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Abstract. We prove an Alt–Caffarelli–Friedman montonicity formula for pairs of functions solving
elliptic equations driven by different ellipticity matrices in their positivity sets. As an application,
we derive Liouville-type theorems for subsolutions of some elliptic systems, and we analyze seg-
regation phenomena for systems of equations where the diffusion of each density is described by a
different operator.
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1. Introduction

The Alt–Caffarelli–Friedman (ACF) monotonicity formula is a cornerstone in the theory
of free-boundary problems with two or more phases. In its original formulation [1], it
establishes that if u; v 2 H 1

loc.BR/ \ C.BR/ are nonnegative, continuous, subharmonic
functions with disjoint positivity sets, i.e.

u; v � 0; ��u � 0; ��v � 0; u � v � 0 in BR � RN ;

then the functional

r 7! J.u; v; x0; r/ D
1

r4

ˆ
Br .x0/

jruj2

jx � x0jN�2
dx

ˆ
Br .x0/

jrvj2

jx � x0jN�2
dx (1.1)

is nondecreasing for 0 < r < dist.x0; @BR/. Here and in the rest of the paperBr .x0/ (resp.
Sr .x0/D @Br .x0/) denotes the Euclidean ball (resp. sphere) of center x0 and radius r > 0,
and we simply write Br and Sr if x0 D 0.
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The monotonicity formula was introduced in [1], as the key tool to prove the optimal
Lipschitz regularity of solutions to a two-phase problem, and since then has been suc-
cessfully applied in a number of different contexts. Several generalizations of the ACF
formula are now available, tailored to deal with elliptic or parabolic equations with vari-
able coefficients [7, 10], and also equations with right hand side [8, 19, 23, 38]; in the
latter case, one obtains the so-called almost monotonicity formula. Moreover, a counter-
part of the ACF formula is also available for the fractional Laplacian [34–36] and for the
p-Laplacian [18]. A common feature of all these contributions is that different phases
satisfy equations driven by the same operator, as in the original ACF result.

In this paper we address the case when, on the contrary, u and v satisfy equations
involving different uniformly elliptic operators. Only recently have some related free
boundary problems been investigated in the literature. In [2], Andersson and Mikayelyan
prove partial regularity of the zero set of weak solutions to a quasilinear divergence prob-
lem at the jump. Kim, Lee and Shahgholian [20, 21] are concerned with the regularity of
solutions and of the nodal set to equations with a jump of conductivity. Moreover, Caf-
farelli, De Silva and Savin [4] deal with a two-phase anisotropic problem in dimension
2, and prove the Lipschitz regularity of the solutions; finally we quote [6], where the
regularity of interfaces of a Pucci type segregation problem is investigated.

In [20], the authors focus on the problem

� div.aC.x/ru/ � 0; � div.a�.x/rv/ � 0 in BR

for different scalar positive functions a˙. The fact that a˙ are different scalar functions
makes the problem asymmetric, but essentially isotropic, and indeed the authors obtained
a perturbed monotonicity formula for the same functional J defined in (1.1). In contrast,
we deal with a truly anisotropic two-phase problem, assuming that div.A1ru/ � 0 and
div.A2rv/� 0 for two positive definite symmetricN �N matrices A1;A2 with constant
coefficients. This makes our setting somehow similar to that of [2], where the authors
consider weak solutions to div.B.w/rw/ D 0, where B.w/ D .A � Id/�¹w>0º C Id. As
far as we know, the following is the first monotonicity formula of ACF type specifically
tailored for the anisotropic case. After some transformations, we can always assume that
A1 D A is diagonal, with lowest eigenvalue equal to 1, and A2 is the identity (see the
proof of Theorem 3.1 below for more details), and we obtain the following result.

Theorem 1.1. LetN � 2, let A¤ Id be anN �N diagonal matrix with diagonal entries

1 D a1 � � � � � aN ;

and let

�A.x/ WD

� NX
iD1

x2i
ai

�.2�N/=2
: (1.2)

Let u; v 2 H 1
loc.BR/ be such that

u; v � 0; � div.Aru/ � 0; ��v � 0; u � v � 0 in BR � RN :
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There exists an exponent �A;N 2 .0; 2/ depending on A and on N such that the functional

r 7! J.u; v; x0; r/ D
1

r2�A;N

ˆ
Br .x0/

hAru;rui�A.x � x0/ dx

ˆ
Br .x0/

jrvj2

jx � x0jN�2
dx

is nondecreasing for 0 < r < dist.x0; @BR/, x0 2 BR.

The exponent �A;N is explicitly given as the solution of an optimal partition problem,
involving eigenvalues of Dirichlet forms on the unit sphere SN�1, as in the original ACF
formula. While in the isotropic case A D Id the optimal value is known to be 2, in the
anisotropic case A ¤ Id we shall show that such a spectral optimal value �A;N is always
smaller than 2 (Lemma 2.4). One may still wonder whether or not it is possible to replace
�A;N with 2, in the monotonicity formula, with a strategy different to ours, thus improving
Theorem 1.1. It is worth noting that the answer is negative in general: the optimal expo-
nent in the anisotropic monotonicity formula is strictly smaller than 2, at least for suitable
choices of A. This marks a striking difference with the symmetric-isotropic case, and we
refer to Remark 3.3 for a detailed discussion of this point.

One of the difficulties in the proof of Theorem 1.1 is that the natural domains of inte-
gration for integrals involving �A are the ellipsoids Er .x0/ WD ¹jA

�1=2.x � x0/j < rº

rather than Euclidean balls. However, using different domains of integration for the two
factors of J makes it impossible to reduce the proof of the monotonicity formula to an
optimal partition problem, since @Er .x0/ and @Br .x0/ do not coincide. In order to over-
come this obstruction, we introduce suitable weights in the various integrations by parts,
in analogy with the approach used in [22] to prove an Almgren monotonicity formula for
variable coefficients operators by avoiding the use of radial deformations or Riemannian
metric considerations.

Finally, we mention that the possibility of proving a monotonicity formula without
assuming the continuity of the phases has already been considered in the literature (for
instance in [38]).

Remark 1.2. As already observed, the condition � < 2 is necessary to prove the mono-
tonicity of the functional J.u;v;x0; r/with respect to r , for generalA. Still, in the present
setting one may try to prove the mere boundedness of

r 7!
1

r2�

ˆ
Br .x0/

hAru;rui�A.x � x0/ dx

ˆ
Br .x0/

jrvj2

jx � x0jN�2
dx

for a larger range of �, in the spirit of the Caffarelli–Jerison–Kenig almost monotonicity
formula [8]. It is worth remarking that also such a weaker result cannot hold with the
exponent � D 2 in general. A counterexample to the boundedness for some choices of A
is provided by the pair .u; v/ in Proposition 3.7.

Applications to segregation problems. The asymptotic analysis of phase separation in
reaction-diffusion systems with multiple phases is a relevant field of application of the
ACF monotonicity formula, as highlighted in the recent literature, starting from [12, 13].
In particular, the ACF monotonicity formula can be applied to prove a priori bounds of the
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solutions, independent of the singular perturbation parameter. Typical examples of such
singularly perturbed systems fit under the comprehensive model

��ui D fi .x; ui / � ˇgi .u1; : : : ; uk/ in � � RN ,

where the elliptic operator �� and the functions ˇgi � 0 describe, respectively, the dif-
fusion process and the interaction between the densities, and can assume different shapes
according to the underlying phenomena. The parameter ˇ > 0 describes the strength of the
competition, and one is particularly interested in understanding the behavior of solutions
in the singular limit ˇ ! C1, which is the limit of strong competition leading to total
segregation. The following particular cases have been widely investigated in light of their
relevance both from the mathematical point of view, and from the physical/biological one:

(i) the Lotka–Volterra quadratic interaction gi .u1; : : : ; uk/D ui
P
j¤i bijuj ; see [9,13,

15, 31, 33, 37] and references therein;

(ii) the variational cubic interaction gi .u1; : : : ; uk/ D ui
P
j¤i biju

2
j with bij D

bj i (it possesses a gradient structure since gi D @uiG, where G.u1; : : : ; uk/ D
1
2

P
i<j biju

2
i u
2
j ); see [11, 12, 14, 16, 24, 27, 31–33] and references therein.

In addition, we mention [26, 39] and [17, 35, 36] for analogous studies in fully nonlinear
or nonlocal contexts; [5,28] for long-range interaction models; and [40] for partial results
involving a wider class of interaction terms.

Most of these results concern doubly-symmetric settings, in the sense that there is a
symmetry both in the interaction terms (bij D bj i ) and in the diffusion processes govern-
ing the spread of the components (all the equations are driven by the same operator). To
our knowledge, asymmetric problems have been studied only in [13, 37] (in the case of
Lotka–Volterra interactions with bij ¤ bj i ), and in [40] (very general, possibly asymmet-
ric, interaction in dimensionN D 2). In particular, nothing has been known if each density
ui is driven by a different operatorLi , and in what follows we describe our main results in
this framework. We shall treat separately both the Lotka–Volterra quadratic interactions,
and the variational cubic ones.

Lotka–Volterra quadratic interactions. Let N; k � 2 be integers, and let � � RN be
a bounded smooth domain. We consider the system´

Liui D ˇui
P
j¤i bijuj ; ui > 0 in �;

ui D 'i on @�;
i D 1; : : : ; k: (1.3)

The operators Li are of type Li D div.Air. � //, where A1; : : : ; Ak are positive definite
symmetric matrices with constant coefficients. The coefficients bij are positive, so that the
system is competitive, and not necessarily symmetric. Regarding the boundary data 'i ,
we suppose that they are the restriction on @� of C 1; .�/ functions, for some  2 .0; 1/,
with the property that 'i � 'j � 0 in �.

Theorem 1.3. Let uˇ D .u1;ˇ ; : : : ; uk;ˇ / be a solution of (1.3) for fixed ˇ > 1. There
exists N� 2 .0; 2/ depending only on A1; : : : ; Ak and on N such that the following holds:
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For any ˛ 2 .0; N�=2/, there exists C > 0 independent of ˇ such that kuˇkC0;˛.�/ � C .
Moreover, as ˇ !C1, up to a subsequence we have

uˇ ! u in C 0;˛.�/ and in H 1
loc.�/, for every ˛ 2 .0; N�=2/;

and the limit u is a vector of nonnegative functions satisfying8̂̂<̂
:̂
Liui D 0 in ¹ui > 0º, i D 1; : : : ; k,

ui � uj � 0 in � for every i ¤ j ,

ui D 'i on @�.

Variational cubic interactions. Let N; k � 2 be integers, and let � � RN be a bounded
smooth domain. We consider the system´
�Liui D fi;ˇ .x; ui / � ˇui

P
j¤i biju

2
j ; ui > 0 in �;

ui;ˇ D 0 on @�;
i D 1; : : : ; k: (1.4)

As in the Lotka–Volterra case, we assume that Li D div.Air. � //, with Ai positive
definite, symmetric, with constant coefficients. Moreover, we assume that the functions
fi;ˇ W � � R ! R are continuous, and that the coupling coefficients are positive and
symmetric: bij D bj i > 0, so that the system has a variational structure.

Theorem 1.4. Let uˇ D .u1;ˇ ; : : : ; uk;ˇ / be a solution of (1.3) at fixed ˇ > 1. Suppose
that ¹uˇ W ˇ > 1º is uniformly bounded in L1.�/, and that fi;ˇ maps bounded sets of
� � R into bounded sets of R, uniformly with respect to ˇ. Then there exists N� 2 .0; 2/
depending only on A1; : : : ; Ak and on N such that the following holds: For every ˛ 2
.0; N�=2/ there exists C > 0 independent of ˇ such that kuˇkC0;˛.�/ � C . Moreover, up
to a subsequence,

uˇ ! u in C 0;˛.�/ and in H 1.�/, for every ˛ 2 .0; N�=2/:

If fi;ˇ ! fi locally uniformly as ˇ !C1, then the limit function u satisfies8̂̂<̂
:̂
�Liui D fi .x; ui / in ¹ui > 0º, i D 1; : : : ; k,

ui � uj � 0 in � for every i ¤ j ,

ui D 0 on @�,

and the domain variation formula

2

ˆ
�

X
i

.hdYAirui ;rui i � fi .x; ui /hrui ; Y i/ �

ˆ
�

divY
X
i

hAirui ;rui i D 0:

(1.5)

Theorems 1.3 and 1.4 can be considered as the perfect anisotropic counterpart of the
main results in [13] and [24]. The value N� is given explicitly as the minimum of a finite
number of optimal exponents appearing in Theorem 1.1 for different choices of A. In
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particular, given A1; : : : ; Ak , the value N� is the same for both Theorems 1.3 and 1.4.
The proofs of these results follow the blow-up strategy developed in [13, 24]. In these
contexts, the ACF monotonicity formula is crucially employed to obtain some Liouville-
type theorems for the limit configuration in the blow-up.

The results here are not stated in the broader setting, and some extensions could be
proved by combining the method presented here with others already used in the literature.
For instance, it would not be difficult to add a nonlinear term fi;ˇ in (1.3), or to obtain
local interior estimates under no regularity or boundedness assumptions on �. We refer
the interested reader to [27] for further generalizations. We have preferred to treat the
prototypical problems (1.3) and (1.4), in analogy with [13, 24], in order to emphasize the
main differences and difficulties which one has to face when passing from the isotropic
setting to the anisotropic one, without inessential technicalities.

Remark 1.5. In the setting of Theorem 1.3, the existence of uˇ can be proved by using
Leray–Schauder degree theory as in [13, Theorem 2.1], or fixed point arguments as in [5,
Theorem 4.1]. Regarding Theorem 1.4, the existence of uˇ can be proved by variational
methods (minimization or min-max), under different assumptions on fi;ˇ .

It is by now well known that the assumption that ¹uˇ º is uniformly bounded inL1.�/
in Theorem 1.4 is natural and very mild. For instance, it is satisfied by a family of solutions
sharing the same variational characterization, at each ˇ > 1 fixed. In Theorem 1.3, such
an assumption is implicit, since it follows from the sign of uˇ , the subharmonicity, and
the boundary conditions.

Once Theorems 1.3 and 1.4 are proven, it is natural to investigate the free-boundary
problem arising in the limit: that is, to understand the regularity of the limit configu-
ration u and of the associated nodal set � D ¹ui D 0 for every iº. From this point of
view, the local symmetric case is essentially understood as a consequence of the results in
[9, 11, 14, 24, 33]: u is Lipschitz continuous, and � is the union of C 1;˛-hypersurfaces of
dimension N � 1, up to a singular set of dimension N � 2. Moreover, in a neighborhood
of each point x0 on the regular part of � precisely two components of u are different
from 0, and their difference is smooth (reflection law). The anisotropic case offers a num-
ber of challenges, and will be the object of future investigations. Here we only address
a simplified setting, and in particular a 2-component Lotka–Volterra system, in order to
understand the type of result we shall look at. We recall that for systems of two compo-
nents it is always possible to suppose that A2 D Id, and that A1 D A is a diagonal matrix
with lowest eigenvalue equal to 1. Thus, we define �A;N as in Theorem 1.1. Moreover,
if necessary replacing u1 with .a21=a12/u1, we can assume symmetry of the coupling
coefficients, a12 D a21.

Theorem 1.6. In the previous setting, let uD .u;v/ be a limit profile for solutions to (1.3),
given by Theorem 1.3. Then w D u � v is a weak solution of the quasi-linear equation

div.B.w/rw/ D 0 in �; (1.6)
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with B.w/D .A� Id/�¹w>0ºC Id. Further,w is ˛-Hölder continuous for every exponent
˛ 2 .0;�A;N =2/. Moreover,�D�w� is a positive and locally finite measure with support
in ¹w D 0º, and has � -finite .N � 1/-dimensional Hausdorff measure. Furthermore, for
�-a.e. x 2 ¹w D 0º there exists r > 0 such that ¹w D 0º \ Br .x/ is a C 1;˛ graph.

The theorem follows directly from the convergence in Theorem 1.3 and the main result
in [2] concerning the nodal set of solutions of equations like (1.6). The regularity theory
both for the solutions to (1.6), and for their nodal set, seems to be a difficult task. Up to
our knowledge, it is only known that weak solutions are Hölder continuous with some
exponent. Concerning the nodal set, the only available results are those in [2].

Remark 1.7. From equation (1.6), it is not difficult to deduce that limits of the Lotka–
Volterra system (1.3) with two components satisfy the free-boundary condition

jrujhA�; �i D jrvj

on the regular part of ¹u D 0 D vº; indeed, if ! �� � and  D ¹u D 0 D vº \ ! is C 1,
then

0 D

ˆ
!\¹u>0º

hAru;r'i �

ˆ
!\¹v>0º

hrv;r'i D

ˆ


'.hAru; �i � hrv; �2i/

for every ' 2 C1c .!/, with � D ��2 D rv
jrvj
D �

ru
jruj

.
Instead, under mild additional assumptions on the nonlinear terms fi;ˇ , limits of

gradient-type systems (1.4) with two components satisfy the free-boundary condition

jruj2hA�; �i D jrvj2

on the regular part of ¹u D 0 D vº. This follows directly from the domain variation
formula (1.5), by reasoning as in [16, Proposition 2.1]. Therefore, the limit classes for
problems (1.3) and (1.4) do not coincide. This is another interesting difference from the
analogous symmetric problems, where the limit profiles can be studied in a unified way,
and in particular the free-boundary condition reads jruj D jrvj for both Lotka–Volterra
and variational interactions (we refer to [33, Section 8] for more details).

Structure of the paper. In Section 2 we prove the anisotropic monotonicity formula
and some variants concerning nonsegregated solutions of some competitive systems. In
Section 3 we deduce various Liouville-type theorems. Such theorems will be used in
Sections 4 and 5, which contain the proofs of Theorems 1.3, 1.6 and 1.4.

2. Anisotropic Alt–Caffarelli–Friedman monotonicity formula

LetA be a positive definiteN �N diagonal matrix with constant coefficients, with lowest
eigenvalue 1:

A WD diag.a1; : : : ; aN / with 1 D a1 � � � � � aN : (2.1)

We first introduce the basic notation which will be used throughout.
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� �A denotes the function defined in (1.2). Notice that �A � 1 in dimensionN D 2, while
for N � 3 it is (a multiple of) the fundamental solution of div.Ar�/ (for the explicit
expression of �A, we refer to [3, Chapter 5, p. 214]).

� As in [22], we define

�.x/ WD

�
A
x

jxj
;
x

jxj

�
; so 1 � � � aN ; (2.2)

where h�; �i denotes the Euclidean scalar product.

� Let � be the outer unit vector on a sphere Sr .x0/. We consider the tangential gradient
(computed with respect to the scalar product induced by A)

r
A
� ' WD r' �

hAr'; �i

hA�; �i
� D r' �

hAr'; �i

�.x � x0/
�: (2.3)

In this way, the gradient can be split into its normal and tangential parts as usual:

hAr';r'i D hArA� ';r
A
� 'i C

hAr'; �i2

�.x � x0/
I (2.4)

notice that, in case A D Id, this identity boils down to jr'j2 D jr�'j2 C .@�'/2.

� For u 2 H 1.SN�1/, we consider the optimal value

�.A; u/ WD inf
²´

SN�1hAr
A
�
';rA

�
'i d�´

SN�1 '
2�d�

W
' 2 H 1.SN�1 n ¹0º/ and
HN�1.¹' ¤ 0º \ ¹u D 0º/ D 0

³
;

where d� D d�x and HN�1 stands for the usual .N � 1/-dimensional Hausdorff
measure. Notice that if u is also continuous, then �.Id; u/ is the first eigenvalue of
the Laplace–Beltrami operator with homogeneous Dirichlet boundary condition on the
open set ¹� 2 SN�1 W u.�/ > 0º.

� For u 2 H 1.Sr .x0//, we set ux0;r .�/ D u.x0 C r�/ 2 H
1.S1/ ' H

1.SN�1/.

� We define  W RC ! RC by

.t/ WD

s�
N � 2

2

�2
C t �

N � 2

2
:

� For N � 3 and ı > 0, we define �ı W Œ0;C1/! .0;C1/ and ˆı W RN ! .0;C1/

by

�ı.r/ D

´
N
2
ı2�N C 2�N

2
ı�N r2 if 0 � r � ı;

r2�N if r > ı;
ˆı.x/ D �ı.jxj/: (2.5)

Then ˆı is a C 1 positive superharmonic function in RN . Therefore, ˆA;ı.x/ D
ˆı.A

�1=2x/ is in turn a C 1 positive function in RN , with the properties that
div.ArˆA;ı/ � 0, and ˆA;ı D �A in the set Ec

ı
D ¹jA�1=2xj � ıº. The set Er WD

¹jA�1=2xj < rº is an ellipsoid, and since a1 D 1,

Br � Er � Bra1=2
N

:
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Remark 2.1. It is convenient to observe that

a2

aN

ˆ
!

jr�'j
2 d� �

ˆ
!

hArA� ';r
A
� 'i d� � aNaN�1

ˆ
!

jr�'j
2 d�

for any ' 2 H 1.!/ any ! � SN�1, so that
´
!
hArA

�
';rA

�
'i is a seminorm in H 1.!/,

equivalent to the standard one
´
!
jr�'j

2. The above inequality can be easily checked:
ˆ
!

hArA� ';r
A
� 'i D

ˆ
!

�
hAr';r'i �

hAr'; �i2

hA�; �i

�
D

ˆ
!

�X
i

ai'
2
xi
�
.
P
i ai'xixi /

2P
i aix

2
i

�
D

ˆ
!

1P
i aix

2
i

X
i<j

aiaj .'xixj � 'xj xi /
2;

and similarly ˆ
!

jr�'j
2
D

ˆ
!

X
i<j

.'xixj � 'xj xi /
2:

2.1. Monotonicity formula in dimension N � 3

For N � 3, we define

IA.u; x0; r/ D

ˆ
Br .x0/

hAru;rui�A.x � x0/ dx: (2.6)

Lemma 2.2. LetN �3, and let u2H 1
loc.BR/ be nonnegative and such that div.Aru/�0

in BR. Then, for almost every r > 0 such that Br .x0/ �� BR, we have

IA.u; x0; r/ �
a
N=2
N r

2.�.A; ux0;r //

ˆ
Sr .x0/

hAru;rui�A.x � x0/ d�:

Proof. In order to simplify notation, we consider x0 D 0, and we often omit the depen-
dence on x0 and A for most of the quantities.

Let u" be a mollification of u, which still satisfies div.Aru"/ � 0 and u" � 0. By
using the coarea formula, it is not difficult to check that

(i) for almost every r 2 .0; R/ the restrictions of u and of @xiu (i D 1; : : : ; k) to Sr are
well defined, are in L2.Sr /, and ujSr 2 H

1.Sr /;

(ii) for almost every r 2 .0;R/ the restrictions of u" and of @xiu" to Sr strongly converge
to those of u and of @xiu in L2.Sr / as "! 0C.

We consider r 2 .0;R/ such that both (i) and (ii) hold, and prove the lemma for those r .
Let ı > 0 be such that

¹jA�1=2xj � ıº �� Br :

In this way, we have ˆA;ı D �A in a neighborhood of Sr . We also recall that � D
hA�; �i on Sr . By testing the equation for u" with u"ˆA;ı in Br , and recalling that



N. Soave, S. Terracini 3736

div.ArˆA;ı/ � 0, we obtainˆ
Br

hAru";ru"iˆA;ı �

ˆ
Sr

�Au"hAru"; �i �
1

2

ˆ
Br

hr.u2"/; ArˆA;ıi

�

ˆ
Sr

�Au"hAru"; �i �
1

2

ˆ
Sr

u2"hAr�A; �i:

By taking the limit first as "! 0C and then as ı! 0C (thanks to (i) and (ii)), we deduce
that

I.u; r/ �

ˆ
Sr

u�AhAru; �i �

ˆ
Sr

u2

2
hAr�A; �i: (2.7)

Now, on Sr we have

�hAr�A; �i D .N � 2/

�X
i

x2i
ai

��N=2
jxj � .N � 2/

a
N=2
N

rN�1
:

Thus, recalling also that � D jxj�2
P
i aix

2
i � a1 D 1, we have

�

ˆ
Sr

u2

2
hAr�A; �i �

.N � 2/a
N=2
N

2rN�1

ˆ
Sr

u2�: (2.8)

Similarly, ˆ
Sr

�AuhAru; �i �
a
.N�2/=2
N

rN�2

ˆ
Sr

juj jhAru; �ij

�
a
N=2
N

rN�2

�
˛

2r

ˆ
Sr

u2�C
r

2˛

ˆ
Sr

hAru; �i2

�

�
(2.9)

with ˛ > 0 to be conveniently chosen later (in the last step, we have used aN � a1 D 1).
By combining (2.7)–(2.9), we obtain

I.u; r/ �
a
N=2
N

2rN�3

�
N � 2C ˛

r2

ˆ
Sr

u2�C
1

˛

ˆ
Sr

hAru; �i2

�

�
�

a
N=2
N

2rN�3

�
N � 2C ˛

�.A; ur /

ˆ
Sr

hArA� u;r
A
� ui C

1

˛

ˆ
Sr

hAru; �i2

�

�
;

where we have used the definition of �.A;ur /. We now choose ˛ > 0 in order to perfectly
balance the coefficients: that is, we impose

N � 2C ˛

�.A; ur /
D
1

˛
; so ˛ D .�.A; ur //:

In this way we deduce that

I.u; r/ �
a
N=2
N

2.�.A; ur //rN�3

�ˆ
Sr

hArA� u;r
A
� ui C

ˆ
Sr

hAru; �i2

�

�
D

a
N=2
N r3�N

2.�.A; ur //

ˆ
Sr

hAru;rui �
a
N=2
N r

2.�.A; ur //

ˆ
Sr

hAru;rui�A;

where we have used (2.4) and the fact that �A.x/ � a
.N�2/=2
1 jxj2�N D r2�N on Sr .
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Remark 2.3. The lemma is still valid for A D Id. Of course, in that case we have a1 D
aN D 1, and �A.x/ D jxj2�N .

Motivated by Lemma 2.2, we now study the following asymmetric optimal partition
problem:

�A;N WD inf
²
a
�N=2
N .�.A; u//C .�.Id; v// W

u; v 2 H 1.SN�1/´
SN�1 u

2v2 D 0

³
; (2.10)

with the convention that �.A; u/ D C1 if u � 0 on SN�1 (this gives some continuity to
�.A; �/, since if HN�1.¹un > 0º/! 0, then �.A; un/! C1 by the Sobolev inequal-
ity). The infimum is nonnegative, since we are minimizing the sum of two nonnegative
quantities. We also recall that, in the symmetric case A D Id, it is known that �Id;N D 2

(Friedland–Hayman inequality1), and the optimal value is reached if and only if u and v
are 1-homogeneous functions supported on disjoint half-spherical caps (see [25, Chap-
ter 2] and references therein for more details). In contrast to the symmetric case, we are
not able to characterize �A;N or classify the optimizers. We are only able to exclude that
�A;N D 0, and to bound �A;N from above.

Lemma 2.4. Let A ¤ Id be a matrix as in (2.1). Then 0 < �A;N < 2.

Proof. We first prove that �A;N > 0. Suppose �A;N D 0, and let .un; vn/ be a minimiz-
ing sequence. By definition of  , this implies that there exist .un; vn/ 2 H 1.SN�1/ �
H 1.SN�1/ such that

ˆ
SN�1

hArA� un;r
A
� uni ! 0;

ˆ
SN�1

jr�vnj
2
! 0;

ˆ
SN�1

u2n� � 1;

ˆ
SN�1

v2n � 1;

ˆ
SN�1

u2nv
2
n � 0:

Recalling Remark 2.1, we deduce that up to a subsequence, un * u and vn * v weakly
in H 1.SN�1/, with strong convergence in L2.SN�1/, and almost everywhere in SN�1.
Therefore ˆ

SN�1
hArA� u;r

A
� ui D 0;

ˆ
SN�1

jr�vj
2
D 0;

ˆ
SN�1

u2� � 1;

ˆ
SN�1

v2 � 1;

ˆ
SN�1

u2v2 � 0:

But then necessarily u and v are positive constants on SN�1 with disjoint positivity sets,
which is clearly impossible.

1The Friedland–Hayman inequality is usually stated in a slightly different form, involving par-
titions of the sphere into disjoint open sets. However, in light of the condition

´
SN�1 u

2v2 D 0 in
the definition of �A;N , it is not difficult to check that the inequality is equivalent to the fact that
�Id;N D 2.
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Now we show that �A;N < 2 for A ¤ Id as in (2.1). To this end we choose u D xC1 as
a test function for �.A; xC1 /:

´
!C

�
hArx1;rx1i �

hArx1;�i
2

hA�;�i

�
d�´

!C
x21hA�; �i d�

D
1´

!C
x21.x

2
1 C

P
i>1 aix

2
i / d�

�

ˆ
!C

P
i>1 aix

2
i

x21 C
P
i>1 aix

2
i

d�;

where !C denotes the half-spherical cap ¹x1 > 0º \ SN�1 (recall that a1 D 1, and � D x
on SN�1). This proves that

�.A; xC1 / �

´
!C

P
i>1 aix

2
i

x2
1
C
P
i>1 aix

2
i

d�
´
!C
x21.x

2
1 C

P
i>1 aix

2
i / d�

DW
'.a2; : : : ; aN /

 .a2; : : : ; aN /
; (2.11)

and we aim to show that

�.A; xC1 / < N � 1 D �.Id; x
C
1 / (2.12)

for every matrix A ¤ Id as in (2.1). This amounts to showing that the right hand side in
(2.11) is strictly smaller than N � 1 if A ¤ Id, which in turn is equivalent to proving that

ˆ.a2; : : : ; aN / WD '.a2; : : : ; aN / � .N � 1/ .a2; : : : ; aN / < 0

for every .a2; : : : ; aN / 2 Œ1;C1/N�1 with at least one component aj > 1. Firstly, it is
immediate to check that ˆ.1; : : : ; 1/ D 0. Moreover,

@ˆ.a2; : : : ; aN /

@ak
D

ˆ
!C

x21x
2
k

.x21 C
P
i>1 aix

2
i /
2
d� � .N � 1/

ˆ
!C

x21x
2
k d�

< .2 �N/

ˆ
!

x21x
2
k d� � 0;

where the strict inequality follows from the fact that aj > 1 for some j . This means that
ˆ is decreasing in each of its variables in Œ1;C1/N�1, and hence ˆ.a2; : : : ; aN / <
ˆ.1; : : : ; 1/ D 0 for every .a2; : : : ; aN / 2 Œ1;C1/N�1, with at least one component
aj > 1. Claim (2.12) follows.

At this point we proceed with the estimate for �A;N , by taking the admissible com-
petitor .u; v/ D .xC1 ; x

�
1 /. Since �.Id; x�1 / D N � 1, by (2.12) we have

�A;N � a
�N=2
N .�.A; xC1 //C .�.Id; x

�
1 // < .N � 1/C .N � 1/ D 2;

which is the desired upper bound.

Proof of Theorem 1.1. To simplify notation we do not stress the dependence of the var-
ious functionals on u, v and x0. It is standard to check that IA and IId are absolutely
continuous functions for 0 < r < � D dist.x0; @BR/, and hence a.e. r 2 .0; �/ is a
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Lebesgue point of J . Moreover, for a.e. r 2 .0; �/ the restrictions ujSr .x0/; @xiujSr .x0/
and vjSr .x0/; @xi vjSr .x0/ are in L2.Sr .x0//. We compute the derivative of J with respect
to the radius, denoted by J 0, at any point r for which both the above properties are satisfied
and in addition Lemma 2.2 holds, and verify that J 0.r/ � 0.

We suppose that both IA.r/ > 0 and IId.r/ > 0, otherwise the fact that J 0.r/ � 0
follows simply from the nonnegativity of J .

Let ux0;r .�/Du.x0C r �/, and vx0;r .�/D v.x0C r �/. By assumption
´

SN�1 u
2
x0;r

v2x0;r
D 0, and by Lemma 2.2 (see also Remark 2.3) we have

J 0.r/

J.r/
D
I 0A.r/

IA.r/
C
I 0Id.r/

IId.r/
�
2�A;N

r

D

´
Sr .x0/

hAru;rui�A´
Br .x0/

hAru;rui�A
C

´
Sr .x0/

jrvj2jxj2�N´
Br .x0/

jrvj2jxj2�N
�
2�A;N

r

�
2

r

�
a
�N=2
N .�.A; ux0;r //C .�.Id; vx0;r // � �A;N

�
� 0;

where the last inequality follows from the very definition of �A;N .

Remark 2.5. We carried out the proof of the monotonicity formulas for disjointly sup-
ported nonnegative subsolutions of div.A1ru/ � 0 and div.A2rv/ � 0 with A1 D A,
A2 D Id, with A diagonal. As already mentioned in the introduction, this is not restrictive
since we can always reduce to this case with a change of variables. However, one may
also proceed directly with A1 and A2, defining �.A1; A2/, and try to choose a change of
coordinates maximizing the corresponding exponent �.B tA1B;B tA2B/. We stress that,
in any case, the results in Section 3 imply that the optimal value is again smaller than 2
in general (see in particular Remark 3.3). For this reason, we have decided not to pursue
this strategy.

2.2. Monotonicity formula in dimension N D 2

The 2-dimensional case is easier than the higher-dimensional one, since it is not neces-
sary to work with the fundamental solution �A. As a consequence, the optimal partition
problem defining the exponent in the monotonicity formula is slightly different.

In dimension N D 2 we modify the definition of IA as

IA.u; x0; r/ D

ˆ
Br .x0/

hAru;rui dx: (2.13)

As a consequence, Lemma 2.2 is simplified as follows.

Lemma 2.6. LetN D2, and let u2H 1
loc.BR/ be nonnegative and such that div.Aru/�0

in BR. Then, for almost every r > 0 such that Br .x0/ �� BR, we have

IA.u; x0; r/ �
r

2
p
�.A; ux0;r /

ˆ
Sr .x0/

hAru;rui d�:
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Proof. Let x0D 0 to simplify notation. We test the inequality for u against u, and integrate
by parts:ˆ

Br

hAru;rui �

ˆ
Br

div.uAru/ D
ˆ
Sr

uhAru; �i

�

p
�.A; ur /

2r

ˆ
Sr

u2�C
r

2
p
�.A; ur /

ˆ
Sr

hAru; �i2

�

�
r

2
p
�.A; ur /

�ˆ
Sr

hArA� u;r
A
� ui C

ˆ
Sr

hAru; �i2

�

�
D

r

2
p
�.A; ur /

ˆ
Sr

hAru;rui;

which is precisely the desired inequality.

We slightly modify the definition of �A;2 according to the previous lemma:

�A;2 WD inf
²p

�.A; u/C
p
�.Id; v/ W

u; v 2 H 1.SN�1/;´
SN�1 u

2v2 D 0:

³
: (2.14)

Exactly as in Lemma 2.4, one can show that 0 < �A;2 < 2 whenever A ¤ Id. At this
point one can proceed as in the higher-dimensional case, and prove Theorem 1.1 with the
value �A;2.

2.3. Perturbed monotonicity formula

In this subsection we generalize the previous monotonicity formulae in order to deal with
nonsegregated subsolutions of a class of elliptic systems. In the symmetric case A D Id,
results of this kind are obtained in [13, 24, 29]. We focus only on N � 3 (as already
observed, the case N D 2 is a bit simpler) and consider systems of two inequalities such
as 8̂̂<̂

:̂
� div.Aru/C uqg1.x; v/ � 0

��v C vpg2.x; u/ � 0

u; v � 0

in RN , with p; q � 1, (2.15)

under the following assumptions on the continuous functions g1; g2 W RN � Œ0;C1/!
Œ0;C1/:

(H1) Ngi .t/ WD infx2RN gi .x; t/ is a continuous function of t � 0, with the property that
Ngi .t/ > 0 for any t > 0, and Ngi .0/ D 0. Even more, we suppose that gi .x; 0/ D 0
for every x 2 RN .

(H2) For every x 2 RN , gi .x; �/ is nondecreasing on Œ0;C1/.

A prototypical example is

gi .x; t/ D

mX
jD1

bj .x/t
pj with inf

RN
bj > 0 and pj > 0:



An anisotropic monotonicity formula 3741

For .u; v/ solving (2.15), x0 2 RN and r > 0, we use the notation

I1.u; v; x0; r/ D

ˆ
Br .x0/

�
hAru;rui C uqC1g1.x; v/

�
�A.x � x0/ dx;

I2.u; v; x0; r/ D

ˆ
Br .x0/

�
jrvj2 C vpC1g2.x; u/

�
jx � x0j

2�N dx:

(2.16)

Theorem 2.7 (Perturbed montonicity formula). Let .u; v/ 2 H 1
loc.R

N / \ C.RN / satisfy
(2.15) with g1; g2 W RN � Œ0;C1/! R continuous and satisfying (H1) and (H2). For
any " > 0 there exist x0 2 RN and Nr D Nr.u; v; "/ > 0 such that the function

r 7! J.u; v; x0; r/ D
1

r2.�A;N�"/
I1.u; v; x0; r/I2.u; v; x0; r/

is nondecreasing for r > Nr .

For the proof, we start with an estimate similar to the one in Lemma 2.2. We introduce

ƒ1.x0; r/ D
r2
´
Sr .x0/

.hArA
�
u;rA

�
ui C uqC1g1.x; v// d�´

Sr .x0/
u2�d�

;

ƒ2.x0; r/ D
r2
´
Sr .x0/

.jr�vj
2 C vpC1g2.x; u// d�´

Sr .x0/
v2 d�

:

Lemma 2.8. In the above setting, for every x0 2 RN and r > 0,

I1.u; v; x0; r/ �
a
N=2
N r

2.ƒ1.x0; r//

ˆ
Sr .x0/

�
hAru;rui C uqC1g1.x; v/

�
�A.x � x0/ d�x :

Proof. Without loss of generality, we consider x0 D 0, and omit the dependence on A
of all the quantities. Let r > 0 be such that (i) in the proof of Lemma 2.2 holds; almost
every r 2 .0;R/ is admissible. Recalling the definition of ˆA;ı (see (2.5)), we take ı > 0
such that ¹jA�1=2xj � ıº �� Br . By multiplying the inequality for u with uˆA;ı , and
proceeding as in Lemma 2.2, we obtain

ˆ
Br

.hAru;rui C uqC1/ˆı �

ˆ
Sr

ˆıuhAru; �i �
1

2

ˆ
Br

hr.u2/; Arˆıi

�

ˆ
Sr

�
�uhAru; �i �

u2

2
hAr�; �i

�
:

By taking the limits as ı ! 0C, we infer that
ˆ
Br

�
hAru;rui C uqC1g1.x; v/

�
� �

ˆ
Sr

�
�uhAru; �i �

u2

2
hAr�; �i

�
:

At this point we proceed exactly as in Lemma 2.2, simply replacing �.A; ur / with
ƒ1.0; r/.
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We also need a suitable variant of the mean value inequality for A-subharmonic func-
tions.

Lemma 2.9. Let u 2 C.RN /\H 1
loc.R

N / be a nonnegative function such that div.Aru/
� 0 in RN . Then there exists C > 0 depending on A and N such that

1

rN�1

ˆ
Sr

u2� � Cu2.0/ for almost every r > 0.

Proof. Let Qu.x/ D u.A1=2x/; we have �. Qu2/ � 0 in RN , and then the mean value
inequality yields

u2.0/ D Qu2.0/ �
a
N=2
N

jB1jrN

ˆ
B
a
�1=2
N

r

Qu2 D
a
N=2
N detA�1=2

jB1jrN

ˆ
¹jA�1=2xj<a

�1=2
N

rº

u2

for every r > 0. Now the ellipsoid ¹jA�1=2xj < a�1=2N rº is contained in the ball Br , so
that

u2.0/ �
a
N=2
N detA�1=2

jB1jrN

ˆ
Br

u2; 8r > 0: (2.17)

In order to obtain a similar estimate for the boundary integral, we observe that

ˆ
Br

div.Ar.u2//.r2 � jxj2/

D 2

ˆ
Br

�
u div.Aru/C hAru;rui

�
.r2 � jxj2/ � 0: (2.18)

On the other hand,
ˆ
Br

div.Ar.u2//.r2 � jxj2/ D 2
ˆ
Br

hAr.u2/; xi D 2

ˆ
Br

hr.u2/; Axi

D 2r

ˆ
Sr

u2� � 2
X
i

ai

ˆ
Br

u2

for almost every r > 0. The conclusion follows directly from (2.17) and (2.18).

Proof of Theorem 2.7. The proof is similar to the one of [29, Lemma 5.2] (see also [13,
Lemma 7.3], [24, Lemma 2.5]). If u � v � 0 in RN , then we directly apply Theorem 1.1.
Thus, we can suppose that there exists x0 2 RN with both u.x0/ > 0 and v.x0/ > 0.
Without loss of generality, we suppose that x0D 0. By continuity, we deduce that u � v > 0
in a neighborhood of x0, and hence both I1.u; v; x0; r/ ¤ 0 and I2.u; v; x0; r/ ¤ 0 for
every r > 0. Let now r > 0 be such that ujSr and @xiujSr are in L2.Sr /, and assume
moreover r is a Lebesgue point for J ; almost every r > 0 is admissible. As in the proof
of Theorem 1.1, thanks to Lemma 2.8 we have

J 0.r/

J.r/
�
2

r

�
a
�N=2
N .ƒ1.0; r//C .ƒ2.0; r// � .�A;N � "/

�
;
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and the conclusion follows if we show that the right hand side is nonnegative for r suffi-
ciently large. Suppose that this is not true; then there exists rn !C1 such that

a
�N=2
N .ƒ1.0; rn//C .ƒ2.0; rn// < �A;N � "; (2.19)

and in particular ¹ƒi .0; rn/º (i D 1; 2) are bounded sequences. Let

un.x/ D
u.rnx/�

1

rN�1n

´
Srn

u2�
�1=2 ; vn.x/ D

v.rnx/�
1

rN�1n

´
Srn

v2
�1=2 :

We have ˆ
S1

hArA� un;r
A
� uni � ƒ1.0; rn/;

ˆ
S1

jr�vnj
2
� ƒ2.0; rn/;

so that ¹unº and ¹vnº are bounded in H 1.S1/, and moreover

ˆ
S1

uqC1n Ng1

��
1

rN�1n

ˆ
Srn

v2
�1=2

vn

�
�

r2n
´
Srn

uqC1g1.x; v/´
Srn

u2�
�

1

r2n
�

1

rN�1n

´
Srn

u2�
�.q�1/=2

�
ƒ1.0; rn/

r2n
�

1

rN�1n

´
Srn

u2�
�.q�1/=2 ! 0

as n!1, where we have used assumption (H1) and Lemma 2.9. Therefore, we deduce
that up to a subsequence .un; vn/ * . Qu; Qv/ weakly in H 1.S1/, strongly in L2.S1/, and
almost everywhere, where Qu � Qv � 0 on S1: indeed, since v is subharmonic with v.0/ > 0,�

1

rN�1

ˆ
Srn

v2
�1=2

� Cv.0/ DW ı > 0;

and hence by the Fatou lemma and the assumptions on g1,ˆ
S1

QuqC1 Ng1.ı Qv/ � lim inf
n!1

ˆ
S1

uqC1n Ng1.ıvn/

� lim inf
n!1

ˆ
S1

uqC1n Ng1

��
1

rN�1n

ˆ
Srn

v2
�1=2

vn

�
D 0;

so that at each point of S1 one of Qu and Qv must vanish, that is, Qu � Qv � 0 on S1.
Coming back to (2.19), by definitions of �A;N and  we obtain

�A;N � a
�N=2
N .�.A; Qu//C .�.Id; Qv//

� lim inf
n!1

�
a
�N=2
N 

�ˆ
S1

hArA� un;r
A
� uni

�
C 

�ˆ
S1

jr�vnj
2

��
� lim inf

n!1

�
a
�N=2
N .ƒ1.0; rn//C .ƒ2.0; rn//

�
� �A;N � ";

which is a contradiction.
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3. Liouville-type theorems

In analogy with the symmetric caseAi D Id, the validity of an ACF monotonicity formula
allows us to obtain some nonexistence results, both for disjointly supported subsolutions
of different linear equations, and for solutions of certain elliptic systems.

3.1. Liouville theorem for disjointly supported functions

In this framework, our main result is the following.

Theorem 3.1. Let k; N � 2 be positive integers, and, for i D 1; : : : ; k, let ui 2
H 1

loc.R
N / \ C.RN / be nonnegative functions such that

ui � uj � 0 in RN if i ¤ j ; � div.Airui / � 0 in RN ;

where Ai are positive definite symmetric matrices with constant coefficients. There exists
an exponent N� 2 .0; 2/ depending on N and on A1; : : : ; Ak such that the following hold:
Suppose that for every i D 1; : : : ; k the functions ui grow at most like jxj˛i , namely

jui .x/j � C.1C jxj
˛i / for every jxj 2 RN , for some C > 0;

with
˛i > 0 for every i , ˛i C j̨ < N� for every i ¤ j : (3.1)

Then k � 1 of the functions ui are identically 0.

In particular, condition (3.1) is satisfied if ˛i D ˛ 2 .0; N�=2/ for every i D 1; : : : ; k,
which gives the counterpart of [13, Proposition 7.2] in the anisotropic framework.

Remark 3.2. We will prove the theorems with a value of N� explicitly given in terms of a
finite number of optimal partition problems of type (2.10). In particular, if k D 2, A1 D A
and A2 D Id, then N� D �A;N .

Remark 3.3. Once Theorem 3.1 is proven, one can introduce the optimal exponent for the
Liouville theorem in the following way. First, given k � 2 and positive definite symmetric
matrices A1; : : : ; Ak , we define

��;N WD8̂̂<̂
:̂.u1; : : : ; uk/ 2 H 1

loc.R
N / \ C.RN / W

.u1; : : : ; uk/ satisfies all the assumptions of
Theorem 3.1, ui grows at most like jxj˛i

with ˛i C j̨ < � for every i ¤ j ,
and at least two components are nontrivial

9>>=>>; ;
and then we set

�Liou;N WD inf ¹� > 0 W ��;N ¤ ;º: (3.2)

Theorem 3.1 implies that �Liou;N � N�.
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When Ai D Id for every i , it follows from [13, Proposition 7.2] that �Liou;N � 2;
moreover, �Liou;N � 2 since .xC1 ; x

�
1 ; 0; : : : ; 0/ is a k-uple of nontrivial Lipschitz subhar-

monic functions with disjoint positivity sets. Hence in the isotropic caseAi D Id there is a
perfect matching between the optimal threshold in the Liouville theorem and the optimal
exponent in the ACF monotonicity formula: both are equal to 2.

In the asymmetric case, it is an open problem to establish whether the equality holds or
�Liou;N > N� is possible, at least for some choices of Ai and N . In particular, even if N� < 2
by Lemma 2.4, this does not imply that �Liou,N < 2 as well. However, we shall directly
prove that in general �Liou;N < 2. To this end we construct two nontrivial homogeneous
functions u; v of degrees ˛1 and ˛2, with ˛1 C ˛2 < 2, satisfying all the assumptions of
Theorem 3.1 for different matrices A1 and A2 D Id. In dimension N � 3, the existence
of such functions was already pointed out in [4, p. 479], and one can take u and v with
the same degree of homogeneity; instead, in dimension N D 2, the degrees have to be
different. We shall present the examples in detail in Section 3.3.

The examples are relevant, since if Theorem 1.1 were valid with �A;N replaced by 2,
then we would able to prove nonexistence as in Theorem 3.1 for all ˛i C j̨ < 2, deducing
that �Liou;N � 2. But, as discussed above, this is not true. Therefore, the fact that the opti-
mal exponent in Theorem 1.1 is smaller than 2 is a natural peculiarity of the anisotropic
case, and not a limitation of our proof.

Proof of Theorem 3.1. Let us consider the pair u1; u2. Since A2 is positive definite and
symmetric, there exist an orthogonal matrix O and a diagonal positive definite matrix D
such thatO tA2O DD. By defining Nui .x/D ui .OD1=2x/, it is not difficult to check that
Nu1 and Nu2 grow at most like jxj˛1 and jxj˛2 respectively at infinity, Nu1 � Nu2 � 0, and

� div. NA1r Nu1/ � 0 and �� Nu2 � 0 in RN ;

where NA1 is again a positive definite symmetric matrix. Since NA1 is positive definite and
symmetric, there exist an orthogonal matrixM and a diagonal positive definite matrix OA1
such that M t NA1M D OA1. Without loss of generality, we can suppose that the diagonal
elements of OA1 appear in increasing order on the diagonal, so that Oa WD . OA1/11 is the
lowest eigenvalue of OA1. Let now u.x/ D Nu1. Oa

1=2Mx/, v.x/ D Nu2. Oa1=2Mx/, and A D
. Oa�1/ OA1. Then u and v grow at most like jxj˛1 and jxj˛2 respectively; moreover, u � v� 0,
and

� div.Aru/ � 0 and ��v � 0 in RN ; (3.3)

where A is a diagonal matrix as in (2.1). In particular, we notice that �12 WD �A;N 2 .0; 2/
is a well defined value given by the optimal partition problem (2.10).

The above procedure can be carried out for any pair .ui ; uj / with i ¤ j (actually, by
construction �ij D �j i ), yielding a finite number of ACF exponents �ij 2 .0; 2/. We take

N� WD min ¹�ij W i ¤ j º; (3.4)

and prove the theorem for this choice of N�.
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Suppose for contradiction that two components, say u1 and u2, are both nontrivial and
satisfy all the assumptions of the theorem. The previous argument shows that there exist
two nontrivial nonnegative functions u; v 2 H 1

loc.R
N / \ C.RN / with disjoint positivity

sets, growing at most like jxj˛1 and jxj˛2 respectively, and satisfying (3.3). Notice that
˛1 C ˛2 < �12 D �A;N . By using the asymmetric monotonicity formula we show that
this provides a contradiction, following the same strategy as originally developed in [13,
Proposition 7.2].

The segregation condition u � v � 0 implies that there exist x0 2 RN and Nr > 0 suffi-
ciently large such that u.x0/ D v.x0/ D 0, and both u and v are nonconstant in B Nr .x0/.
In particular, J.u; v; x0; Nr/ > 0, so that, by the monotonicity formula in Theorem 1.1,

IA.u; x0; r/IId.v; x0; r/ � Cr
2�A;N for r > Nr: (3.5)

Let now r > Nr , and consider a radial smooth cut-off function � such that 0 � � � 1,
� D 1 in Br .x0/, � D 0 in RN n B2r .x0/, and jr�j � C=r . Let also ı > 0 be such that
¹jA1=2xj � ıº �� Br . By testing the inequality satisfied by u with �2ˆA;ı.x � x0/u
(with ˆA;ı defined in (2.5)), we obtain
ˆ
B2r .x0/

�2ˆA;ı.x � x0/hAru;rui

� �

ˆ
B2r .x0/

�
2�uˆA;ı.x � x0/hAru;r�i C �

2uhAru;rˆA;ı.x � x0/
�

�

ˆ
B2r .x0/

�
1
2
�2ˆA;ı.x � x0/hAru;rui C 2ˆA;ı.x � x0/u

2
hAr�;r�i

�
�

ˆ
B2r .x0/

�2uhAru;rˆA;ı.x � x0/i: (3.6)

In order to deal with the last term, we recall that div.ArˆA;ı/ � 0 in RN , whence

0 �

ˆ
B2r .x0/

1
2
hArˆA;ı.x � x0/;r.u

2�2/i

D

ˆ
B2r .x0/

�
�u2hArˆA;ı.x � x0/;r�i C �

2uhAru;rˆA;ı.x � x0/i
�
:

Hence (3.6) yields
ˆ
Br .x0/

ˆA;ı.x � x0/hAru;rui

�

ˆ
B2r .x0/nBr .x0/

�
4�A.x � x0/u

2
hAr�;r�i C 2�u2hAr�;r�A.x � x0/i

�
;

where we have used the fact that r� � 0 in Br .x0/, and �A D ˆA;ı outside Br .x0/. By
taking the limit as ı ! 0C, thanks to the Fatou lemma and the growth condition on u we
infer that

IA.u; x0; r/ �
C

r2

ˆ 2r

r

�2˛1

�N�2
�N�1 d�C

1

r

ˆ 2r

r

�2˛1

�N�1
�N�1 d� � Cr2˛1 :
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In the same way, by testing the inequality satisfied by v with �2ˆId;ı.x � x0/v, one can
show that

IId.v; x0; r/ � Cr
2˛2 :

By combining the inequalities with (3.5), we finally conclude that for r > Nr ,

C1r
2�A;N � IA.u; x0; r/IId.v; x0; r/ � C2r

2.˛1C˛2/;

which is a contradiction for large r since ˛1 C ˛2 < �A;N .

3.2. Liouville theorem for subsolutions and solutions to certain elliptic systems

Our first goal is to prove nonexistence of nontrivial nonnegative subsolutions for a system
with two components.

Theorem 3.4. Let N � 2, and let u; v 2H 1
loc.R

N /\C.RN / satisfy (2.15) in RN , under
assumptions (H1) and (H2) on the coupling terms g1 and g2. Assume moreover that u
and v grow at most like jxj˛1 and jxj˛2 respectively, with

˛1; ˛2 > 0 and ˛1 C ˛2 < �A;N :

Then u or v vanishes identically.

Proof. Suppose for contradiction that neither u nor v vanishes identically. Let 0 < " <

�A;N � .˛1 C ˛2/. Then, by Theorem 2.7, there exist x0 2 RN and C; Nr > 0 such that

I1.u; v; x0; r/I2.u; v; x0; r/ � Cr
2.�A;N�"/ (3.7)

for r > Nr . On the other hand, let � be a cut-off function as in the proof of Theorem 3.1,
and let ˆA;ı be defined in (2.5) with ı > 0 such that ¹jA1=2xj < ıº � B Nr . By testing
the inequality satisfied by u (resp. v) with �2ˆA;ı.x � x0/u (resp. �2ˆı.x � x0/v/, we
obtain
ˆ
B2r .x0/

�
hAru;rui C uqC1g1.x; v/

�
ˆA;ı.x � x0/

�

ˆ
B2r .x0/

1
2
�2ˆA;ı.x � x0/hAru;rui

C

ˆ
B2r .x0/

�
2ˆA;ı.x � x0/u

2
hAr�;r�i � �2uhAru;rˆA;ı.x � x0/i

�
:

As in the proof of Theorem 3.1, it is not difficult to deduce that

I1.u; v; x0; r/ � Cr
2˛1

for r > Nr . In the same way one can estimate I2.u; v; x0; r/, obtaining a contradiction with
(3.7) since ˛1 C ˛2 < �A;N � ".
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As an application, we present a general Liouville theorem for possibly sign-changing
solutions of some elliptic systems with arbitrarily many components. To state our results
in full generality, we introduce some notation. Let k;N � 2 be integers. For an arbitrary
m � k, we say that a vector b D .b0; : : : ; bm/ 2 NmC1 is an m-decomposition of k if

0 D b0 < b1 < � � � < bm�1 < bm D kI

given an m-decomposition b of k, we set, for h D 1; : : : ; k,

Ih WD
®
i 2 ¹1; : : : ; dº W bh�1 < i � bh

¯
;

K1 WD ¹.i; j / 2 I
2
h for some h D 1; : : : ; m, with i ¤ j º;

K2 WD ¹.i; j / 2 Ih1 � Ih2 with h1 ¤ h2º: (3.8)

Let now u D .u1; : : : ; uk/ 2 H 1
loc.R

N / \ C.RN / satisfy

� div.Airui / D �
kX

jD1

j¤i

ui jui j
pij�1gij .x; juj j/ in RN ; i D 1; : : : ; d; (3.9)

under the following assumptions on the data:

(G1) Ai are positive definite symmetric matrices with constant coefficients;

(G2) pij > 0 for every i ¤ j , and pij � 1 for every .i; j / 2K2;

(G3) gij � 0 for .i; j / 2K1, and gij satisfies assumptions (H1) and (H2) in Theorem 2.7
for every .i; j / 2K2.

The term �ui jui jpij�1gij .x; juj j/ describes the interaction between ui and uj . By
introducing an m-decomposition of k, we have divided the components of u into m
groups: ¹ui W i 2 I1º; : : : ; ¹ui W i 2 Imº. Assumption (G3) means that ui and uj do not
interact (gij D 0) if .i; j / 2 K1, i.e. if ui and uj are in the same group; instead, they
interact in a competitive way (gij > 0) if .i; j / 2 K2, i.e. if ui and uj are in different
groups.

Theorem 3.5. In the above setting, let N� 2 .0; 2/ be given by Theorem 3.1. Suppose that
each function ui grows at most like jxj˛i , where

˛i > 0 for every i , ˛i C j̨ < N� for every .i; j / 2K2:

Then there exists ` 2 ¹1; : : : ; mº such that ui � 0 for every i 2 Ih with h ¤ `, and ui is
constant for i 2 I`.

Remark 3.6. A similar Liouville theorem was proved in [27] for a specific choice of gij .
The validity of Theorem 3.5 allows us to extend the validity of Theorems 1.3 and 1.4 in
cases when competition takes place among groups of components, as in [27]. We do not
insist on this point for the sake of simplicity.
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Proof of Theorem 3.5. We show that it is possible to apply Theorem 3.4 to any couple
.ui ; uj / where i 2 Ih, j 2 Ik , with h¤ k. Then it is necessary thatm� 1 groups of com-
ponents vanish identically, and the components of the last group are constants (by (G3),
they are harmonic and globally Hölder continuous in RN ).

Suppose first that ui and uj are also nonnegative. Then´
� div.Airui / � �u

pij
i gij .x; uj / in RN ;

� div.Ajruj / � �u
pji
j gj i .x; ui / in RN .

As in the proof of Theorem 3.1, we may suppose that Aj D Id and Ai D A is diagonal as
in (2.1). Thus, �A;N is well defined as in (2.10), and recalling the definition (3.4) of N�, we
have 2˛ < �A;N . Therefore, ui or uj must vanish identically by Theorem 3.4.

If instead the components can change sign, recalling the assumptions on gij we have´
� div.AiruCi / � �.u

C

i /
pij gij .x; u

C

j / in RN ;

� div.AjruCj / � �.u
C

j /
pjigj i .x; u

C

i / in RN ,

and analogous systems are satisfied by .uCi ; u
�
j /, .u

�
i ; u

C

j /, .u
�
i ; u

�
j /. In each case, it

is possible to suppose that Aj D Id and Ai is diagonal as in (2.1). Thus, by applying
Theorem 3.4 to all the possible pairs, we deduce that ui or uj vanishes identically.

3.3. Upper estimate on �Liou;N

In this section we show that, at least for a suitable choice of A1 and A2, the optimal value
�Liou;N defined in (3.2) is strictly less than 2. This follows directly from the following:

Proposition 3.7. Let N � 2. There exists a positive definite diagonal matrix A with
constant coefficients, two disjoint open cones C1; C2 of RN , and two nonnegative and
nontrivial homogeneous functions u and v inH 1

loc.R
N /\ C.RN /, of degrees ˛1 > 0 and

˛2 > 0 with ˛1 C ˛2 < 2, such that

div.Aru/ D 0 in C1 D ¹u > 0º; �v D 0 in C2 D ¹v > 0º:

Moreover, if N � 3 we can construct u and v with ˛1 D ˛2.

Proof of Proposition 3.7 in dimension N D 2. Let �1; �2 2 .0; �=2/, !1 D .��1; �1/,
and !2 D .�2; 2� � �2/. We consider the eigenvalue problems on the circle´

�'00 D �'; ' > 0 in !1;

' D 0 on @!1;

´
� 00 D � ;  > 0 in !2;

 D 0 on @!2:

The problems can be explicitly solved, deducing in particular that � D .�=.2�1//2, � D
.�=.2.� � �2///

2. Let '1 and  1 denote the corresponding normalized eigenfunctions,
and let ˛1 D

p
� and ˛2 D

p
�; it is well known that w D r˛1'1 and v D r˛2 1 are

homogeneous harmonic functions in the cones D1;C2 generated by !1 and !2, respec-
tively. Notice that ˛1 > 1 can be made arbitrarily close to 1 by taking �1 close to �=2.
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Similarly, ˛2 < 1 can be made close to 1=2 by taking �2 close to 0. In particular, for any
0 < " < 1=2 we can take �1 and �2 such that

˛1 > 1; ˛2 < 1; ˛1 C ˛2 < 3=2C " < 2:

Now, for b 2 .0; 1/, let

B D

�
b 0

0 1

�
; A D B�1;

and u.x/Dw.B1=2x/. Then div.Aru/D 0 in C1D¹x 2R2 WB1=2x 2D1ºDB
�1=2D1,

u D 0 on @C1, and it is homogeneous of degree �. Now C1 is a cone, generated by a set
!0 � S1, and it is not difficult to check that if b is sufficiently small, then !0 � S1 n !2.
Therefore u and v provide the desired example.

Remark 3.8. Notice that, up to exchanging the roles of the variables x1 and x2, the matrix
A satisfies the structural assumptions (2.1), i.e. it is a diagonal matrix with lower entry
equal to 1.

It is interesting that in the previous example u is superlinear and v is sublinear. This
means in particular that even if we take b such that @!0 D @!2, then u and v cannot satisfy
a free-boundary condition of the type

@�u D G.@�v; �/ on @!0, with G increasing in the first variable:

This is in accordance with the main result in [4], which implies in particular that in dimen-
sion N D 2 one cannot construct an example where u and v have the same degree of
homogeneity less than 1.

Now we consider the case N � 3. Of course, the two-dimensional example can also
be considered in higher dimensions. We think however that it is interesting to produce
an example where u and v have the same degree (which is not possible in dimension
N D 2). The idea of the construction was suggested to us by Daniela De Silva in a personal
communication. We start with a preliminary result concerning an eigenvalue problem
on the unit sphere S2. We parametrize the sphere with spherical coordinates .'; �/ 2
Œ0; �� � Œ��; �� (' is the polar angle, � is the azimuthal angle).

Lemma 3.9. For ˛ 2 .�=2; �/, ˇ 2 .0; �=2/, let

! D ¹.'; �/ 2 .�=2 � ˇ; �=2C ˇ/ � .�˛; ˛/º:

There exist ˛ and ˇ such that the first eigenvalue of the problem´
��S2u D �u in !;

u D 0 on @!

is strictly smaller than 2.
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Proof. We separate variables by letting u.'; �/ D v.�/w.'/, plug this ansatz in the dif-
ferential equation for u, and search for a positive solution. The differential equation reads

sin' .sin' w0/0

w
C � sin2 ' D �

v00

v
:

Hence there exists c 2 R such that v00 C cv D 0, which together with v > 0 and the
boundary conditions v.�˛/ D 0 D v.˛/ implies that c D m2 D .�=.2˛//2 and v.�/ D
cos.m�/ (up to a multiplicative constant). At this point we come back to the boundary
value problem for w; by changing variable s D cos', we obtain´

�..1 � s2/ Nw0/0 C m2

1�s2
Nw D � Nw in .��; �/;

Nw.��/ D 0 D Nw.�/;
(3.10)

where � D cos.�=2� ˇ/ 2 .0; 1/ and Nw.s/D w.'.s//. This is a typical Sturm–Liouville
problem with strictly positive potential m2=.1 � s2/, and hence the existence of a first
positive eigenvalue �1, together with a first positive normalized eigenfunctionw1, is guar-
anteed. We need an upper bound on �1, and this can be obtained from the variational
characterization

�1 D inf
'2H1

0
.��;�/n¹0º

Q�;m.'/ D inf
'2H1

0
.��;�/n¹0º

´ �
��

�
.1 � s2/.'0/2 C m2

1�s2
'2
�

´ �
��
'2

:

By choosing the test function  .s/ D cos.�s
2�
/, we infer that

�1 � Q�;m. / D
�2

4�2

ˆ 1

�1

.1 � �2t2/ sin2
�
�

2
t

�
dt Cm2

ˆ 1

�1

cos2
�
�
2
t
�

1 � �2t2
dt:

The right hand side is continuous with respect to .�;m/ 2 .0; 1� �RC. By taking ˛ ' �
and ˇ ' �=2, we can make m arbitrarily close to 1=2, and � arbitrarily close to 1. This
means that for such a choice of ˛ and ˇ we have

�1 � Q�;m. / ' Q1;1=2. / �
�2

4
� 0:47C

1

4
� 1:22 � 1:47 < 2;

which is the desired result.

Proof of Proposition 3.7 in dimension N � 3. The main idea is to show the existence of
a domain !0 on the sphere S2 that contains more than half of a great circle such that,
for suitable � 2 .0; 1/ and a positive definite symmetric constant matrix A, the solution
of div.Arw/ D 0 which vanishes on the cone generated by @!0 has homogeneity �. If
N D 3 we can take two complementary domains with this property (for instance those
separated by the white line of a typical tennis ball).

We now present the details. Let us consider the half great circle 1D ¹x 2 S2 W x3D 0;
x2 > 0º, and let ! D ¹.'; �/ 2 Œ�=2 � ˇ; �=2C ˇ� � Œ�ı; � C ı�º, where ı 2 .0; �=2/
is such that � C 2ı D 2˛, with ˛ and ˇ given by Lemma 3.9. Then the first eigenvalue



N. Soave, S. Terracini 3752

of the Laplace–Beltrami operator on !, with homogeneous Dirichlet boundary condition,
is smaller than 2, and this implies that the positive harmonic function w in the cone D1

generated by!, vanishing on @!, has homogeneity�<1. Now, for b 2 .0;1/, we consider
the diagonal matrices

B D

0@b2 0 0

0 b 0

0 0 1

1A ; A D B�1;

and let u.x/ D w.B1=2x/. Then div.Aru/ D 0 in C1 D ¹x 2 R3 W B1=2x 2 D1º, u D 0
on @C1, and it is homogeneous of degree�. Now, C1 is a cone, generated by a set !0 � S2.
It is not difficult to check that the set !0 can be included in an arbitrarily small neighbor-
hood of 1, by taking b sufficiently small. Now we consider a second band !2 of the same
type as !, but surrounding the half great circle 2 D ¹x 2 S2 W x1 D 0; x2 < 0º. We fix b
so small that !2 \!0 D ;, and notice that by Lemma 3.9 the positive harmonic function v
in the cone C2 generated by !2, vanishing on @!2, is homogeneous of degree �< 1. Thus
the pair .u; v/ fulfills all the requirements of the theorem (with a matrix A satisfying the
structural assumptions (2.1), up to exchanging the coordinates).

4. Spatial segregation of competitive systems: Lotka–Volterra interaction

In this section we prove Theorems 1.3 and 1.6, by following the blow-up method used
in [13, Theorem 4]. Before entering the proof, we observe that each uˇ is C 1 up to the
boundary, and ¹uˇ º is uniformly bounded in L1.�/, since each ui;ˇ is Li -subharmonic
and the boundary data are fixed. Notice also that we can define N� D N�.N;A1; : : : ; Ak/ 2
.0; 1/ as in Theorem 3.1.

Lemma 4.1. Let w 2 H 1.B2r / \ C.B2r / be a positive subsolution to

� div.Arw/ � �Mw C ı in B2r ,

with M > 0, ı � 0, and A positive definite, symmetric, with constant coefficients. Then
there exist C; c > 0 such that

sup
x2Br

w.x/ � CkwkL1.B2r /e
�cr
p
M
C ı=M:

Proof. Let x0 2 Br . The function Nw WD w=kwkL1.Br .x0// is a positive subsolution to

� div.Ar Nw/ � �M Nw C
ı

kwkL1.Br .x0//
; Nw � 1 in Br .x0/:

Letƒ be the maximal eigenvalue of A. Then, as observed in [5, Lemma 5.2], the function

z.x/ D

NX
iD1

cosh.
p
M xi=ƒ/
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is a supersolution of div.Arz/ �Mz in Br , and satisfies

z.x/ � Cec
p
M r for every x 2 Sr

for suitable c; C > 0 depending on A and N . Let us consider

Nz.x/ WD
z.x � x0/

Cec
p
M r
C

ı

MkwkL1.Br .x0//
:

We have

� div.Ar Nz/ � �M Nz C
ı

kwkL1.Br .x0//
in Br .x0/;

with Nz � 1 on Sr .x0/. Then the comparison principle yields

w.x0/ � CkwkL1.Br .x0//z.0/e
�c
p
M r
C ı=M � CkwkL1.B2r /e

�c
p
M r
C ı=M;

and we obtain the conclusion by taking the supremum over x0 2 Br .

Lemma 4.2. Let A be a positive definite symmetric matrix with constant coefficients.
Suppose that w is globally ˛-Hölder continuous in � for some ˛ 2 .0; 1/.

(i) If div.Arw/ D 0 in � D RN , then w is constant.

(ii) If div.Arw/ D 0 in a half-space �, and w is constant on the boundary, then it is
constant.

Here and in what follows we say that a function w is globally ˛-Hölder continuous
in � if its ˛-Hölder seminorm Œw�C0;˛.�/ is bounded; notice that we do not ask that
w 2 L1.�/.

Proof. (i) After a rotation and a scaling, we obtain a harmonic function Qw in RN , still
globally ˛-Hölder continuous, thus constant by the Liouville theorem.

(ii) After a rotation and a scaling, we obtain a harmonic function Qw in a half-space,
constant on the boundary of the half-space. We can then extend it in a symmetric way to
obtain a harmonic function in the whole space RN , still globally ˛-Hölder continuous,
and hence constant.

We now address the proof of Theorem 1.3. Let ˛ 2 .0; N�=2/, and suppose for contra-
diction that ¹uˇ º is not bounded in C 0;˛.�/, that is, there exists a sequence ˇ ! C1
such that

Lˇ WD sup
i

sup
x¤y

x;y2�

jui;ˇ .x/ � ui;ˇ .y/j

jx � yj˛
!C1:

Since, for each ˇ fixed, uˇ is of class C 0;˛
0

.�/ with ˛0 > ˛, we can assume without loss
of generality that Lˇ is attained by u1;ˇ at the pair .xˇ ; yˇ /. The uniform boundedness
in L1.�/ yields

jxˇ � yˇ j
˛
D
ju1;ˇ .xˇ / � u1;ˇ .yˇ /j

Lˇ
�
2ku1;ˇkL1.�/

Lˇ
! 0:
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We consider the following blow-up of uˇ with center xˇ , with rˇ ! 0C to be chosen
later:

vˇ .x/ WD
1

Lˇ r
˛
ˇ

uˇ .xˇ C rˇx/; x 2 �ˇ WD
� � xˇ

rˇ
:

According to the behavior of dist.xˇ ; @�ˇ /, and by the regularity of @�, either �ˇ
exhausts RN as ˇ ! C1, or �ˇ tends to a half-space. In both cases, we denote the
limit domain by �1.

Plainly, vˇ is a positive solution to´
Livi;ˇ DMˇvi;ˇ

P
j¤i bij vj;ˇ in �ˇ ;

vi;ˇ D 'i;ˇ on @�ˇ ;

where Mˇ D Lˇ r
2C˛
ˇ

ˇ, and 'i;ˇ is defined by scaling the boundary datum 'i . Further-
more, for all ˇ > 1,

max
i

max
x¤y

x;y2�

jvi;ˇ .x/ � vi;ˇ .y/j

jx � yj˛
D

ˇ̌
v1;ˇ .0/ � v1;ˇ

�yˇ�xˇ
rˇ

�ˇ̌ˇ̌xˇ�yˇ
rˇ

ˇ̌˛ D 1:

The next lemma will be useful in order to deal with the case when the scaled domains
converge to a half-space.

Lemma 4.3. Suppose that �ˇ tends to a half-space �1. Then one can extend vˇ out-
side �ˇ in a Lipschitz fashion in such a way that:

(i) If ¹vˇ .0/º is bounded, then vˇ ! v in C 0;˛
0

loc .RN / for every 0 < ˛0 < ˛, up to a
subsequence; moreover, the limit function v attains a constant value on the boundary
@�1, and at most one component of v is different from 0 in RN .

(ii) If ¹vˇ .0/º is unbounded, then Qvˇ .x/ WD vˇ .x/� vˇ .0/ converges to Qv in C 0;˛
0

loc .RN /
for every 0 < ˛0 < ˛, up to a subsequence; moreover, the limit function Qv has a con-
stant value on @�1.

Proof. (i) Let �i be the harmonic extension of 'i over �, which is in C 1; .�/. By the
comparison principle, 0 � ui;ˇ � �i for every ˇ. Now, thanks to the Kirszbraun theo-
rem, we can extend the functions 'i over the whole space RN in a Lipschitz fashion,
preserving their Lipschitz constants. The extended function will still be denoted by 'i .
We also extend �i and ui;ˇ over RN , by letting them equal 'i on�c . Let 'i;ˇ and �i;ˇ be
given by scaling �i and 'i in the same way as ui;ˇ . Then vi;ˇ , 'i;ˇ and �i;ˇ are defined
everywhere, and 'i;ˇ D �i;ˇ D vi;ˇ in �c

ˇ
. Plainly:

(i) vi;ˇ is locally ˛-Hölder continuous in RN , with ˛-Hölder seminorm Œvi;ˇ �C0;˛.K/
uniformly bounded with respect to ˇ, for any compact set K � RN .

(ii) 'i;ˇ and �i;ˇ are locally Lipschitz continuous in RN , with Lipschitz seminorms
Œ'i;ˇ �C0;1.K/ and Œ�i;ˇ �C0;1.K/ uniformly bounded with respect to ˇ, for any com-
pact set K � RN .
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Thus, since ¹vi;ˇ .0/º is bounded, up to a subsequence vi;ˇ ! vi locally uniformly in RN .
But vi;ˇ D 'i;ˇ D �i;ˇ in�c

ˇ
, so 'i;ˇ ! 'i;1 and �i;ˇ ! �i;1 locally uniformly in�c1.

In turn, by uniform Lipschitz continuity, we infer that 'i;ˇ ! 'i;1 and �i;ˇ ! �i;1
locally uniformly in the whole of RN . The local uniform convergence entails 'i;1 � 'j;1
� 0 in �1. Moreover 0 � vi � �i;1 in �1.

Now we show that both 'i;1 and �i;1 are constant in RN , and since they coincide
in�c1, they actually coincide everywhere. This is a consequence of the fact that 'i;1 and
�i;1 are obtained as limits of scaling of a fixed Lipschitz continuous function, so that if
x ¤ y then

j'i;ˇ .x/ � 'i;ˇ .y/j

jx � yj˛
D
j'i .xˇ C rˇx/ � 'i .xˇ C rˇy/j

Lˇ r
˛
ˇ
jx � yj˛

�
Œ'i �C0;1.RN /r

1�˛
ˇ

Lˇ
jx � yj1�˛;

and the right hand side tends to 0 locally uniformly in RN . The very same argument
proves that also �i;1 is constant.

To sum up, so far we have shown that the extended functions vi;ˇ , 'i;ˇ , �i;ˇ converge
locally uniformly in RN , coincide in�c

ˇ
, and 'i;1D �i;1 are constants in RN . Recalling

the segregation condition 'i;1 � 'j;1 � 0 in�1, and hence also in RN , we deduce that at
most one component �i;1 can be different from 0. But then, since 0 � vi � �i;1 in �1,
at most one component vi is different from 0 in�1. And finally, since vi D 'i;1 in�c1,
we conclude that vi is constant on @�1.

The proof of (ii) is analogous.

Lemma 4.4. Let rˇ ! 0C be such that

(i) there exists R0 > 0 such that jxˇ � yˇ j � R0rˇ ;

(ii) Mˇ ¹ 0.

Then ¹vˇ .0/º is bounded in ˇ.

Proof. The proof is analogous to the one of [13, Lemma 6.1] (see also [24, Lemma 3.4]
for more details), and hence we only sketch it. Suppose for contradiction that along a
subsequence vh;ˇ .0/! C1 for some index h, and let R > R0. By assumption (ii) and
the global Hölder bound, we have

Iˇ WDMˇ inf
B2R\�ˇ

vh;ˇ !C1:

Now we can argue as in [13, Lemma 6.1], by using Lemma 4.1 instead of [13,
Lemma 4.4], to deduce that for every R > R0,

kvi;ˇkL1.BR\�ˇ/ ! 0 8i ¤ h; kLivi;ˇkL1.BR\�ˇ/ ! 0 8i;

as ˇ!C1. Let then Qvˇ .x/ WD vˇ .x/� vˇ .0/. The above discussion shows that Qvˇ ! Qv
locally uniformly in RN , where Qv is globally ˛-Hölder continuous in�1, and Qvi � 0 for
i ¤ h (in case �1 is a half-space, we can use Lemma 4.3). The uniform convergence
of the Ai -Laplacians implies that actually Qvˇ ! Qv in C 1loc.�1/. We claim that Qv1 is not
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constant. To prove this, we recall that, by assumption (i), .yˇ � xˇ /=rˇ converges to a
limit z up to a subsequence. If z D 0, then by boundedness in C 1loc,

1 D

ˇ̌
v1;ˇ .0/ � v1;ˇ

�yˇ�xˇ
rˇ

�ˇ̌ˇ̌yˇ�xˇ
rˇ

ˇ̌˛ D

ˇ̌
Qv1;ˇ .0/ � Qv1;ˇ

�yˇ�xˇ
rˇ

�ˇ̌ˇ̌yˇ�xˇ
rˇ

ˇ̌˛ � C

ˇ̌̌̌
yˇ � xˇ

rˇ

ˇ̌̌̌1�˛
! 0;

a contradiction. Then z ¤ 0, and j Qv1.0/ � Qv1.z/j D jzj˛ , so that Qv1 is a nonconstant
A1-harmonic function in �1, globally ˛-Hölder continuous. If �1 is a half-space, by
Lemma 4.3 we can also see that Qv1 is constant on @�1. Therefore Lemma 4.2 provides a
contradiction both for �1 D RN , and for �1 a half-space.

Lemma 4.5. We have

lim sup
ˇ!C1

ˇLˇ jxˇ � yˇ j
2C˛
D C1:

Proof. Suppose ˇLˇ jxˇ � yˇ j2C˛ is bounded. Then, by choosing

rˇ D .ˇLˇ /
� 1
2C˛ ;

we see that Mˇ D 1, and jxˇ � yˇ j � R0rˇ for a constant R0 > 0. Hence ¹vˇ .0/º is
bounded by Lemma 4.4, and by uniform Hölder continuity vˇ ! v locally uniformly
in �1, up to a subsequence. In addition, if �1 is a half-space, we know by Lemma 4.3
that each component of v except possibly one vanishes, and the remaining one is constant
on @�1. Moreover, since Mˇ D 1, we find that Livi;ˇ converges locally uniformly, and
hence vˇ ! v in C 1loc.�1/, with v globally ˛-Hölder continuous in �1, and

� div.Airvi / D �vi
X
j¤i

bij vj ; vi � 0 in �1:

In fact, either vi > 0 or vi � 0 in �1, by the strong maximum principle. Finally, as in
the last part of the proof of Lemma 4.4, we also deduce that v1 is nonconstant in �1.

Let �1 D RN . Then, since 2˛ < N�, by Theorem 3.52 we infer that v is constant, a
contradiction.

If instead �1 is a half-space, then by Lemma 4.3 we know that at most one com-
ponent vi does not vanish identically. Since v1 is nonconstant, we infer that vi � 0 for
every i ¤ 1, and v1 is a nonconstant A1-harmonic function in a half-space, globally ˛-
Hölder continuous, which attains a constant boundary datum on @�1. This contradicta
Lemma 4.2.

At this point we fix the choice of rˇ and complete the contradiction argument.

2In the present case, each Ih is a singleton, and the assumptions on the coupling terms gij are
satisfied since bij > 0. Notice also that the ˛-Hölder continuity implies that v1; : : : ; vk grow at
most like jxj˛ at infinity.
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Conclusion of the proof of Theorem 1.3. Let

rˇ D jxˇ � yˇ j:

By Lemma 4.5, we have Mˇ ! C1. Thus the assumptions of Lemma 4.4 are satisfied,
and we deduce that vˇ ! v locally uniformly in RN , with v globally ˛-Hölder continuous
(if �1 is a half-space, we consider the extension of vˇ defined in Lemma 4.3; in this
case, v is constant on @�1 and has at most one nontrivial component). Furthermore,
there exists z 2 @B1 \�1 such that jv1.z/ � v1.0/j D 1, and hence v1 is nonconstant.

Now, let r > 0 and x0 be such that B2r .x0/ �� �1, and let � be a smooth cut-off
function such that 0 � � � 1, � � 1 in Br .x0/, and � � 0 in B2r .x0/c . By testing the
equation for vi;ˇ with �, we deduce that

Mˇ

ˆ
Br .x0/

vi;ˇ
X
j¤i

bij vj;ˇ �

ˆ
B2r .x0/

div.Air�/vi;ˇ � C; (4.1)

since ¹vi;ˇ º is locally bounded in L1. But Mˇ !C1, so that vi � vj � 0 in �1.
Moreover, by testing the equation for vi;ˇ with vi;ˇ�2, we obtain

ˆ
Br .x0/

hAirvi;ˇ ;rvi;ˇ i

� 4

ˆ
B2r .x0/

hAir�;r�iv
2
i;ˇ C 2Mˇ

ˆ
B2r .x0/

v2i;ˇ

X
j¤i

bij vj;ˇ

� kvi;ˇkL1.B2r.x0//

�
C CMˇ

ˆ
B2r .x0/

vi;ˇ
X
j¤i

bij vj;ˇ

�
� C; (4.2)

where we have used (4.1). That is, ¹vˇ º is locally bounded in H 1
loc.�1/ and hence, up to

a further subsequence, vˇ * v weakly inH 1
loc.�1/. Since � div.Airvi;ˇ / � 0 in�ˇ , if

we take the weak limit we infer that

vi � vj � 0 if i ¤ j ; � div.Airvi / � 0 in �1:

If �1 is a half-space, Lemma 4.3 also implies that all components of v but v1 must
vanish identically. If instead � D RN , the same conclusion follows from Theorem 3.1,
since 2˛ < N�. In any case, for every ˇ,

� div.A1rv1;ˇ /C
kX

jD2

b1j

bj1
div.Ajrvj;ˇ / DMˇ

kX
jD2

X
h¤1;j

b1j bjh

bj1
vj;ˇvh;ˇ � 0 in �ˇ

in the weak sense. By passing to the weak limit, and recalling that vj � 0 in RN for
j ¤ 1, we deduce that

� div.A1rv1/ � 0 in �1 (4.3)

in the weak sense. But then div.A1rv1/D 0 in�1, and Lemma 4.2 gives a contradiction
with the fact that v1 is ˛-Hölder continuous and nonconstant in RN . This contradiction
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finally shows that ¹uˇ º is bounded in C 0;˛.�/, as desired. Now we proceed with the
second part of the theorem.

Clearly, up to a subsequence uˇ ! u in C 0;˛.�/ for every ˛ 2 .0; N�=2/. As in (4.1)
and (4.2) one can check that uˇ * u weakly in H 1

loc.�/, and that the limit function
is segregated: ui � uj � 0 for i ¤ j . Moreover, by testing the equation for ui;ˇ with
.ui;ˇ � u/�, where � 2 C1c .�/ is an arbitrary cut-off function, we deduce that

ˆ
�

�hAirui;ˇ ;r.ui;ˇ � u/i

D �

ˆ
�

.ui;ˇ � ui /hAirui;ˇ ;r�i � ˇ

ˆ
�

�ui;ˇ
X
j¤i

bijuj;ˇ .ui;ˇ � uj;ˇ /

� Ckui;ˇ � uikL1.�/

�
krui;ˇkL2.supp�/ C ˇ

ˆ
�

ui;ˇ
X
j¤i

bijuj;ˇ

�
! 0

as ˇ !1, by uniform convergence and local boundedness in H 1. Therefore, by weak
convergence,

0 D lim
ˇ!C1

ˆ
�

�hAirui;ˇ ;r.ui;ˇ � u/i

D lim
ˇ!C1

ˆ
�

�
�
hAirui;ˇ ;rui;ˇ i � hAirui ;rui i

�
;

which gives the strong convergence uˇ ! u in H 1
loc.�/. Finally, to show that ui is Ai -

harmonic in ¹ui > 0º, we proceed as for (4.3), proving that div.Arui / � 0 in ¹ui > 0º.
But by weak convergence div.Airui / � 0 in �, and the conclusion follows.

Proof of Theorem 1.6. Recall that k D 2, and we have reduced to the case when A1 D A
is diagonal, with lowest eigenvalue 1, A2 D Id, and a12 D a21. We use the notation
.u1;ˇ ; u2;ˇ / D .uˇ ; vˇ /. Let us consider wˇ D uˇ � vˇ . We know that, up to a sub-
sequence, wˇ ! w D u � v in C 0;˛.�/ \H 1

loc.�/ for every 0 < ˛ < N�=2 D �A;N =2.
On the other hand, since div.Airuˇ / D �vˇ , we have

ˆ
�

.hAruˇ ;r'i � hrvˇ ;r'i/ D 0

for every ' 2 C 1c .�/. By taking the limit, by weak convergence in H 1 we deduce that
w D u � v is a weak solution of the quasi-linear equation (1.6). The rest of the theorem
follows directly from the main result in [2].

5. Spatial segregation of competitive systems: variational interaction

In this section we prove Theorem 1.4. Notice that each uˇ is a vector of positive functions
in �, of class C 1; .�/. Moreover, we can define N� D N�.N; A1; : : : ; Ak/ 2 .0; 2/ as in
Theorem 3.1.



An anisotropic monotonicity formula 3759

Now, the first part of the proof of Theorem 1.4 rests upon the same contradiction
argument used for Theorem 1.3, with the obvious modifications related to the different
structure of the system, and to the different boundary conditions. We only give a sketchy
summary, referring for the details to the previous section and to [24,27] (of course, we use
Theorems 3.1 and 3.5 and Lemma 4.2 instead of the corresponding “symmetric results”
when necessary).

Let ˛ 2 .0; N�=2/, and suppose for contradiction that ¹uˇ º is not bounded in C 0;˛.�/,
so there exists a sequence ˇ !C1 such that

Lˇ WD sup
i

sup
x¤y

x;y2�

jui;ˇ .x/ � ui;ˇ .y/j

jx � yj˛
!C1:

We can assume thatMˇ is attained by u1;ˇ at the pair .xˇ ; yˇ /, with jxˇ � yˇ j ! 0. Then
we introduce the following blow-up of uˇ with center xˇ , and rˇ ! 0C to be chosen later:

vˇ .x/ WD
1

Lˇ r
˛
ˇ

uˇ .xˇ C rˇx/; x 2 �ˇ WD
� � xˇ

rˇ
:

The scaled domains �ˇ can either exhaust RN , or tend to a half-space. In both cases, we
denote the limit domain by �1. The function vˇ is a positive solution to´

�Livi;ˇ D gi;ˇ .x; vi;ˇ / �Mˇvi;ˇ
P
j¤i bij v

2
j;ˇ

in �ˇ ;

vi;ˇ D 0 on @�ˇ ;

where Mˇ D L
2
ˇ
r2C2˛
ˇ

ˇ, and

gi;ˇ .x; vi;ˇ .x// D
r2�˛
ˇ

Lˇ
fi;ˇ

�
xˇ C rˇx;Lˇ r

˛
ˇ vi;ˇ .x/

�
D
r2�˛
ˇ

Lˇ
fi;ˇ

�
xˇ C rˇx; ui;ˇ .xˇ C rˇx/

�
:

Notice that kgi;ˇ .�; vi;ˇ .�//kL1.�ˇ/! 0 as ˇ!C1, thanks to the assumptions on fi;ˇ
and the upper bound on kui;ˇkL1.�/. Moreover, for every ˇ,

max
i

max
x¤y

x;y2�

jvi;ˇ .x/ � vi;ˇ .y/j

jx � yj˛
D

ˇ̌
v1;ˇ .0/ � v1;ˇ

�yˇ�xˇ
rˇ

�ˇ̌ˇ̌xˇ�yˇ
rˇ

ˇ̌˛ D 1:

Lemma 5.1. Suppose that �ˇ tends to a half-space �1. Then one can extend vˇ out-
side �ˇ in a Lipschitz fashion in such a way that:

(i) If ¹vˇ .0/º is bounded, then vˇ ! v in C 0;˛
0

loc .RN / for every 0 < ˛0 < ˛, up to a
subsequence; moreover, the limit function v has constant value 0 on @�1.

(ii) If ¹vˇ .0/º is unbounded, then �1 D RN .
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Proof. (i) This is very similar to point (i) of Lemma 4.3, once we extend uˇ as equal to 0
outside �.

(ii) Let R > 0 be arbitrary. If vi;ˇ .0/! C1 along a subsequence, then by uniform
Hölder estimates,

inf
BR
vi;ˇ � vi;ˇ .0/ � CR

˛
!C1:

But vi;ˇ � 0 in �c
ˇ

, and hence BR.0/ � �ˇ eventually.

With the help of this lemma, and by following [24, Section 3] (see also Section 4), it
is not difficult to prove

Lemma 5.2. Let rˇ ! 0C be such that

(i) there exists R0 > 0 such that jxˇ � yˇ j � R0rˇ ;

(ii) Mˇ ¹ 0.

Then ¹vˇ .0/º is bounded in ˇ.

Lemma 5.3. We have

lim sup
ˇ!C1

ˇL2ˇ jxˇ � yˇ j
2C2˛

D C1:

At this point we fix the choice of rˇ as in Section 4, and analyze the asymptotic
behavior of vˇ .

Lemma 5.4. Let
rˇ D jxˇ � yˇ j:

There exists v, globally ˛-Hölder continuous with Œv�C0;˛.RN / D 1, such that, as
ˇ !C1, the following hold up to a subsequence:

(i) �1 D RN , and vˇ ! v in C 0;˛
0

loc .RN /;

(ii)
´
Br .x0/

Mˇv
2
i;ˇ
v2
j;ˇ
! 0 for any r > 0 and x0 2 RN ;

(iii) vˇ ! v in H 1
loc.R

N /.

For the proof, we refer to [24, Lemmas 3.6 and 3.7] (see also the conclusion of the
proof of Theorem 1.3). The properties of the limit profile are collected in the next state-
ment.

Lemma 5.5. Let v be the limit function defined in Lemma 5.4. Then

(i) vi � 0 in RN for every i ¤ 1;

(ii) v1 is nonconstant, and div.A1rv1/ D 0 in ¹v1 > 0º;

(iii) ¹v1 D 0º ¤ ; and ¹v1 > 0º is connected.

Proof. By Lemma 5.4 we know that vi � vj � 0 in RN . Moreover, by H 1
loc convergence

and recalling that kgi;ˇ .�; vi;ˇ .�//kL1.�ˇ/! 0, we deduce that vi is Ai -subharmonic for
every i . Since v is ˛-Hölder with ˛ < N�=2, Theorem 3.1 implies that only one component
of v does not vanish identically. But by uniform convergence maxx2@B1.0/ jv1.x/� v1.0/j
D 1, so that vi � 0 in RN for every i ¤ 1, and v1 is nonconstant. The fact that v1
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is harmonic in the open set ¹v1 > 0º can be checked as in [24, Lemma 3.7], by using
Lemma 4.1 instead of [24, Lemma 3.1]. This completes the proof of (i) and (ii).

Suppose now for contradiction that ¹v1 D 0º is empty; then v1 would be a positive
globally ˛-Hölder A1-harmonic nonconstant function, contradicting Lemma 4.2.

Finally, suppose for contradiction that ¹v1 > 0º is disconnected, and let !1 and !2 be
two of its connected components. Then the functions w1 D v1�!1 and w2 D v1�!2 are
nontrivial and satisfy the assumptions of Theorem 3.1, a contradiction again.

From now on we shall mainly focus on the component v1, the only one which survived
in the limit process. Therefore, in order to simplify some expressions below, we perform a
change of coordinates as in the proof of Theorem 3.1 in order to have A1 D Id, and hence
v1 is harmonic in its positivity set.

Remark 5.6. In the conclusion of the proof of Theorem 1.3, we considered the dif-
ference between the differential equations of the component v1;ˇ and the others, by
taking the weak limit. This gave us the inequality div.A1rv1/ � 0 in RN , leading to
the A1-harmonicity of v1, which finally provided a contradiction. When we deal with
system (1.4), this strategy fails, due to the lack of symmetry in the exponents of the com-
petition terms. By following [24], one may be tempted to consider an Almgren frequency
function Nˇ .vˇ ; x0; r/ associated with vˇ , compute its derivative, and then pass to the
limit in ˇ in order to derive a monotonicity formula for the frequency function of the limit
problem (see [24, Section 3.2]). However, in the present setting this strategy fails, due to
the lack of symmetry in the diffusion operators. This lack of symmetry creates several
complications in the derivation of a good expression for the derivative of Nˇ .vˇ ; x0; r/,
complications which we could not overcome. We shall therefore argue in a different way.
First, by the variational structure of the problem (this requires bij D bj i ), we derive a
domain variation formula for vˇ . Then we pass to the limit in ˇ. The properties collected
in Lemmas 5.4 and 5.5 at this level allow us to obtain the validity of a domain variation
formula for the only nontrivial component v1, in the whole of RN (and not only in the
interior of its support). In this way, even if we cannot establish a monotonicity formula for
the Almgren frequency function associated with vˇ , we can still recover a monotonicity
formula for the component v1 of the limit profile. This is sufficient for our purposes.

Lemma 5.7. Let Y 2 C1c .R
N ;RN /. Then

2

ˆ
�ˇ

�X
i

hdYAirvi;ˇ ;rvi;ˇ i �
X
i

gi;ˇ .x; vi;ˇ /hrvi;ˇ ; Y i
�

�

ˆ
�ˇ

divY
�X
i

hAirvi;ˇ ;rvi;ˇ i C ˇ
X
i<j

bij v
2
i;ˇv

2
j;ˇ

�
D 0 (5.1)

for every ˇ sufficiently large, and
ˆ

RN
.2hdYrv1;rv1i � divY jrv1j2/ D 0: (5.2)
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Proof. By multiplying the equation for vi;ˇ with hrvi;ˇ ; Y i and integrating, we deduce
that
ˆ
�ˇ

�
hAirvi;ˇ ;r.hrvi;ˇ ; Y i/iCˇvi;ˇ

X
j¤i

bij v
2
j;ˇ hrvi;ˇ ; Y i�gi;ˇ .x; vi;ˇ /hrvi;ˇ ; Y i

�
D 0:

With lengthy but elementary computations, it is not difficult to check that

hAirvi;ˇ ;r.hrvi;ˇ ; Y i/i D
1
2
hY;r.hAirvi;ˇ ;rvi;ˇ i/i C hdYAirvi;ˇ ;rvi;ˇ i;

whence, by integrating by parts, we deduce that
ˆ
�ˇ

hdYAirvi;ˇ ;rvi;ˇ i � gi;ˇ .x; vi;ˇ /hrvi;ˇ ; Y i

�

ˆ
�ˇ

�
1
2

divY hArvi;ˇ ;rvi;ˇ i � ˇvi;ˇ
X
j¤i

bij v
2
j;ˇ hrvi;ˇ ; Y i

�
D 0:

We sum over i from 1 to k and integrate by parts once again to obtain (5.1).
Moreover, by taking the limit as ˇ!C1, and recalling the properties listed in Lem-

mas 5.4 and 5.5, and the fact that kgi;ˇ .�; vi;ˇ .�//kL1.�ˇ/ ! 0, we also obtain (5.2).

Conclusion of the proof of Theorem 1.4. From the second formula in Lemma 5.7, we
infer that ˆ

Sr .x0/

jrv1j
2
D
N � 2

r

ˆ
Br

jrv1j
2
C 2

ˆ
Sr .x0/

.@�v1/
2

for every x0 2 RN and almost every r > 0 (we refer to [30, second part of the proof of
Lemma 2.11] for the details). Furthermore, we have

d

dr

�ˆ
Sr .x0/

v21

�
D
N � 1

r

ˆ
Sr .x0/

v21 C 2

ˆ
Sr .x0/

v1@�v1

(see [30, Lemma 2.8] for the details). Therefore, by introducing the Almgren frequency
function

N.x0; r/ D
r
´
Br .x0/

jrv1j
2

´
Sr .x0/

v21
;

it is standard to prove that N.x0; �/ is nondecreasing, and it is constantly c if and only
v1 is c-homogeneous. At this point we can proceed exactly as in [24, end of the proof of
Theorem 1.3] or [30, conclusion of the proof of Proposition 2.1, p. 278] to deduce that
¹v1 D 0º is a linear subspace of dimension at most N � 2, and in particular has local
capacity 0. But then, since v 2 H 1

loc.R
N /, we infer that v1 is harmonic everywhere, is

nonconstant, and is globally ˛-Hölder continuous for some ˛ 2 .0; 1/, contrary to the
Liouville theorem. This completes the proof of the boundedness of ¹uˇ º in C 0;˛.�/.
The rest of the assertion of Theorem 1.4 follows as in [24] (for the domain variation
formula (1.5), one can argue as in Lemma 5.7 with the functions uˇ , and then take the
limit).
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