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Abstract. We prove that for any isometric action of a group on a unit sphere of dimension larger
than 1, the quotient space has diameter zero or larger than a universal dimension-independent posi-
tive constant.
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1. Introduction

1.1. Main result

We prove the following gap theorem, answering a question going back to Karsten Grove
and investigated in [19] and [12].

Main Theorem. There exists some � > 0 such that for any n� 2 and any groupG acting
by isometries on the unit n-dimensional sphere Sn the quotient space Sn=G has diameter
either 0 or at least �.

Note that the diameter of the quotient space does not change if the groupG is replaced
by its closure NG and that for a closed groupG D NG the quotient space Sn=G is an Alexan-
drov space of curvature bounded below by 1. The diameter of Sn=G is 0 if and only if any
orbit of G is dense in Sn, thus if the closure NG of G in O.nC 1/ acts transitively on Sn.
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The case n D 1 needs to be excluded, since quotients of S1 by the action of cyclic
groups can have arbitrarily small diameter.

The existence of a dimension-dependent bound �.n/ has been proved in [12]. There,
earlier in [19] and later in [5, 20] explicit lower bounds on the diameter have been found
for some special classes of actions. Most notably, a lower bound ˛ > 1=4 has been verified
by explicit calculation for free actions, for finite Coxeter groups and for actions with
quotients of dimension � 2. Recently in an independent preprint the existence of such a
lower bound was proved for unitary actions of connected Lie groups with the exception
of spin representations [7]. We refer the reader to [7] for the relevance of this problem
to control theory. After finishing this paper we have learned from Ben Green about his
recent work [11], in which a very strong version of our main theorem was verified for
finite groups G. In particular, he proved for such groups that �.n/ converges to �=2 if n
converges to infinity.

Unlike the existence of a dimension-dependent constant �.n/ from [12], our dimen-
sion-independent bound cannot be derived by a limiting argument. A related fact is that no
such lower bound exists for isometric actions on the unit sphere in an infinite-dimensional
Hilbert space [34]. While we have not tried to determine our constant explicitly, the proof
indeed provides some explicit bound on � in the Main Theorem. In a future work, we hope
to bring this explicit bound in a range comparable with the existing examples; see [5] for
some conjectures about the optimal value of �, resolved and improved for finite groups
in [11].

1.2. Related questions

We start with a generalization of Greenwald’s dimension-dependent bound [12] and char-
acterize compact Riemannian manifolds for which such a bound exists. The proof relies
on a limiting argument similar to the one employed by Greenwald.

Theorem 1. Let M be a compact homogeneous Riemannian manifold. Then �1.M/ is
finite if and only if there exists �M > 0 such that, for every subgroupG � Isom.M/, either
diam.M=G/ D 0 or diam.M=G/ > �M .

Unlike the Main Theorem, the bound in Theorem 1 above cannot be made independent
of the space M , even after the metric is rescaled to have a fixed diameter. A counter-
example is given by the groups SO.n/ (see Example 32). Nevertheless, the following
problem is likely to have an affirmative answer:

Question 2. Does there exist a lower bound for the diameter of quotients of simply con-
nected compact symmetric spaces depending only on the rank?

Note that the rank 1 case follows from the Main Theorem and Theorem 1.
Every Riemannian orbifold with constant curvature 1 is a good orbifold and there-

fore a quotient of the unit sphere. Therefore, a special case of the Main Theorem is the
existence of a universal lower bound on the diameter of Riemannian orbifolds with con-
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stant curvature 1 (in the case of manifolds this is the main result in [19]). Considering
curvature �1 instead of 1 yields the following natural question, which seems to be open:

Question 3. Is there a universal lower bound for the diameter of hyperbolic manifolds
.resp. orbifolds/?

Note that the existence of a dimension-dependent bound follows from Margulis’ Lem-
ma; see e.g. [31, Cor. 1, §12.7].

While our proof of the Main Theorem uses several geometric arguments, it heavily
relies on the structure and classification of compact Lie groups and their representations.
Even in the connected case it seems to be a difficult task to remove the representation-
theoretic arguments from the proof and obtain an affirmative answer to the following:

Question 4. Does there exist a universal constant � such that for any non-trivial singular
Riemannian foliation F on a unit sphere Sn, the quotient Sn=F has diameter at least �?

We refer to [22, 28] for the theory of singular Riemannian foliations, being a group-
free generalization of isometric group actions, and to [18, 21] for algebraic properties of
singular Riemannian foliations on spheres. While in codimension 1 a positive answer to
the above problem is a famous theorem of Münzner [24], nothing is known in higher
codimensions. Even the existence of a dimension-dependent bound �.n/ is presently not
known. Nevertheless, we note that Question 4 has an affirmative answer for all currently
known examples, because these are all constructed starting from a homogeneous foliation,
and repeatedly composing it with Clifford foliations (see [29]).

1.3. The proof of the Main Theorem

We are going to explain the main steps involved in the proof of the Main Theorem now.
First, we may replace G by the closure of its image in O.nC 1/, thus we may assume

G is compact.
If the representation of G on V D RnC1 is reducible then the quotient Sn=G has

diameter �=2 or � (see Lemma 7). Using a slightly more refined argument, we deduce
that the existence of a normal subgroupN ofG acting reducibly on V implies thatN acts
as (real, complex, or quaternionic) scalars or that the diameter of Sn=G is at least �=4
(see Lemma 13).

Replacing G by a larger group can only decrease diameter. Combining this with the
previous observation and ruling out four special classes of examples by hand, we reduce
the task to the following two main cases.

(I) The group G is a (uniformly) finite extension of G0 � G1 where G0 is the group of
F -scalars (with F D R;C;H) and G1 is a simple, simply connected compact group
acting on V irreducibly.

(II) The connected component G0 of G acts as F -scalars on V , and thus G is finite up to
scalars.
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In case (I), we invoke the algebraic result proved in [10], saying that the orbit G � p of G
through the highest weight vector has a focal radius bounded from below by a universal
constant. Then we combine this with a quotient version of the Klingenberg injectivity
radius estimate (Proposition 26) to finish the proof.

The technically more involved case (II) can be deduced from the technically much
more complicated paper [11]. Following this path one could dispose of Section 4 and
of Appendix A below. We have decided to keep our proof of this result whose simple
geometric idea we are going to explain now. The reader can very well dispose of this idea
and take the shortcut explained in Remark 5 below.

We only explain the main idea of the proof of case (II), neglecting all difficulties aris-
ing from the presence of scalars, which force us to work with projective representations
rather than actual representations. Thus we assume that G is a finite group and that it is a
maximal subgroup of O.n/, in particular, the representation is of real type.

We compare the diameter and the volume of the quotient Sn=G. The volume equals
vol.Sn/=jGj. On the other hand, by the theorem of Bishop–Gromov, the volume of
Sn=jGj is bounded from above by c � rn � vol.Sn/, where c is a universal constant and
r is the diameter of Sn=G. Thus, in order to obtain the conclusion, we only need to verify
that log.jGj/=n has a universal upper bound (for all representations that we cannot rule
out by other means).

If the groupG is a finite simple group, then the classification of such groups and exist-
ing lower bounds on the dimension of their representations provide us with the needed
bound (with the only exception of the minimal representation of the alternating group, for
which we already have the bound of �=4 [12]). If the group G is not simple, we consider
a minimal normal subgroup N of G, use the fact that this normal subgroup must act irre-
ducibly and thatG=N (again up to scalars) embeds into the group of outer automorphisms
of N . Since N must be a power of a simple group, we again apply the classification of
finite simple groups and obtain the required bound on log.jGj/=n.

Remark 5. We are going to explain how case (II) follows directly from [11]. IfG0 D ¹1º,
then G is finite and the main result of [11] states that the diameter of Sn=G is at least
�finite.n/ with limn!1 �finite.n/ D �=2.

If G0 D U.1/, then approximating U.1/ by finite cyclic subgroups, we obtain an
approximation of G by finite subgroups. Therefore, also in this case we find from [11]
that the diameter of Sn=G is at least �finite.n/ with �finite.n/ as above.

Finally, ifG0 is Sp.1/ acting as quaternionic scalars, we can writeG D G0 � � , where
the finite group � is the centralizer of G0 in G. Then we consider a fixed finite sub-
groupH of Sp.1/which acts irreducibly on S3, for instance the binary icosahedral group.
The main theorem of [11] implies that the diameter of Sn=.H � �/ is bounded from below
by �finite.n/ as above. However, in any G0-orbit, which is a round sphere S3, the corre-
sponding H -orbit is s-dense, where s < �=2 is the diameter of S3=H . Then, we get
�finite.n/ � s as a lower bound for the diameter of Sn=G. By [11] this number is bounded
away from 0 for n large enough.
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Remark 6. If one is interested in the case of connected Lie groups only, the proof can be
considerably shortened. Indeed, by passing to a maximal non-transitive connected closed
group and using Theorem 10 to discard polar actions (see Section 3 for this concept) we
directly arrive at one of first three cases in Lemma 23. Sections 5.2 and 5.3 cover these
cases and we obtain as a lower bound for � half the focal radius of the orbit through the
special point, hence� 1

30
according to [10].

Understanding the diameter of quotients of unit spheres also has a bearing on the
global structure and classification of compact positively and non-negatively curved man-
ifolds (compare [13]). Indeed, the orbit space of such a manifold under the action of a
compact Lie group of isometries is an Alexandrov space of positive (resp. non-negative)
curvature, whose local geometry is controlled by its tangent cones which, in turn, are
determined by the associated isotropy representations. In this sense, the Main Theorem
says that “Riemannian orbit spaces cannot be arbitrarily singular”.

1.4. Organization

In Section 2 we recall a couple of basic facts and definitions about real, complex and
quaternionic representations, which are used throughout this article, as well as some
known facts about diameter of quotients which we will use later. Section 3 concerns
normal subgroups and reduces the proof of the Main Theorem to two cases, according
to whether the identity component G0 of the given group G acts irreducibly, or as scalar
multiplication. Section 4 finishes the proof when G0 acts as scalar multiplication, that is,
when G is essentially a finite group, while Section 5 deals with the case where G0 acts
irreducibly. Section 6 is devoted to the proof of Theorem 1.

Finally, Appendices A and B contain proofs of two technical but essentially known
lemmas needed in Sections 4 and 5, respectively.

2. Preliminaries

2.1. Representations of real, complex, and quaternionic types

In this section we briefly collect a few definitions and basic facts about representations
over R;C;H, of real, complex and quaternionic types that are used throughout the present
article. A thorough treatment can be found in [2, Section 2.6].

Let G be a compact group. A real representation of G is a group homomorphism
G ! GL.U /, where U is a real vector space. It is called irreducible when the only
G-invariant real subspaces are ¹0º and U . In this case, Schur’s lemma implies that the
algebra of all G-equivariant endomorphisms of U is a real associative division algebra,
which, by Frobenius’ theorem, must be isomorphic to R, C, or H. This representation is
then called of real, complex, or quaternionic type, respectively.

A complex representation of G is a group homomorphism G ! GL.V /, where V is
a complex vector space, and it is called irreducible when the only G-invariant complex
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subspaces of V are ¹0º, V . In this case, it is called of real type (resp. quaternionic type)
when it admits a real structure (resp. quaternionic structure), that is, a G-equivariant
conjugate-linear map � W V ! V with �2 D 1 (resp. �2 D �1). The representation V
is called of complex type when it admits neither a real nor a quaternionic structure, or
equivalently, when V is not isomorphic to the complex-conjugate representation NV .

If U is a real irreducible representation of real type, then its complexification V D
C˝R U (that is, theG-module obtained by extension of scalars) is a complex irreducible
representation of real type. Conversely, given a complex irreducible representation of real
type V , with real structure �, the fixed point set U of � is a real irreducible representation
of real type, called the real form of V .

On the other hand, if U is a real irreducible representation of complex (resp. quater-
nionic) type, then it is the realification of an irreducible complex representation V of
complex (resp. quaternionic) type, that is, it is obtained from V by restriction of scalars
(from C to R).

2.2. Diameter of quotients

Here we collect some basic facts about the diameter of quotients. We start with a well-
known result, whose proof can be found, for instance, in [9, pp. 75–76].

Lemma 7. LetG � O.n/. Then the diameter of Sn�1=G is equal to � if and onlyG fixes
some non-zero vector. Otherwise the diameter is less than or equal to �=2, with equality
precisely when the representation of G on Rn is reducible.

Next we turn to the behavior of the diameter of the quotient with respect to inclusion
of groups K � G � O.n/. A simple fact we will use frequently is that diam.Sn�1=K/ �
diam.Sn�1=G/. In the opposite direction, there is the following result, which appears as
Lemma 3.13 in [12], and allows one to replace a group with a finite index subgroup, as
long as the index is controlled:

Lemma 8. Let K � G � O.n/ be closed subgroups, and assume G=K is finite, with k
elements. Then

diam.Sn�1=G/ �
diam.Sn�1=K/
2.k � 1/

:

The existence of a dimension-dependent lower bound on the diameter of the orbit
space was established in [12, Theorem 4.3]:

Theorem 9 (Greenwald). For each n� 3, there exists �.n/> 0 such that, for allG <O.n/
compact and non-transitive, diam.Sn�1=G/ � �.n/.

See Theorem 1 for a generalization of Theorem 9, with similar proof.
Another result of Greenwald useful to us can be found in [12, Theorem 3.15] and

[12, Table 1]:
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Theorem 10 (Greenwald). If n � 3 and G < O.n/ is a finite group generated by reflec-
tions, then diam.Sn�1=G/ � �

8:1
. Moreover, if G is of classical type, that is, types A, B, C

or D, then diam.Sn�1=G/ � �=4.

3. Controlling normal subgroups via polar representations

We will need the following technical observation:

Lemma 11. LetN0 � O.l/ .respectively U.l/, Sp.l// be irreducible of real .respectively
complex, quaternionic/ type, and let N D �N0 � O.kl/ .respectively U.kl/, Sp.kl// be
the diagonal group, seen as acting by left multiplication on the vector space V of l � k
matrices with entries in R .respectively C, H/. Let O.k/ .respectively U.k/, Sp.k// act
by right multiplication, and denote by K the image in O.V / of O.k/ � O.l/ .respectively
of the group generated by U.k/ � U.l/ and complex conjugation, Sp.k/ � Sp.l//. Then
the normalizer NO.V /.N / is contained in K.

Proof. Let g 2 NO.V /.N /. Since g normalizes N , it also normalizes the centralizer
CO.V /.N / of N , which, by Schur’s lemma, equals O.k/ (respectively U.k/, Sp.k/).
Therefore g also normalizes SO.k/ (respectively SU.k/). But every automorphism of
SO.k/ is given by conjugation with some element of O.k/, every automorphism of
SU.k/ is inner, or inner composed with complex conjugation, and every automorphism of
Sp.k/ is inner. Therefore there exists g0 2 O.k/ (respectively SU.k/ [ c SU.k/, Sp.k/,
where c denotes complex conjugation) such that conjugation by g and g0 coincide on
SO.k/ (respectively SU.k/, Sp.k/). In other words, g�1g0 centralizes SO.k/ (respectively
SU.k/, Sp.k/). By Schur’s Lemma, g�1g0 belongs to O.l/ (respectively U.l/, Sp.l/), and
therefore g 2 K.

The next lemma is analogous to Lemma 7 in that it provides algebraic information
about a representation when the diameter of the quotient is assumed to be small. In the
proof we use the concept of a polar representation, which is defined as a representation
admitting a section, that is, a vector subspace which meets all of the orbits orthogonally.
The quotient space of the representation is isometric to the quotient of any section by its
so-called generalized Weyl group (polar group). The latter is defined as the quotient of
the subgroup which leaves the section invariant by the subgroup which fixes the section
pointwise, and it is always finite. Moreover, the generalized Weyl group of a polar repre-
sentation of a compact connected group is a finite reflection group. For a detailed account
on polar representations and their generalized Weyl groups we refer to [26].

In order to make the statement of the lemma more convenient, we make the following
definition, which corresponds to the case l D 1 in the notation of Lemma 11.

Definition 12. We will call a subgroup N � O.V / super-reducible if, as an N -represen-
tation, V D W k , where W is irreducible with dimF W D 1, where F D R;C, or H is
the type of W .
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In the following we denote the symmetric group on k letters by †k .

Lemma 13. Let G � O.n/ be a closed subgroup, and assume diam.Sn�1=G/ < �=4.
Then every normal subgroup N � G is either irreducible or super-reducible.

Proof. First we claim that, as anN -representation, Rn has one isotypical component. Let
Rn D V1 ˚ � � � ˚ Vk be the decomposition into isotypical components, and assume to the
contrary that k > 1. SinceN is normal inG, any g 2G takesN -invariant subspaces toN -
invariant subspaces, and hence N -irreducible subspaces to N -irreducible subspaces. But
any N -irreducible subspace W must be contained in some Vi , by Schur’s lemma. Thus,
if W � Vi is N -irreducible, and g 2 G, there exists j such that gW � Vj . Moreover,
the set of N -irreducible subspaces of Vi is connected, so that j does not depend on the
choice of W � Vi . So gVi � Vj , and, applying the same argument to g�1, it follows that
gVi D Vj . Thus we obtain a group homomorphism � W G! †k such that gVi D V�.g/.i/
for all i . SinceG is irreducible, this action ofG on ¹1; : : : ;kº is transitive, and in particular
all Vi have the same dimension d . Therefore G � †k Ë O.d/k . The group †k Ë O.d/k

is polar and the quotient Sn�1=.†k Ë O.d/k/ is isometric to the quotient of Sk�1 by
the Weyl group †k Ë ¹˙1ºk , which, by Theorem 10, has diameter at least �=4. Thus
diam.Sn�1=G/ � �=4, contradicting our hypothesis, and finishing the proof that Rn has
only one N -isotypical component.

This puts us in the situation of Lemma 11, and, following the notation there, G is
contained in K, which is the image in O.n/ of O.k/ � O.l/ (respectively of the group
generated by U.k/�U.l/ and complex conjugation, Sp.k/� Sp.l/). If both k; l are larger
than 1, the groupK is polar, non-transitive, and by direct computations the associated gen-
eralized Weyl group is a finite reflection group of classical type. Thus Theorem 10 yields
diam.Sn�1=G/ � �=4, a contradiction. Therefore, either k D 1, that is, N is irreducible,
or l D 1, that is, N is super-reducible.

Let G � O.n/ be a compact subgroup with identity component G0, and assume
diam.Sn�1=G/ < �=4. Since G0 is a normal subgroup of G, we may apply Lemma 13
above to conclude that G0 is either super-reducible, or irreducible. Thus the proof of the
Main Theorem reduces to these two cases, which we will deal with separately in the next
two sections.

4. Case where G 0 is super-reducible

4.1. Finite simple groups and projective representations

In this subsection we collect some facts about the projective representations and the auto-
morphism groups of powers S r of a finite simple group S . For more details on projective
representations of finite groups we refer to [15].

Recall that an n-dimensional (complex) projective representation of a group G is a
group homomorphism G ! PGL.n;C/. If this homomorphism can be lifted to a group
homomorphism � W G ! GL.n;C/, the representation is called linear. In general, it can
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be lifted to a map � W G ! GL.n;C/ which is a group homomorphism only up to scalar
multiplication. In other words, there is a map ˛ W G � G ! C� such that �.1/ D 1, and
�.xy/ D ˛.x; y/�.x/�.y/ for all x; y 2 G. Such a map � is called an ˛-representation.
The group axioms imply that ˛ is a cocycle (or Schur multiplier), that is, it satisfies
˛.x; 1/ D ˛.1; x/ D 1 and ˛.x; y/˛.xy; z/ D ˛.y; z/˛.x; yz/, for all x; y; z 2 G. The
set of all cocycles is called Z2.G;C�/, and it forms an Abelian group under pointwise
multiplication. Moreover, one defines the subgroup B2.G;C�/ of coboundaries, and the
cohomology group H 2.G;C�/ as the quotient. Two lifts of the same projective repre-
sentation have cohomologous Schur multipliers, and a projective representation is linear
if and only if the associated cohomology class vanishes. Let l.G/ denote the smallest
dimension of a faithful irreducible projective representation of G (if they exist, which is
the case for a non-Abelian, simple group G).

Lemma 14. There exists a constant c such that, for every finite simple group S that is not
cyclic or alternating, one has

log jS j
l.S/

� c:

See Appendix A for the proof, which consists in a case-by-case verification following
the classification of the finite simple groups and their representations.

Lemma 15. Let An denote the alternating group on n letters. Then, for n � 12, the
smallest dimension l.An/ of an irreducible faithful projective complex representation is
n � 1, uniquely achieved by the standard permutation representation on Cn�1, and the
second smallest dimension is at least n.n � 3/=4.

Proof. Since An is simple, every non-trivial representation is faithful. An has exactly
two cohomology classes of Schur multipliers [32]. Denoting by ˛ the non-trivial Schur
multiplier, the smallest dimension of an irreducible ˛-representation is 2b.n�2/=2c [16,
p. 1774]. Since n � 12, this is larger than n.n � 3/=4, so it suffices to consider linear
representations.

Every irreducible (linear) representation ofAn is either the restriction of an irreducible
representation of †n, or a summand, with half the dimension, of such a restriction – see
[6, p. 64, Prop. 5.1]. By [30, Result 2], when n � 9, the third smallest dimension of
an irreducible representation of †n (after 1 and n � 1) is n.n � 3/=2, completing the
proof.

Lemma 16. Let S be a finite simple group. If S is non-Abelian, then l.S r / D l.S/r . If S
is Abelian, that is, S ' Z=p for a prime p, then l.S r / D pr=2 if r is even, and S r has no
complex projective faithful irreducible representations if r is odd.

Proof. Assume S is non-Abelian. Then, by [15, p. 132, Prop. 4.1.2], the Schur multiplier
M.S r / (that is, the cohomology group H 2.S r ;C�/) is equal to M.S/r , because of the
definition of tensor product of groups in [15, p. 58]. That is, every Schur multiplier of
S r is cohomologous to a product of r Schur multipliers of S , which, by [15, p. 198,
Corollary 5.1.3], implies that every irreducible projective representation of S r is an outer
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tensor product of irreducible projective representations of S . Moreover, such an outer
tensor product is faithful if and only if each factor is faithful, thus concluding the proof
that l.S r / D l.S/r .

Next assume S is Abelian, that is, S D Z=p, for a prime p, and that S r has a (com-
plex) faithful irreducible ˛-representation for some Schur multiplier ˛ 2 Z2.S r ;C�/.
Then, by [15, p. 578, Lemma 10.4.3], the identity is the only element of S r that is
˛-regular. Recall that, since S r is Abelian, an element g is ˛-regular if and only if
˛.g; x/ D ˛.x; g/ for all x 2 S r (see [15, p. 107], or [14, Definition 1.2] for the gen-
eral definition of ˛-regularity). Therefore, by [14, Lemma 2.2 (1)], S r is of symmetric
type, which, in our case, simply means that r is even; and moreover every irreducible
projective ˛-representation of S r has degree

p
jS r j D pr=2.

The outer automorphism groups of the finite simple groups are small. For our pur-
poses, the very rough estimate below will suffice:

Lemma 17. Let S be a finite simple group, and r � 1. If S is non-Abelian, then jOut.S/j
� jS j, jAut.S/j � jS j2, and jAut.S r /j � rŠjS j2r . If S is Abelian, S DZ=p for a prime p,
then jAut.S r /j � pr

2
.

Proof. Assume S is non-Abelian. Using the classification of finite simple groups, it has
been proved in [27, Lemma 2.2] that jOut.S/j � jS j=30. Since Inn.S/' S , it follows that
jAut.S/j � jS j2. Moreover, Aut.S r / is isomorphic to the semidirect product of the per-
mutation group on r letters and Aut.S/r . Indeed, any group homomorphism � W S r ! S r

can be written as

�.g1; : : : ; gr / D
�Y
j

�1j .gj /;
Y
j

�2j .gj /; : : : ;
Y
j

�rj .gj /
�

where �ij W S!S are group homomorphisms such that, for all i , and all .g1; : : : ; gr /2S r ,
¹�ij .gj /º

r
jD1 commute. Since S is simple non-Abelian, this implies that for each i , there

is at most one value of j such that �ij is non-trivial (and hence an automorphism). Assum-
ing further that � is an automorphism, there must in fact be a permutation � 2 †r such
that �ij is non-trivial if and only if �.i/ D j .

In the Abelian case, an automorphism of S r is represented by an r � r matrix with
entries in Z=p, and thus jAut.S r /j � pr

2
.

4.2. Volume, diameter and dimension

We will need a rough estimate for the volume of the compact rank 1 symmetric spaces
(which is actually known explicitly). Denote by Bn the unit Euclidean ball and by
CP nD S2nC1=U.1/ and HP nD S4nC3=Sp.1/ the complex and the quaternionic projec-
tive spaces, respectively. Note that CP n and HP n equipped with their canonical, quotient
metrics have sectional curvatures bounded above by 4.
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Lemma 18. Let M be an n-dimensional compact, simply connected rank 1 symmetric
space with curvature bounded above by 4. Then

vol.M/ >
1

2n
vol.Bn/:

Proof. The injectivity radius of the symmetric space M is at least equal to the injectivity
radius of the sphere 1

2
Sn of constant curvature 4. By the Bishop–Gromov volume com-

parison, we have
vol.M/ � vol

�
1
2
Sn
�
:

Considering the orthogonal projection, the volume of 1
2
Sn is larger than the volume of

the unit n-dimensional Euclidean ball of radius 1
2

. This implies the claim.

As an application we deduce:

Lemma 19. Let M be an n-dimensional compact, simply connected rank 1 symmetric
space with curvature bounded above by 4. Let G be a finite group acting by isometries
on M . Then

diam.M=G/ � 1
2

n
p
1=jGj :

Proof. Let d denote the diameter of the quotient. Then a fundamental domain for the
action is contained in a ball in M of radius d . Since M is positively curved, by the
Bishop–Gromov Theorem, the volume of the quotient satisfies dn vol.Bn/�vol.M n=G/.
On the other hand, vol.M=G/� vol.M/=jGj (with equality if the action is effective). The
result now follows from the previous lemma.

4.3. Proof of Main Theorem: super-reducible case

We can now prove the Main Theorem under the assumption that the connected compo-
nent G0 of G acts as scalars, i.e. super-reducibly in terms of Definition 12.

Theorem 20. There exists � > 0 such that diam.Sn�1=G/ > � for every groupG � O.n/
for which the connected component G0 � O.n/ is super-reducible.

We start with a few reductions:

Lemma 21. To prove Theorem 20, one may assume that diam.Sn�1=G/ < �=4 and
n > 16. Moreover, we may assume that one of the following three cases occurs:

(1) The groupG is finite, O.1/D ¹˙1º �G and ¹˙1º is maximal among super-reducible
normal subgroups of G.

(2) We have G D H � Sp.1/. The group Sp.1/ D G0 is maximal among super-reducible
normal subgroups of G. The groupH is finite and contains the center Z of Sp.n=4/.

(3) We have G D H � U.1/. The group U.1/ D G0 is maximal among super-reducible
normal subgroups ofG. The groupH is finite and contains the centerZ of SU.n=2/.
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Proof. The first statement is clear. By Theorem 9 we may assume n > 16.
Consider a subgroup L of O.n/ which is maximal among subgroups that are super-

reducible, containG0 and are normalized byG. ReplacingG byG �L and observing that
the connected component of G � L is the super-reducible group L0, we may assume that
G D G � L, hence L � G.

Clearly,˙1 2 L. If L D ¹˙1º we are in case (1).
Otherwise, L is of complex or quaternionic type. Assume that L is of quaternionic

type, hence L � Sp.1/. By Lemma 11, the group G is contained in Sp.1/ � Sp.n=4/.
Hence Sp.1/ is normalized by G, thus L D Sp.1/, by maximality of L. We can now
take H to be the intersection of G with Sp.n=4/.

Similarly, if L is of complex type then applying Lemma 11 and the maximality of L
we obtain L D U.1/ and G is contained in the extension of U.n=2/ by complex conju-
gation. Replacing G by an index 2 subgroup, which is possible by Lemma 8, we may
assume that G � U.n/. Again, we obtain H as the intersection of G with SU.n=2/.

Proof of Theorem 20. We make the assumptions listed in Lemma 21. If G is finite, we
set H D G to make the notation more uniform. We denote by Z the center of O.n/
(resp. SU.n=2/, Sp.n=4/), so Z is cyclic of order 2 (resp. n=2, 2). Let NN be a minimal
normal subgroup of H=Z. Since NN is minimal normal, it is characteristically simple,
hence isomorphic to S r for some finite simple group S (see [36, Lemmas 2.7 and 2.8]).

We will show that log.jH=Zj/=n is uniformly bounded from above by providing
appropriate bounds on n and on jH=Zj. This will conclude the proof via an application
of Lemma 19, because Sn�1=G D CP .n�2/=2=.H=Z/ (resp. HP .n�4/=4=.H=Z/).

Let N be the inverse image of NN in H . We claim that N � O.n/ is irreducible.
Indeed, N � ¹˙1º (resp. N � U.1/, N � Sp.1/) must be irreducible, because it is normal
inG, and strictly contains ¹˙1º (resp. U.1/, Sp.1/), which is maximal super-reducible by
assumption. This implies that, as an N -representation, Rn breaks into at most one (resp.
two, four) irreducible factors. Since n > 16, N cannot be super-reducible, and since it is
normal in G, it must be irreducible.

Next, we claim that the centralizer CH .N / of N inH is Z, so that, in particular, Z is
the center of N . Indeed, since N is irreducible, CH .N / is super-reducible. This implies
that CH .N / (resp. CH .N / � U.1/, CH .N / � Sp.1/) is not irreducible, because n > 16.
Thus, being normal in G, it must be super-reducible. By maximality of ¹˙1º (resp. U.1/,
Sp.1/) among super-reducible normal subgroups of G, we must have CH .N / D ¹˙1º
(resp. CH .N / � U.1/ D U.1/, CH .N / � Sp.1/ D Sp.1/), which implies CH .N / D Z.

Bounding jH=Zj from above. H acts by conjugation on N , so we have a group homo-
morphism � WH ! Aut.N /, whose kernel is CH .N / D Z. Thus jH j � jZj � jimage.�/j.
But

image.�/ � AutZ.N / D ¹� 2 Aut.N / j �.z/ D z 8z 2 Zº

and each element of AutZ.N / induces an automorphism of NN D N=Z. Thus, denoting
Aut0.N / D ¹� 2 AutZ.N / j � induces the trivial automorphism of NN º, we have a short
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exact sequence
1! Aut0.N /! AutZ.N /! Aut. NN/! 1:

Moreover, the map that sends � 2 Aut0.N / to ˛ W NN ! Z defined by ˛.x/ D �.x/x�1

establishes an isomorphism Aut0.N / ' Hom. NN; Z/. If S is non-Abelian, Hom. NN; Z/
is trivial, and if S is Abelian, we have jHom. NN; Z/j � jZjr . Therefore, we may use
Lemma 17 to obtain the bound

jH=Zj �

´
rŠjS j2r if S is non-Abelian;

nrpr
2

if S D Z=p:
(1)

Bounding n from below. Consider the representation of N on Rn. It is faithful and
irreducible. If it is of complex or quaternionic type (that is, if it commutes with some
complex structure) then U D Rn D Cn=2 is a faithful irreducible complex representation
ofN . Otherwise, the representation ofN on Rn is of real type, so that its complexification
U D Cn is a faithful irreducible complex N -representation.

The projectivization of U has kernel which must be equal to Z, because Z is the
center of N . Thus we have obtained a projective faithful irreducible representation of
NN D S r of dimension n or n=2, and thus, via Lemma 16, the bound

n �

´
l.S r / D l.S/r if S is non-Abelian;

pr=2 if S D Z=p:
(2)

To show that log jH=Zj=n is uniformly bounded and conclude the proof, we divide
into three cases: S Abelian, S non-Abelian and non-alternating, and S alternating and
non-Abelian.

If S is Abelian, isomorphic to Z=p, then from (1) and (2) we obtain

log jH=Zj
n

�
r lognC r2 logp

n
�

r

pr=4
�

logn
p
n
C

r2

pr=4
�

logp
pr=4

; (3)

which is bounded from above.
If S is non-Abelian, then (1) and (2) yield

log jH=Zj
n

�
log.rŠ/C 2r log jS j

n
�

log.rŠ/
l.S/r

C
2r log jS j
l.S/r

(4)

Since l.S/ � 2, the term log.rŠ/
l.S/r

is bounded. When S is non-alternating, the last term
2r log jS j
l.S/r

is bounded, because, by Lemma 14, the quantity log jS j
l.S/

is bounded. From now on
assume S is the alternating group Ad . If r � 2 and d � 12, then using Lemma 15 we see
that the last term in (4) is again bounded:

2r log jS j
l.S/r

�
2r log.d Š=2/
.d � 1/r

�
2r

.d � 1/r�3=2
�
d log d
.d � 1/3=2

: (5)

If r � 2 and 5 � d < 12 then

2r log jS j
l.S/r

�
2r log.12Š=2/

2r
; (6)
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which is bounded. Thus we may assume r D 1. If the faithful irreducible projective rep-
resentation of S D Ad constructed above is not the standard permutation representation,
then by Lemma 15 its dimension is at least d.d � 3/=4, so that 2r log jS j

n
is again bounded.

Therefore we have reduced to the case where S D Ad and the projective represen-
tation U of NN D S D Ad constructed above is the standard representation on Cd�1.
Since this projective representation Ad D NN ! PGL.U / lifts to the linear representation
Ad ! GL.U /, the short exact sequence 1! Z ! N ! NN ! 1 splits, which implies
that N ' Ad � Z (because Z is the center of N ). Thus Ad is a normal subgroup of G,
and it acts in the standard way on U D Cd�1. Recall that U D Cd�1 was isomorphic to
either Rn, or its complexification. The first case is precluded by our hypotheses, since then
the restriction of the G-representation Rn to Ad would be neither irreducible nor super-
reducible. Therefore the subgroup Ad acts on Rn D Rd�1 in the standard way. Since this
representation is of real type, that is, it does not leave any complex structure invariant,
we are in the case where G D H is finite, so in particular Z D ˙1. Since the automor-
phism group ofAd is isomorphic to†d (because d � 7, see [36, Theorem 2.3]), the index
of Ad in G is at most 4, and the desired diameter bound follows from Theorem 10 and
Lemma 8.

5. Case where G 0 is irreducible

As noted at the end of Section 3, Lemma 13 reduces the proof of the Main Theorem to
two cases, according to whether the identity component G0 acts as scalar multiplication
or irreducibly. We have dealt with the former in Section 4, and this section is devoted to
the latter.

For convenience in this section we will consider almost faithful representations � W
G!O.V /. We first lift � to a representation of a semidirect product. By [35, Lemma 7.5],
there is a finite subgroup � meeting all connected components of G. Since the identity
componentG0 is a normal subgroup ofG, we can writeG D G0 � � . Now there is a finite
covering G0 Ì � ! G and we can lift � to the semidirect product. Therefore from now
on we assume G splits as G0 Ì � .

Furthermore, by passing to a finite cover we may also assume that G0 is a product of
simply connected simple Lie groups and a torus. Altogether, we have reduced to proving
the following:

Theorem 22. There exists � > 0 with the following property. Let G0 be a product of a
torus with finitely many simply connected compact connected simple Lie groups, let � be
a finite group acting onG0 by automorphisms, and setG DG0 Ì� . Let � WG!O.V / be
an almost faithful representation whose restriction to G0 is irreducible but not transitive.
Then diam.S.V /=G/ > �.

Our strategy to prove Theorem 22 is the following reduction:

Lemma 23. To prove Theorem 22, it suffices to find a common lower diameter bound for
all non-transitive representations of the following types:
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(i) G D G0 is a simply connected compact connected simple Lie group, V D V 0 is of
real type.

(ii) G DU.1/�G0, V DC˝C V
0,G0 is a simply connected compact connected simple

Lie group and V 0 is of complex type.

(iii) G D Sp.1/ � G0, V D H ˝H V 0, G0 is a simply connected compact connected
simple Lie group and V 0 is of quaternionic type.

(iv) G D †k Ë SO.n/k , V D
Nk Rn, where n � 3 and k > 2.

(v) G D U.1/ �†k Ë SU.n/k , V D C ˝C
Nk Cn, where n � 3 and k > 2.

(vi) G D †k Ë Sp.n/k , V D
Nk Hn, where n � 1 and k � 4 is even.

(vii) G D Sp.1/ �†k Ë Sp.n/k , V D H˝H
Nk Hn, where n � 1 and k � 3 is odd.

.In the last four cases, the group †k acts by permuting the factors of the tensor product./

Remark 24. Some explanation about quaternionic tensor products is in order for cases
(vi) and (vii) above. The complex representation of Sp.n/ on HnDC2n is of quaternionic
type, and thus W D

Nk
C.H

n/ is a complex irreducible representation of Sp.n/k , which
is of real type when k is even, and of quaternionic type when k is odd. Denoting by
�i WHn!Hn the standard quaternionic structure on the i th factor of this tensor product,
� D �1 ˝ � � � ˝ �k is a real (if k even) or quaternionic (if k odd) structure on W . In case
(vi) we take V to be a real form of W , that is, the fixed point set of � W W ! W . In
case (vii) we take V to be the real form of C2 ˝C W relative to �0 ˝ �, where �0 is the
standard quaternionic structure on H D C2. In both cases the group †k acts on W by
permuting the factors, and this action commutes with �, so that it induces an action on V .

The proof of Lemma 23 is obtained by analysing the action by G0 using Lemmas 11
and 13, and is relegated to Appendix B (alternatively, one may also note that every max-
imal closed non-transitive subgroup of O.n/ (up to taking a subgroup of small index) is
either a maximal closed subgroup of O.n/, or U.1/ times a maximal closed subgroup of
SU.n/, or Sp.1/ times a maximal closed subgroup of Sp.n/, and then use the classifica-
tion of infinite, non-simple maximal closed subgroups of the classical groups obtained
in [1]). In the remainder of this section, we run through the cases of Lemma 23.

5.1. The tensor power representations

The goal of this subsection is to show the existence of a universal lower bound on
diam.S.V /=G/, where .V; G/ is one of the representations listed in cases (iv)–(vii) of
Lemma 23.

For an arbitrary metric space X , define the radius at x 2 X to be rx D inf ¹r > 0 W

X �B.x; r/º. It is immediate from the triangle inequality that it compares to the diameter
of X as follows:

rx � diamX � 2rx : (7)



C. Gorodski, C. Lange, A. Lytchak, R. A. E. Mendes 3782

Lemma 25. Let G be a locally compact topological group acting continuously, properly
and isometrically on a metric spaceX . Assume the fixed point set of G onX is non-empty.
Then diam.X=G/ � 1

2
diamX .

Proof. Let x0 2 X be a fixed point of G and denote by � W X ! X=G the natural projec-
tion. For every x 2X , the distance from x0 toGx is constant. It follows that the distances
satisfy d.x; x0/ D d.�.x/; �.x0// and hence the radii satisfy rx0

D r�.x0/. The desired
result now follows from (7).

Next consider a representation � W G ! O.V / as in the last four cases of Lemma 23.
Then G and G0 share a common orbit in V , namely, the one consisting of “pure tensors”.
Indeed, following the notation in Remark 24, it is the orbit through p D v1 ˝ � � � ˝ vk 2Nk Rn in case (iv), p D v1 ˝ � � � ˝ vk 2

Nk Cn in case (v), p D v1 ˝ � � � ˝ vk C

�1v1 ˝ � � � ˝ �kvk 2
Nk C2n in case (vi) and p D v0 ˝ � � � ˝ vk C �0v0 ˝ � � � ˝ �kvk 2

C2 ˝C
Nk C2n in case (vii).

Denoting X D S.V /=G and X0 D S.V /=G0, we conclude that G=G0 acts on X0

with a fixed point and X D X0=� , so we can apply Lemmas 25 and 13 to deduce that
diamX � 1

2
diamX0 � �=8.

5.2. Normal injectivity radius and focal radius

This subsection is devoted to proving a version of the injectivity radius estimate of Klin-
genberg for quotients S.V /=G, that is, to give a lower bound for the normal injectivity
radius of a G-orbit in terms of the focal radius. In the next section this will be combined
with a universal lower bound (found in [10]) for the focal radius for a special G-orbit to
finish the proof of Theorem 22.

Let N be a properly embedded submanifold of a complete Riemannian manifold M .
Consider the normal bundle �N in M and the normal exponential map exp? W �N !M .
Denote the open ball bundle of radius r in �N by �rN . The normal injectivity radius �N
of N is the the supremum of the numbers r such that exp? is an embedding on �rN , and
the image of ��NN is called the maximal tubular neighborhood of N . If N is compact,
�N > 0. On the other hand, a focal point of N relative to p 2 N is a critical value of
exp? W �N !M such that exp?.v/D q for some v 2 �pN . In this case, the focal distance
associated to q is the length jvj of the normal geodesic from p to q. The focal radius fN
of N is the infimum of all focal distances to N along normal geodesics. It is clear that
�N � fN .

Proposition 26. Let G be a compact Lie group acting isometrically on a compact Rie-
mannian manifoldM . Let p 2M and consider the orbitN D Gp. Assume the fixed point
set of the identity component .Gp/0 of the isotropy group at p in the closure of the max-
imal tubular neighborhood of N is contained in N . Then fN =2 � �N . In particular, the
diameter of M=G is bounded below by fN =2.

Proof. If �N < fN , we argue as in Klingenberg’s Lemma [4, Chap. 13, Proposition 2.12]
(see also [3, Lemma 5.6]) to deduce the existence of a horizontal geodesic segment  of
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length 2�N , entirely contained in the closure of the maximal tubular neighborhood of N ,
that starts at p and ends at a point q 2 N . By assumption, for all small t > 0, gp is
not contained in g.t/. Therefore there is a non-trivial variation of  through horizontal
geodesics fixing p, and ending onN , and hence p is a focal point ofN . It follows that the
length of  is at least fN , as desired. Finally, any point in M outside the maximal tubular
neighborhood of N has distance at least �N to N , which proves the last statement.

5.3. The case of simple Lie groups and their extensions by scalars

Having dealt with cases (iv)–(vii) of Lemma 23 in Subsection 5.1, it remains to treat cases
(i)–(iii) to finish the proof of Theorem 22, and hence of the Main Theorem. The strategy to
prove the existence of a lower diameter bound for S.V /=G for the representations listed
in cases (i)–(iii) of Lemma 23 is to use the universal lower bound for the focal radius of
a special orbit [10] in combination with the Klingenberg-type Proposition 26. In fact, this
subsection is devoted to showing that, in these cases, the hypothesis in Proposition 26
concerning the fixed point set is satisfied.

Fix a maximal torus of G, consider the corresponding root system and fix an ordering
of the roots. In view of Theorem 10, we may assume that the representation of G is not
polar. Since it is also irreducible and non-transitive on the unit sphere, we may apply the
main result of [10] to deduce that there exists ı > 0 such that the focal radius fN of the
orbit N D Gp is bigger than ı, where p D v� or p D 1p

2
.v� C �.v�//, and v� is a unit

highest weight vector of V or its complexification V c , according to whether � admits an
invariant complex structure or not; in the latter case it admits a real structure �. Note that
� admits an invariant complex structure in case (ii) and it does not in cases (i) and (iii).

In case (ii), v� D v�0 is also a unit highest weight vector of V 0. In case (iii), V 0 admits
an invariant complex structure and it is easier to do the computations in V 0; let v�0 be
a unit highest weight vector. The G0-action on V 0 admits an extension to a G-action.
Further, V DH˝H V 0 is a real form of C2 ˝C V

0 and there is a G-equivariant isometry
V 0 ! V mapping v�0 to 1p

2
.v� C v��/, where v� is the highest weight vector of V and

v�� D �.v�/, where � is the real structure on C2 ˝C V
0.

5.3.1. The complex and quaternionic cases. In this section, we check the hypothesis of
Proposition 26 in cases (ii) and (iii).

Lemma 27. Let p D v�0 in cases (ii) and (iii). Then the fixed point set of G0p in S.V 0/ is
contained in Gp.

Proof. The proof is the same in both cases. The Lie algebra of the maximal torus ofG has
the form t0 ˚ u.1/ where t0 is the Lie algebra of the maximal torus of G0. The isotropy
algebra gp contains the kernel of � in t0 and an element of the form h1 � h0, where h1 2 t0

satisfies �.h1/ D i and h0 2 u.1/ acts as multiplication by i on V . Write an arbitrary
element of S.V 0/ as v D

P
� c�v�, where the sum runs through the different weights

of V 0, c� 2 C and v� is a weight vector of weight �. Then ker�jt0 � v D 0 implies c� D 0
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unless � is a multiple of �0. Moreover, if � D c�0 then .h1 � h0/ � v� D .ci � i/v� can
be zero only if c D 1. It follows that gp � v D 0 implies v D c�0v�0 with jc�0 j D 1, so
v 2 Gp.

5.3.2. The real case. It remains to tackle case (i) from Lemma 23. We claim that we
may also assume that gp is a maximal isotropy algebra, up to conjugation. Indeed, let
q 2 S.V / n ¹�pº be arbitrary, consider the minimal geodesic segment  in S.V / from p

to the orbitGq and let q1 2Gq be its endpoint. Of course, gq1
and gq are AdG-conjugate.

If gq1
is not contained in gp , an element in gq1

n gp produces a non-trivial variation of 
through horizontal geodesics fixing q1, which implies that q1 is a focal point of Gp. We
deduce that diamX � ` � fN > ı, where ` is the length of  and N D Gp.

So in what follows we may assume gp is a maximal isotropy algebra, up to conjuga-
tion. We will show that this implies that rk g � 2 and V c is a minuscule representation,
that is, all weights comprise a single Weyl orbit.

Lemma 28. rk gp D rk g � 1.

Proof. Denote the Lie algebra of the maximal torus of G by t, and the corresponding
system of roots by �, where we have already chosen an ordering of the roots. Consider
the root space decomposition

g D tC t?; t? D
X
˛2�C

.gC
˛ C gC

�˛/ \ g:

It is clear that gp D gp \ tC gp \ t?, where gp \ tD ker�. Suppose, to the contrary, that
rkgpD rkg. Then ker� can be enlarged to a Cartan subalgebra of gp by adding an element
u of t?. It follows from Œker�;u�D 0 that uD x˛C �x˛ for some ˛ 2�C, where x˛ 2gC

˛ ,
and � is a multiple of ˛. Since 0 D u � .v� C v��/, we deduce that ��C ˛ D � � ˛ and
thus � D ˛. The only dominant roots are the highest root or the highest short root. In the
first case, our representation is the adjoint representation and hence polar. The remaining
cases that need to be analyzed occur only for simple groups of type Bn, Cn, F4, G2,
in which our representation is respectively the isotropy representation of the symmetric
space S2nC1, SU.2n/=Sp.n/, E6 =F4 or the 7-dimensional representation of G2, again all
polar. In any case, we reach a contradiction to our previous assumption.

Lemma 29. rkg � 2 and V c is minuscule.

Proof. It follows from Lemma 28 that zero cannot be a weight, because the isotropy
algebra of a real zero-weight vector would have full rank in g, bigger than rk gp . This
already rules out representations of real type of a rank 1 group, since the odd-dimensional
representations of SO.3/ always have zero as a weight.

Take q D 1p
2
.v� C v��/ where � is an arbitrary non-zero weight � of V c . Then

ker� � gq and rk gq � rk gp . Again Lemma 28 implies that rk gq D rk gp and ker�,
ker �, viewed as subspaces of t, are Ad-conjugate. Since two maximal tori of a com-
pact connected Lie group are Ad-conjugate by a transformation that fixes pointwise their
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intersection, we deduce that ker�, ker� are conjugate under the Weyl group W . Now �

is W -conjugate to a multiple of �, say c � � with 0 < c � 1.
Since rk g � 2, we can find a simple root ˛ of g which is neither proportional nor

orthogonal to �. Then s˛� WD � � 2 h�;˛i
k˛k2

˛ is a weight of V c and so are �, � � ˛; : : : ;

� � q˛ where q D 2 h�;˛i
k˛k2

is a positive integer. These weights are all W -conjugate to a
multiple of � by what we have seen above, and they all lie in the union of two closed cham-
bers because ˛ is simple. SinceW acts transitively on the set of chambers, we deduce that
q D 1. In particular, there can be no weights of V c of the form c � �, 0 < c < 1. We have
proved that all non-zero weights of V c are W -conjugate. Therefore, V c is minuscule.

We finally check the hypothesis of Proposition 26.

Lemma 30. Let p D 1p
2
.v� C v��/. Then the fixed point set of G0p in S.V / is ¹˙pº.

Proof. Recall zero is not a weight of V c . Write an arbitrary element of S.V / as v DP
� c�.v� C v��/, where c� 2 R, v˙� are weight vectors and � runs through the “posi-

tive” weights of V c . If v is killed by ker�, then c�D 0 unless� is a positive multiple of �.
Since V c is minuscule, we deduce that gp � v D 0 implies v D c�.v� C v��/ D ˙p.

6. Non-spherical quotients

We start with the characterization of compact Riemannian manifolds M admitting a
positive lower bound on the diameter of quotients by isometric actions. The first obvi-
ous observation is that if M is non-homogeneous, then such a bound exists, namely
diam.M=Iso.M//. The homogeneous case is Theorem 1 from the Introduction. To prove
it we need the following lemma:

Lemma 31. Let G be a compact Lie group acting transitively on a compact connected
smooth manifold M . Let G0 D ŒG0; G0� be the semisimple part of G. Then �1.M/ is
finite if and only if G0 acts transitively on M .

Proof. If �1.M/ is finite, then G0 acts transitively by [25, Proposition 4.9, p. 94]. Con-
versely, if G0 acts transitively, we choose any x 2 M , and the long exact sequence of
homotopy groups associated to G0x ! G0 ! M implies that �1.M/ is finite, because
�1.G

0/ is finite and G0x has finitely many connected components.

Proof of Theorem 1. Recall Isom.M/ is a compact Lie group and assume first �1.M/ is
finite. Suppose to the contrary that no such � exists. Then there exists a sequence of com-
pact non-transitive subgroups Gi of the isometry group of M such that lim diam.M=Gi /
D 0. By compactness of the Hausdorff metric on the space of all compact subsets of
Isom.M/, we may assume, after passing to a subsequence, that Gi converges to a com-
pact subset G1 � Isom.M/. Then G1 is a group, and diam.M=G1/ D 0, that is, G1
acts transitively on M . By [23], the groups Gi are eventually conjugate to subgroups of
G1, so we may assume that Gi � G1 for all i .



C. Gorodski, C. Lange, A. Lytchak, R. A. E. Mendes 3786

Since M has finite fundamental group, we may apply Lemma 31 to conclude that the
semisimple part G01 D ŒG

0
1; G

0
1� also acts transitively on M . The semisimple parts G0i ,

being subgroups of Gi , also act non-transitively, and thus form a sequence of proper sub-
groups of G01 that converges to G01. This contradicts [33, Chapter IV, Proposition 3.7],
which says that a compact Lie group is a limit of proper subgroups if and only if it is not
semisimple. Therefore an � > 0 satisfying the statement of the theorem must exist.

For the converse, assume that �1.M/ is infinite. Let G be a finite cover of Isom.M/

of the form G0 � T k , where G0 is semisimple. By Lemma 31, G0 does not act tran-
sitively on M . Therefore neither does any group of the form G0 � � , for � a finite
subgroup of the torus T k . Taking a sequence of finite subgroups �i � T k converging
to T k , we obtain a sequence of non-transitive subgroups Gi D G0 � �i of G such that
limi!1 diam.M=Gi / D 0.

In light of Theorem 1, one might suspect that the Main Theorem also generalizes to
the class of all compact homogeneous spaces with finite fundamental group (normalized
to have a fixed diameter). This turns out to be false, as the next example shows:

Example 32. Endow SO.n/ � Rn
2

with the Riemannian metric g induced by the inner
product hA;Bi D tr.AB t /=2 on Rn

2
. A straightforward computation shows that the natu-

ral quotient map SO.n/! SO.n/=SO.n� 1/D Sn�1 is a Riemannian submersion, where
Sn�1 is endowed with the standard metric. The diameter of .SO.n/; g/ goes to infinity as
n!1, because it is bounded from below by the extrinsic diameter as a subset of Rn

2
.

Indeed,
diam.SO.n/; g/ � dg.I;�I / � dRn2 .I;�I / D

p
2n

when n is even, and similarly for n odd.

Appendix A. Proof of Lemma 14

Here we prove Lemma 14, which states: There exists a constant c such that, for every
finite simple group S that is not cyclic or alternating, one has

log jS j
l.S/

� C:

We use the classification of finite simple groups (see e.g. [8,36]). We may discard the
sporadic groups, as there are only finitely many of them. The remaining groups are the
finite simple groups of Lie type, and come in 16 families, each parametrized by a prime
power q, and possibly a natural number n. In [17], one finds lower bounds for l.S; q/
for all S of Lie type, where l.S; q/ is defined as the smallest dimension of a projective
representation of G over a field of characteristic not dividing q. In each family there are
a finite number of exceptions to this bound (listed in the third column of the table in
[17, p. 419]), which we may and will ignore. Since l.S/ � l.S; q/, it suffices to show
that, in each family, the quotient of log jS j by the bound provided in [17] is bounded from
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above. We proceed case by case, following Table 1 from [8, p. 8], and giving first the
name as in [8], followed by the name used in [17] (if different). In each case we find an
upper bound for the order jS j (whose exact value can be found in [8, Table 1, p. 8]), and
a lower bound for the lower bound for l.S; q/ found in the table in [17, p. 419].

(1) An.q/ D PSL.nC 1; q/, n � 1. Then jS j � qn
2Cn�1 and l.S/ � .qn�1 � 1/=2 �

qn�1=4, so that
log jS j
l.S/

�
4.nC 1/2 log q

qn�1

goes to zero.

(2) 2An.q/ D PSU.nC 1; q/, n � 2. Then jS j � 2qn
2Cn�1 and l.S/ � .qn � q/=.q C

1/ � qn=4, so that
log jS j
l.S/

�
4.nC 1/2 log q

qn

goes to zero.

(3) Bn.q/D PSO.2nC 1;q/, n� 3. Then jS j � q2n
2Cn and l.S/� q2.n�1/ � q.n�1/ �

q2.n�1/=4, so that
log jS j
l.S/

�
4.2n2 C n/ log q

q2.n�1/

goes to zero.

(4) 2B2.q/ D Sz.q/. Then jS j � q5 and l.S/ �
p
q=2.q � 1/ � q=4, so that

log jS j
l.S/

�
20 log q
q

goes to zero.

(5) Cn.q/ D PSp.2n; q/, n � 2. Then jS j � q2n
2Cn and also l.S/ � min ¹qn � 1;

qn�1.qn�1 � 1/.q � 1/º=2 � qn=4, so that

log jS j
l.S/

�
4.2n2 C n/ log q

qn

goes to zero.

(6) Dn.q/ D PSOC.2n; q/, n � 4. Then jS j � q.2n
2�n/ and l.S/ � q2n�3=2, so that

log jS j
l.S/

�
2.2n/2 log q
q2n�3

goes to zero.

(7) 2Dn.q/ D PSO�.2n; q/, n � 4. Then jS j � 2q2n
2�n and l.S/ � q2n�3=2, so that

log jS j
l.S/

�
2..2n2 � n/ log q C log.2//

q2n�3

goes to zero.
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(8) 3D4.q/. Then jS j � 2q28 and l.S/ � q3.q2 � 1/ � q5=2, so that

log jS j
l.S/

�
2.28 log q C log.2//

q5

goes to zero.

(9) G2.q/. Then jS j � q14 and l.S/ � q.q2 � 1/ � q3=2, so that

log jS j
l.S/

�
28 log q
q3

goes to zero.

(10) 2G2.q/. Then jS j � q7 and l.S/ � q.q � 1/ � q2=2, so that

log jS j
l.S/

�
14 log q
q2

goes to zero.

(11) F4.q/. Then jS j � q52 and l.S/ � q10=4, so that

log jS j
l.S/

�
208 log q
q10

goes to zero.

(12) 2F4.q/. Then jS j � q26 and l.S/ � q5=2, so that

log jS j
l.S/

�
52 log q
q10

goes to zero.

(13) E6.q/. Then jS j � q78 and l.S/ � q11=2, so that

log jS j
l.S/

�
156 log q
q11

goes to zero.

(14) 2E6.q/. Then jS j � q78 and l.S/ � q15, so that

log jS j
l.S/

�
78 log q
q15

goes to zero.

(15) E7.q/. Then jS j � q133 and l.S/ � q17=2, so that

log jS j
l.S/

�
266 log q
q17

goes to zero.

(16) E8.q/. Then jS j � q248 and l.S/ � q29=2, so that

log jS j
l.S/

�
496 log q
q29

goes to zero.
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Appendix B. Proof of Lemma 23: Analysing the representation of G 0

As in the statement of Theorem 22, let G0 be a product of a torus with finitely many
simply connected compact connected simple Lie groups, � a finite group acting onG0 by
automorphisms, andG DG0 Ì � . Let � WG! O.V / be an almost faithful representation
whose restriction �0 WD �jG0 to G0 is irreducible, and such that diam.S.V /=G/ is small
(but positive). The strategy to prove Lemma 23 is to show that, up to taking a subgroup
of index at most 12, G is contained in one of the groups listed in Lemma 23, so that the
statement will follow from Lemma 8. To achieve this, we will use Lemmas 11 and 13 to
show that the normalizer of G0 in O.V / is, up to small index, one of the groups listed in
Lemma 23.

The proof will consist of a case-by-case analysis, with the division into cases as fol-
lows. First, G0 is either semisimple, of the form G0 D G1 � � � � � Gk where the Gi are
simply connected compact connected simple Lie groups and k � 1; orG0 not semisimple,
of the form G0 D U.1/ � G1 � � � � � Gk where the Gi are simply connected compact
connected simple Lie groups and k � 1. In the latter case, the torus is one-dimensional
because the irreducibility of �0 implies that the center of G is one-dimensional. As we
will see below, kD 1will lead to cases (i)–(iii) in the statement of Lemma 23, while k � 2
will lead to cases (iv)–(vii).

Second, the action of � on the simple factors may be transitive or not. And third, there
is a complex irreducible representation � W G0! U.W / such that either one of two cases
happen: (i) �0 is the real form of � ; or (ii) �0 is the realification of � . Thus there are in
principle eight cases, but as we will see below, only four may actually occur.

B.1. G0 semisimple, �-action transitive

We can write W D W1 ˝C � � � ˝C Wk . where �i W Gi ! U.Wi / is a complex irreducible
representation. Since the action of � on the set of factors of G0 is transitive, all factors
are isomorphic. Fix isomorphisms once and for all. Now any two �i , �j differ by an
automorphism ofGi DGj . By composing �i with an automorphism ofGi , we change �0

to an orbit-equivalent representation and may assume all �i are equivalent representations.

Type (i): �0 is a real form of � . If k D 1, then G0 is simple, and hence its outer auto-
morphism group has order at most 6. Since �0 is of real type, its centralizer in O.V / is
¹˙1º. Together these imply that the index of G0 in its normalizer in O.V / is at most 12.
Now G0 is as in case (i) of Lemma 23, and the desired lower bound on diam.S.V /=G/ is
obtained from Lemma 8.

Assume k � 2. Let  2 NO.V /.G
0/. Then .Gi / D G�.i/ for all i and a permutation

� 2 †k . View  2 NU.W /.G
0/ such that  centralizes the real structure �, which we take

� D �1 ˝ � � � ˝ �k , where �i are “the same”. Define the complex endomorphism 0 of W
by

0.w1 ˝ � � � ˝ wk/ D w�.1/ ˝ � � � ˝ w�.k/:
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Then 0 centralizes � and normalizes G0 by a simple calculation. It follows that Q WD
�10 defines a real endomorphism of V that normalizes Gi for all i .

Next we distinguish two cases:

(a) The �i are of real type. Here V D V1 ˝R � � � ˝R Vk where �i W Gi ! O.Vi / is a real
form of �i .

We have �jG1
D .dimR V1/

k�1�1. Lemma 11 (real case) now implies that Q 2
O.V1/�O.V 0/, where V 0 D V2˝R � � � ˝R Vk . Proceeding by induction, we see that
Q 2 O.V1/ � O.V2/ � � � � � O.Vk/. Therefore, up to an index 2 subgroup, we have
NO.V /.G

0/ � †k Ë SO.n/k , which appears as case (iv) in Lemma 23. Here we may
assume k > 2, because in case k D 2 the representation is polar and a lower bound
on the diameter of the quotient follows from Theorem 10.

(b) The �i are of quaternionic type and k is even. Here �1 ˝ �2 and �3 ˝ � � � ˝ �k are
of real type.

We have �jG1�G2
D .dimH W1 ˝H W2/

k=2�1Œ�1 ˝ �2�R where Œ �R denotes a
real form. Lemma 11 (real case) now implies that Q 2O.W1˝H W2/�O.V 0/, where
V 0 is a real form of W3 ˝C � � � ˝C Wk , with components Q12 and Q3���k . Applying
Lemma 11 (quaternionic case) to Q12 and proceeding by induction with Q3���k , we see
that Q 2 Sp.W1/ � � � � � Sp.Wk/. Therefore, NO.V /.G

0/ is contained in the group
listed in part (vi) of Lemma 23. We may assume k � 4 because in case k D 2 the
representation is polar.

Type (ii): �0 is the realification of � . If k D 1, then the identity component of the
normalizer of G0 falls into case (ii) or (iii) of Lemma 23, according to whether �0 is
of complex or quaternionic type. Moreover, the outer automorphism group of the simple
group G0 has order at most 6. Therefore the index of G0 in G is bounded by 6 and the
desired lower bound on diam S.V /=G is obtained from Lemma 8.

Assume k � 2. Let  2NO.V /.G
0/. We have .Gi /DG�.i/ for all i and a permutation

� 2 †k . Define the complex endomorphism 0 of W by

0.w1 ˝ � � � ˝ wk/ D w�.1/ ˝ � � � ˝ w�.k/:

Then 0 normalizes G0. Next we distinguish two cases:

(a) The �i are of complex type. Here � is of complex type. The element  normalizes
the centralizer of G0, which is to say that  is a complex linear or conjugate linear
endomophism of W . By composing with complex conjugation, we may assume 
is complex linear. It follows that Q WD �10 is a complex endomorphism of W that
normalizes Gi for all i .

We have �jG1
D .dimCW1/

k�1�1. Lemma 11 (complex case) says Q 2 U.W1/�
U.W 0/, where W 0 D W2 ˝C ˝ � � � ˝C Wk (recall Q is complex linear). Proceeding
by induction, we see that Q 2 U.W1/ � � � � � U.Wk/. Therefore, up to a subgroup of
index 2, NO.V /.G

0/ is contained in the group listed in part (v) of Lemma 23. We may
assume k > 2, since in case k D 2 the representation is polar.

(b) The �i are of quaternionic type and k is odd. Here � is of quaternionic type and
Sp.1/ D ZO.V /.G

0/. The element  normalizes Sp.1/, and since this group has no
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outer automorphisms, we may assume  centralizes it, which is to say that  is quater-
nionic linear. Also 0 is quaternionic linear, so Q WD �10 defines a quaternionic
endomorphism of V that normalizes Gi for all i .

Write V DW r
1 ˝R V

0, whereW r
1 denotes the realification ofW1, and V 0 is a real

form of W2 ˝C ˝ � � � ˝C Wk . Then �jG1
D .dimR V

0/�r1 and Lemma 11 (real case)
says that Q 2 O.W r

1 / � O.V 0/, with components Q1 and Q 0. Now we recall that Q is
quaternionic and Q 0 is real to note that indeed Q1 D Q Q 0�1 2 Sp.W1/, and we apply
case (i)(b) to Q 0 to deduce that Q 2 Sp.W1/ � � � � � Sp.Wk/. Therefore we are in case
(vii) of Lemma 23, and we note that in case k D 1 the representation is polar.

B.2. G0 semisimple, �-action non-transitive

As above, we can write W D W1 ˝C � � � ˝C Wk , where �i W Gi ! U.Wi / is a complex
irreducible representation. If the action of � on the set of factors of G0 is non-transitive,
then k � 2 and each orbit produces a connected normal subgroup of G. We shall shortly
see that here we are dealing with type (i), that is, V is a real form of W .

Write G0 D Ga � Gb , where Ga and Gb are non-trivial �-invariant subgroups, and
write V D Va ˝F Vb accordingly. Since we are assuming diam.S.V /=G/ is small, Lem-
ma 13 says that the action of any normal subgroup of G is either irreducible or super-
reducible. It follows that Ga acts by scalars and V jGb

is irreducible, up to interchanging
a and b. Since G0 is connected and semisimple, this says that Ga D Sp.1/, Va D H,
F D H and Vb is of quaternionic type. Note that � must act transitively on the factors
of Gb , for otherwise Gb D Sp.1/ � Gc is a non-trivial �-invariant decomposition and
Sp.1/Sp.1/ D SO.4/ neither acts by quaternionic scalars nor is irreducible on V .

Now we can write G1 D Sp.1/ and W1 D C2, G2 D � � � D Gk , �2 D � � � D �k are of
quaternionic type with respective quaternionic structures �1 D � � � D �k and k is even.

Let  2 NO.V /.G
0/. Then  2 NO.V 0/.G

0/ where G0 D G2 � � � � � Gk and V 0

is the realification of W2 ˝C � � � ˝C Wk . By multiplying by an element of Sp.1/,
we may assume  centralizes Sp.1/. Now we apply case (ii)(b) to deduce that  2
†k�1 Ë Sp.W2/ � � � � � Sp.Wk/. Thus G is a subgroup of the group in case (vii) of
Lemma 23 (note the different meanings of k here and there). Note also that the case
G0 D Sp.1/ � Sp.n/ is transitive on the unit sphere.

B.3. G0 non-semisimple

As discussed above, G0 D U.1/ �G1 � � � � �Gk . The representation �0 is necessarily of
complex type, so it is the realification of � W G0 ! U.W /. Write W D C ˝C ˝W1 ˝C

� � � ˝C Wk . where U.1/ acts on C by complex scalar multiplication and �i W Gi ! U.Wi /
is a complex irreducible representation.

An argument using Lemma 13 similar to that in Section B.2 shows that the action
of � on set of the factors of G0=U.1/ is transitive. Let  2 NO.V /.G

0/. Then  2

NO.V 0/.G=U.1// and we apply case (ii)(a) to see that

 2 Z2 �†k Ë U.W1/ � � � � � U.Wk/
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where Z2 acts on V as complex conjugation. Therefore up to taking a subgroup of index 2,
G is a subgroup of the group in case (v) of Lemma 23. Note that case k D 1 is transitive
on the unit sphere and case k D 2 is polar.
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