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Abstract. Let M be a d-dimensional connected compact Riemannian manifold with boundary M,
let V e C2(M) be such that 1 (dx) := e"®dxisa probability measure, and let X; be the diffusion
process generated by L := A + VV with 7 := inf{t > 0 : X; € dM}. Consider the empirical
measure Ly := % jé dx, ds under the condition ¢ < t for the diffusion process. If d < 3, then for
any initial distribution not fully supported on M,
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holds for some constant ¢ € (0, 1] with ¢ = 1 when dM is convex, where po := ¢g u for the first
Dirichet eigenfunction ¢g of L, {A,,}m>0 are the Dirichlet eigenvalues of —L listed in increasing
order counting multiplicities, and the upper bound is finite if and only if d < 3. When d = 4,
supy>; E[Wa (us, 10)% | T < 7] decays on the order of 1! log ¢, while for d > 5 it behaves like

t_2/(d_2), ast — oo.

Keywords. Conditional empirical measure, Dirichlet diffusion process, Wasserstein distance,
eigenvalues, eigenfunctions

1. Introduction

Let M be a d-dimensional connected compact Riemannian manifold with a smooth
boundary dM . Let V € C2(M) such that j(dx) = e”®)dx is a probability measure on M,
where dx is the Riemannian volume measure. Let X; be the diffusion process generated
by L := A 4 VV with hitting time

=inf{t > 0: X, € oM }.
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Denote by & the set of all probability measures on M, and let E” be the expectation
taken for the diffusion process with initial distribution v € &?. We consider the empirical
measure

1 t
Uy :=—/ dx,ds, t>0,
t Jo ’

under the condition that # < 7. Since t = 0 when Xy € 0M, to ensure PV(z > ¢t) > 0,
where PV is the probability taken for the diffusion process with initial distribution v, we
only consider

ve Pyi={ve P v(M°) >0}, M°:=M)\IM.

Let {A,;}m>0 be all Dirichlet eigenfunctions of —L on M, listed in increasing order
counting multiplicities. Let {¢ }m>0 be the associated unit Dirichlet eigenfunctions, i.e.
Lom = —Am®m. dmlosr = 0 and {¢ }m>0 is an orthonormal basis of L2(u). Moreover,
we take ¢g|pro > 0 as ¢y is non-zero in M °. It is well known (see [5]) that Lo > 0 and

[fmlloo < aon/m, agm?9 < Xpm—Ao <aem??, m=>1, (1.1)

for some constant o > 1.

Let jo = ¢a . We investigate the convergence rate of EV[W, (s, p10)? |t < 7] as
t — 00, where W, is the L2-Wasserstein distance induced by the Riemannian metric p.
In general, for any p > 1,

1/p

Wy (1. pt2) :=___inf (/ p(x. y)? N(dx,dy)) . M2 €2,
m€C (1,u2) \JMxM

where €' (141, j42) is the set of all probability measures on M x M with marginal distribu-

tions (1 and o, and p(x, y) is the Riemannian distance between x and y, i.e. the length

of the shortest curve on M linking x and y.

Recently, the convergence rate under W, has been characterized in [24] for the empir-
ical measures of the L-diffusion processes without boundary (i.e. IM = @) or with a
reflecting boundary. Moreover, the convergence of W, (i}, to) for the conditional empir-
ical measure

wy i =E"(ue |t <), t>0,

is investigated in [20]. Compared with E”[W, (i, po)? | ¢ < 7], in ! the conditional
expectation is inside the Wasserstein distance. According to [20], W (i, 10)? behaves
like 2, whereas the following result says that E[W, (i, to)? | ¢ < 7] decays at a slower
rate, which coincides with the rate of E[W,(/i,, )?] given by [24, Theorems 1.1, 1.2],
where i, is the empirical measure of the reflecting diffusion process generated by L.
See also [21] for the study of diffusion processes on non-compact manifolds, [22] for
semilinear SPDEs, and [23] for subordinated diffusions.

Theorem 1.1. Let {A,;,}m>0 be the Dirichlet eigenvalues of — L listed in increasing order
counting multiplicities. Then for any v € Dy, the following assertions hold.
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(1) In general,

t—>00 T>t

o0
2
li t sup EY[Wa (ur, o)* | T =2 a2 h2
imsup 7 sup E”[Wa (17, o) | <T]—mzzl(/lm—?to)2 42

and there exists a constant ¢ > 0 such that

00
liminf ¢ inf EY[Wa(ie, o) | T < 1] > CmX—:l ﬁ (1.3)
If OM is convex and d < 3, then
- 2
Aim ;UZI; (B [Wa (s, 10)* | T < 7] _m2=:1 G =2 | ~ 0.
(2) When d = 4, there exists a constant ¢ > 0 such that
sup BV [Wa (s, o) | T < 7] < ct™tloge, t>2. (1.4)

T>t

(3) When d > 5, there exist a constant ¢ > 1 such that

1,—-2_
T T2 < EV[Wi (e p10)” | T < 1) < BV [Wa(ps. o) | T < 7]
<ct7@z, T>t>2.

Let X ,0 be the diffusion process generated by Ly := L + 2V log ¢ in M°. It is
easy to see that for any initial distribution supported on M ° and any ¢y > 0, the law of
{X0:1€[0,0]} is the weak limit of the conditional distribution of {X, : 7 € [0, 0]} given
T <tasT — oo.Indeed, for T > tg and s € [0, o), let Y, = PPl and let {XT :1 €[0,T)}
be the diffusion process on M° generated by A + 2V log ¥7—;,t € [0, T). It is easy to
see that for any f € C$°(M°) and ¢ € (0, £o], the process

_ PtD—s(fWT—t) T
=5 xT), selo.,

is a martingale, so that
P tD (f 1;ZfT—t)
PtD 1pT—t

By the Markov property, this implies that the law of {X ,T :t € [0, ]} coincides with the
conditional law of {X; : ¢ € [0, 10]} given T < t. Since

E*[f(X)|T <] = (x) = E*Mo = E*M, = E*[f(X[)]. xeM".

lim Vlogyr—_; = Vlogay
T—o0

locally uniformly on M° x [0, ty], as T — oo the law of {X tT 1t €0, 1]} converges
weakly to the law of {X? : 7 € [0, 7o]}. In conclusion, the conditional distribution of {X; :
t €[0,10]} given T < t converges weakly to the law of {X? : 7 € [0, 10]} as T — oo.
Therefore, the following is a direct consequence of Theorem 1.1.
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Corollary 1.2. Let u? = %fot Syo ds. Let v € Po withv(M®) = 1.
(1) In general,

o0
2
limsup tEY[W, (12, 110)?] < —
m sup (7 [Wa(1{, o) 1_mZ=1 e
and there exists a constant ¢ > 0 such that
o0
lim inf /B [Wa (4. 120)°] Z A 7
me1 — Ao
If OM is convex, then
o0
. v 0
Jim 7 [Wa(. 10)?] Z ~ W

(2) When d = 4, there exists a constant ¢ > 0 such that
EY[Wo(u?, 110)%] < ct 'logt, t>2.

(3) When d > 5, there exists a constant ¢ > 1 such that
U@ < B [Wo(ul, po)?] < ctmT2, 1> 2.

In the next section, we first recall some facts on the Dirichlet semigroup and the
diffusion semigroup P generated by Lo := L + 2V log ¢, and then establish the
Bismut derivative formula for Pt0 which will be used to estimate the lower bound of
EY[W, (s, io)? |t < 7). With these preparations, in Sections 3 and 4 we prove Proposi-
tions 3.1 and 4.1, which imply Theorem 1.1.

2. Some preparations

As in [24], we first recall some well known facts on the Dirichlet semigroup; see for
instances [5,6, 12, 19]. Let py be the Riemannian distance function to the boundary dM .
Then ¢ 1 py is bounded such that

66 ooy < 00, p€[1.3). @1
The Dirichlet heat kernel has the representation
o0
PP (x.y) =Y e u(X)m(y). 1>0,x,y€M. 2.2)
m=0

Let E* denote the expectation for the L-diffusion process starting at x. Then the Dirichlet
diffusion semigroup generated by L is given by

PP f(x) = EX[f(X0) 1 jrar)] = /M PP () () ()

= D e Uu@ngm(x). >0, f € L3 (). 23)

m=0
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Consequently,
lim e PY(r < 1) = lim e* v(PP1) = u(go)v(do). v e H. (2.4)
—>00 t—>00

Moreover, there exists a constant ¢ > 0 such that

IPPNLe L

d(g—p)
= sup ||Pth||Lq(M) < ce_’lot(l AL)” i , t>0,g>p=>1. (2.5
wn(f1P)<1

Indeed, the Sobolev inequality implies
”PtD”Ll(;L)—)LOO(p,) <ctAl)T t>0,
for some constant ¢ > 0, which together with
IPP N2y e, 1 >0,

and the interpolation theorem (see for instance [6]) implies (2.5).
On the other hand, let
Lo =L +2Vlogdy.

Noting that Lo f = ¢35 ' L(fdo) + Ao f, Lo is a self-adjoint operator in L2(uo) and the
associated semigroup P? := e'lo satisfies

Plf =g PP (fo), f € L*(wo), 1 > 0. (2.6)

S0, {¢5  dm}m=0 is an eigenbasis of Lo in L? (o) with

Lo@mdo ") = —Cm = 20)pmds . Plpmey ") = P20 g 651, m=>0,1>0.
2.7
Consequently,

PYf =) po(fémpy Ve Pt g, f € L?(no), (2.8)

m=0

and the heat kernel of P2 with respect to g is given by

o0
P Y) = Y (g D) (@my N (e PNk y e M >0, (29)
m=0
By the intrinsic ultracontractivity (see for instance [13]), there exists a constant oy > 1
such that
ale_(kl_lo)t

1P = polltugysLo(ue) = sup 1P f — po(lloo < ———— > 0.
to(lfN=<1 (Int)y =2
(2.10)
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Combining this with the semigroup property and the contraction of P2 in L?(u) for any
p > 1, we find a constant o, > 1 such that

1P~ pollLruey = sup  [I1PYf — io(f)Lrqug) < aze” 17201 1 >0, p>1.

wo(|f17)=1 2.11)

By the interpolation theorem, (2.10) and (2.11) imply that for some constant a3 > 0,

(d+2)(g—p)

1P = 1ol Lruoy>La(uo) < @€ M AU ALY 200 1 >0,002q>p=1.
(2.12)
By this and (2.7), there exists a constant os > 0 such that
. d+2
pmdg oo < aam 24, m > 1. (2.13)

In the remainder of this section, we establish the Bismut derivative formula for P,O,
which is not covered by existing results due to the singularity of V log ¢ included in Ly:
|Vloggo| ~ ,oa_1 and ||HesSjog ¢ || ~ pgz around the boundary, where Hess is the Hessian
tensor. Let X t° be the diffusion process generated by L, which solves the following It
SDE on M° (see [8]):

d' X0 = V(V + 21og o) (XP)dr + ~2U,dB,, (2.14)

where df is Ito’s differential, B, is the d-dimensional Brownian motion, and U; €
OX? (M) is the horizontal lift of X? to the frame bundle O(M). Let Ric and Hess be

the Ricci curvature and the Hessian tensor on M respectively. Then the Bakry—Emery
curvature of L is given by

Ricy, := Ric — Hessy 42105 ¢ -
Let Rick, (U;) € R? ® R be defined by
(Rict ,(Ur)a. b)ga = Ric,(Usa. Uih), a,b e RY.

We consider the following ODE on R? ® R¥:

d .
72 = —Rich (U Qi Qo =1, (2.15)
where [ is the identity matrix.

Lemma 2.1. For any & > 0, there exist constants 81,8, > 0 such that
EX[ef1 000X ds) < 840 ()52 1> 0,x € MP. (2.16)

Consequently:

(1) Foranye > 0and p > 1, there exists a constant k > 0 such that

VPP F(0)P < o) 2 APV PP (0)}P, [ e Ch(M).
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(2) For any ¢ > 0 and p > 1, there exists a constant k > 0 such that for any stopping
time 1/,
E*[[1Qae 7] < ko(x) %€, 1 > 0.

Proof. Since Lgpg = —Aopo, Ppo > 0in M°, ||¢o|lco < 00 and |V is strictly positive in
a neighborhood of dM , we find constants ¢, ¢c; > 0 such that

Lologdy' = —¢g " Lo + ¢52[Veo|* — 2052 Veo|* < c1 — 2y >
So, by (2.14) and Itd’s formula, we obtain
dlogo(X) ™! < {c1 — cagp0(X0)2}dr 4+ V2 (Vlog ¢o(X) ™!, U,dBy).

This implies

t
_ 1 _
B* [ 140X 21ds = —(eat + log () + Eloggo(X?)
0 2
1
= —(eat +1oggo(x) ™" +1oglIgolloc) < ¢t + clog(l +go(x)™), 120, (217)
2
for some constant ¢ > 0, and for any constant § > 0,
E*[ef2 Jo ¢o(X§?)—2}ds] < E¥[efloe b0 (x) ™! +8log bo (X ) +c18:—8/2 [ (Vlog do (XP),Us 45,)]
= 18 () 7 | o |, (B [e477 fo [V oz P (XD sy 172
Letting c3 = 4| Vo ||%, and taking § € (0, c2/c3], we derive
]Ex[e‘sczfé d"’(Xf‘))_z}ds] <2 (x)™2, §€(0.¢a/ca].
This implies (2.16) for ¢ € (0, 2¢5/c3]. Since for ¢ > 2¢,/c3 we have

_ -2 _
B5° 2 0" oS>,

(2.16) also holds for ¢ > 2¢,/c3. Below we prove assertions (1) and (2).
Since V € CZ(M), o € CZ(M) with ¢ > 01in M°, and
H \% \Y% H
—HesSiog gy = ————2 + 0@ Voo , Hessgy

do b3 N do

we find a constant oy > 0 such that
Ricr, (U, U) > —a1¢o(x) ' |U>, xe M°, U eTM. (2.18)
By (2.14), (2.18), and the formulas of 1t6 and Bochner, for fixed ¢ > 0 this implies
dIVPY fI2(X])
= {Lo| VP fP(X)=2(VPL, £V Lo P f)}ds+V2(VIVPL f*(X]), UsdBy)
> 2Riczo (VP £, VP [)(X))ds+V2(VIVPL fI*(X]), UsdBy)
> =2a1{gy VP fIPHX)ds + V2 (VIV P f1P(Xs), Usd Bs)ds.
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Then by a Gronwall type inequality, we obtain

VP f(0)> = B[V PP fP(X§) < BX[IV £ 2(X7)e? o 200X au)
2a1p

{]Ex[e o1 Jo ¢0(X8)71du]}pTﬂ{Pt0|vf|217(x)}1/17_

Noting that

2p2f

S1(p— 12

2a1p

/ po(XD)"tds <51/ Po(X0) 2 ds + §1 >0, (2.19)

by combining this with (2.16), we prove (1).
Next, by (2.15) and (2.18), we obtain

| Qenwll < et fo#XD7as -y > g,
This together with (2.16) and (2.19) implies (2). ]

Lemma 2.2. Foranyt > 0and y € C'([0,¢]) with y(0) = 0 and y(t) = 1, we have

VP f(x) = Ex[f(X?) /0 t y'(s)0%F st}, xeM°, feB(M°),  (2.20)

where By, (M °) is the set of all bounded measurable functions on M °. Consequently, for
any ¢ > 0 and p > 1, there exists a constant ¢ > 0 such that

<Py’
T

Proof. Since (2.21) follows from (2.20) with y(s) := t%s and Lemma 2.1 (2), it suffices to
prove the Bismut formula (2.20). By an approximation argument, we only need to prove
the formula for f € C bl (M). The proof is standard by Elworthy—Li’s martingale argument
[7]; see also [14]. By ||V f|loo < oo and Lemma 2.1 (1) for ¢ = 1/4, we find a constant
c1 > 0 such that

VPP f| < (PYFIOVP, >0, f € Bp(M®). 2.21)

VP [1(x) < c1go(0) ™%, s € [0.1]. x € M. (2.22)
Next, since Lo = —Aogo implies Lody ! = Aoy !, by 1td’s formula we obtain
E¥[po(XPhe,) 1 < do(x) 't t>0,n>1, (2.23)

where 1, :=inf{r > 0: ¢o(X?) < 1/n} 1 0o asn 1 oo by noting that the process X is
non-explosive in M °.
Moreover, by 1t6’s formula, for any a € R4 we have
d(VPL f(X0),UsQsa) = V2 Hessp,_, r(UsdBy, Us Qsa)(XD),
AP f(X]) = V2 (VP f(X]). UsdBy). s €[0.1].
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Due to the integration by parts formula, this and y(0) = 0 imply

—%EJ‘[ X% /W" (5)(Qsa. dB >}

_ E[ /0 "(VPY, F(X0). Uy Osa) d(1 — y)(s>]
= E[(1 = 1)t At} (VPO yry F(XO ). Qenena)] — (VPO S (x). Upa)
- JE[ fo "= p)() VPO, F(XO), Ustaq

=E[(1 =) A{VPLne, [(XPrg)s Qene,@)] = (VP f(x), Upa), n = 1.
(2.24)

Since y is bounded with y(¢) = 1 such that (1 — y)(t A 7,) = 0 as n — o0, and (2.22),
(2.23) and Lemma 2.1(2) imply

SupEx[(VP[O t/\r,,f(Xt/\z,,) Qt/\rna)z]

n>1

< c1 sup(E[go (X2 ) ' DY2EX 1 Qinc, )2 < 00,

n>1

by the dominated convergence theorem we may take n — 0o in (2.24) to derive (2.20). m

3. Upper bound estimates

In this section we prove the following result which includes upper bound estimates in
Theorem 1.1.

Proposition 3.1. Let v € .

(1) (1.2) holds.

(2) When d = 4, there exists a constant ¢ > 0 such that (1.4) holds.
(3) When d = 5, there exists a constant ¢ > 0 such that

2

sup BV [Wy (s, puo)? | T < 7] <ct"a=2, t>2.
T>t
The main tool in the study of the upper bound estimate is the following inequality due
to [1] (see also [24, Lemma 2.3]): for any probability density g € L?(ji0),

IVLg'(g =D

dug, 3.1
Az o (3.1

Wa(g o, f0)* < /
M

where .# (a,b) := W l{anb>0}- To apply this inequality, as in [24], we first modity
0 ;

M Oy r i= [t P0 for some r > 0, where for a probability measure v on M°, VP, is
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the law of the Lo-diffusion process X? with initial distribution v. Obviously, by (2.9) we
have

d 1 [ o (e _
proi= ot = - f Py (X ) ds = 14 3 A2y (0mey
0

d :
Ho m=1 32)

Um0 = 7 [ gy 05,

which are well-defined on the event {¢ < t}.

Lemma 3.2. (1) If d <3 and v = hp with hgy' € L?(uo) for some p > %, then
there exists a constant ¢ > 0 such that

1 2 0 e_z(Am_A-O)r
sup [tE"[o(|VLy (prr — DI T < 7] =2 E W
m=1 m — 0)

T>t

—1,—d=2% -1
<ct (r 2 4+ lyg=pylogr™), re(0,1],¢t>1

() If d > 4 and v = hp with |hdy o < 00, then for any k > %, there exists a
constant ¢ > 0 such that

;UPIEV[,U«O(WLEI(P;J -DPIT <1]
>t

d—4

Sc{rm 7 4 lyg=g logr—! + t_lr_k}, t>1,re(0,1).
Proof. By the Markov property, (2.6) and (2.3), we have
EX[f(X) lr<r] = EX[Igs<ry f(X)EX Ly
= PP{fPP 13 (x) = e M T (g PO fP2_ by ' DN(x). s<T. (3.3)

For the same reason, and noting that EV = f M E* v(dx), we derive

E"[f (Xs) f (X, ) LT <3] = /M]Ex[l{slq}f(Xsl)]EX‘” {f (Xsz—s) L7 —5, <3 }] v(dx)
= e u(go PSP {fPP_ 85 }). s1<s2<T.

In particular, the formula with f = 1 yields
PY(T < 1) = e 20T u(g PRgpy ). (3.4)

—1
Since {%}m>1 is othornormal in L2 (o), we have

oo

wo(IVLy (prr = DI = >

m=1

Y (1)?

Am — Ao)e2Am—2o)r
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Combining these with (3.2), we obtain

o0

E* (o (VL (o — D) T < 7] = 3 LEcWmO? | T <]
(B [1o(IVLy (o = D) |T < 7] Zlewm—kov(xm—xo)

m=

Noting that
E*[§1{r<q]

E'(¢|T < 1) := B =

for an integrable random variable &, by (2.7) and the symmetry of Pt0 in L2 (o), we

deduce from this for v = hu that

BV [no(IVLG  (prr = DI | T < 7]

2. 2 fodst [} BV (L7 <y (bmy ) (X)) (bmbg ) (Xs,)] dsz

1e2Gm=20)r (A, — Ao)v (o PP )

2 [y dsa 5, v(95" P {dmdy ' PO, [9mps ' PP_, 85 1}) ds2
te2(m=Ao)r Am — AO)V(¢0PT¢)0 1)

2 [y dsi [}, 1o({P5, (hdg Vydmepy ' Py, [mepy ' PP, $5"]) ds2
1e2m=20)r (A, — Ao)po(dy ' Pr(hy 1))

|
™

3
ﬂ

ot

3
ﬂ

(3.5)

ot

3
ﬂ

Since [l¢g ' |22(ug) = 1 and [lhdg L1 (u0) = (o) < lIdolloo < 00, by (2.12) we find
a constant ¢; > 0 such that

[0 (g ' PR(hdy ")) — 11(o)v(do)| < lldg (PR — 120) (hpg DIIL1 (110
< 1P — ol uoys L2 uoy 1190 L1 gy < c1e”H1720T T > 1. (3.6)
On the other hand,
1o ({P2 (hpg )y bmepo ' P, [dmdbo ' Pr_, 85 1)
= v(go) (o) Am=r0E2=D L g1 (51 55) + Ja(s1,52) + Ja(s1.52),  (3.T)
where, due to (2.7),
J1(s1.52) == po({PL (hepg ) — 11(hpo) ey ' P [bmebo  (PP_g b0 " — 11(o))]).

Ja(s1.52) 1= pu(po)e™ P =2062750 1o (PO (hpg ™) — pu(hgpo) Hepmepg ' 1),
J3(s1,52) := phpo)e™ Pm=2062750 1 (1, T V{PP_ gt — i(dho)}).

By (3.5)—(3.7) and

t t — e~ (Am—Ao)t
/ dsl/ e~ Gm—h)o2=s0) g — L L=er R
0 /\m - AO ()Lm - /\0)2
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we find a constant ¥ > 0 such that

X e2(Am—Ao)r

tEY VL1 -D|T 2N

sup [£0(IVLG (e =D T < 7] Z Y
K ot _2(/1771_/10)" —Z(Am—ko)r
- d JI+Lh+J ,50)d t>1.
=7 g( _,\0)2 Ao — Ao / 51/ |1+ J2 + J3(s2.52) Sz) z

(3.8)

Below we prove assertions (1) and (2).

(1) Letd < 3. Since [|hgg L2 (uo) < 005 105 |16 () < 00 for 6 < 3 due to (2.1),
|y l22¢ue) = 1, by (2.12), for any 6 € (5/2, 3), we find constants ¢, c2 > 0 such
that

|J1(s1.52) < 1l P — pollLruoy—>Loouo) | - |émdo ' (Pp_s, 0 " — (@0l L2 (u0)

< 1l P — pollLouoy—1o°uo) | PP—s, = 101l L6 o)L (u0)

d+
< e PIREIHT =52 (| \ )= 55" (1 A (T — 55)} %0, (3.9)

and

|(J2 + J3)(s1, 52)|
= Cle_()tm_'l())(sz_sl)(||Psol —pollp—oo + ||PT0_32 = 1ol L6 (uo)—Loo (ug))
d+2
< Cze—()tm—lo)(m—ﬂ)({l /\Sl}—ﬁe—(ll—lo)ﬂ +{1A(T _32)}—%6—(11—/\0)0—32)).
(3.10)

Since 6 > % and p > # imply d;éz \% d;f < 1ford < 3,by (3.9) and (3.10) we find

a constant ¢ > 0 such that
t t
[ dslf |J1 + Jo + J3|(s1,82)dsp <¢, T>=t>1,m>1.
0 S1

Combining this with (3.8) and (1.1), we find constants c3, c4, ¢5, cg > 0 such that

o0 — —

v 1 5 Z e (Am—Ao)r
sup (E¥ [0 (VLG (prr = D) I T < 7] = ) —
Tt o = (o — 10)?

cs e—2Gm—Ao)r
S J— —
t A= dm— o

c © @-2t
74/ §2/dgmess?/r g <cet M~ + lyg=2ylogr™ h, t>1.
1

(2) Letd > 4. Letv = hy with |h¢y!| < C for a constant C > 0, we have

E® = /d E* v(dx) < Cpu(do) 'E™. 3.11)
R
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On the other hand, by (3.4), we see that

PY(<1) _ v(oPP¢p") _
Pt <) volpoPlby")

is continuous in ¢ > 0, and it converges to v]i)(&)())) € (0, 00) due to (2.4). So, there exists a
constant ¢ > 0 such that

PVt <1)>cP™(t <1), t>0.

Combining this with (3.11), we find a constant K > 0 such that

E'(li<) _ KE"(l1<c)
Pv( <t) = Pvo(r <r1)

E'(|t<7t)= = KEY (|t <71), t>0. (3.12)
So, it suffices to prove (2) for v = vy. In this case, hgpg ' = (o)~ is a constant, so that
Ji = J2 =0.By (2.12), |gmdg Il 12(s0) = 1 and l[pollLe () < 00 for 6 € (1,3), we
find a constant ¢; > 0 such that

| J2(s1,52)] < cre”Pm—A0)(2ms17r) (P2, — 10)(@mdbo D> (PL_g, — 1£0)90 111 (110)
< Cle—(lm—lo)(sz—sl—r)

0 2 0 -1
: ”Pr/z - H’O”LZP(MO)—)LZ(MO)”PT—Sz — ol )”¢0 ||L9(,4L0)

p
LO(10)—>LP=T (no

(d+2)[95(971)p]

e~ Gm=20)(2=51 =)= =A0) (T =52) . —CHZE=R 1 (o _ o 1= “CG

pell, /(6 —-1).

’

Let po := 32(;:123 . Since
. d+2(p—-1) d-4
lim = ,
pipo 2p 6
d+2)[0—-@0-1 d+2)3-2
i DO =@ = Dp] _ (@ 42G=2p) (e
613 20p 6p

for any k > % there exist 8 € (1,3) and p € (po, %) such that

(d+2)(p-1) k. eim d+200-0-bpl _
2p 20p

’

Thus,
|J3(s1,82)| < Cze—()tm—lo)(m—ﬂ—r)—(ll—lo)(T—Sz)r—k[l AT = s2)] 5.
Since J; = J, = 0, this implies

cyem=Ao)r =k

L t=1re(1).
Ao — A zlre@l

t ¢
/ dSl/ [J1 + J2 + J3|(s1,52) dsp <
0 S1
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for some constant ¢z > 0. Substituting into (3.8) for v = vy, we find a constant ¢4 > 0
such that

sup 1E”[1o(IV Ly (or.r — DI | T < 7]

T>t
r—k o e—(lm—/lo)r

2 (Am —A0)?’

m=1

<9 Z e—2()tm—/10)r n Cyq
B m=1 (Am _/XO)2 f

which implies the desired estimate since by (1.1), the inequality
P o—Am—Ao)r

o0
m < 05/1 s~ Vdg=ess?/r g, < c6(r_% + 1{g=4) log rh
m=1 m

holds for some constants ¢5,cg > 0 and all r € (0, 1). [

Lemma 3.3. There exists a constant ¢ > 0 such that for any t > 0 and non-negative
random variable § € 0(X5 .5 <t),

supEY[§|T <t] <cEY[f|t <], t>1,ve P,.

T>t

Proof. By the Markov property, (2.5) for p = g = oo and (2.4), we find constants c1, c2
> 0 such that

E’[Elir<g] = E" [l PR 1(X1)] < cre” T DEY[E1, 4],
P(T <7) > PPt <1)e TP T >¢>1.

Then
E'lir<a] _ aB"Elu<y] _ @
PV(T < 7,’) - Czpv(l < ‘L’) (o0

EY[§|T <] = EV[§|t < 1]. [
Lemma 3.4. Let d < 3 and denote vg = %IL Forany ¢ € (% \ %,

a constant ¢ > 0 such that

1) there exists

sup EYO[|p;.r (¥) — 12T <t] <cpo(y) 27, t>1,re(0,1],yeM°.
T>t

Proof. By Lemma 3.3, it suffices to prove the conclusion with 7" = ¢ replacing T > t.
For fixed y € M°, let f = p2(-,y) — 1. We have

1 t
b -1=1 [ fx)s
0
Then

2 t t
Elpe, () = 1P o] = 5 [ st [ E®[1ag S fX)] s G
0 51
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By (3.3), to(f) = 0, and the symmetry of P2 in L2(uo), we obtain

=B [y <oy f(X5) f (X)) = 12(0) " 1o (PSP (S P s, 00)))

= (o)™ mo(f S2_sl(fPt S2¢>o ) = 1(@o) " o({f Py, 0 ' Y Poy_s, )

= w(do) " o({f P sy0  H P, — 1o} f). (3.14)
Taking ¢ € (%,3) so that g1 := ‘“1;2 < 1ford <3and |5 || La(uy) < oo due to (2.1),
for any p € (1,2] we deduce from this and (2.12) that

RO = 1 o) 1Py N | (P, “

”f”L"(ILO)”Pt 32||L‘7(M0)—>L°°(M0)”¢0 ”L"(Mo)” $2—S1 M()”Lz(ll«o)—’L%(Mo)
NN 220

_ _w _ _
< ctll £ lLr ol £ 122G f1 A (¢ = $2)} LA (52— s1)} ~(1—Ro)(s2ms1)

(3.15)

for some constant ¢y > 0. Since f = p?(-,y) — l and inf¢pg ' > 0, by (2.5) and (2.6) we
find constants 81, 8> > 0 such that

I F 2oy < 14+ 122G M Lrwe) <1+ €00 oo 2P ¢ ) ILruo)

_ 2-p ., _dp=1
<14+B100(y) Hiolled 122 C.y) ey <BagoM™'r™ 27, re(0,1], pe[l,2].

Combining this with (3.15) we find a constant ¢, > 0 such that

1= cago() 25 THIA (=)} A (o — s} B e i h e,
pe(1.2]

2(d+2)

=q7¢ and taking p > po such that

_@+2e-p _5e-p _,
- 4p - 4p

Letting pg := 1V

we arrive at

d(p—1)
I <o) 2r 5 T A (= 52)) {1 A (52 — 51)) 26~ R1—R0)s2=s1)

for some constants €1, &, € (0, 1). Combining this with (3.13), we obtain

d —_
Ellpr(r) =121t < 7] < cgo(p) 2™ 5 4, =1
Noting that
d(p—1 d d d?
lim{L+—}=—v <1 ford <3,
pipo 2p 4 4 2d +4
for any ¢ € (% 25 +7- 1) there exists p > po such that % < ¢. Therefore, the

proof is finished. u
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Lemma 3.5. Let d < 3 and denote ¥,,,(t) = % f(f (¢m¢0_1)(Xs) ds. Then there exists a
constant ¢ > 0 such that for any p € [1,2],

(d+4)—d—8
supE”°[|1ﬁm(t)|2p [t <] < emTad t™?, t>=1,m=>1,r€(0,1).
T>t

Proof. By Lemma 3.3, it suffices to prove the conclusion with 7" = ¢ replacing T > ¢. By
Hoélder’s inequality, we have

E™[[Ym @7 | T < 1] = E™[[ym@O* 2P [ym@O*? 7| T < 1]
< AE™[[Ym O | T < o> P{E [[ym@)I* | T < 3?71

Combining this with (2.4), it suffices to find a constant ¢ > 0 such that

v ) ce—l()t
E"[[Ym()|*ly<gy] < c/me 072 1> 1,7 € (0, 1). (3.17)

(a) Proof of (3.16). Let (ﬁm = ¢m¢al. We have
2 t t R R
IE':vo[|1,[fm(l)|21{t<r)] = I_Z/O dsl/ Evo[l{t<r}¢m(xs1)¢m(st)] dss. (3.18)
s1

By (2.7), (3.3), ito(|¢m|?) = 1, and the symmetry of P? in L2 (i), we find a constant
c1 > 0 such that

elotIEUO[1{T<r)(]§m(Xsl)§lgm(X52)] = 1)0(¢0 {¢m 52 sl(¢m e sz¢)0 1)})
1 (A po (A 1)) e~ (Am—Ao)(s2—s1)
= g 0O Pz Pty 1 (o)

—(Am—A - _
=c1€ (Am=0)(s2 SI)”PI—Sz||L”(M0)—>L°°(M0)”¢0 IHLP(H«O)’ p>1

wo(ldml® PPy 5™

_ d+

Since d < 3, we may take p € (1, 3) such that ¢ := q2 < land [[¢g | Lr(ug) < 0o due

to (2.1), so that this and (2.12) imply
M B (L <rybm (X5 )P (X )] < cae”Pmm 2000275041 A (1 — 52)y7

for some constant ¢z > 0. Therefore, (3.16) follows from (3.18) and (1.1).
(b) Proof of (3.17). For any s > 0 we have

SYEY [[Ym (5)|*15<)]

S S S 5
_ 24 / ds, / ds, / dss / E" (L <oy (X5 ) (X3 ) (X2 )b (Xs,)] disa
0 51 52 83

s s s 5
—24 [ an [ dn [ s [ BNl odn () (Ya)gs (s sl dss. (19
0 51 52 $3

where
8s(53,54) 1= EY[1 50} (Xs3)Pm (Xs,) | Xr 1 1 < 53]
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By (3.3) and the Markov property,

8s(53,54) = Qﬁm(XS3)EXS3 [l{s S3<r}q3m(XS4—S3)]
e M6 G do PO (P 86 ) (Xss). 0 <s3<sq<s.  (3.20)

By Fubini’s theorem and Schwarz’s inequality, (3.19) and (3.20) yield

1(s) = s* B [ () * 1 5<ry]
N B 2
lzexos/ dr1/ ]Evo[lmq}gs(n,rz) ]drz
0 r1

S S
12 sup +I(r) / dr1/ {ez’xos_k"r‘]E"O[l{rlq}gs(rl,r2)2]}1/2dr2.
r

relo,s]

[ " (X, dr

IA

Consequently,

K Ky 2

1)< sup I(s) < (12 sup / ar, / {eko‘”’”E“ﬂ[l{,,«}gs(rl,rz)z]}“zdrz) .
s€[0,¢] s€[0,t]1/0 r

(3.21)

On the other hand, by the definition of vy, (3.3), (3.20) and the fact that wg is Pto-
invariant, we obtain

E"[1ir, <1385 (r1,72) |2]
e—ZAo(S—I‘l )—Aori

= w(go) MO(P” {bo 1|¢m¢0 | (¢m s— r2¢0 1)| })
e—/\o(ZS—rl) . o A 1

= Wﬂ0(¢0|¢mpr2—rl (¢m §— r2¢0 )l )
267/10(2s7r1) , i .
T igey 0O lBn P QO 1 P, Gl P, = 1ol P,

(3.22)

Then, by (3.20), (2.7), (3.3), po(|¢m|?) = 1, and noting that pg is PQ-invariant, we find
a constant ¢; > 0 such that
IEvo[l{r1<-r}|gs(rl , r2)|2]

< 2e7H0@s=r)=Cm=20) 2= g o lloo tto (I@m] | Piry—riyy26m )
264025 14, oo

1
M(¢0) H’O(|¢m | ro—r1 (¢m( —-ry 'uo)¢O )| )
< cle—/lo(zs—rl){e—z(/lm—)»o)(rz—rl)||¢ ||oo||P(r2—r1)/2 —

+ ||¢m||oo|| r2 r1 (¢m[ s—r> /~’L0]¢0 1)||L4(N«0)}

2
1ollZ2 ) L4 (uo)

By (1.1), (2.12), llgmllz2) = 1. 1165 L0 (ue) < 00 and e := 42 v &2 < for

2q
q € (5, 3) due to (2.1) and d < 3, we find a constant ¢, > 0 such that

mlloo | Pra—riy/z = 10117 2 gy Laqug) < C2VMALA (2 = r1)} 4%,
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and

pmllool| P2 —r, (@ [Py, — 1t0lbg N7,
< ligmllooll Py, 117 2 sy 1Bm 172y 1Py = 120)5 17 00
= r2=r1 L2 (1) —>L4 (o) 17 M L2 (o) N s—r2 0 L% (ko)
0 2 0 2 —1)2
< bmllooll PO, 1220y 2y | P = 101134y Loy 190 120y
< ea/m e 2HTACTHL A (1 — 1)) PHLA (5 = 12))
Therefore, there exist constants c3 > 0 and ¢ € (0, 1) such that
E™[Ly, <5y s (1. r2) ] < e 2070 =Gn =202 i {1 A (rg = )y~
+ e3/m e H0CTIRRITRICTIL A (1 — 1)} LA (1 = 12)) 7

Combining this with (3.21) and the definition of /(¢), we prove (3.17) for some constant
¢ > 0, and hence finish the proof. [

Lemma 3.6. Let d < 3. Then forany p € (1, 35‘21186 A Z—ﬁ), there exists a constant ¢ > 0
such that

sup EY[uo(IVLG (prr — DPP)IT < 7] <ct™, 1> 1.

r>0,T>t
Proof. By Lemma 3.3, it suffices to prove the conclusion with 7" = ¢ replacing T > t.

Let p € (1, 34418 A 442) Note that p > 1 implies
p

2p—1

€ (0, 1), (3.23)

3d+16 \ d+2 implies

while p < 5708 A Ty

+
(d +2)izp—2) . d(pz— b, (”(d +44) +d —2) <1,

hence there exists ¢ € (0, 1) such that

(d+2)(2f—2+5) N d(pz— 1) N (p(d +44)+d _2)+ L

(3.24)

By (2.21) and Ly' = — [;° P ds, and applying Holder’s inequality, we find a constant
c1,¢2 > 0 such that

%) 2p
[t = v g = [ ([T 192200, - Dlas)  an
M M 0

o0 1 2p
<c —(Po P — 1P 1/l’cls) ~ed
<l /M( /0 =PI PY e = DI} b5 dito

P
o0 __p _2pbs 2p
<1 (1 As) 2p=Te 2p—T ds
0

o
x /0 e 110 (pg A P4 Pyy/4(prr — DIPY)ds, 6> 0. (3.25)
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By (3.23), we obtain

o0 __ D _ 2pbs

(1As) 2p=Te 2p-Tds <00, 6 >0. (3.26)
0

Moreover, since [|¢g°[l; 261 o) = 1 and po(p;r — 1) = 0, and P? is contractive in

L?(up) for p > 1, by (2.12) and Holder’s inequality we find a constant ¢, > 0 such that

l’LO(d)o 8{ /4|P3s/4()0t r— 1)|p} ) < ”P /4|P3s/4(Pt r— 1)|p”2 = (o ||¢68||L2£—1(M0)

2
HMZ PG = w0 (Plaper = DI,
— (1o L2—¢ (o)

< |P%, — pol*” 1PS,per — 11125
Luo—L 3T gy AT R o)

(d+2)(2p 2+¢) —(/ll )\o)ps”

- 2
<ca(1As) S/4p,,r—l||L€(M0), s > 0.

Combining this with (3.26), we find a function ¢ : (0, c0) — (0, co) such that

E" [l <cypo(IVLg  (pr.r — DI*P)]
© _<d+2)(2p—2+s) _
< 6(9)/(; eQS(l A s) 4 (A1 Ao)pS]Evo[l{t<r}|| /4Pt ’ l”Lz(//« )]dS,
6 > 0. (3.27)

By (2.7), (3.2) and Holder’s inequality, we obtain

||M”1Mm)(ZeWMWWmeU

o0 o0
< (Z e—(km—ko)(2r+s/2)>p_l Z A=A @r /D |y, (120

m=1 m=1
Noting that (1.1) implies

o0 o0
Z e~ Gm—R0)@r+s/2) < otl[ e—e2@r+s/12/4 4, <as(l A S)fd/z

m=1 1

for some constants ay, o, o3 > 0, we derive

2
EV()[” /4pt r 1||L12)(ll«0) |t < T]

<c(lAs ~Am=Ro)CrEs/D oy (1)|?P |1 < 1]

m=1

for some constant c3 > 0. Combining this with Lemma 3.5 and (1.1), we find constants
c4,Cs5,Cq,c7 > 0 such that
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E*[| Pg)4pr,r —

00
2p _ _dp=1) _ 2/d pd+4H—d—8
1||L2(I»L0) |t < 'C] < cqt p(l AN S) : e ¢5su u 2d du

o0
_ _dw=1) ,_pld+4H+d pd+d+d o _
<cet PAAs)" 2 52 7 / to 4 3t dr
S

< et P(1 A g)~ BRI 000 4 g,
where the term log(2 + s~!) comes when w — 3 = —1. This together with (3.24)
and (3.27) for 6 € (0, A1 — Ao) implies the desired estimate. |

Lemma 3.7. Let d < 3. If r; =t for some a € (1, % A 2‘(11'2"4), then ptr,r, ‘=

(1 —r¢)pe,r, + 1t satisfies

hm Sup ]EVO[ILLOO%(:OI,I‘;,I‘;’ 1)71 - 1|l]) | T < T] = 07 q 2 1
t—>00 T>t

Proof. By Lemma 3.3, it suffices to prove the conclusion with 7" = ¢ replacing T > t.
For the same reason leading to (3.16) in [24], for any n € (0,1) and y € M we have

Evo“‘%(plsrnrt(y)v 1)_1 - 1|q | < ‘C]
1 2
JTi=n 2+

Combining this with Lemma 3.4 we find constants ¢ > 0 and ¢ € (0, @™ ') such that

1 2 4 -1 -2 .—1+ae
- +c¢ t .
Ji=r 2471 " ¢o(y)

q
+ P (|lprr, (¥) = 1] > 0|t < 7).

|

B [l (orrir (0 D7 =117 | £ < 7] < |
Since po(¢y %) = 1, we obtain

E"[po(lA (prr, . DT = 119) [ 1 < 7]
1 2
J1—=n 247

Noting that e < 1, by letting first # — oo and then n — 0 we finish the proof. ]

q
<

en e e 0,1),1 > 1.

Lemma 3.8. Let psrr = (1 + prrr)ito, where prry := (1 —r)psr + 1 forr € (0, 1].
Assume that v = h with hg' € LP (o) for some p > 1. Then there exists a constant
¢ > 0 such that

sup BY[Wa (ity o pu)* | T <] <cr, t>0,r€(0,1].
T>t

Proof. By Lemma 3.3, it suffices to prove the conclusion with 7" = ¢ replacing T > t.
Firstly, letting D be the diameter of M, we have

WaGuv)? = inf [ pleyaar.dy)
TEE(1,v) JMxM

IA

. 1
D* inf w({(x,y):x #y})==D?pu—v|Z, (3.28)
TeE (1,v) 2
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where [|[4 = Vl|var 1= supy sy <1 |1 (f) — v(f)]| is the total variation norm. Then

Wa (it r,rs Ml‘,r)2 = DZ”/“I,r,r — Mt [l var
= D?1o(|perr — prrl) <2D%r, 1€ (0,1]. (3.29)

Next, by the definition of s, we have
m(dx, dy) := e (dx) P2 (x,dy) € C (s, pirr),

where P2(x, ) is the distribution of X? starting at x. So,

Walueo e < [ E¥[px, X9 ). (3.30)
M
Moreover, by 1t6’s formula and Ly = L + 2V log ¢y, we find a constant ¢; > 0 such that
dp(x. X2)? = Lop(x.)2(X0) dr + dM, < {e1 + c1¢5 (XD)} dr + dM,

for some martingale M,. Combining this with (2.17), and noting that log(1 + ¢g') >
log(1 + [|¢ho]lod) > 0, we find a constant ¢; > 0 such that

Wa (e, o) < c1r + 1 /M (E [ o5 (X0) ds) 12(d)
0

-1 cor (1 -1
< carps(log(1 + ¢y ")) = T/(; log{l + ¢¢  (Xs)}ds, r e (0,1].

Combining this with (3.29), (3.3), || P?||Lr(uy) = 1 fort > 0 and p > 1, and noting that
inf po(hry 'PP¢s) >0,
we find constants c3, ¢4 > 0 such that

EV[W2(PLt,r,r’Ht)2 |t <]
Ev[l{t<r}W2(/Lt,r,r’ l/«t)z]
PY(t < 1)
< car /t (hpg ' PO log{l + ¢g 1Y) ds
= tnolhgy PP Jo OO T PR TR0

< c3r|lheg HlLr (o) log(1 + ¢0—1)”Lﬁ(p¢0) <c4r, re(0,1]. (331

Combining this with (3.29) we finish the proof. ]
We are now ready to prove the main result in this section.

Proof of Proposition 3.1 (1). Since the upper bound is infinite for d > 4, it suffices to
consider d < 3.
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(a) We first assume that v = hp with h < C ¢ for some constant C > 0. Let ji; , r, =
{(X = re)pt,r, + 1e}iro With r; = 7% for some o € (1, % A 2‘“‘4) By Lemma 3.8 and
the triangle inequality for W,, there exists a constant ¢; > 0 such that for any ¢t > 1,

E[Wa (s, o) |1 < 7]
< (L + OE [Waery i 10)? |1 < Tl (Il + )7 >0, (332)
On the other hand, (3.1) implies

VLG (per, — DI?
A (Prreres 1)

t<t| <+ 1,
(3.33)

EY[Waite s ry, 0)? | < 7] < B [ [ duo

where

Iy :=E"[no(\VLy (prr, — DI?) | 1 < 7],
I :=E"[1o(IVLy (bt = DA (Pt . D= 1)) | 1 < 7]

By Lemma 3.2 (1), we have

2
limsupt/; < —,
t—)oop ! Z - A())2

while by Lemma 3.6 with p € (1, 35”;4;186 A di) Lemma 3.7 for ¢ = %1, and (3.12),
we derive

limsuptl, < hmsupt( "[ro(IVLy (pr,r, — DI?P) |1 < r])l/p

t—>00

s (B [10 (1 (ot D7 = 119) [ 1 < 7))
=0.

Combining these with (3.33) and (3.32) where o > 1, we prove (1.2).
(b) In general, for any t > 2 and ¢ € (0, 1), we consider

u = ! /t dx, d
= S.
t t e J, K

By (3.28), we find a constant ¢; > 0 such that

WZ(Mf’Mt)z = D2||Mt - Mf”var

11 D [¢
< DZ/ ( —-) ds + 7/ ds <ciet™, 122,6€(0,1). (334
e 0

t—e t

On the other hand, by the Markov property we obtain

]Ev[l(t<r} WZ(M?? MO)Z] = Ev[1{s<r}EX8(l{z—s<r}W2(l‘Lt—sv MO)Z)]
= Pv(g < T)Evs[l{tfs<r}w2(ﬂt—87 I’LO)Z]
= P — & < P (e < DB [W (e, j10)* | 1 — & < 7],
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where v, = hou with

1
he(y) := P <7) /M P2 (x,y)v(dx) < c(e,v)¢o(»)

for some constant c(e, v) > 0. Moreover, by (2.2), (2.4) and v, = h.u, we have
. Pt —e<)PV(e < 1)
lim =

1.
t—00 Pv(t < 1)

So, (a) implies
lim sup tE"[Wa(uf, no)* |t < 7]
—>00

5 PYs(t —e < 1)PV(e < 1)
= limsu
ooy Pv(r < 1)

> 2
< -
- m2=:1 (Am _10)2-

Combining this with (3.34), we arrive at

tEY (W (e, po)? |t — & < 1]

limsup tEY[W, (1, po)? |t < 7]

—>00

< (14 &2 limsup tE°[Wy(ul, 11o)? |t < ] 4 c16(1 + &71/?)

t—>00

[} o) B
§(1+81/2)Zm+6’18(1+8 12y e e(0,1).
m=1

By letting ¢ — 0, we derive (1.2). ]

Proof of Proposition 3.1 (2,3). Letd > 4. By (3.34), it suffices to prove the desired esti-
mates for ju! replacing ;. Therefore, we may and do assume v =hpu with [|¢g ! || oo < 00.
By Lemma 3.2 (2) and the following inequality due to [11, Theorem 2] for p = 2:

Wa(fro, mo)* < 4uo(IVLG ' (f = DI?).  fro € P,

for any k > % we find a constant ¢ > 0 such that

(B [Wa(irrrs i0)? | T < 7]

d—4

<c{rz + Lig=4) logr_l + l‘_li’_k}, T>t>1,re(0,1).

Combining this with Lemma 3.8, we find a function ¢ : ( a4 00) — (0, 00) such that

EY [Wa (s, 110)2 | T < 7] < c(){t ™ r T+t Ngegylogr '+ 2r %41} (3.35)

forT>t>1,re(0,1),k > (d —4)/6.

(a) Let d = 4. We take for instance k = % and r =t~ ! fort > 1, so that (3.35) implies
(1.4) for some constant ¢ > 0.

(b) When d > 5, we take for instance k = # and r = t‘ﬁ fort > 1. Then (3.35)
implies the inequality in (3). ]



F.-Y. Wang 3718

4. Lower bound estimate

This section is devoted to the proof of the following result, which together with Proposi-
tion 3.1 implies Theorem 1.1.

Proposition 4.1. Let v € Z. There exists a constant ¢ > 0 such that (1.3) holds, and
when oM is convex it holds for ¢ = 1. Moreover, when d > 5, there exists a constant
¢’ > 0 such that

inf (E[Wa(ur. o) | T < 7] 2 drmaz, 1> 1. (@.1)
>t

To estimate the Wasserstein distance from below, we use the idea of [1] to construct a
pair of functions in Kantorovich’s dual formula, which leads to the following lemma.

Lemma 4.2. There exists a constant ¢ > 0 such that

Wa (e, 100)* = 120(IVLG  (pr,r — D) = cllper — P A+ lper — 1153, t,r>0.

Proof. Let f = Ly'(ps,r — 1), and take
g5 = —elog PY e /. 6 ef0.1], &> 0.
We have ¢§ = f and by [24, Lemma 2.9],

O5() — f(x) < Hpx. »)? + el (Lo f) T oo + 182V %)
to(f —¢5) < LoV S + cre |V £l

Since Lo f = ps,r — 1, this and the integration by parts formula imply

LW (e, 0)? + ellprr — Uloo + c18 2V I = po(@f) — er (f)
= po(pf — 1) —po(fLof) = suo(IVf1P) —c1e IV fllg. £>0. (42)

Next, by Lemma 2.2 for p = oo and (2.11), we find constants ¢, c3, ¢4 > 0 such that
o0
IVl = IVL5 (ot = Dl = [ 19P2 (o0 = Dloods
- 0
e [T NP~ Dllds
0 o0
< esllprr = oo / (145712 H172052 ds < ey prr = 1loo-
0

Combining this with (4.2) we find a constant ¢5 > 0 such that for any ¢ > 0,

Wa (it o)
> o(IVLy (pr.r — DI?) — eslellper — Uloo + 2 prr — L2 + e per — 112}

By taking ¢ = || ps,r — 1 ||ié3 we finish the proof. ]
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By Lemma 4.2, to derive a sharp lower bound of W, (14; -, i0)?, we need to estimate
o, — Uloo and E¥ [0 (|V Ly (s, — D|*) | T < 7], which is done in the following three
lemmas.

Lemma 4.3. For any r > 0 and v = hu with |hdg'|co < 00, there exists a constant
c(r) > 0 such that

sup EV[|| oy — L[ | T < 7] <c(r)t™2, t>1.
T=>t

Proof. By Lemma 3.3 and (3.12), it suffices to prove this for v = vy and 7' = ¢ replacing
T > t,i.e. for a constant c(r) > 0 we have

E*[llprr — g [t < 7] <c(r)t™. 121 (4.3)
By (3.22), (2.7), (2.11), and ||¢p5 ! ll22¢u,) = 1, we find a constant ¢; > 0 such that
E"[1{r, <c3gs(r1, 72)|2]
< cle—lo(ZS—M)||¢'§m||go{e—(/1m—/10)(rz—r1) + e—(ll—lo)(s—rz)}, §>ry>r > 0.

By (3.21) and PV (¢ < 7) > coe_AO’ for some constant cg > 0 and all # > 1, this implies

E [l ()*1jr<e)] _
Pyo(t < 1) -

for some constant ¢, > 0. Combining this with (3.2) gives

-2

E™[[Ym@)|* |t < 1] := lldmldr™, m=>1,1>1,

E"[lper — 13 |1 < 7]

o0 . 3 o0
< (Z e—(km—)to)r”qsm ”iéii) Z e—(km—lo)rekot]Evo[l{rl <r}|¢fm(t)|4]
m=1 m=1

oo 3 oo
—Qm=Ao)r | 3 114/3 -2 —Qm=Ao)r | 3 114
= (D PRI 3) 2™ Y e B TROr g 1,
m=1 m=1

By (1.1) and (2.13), this implies (4.3) for some constant ¢(r) > 0. [ ]

Lemma 4.4. Let v = hy with |hy |loo < 00. Then for any r > O there exists a constant
c(r) > 0 such that

S e—Z(Am—AO)r C(}")

tEY VLy! -HAHIT -2 —_— | < — =1
[1o(IVLG" (pr.r = D) IT < 7] ,,;Mm—ko)z < >

su
P t

T>t

Proof. Let {J; :i = 1,2,3} be as in (3.7). By (2.11), (2.13), and ”dA’m”Lz(u«o) =1, we
find a constant ¢; > 0 such that forany 7" > ¢ > 5, > 51 > 0,

[J1(s1.52)] < 1h6g " oo | P, = HollLoo (uoy 19mbo 136l PP—g, = HollL1 (i) 190 121 (o)

< c1llgmeg |2 e” P A Hs1=82)

G- - —
|2(51.52)] = l|dollooe™ 4027 A oo | P} — ol oo (uo)

< cle_(’l‘ —20)52 ,
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— o —A - — —
| 7351, 82)] < lldolloce™ P 2006275016 V120 PR, — 110l 21 oy 166 121 (o)

< ¢1llgmepy |2 e” R A0S,

Substituting these into (3.8) and applying (1.1) and (2.13), we find a constant c¢(r) > 0
such that the desired estimate holds. [

Lemma 4.5. Let v = hp with ||hey ' ||lso < 00. Then for any r > 0 and p > 2, there exists
a constant c(r, p) > 0 such that

IVLG (orr = DIPPll 20 ug) < ¢(rp), 1> 0.

Proof. Since pr,y = 1 [2 p2(X,.-)ds, we have jio(prr) = 1 and [|pr,r oo < | P20 < 00,
Then by (2.11) and ||¢5 ! ll22(uo) = 1, we find a constant ¢1(r) > 0 such that

— — 2
1o (@5 {P 4l PSs 14 (prr = DIPY) < 1165 1 20u0) | (PR ja = 10)P1r 1 o )
2 — —
< PJya—10ll 5y IPer I35 < cr(rye > H120)s,

Combining this with (3.25) fore = 1 and 6 € (0, ﬁ), we finish the proof. |

Finally, since u;, = p, P2, to derive a lower bound of W, (i, o) from that of
Wa (ids,r, o), we present the following result.

Lemma 4.6. There exist constants K1, K, > 0 such that for any probability measures
M1, o on M°,

Wa (1 PL, o PY) < K1eX2' Wy (uuy, o), ¢ > 0. 4.4
When OM is convex, this estimate holds for K1 = 1.
Proof. When oM is convex, by [20, Lemma 2.16] there exists a constant K such that
Ric — Hessy 4210599 = — K,

so that the desired estimate holds for K1 = 1 and K, = K (see [16]).

In general, following the line of [18], we make the boundary convex by using a con-
formal change of metric. Let N be the inward normal unit vector field on dM . Then the
second fundamental form of M is a two-tensor on the tangent space of dM defined by

I(X,Y):=—(VxN.Y), X.Y e ToM.

Since M is compact, we find a function f* € C2°(M) such that f > 1, N is parallel to
V f on dM, and N log f|ap + I(u,u) > 0 on IM for any u € TdM with |u| = 1. By
[18, Lemma 2.1] or [19, Theorem 1.2.5], M is convex under the metric

('»')/ = f_z('v )
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Let A’, V' and Hess' be the Laplacian, gradient and Hessian in the new metric (-, -)’. We
have V' = f2V and (see [15, (2.2)])

Lo= f72A"+ f72V{V +2loggo + (d —2) f 71},

Then the Lo-diffusion process X? with X{ having distribution 11 can be constructed by
solving the following It6 SDE on M ° with metric (-, )" (see [2]):

d'X) = {f72V/(V + 2logo + (d —2) f~HHX) dt
+ V2 f7H(X?)UdB,, (4.5)

where B; is the d-dimensional Brownian motion, and U; is the horizontal lift of X to to
the frame bundle O’(M) with respect to the metric (-, ).
Let YO0 be a random variable independent of B; with distribution w, such that

Wa(p1. 12)?* = E[p(Xg, Y)?]. (4.6)

For any x,y € M®,let Py , : TxM — Ty, M be the parallel transport along the minimal
geodesic from x to y induced by the metric (-, -)’, which is contained in M ° by convexity.
Consider the coupling by parallel displacement

d'Y? = {fV(V + 2log¢o + (d —2) f)}(Y)de
+ V2 £ 7Y Pyo yoUsdBy. 4.7)

As explained in [2, Section 3], we may assume that (M °, (-,-)’) does not have cut-locus
such that P;’ y 1s a smooth map, which ensures the existence and uniqueness of YIO. Since
the distributions of X g and YO0 are ji1, Jio respectively, the law of (X2, Yto) is in the class
‘K(ulPtO, /Ltho), so that

W (1 PP, p2 PP)? < E[p(X, YP)?], 1= 0. (4.8)

Let p'(x, y) be the Riemannian distance between x and y induced by (-,-)" := f72(-,-).
As1 < f € Cp°(M) we have

IflIde <p <o 4.9)

Since except the term f ~2V’ log ¢, all coefficients in the SDEs are in C 5 (M), by 1t0’s
formula there exists a constant K such that

dp' (X2, Y2)? < {Kp' (XD, Y")* + I}dt + dM,, (4.10)
where M; is a martingale and

1= ((f 72V log ¢o)(y1), 1) — ((f 72V"log do) (o). Y0) .

where y : [0, 1] — M is the minimal geodesic from X? to ¥,? induced by the metric (-, -)’,
which is contained in M ° by convexity, we obtain
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d
/= /0 {7V log o) (). 7s) ' ds

[1 { fﬁz(Vs)HeSS:po())& Ys) + (V/f72()’s)’ vs) (Vigo(ys). vs)’
0 $o(ys)

_ UV o (vs), )'/s)/}z } ds
(f205)(vs)

1 2
< [ {65 1220 essy i) + L0 200,50 P a = o0

for some constant C > 0, where the last step is due to (75, 75) = p/(X2, Y2)2, 1 < f €
C°(M), and that by the proof of [20, Lemma 2.1] the convexity of dM under (-, -)’
implies Hess:,JO < c¢¢o for some constant ¢ > 0. This and (4.10) yield

E[o'(X?.Y?)?] < E[p/(Xg, Yg)*eX O, 1 >o0.
Combining this with (4.6) and (4.9), we prove (4.4) for some constants K1, K, > 0. =
We are now ready to prove the main result in this section.

Proof of Proposition 4.1. (a) According to (3.34), it suffices to prove the assertion for
v = hp with ||y !|eo < 00. Let r > 0 be fixed. By Lemma 4.2, we obtain

tEY [Wa e, 10)* | T < 7] = tE [1gjp,  —1)co<et Wa (s 0)* | T < 7]
> B (1o, —1ooze} oIV LG (o = DI [T < 7] = ce?
> tE [1o([VLy " (prr — DA | T < 7] — c&?
—tE"[l{jp, ,—1)oo=ett0 (VLG (pry = D) T < 7], £>0,T 21 (411)

By Lemma 4.3 and Lemma 4.5 with p = 3, we find some constants ¢y, ¢, > 0 such that

tEY[L{p, r—1eometbo(IV Ly (prr — D) | T < 7]
< cit{P’(|lpr,y — oo > &| T < 7)}?/3
< cite ¥ 3E (o — 14| T < 1))/

<y 83713 T >y,
Combining this with (4.11) and Lemma 4.4, we find a constant c3 > 0 such that
(B [Wa(ttr,r, 110)* | T < 7] = tEV [wo(IVLG  (prr — DIP)IT < 7] — &,
© o —2(Am—Ao)r

Zm—&‘t—ciﬂ‘il, T>t>1,
m=1 m — A0

>2

where
& = ing{cs2 + cz£78/3t71/3} — 0 ast — oo.
&>
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Therefore,
5 o e—Z(Am—lo)r
e v
liminf inf 1E*[Ws(s1,r. o) |T<r]}zzmzz1 T "o

Combining this with Lemma 4.6, we derive

) s O e—2(m—Ao)r

liminf inf (EY[W. , T < >2K; e BT _ > 0.

iminf inf (B [Wa (e, pto)” | T < 7]} = 2K, e mX_:l Om—da2" "
Letting r — 0 we prove (1.3) for ¢ = Kl_l. By Lemma 4.6, we may take ¢ = 1 when M
is convex.

(b) The second assertion can be proved as in [24, Section 4.2]. For any ¢ > 1 and
N e N, let iy := ﬁ ZlN=1 8X’i’ where f; := (’7\,—1)’ 1 <i <N + 1. [10, Proposition
4.2] (see also [9, Corollary 12.14]) implies that for some constant cy > 0,

Wy (i, po)? = coN72/4, NeN,t>1. (4.12)

Write
N .
1 N [li+1
= — E — Ox. ds.
233 N £ 7 /; X, A

By the convexity of W.2, which follows from the Kantorovich dual formula, we have

_ , 1N [l 5 1 &, it 5
Wl = 3 2o [ WG, P as =1 Y [ oy X as
i=1 ti i=17%

(4.13)
On the other hand, by the Markov property,
E'[p(Xy;. Xo)* it <)) = E' (1, <y P2, {p (X1, ) PP 13 (X1)]. (4.14)
Since PtD 1< cle_AO’ for some constant ¢; > 0 and all # > 0, (2.6) implies
PSD—t,' {'O(x’ ')ZPTD—S l}(x) = Cle_AO(T_S) PSD—t,- IO('x’ _)Z(X)
< e 0T g0 ()P {p(x. ) 2p H(x).  (4.15)

It is easy to see that
Lo{p(x.) g '} < 265>
on M ° for some constant ¢; > 0. So, by (2.17), we find a constant c3 > 0 such that

s—t;

P {p(x, )2 ' H(x) < CQEX/O Go(X-)2dr < c3(s — ;) log(1 4 ¢o(x)™1).

Combining this with (4.14) and (4.15), and using P,D 1 < cre 0! observed above, we
find a constant ¢5 > 0 such that

E”[p(Xy,, X5)* 1 r<gy] < cae T v(log(1 + ¢ ))(s — 1)
< callhy Moot (o log(1 + log gg ) (s — t)e 0T < cs(s —t)e™*0T, 5 > 4.
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Since P¥(T < t) > coe~*T for some constant co > 0 and all 7 > 1, we find a constant
¢ > 0 such that
E'[o(Xs;, Xs)? | T <t] <c(s—t;), s>t

Combining this with (4.12) and (4.13), we find a constant ¢g > 0 such that

EY[Wi (s, o) | T < 7] > “2/d _cotNTY, T >t

Taking N =sup{i e N:j < atﬁ} for some & > 0, we derive

27 ; v 2 2 2¢!
td Z%IéﬁE [W](MO,/L;) |T<T]Zm—7, [Zl
Therefore,
v ca 2c’
td21anE[W1(/1,0;L,) |T<r]>sup — >0, t>1. L]
202/d g
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