Pg))tzvu)k/ot) = P)fV(Pi?)Lz UxA Pgizul/a)

implies that

2
DIFAACIIYS] Z WNEY a2 o + D VNPT w7,
A>a .

A>a
<y AzxnP;;zw%zuwuu%i*
A>a
+ ) AP vl o0 + 3 A omauagall}y L (64)
A>a A>a

To estimate the first term in (6.4), we observe that since s = £ + 1/2, we have

25 p® ( 1/2
(A2 1PGvaa P el 2.

A>a

1/2
- H(Z Azs”Pi)ﬂv*’lp'»,xzul/aHLZ*) ‘

L2
A>a 4
1/2
—L
S Wollzgome (D22 21POursalZs o)
A>a
< )LZ(S—E—Z) P9 A 2 1/2
Slollzeeme () 160, + AussalZz g
A>a

< 05_3/2||U||L;’°H4 Gor + A2 g1

d=3

To bound the second term in (6.4), again using the fact that £ + 1/2 = s = “5=, we have

1/2
(Z A% “ Pilz VAU /o ”L?Li*)

A>a
1/2
2(s+1/2 ®) 2 -1/2
S (2P0l ) sup AT el e g

Ao A>a

_ _ . 1/2
<@ 2(3 2200+ VD PE vl ) lulien
~ g
<o Plvllweos-rzullzze s
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Finally, for the last term in (6.4), since s — £ — 1 = —1/2, an application of Bernstein’s

inequality gives
< Az(_g_l)“v u ”2 )1/2< AZ(S—I) & d_2||v “2 ||M ”2
E ~aUafallp2 = } o ~allp2 WA el 2x
>a

A>a

1/2

t
S Pl el supd s g o
< 01_1/2||”||L§><’H«‘Z ||u||L?W§.2*'
We have a related estimate to deal with the wave nonlinearity.
Proposition 6.2. Letd > 4, (s,{) = (%, df“). Let 0 € I C R be an interval. Then
[Fo (V@YD Ilweocr)
< (10l 2y gy 1V 2o ) (el Iyl )2 65
~ U@l 2w (xray IV 2w (1xR ) PlissoomnliVilssoom) - :

Proof. Suppose for the moment that for any o > 1 we have the bounds

> VId0@avare)| o S @210 2wsa (e 1V 2w (e
A>a

_ 1/2
+a 1/2(||¢||L%W;.2*(,XW)||vf||L2Ws.z*(,de)||<o||ss,o,o(1)||w||ss,o,o(1)) . (6.6)
D V1o @avsa) | ey S @ PIellssoom IV lIsso0wm), 6.7)
A>a
; VI50@v=)| o,

1/2
< (101252 ety 1V 252" (e € s3000) ¥ ss000)) 2. 6:8)
Let M > 1. As in Proposition 6.1, by decomposing

v =YY BVt me + Y Tt

a>1 A>a a>1 A>a

and using symmetry, an application of (6.6) for « < M, (6.7) for « > M, and (6.8) for
the remaining high-high interactions gives

Viweoeq < || IVIdo@V) | ye. 0.0(1)
(HZ IV10@1¥2/a)

weoey HZ VI90@2a¥2)| . (1))

a>1

+ HZ fwmwm\)
A

< Mg

We.0.£(1)

2w eV l2we (may

1/2
+ (||§0||L?W§‘2*(1de)||1/f||L,2W;”2* (wxray@lsso0m ¥ llsso0m)
+ M_1/2||(p||ss.0,0(1)||1//||SS~0’°(1)

1/2
=+ (||§0||L%W)}s2* (IxR4) ” 1/f ”LlZWgZ* (IxR4) ”(p ”SA‘,0.0(I) ||1// ”SA‘,0.0(I))

Optimising in M then gives (6.5).
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It remains to prove the bounds (6.6)—(6.8). We begin by noting that an application of
Holder’s inequality and the Sobolev embedding together with the assumptions on (s, £)
imply that

_ 1/2
(Z A2(5+1) ”(p/\'WA/Ol ”I%}L%(IXR‘”)

Aza
(Z A23|¢A|2)1/2 (Z PRIGEEDINN |2> 1/2‘
A A

1—
<o)

S al+l—s

LILZ(IxR4)

L%W)?*,Z* (I xR) 1K ”wa£+1*5"1(1de)

1/2
S o / ”(p”L%W;’Z*(IXRd)”l//”L%W;'Z*(IX]Rd)'

On the other hand, again applying a combination of Holder’s inequality and Sobolev
embedding, we have

_ 2 _
(vl ) sat

(= 210a) " sup |

L?  (IxR4)

A>a
- 1/2
S S(”(p”L%W)‘EQ*(lde)”w”Ltoon_s‘d(lde))
(i ], )
X oo 1rs oo
¢llLeens Slip YallLs L2
SC2(100 s oras 1V 22 gy 10 a3 ey ¥ Lo g ray) 2
~ Pl2ws2* (1xrd) 2w (xR IPIL HY (IxRY) LS HS(IXRY)
(6.9)
The bound (6.6) now follows from the standard energy inequality as
[Fo(G)llweo.ery = 1F0(11G)llweo.c
1/2
20 2 2(4—1) 2
S (X 190G e pn + 12V, )
ne2lN
20 2 2(6-1) 2 /2
5(2 PHNGLIT1 12 ay T 1 ||11Gu||L%x) . (6.10)
ne2N

We now turn to the proof of (6.7); this requires exploiting the fact that the high-low
interactions are non-resonant. More precisely, since A > « >> 1, the non-resonant identity

Pi?p(%%/a) = sz (C2202¥2/0) + Pi?p(C«AZ@ PO Visa)
together with

_ 1/2
(2P EL (Cor@rvam 2y 2)

A>a

1/2
{— 2 1 — 12 {— —1/2
S (LA e, ) A Wl e S o P elseool ¥ lscoo

A>a
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and

_ 1/2
(2P (CasoBr PO a2 12)

A>a

~ 1/2
S s 2ol iz (2Pl )

A>a

< @l gpygn 1P 00 + AWl e

and
2(0—2 2 1/2 2(4—2 A 4 2 2 2
(2Dl ) % (ZA (- >(a) 17213 0 12 ||w/a||L?oL§)
A>a A>a

—3/2
a7 gllsso0l¥llss00

and (6.9) in the special case I = R, implies that (6.7) follows from an application of the
high frequency energy estimate in Lemma 2.6.

The final estimate is the high-high case (6.8). An application of Sobolev embedding
gives

1/2
(; PEDNLF vl )

s H (Z Azsl(:0,1|2) 2 (Z 22 +1-s) V2 |2> 1/2‘
& A

S ||¢||L%W§2* (IxR4) ”w”L%W;Z* (IxR4)

LlL?

and hence (6.8) follows from the energy estimate (6.10) together with the L%,x bound
(6.9) in the special case @ ~ 1. [

7. Well-posedness results

7.1. Global well-posedness for the model problem

The first step in the proof of Theorem 1.2 is to prove the following global result for the
model problem
(0 + A=RV)u=F, u(©) =/

where we assume that f € H® and || F || ys.c.0 < co. In particular, this shows that the
Duhamel operators 4y are well-defined maps from N*%0 to %99 even for large wave
potentials V.

Theorem 7.1. Let 0 <5 < { + 2 and £ > 5* with (s, £) # (£, 4 —2). Let =
max {#, s — 1} and a = a* (s, ) where a*(s, L) is as in (2.4). There exists € > 0 such
that if 0 € I C R is an open interval, and

feHRY, Vp=e"VgeL®HL |V-Villypeasy <e FeNSI)
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then there exists a unique solution u € C(I, H*(R%)) N L%Li* (I x R%) to the Cauchy
problem

(3 +A—ROV)u=F, u)="f

Moreover, there exists a constant C = C(Vy) > 0 (independent of I, f, V, and F) such
that

lullss.aoqy = COLLf s + [ Flvsaomy)

and, writing 1 = (T—, Ty) with —oo < T_ < T4 < oo, there exists f+ € H® such that
lim e %u(t) — filgs = 0.
t—)T:t

Remark 7.2 (Free wave potentials). The potential V' in Theorem 7.1 should be thought
of as a small perturbation of the free wave V; = e'*IVlg. In particular, in the special case
where the potential is simply a free wave, i.e. V' = V., the smallness condition is trivially
satisfied. Consequently, forany f € H®, g € H®, F € N®%° Theorem 7.1 gives a global
solution u € S0 to the Schrodinger equation

(i3 +A—RV))u=F, u)=f (7.1)

Thus no smallness condition is required on the potential V, or the data f. Moreover,
for any open interval / C R and g € H*, the Duhamel integral is a continuous map
dy, : NS*0(I) — $%99(]), and we have the bound

v, [Flllgs.aocy < I1F || ns.aory-

Remark 7.3 (Strichartz control). When a > 0, the solution space S*%° does not con-
trol the Strichartz space L?Wy 2" On the other hand, when 0 < s < £ + 1, we have
a*(s,£) = 0. Therefore, an application of (2.5) and Theorem 7.1 implies that solutions to
the Schrodinger equation (7.1) satisfy the (global) Strichartz estimate

1/2
(2 AW o giray) < tllsnoo < 1F s + I F lysoo.
Ae2N
In particular, forany 0 <s < {4+ 1,£ > %, and (f,g) € H* x H* we have
il 2ypse S0 s + 0G0+ A= RVl 220
The first step in the proof of Theorem 7.1 is to prove a local version with the additional
assumption that the potential V' is small in some dispersive type norm.

Proposition 7.4, Let0 <s <{+2andl > d/2 —2 with (s,£) # (d/2,d/2 — 2). Let
B = max {ﬂ, s — 1} and define a = a*(s, ) as in (2.4). There exists ¢ > 0 and C > 0
such that if 0 € I C R is an open interval, and

f S HS(Rd), F e Ns’a’o(l)» Ve We’a’ﬁ(l)’ ”V||W€,a45(1)+L12Wg~d(1X]Rd) <e,
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then the Cauchy problem
(0, + Nu=RV)u+ F, u(0)=/
has a unique solutionu € C(I, H*(R?)) N L2L2" (I x R?) and we have the bound

[ullgs.aoy < CULfas + 1 F | ns.aocry)-

Moreover, writing I = (T-, T4) with —oo < T_ < Ty < oo, there exists f+ € H such
that

lim [le™"%u() = falluy = 0.

t—)T:t x

Proof. This is a direct application of Lemma 2.4, Lemma 2.5, and Corollary 3.2. Define
the sequence u; € S*%%(I) for j > 1 by solving

(0 + Nu; =R(V)uj—1 + F, u;(0) = f,

and let ug = 0. An application of Corollary 3.2 together with the smallness assumption
on V implies that

||”j||sssas0(1) SN fllas + 8||’4j—1||SS-a-0(1) + ||F||Ns-u-0(1)

and

luj —uj—1llgs.aocy < elluj—1 —uj—allgs.aocr)-
Thus provided ¢ > 0 is sufficient small (depending only on the constant in Corollary 3.2),
the sequence u; is a Cauchy sequence and hence converges to a (unique) solution u €

§%@9(]). Uniqueness in the larger space L L2 N L2L2" follows by standard arguments
from the Strichartz estimate

” do [ER(V)M] ”L?OL?YQL%L%* (IxR4)
S IRl 2,2 g xpay WV lpoe 2+ 206y xray Ml Lo 201202 (1xme)
N HV||W5~a~/’(1)+L,2W§"d(1><]Rd)”u”Lt"‘)L%ﬂL%L%*(Ix]Rd)‘
Finally, to prove the existence of the limits lim;— 7 i e~ it Au(z‘), it suffices to show that
e"15y is a Cauchy sequence as ¢ — T'y.. To this end, we first observe that by Corollary

32wehave G = R(V)u + F € N5%%(I). Let G’ € N*%0 be any extension of G from
I toR. Then foranyz,t' € I,

le™Bu(e) — e " Au(t) | gs = e A do[G1(1) — e A do[GI(t) | s
— ||e_iZAJ0[G/]([) o e—il‘/AJO[GI](t/)”HS

t
= H/ e AG(5) ds
t/

)

HS

and therefore an application of Lemmas 2.4 and 2.5 implies that e 7#*2u(¢) is a Cauchy

sequence as required. |
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To apply the previous proposition, we need to decompose R into intervals on which
V7, is small. This exploits the dispersive properties of the free wave V;, = e¢'*IVlg. More
precisely, we have the following minor variation of [2, Lemma 4.1].

Lemma 7.5 ([2, Lemma 4.1]). Let £,s,a >0, & > 0, and Vi, = €!IVlg € L®HE. Then
there exists a finite collection (I;);=1,..n of open intervals such that R = U]I-VZI I,
min|/; N I;41| >0, and

v ”VL||W@vav5(1j)+L,2W)§'d(Ijde) <eé.

Proof. Decompose g = g1 + g2 where g2 € CP(R?) and | g1 z¢ < &. Since g is
smooth and compactly supported, the dispersive estimate for the free wave equation gives

.....

vals such that R = U§V=1 Ij,min|I; N Ij 4| > 0, and
it|V|
j=Slup N ||€ gz”L%W;‘d(Ij xRd) <é&.

On the other hand, the definition of the norm wta.B implies that

it|V| it|V|

||€ g1||We,a,B(1j) < ||e gl”We,aﬂ =< ||g1||H@ Se

Therefore, for every j = 1,..., N, we have
it|V|

Se
&2l 2wyt apmay 3
|

it|V
”VL”WL“vB(Ij)JrL%W;'d(Ijde) = ”e”l |gl”WL“f‘(Ij) + ”e

The proof of Theorem 7.1 now follows by repeatedly applying Proposition 7.4
together with the decomposability property in Lemma 2.8.

Proof of Theorem 7.1. Let ¢ > 0 and suppose that
IV =Vilweas <e.
An application of Lemma 7.5 gives a finite collection (/;);=1,...y of open intervals and
points ¢; € I;_1 N I; such that I = U;VZI I;,min|I; N Ij1| > 0, and
N ”V”WeAa.ﬁ(Ij)_;_L%Wg’d(Ij xR4)

<|V- VL”WL”ﬂ(I) + '_sup ”VL||W€,a,B(1j)+L?Wg~d(1jXRd) <2e.

J=1s

Assuming ¢ > 0 is sufficiently small, Proposition 7.4 gives a (unique) solution u €
C(;,H*)N L%Li* j x R%) on the interval I; > 0 to the Cauchy problem

(o + Nu=RWV)u+F, u=rf¢f (7.2)
such that

lullssaow,y S N fllas + I Fllsaou;y S I las + 1 Fllysaoqy-
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Taking new data u(¢;) and u(¢;—1), and again applying Proposition 7.4, we get a unique

solution
ue Clj—y UL ULy, H)N L2LY (Ij—1 U I; U Ij11) x RY)
with
sup  |lullgs.aocy S IS Ias + I1Fllys.aoq.
k=j—1,j,j+1

Continuing in this manner, after at most N steps, we obtain a unique solution u €
C(I,H%) N L2L2 (I x R?) such that
ullgs.a0ry SN SUPN lullss.aou;y SN ILf las + I1F l[ns.aoqr)
=l

where the first inequality is a consequence of Lemma 2.8. Finally, to show that the claimed
limits as t — sup [ and t — inf I exist, we simply repeat the argument at the end of the
proof of Proposition 7.4. |

7.2. Local and small data global results for the Zakharov system

d—3

We first consider the non-endpoint case s > “5=.

Theorem 7.6 (LWP and small data GWP: non-endpoint case). Let d > 4 and suppose
that (s, ) satisfies the conditions (1.3) and s > %. Leta = a*(s,£) and b = b*(s, )
as in (2.4). For some 0 < 0 < 1 and any g« € H*(R?) there exists € > 0 such that if
fv € H*(R?) satisfies

||f*||§{?29||€”Af*”i%L§* (Ixrd) <€ for an interval 0 € I C R, (7.3)
then for all (f, g) in
De(fugs) = {H* x H 1 || f = fullms <. lIg — gxllme < e},
there exists a unique solution (u, V) € S5 (1) x WE@s=12([) 10 (2.1). The flow map
H' R x H R > D3 (f.g)— (u,V) € S5 (1) x whes=1/2(])

is real-analytic, where D = D.( fx, g«) is the open bi-disc defined above. Moreover, if
I =R, then there exists (f+,g+) € H* x H* such that

lim (lu(t) — e falms + V() —eVga| ge) = 0.
t—=4o00

Proof. Fix (s, {) satisfying the conditions (1.3) and s > %, and define ¢ = a*(s,£) and
b =b*(s,f) asin (2.4). Let { = min {€,s —1/2} and define V; = ¢!IVlg, to be the free
wave evolution of g, € H*, and similarly u; = ¢'*2 f, for f, € H® in the case of the
free Schrodinger evolution.
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Let us recall that dy, [F] denotes the solution to the inhomogeneous Schrodinger
equation
(3 +A—RVL)Y = F. ¢ (0) =0,

and similarly, go[G] denotes the solution to the inhomogeneous wave equation
(i0: + V)¢ =G, ¢(0)=0.
We claim there exists Cg, > 0and 0 < 6 < 1 such that
v, (R@)V]llssaory = Ceulldllyias—1/2 1V Iss.a.001). (7.4)
”JVL [ER((P)T//]”L?L%* (IxR4) = Cg* ||¢||WZ.0.0(1)||1/I||L%L)2C* (IxR4)’ (7.5)
— 9
||go[|v|(1//¢)]||WZ.a.s—l/2(1) = C(”w”L?L)ZC*(IX]R‘I)”(p”L%L)ZC*(IXRd))
1-6
X (1 llssaonll@lssaomy) - (7.6)

The estimate (7.4) follows from Theorems 7.1 and 3.1. To prove (7.5), we again apply
Theorem 7.1 and observe that via the Littlewood—Paley square function estimate and
Bernstein’s inequality,

1/2
2
1y, 1F 212 ey S 2 1 P2tV [FII e gy
A€2

<o IFlvooony Se. 1202 g
(see also (2.7)). Therefore
”JVL[m(d))W]”L%L%"UXRd) 5g* ||¢1'Z[”L,2L)25* 5g* ||¢||L?°L¥/Z(IX]R4)”I//”L%L)zc*(IXRd)
g ||¢||WZ-0~O(I)”w”L?L)ZC*(IX]Rd)

and so (7.5) follows. The final estimate (7.6) is a direct application of Corollary 4.2.
Setp =V — Vi and g* = g — g.. Then we want to solve

(id; + A =NRNVL))u = R(p)u, u(0) = f,
(9 + Vo = —|V||ul>, p(0) =g*.

Since p = e/IVlg* — g4(|V| |u|?), we want to solve u = ®( £, g:u) for u, where
O(fogiu) i= €A f + dv Vg ) = dv (Fo(IV] |ul).
Also, let f* = f — fi. Then, by the endpoint Strichartz estimate
e f ¥l 220 < Csell f*IlL2

and estimates (7.4)—(7.6) above we obtain

. itA
1S 831012 12 (rmary < Csull S s + 1€ 2 fell 2 2% (1w

* _ 2—-26 1+26
+C *”g ”Hﬁnu”L%Li*(IXRd) + Cg*C”u”SX‘”‘O”u”L%L%*(Ix]Rd)'
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Similarly, we have

I2(f. g:wllgs.aoqy < (1 +2Cse) [l fillas + (1 + 2Csu) | f* || s

3—-260 260
+ Cg, g I i llull gs.aory + Cen Cllullgsaollully2 ;2 ygay-

In addition,

10(f. g:u1) = P(f. g u2) | ss.a00) = Caullg™ Ml llur —uzllss.aocr)
+3Cq, C(luilssa0 + luzllgs.a0)*~"

[4
X (”MIHL%L%*(]X]Rd) + ”uZHL%L}*(Ide)) lluy — u2”SS~“’0(I)'

Let R > 1 be chosen such that 1 4 2Csy, Cg,, CCg, < R. Consider the complete
space K defined by all S4:9(1) satisfying

it A
||u||SS~a~0(I) = 2R||f*”H37 ||u||L?L%*(1de) = 2R||e’l f*||L%L%*(Ix]Rd)

with the distance defined by the norm [[u|| gs.a.0¢7y (Which dominates ||u ”L,ZL%* ).

Recall that || f*| as, ||g* || e < &. Therefore, for small enough & > 0, we conclude that
®(f.g:-): K — K is a contraction. Hence, there is a unique fixed pointu € K C §%%9(I)
of ®(f. g:).

In addition, as a consequence of the above estimates, for (f,g) € D and u € K, we see
that for any v € §%%9(I), the linear map Tv = v — D, ®( f, g: u) is a small perturbation
of the identity, and hence T is a linear homeomorphism onto S%:4-9(J). Furthermore,
the map @ is real-analytic (as a composition of linear, bi- and trilinear maps over R).
If u[ f, g] denotes the solution with initial data ( f, g), the implicit function theorem [10,
Theorem 15.3] implies that the flow map D > (£, g) > u[f. g] € S4°(1 ) is real-analytic.
Define V = ¢/IVlg — g4(|V| |u|?). Estimate (7.6) implies that V € W%s=1/2(J) and
(u, V) is asolution of (2.1). Also, D > (f,g) = V[f.g] = eWVlg — g0(IV| |lulf.g]I?) €
Wwtas=1/2(J) is a composition of real-analytic maps and therefore real-analytic. In the
case s > + 1/2 we have £ = {and b = 0, so this is the claim.

In the remaining case s < £ + 1/2, we have a = 0. Define k = £ if s > £ and k =
s — %(1 —b) if s < £. An application of Theorem 3.1 gives

[do[N(P) Y]l ss.0.0¢r) < NP lweos—172¢y 1Y Il ss.0.0(r),
while Theorem 4.1 implies that
£ lVIW O wreos-172¢ry S 1V 55000 1@l s5.0.0(7)-
For (f, g) € D and the solution u € K we have
u =" f 4+ doM(e" Y u) — do(Fo (V] [ul)u). (7.7)
Thus, we conclude that

lullss.oncry < 1f s + Nglhgellullssoony + lullgsooq
< A+ lglae + 1A I1ENS s
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Equation (7.7) also shows that D > (£, g) — u[f, g] € S5%P(I) is a composition of real-
analytic maps, hence real-analytic. Theorem 4.1 again implies that

1UVIWOIweos-12ay S ¥l ss00) @l gs.00r)-

We conclude

IVliweos—1r2ay < llgllee + (1 +lIglge + 1L I7)? 1S 7z

and, as above, D 3 (f, ) — V[f. g] € WHOS=1/2(]) is real-analytic.

Finally, we remark that if / = R, then the solution scatters. This follows from an
analogous argument to that used in the proof of Theorem 7.1 (i.e. one shows that u(¢)
forms a Cauchy sequence as  — 00). It only remains to prove uniqueness in S%?(I) x
W as=1/2(1) but this is again a consequence of the estimates proved above. |

We now consider the endpoint case (s, £) = (d%, # .

Theorem 7.7 (LWP and small data GWP: endpoint case). Let d > 4 and fix (s,{) =

‘172;3, %). For any g« € H* there exists & > 0 such that if fx € H* and0 € I C R is

an interval with
itA 7
”elt f*”L?Wi'z*(lde)”f*”HS <e, (78)

then for all (f, g) in
De(fuige) ={(f:8) € H x H || f = fullms <e. llg —gxlle <),

there exists a unique solutionu € C(I, H%) N L%Wxs’z* (I xR, VeC, H 102.1).
Moreover, (u, V) € §509(1) x Wt9s=1/2() and the flow map

HS(]Rd) X He(Rd) 5D > (ﬁ g) — (u’ V) c Ss,O,O(I) % W@,O,sfl/z(l)

is real-analytic, where D = D¢( f«, g«) is the open bi-disc defined above. If I = R, then
there exists (f+,g+) € H* x H* such that

tim (Ju() —e" fellus + 1V(E) —e"Vgillye) = 0.
t—+o0

Proof. Let g, € H® and & > 0 to be fixed later depending only on g, and the implicit
constants in Theorem 7.1 and Propositions 6.1 and 6.2. Let fx € H* and 0 € I C R satisfy
the smallness condition (7.8). As in the proof of Theorem 7.6, we let V, = etV S+,
p=V -V, g*=g—g«and f* = f — fi.. We want to solve u = O(f, g; u) for u,
where

O(f giu) = e f + Jy, (R Vg u) = dy, (Fo (V] [uP)u).
and obtain p = €"IVIg* — 44(|V| |u|?). An application of Theorem 7.1 implies that

v, [Flllss0.0r) Sgu IF | ns.0.00r)

and therefore Propositions 6.1 and 6.2 give
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. /2 itA 1/2 *
<
19CF 81l 22 (rugay See Il N ™ Sull S con gy + 1/ e
1/2

3/2
L2WE (IxR9) L2WE (IxR9)

1/2

3/2
g0y + ul |

$5.0.0(])

+ 11" e ull |l

and similarly

1/2 1/2
|DCf, &)l 55000y Seu Il fullars + 1F as + €™ grellull. Il o0y

LW (IxRA)
3/2 3/2
+ ”u ”L%W;z* (IXRd) ”u ”S.X,0,0(I)

and

(S gsu1) —D(f. & u2)||SS-0<0(1) Sex g™l grelluer — u2||SS-0-0(1)
+ (lus ||L;Wg,2*(lde) + ””2||L,2Wg~2*(1de))(”“1 | ss.0.0¢r) + U2l ss.0.0¢1))

X [[uy — uz |l gs.0.0(sy-

As in the proof of Theorem 7.6, a routine contraction argument then implies that, pro-
vided & > 0 is sufficiently small, there is a unique fixed point u € S%%0(I). Setting
V = Vy — Jol|V] [ul?], we get a solution (u, V) € S990(1) x WH0s=1/2([) due to
Proposition 6.2. Also, the flow map is real-analytic; we omit the details.

To prove that the solution scatters, we note that writing I = (Ty, T1), then as in the
proof of Theorem 7.1, a computation shows that for any sequence of times ¢; /* Ty, the
sequence (e~ Au(tj), e i1V V(¢;)) forms a Cauchy sequence in H® x H ¢ In particu-
lar, the limits

. —itA —it|V] . —itA —it|V]
tl}rgl (e u(t),e V(t)) and tl\LmTO(e u(t),e V(t))
existin HS x H®. Therefore, if I = R, the solution scatters to free solutions as t — £00.

To check the uniqueness claim, we note that the above bounds together with a conti-
nuity argument give uniqueness in S*%0(7) x W40s=V2(1) If (u, V) is a solution with
u € §590(1), then V e W4%s=1/2([). In particular, to prove uniqueness, it suffices to
show that if (u, V) withu € L®H* N L2W2 (I x R?) and V € L HY is a solution,
then u € S%%9(7). To this end, we note that a standard product estimate gives

1Gd: + A)””L?H;—l(lxﬂgd) = ”m(V)””LfH)SC—l(Ide)
< ||V||L;>°H@(1><Rd)||M||L%W;.2*(kad)
and therefore
”””L?"HS(Ix]Rd) + ”u”L§W§'2*(1de) + 19 + A)”||L?H§—1(1xmd) < Q.

Consequently, extending u from the interval I = (T, T7) to R using free Schrodinger
waves

1 = 100 10) (e TTORU(To) + 1 ()u(t) + Liy o0y ()€’ T2 (Ty)

(u(Ty) and u(Ty) are well-defined by the above) we see that by definition of the norm
§5:9:9(T), together with the endpoint Strichartz estimate, we have
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lullss.oouy < 1 lgems + ol + 1G9 + Ml 2 g1

2p78.2%*
LWy

< ||“||L‘,’°HS(I><R¢/) + ”u”L%W)i'z* (IxR4) + 1G9 + A)u”L%H;—I(IX]Rd) < 00.

Therefore u € §%%%(1) as required. n

8. Persistence of regularity

In this section our goal is show that under suitable assumptions on a solution (u, V) to
(2.1), any additional regularity of the data (u, V)(0) persists in time.

Theorem 8.1. Let (s,£) satisfy (1.3) and fixa = a*(s,£), b = b*(s,£) as in (2.4). Suppose
that (u, V') is a solution to the Zakharov system (2.1) on some interval I > 0 with

2 + Jluell 3 o d)+||V|| < 0.

d7
L H, 2 (IxR4) L2W, 2 7 (IxR

If (u,V)(0) € H® x HY, then (u,V) € S5%b (1) x WHes=V2(I), and the flow map is
real-analytic with respect to the H* x H* and S5%° (1) x W5@s=1/2(]) ropologies.

d—4
L®H, 2 (IxR4)

We break the proof of Theorem 8.1 into three main steps.
(1) (Improving Schrodinger regularity when s > £ + 1/2) If (s, £) and (5, £) satisfy
(1.3)and £ + 1/2 < s < §, then
u,V) e S50 x whHs=12(1y and u(0) € H®
= (. V) € S5®O0(1) x Wwhas—12(p)

where a = a*(s,£) and @ = a*(§, £).
(i) (Improving wave regularity when s > £ + 1/2) If (s, £) and (s, 0) satisfy (1.3) and
£ <€ <s5—1/2,then

,V) € 5401y x Whas=1/2([) and V(0) € H®
— (V) e §580(1) x whas—1/2(p)
where now a = a*(s,£) and a = a*(s,f).
(iii) (Improving wave regularity when £>s—1) If (5,£) and (s, 67) satisfy (1.3) and
s—1<{ < {,then
V) € 850 (1) x WEOs=2([) and V(0) € H'
— (W, V) € S0P (1) x Whos12(7)

where b = b*(s, ) and b = b*(s,f).

Theorem 8.1 then follows by repeatedly applying the implications (i)—(iii) and using the
fact that the assumptions on (u, V) in Theorem 8.1 imply that (u, V) € §95200(1) x
d=4 o d=4
w =% (I).
We give the proof of the implications (i)—(iii) in Sections 8.1-8.3 respectively. The
proof of Theorem 8.1 is then given in Section 8.4.
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8.1. Improving Schrodinger regularity
Our goal here is to prove the implication (i). Let (s, £) and (5, £) satisfy (1.3) and £ + 1/2

<s<3§.Leta =a*(5,¢)and a = a*(s, ). Clearly we may also assume that § < s + 1/8,
since the general case follows by repeatedly applying this special case. The key point is
to prove that there exists & > 0 such that for any interval / C R,
2 - 0
IEo AV Tl yeaniy < IIMIIL2 FEURN 111 o a.0(f) (8.1)

Wy 2 T (IxR4)

where f = max {%, § — 1}. Supposing (8.1) holds, decomposing I = Uj-v=1 I; with
min [/; N I; 41| > 0, we may assume that on each interval /; we have

6
Il iz ) <o

where ¢ > 0 is as in Theorem 7.6. Choose ¢; € I; N I;1. Applying (8.1) and a time
translated version of Theorem 7.6 then implies that u € S5@0(J 7) with real-analytic
dependence on (u(t;), V(¢;)) forevery j = 1,..., N. Taking the union of the finite num-
ber of intervals I; via Lemma 2.8 then gives u € S §:4.0(1) and real-analytic dependence
on (u(0), V(0)). In particular, we have the implication (i) under the additional assumption
that s < § < s + 1/8. But this implies (i) after repeatedly applying the above argument.

We now turn to the proof of (8.1). In view of the bound |V || ye.a.8 S |V liwet+a—a.as,
it suffices to show that

memeW%w@swﬁz%hh W2 62

If s > 93 then a computation shows that

ﬂ<min{s,2s—%—a}, 2a<2s—(€+d—a)—%, a<s—({+a—a)

and hence (8.2) follows from Corollary 4.2. On the other hand, in the endpoint case s =

d23 wehavea =a =0and{ = d 4 and hence (8.2) follows from Proposition 6.2.

8.2. Improving wave regularity [

Our goal here is to prove the implication (ii). Let (s, £) and (s, £) satisfy (1.3) and £ <
{<s—1 /2. Without loss of generality, we may additionally assume that (<041 /2,
as the general case again follows by repeating this special case. Let a = a*(s, £) and
a=a*(s, 57). A computation shows that

2a<2s—2—%, a<s—1L.

In particular, since @ < a, an application of Corollary 4.2 implies that there exists 6§ > 0
such that

||go(|V| |u|2)||Wl~ﬁ,s—l/2(1) = “5(0(|V| |u|2)||WZa s— 1/2(1)
< )

d—=3 Hx ”M” saO (83)
2w T ey 00D
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and hence V = e!IVIV(0) + 2o(|V] |u|?) € Wz’d’s_l/z(l). It only remains to improve
the Schrodinger regularity to u € S%9(I); but this follows by arguing as in (i). Namely,
we can decompose the interval I = U]I-VZI I; into a finite number of intervals /; satisfying
min|/; N ;41| > 0and

hell® s . Ilull oy K€
L,?WXT'2 (I; xR4 et

where & > 0 is as in Theorem 7.6. Choose ¢; € I; N I; 1. Applying the estimate (8.3)

together with Theorem 7.6, we conclude that u € S%0(J ) with real-analytic dependence

on (u(t;), V(t;)) for j =1,..., N and hence u € §%@9(T) by Lemma 2.8 and real-

analytic dependence on (u(0), V(0)). Therefore the implication (ii) follows.

8.3. Improving wave regularity I1

Our goal here is to prove the implication (iii). Let (s, £) and (s, 0) satisfy (1.3)and s — 1 <
¢ <{.Leth=b*(s.£) and b = b*(s.{). Suppose that (u, V') € S50 (1) x WH0s=1/2(]),
we would like to improve this to (u, v) € §* b(]) x WE0s= 1/2(I), again with real-
analytic dependence. In view of Theorem 4.1, it suffices to show that u € S5 b(I ).
Choose £ < ¢ < { such that

max{# +b,s—1 +I;} </ §min{2s—%,s+b}, (s,0) # (d— d— +b).
An application of Theorem 4.1 gives
WV llwe 051720y S WV Ol gz + lul§son

and thus, via Theorem 3.1, we conclude that

ll g5.05¢ry S N O)lrs + 1V e o.s-172¢) 1l 550001
S M ©@)llas + VO 5z + lulgon )l sso0q)-

Therefore u € S50 (1) as required.

8.4. Proof of Theorem 8.1

d=3
In view of the implications (i)—(iii), it suffices to show that if (u, V) € C(I, Hy > X

— d—3 Hx
H%) is a solution to the Zakharov equation (2.1) withu € L2W, 2 2 (I x R?), then

u,V)e §420, Oy xw =z o452 (I ). But this implication is contained in the argument
used to prove uniqueness in Theorem 7.7.

9. Proofs of the main results

9.1. Proof of Theorem 1.1

Suppose that (s, £) satisfies (1.3). Then Theorem 7.6 or Theorem 7.7 implies well-posed-
ness on a (small enough) interval 7 > 0.
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Now, we prove the converse implication. More precisely, we prove that the flow map
of (2.1) is not of class C? for (s, £) which do not satisfy (1.3). Fix (s, £) and assume the
contrary. Fix ¢ > 0 and consider

t
I,(t) = —i/ B (R (e Vg el ;) dr’,
0
t
D) = i/ OV (e B el Ry ) dt
0

for certain [|gx |l geray = | fallgs®ay = hallgs@ay = 1, to be chosen later. (1, J3)
corresponds to a second order directional derivative (Gateaux derivative) at the origin,
which must be uniformly (in A) bounded by our hypothesis.

We first prove lower bounds on £. Choose

) =A"1215,(¢), Gi={teRY:A<|g <21)
and

17, 6)

_— - = RY:2 < < A/4}).
e log(e) 2T G ERT 2= RIS

G

We compute
d/2—s .
- AIOT ifs < d/2,
fa(§)dE ~ { loglogA ifs =4d/2,
F
* 1 ifs > d/2.

If %A <&l < %/\ and n € F), then £ — n € G,. Therefore,

M Olls@a < Igallmeall fillmsgay  forall &> 1
implies
A2t /F B dE < 110 | s@ay < 1.
A

which is true if and only if

{>d/2-2 ifs<d/2,
£>d/j2—-2 ifs=d/2,
L>s5—2 if s >d/2.

Second, we prove lower bounds on s. Choose /) = a; + b), where
GE) =27 (L4, () + 14, (9), Ax={E R [E—e1d] < A/4),

~ _ 131(5) _ d . < <
bl(é)_ |S|d/2+slog(|%_|)7 BA—{EGR 2—|£,-:|—)\'/8}

We compute
d/2—s .
Alogﬁé ifs < d/2,

/la(é)a%: loglogA ifs =d/2,
B 1 ifs >d/2,
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as above. The spatial Fourier transform of e’ 2a; ei’Aq; + ¢! 2 by eit’Ab) is zero within
theset C; = {€ e RY : |E — dey| < %)L}. Further, if § € C) andn € By, then§ —n € A;.
Therefore, the bound

IO reway S Ml gs@ay Il gs@ay  forall A > 1

implies
1/2
([(gﬁﬁq%maﬁﬁ) <1 forall A > 1,
Cx
where .
JEb (1) = f AV Y91 (o1 Ba, e BDy) di.
0
Since

1/2 _
( / (S)”I?Jf”(t)(é)lzdé) Sl ACYE
C) B

we must have
25 >0+ 952 ifs <d)2,
s>40—1 ifs =d/2,
s>0—1 ifs > d/2.

9.2. Proof of Theorem 1.2

Suppose that (s, £) satisfies (1.3) and f € H*(R%) and (go, g1) € H*(R?) x H(R?).
Define g = go —ig; € HY(R?). Suppose that || f||gs < &. If £ > 0 is small enough
(depending on g), due to the endpoint Strichartz estimate, we see that (7.8) is satis-
fied for / = R, and Theorem 7.7 yields a unique global solution (1, V') € C(R, H%) N
L? Wx(d_3)/2’2* (R x R%) x C(R, H*) to the Zakharov equation (2.1). Note that v = RV,
|V|719;v = IV have the same regularity. Also, by Theorem 8.1, the additional regularity
persists, i.e. (u, V) € S¢ @b s wtas=1/2 and we have real-analytic dependence. Further,
this implies the scattering claim, as shown in the proof of Theorem 7.1.
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