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Abstract. We prove that every uniform approximate homomorphism from a discrete amenable group
into a symmetric group is uniformly close to a homomorphism into a slightly larger symmetric group.
That is, amenable groups are uniformly flexibly stable in permutations. This answers affirmatively a
question of Kun and Thom and a slight variation of a question of Lubotzky. We also give a negative
answer to Lubotzky’s original question by showing that the group Z is not uniformly strictly stable.
Furthermore, we show that SLr .Z/, r � 3, is uniformly flexibly stable, but the free group Fr , r � 2,
is not. We define and investigate a probabilistic variant of uniform stability that has an application to
property testing.
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1. Introduction

In 1940, Ulam asked the following general question, usually referred to as Ulam’s stability
problem [21,35]: given two groups � andG and an approximate homomorphism f W�!G,
is f close to a homomorphism? The answer depends on the groups � and G as well as the
chosen notions of an approximate homomorphism and proximity between functions.

The following theorem of Kazhdan tackles a particular instance of Ulam’s problem: is
every approximate unitary representation of a group close in operator norm to a unitary
representation?

Theorem (Kazhdan 1982, [24]). Let f W � ! U.H / be a function from an amenable
group � into the group U.H / of unitary operators on the Hilbert space H . Take ı <
1=200 such that kf .12/ � f .1/f .2/kop � ı for all 1; 2 2 � . Then there is a group
homomorphism hW� ! U.H / such that kh./ � f ./kop � 2ı for every  2 � .
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The present paper tackles a similar problem: is every approximate action on a finite set
close to an action? That is, we replace the unitary groups in Kazhdan’s theorem by finite
symmetric groups. We refer to this version of Ulam stability as stability in permutations,
and make use of the normalized Hamming metric on Sym.n/:

dH .�; �/ D
1

n
j¹x 2 Œn� j �.x/ ¤ �.x/ºj 8�; � 2 Sym.n/;

where Œn� D ¹1; : : : ; nº. For a group � and a function f W � ! Sym.n/, we define the
uniform local defect of f to be

def1.f / D sup ¹dH .f .12/; f .1/f .2// j 1; 2 2 �º:

A basic result of Glebsky and Rivera studies stability in permutations when the domain
group is finite.

Theorem (Glebsky and Rivera 2009, [17]). Let � be a finite group and f W� ! Sym.n/
a function, n 2 N. Then there is a group homomorphism hW � ! Sym.n/ such that
dH .h./; f .// � C def1.f / for every  2 � , where C depends only on the group
� .but not on n/.

In Section 1.1, we recall the terminology of group-theoretic stability and two types
of a uniformly stable group: strict and flexible. The above theorem says that each finite
group is uniformly strictly stable. In the spirit of Kazhdan’s Theorem, it is natural to ask
whether the same is true for infinite amenable groups. The first test case, as raised by Alex
Lubotzky, is the following.

Problem (Lubotzky 2018). Does the theorem of Glebsky and Rivera hold when the finite
group � is replaced by Z?

In Section 4 we give a negative answer to Lubotzky’s question: Z is not uniformly
strictly stable. In fact, we prove the following stronger result.

Theorem 1.1. Let � be a group that has a transitive action on Œn�. Then there is a
function f W� ! Sym.n � 1/ such that def1.f / � 2

n�1
, but for every homomorphism

hW� ! Sym.n � 1/ there is  2 � such that dH .f ./; h.// � 1
2
�

1
n�1

.

The theorem implies a negative answer to Lubotzky’s question, not only for � D Z,
but for every group that has finite quotients of unbounded cardinality. Furthermore, by
considering the action of a finite group on itself by left multiplication, Theorem 1.1 implies
that in the theorem of Glebsky and Rivera the dependence of the constant C on the group
� is essential.

These negative results might be discouraging at first. However, another stability theo-
rem, proved by Gowers and Hatami [18] and generalized by De Chiffre, Ozawa and Thom
[12], leads us in the right direction. Recall that the normalized Hilbert–Schmidt norm on
U.n/ is given by kAkhs D .

1
n

tr.A�A//1=2.
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Theorem (Gowers and Hatami 2017, [18]; De Chiffre, Ozawa and Thom 2019, [12]).
Let � be a discrete amenable group and f W � ! U.n/ a function. Take ı > 0 such
that kf .12/ � f .1/f .2/khs � ı for all 1; 2 2 � . Then there is a representation
hW� ! U.N / and an isometry T WCn ! CN such that kh./� T �f ./T khs � 211ı for
every  2 � , where n � N � .1C 2500ı2/n.

It is also shown in [18] and [12] that allowing the increase in dimension from n to N is
essential. Similarly, in the context of functions into Sym.n/, we shall allow a controlled
increase in the number of points n. We refer to this approach as flexibility in the number of
points. It was proven to be effective and necessary in many instances [2, 8, 26]. We extend
the definition of the normalized Hamming metric to measure distances between elements
of symmetric groups of different cardinalities. For n � N , � 2 Sym.n/ and � 2 Sym.N /,
define

dH .�; �/ D dH .�; �/ D
1

N
.j¹x 2 Œn� j �.x/ ¤ �.x/ºj C .N � n//:

The uniform distance between two functions f W� ! Sym.n/ and hW� ! Sym.N / is

d1.f; h/ D d1.h; f / D sup ¹dH .f ./; h.// j  2 �º:

By Lemma A.1, dH satisfies the triangle inequality and thus it is a metric on the disjoint
union

`1
nD1 Sym.n/.

The following question was asked by Kun and Thom.

Problem (Kun and Thom 2019, [25, Remark 4.3]). Take a function f W � ! Sym.n/,
where � is a finite group and n 2 N. Is there a homomorphism hW� ! Sym.N / such that
d1.h; f / � " and n � N � .1C "/n, where " depends only on def1.f / and tends to
zero as def1.f / tends to zero?

Remark. ForN � n, � 2 Sym.n/ and � 2 Sym.N /, our definition of dH forces dH .�; �/
� 1 � n

N
. Hence, the condition d1.h; f / � " in the above problem implies that N �

n
1�"
� .1C 2"/n whenever " � 1=2. Thus, the condition N � .1C "/n in the problem

statement is redundant. We state it solely for the sake of emphasis.

The problem of Kun and Thom is not solved by the theorem of Glebsky and Rivera
because the latter provides " that depends on the domain group � and not only on def1.f /.
As already mentioned, the dependency on � is essential when flexibility in the number
of points is not allowed. Our main result in the present paper is the next theorem. It gives
an affirmative answer to Kun and Thom’s problem and to a flexible variant of Lubotzky’s
problem. In fact, it only assumes that � is amenable (rather than finite or infinite cyclic),
and provides an explicit " which is linear in def1.f /.

Theorem 1.2 (Amenable groups are uniformly flexibly stable). Let � be a discrete
amenable group and f W� ! Sym.n/ a function, n 2 N. Then there is a homomorphism
hW�! Sym.N / such that d1.h;f /� 2039def1.f / and n�N � .1C 1218def1.f //n.
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Theorem 1.2 has the following useful corollary (see Theorem 2.20): for a finite-index
normal subgroup � of � and a function f W � ! Sym.n/, there is a homomorphism
hW� ! Sym.N /, N � n, such that

d1.h; f / � C � .def1.f /C sup ¹dH .f ./; id/ j  2 �º/;

where C is a universal constant. Notably, the bound on d1.h; f / does not depend on the
index Œ�W��. In fact, it suffices to assume that �=� is a discrete amenable (rather than
finite) group, and thus Theorem 2.20 is a strong form of Theorem 1.2 (up to the constants).

Using Theorems 1.2 and 2.20, and following the method of [10, Section 5], we deduce
the following theorem.

Theorem 1.3 (SLr .OK/ is uniformly flexibly stable). Let f W SLr .OK/! Sym.n/ be a
function, where n 2 N, r � 3 and OK is the ring of integers of a number field K. Then
there is a homomorphism hWSLr .OK/! Sym.N / such that d1.h; f / � C def1.f / and
n � N � .1C C def1.f //n, where C depends only on r .

The next theorem shows that for some groups not every approximate homomorphism
is close to a homomorphism, even when flexibility in the number of points is allowed.

Theorem 1.4 (Nonabelian free groups are not uniformly flexibly stable). Let � be a group
that surjects onto the free group F2 of rank 2. Then there is a sequence .fk/1kD1 of functions

fk W� ! Sym.nk/, nk
k!1
����!1, such that def1.fk/ � 2=k, but d1.hk ; fk/ � 1� 5=k

for every homomorphism hk W� ! Sym.Nk/ for all Nk � nk .

Remark. Theorem 1.4 is analogous to a result of Burger, Ozawa and Thom [10, Proposi-
tion 3.3] that says that for r � 2, an approximate homomorphism Fr ! U.n/ need not be
close to a homomorphism. More generally, the same is true whenever Fr is replaced by a
group � such that the comparison map H 2

b
.�;R/! H 2.�;R/ is noninjective [10, Corol-

lary 3.5]. This condition holds when � is a nonelementary word-hyperbolic group [16]
(and was known earlier in the special case � D Fr [9]).

The discrete nature of Sym.n/ makes it difficult to prove Theorem 1.4 by following the
lines of the proofs of [10, Proposition 3.3] or [10, Corollary 3.5]. Our proof does not use
cohomological methods. We do draw inspiration from Rolli’s construction of nontrivial
quasimorphisms from Fr to R [33].

In light of the success of [16] in generalizing the cohomological result of [9] from
nonabelian free groups to nonelementary word-hyperbolic groups, we pose the following
open problem that asks whether Theorem 1.4 can be generalized as well.

Problem 1.5 (Are all nonelementary hyperbolic groups uniformly flexibly instable?). Let
� be a nonelementary word-hyperbolic group. Is there a sequence .fk/1kD1 of functions

fk W� ! Sym.nk/, nk 2 N, such that def1.fk/
k!1
����! 0, but d1.fk ; hk/ � C for every

homomorphism hk W� ! Sym.Nk/, Nk � nk , where C > 0 does not depend on k?
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1.1. A framework for stability

The above results can be formulated in a single framework. We consider the following
objects:

� Two classes of groups: C and G .

� The full class of functions F D ¹f W� ! G j � 2 C ; G 2 G º.

� A function defWF ! R�0, called the local defect.

� A distance function d WF � F ! R�0 [ ¹1º.

The global defect of f 2 F with respect to d is

Defd .f / D inf ¹d.f; h/ j h 2 F is a group homomorphismº:

We say that the class C of groups is .G ; def; d /-stable if Defd .f / � R.def.f // for every

f 2 F , where R.ı/
ı!0
���! 0. We say that C is stable with linear rate if R.ı/ � Cı for

a universal constant C > 0. A group � is .G ; def; d /-stable if the same is true for the
class ¹�º.

All of the results presented so far can be formulated using this framework. In the
context of stability in permutations, the role of G is taken by � D ¹Sym.n/º1nD1. The role
of def is taken by def1. Let f; h 2 F . We extend d1 by setting d1.f; h/ D 1 if the
domains of f and h are different. We define d strict

1 .f; h/ D d1.f; h/ if f and h have the
same domain and range, and d strict

1 .f; h/ D1 otherwise. A class C of groups is uniformly
flexibly stable in permutations if it is .� ;def1; d1/-stable. The class C is uniformly strictly
stable in permutations if it is .� ; def1; d strict

1 /-stable. From now on, we omit the phrase
“in permutations”.

The results presented thus far about functions into symmetric groups are summarized
in the following table, where the numbers on the right are theorem numbers or references
(in brackets).

Uniformly strictly stable: each finite group [17]
Not uniformly strictly stable: the class of finite groups 1.1

each group with unbounded finite quotients 1.1
Uniformly flexibly stable: the class of discrete amenable groups 1.2

each SLr .Z/, r � 3 1.3
Not uniformly flexibly stable: each group that surjects onto F2 1.4

In fact, [17] and Theorems 1.2 and 1.3 prove stability with linear rate.

Remark (Pointwise stability). The related notion of pointwise stability has recently
been under heavy investigation [1–4, 8, 11, 15, 17, 20, 22, 26–29, 34, 37]. A stability chal-
lenge for � is a sequence .fk/1kD1 of functions fk W � ! Sym.nk/, nk 2 N, such that
dH .fk.12/; fk.1/fk.2// tends to zero as k !1 for all 1; 2 2 � . A solution for
.fk/

1
kD1

is a sequence .hk/1kD1 of homomorphisms hk W� ! Sym.Nk/, Nk � nk , such
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that dH .fk./; hk.// tends to zero as k !1 for each  2 � . The group � is pointwise
stable in permutations if every stability challenge for � has a solution.

For finitely presented groups, pointwise stability can be formalized using the above
framework if we allow each object of C to be a group with a fixed presentation (rather than
just a group). Proximity between functions is measured with respect to the images of the
generators, and the local defect is defined using the relators.

In the context of pointwise stability, the strict and flexible versions are equivalent when
the group � is amenable [22, Lemma 3.2 (1)]. The main result of [3] provides a useful
equivalent condition for pointwise stability among amenable groups. In particular, and
as has been known previously [1, 17], some amenable groups are pointwise stable and
some are not (in contrast with the flexible uniform case, as shown by Theorem 1.2). For
r � 3, the group SLr .Z/ is not strictly stable both in the pointwise sense [2] and in the
uniform sense (by Theorem 1.1). By Theorem 1.3, SLr .Z/ is uniformly flexibly stable, but
it is not known whether it is pointwise flexibly stable. By [8], if one can find r � 5 such
that PSLr .Z/ is pointwise flexibly stable, it would solve a long-standing open problem by
showing that not all groups are sofic.

1.2. Probabilistic stability and homomorphism testing

Let � be a discrete amenable group. Fix a finitely additive measure m on � that is either
left or right invariant. The mean local defect of a function f W� ! Sym.n/ is given by

def1.f / D
Z Z

dH .f .12/; f .1/f .2// dm.1/ dm.2/:

For N � n, f W� ! Sym.n/ and hW� ! Sym.N /, the mean distance between f and h is

d1.f; h/ D d1.h; f / D

Z
dH .f ./; h.// dm./:

It is well known that every discrete amenable group � admits a finitely additive measure
that is simultaneously left, right and inverse invariant (see Section 2.1). Henceforth, we
fix such a measure for each discrete amenable group. We prove that the class of discrete
amenable groups is probabilistically flexibly stable. That is, it is .� ; def1; d1/-stable. More
precisely, we prove the following analogue of Theorem 1.2.

Theorem 1.6 (Amenable groups are probabilistically flexibly stable). Let � be a discrete
amenable group and f W� ! Sym.n/ a function, n 2 N. Then there is a homomorphism
hW� ! Sym.N / such that d1.h; f / � 2913 def1.f / and n � N � .1C 1740 def1.f //n.

Theorem 1.6 has an application to property testing in the case where the group � is
finite. We begin by recalling a generalized version of the Blum–Luby–Rubinfeld Theorem
[7] on homomorphism testing.

Theorem ([6], [19, Theorem 2.3]). Let f W� ! G be a function between finite groups. Let

ı D
1

j� � �j
j¹.1; 2/ 2 � � � j f .12/ ¤ f .1/f .2/ºj:
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If ı < 1=6, then there is a homomorphism hW� ! G such that

1

j�j
j¹ 2 � j h./ ¤ f ./ºj � 2ı:

Take f , � and G as in the theorem. The finite group � should be thought of as very
large. Assume that f is either a homomorphism or disagrees with every homomorphism
� ! G on many elements of � . The goal in homomorphism testing is to distinguish
between the two cases after reading f ./ for only a small number of elements  2 � . This
is achieved by the following algorithm.

Algorithm 1 Homomorphism testing
Input: A function f W� ! G between finite groups
Output: Accept or Reject

1: Sample .1; 2/ 2 � � � uniformly at random.
2: If f .12/ D f .1/f .2/, return Accept.
3: Otherwise, return Reject.

Clearly, if f is a homomorphism then the algorithm accepts. Let 0 < " � 1=3 and
assume that f disagrees with every group homomorphism hW � ! G on at least "j�j
elements of � . The generalized Blum–Luby–Rubinfeld Theorem implies that the algorithm
rejects with probability at least "=2. For ˛ > 0, we can amplify the rejection probability to
be at least 1 � ˛ by running the algorithm for k D dlog1�"=2 ˛e D O

�2 log.1=˛/
"

�
indepen-

dent iterations and accepting if and only if all iterations accept. Note that k is independent
of � and G.

Now consider the scenario where the group � is still very large and G D Sym.n/,
where n is also very large. In this case, reading the permutation f ./, even just for a single
element  2 � , may be too time consuming. The following algorithm is tailored for this
situation.

Algorithm 2 Testing of homomorphisms into Sym.n/
Input: A function f W� ! Sym.n/, where � is a finite group and n 2 N
Output: Accept or Reject

1: Sample .1; 2; x/ 2 � � � � Œn� uniformly at random.
2: If f .12/.x/ D f .1/f .2/.x/, return Accept.
3: Otherwise, return Reject.

Again, if f is a homomorphism then the algorithm always accepts. On the other hand,
for 0 < " � 1, if d1.f; h/ � " for every homomorphism hW� ! Sym.N /, N � n, then the
probability that the algorithm rejects is at least "

2913
. As before, the rejection probability

may be amplified by running the algorithm repeatedly.
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Finally, we show that strict stability has the same caveats in the probabilistic setting as
in the uniform setting. That is, our proof of Theorem 1.1 in Section 4 handles probabilistic
stability in addition to uniform stability. Hence, Algorithm 2 is not a good tester in the
strict model.

Remark (A recent breakthrough in quantum information theory). The recent solution [23]
to Connes’ embedding problem relies on a probabilistic variant of the Gowers–Hatami
Theorem (see also [31, 32, 36]). The latter plays a fundamental role in the proof by forcing
the shared state of nearly optimal provers to be close to a specific desired state. We would
like to know whether there are similar applications where Theorem 1.6 can be used instead
of the Gowers–Hatami Theorem.

1.3. The structure of the paper and some comments on the proofs

In Section 2 we prove Theorems 1.2 and 1.6. The proof takes a function f W� ! Sym.n/
and restricts each permutation f ./ to an injective function f ./jD./WD./ ! Œn�,
D./ � Œn�, such that f .1/jD.1/

ı f .2/jD.2/\f .2/�1D.1/
and f .12/jD.12/

coin-
cide on the intersection of their domains. We then extend each f ./jD./ to a permutation
h./W ŒN �! ŒN �, N � n, such that hW� ! Sym.N / is a homomorphism. Amenability is
used in the restriction step to ensure quantitative properties, such as the ratios jD./j=n
being close to 1 (uniformly in  or on average). After the restriction step we are left with a
purely algebraic structure (a groupoid). The extension step does not make direct use of
amenability. The proof is related to the proof of homomorphism testing for finite groups
[19, Theorem 2.3] in the sense that both employ majority voting.

In Section 3 we prove a more general version of Theorem 1.3. To that end we use
Theorem 1.2 on the subgroups of upper and lower triangular unipotent matrices of SLr ,
apply bounded generation [30], and conclude by using Theorem 2.20. In Section 4 we
prove Theorem 1.1 and its probabilistic version. To exclude strict stability for a group � ,
we take a homomorphism f W� ! Sym.n/ that defines a transitive action and deform it
into a function Of W� ! Sym.n � 1/ by bypassing n. We invoke [2, Proposition 2.4 (ii)]
and some analysis to show that Of is far from every homomorphism in the strict model. In
Section 5 we prove Theorem 1.4. We show that the free group F2 is not flexibly uniformly
stable by constructing functions fk WF2 ! Sym.nk/, with small def1.fk/, that grossly
violate a group identity that holds in Sym.N / for all N � n. In Appendix A we prove that
dH satisfies the triangle inequality. In Appendix B we prove an auxiliary result that says
that a function f W� ! Sym.n/ with small local defect is close to a function that sends
1� 7! id and respects inverses. This result is used in Section 2. Appendix B handles a more
general case, where Sym.n/ is replaced by a metric group satisfying a mild condition.

2. Flexible stability of amenable groups

In this section we prove Theorems 1.2 and 1.6, and deduce Theorem 2.20.
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2.1. Preliminaries on amenable groups

Let � be a discrete group. Write P .�/ for the power set of � . A finitely additive probability
measure m on � is a function mWP .�/! Œ0; 1� such that m.�/ D 1 and m.A [ B/ D
m.A/Cm.B/ whenever A and B are disjoint subsets of � . We call such an m a measure
on � for short. We say thatm is left invariant (resp. right invariant) ifm.A/Dm.A/ (resp.
m.A/ D m.A/) for every  2 � and A � � . The group � is amenable if it admits a left-
invariant measure. Finite groups are amenable since we may take m to be the normalized
counting measure. In this particular case, the left-invariant measure is unique. Other basic
examples of amenable groups are abelian groups and, more generally, solvable groups.
Examples of nonamenable groups include free groups on more than one generator and
infinite groups with Property .T/, such as SLr .Z/, r � 3.

Let us give an example of a left-invariant measure m on � D Z. To each A � Z we
attach a bounded sequence .at /1tD1, given by at D

jA\Œ�t;t�j
2tC1

. If .at /1tD1 converges, we set
m.A/ to be its limit. More generally, we set m.A/ to be a carefully chosen accumulation
point of .at /1tD1. This is made possible by the axiom of choice, and if done carefully,
results in a finitely additive measure m. The left invariance of m follows from the fact that
for a fixed r 2 Z, the ratio

jŒ�t; t �4.r C Œ�t; t �/j

jŒ�t; t �j

tends to zero as t ! 1, where 4 denotes symmetric difference. In other words,
.Œ�t; t �/1nD1 is a Følner sequence for Z. It is possible to change our proofs of Theo-
rems 1.2 and 1.6 to use A 7! jA \ Œ�t; t �j instead of m, for a carefully chosen large t .
However, the use of a limit (in fact, an ultralimit) in the definition of m saves us the effort
of tracking error terms in the course of the proof.

Let m be a measure on � . There is a notion of integration with respect to m of
bounded functions � ! C (see [13, Section 1.2.2]). The integration functional f 7!R
f dmWL1.�/! C is a positive linear functional such that

R
1A dmDm.A/. Positivity

means that
R
f dm � 0 whenever the image of f is contained in R�0, and linearity means

that integration commutes with finite sums and multiplication by scalars. We may write
dm./ instead of dm to indicate that  is the variable of integration. If m is left invariant,
then

R
f .0/ dm./ D

R
f ./ dm./ for every f 2 L1.�/ and 0 2 � . For � � � ,

write
R
�
f dm for

R
f � 1� dm.

A left-invariant measure � on � gives rise to mWP .�/! Œ0; 1�, given by

m.A/ D
1

2

Z �
�.A/C �.A�1/

�
d�./:

Then m is a measure on � and it is bi-invariant, that is, simultaneously left and right
invariant. Furthermore, it is inverse invariant, that is, m.A/ D m.A�1/ for each A � � .
Integration with respect to a right-invariant or inverse-invariant measure has the corre-
sponding invariance property.

Finally, a trivial but useful consequence of left or right invariance of m is that for a
subgroup H of � we have Œ�WH� D 1

m.H/
, interpreted as1 if m.H/ D 0.
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2.2. The setup for the proof of Theorems 1.2 and 1.6

Fix an amenable group � with a measure m that is left, right and inverse invariant. We
consider the metrics d1 and d1, and the local defects def1 and def1, as defined in the
introduction, where d1 and def1 are defined with respect to m.

2.2.1. Symmetrization

Definition 2.1. Let � andG be groups. A function f W�!G is symmetric if f .1�/D 1G
and f .�1/ D .f .//�1 for all  2 � .

Appendix B deals with deforming a function f W� ! G into a symmetric function,
and equips us with the following proposition.

Proposition 2.2. Let � be a group and f W� ! Sym.n/ a function. Then there exists a
symmetric function f 0W� ! Sym.n/ such that

d1.f; f
0/ � 2 def1.f /;

d1.f; f
0/ � 3 def1.f /;

def1.f 0/ � 7 def1.f /;

def1.f 0/ � 10 def1.f /:

Proof. The claim is a special case of Proposition B.3 (see Lemma B.2).

By virtue of Proposition 2.2, Theorems 1.2 and 1.6 follow from the following theorem.

Theorem 2.3. Let n 2 N and let f W� ! Sym.n/ be a symmetric function. Write ı1 D
def1.f / and ı1 D def1.f /. Then there is N � n and a homomorphism hW� ! Sym.N /
such that

N � .1C 174ı1/n and d1.h; f / � 291ı1

and
N � .1C 174ı1/n and d1.h; f / � 291ı1 .

Note that ı1 � ı1 and thus the claim N � .1 C 174ı1/n follows at once from
N � .1C 174ı1/n.

2.2.2. �-graphs. The proof of Theorem 2.3 is based on a graph-theoretic approach.

Definition 2.4. A �-graph is a pair X D .V; E/, where V is a set and E is a subset
of V � � � V . The elements of V are the vertices of X and the elements of E are the
oriented �-labelled edges of X . We use the notation x


�!y to denote the edge .x; ; y/

with origin x, destination y and label  . We require that for every x 2 V and  2 � there
exists at most one y 2 V such that x


�!y 2 E.

WithX as above, denote V.X/ WD V andE.X/ WD E. We say thatX is finite if jV.X/j
<1. All �-graphs that appear in our argument are finite in this sense.

Definition 2.5. Let V be a set and take a function f W�! Sym.V /. The function graphXf
of f is the �-graph with vertex set V and edge set

E.Xf / D ¹x

�!f ./.x/ j x 2 V;  2 �º:
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The function f is symmetric if and only if all edges of Xf with label 1� are loops

and for every edge x

�!y 2 E.Xf /, we have y

�1

�!x 2 E.Xf /. In this case, f is a

homomorphism if and only if every path in Xf of the form
1
�!

2
�!

�1
1
�1

2
�! is closed (for

every starting vertex). Informally, if def1.f / is small, then almost all of these paths are
closed, and the same is true if def1.f / is small since def1.f / � def1.f /.

Let X D .V; E/ be a �-graph. We write x

�! 2 E to indicate that there is a vertex

y 2 V such that x

�!y 2E. For  2 � , the domain of  isDX ./ WD ¹x 2 V j x


�!2Eº.

The set of outgoing labels from a vertex x 2 V is OLX .x/ WD ¹ 2 � j x

�! 2 Eº and

the out degree of a vertex x 2 V is degX .x/ WD m.OL.x//. In this way, the measure m
enables us to define a useful notion of a degree in the graph X , where a vertex may have
infinitely many incident edges. When the graph X is clear from the context, we may omit
it from the notation in DX ./ and OLX .x/.

Fact 2.6. For a �-graph X D .V;E/, the sum of out degrees is equal to the integral of the
cardinalities of domains. That is,X

x2V

degX .x/ D
Z
jDX ./j dm./:

Fact 2.6 follows immediately from the definitions and the basic properties of integration
discussed in Section 2.1.

Let X D .V;E/ and X 0 D .V 0; E 0/ be �-graphs. We say that X is a subgraph of X 0 if
V � V 0 and E � E 0. A function 'WV ! V 0 is a morphism of �-graphs from X to X 0 if
'.x1/


�!'.x2/ is in E 0 whenever x1


�!x2 is in E. Such a function ' is an embedding of

X in X 0 if it is injective.
The heart of the proof of Theorem 2.3 lies in the proof of the following proposition.

Proposition 2.7. Let f W � ! Sym.n/ be a symmetric function, n 2 N. Write ı1 D
def1.f / and ı1 D def1.f /, and assume that ı1 � 1=78. Then there is a subgraph Z of
the function graph Xf , a finite set V1 and a homomorphism gW� ! Sym.V1/ such that:

(i) Z embeds in the function graph Xg .

(ii) jV.Z/j � .1 � 96ı1/n.

(iii) For every 0 2 � ,
jDZ.0/j � .1 � 117ı1/n (2.1)

and Z
jDZ./j dm./ � .1 � 117ı1/n: (2.2)

(iv) n � jV1j � .1C 78ı1/n.

Theorem 2.3 follows from Proposition 2.7 as follows.

Proof of Theorem 2.3. We are given a function f W � ! Sym.n/ and need to define a
homomorphism hW�! Sym.N /,N � n, such that h and f are close together. If ı1>1=78,
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set N D n and let hW � ! Sym.N / be the trivial homomorphism. Assume henceforth
that ı1 � 1=78. Apply Proposition 2.7 to f to obtain a subgraph Z of the function graph
Xf , a set V1 and a homomorphism gW� ! Sym.V1/ such that (i)–(iv) of Proposition 2.7
are satisfied. In particular, there is an embedding 'WV.Z/! V1 of the �-graph Z in the
function graph Xg . Let N D jV1j C .n � jV.Z/j/. Then

n � N � .1C .78C 96/ı1/n D .1C 174ı1/n:

Assume without loss of generality that V1 D V.Z/q .ŒN � n Œn�/ and that ' is the inclusion
map. For every  2 � , define h./ 2 Sym.N / by

h./.x/ D

´
g./.x/; x 2 V1;

x; x 2 Œn� n V.Z/;
8x 2 ŒN �:

Let  2 � and x 2DZ./. Then g./.x/ D f ./.x/ since the inclusion map 'WV.Z/!
V1 is an embedding of the �-graph Z in Xg . On the other hand, h./.x/ D g./.x/ since
x 2 V.Z/ � V1. Hence, for every 0 2 � ,

dH .h.0/; f .0// �
1

N
..n � jDZ.0/j/C .N � n//

D 1 �
n

N

jDZ.0/j

n

� 1 �
1

1C 174ı1
�
jDZ.0/j

n
: (2.3)

Hence,

d1.h; f / � 1 �
1 � 117ı1

1C 174ı1
by (2.3) and (2.1)

� 1 � .1 � 174ı1/.1 � 117ı1/

� 291ı1

and

d1.h; f / �

Z �
1 �

1

1C 174ı1
�
jDZ./j

n

�
dm./ by (2.3)

� 1 � .1 � 174ı1/.1 � 117ı1/ by (2.2)

� 291ı1:

2.3. Proof of Proposition 2.7

Fix n 2 N and a symmetric function f W� ! Sym.n/. Write ı1 D def1.f / and ı1 D
def1.f /. We first construct the subgraph Z of the function graph Xf . Then, we proceed to
define the set V1 and the homomorphism gW� ! Sym.V1/. Finally, we show that (i)–(iv)
of Proposition 2.7 are satisfied.
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2.3.1. The construction of the subgraph Z. We begin by assigning a weight in the range
Œ0; 1� to each edge x


�!y 2 Œn� � � � Œn� (whether or not the edge belongs to Xf ).

Definition 2.8. The set of supporters of an edge x

�!y 2 Œn� � � � Œn� is

T .x

�!y/ D ¹t 2 � j f .t/f .t�1/.x/ D yº

and the weight of this edge is

w.x

�!y/ D m.T .x


�!y//:

Note that T .x

�!y/ consists of all elements t 2 � such that the path x

t�1
�!

t
�! in the

function graph Xf ends at y. Recall that our eventual goal is to find a homomorphism g

near f . One may think of the weight w.x

�!y/ as the (normalized) result of a vote, taken

among the elements of � , on whether the permutation g./ should send x to y. Intuitively,
if ı1 (or ı1) is small then almost all edges of Xf have high weight. Below, we consider
subgraphs of Xf that include only the high-weight edges. In Section 2.3.2, we prove that
two of these subgraphs admit an algebraic structure. In Section 2.3.3 the algebraic structure
gives rise to the sought-after homomorphism g.

For a �-graph X D .V; E/ and a subset V 0 � V , the induced subgraph of X on V 0

is X 0 D .V 0; E 0/, where E 0 D E \ .V 0 � � � V 0/. We say that a subgraph X 00 of X is
induced if there is a subset V 00 � V such that X 00 is the induced subgraph of X on V 00.

Definition 2.9. (i) For " > 0, let X" be the subgraph of Xf with vertex set Œn� and edge
set

E.X"/ D ¹x

�!y 2 E.Xf / j w.x


�!y/ > 1 � "º:

(ii) For 0 < " � 1=6, let Y" be the induced subgraph of X2" on the following vertex set:

V.Y"/ D ¹x 2 Œn� j degX"
.x/ > 2=3º:

Explicitly, the edge set E.Y"/ consists of all edges x

�!f ./.x/ for x 2 Œn� and

 2 � such that degX"
.x/ > 2=3, degX"

.f ./.x// > 2=3 and w.x

�!y/ > 1 � 2".

(iii) For 0 < " � 1=6, let Z" be the induced subgraph of Y" on the following vertex set:

V.Z"/ D ¹x 2 V.Y"/ j degY"
.x/ � 1=2º:

(iv) Finally, set Z D Z1=6.

Note that in the definition of Y" we use degX"
to filter out the low-degree vertices

of X2". The interplay between " and 2" is crucial in our proof in the next section that
Y" and Z" are well structured. In regard to the definition of Z", in Section 2.3.3 we shall
see that the degrees in Y" are constant within each connected component, and thus Z" is a
union of components of Y".
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2.3.2. The �-graphs Y" and Z" are �-groupoids

Definition 2.10. A �-graph X D .V;E/ is a �-groupoid if the following conditions hold:

(i) Symmetry: for every edge x

�!y 2 E, we have y

�1

�!x 2 E.

(ii) Triangles: for all x; y; z 2 V and 1; 2 2 � , if x
1
�!y 2 E and y

2
�!z 2 E then

x
21
�!z 2 E.

If hW� ! Sym.n/ is a homomorphism then the function graph Xh is a �-groupoid,
usually referred to as an action groupoid. In Section 2.3.3, we investigate general properties
of �-groupoids. Here, we prove that Y" and Z" are �-groupoids whenever " � 1=6.

Our assumption that f is symmetric comes into play in the next lemma, which will be
used in what follows without reference.

Lemma 2.11. Consider an edge x

�!y 2 Œn� � � � Œn�. Then w.x


�!y/ D w.y

�1

�!x/.

Proof. Let t 2 � . Then t 2 T .x

�!y/ if and only if f .t/f .t�1/.x/ D y if and only if

x D f .�1t /f ..�1t /�1�1/.y/ if and only if �1t 2 T .y
�1

�!x/. Thus �1T .x

�!y/

D T .y
�1

�!x/, and since m is left invariant we conclude that w.x

�!y/ D w.y

�1

�!x/.

Lemma 2.12. Consider a triplet of edges x
1
�!y, y

2
�!z and x

21
�!u in Œn�� � � Œn�, each

of weight larger than 2=3. Then z D u.

Proof. LetQD T .x
1
�!y/\ �12 T .y

2
�!z/\ �12 T .x

21
�!u/. Each set in the intersection

has measure larger than 2=3, so there exists an element t in Q. Hence,

z D f .2t /f ..2t /
�12/.y/ 2t 2 T .y

2
�!z/

D f .2t /f .t
�1/.y/

D f .2t /f .t
�1/f .t/f .t�11/.x/ t 2 T .x

1
�!y/

D f .2t /f .t
�11/.x/ f is symmetric

D f .2t /f ..2t /
�121/.x/

D u: 2t 2 T .x
21
�!u/

Lemma 2.13. Consider "1; "2 > 0 and a pair of edges x
1
�!y and y

2
�!z in Œn� � � � Œn�,

such that w.x
1
�!y/ > 1 � "1 and w.y

2
�!z/ > 1 � "2. Then w.x

21
�!z/ > 1 � "1 � "2.

Proof. LetQD 2T .x
1
�!y/\ T .y

2
�!z/. Thenm.Q/ > 1� "1 � "2, and thus it suffices

to show that Q � T .x
21
�!z/. Indeed, if t 2 Q then t 2 T .x

21
�!z/ because

f .t/f .t�121/.x/ D f .t/f .t
�12/f .

�1
2 t /f .t�121/.x/ f is symmetric

D f .t/f .t�12/.y/ �12 t 2 T .x
1
�!y/

D z: t 2 T .y
2
�!z/
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x z

y

f .˛21/.x/

f .˛2/.y/

f .˛/.z/

1 w > 1� 2" 2 w > 1� 2"

21

w
‹
> 1� 2"

˛21 w > 1� "

˛2 w > 1� "

˛ w > 1� "

Fig. 2.1. The high degrees of x, y and z guarantee the existence of ˛ 2 � such that the three vertical
edges have weight larger than 1 � ". Then, Lemma 2.12 ensures that the three vertices on top are the

same vertex u. Finally, Lemma 2.13, applied to the path x
˛21
�! u

˛�1

�!z, implies that the bottom edge
has weight larger than 1 � 2".

The above lemma shows that the composition of two high-weight edges results in a
high-weight edge, but with some decrease in weight. This deterioration makes it difficult
to grow a large �-groupoid edge by edge inside X2" . This difficulty is addressed by the
following lemma, which motivates the distinction between " and 2" in the definition of Y".

Lemma 2.14. Let 0 < " � 1=6 and consider a pair of edges x
1
�!y and y

2
�!z in Œn� �

� � Œn� such that

degX"
.x/; degX"

.y/; degX"
.z/ > 2=3;

w.x
1
�!y/ > 1 � 2"; (2.4)

w.y
2
�!z/ > 1 � 2": (2.5)

Then w.x
21
�!z/ > 1 � 2".

Proof. The proof is illustrated in Figure 2.1. Let

Q D .OLX"
.x/�11 �12 / \ .OLX"

.y/�12 / \ OLX"
.z/:

Each set in the intersection has measure larger than 2=3, so there exists an element ˛ in Q.
Then

w.x
˛21
�! f .˛21/.x// > 1 � "; (2.6)

w.y
˛2
�!f .˛2/.y// > 1 � "; (2.7)

w.z
˛
�!f .˛/.z// > 1 � ": (2.8)
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Lemma 2.12 applies to the triplet of edges x
1
�!y, y

˛2
�!f .˛2/.y/ and x

˛21
�!f .˛21/.x/

since " � 1=6 and by virtue of (2.4), (2.7) and (2.6), and thus f .˛2/.y/ D

f .˛21/.x/. Similarly, the lemma applies to the triplet of edges y
2
�!z, z

˛
�!f .˛/.z/

and y
˛2
�!f .˛2/.y/ due to (2.5), (2.8) and (2.7), and thus f .˛/.z/ D f .˛2/.y/. Hence

f .˛21/.x/ D f .˛/.z/: (2.9)

By (2.9), Lemma 2.13 applies to the pair of edges x
˛21
�! f .˛21/.x/ and

f .˛/.z/
˛�1

�!z, and thus
w.x

21
�!z/ > 1 � 2"

by (2.6) and (2.8).

Proposition 2.15. Let 0 < " � 1=6. Then Y" and Z" are �-groupoids.

Proof. The function graph Xf is a �-graph, so the same is true for its subgraph X2". By
Lemma 2.11, X2" satisfies the symmetry condition of Definition 2.10, and thus so does its
induced subgraph Y". Furthermore, since " � 1=6, Lemma 2.14 implies that Y" satisfies the
triangles condition, and is thus a �-groupoid. Therefore, the induced subgraph Z" of Y" is
a �-groupoid as well.

2.3.3. Construction of the homomorphism g. Recall that we want to construct a finite set
V1, of cardinality not much larger than n, and a homomorphism gW�! Sym.V1/ such that
the subgraph Z D Z1=6 of Xf embeds into the action groupoid Xg . First, we investigate
further generalities on �-groupoids.

LetX D .V;E/ be a �-groupoid. Two vertices x;y 2 V are connected if there is  2 �
such that x


�!y 2 E. Connectedness induces an equivalence relation on V . The induced

subgraphs of X on the equivalence classes are the connected components, or components
for short, of the �-groupoid X . If there is just one component, we say that X is connected.
Each component of X is a connected �-groupoid. For x 2 V , write CX;x , or Cx , for the
component of x in X .

The stabilizer of x 2 V is �x D ¹ 2 � j x

�!x 2 Eº. Note that �x is a subgroup of � .

Also, if x

�!y 2 E, then �y D �x�1 and OL.y/ D OL.x/. Hence, if the �-groupoid

X is connected, then the index Œ�W�x � is the same for all x 2 V , and the same is true for
the degree deg.x/. These numbers are, respectively, the index ind.X/ and degree deg.X/
of the connected groupoid X .

By Proposition 2.15, if 0 < " � 1=6 then Y" is a �-groupoid. Recalling Definition
2.9 (iii), we see that in this case Z" is the union of the components of Y" that have degree
at least 1=2.

The proof of the following proposition is straightforward and is left to the reader.

Proposition 2.16. Let X D .V; E/ be a connected �-groupoid and let x 2 V . Let
hW� ! Sym.�=�x/ be the action of � on �=�x by left multiplication. Then the function
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'WV ! �=�x defined by
'.y/ D �x 8x


�!y 2 E

is well defined and injective. Furthermore, it is an embedding of the �-graph X into the
action groupoid Xh.

Let X D .V;E/ be a finite (i.e. jV j <1) connected groupoid. For x 2 V , Proposition
2.16 embeds X , which has jV j vertices, in an action groupoid that has Œ�W�x � vertices.
We investigate the ratio jV j=Œ�W�x �. For x 2 V and  2 OL.x/, write  � x for the unique
element y of V such that x


�!y 2 E. For x 2 V , OL.x/ is a union of left cosets of �x ,

and for 1; 2 2 OL.x/ we have 1 � x D 2 � x if and only if 1�x D 2�x . Since X
is connected, this means that OL.x/ is a union of jV j distinct left cosets of �x . Hence
jV jm.�x/D m.OL.x//D deg.X/. But Œ�W�x �D 1=m.�x/, and thus if deg.X/ > 0 then
Œ�W�x � <1 and

jV j

Œ�W�x �
D deg.X/: (2.10)

It is possible to apply Proposition 2.16 to each component of Y1=6 in order to embed
Y1=6 into an action groupoid. However, in order to obtain sufficiently good bounds on the
number of vertices in the action groupoid, we do the same to Z D Z1=6 rather than Y1=6.

The definition of the set V1, the homomorphism gW� ! Sym.V1/ and the embedding
of Z into the action groupoid Xg proceeds as follows. Let ¹CiºmiD1 be the components
of Z. Fix a vertex xi 2 V.Ci / for each 1 � i � m, and write gi W� ! Sym.�=�xi

/ for
the action of � on �=�xi

by left multiplication. By Proposition 2.16, each Ci embeds
into Xgi

, and thus Z embeds into
`m
iD1 Xgi

. More precisely, write V1 D
`m
iD1 �=�xi

and let gW� ! Sym.V1/ be the action by left multiplication. Each Ci embeds into Xgi

by an embedding 'i W V.Ci /! �=�xi
. These embeddings give rise to an embedding

' W V.Z/! V1 of Z into Xg .
We evaluate the cardinality of V1 as follows:

jV1j D

cX
iD1

Œ� W �x �

D

cX
iD1

jV.Ci /j � .deg.Ci //�1 by (2.10)

D

X
x2V.Z/

.degZ x/
�1: (2.11)

We shall see in Lemma 2.19 (iv) that (2.11) is bounded from above by .1CO.ı1//jV.Z/j.

2.3.4. Proof of Proposition 2.7 (ii)–(iv). We constructed the subgraph Z of Xf , the homo-
morphism gW� ! Sym.V1/ and an embedding 'WV.Z/! V1 of Z into Xg . To complete
the proof of Proposition 2.7, it remains to prove the lower bounds on jV.Z/j and jDZ./j
and the upper bound on jV1j. To do so, we study quantitative properties of X", Y" and Z".

In the following three lemmas, we justify some of the steps by invoking Markov’s
inequality. By this we are referring to the fact that if a1; : : : ; am are real numbers in the
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interval Œ0; 1� and � > 0, then

j¹i j ai > 1 � �ºj �

�
1 �

1

�

�
1 �

1

m

mX
iD1

ai

��
m: (2.12)

Lemma 2.17. Let " > 0. Then

(i) jDX"
./j � .1 � ı1="/n for every  2 � .

(ii)
R
jDX"

./j dm./ � .1 � ı1="/n.

Proof. For ; t 2 � and x 2 Œn�, write

1;t;x D

´
1; f ./.x/ D f .t/f .t�1/.x/;

0; otherwise:

Then

1

n

nX
xD1

1;t;x D 1 � dH
�
f .t�1/f ./; f .t�1/

�
� 1 � ı1 8 2 � 8t 2 � (2.13)

and Z
1;t;x dm.t/ D w.x


�!f ./.x// 8 2 � 8x 2 Œn�: (2.14)

Hence, for  2 � ,

1

n

X
x2Œn�

w.x

�!f ./.x// D

Z �
1

n

X
x2Œn�

1;t;x
�
dm.t/ � 1 � ı1;

and thus (i) follows from Markov’s inequality (2.12):

jDX"
./j D

ˇ̌®
x 2 Œn� j w.x


�!f ./.x// > 1 � �

¯ˇ̌
� .1 � ı1=�/n:

Now, using (2.14), (2.13) and the inverse invariance of m,

1

n

X
x2Œn�

Z
w.x


�!f ./.x// dm./ D

Z Z �
1

n

X
x2Œn�

1;t;x
�
dm.t/ dm./

D

Z Z �
1 � dH

�
f .t�1/f ./; f .t�1/

��
dm.t/ dm./

D 1 � ı1: (2.15)

Thus (ii) follows:Z
jDX"

./j dm./

D

Z ˇ̌®
x 2 Œn� j w.x


�!f ./.x// > 1 � "

¯ˇ̌
dm./

�

Z �
1 �

1

"

�
1 �

1

n

X
x2Œn�

w.x

�!f ./.x//

��
n dm./ by Markov (2.12)

D

�
1 �

ı1

"

�
n: by (2.15)
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Lemma 2.18. Let 0 < " � 1=6. Then

(i) jV.Y"/j � .1 � 3ı1="/n.

(ii) jDY"
./j � .1 � 6:5ı1="/n for every  2 � .

(iii)
R
jDY"

./j dm./ � .1 � 6:5ı1="/n.

Proof. To prove (i), we compute

jV.Y"/j D j¹x 2 Œn� j degX"
.x/ > 1 � 1=3ºj

�

�
1 � 3

�
1 �

1

n

X
x2Œn�

degX"
.x/

��
n by Markov (2.12)

D

�
1 � 3

�
1 �

1

n

Z
jDX"

./j dm./

��
n by Fact 2.6

�

�
1 �

3ı1

"

�
n: by Lemma 2.17 (ii)

Now, for  2 � ,

jDY"
./j D jDX2"

./ \ V.Y"/ \ f ./
�1V.Y"/j

D
ˇ̌
DX2"

./ n
�
.Œn� n V.Y"// [ .Œn� n f .

�1/V .Y"//
�ˇ̌

� jDX2"
./j � 2.n � jV.Y"/j/

� jDX2"
./j �

6ı1

"
n: by (i) (2.16)

Then (ii) follows from (2.16) and Lemma 2.17 (i), and (iii) follows by integrating (2.16)
and using Lemma 2.17 (ii).

Proposition 2.7 (ii)–(iii) follows from Lemma 2.19 (i)–(iii) by plugging in " D 1=6. In
light of (2.11), Proposition 2.7 (iv) follows from Lemma 2.19 (iv).

Lemma 2.19. Let 0 < " � 1=6 and assume that ı1 � "=13. Then

(i) jZ"j � .1 � 16ı1="/n.

(ii) jDZ"
./j � .1 � 19:5ı1="/n for every  2 � .

(iii)
R
jDZ"

./j dm./ � .1 � 19:5ı1="/n.

(iv)
P
x2V.Z"/

.degZ"
.x//�1 � .1C 13ı1="/n.

Proof. We first bound the average degree in Y":

1

jV.Y"/j

X
x2V.Y"/

degY"
.x/ �

1

n

X
x2V.Y"/

degY"
.x/

D
1

n

Z
jDY"

./j dm./ by Fact 2.6

� 1 � 6:5ı1=" by Lemma 2.18 (iii) (2.17)

� 1=2: ı1 � "=13 (2.18)
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Recall that Z" is attained from Y" by removing the components of degree smaller than 1=2,
and hence, by (2.18), the average degree in Z" is larger than or equal to that of Y". Thus,
by (2.17),

1

jV.Z"/j

X
x2V.Z"/

degZ"
.x/ � 1 �

6:5ı1

"
: (2.19)

To prove (i), we compute

jV.Z"/j D
ˇ̌
¹x 2 V.Y"/ j degY"

.x/ � 1=2º
ˇ̌

�

�
1 � 2

�
1 �

1

jV.Y"/j

X
x2V.Y"/

degY"
.x/

��
jV.Y"/j by Markov (2.12)

�

�
1 �

13ı1

"

�
jV.Y"/j by (2.17) (2.20)

�

�
1 �

16ı1

"

�
n: by Lemma 2.18 (i)

Now, for  2 � ,

jDZ"
./j � jDY"

./j � .jV.Y"/j � jV.Z"/j/

� jDY"
./j �

13ı1

"
n: by (2.20) (2.21)

Then (ii) follows from (2.21) and Lemma 2.18 (ii), and (iii) follows from integrating (2.21)
and using Lemma 2.18 (iii).

Finally, we prove (iv). For x 2 V.Z"/ we have degZ"
.x/� 1=2 and thus .degZ"

.x//�1

� 1C 2.1 � degZ"
.x//. Hence,X

x2V.Z"/

.degZ"
.x//�1 �

X
x2V.Z"/

�
1C 2.1 � degZ"

.x//
�

D jV.Z"/j

�
1C

2

jV.Z"/j

X
x2V.Z"/

.1 � degZ"
.x//

�
� n.1C 13ı1="/: by (2.19)

2.3.5. From almost vanishing on a coamenable subgroup to a nearby homomorphism.
The following theorem strengthens Theorem 1.2 (up to the constants). We will use it in
Section 3 in the special case where Œ�W�� <1. For ı > 0 and permutations � and � , the
proof uses the following notation:

� �ı � meaning dH .�; �/ � ı: (2.22)

Theorem 2.20. Let � be a group, f W � ! Sym.n/ a function and � C � a normal
subgroup such that �=� is a discrete amenable group. Write ı1 D def1.f / and ı� D
sup ¹dH .f ./; id/ j  2 �º. Then there is n � N � .1C 2436ı1 C 1218ı�/n and a
homomorphism hW� ! Sym.N / such that d1.h; f / � 4079ı1 C 2040ı�.
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Proof. Let T be a transversal for the set of left cosets of � in � . Define a function
Nf W�=�! Sym.n/ by letting Nf .�/ D f ./ for  2 T . Let 1; 2 2 T and take  2 T

and ˛ 2 � such that  D 12˛. Then

Nf ..1�/.2�// D f ./ D f .12˛/ �2ı1 f .1/f .2/f .˛/

�ı�
f .1/f .2/ D Nf .1�/ Nf .2�/:

Hence, def1. Nf / � 2ı1 C ı�. Therefore, by Theorem 1.2 applied to Nf , there is n � N �
.1C 1218.2ı1C ı�//n and a homomorphism NhW�=�! Sym.N / such that d1. Nh; Nf /�
2039.2ı1 C ı�/. Define hW� ! Sym.N / by letting h./ D Nh.�/ for  2 � . Consider
 2 � and take ˛ 2 � such that ˛ 2 T . Then

h./ D Nh.�/ �4078ı1C2039ı�
Nf .�/ D f .˛/ �ı1 f ./f .˛/ �ı�

f ./:

3. Flexible stability of special linear groups

Here we prove a more general version of Theorem 1.3 about the uniform flexible stability of
SLr .A/, r � 3, where A is either Z or one of many other commutative rings, as discussed
below. For many of those rings, our result applies to SL2.A/ as well. We follow the method
of [10, Section 5] and use Theorems 1.2 and 2.20 together with a well-known theorem
about bounded generation [30].

Fron now on, let A D S�1B , where B is an order in the ring of integers OK of an
algebraic number field K=Q and S is a multiplicative subset of B . For example, we can
take A D OK . Fix r � 2 and assume that at least one of the following holds:

� r � 3;

� A has infinitely many units.

The following result is a special case of [30, Theorem 6.1].

Theorem 3.1. Let S be a conjugation-invariant subset of SLr .A/ that contains at least
one nonscalar matrix. Then hSi is a finite-index normal subgroup of SLr .A/ and there is
an integer Cr , depending only on r , such that every element of the group hSi is a product
of at most Cr elements of S and their inverses.

Let Cr be the constant provided by Theorem 3.1 (we fixed r , but we keep it in the
notation for emphasis). The notation O.F.x// is used in Theorem 3.2 to refer to an
unspecified real-valued function g.x/ such that jg.x/j �M � F.x/ for all x � 0, where
M is an unspecified absolute constant. We also use the notation� as in (2.22).

Theorem 3.2. The group SLr .A/ is uniformly flexibly stable with linear rate. More
explicitly, let f WSLr .A/! Sym.n/ be a function and write ı D def1.f /. Then there is
n�N � .1CO.ı//n and a homomorphism hWSLr .A/! Sym.N / such that d1.h;f /�
O.Crı/.
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Proof. Let UC and U� be the subgroups of SLr .A/ of upper and lower triangular
unipotent matrices, respectively. Both UC and U� are nilpotent, and thus they are
amenable. Apply Theorem 1.2 to the restrictions f jUC and f jU� . The theorem pro-
vides N1; N2 2 N, n � Ni � .1CO.ı//n, and homomorphisms gCWUC ! Sym.N1/
and g�WU� ! Sym.N2/ such that d1.gC; f jUC/ � O.ı/ and d1.g�; f jU�/ � O.ı/.
Let N D max ¹N1; N2º.

For distinct i; j 2 Œr�, let Eij be the r � r matrix with 1 in the .i; j / entry and 0
elsewhere, and let Uij D Ir CEij . We consider the elements ¹Uij ºi¤j and their powers.
Let i ¤ j . If i < j , then

f .U˙NŠij / �O.ı/ g
C.U˙NŠij / D idSym.N1/ �O.ı/ idSym.n/:

Similarly, f .U˙NŠij /�O.ı/ idSym.n/ for i > j . Hence, for  2 SLr .A/ and i ¤ j , we have

f .U˙NŠij �1/ �O.ı/ f ./f .U
˙NŠ
ij /f .�1/ �O.ı/ f ./f .

�1/ �2ı idSym.n/

(see (B.2) for the last step). Let S D ¹U˙NŠij �1 j i ¤ j;  2 SLr .A/º and � D hSi. By
Theorem 3.1, � is a finite-index normal subgroup of SLr .A/ and every element of � is a
product of at most Cr elements of S . Hence,

f ./ �O.Crı/ idSym.n/ 8 2 �:

The claim now follows from Theorem 2.20.

Remark 3.3. Fix r � 2 and let C be the set consisting of all groups SLr .A0/ such that the
pair .A0; r/ satisfies the conditions from the beginning of the section. Then Theorem 3.2
says that the class C is uniformly flexibly stable with linear rate.

4. Counterexamples for strict stability: the integers and the class of finite groups

This section is devoted to the proof of Theorem 1.1 and its probabilistic version. Both
versions are included in the statement of Theorem 4.3 below.

For the sake of the proof of the probabilistic version, we collect preliminary facts
regarding integration on a space equipped with a finitely additive probability measure (or
measure for short, see Section 2.1). In our case, the space is an amenable group � equipped
with a left- or right-invariant measure m, but the preliminary facts hold regardless of the
invariance property.

Recall that integration is a positive linear functional L1.�/ ! C. That is, if the
image of f 2 L1.�/ is contained in R�0, then

R
f dm � 0. By the proof of [14,

IV.4.1], this is enough for the Cauchy–Schwarz inequality to hold: j
R
f g dm j2 �

.
R
jf j2 dm/.

R
jgj2 dm/ for bounded functions f;gW�!C. By taking g D 1� we deduce

that j
R
f dm j2 �

R
jf j2 dm. For a bounded vector-valued function f W� ! Cd , defineR

f dm by integrating coordinatewise. The aforementioned corollary of the Cauchy–
Schwarz inequality extends to this setting: k

R
f dmk2 �

R
kf k2 dm, where k � k is theL2

norm on Cd . Finally, for a linear operator AWCd ! Cd , we have A
R
f dm D

R
Af dm.
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Write ‰nWSym.n/! Sym.n � 1/ for the map given by

‰n.�/.x/ D

´
�.x/; �.x/ ¤ n;

�.�.x//; �.x/ D n;
8� 2 Sym.n/ 8x 2 Œn � 1�:

For a group � and a homomorphism f W� ! Sym.n/, define Of D ‰n ı f . First, note that

def1. Of / �
2

n � 1
; (4.1)

a fortiori, def1. Of / � 2
n�1

if � is equipped with a measure. Indeed, for 1; 2 2 � and
x 2 Œn � 1�, if x … ¹f .2/�1.n/; f .12/�1.n/º, then Of .1/ Of .2/.x/ D Of .12/.x/.
Thus dH . Of .1/ Of .2/; Of .12// � 2

n�1
, and (4.1) follows. In Theorem 4.3 we show

that if f defines a transitive action � Õ Œn� then Of is far from every homomorphism
� ! Sym.n � 1/. The proof of the theorem relies on the following observation.

Lemma 4.1. Let �W� ! U.H / be a unitary representation of a .discrete/ group � on a
finite-dimensional complex Hilbert space H , " > 0 and v 2 H .

(i) If k�./v � vk � "kvk for every  2 � , then there is a �-invariant vector u 2 H

such that ku � vk � "p
2
kvk.

(ii) If � is an amenable group equipped with a right-invariant measure m such thatR
k�.�1/v � vk2 dm./ � �2kvk2, then the vector w D

R
�.�1/v dm./ is

�-invariant and satisfies kw � vk � "kvk.

Proof. (i) The claim follows from the argument presented in [5, Propositions 1.1.5 and
1.1.9]. Here we recall a part of the argument, which yields a weaker bound. Let C be
the closed convex hull of the orbit �.�/v of v. Then C is contained in the closed ball of
radius "kvk centred at v, and there is a unique point u in C of minimal norm. Clearly ku�
vk � "kvk. Furthermore, for  2 � we have �./.�.�/v/ D �.�/v and thus �./C D C .
Then �./u D u since �./ is norm preserving.

(ii) The right invariance of m implies that w is �-invariant. Indeed, for 0 2 � ,

�.0/w D �.0/

Z
�.�1/v dm./ D

Z
�..�10 /�1/v dm./

D

Z
�.�1/v dm./ D w:

Furthermore,

kw � vk2 D

Z .�.�1/v � v/ dm./2 � Z k�.�1/v � vk2 dm./ � "2kvk2:
For a finite set X , write ex WX ! C for the function given by

ex.x
0/ D

´
1; x0 D x;

0; x0 ¤ x;
for x0 2 X .
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Write L2.X/ for the finite-dimensional complex Hilbert space of functions X ! C,
endowed with the unique Hermitian product such that ¹exºx2X is an orthonormal basis.
Note that for x; y 2 X ,

kex � eyk
2
D 2 � 1x¤y D

´
0; x D y;

2; x ¤ y:

For a group action f W� ! Sym.X/, write �f W � ! U.L2.X// for the unitary represen-
tation given by �f ./ex D ef ./x for x 2 X .

For finite sets X and Y , x 2 X and y 2 Y , write Ex;y WL2.X/! L2.Y / for the linear
map such that

Ex;y.ex0/ D

´
ey ; x D x0;

0; x ¤ x0;
for all x0 2 X .

We make the space LinX;Y WDHomC.L
2.X/;L2.Y // of linear maps into a complex Hilbert

space by endowing it with the unique Hermitian product such that ¹Ex;y j x 2 X; y 2 Y º
is an orthonormal basis. A pair of group actions hW� ! Sym.X/ and f W� ! Sym.Y /
gives rise to a unitary representation �h;f W� ! U.LinX;Y / defined by

�h;f ./T D �f ./ ı T ı �h.
�1/ 8 2 � 8T 2 LinX;Y :

For n 2N, write Tn�1WL2.Œn� 1�/! L2.Œn�/ for the linear extension of the inclusion
map Œn � 1� ,! Œn�. Then kTn�1k2 D n � 1. For x 2 Œn � 1�, the notation ex can be used
both for a function Œn � 1� ! C and for a function Œn� ! C. The domain should be
understood from the context. In particular, we write Tn�1.ex/ D ex .

The proof of Theorem 4.3 makes use of the following lemma.

Lemma 4.2 ([2, Proposition 2.4 (ii)]). Let � be a group. Take n � 2 and group homo-
morphisms hW � ! Sym.n � 1/ and f W � ! Sym.n/ such that f defines a transitive
action of � on Œn�. Endow L2.Œn � 1�/ and L2.Œn�/, respectively, with the representa-
tions �h and �f . Then kTn�1 � T 0k � 1p

2
kTn�1k for every morphism of representations

T 0WL2.Œn � 1�/! L2.Œn�/.

Theorem 4.3. Let � be a group and f W�! Sym.n/, n� 2, a homomorphism that defines
a transitive action � Õ Œn�. Let hW� ! Sym.n� 1/ be an arbitrary homomorphism. Then

def1. Of / �
2

n � 1
and d1.h; Of / �

1

2
�

1

n � 1
:

Furthermore, if � is a discrete amenable group equipped with a right-invariant
measure m, then

def1. Of / �
2

n � 1
and d1.h; Of / �

1

4
�

1

n � 1
:

Proof. By (4.1), def1. Of /� 2
n�1

. Now, we have an action hW�! Sym.Œn� 1�/ and a tran-
sitive action f W�! Sym.Œn�/. Consider the representation � WD �h;f W�!U.LinŒn�1�;Œn�/.
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For every  2 � ,

k�.�1/Tn�1 � Tn�1k
2
D

X
x2Œn�1�

k.�f .
�1/ ı Tn�1 ı �h./ � Tn�1/exk

2

D

X
x2Œn�1�

k.Tn�1 ı �h./ � �f ./ ı Tn�1/exk
2 �f ./ preserves norm

D

X
x2Œn�1�

keh./.x/ � ef ./.x/k
2

D

X
x2Œn�1�

2 � 1h./.x/¤f ./.x/

� 2
X

x2Œn�1�

.1
h./.x/¤ Of ./.x/

C 1 Of ./.x/¤f ./.x// triangle inequality

� 2
� X
x2Œn�1�

1
h./.x/¤ Of ./.x/

C 1
�

D 2

�
dH .h./; Of .//C

1

n � 1

�
kTn�1k

2: (4.2)

Hence, for " D .2.d1.h; Of /C 1
n�1

//1=2 we have

k�./Tn�1 � Tn�1k � "kTn�1k 8 2 �:

By Lemma 4.1 (i), there is T 0 2 LinŒn�1�;Œn� such that kT 0 � Tn�1k � "p
2
kTn�1k and

�./T 0 D T 0 for every  2 � . The latter condition means that T 0WL2.Œn � 1�/! L2.Œn�/

is a morphism of representations. Therefore, " � 1 by Lemma 4.2. Hence d1.h; Of / �
1
2
�

1
n�1

.
Now, assume that m is a right-invariant measure on � . Then (4.1) implies that

def1. Of / � 2
n�1

. By integrating (4.2), we see that for ˛ D
p
2.d1.h; Of /C

1
n�1

/1=2,Z
k�.�1/Tn�1 � Tn�1k

2 dm./ � 2kTn�1k
2

Z �
dH .h./; Of .//C

1

n � 1

�
dm./

D ˛2kTn�1k
2:

By Lemma 4.1 (ii), there is T 00 2 W such that kT 00 � Tn�1k � ˛kTn�1k and T 00 is a
morphism of representations. Using Lemma 4.2 as before, we see that ˛ � 1p

2
and thus

d1.h; Of / �
1
4
�

1
n�1

.

Remark 4.4. Let � be a group with finite quotients of unbounded cardinality. Theorem 4.3
implies that � is not uniformly strictly stable. By [2, Theorem 1.4], if we assume further
that � has property .�/, then � is not pointwise strictly stable. Both the uniform and the
pointwise versions are proved by considering Of W�! Sym.n� 1/, where f W�! Sym.n/
is a transitive action.
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5. Counterexamples for flexible stability: free groups

This section is devoted to the proof of Theorem 1.4. The proof involves a construction that
combines exponent reduction on words in a free group, inspired by [33], with a pinched
grid construction, inspired by [4, Section 5].

Let F2 be the free group on ¹x1; x2º. Let k be a positive integer. For an integer t � 0,
let t be the unique element of Ck D ¹0; : : : ; k � 1º that is congruent to t modulo k.
For t < 0 we let t D �.�t /. For example, if k D 5 then 7 D 2 and �12 D �2. Define
˛01; ˛2 2 Sym.Ck � Ck/ as follows:

˛01..i; j // D
�
i C 1; j

�
and ˛2..i; j // D

�
i; j C 1

�
8.i; j / 2 Ck � Ck

and let ˛1 D ˛01 ı � , where � 2 Sym.Ck � Ck/ is the transposition that swaps .0; 0/ and
.0; 1/. The actions of ˛1 and ˛2 on Ck � Ck are depicted in Figure 5.1.

0; 0

0; 1

1; 0

1; 1

k� 1; 0

k� 1; k� 10; k� 1 1; k� 1

k� 1; 1

k� 1; 20; 2 1; 2 2; 2 k� 2; 2

k� 2; 1

k� 2; 0

k� 2; k� 1

k� 2; k� 2 k� 1; k� 20; k� 2 1; k� 2 2; k� 2

2; k� 1

2; 0

2; 1

k� 3; 0

k� 3; 1

k� 3; 2

k� 3; k� 3

k� 3; k� 2

k� 3; k� 1

0; k� 3 1; k� 3 2; k� 3 k� 2; k� 3 k� 1; k� 3

: : :

: : :

: : :

: : :

: : :

: : :

:::
:::

:::
:::

:::
:::

˛1

˛1

˛1 ˛1˛1˛1˛1

˛1

˛1

˛1 ˛1˛1˛1˛1

˛1˛1 ˛1 ˛1˛1˛1˛1

˛1˛1 ˛1 ˛1 ˛1˛1˛1

˛1˛1 ˛1 ˛1 ˛1˛1˛1

˛1˛1 ˛1 ˛1 ˛1˛1˛1

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

Fig. 5.1. The actions of ˛1 (solid) and ˛2 (dashed) on Ck � Ck .

Define gk WF2 ! Sym.Ck � Ck/ as follows. Let w 2 F2 be a reduced word. Write
wD x

d1

1 x
e1

2 � � �x
dr

1 x
er

2 2 F2, r � 0, di ; ei 2Z, where di ¤ 0 for i > 1 and ei ¤ 0 for i < r .

Define gk.w/ D ˛
d1

1 ˛
e1

2 � � �˛
dr

1 ˛
er

2 . For example, if k D 5 then gk.x131 x
�9
2 x31x2x

�77
1 / D

˛31˛
�4
2 ˛31˛2˛

�2
1 .

The following lemma shows that gk has small local defect, but grossly violates an
identity that holds in Sym.N / for every N � k2. The lemma readily implies Theorem 1.4
(see below). We shall write `.w/ for the length of a reduced word w.

Lemma 5.1. Let k � 1. Then def1.gk/ � 2=k, but

dH
�
gk
�
.xNŠ�kC11 x2/

k.x�kC11 x2/
�k
�
; id
�
� 1 � 5=k

for every N � k2.
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0; 0

0; 1

1; 0

1; 1

k� 1; 0

k� 1; k� 10; k� 1 1; k� 1

k� 1; 1

k� 1; 20; 2 1; 2 2; 2 k� 2; 2

k� 2; 1

k� 2; 0

k� 2; k� 1

k� 2; k� 2 k� 1; k� 20; k� 2 1; k� 2 2; k� 2

2; k� 1

2; 0

2; 1

k� 3; 0

k� 3; 1

k� 3; 2

k� 3; k� 3

k� 3; k� 2

k� 3; k� 1

0; k� 3 1; k� 3 2; k� 3 k� 2; k� 3 k� 1; k� 3

: : :

: : :

: : :

: : :

: : :

: : :

:::
:::

:::
:::

:::
:::

˛
�kC1
1

˛
�kC1
1

˛
�kC1
1˛

�kC1
1

˛
�kC1
1˛

�kC1
1

˛
�kC1
1

˛
�kC1
1 ˛

�kC1
1˛

�kC1
1

˛
�kC1
1˛

�kC1
1 ˛

�kC1
1 ˛

�kC1
1˛
�kC1
1˛

�kC1
1˛

�kC1
1

˛
�kC1
1˛

�kC1
1 ˛

�kC1
1 ˛

�kC1
1 ˛

�kC1
1˛

�kC1
1˛

�kC1
1

˛
�kC1
1˛

�kC1
1 ˛

�kC1
1 ˛

�kC1
1 ˛

�kC1
1˛

�kC1
1˛

�kC1
1

˛
�kC1
1˛

�kC1
1 ˛

�kC1
1 ˛

�kC1
1 ˛

�kC1
1˛

�kC1
1˛

�kC1
1

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

˛2

Fig. 5.2. The actions of ˛�kC11 (solid) and ˛2 (dashed) on Ck � Ck .

Proof. Write g D gk . Let w1; w2 2 F2 be reduced words and write

ˇw1;w2
D g.w1/

�1g.w1w2/g.w2/
�1:

We prove that dH .ˇw1;w2
; id/ � 2=k by induction on `.w1/C `.w2/. If either w1 D id

or w2 D id then ˇw1;w2
D id and we are done. Assume that w1 ¤ id and w2 ¤ id. If the

last letter of w1 and the first letter of w2 are neither the same nor mutual inverses, then
g.w1w2/ D g.w1/g.w2/, and thus ˇw1;w2

D id and we are done. Otherwise, we have
cancellation-free concatenations w1 D Qw1 � xe1 and w2 D xe2 � Qw2, where Qw1 and Qw2 are
reduced words, x 2 ¹x1; x2º and e1; e2 2 Z n ¹0º. Write ˛ D g.x/ 2 ¹˛1; ˛2º. If e2 ¤�e1
then g.w1w2/ D g. Qw1/˛e1Ce2g. Qw2/, and thus ˇw1;w2

D ˛t for t D e1 C e2 � .e1 C e2/.
Then jt j 2 ¹0; kº. Since ˛k2 is id and ˛k1 fixes all elements outside Ck � ¹0; 1º, we see that
dH .ˇw1;w2

; id/ � 2=k as required. Finally, if e2 D �e1, then

ˇw1;w2
D
�
g. Qw1/˛

e1
��1

g. Qw1˛
e1 � ˛�e1 Qw2/.˛

�e1g. Qw2//
�1
D ˛�e1ˇ Qw1; Qw2

˛e1 ;

and thus dH .ˇw1;w2
; id/D dH .ˇ Qw1; Qw2

; id/� 2=k by the induction hypothesis. The upshot
is that def1.g/ � 2=k as claimed.

LetN � k2. ThenNŠ � k C 1D 1 and�k C 1D�kC 1, and thus g..xNŠ�kC11 x2/
k/

D .˛1˛2/
k and g..x�kC11 x2/

k/ D .˛�kC11 ˛2/
k . For i 2 N, write

Di D ¹.x; y/ 2 Ck � Ck j x � y � i .mod k/º:

By examining Figure 5.1, we see that .˛1˛2/k fixes every element of Ck � Ck outside
the diagonals D0 and D1, and thus dH ..˛1˛2/k ; id/ � 2=k. By examining Figure 5.2,
we see that .˛�kC11 ˛2/

k does not fix any element outside the diagonal D0, and hence
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dH ..˛�kC11 ˛2/
k ; id/ � 1 � 1=k. Therefore, by the triangle inequality,

dH
�
g..xNŠ�kC11 x2/

k/; g..x�kC11 x2/
k/
�
� 1 � 3=k:

Thus, since dH is bi-invariant and def1.g/ � 2=k, we have

dH
�
g..xNŠ�kC11 x2/

k.x�kC11 x2/
�k/; id

�
� 1 � 5=k:

For k � 1, fix an arbitrary bijection between Œk2� and Ck � Ck . Henceforth, we use
this bijection to view gk as a function from � to Sym.k2/.

Proof of Theorem 1.4. We are given a group � and a surjective homomorphism � W�!F2.
Define fk D gk ı � . Then def1.fk/ D def1.gk/ � 2=k. Take 1; 2 2 � such that
�.1/ D x1 and �.2/ D x2. Let N � k2, take a homomorphism hk W � ! Sym.N /,
and write 0 D .NŠ�kC11 2/

k.�kC11 2/
�k 2 � . Then hk.0/ D idN 2 Sym.N /,

while Lemma 5.1 says that dH .fk.0/; idk2/ � 1 � 5=k. Hence, d1.fk ; hk/ �
dH .fk.0/; hk.0// � 1 � 5=k.

Appendix A. The triangle inequality for dH

It is clear that dH is symmetric and that dH .�1; �2/ D 0 if and only if �1 D �2. In fact,
dH is a metric by the following lemma.

Lemma A.1. For i 2 Œ3�, let ni � 1 and �i 2 Sym.ni /. Then

dH .�1; �2/C d
H .�2; �3/ � d

H .�1; �3/:

Proof. For i; j 2 Œ3� write nij D max ¹ni ; nj º and n D max ¹n1; n2; n3º. For a per-
mutation � 2 Sym.N / and x > N write �.x/ D ?, where ? is a dummy object that
is not a natural number. For k � 1 and permutations �1 and �2 (of possibly differ-
ent sizes), write dk.�1; �2/ D j¹x 2 Œk� j �1.x/ ¤ �2.x/ºj. Then, for k � nij we have
dH .�i ; �j / D

1
nij
dk.�i ; �j /. Clearly, dk satisfies the triangle inequality for each fixed k.

Using these notations, we have

dH .�1; �2/C d
H .�2; �3/ �

1

n
.dn.�1; �2/C dn.�2; �3// �

1

n
dn13

.�1; �3/:

If n2 � n13 then n D n13, and thus we are done by the above. On the other hand, if
n2 > n13 then

dH .�1; �2/C d
H .�2; �3/ D

1

n2
.dn2

.�1; �2/C dn2
.�2; �3//

D
1

n2

�
dn13

.�1; �2/C dn13
.�2; �3/C 2.n2 � n13/

�
�

n13

n2n13

�
dn13

.�1; �3/C .n2 � n13/
�

�
1

n2n13

�
n13dn13

.�1; �3/C .n2 � n13/dn13
.�1; �3/

�
D

1

n13
dn13

.�1; �3/ D d
H .�1; �3/:
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Appendix B. Symmetrization

Let G be a group equipped with a bi-invariant metric d WG � G ! R�0. Bi-invariance
means that d.agb; ahb/ D d.g; h/ for all g; h; a; b 2 G. For example, one can take
G to be Sym.n/ and d to be the (normalized) Hamming metric dH on Sym.n/. This
section deals with deforming a function f W� ! G into a symmetric function f 0W� ! G

(see Definition 2.1). This is achieved by Proposition B.3 and is used in Section 2 via
Proposition 2.2.

Throughout the section, the notation .4/ indicates the use of the triangle inequality.
We use the bi-invariance of the metric d.�; �/ freely, without further explanation.

Let � be a group and take functions f; h W � ! G. The uniform local defect of f is

def1.f / D sup ¹d.f .12/; f .1/f .2// j 1; 2 2 �º

and the uniform distance between f and h is

d1.f; h/ D sup ¹d.f ./; h.// j  2 �º:

If � is a discrete amenable group equipped with a left- or right-invariant measure m, then
the mean local defect of f is

def1.f / D
Z Z

d.f .12/; f .1/f .2// dm.1/ dm.2/

and the mean distance between f and h is

d1.f; h/ D

Z
d.f ./; h.// dm./:

We begin with the following lemma, which says that if two functions are close together
then their local defects are nearly the same.

Lemma B.1. Let � be a group and let f; f 0W� ! G be functions. Then

def1.f 0/ � 3d1.f; f 0/C def1.f /:

Furthermore, if � is a discrete amenable group equipped with a right-invariant measure m,
then def1.f 0/ � 3d1.f; f 0/C def1.f /.

Proof. For 1; 2 2 � , we have

d.f 0.12/; f
0.1/f

0.2//

� d.f 0.12/; f .12//C d.f .12/; f .1/f .2// by .4/

C d.f .1/f .2/; f .1/f
0.2//„ ƒ‚ …

Dd.f .2/;f 0.2//

C d.f .1/f
0.2/; f

0.1/f
0.2//„ ƒ‚ …

Dd.f .1/;f 0.1//

:

Hence,

sup ¹d.f 0.12/; f 0.1/f 0.2// j 1; 2 2 �º � 3d1.f; f 0/C def1.f /
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and if m is a right-invariant measure on � , thenZ Z
d.f 0.12/; f

0.1/f
0.2// dm.1/ dm.2/ � 3d1.f; f

0/C def1.f /:

We turn to the task of symmetrizing a given function f W� ! G. Note that

d.f .1�/; 1G/ D d
�
f .1�/f .1�/; f .1�/

�
� def1.f / (B.1)

and thus for  2 � ,

d
�
f ./; .f .�1//�1

�
D d.f ./f .�1/; 1G/

� d.f ./f .�1/; f .1�//C d.f .1�/; 1G/ by .4/

� 2 def1.f /: (B.2)

The following is a natural attempt to produce a symmetric function f 0W� ! G close
to f .

� Let �2 D ¹ 2 � j 2 D 1º and fix a set B containing exactly one of  and �1 for
each  2 � n �2.

� Set f 0.1�/ D 1G .

� For  2 B , set f 0./ D f ./ and f 0.�1/ D .f .//�1.

� For  2 �2 n ¹1º, let f 0./ be an order-2 element of G that is close to f ./.

The function f 0W � ! G is symmetric by construction, and we would like to bound
d1.f; f

0/ and d1.f; f 0/. We shall see that we can obtain good bounds if we can perform
the last step efficiently, that is, if approximate square roots in G are close to square roots.
First, we investigate approximate square roots in the case G D Sym.n/.

Lemma B.2. Let � 2 Sym.n/. Then there is � 2 Sym.n/ such that �2 D id and

dH .�; �/ D dH .�2; id/:

Proof. Let A D ¹x 2 Œn� j �2.x/ D xº. Note that � jA is an involution A! A. Define

�.x/ D

´
�.x/; x 2 A;

x; x … A:

Then �2 D id and dH .�; �/ D 1 � jAj=n D dH .�2; id/.

In other words, the lemma says that the cyclic group C2 of order 2 is stable with respect
to Sym.n/, and bounds the stability rate.

Assume that there is a real number M2 such that for every g 2 G there is h 2 G
satisfying h2 D 1G and d.g; h/ � M2d.g

2; 1G/. In the context of symmetrization of a
function � ! G, we would like M2 to be small. Lemma B.2 implies that in the case
G D Sym.n/, we may take M2 D 1.
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Proposition B.3. With M2 as above, write C D 2max ¹1;M2º. Let � be a group and
f W�!G a function. Then there is a symmetric function f 0W�!G such that d1.f;f 0/�
Cı1 and def1.f 0/ � .3C C 1/ı1, where ı1 D def1.f /.

Furthermore, if � is a discrete amenable group equipped with a right-invariant inverse-
invariant measure m, then for the same function f 0 we have d1.f; f 0/ � .C C 1/ı1 and
def1.f; f 0/ � .3C C 4/ı1, where ı1 D def1.f /.

Proof. By Lemma B.1, the bounds on def1.f 0/ and def1.f 0/ follow from the bounds on
d1.f; f

0/ and d1.f; f 0/, respectively. We turn to the proof of the latter.
Let �2 and B be as in the discussion preceding Lemma B.2. For each  2 �2 n ¹1�º,

take �./ 2 G such that

d.f ./; �.// �M2d..f .//
2; 1G/: (B.3)

Define a function f 0W� ! G as follows:

f 0./ D

8̂̂̂̂
<̂
ˆ̂̂:
1G ;  D 1� ;

f ./;  2 B;

.f .�1//�1;  2 �n.�2 [ B/;

�./;  2 �2 n ¹1�º:

Then f 0 is symmetric by construction. By (B.1), we have

d.f .1�/; f
0.1�// D d.f .1�/; 1G/ � ı1: (B.4)

By (B.2), for  2 � n .�2 [ B/ we have

d.f ./; f 0.// D d
�
f ./; .f .�1//�1

�
� 2ı1:

Finally, for  2 �2 n ¹1�º we have

d.f ./; f 0.// D d.f ./; �.//

�M2d..f .//
2; 1G/ by (B.3)

�M2 �
�
d
�
.f .//2; f .2/

�
C d.f .1�/; 1G/

�
by .4/ and 2=1�

� 2M2ı1: by (B.4)

This finishes the proof that d1.f 0; f / � Cı1.
Now, assume that m is a right-invariant inverse-invariant measure on � . First, we show

that f approximately respects inverses on average:Z
d.f ./f .�1/; 1G/ dm./ D

Z Z
d.f ./f .�1/; 1G/ dm.

0/ dm./

D

Z Z
d
�
f . 0/f ./f .�1/; f . 0/

�
dm. 0/ dm./

�

Z Z
d
�
f . 0/f ./f .�1/; f . 0/f .�1/

�
dm. 0/ dm./ by .4/

C

Z Z
d
�
f . 0/f .�1/; f . 0/

�
dm. 0/ dm./

D 2ı1; (B.5)
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where for the last equality, we manipulate the first term by cancelling out f .�1/, and in
the second term we apply  7! �1 and then  0 7!  0 . Furthermore, f approximately
respects the identity elements in the following sense (which is significant only when � is
finite):

m.¹1�º/d.f .1�/; 1G/ D

Z
¹1� º

Z
d.f .1�/; 1G/ dm.

0/ dm./

D

Z
¹1� º

Z
d.f . 0/f .1�/; f .

0
� 1�// dm.

0/ dm./

�

Z Z
d.f . 0/f ./; f . 0// dm. 0/ dm./ D ı1: (B.6)

Now,Z
�2n¹1� º

d.f ./; �.// dm./

�M2

Z
�2n¹1� º

d..f .//2; id/ dm./ by (B.3)

DM2

Z
�2n¹1� º

d.f ./f .�1/; 1G/ dm./:  D �1 for  2 �2 (B.7)

Finally,

d1.f; f
0/ D

Z
d.f ./; f 0.// dm./

D m.¹1�º/d.f .1�/; 1G/C

Z
�n.�2[B/

d.f ./f .�1/; 1G/ dm./

C

Z
�2n¹1� º

d.f ./; �.// dm./

� ı1 Cmax¹1;M2º

Z
d.f ./f .�1/; 1G/ dm./ by (B.6) and (B.7)

� .C C 1/ı1: by (B.5)
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[13] Druţu, C., Kapovich, M.: Geometric Group Theory. Amer. Math. Soc. Colloq. Publ. 63, Amer.
Math. Soc., Providence, RI (2018) Zbl 1447.20001 MR 3753580

[14] Dunford, N., Schwartz, J. T.: Linear Operators. Part II. Wiley Classics Library, Wiley, New
York (1988) Zbl 0635.47002 MR 1009163

[15] Eilers, S., Shulman, T., Sørensen, A. P. W.: C*-stability of discrete groups. Adv. Math. 373, art.
107324, 41 pp. (2020) Zbl 1466.46044 MR 4131398

[16] Epstein, D. B. A., Fujiwara, K.: The second bounded cohomology of word-hyperbolic groups.
Topology 36, 1275–1289 (1997) Zbl 0884.55005 MR 1452851

[17] Glebsky, L., Rivera, L. M.: Almost solutions of equations in permutations. Taiwanese J. Math.
13, 493–500 (2009) Zbl 1203.20003 MR 2500002

[18] Gowers, W. T., Hatami, O.: Inverse and stability theorems for approximate representations of
finite groups. Mat. Sb. 208, 70–106 (2017) (in Russian) Zbl 1427.20022 MR 3733361

[19] Goldreich, O.: Introduction to Property Testing. Cambridge Univ. Press, Cambridge (2017)
Zbl 06797790 MR 3837126

[20] Hadwin, D., Shulman, T.: Stability of group relations under small Hilbert–Schmidt perturba-
tions. J. Funct. Anal. 275, 761–792 (2018) Zbl 1411.46046 MR 3807776

[21] Hyers, D. H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A.
27, 222–224 (1941) Zbl 67.0424.01 MR 4076

[22] Ioana, A.: Stability for product groups and property (� ). J. Funct. Anal. 279, art. 108729, 32 pp.
(2020) Zbl 1485.20004 MR 4134896

[23] Ji, Z., Natarajan, A., Vidick, T., Wright, J., Yuen, H.: MIP* = RE. arXiv:2001.04383 (2020)
[24] Kazhdan, D.: On "-representations. Israel J. Math. 43, 315–323 (1982) Zbl 0518.22008

MR 693352

https://zbmath.org/?q=an:07127791
https://mathscinet.ams.org/mathscinet-getitem?mr=4027744
https://zbmath.org/?q=an:07145001
https://mathscinet.ams.org/mathscinet-getitem?mr=3999445
https://zbmath.org/?q=an:07456010
https://mathscinet.ams.org/mathscinet-getitem?mr=4329877
https://zbmath.org/?q=an:1146.22009
https://mathscinet.ams.org/mathscinet-getitem?mr=2415834
https://zbmath.org/?q=an:1135.68065
https://mathscinet.ams.org/mathscinet-getitem?mr=2371051
https://zbmath.org/?q=an:0795.68131
https://mathscinet.ams.org/mathscinet-getitem?mr=1248868
https://zbmath.org/?q=an:1476.20046
https://mathscinet.ams.org/mathscinet-getitem?mr=4105530
https://zbmath.org/?q=an:0457.5502
https://mathscinet.ams.org/mathscinet-getitem?mr=624804
https://zbmath.org/?q=an:1271.22003
https://mathscinet.ams.org/mathscinet-getitem?mr=3038548
https://zbmath.org/?q=an:1456.22002
https://mathscinet.ams.org/mathscinet-getitem?mr=4080477
https://zbmath.org/?q=an:1416.22008
https://mathscinet.ams.org/mathscinet-getitem?mr=3867328
https://zbmath.org/?q=an:1447.20001
https://mathscinet.ams.org/mathscinet-getitem?mr=3753580
https://zbmath.org/?q=an:0635.47002
https://mathscinet.ams.org/mathscinet-getitem?mr=1009163
https://zbmath.org/?q=an:1466.46044
https://mathscinet.ams.org/mathscinet-getitem?mr=4131398
https://zbmath.org/?q=an:0884.55005
https://mathscinet.ams.org/mathscinet-getitem?mr=1452851
https://zbmath.org/?q=an:1203.20003
https://mathscinet.ams.org/mathscinet-getitem?mr=2500002
https://zbmath.org/?q=an:1427.20022
https://mathscinet.ams.org/mathscinet-getitem?mr=3733361
https://zbmath.org/?q=an:06797790
https://mathscinet.ams.org/mathscinet-getitem?mr=3837126
https://zbmath.org/?q=an:1411.46046
https://mathscinet.ams.org/mathscinet-getitem?mr=3807776
https://zbmath.org/?q=an:67.0424.01
https://mathscinet.ams.org/mathscinet-getitem?mr=4076
https://zbmath.org/?q=an:1485.20004
https://mathscinet.ams.org/mathscinet-getitem?mr=4134896
https://arxiv.org/abs/2001.04383
https://zbmath.org/?q=an:0518.22008
https://mathscinet.ams.org/mathscinet-getitem?mr=693352


O. Becker, M. Chapman 3632

[25] Kun, G., Thom, A.: Inapproximability of actions and Kazhdan’s property (T). arXiv:1901.03963
(2019)

[26] Lazarovich, N., Levit, A., Minsky, Y.: Surface groups are flexibly stable. arXiv:1901.07182
(2019)

[27] Levit, A., Lubotzky, A.: Infinitely presented stable groups and invariant random subgroups of
metabelian groups, Ergodic Theory Dynam. Systems 42, 2028–2063 (2022) Zbl 07543353
MR 4417344

[28] Levit, A., Lubotzky, A.: Uncountably many permutation stable groups. arXiv:1910.11722
(2019)

[29] Lubotzky, A., Oppenheim, I.: Non p-norm approximated groups. J. Anal. Math. 141, 305–321
(2020) Zbl 07317680 MR 4174045

[30] Morris, D. W.: Bounded generation of SL.n; A/ (after D. Carter, G. Keller, and E. Paige). New
York J. Math. 13, 383–421 (2007) Zbl 1137.20045 MR 2357719

[31] Natarajan, A., Vidick, T.: A quantum linearity test for robustly verifying entanglement. In:
STOC’17—Proc 49th Annual ACM SIGACT Symposium on Theory of Computing, ACM,
New York, 1003–1015 (2017) Zbl 1370.81045 MR 3678246

[32] Natarajan, A., Vidick, T.: Low-degree testing for quantum states, and a quantum entangled
games PCP for QMA. arXiv:1801.03821 (2018)

[33] Rolli, P.: Quasi-morphisms on free groups. arXiv:0911.4234 (2009)
[34] Thom, A.: Finitary approximations of groups and their applications. In: Proc. International

Congress of Mathematicians—Rio de Janeiro 2018, Vol. III, Invited lectures, World Sci.,
Hackensack, NJ, 1779–1799 (2018) Zbl 1445.20039 MR 3966829

[35] Ulam, S. M.: A Collection of Mathematical Problems. Interscience Tracts in Pure Appl. Math.
8, Interscience Publ., New York (1960) Zbl 0086.24101 MR 0120127

[36] Vidick, T.: Pauli braiding (2017). https://mycqstate.wordpress.com/2017/06/28/pauli-braiding/
[37] Zheng, T.: On rigid stabilizers and invariant random subgroups of groups of homeomorphisms.

arXiv:1901.04428 (2019)

https://arxiv.org/abs/1901.03963
https://arxiv.org/abs/1901.07182
https://zbmath.org/?q=an:07543353
https://mathscinet.ams.org/mathscinet-getitem?mr=4417344
https://arxiv.org/abs/1910.11722
https://zbmath.org/?q=an:07317680
https://mathscinet.ams.org/mathscinet-getitem?mr=4174045
https://zbmath.org/?q=an:1137.20045
https://mathscinet.ams.org/mathscinet-getitem?mr=2357719
https://zbmath.org/?q=an:1370.81045
https://mathscinet.ams.org/mathscinet-getitem?mr=3678246
https://arxiv.org/abs/1801.03821
https://arxiv.org/abs/0911.4234
https://zbmath.org/?q=an:1445.20039
https://mathscinet.ams.org/mathscinet-getitem?mr=3966829
https://zbmath.org/?q=an:0086.24101
https://mathscinet.ams.org/mathscinet-getitem?mr=0120127
https://mycqstate.wordpress.com/2017/06/28/pauli-braiding/
https://arxiv.org/abs/1901.04428

	1. Introduction
	1.1. A framework for stability
	1.2. Probabilistic stability and homomorphism testing
	1.3. The structure of the paper and some comments on the proofs

	2. Flexible stability of amenable groups
	2.1. Preliminaries on amenable groups
	2.2. The setup for the proof of Theorems 1.2 and 1.6
	2.3. Proof of Proposition 2.7

	3.  Flexible stability of special linear groups
	4. Counterexamples for strict stability: the integers and the class of finite groups
	5. Counterexamples for flexible stability: free groups
	A. The triangle inequality for dH
	B. Symmetrization
	References

