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Abstract. Liouville first passage percolation (LFPP) with parameter � > 0 is the family of random
distance functions ¹D�

h
º�>0 on the plane obtained by integrating e�h� along paths, where h� for

� > 0 is a smooth mollification of the planar Gaussian free field. Previous work by Ding–Dubédat–
Dunlap–Falconet and Gwynne–Miller has shown that there is a critical value �crit > 0 such that
for � < �crit, LFPP converges under appropriate re-scaling to a random metric on the plane which
induces the same topology as the Euclidean metric (the so-called 
 -Liouville quantum gravity metric
for 
 D 
.�/ 2 .0; 2/).

We show that for all � > 0, the LFPP metrics are tight with respect to the topology on lower
semicontinuous functions. For � > �crit, every possible subsequential limit Dh is a metric on
the plane which does not induce the Euclidean topology: rather, there is an uncountable, dense,
Lebesgue measure-zero set of points z 2 C such that Dh.z; w/ D 1 for every w 2 C n ¹zº. We
expect that these subsequential limiting metrics are related to Liouville quantum gravity with matter
central charge in .1; 25/.
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1. Introduction

1.1. Definition of Liouville first passage percolation

Let h be the whole-plane Gaussian free field (see, e.g., the expository articles [11, 61, 64]
for more on the GFF). For t > 0 and z 2C, we define the heat kernel pt .z/ WD 1

2�t
e�jzj

2=2t

and we denote its convolution with h by

h�" .z/ WD .h � p"2=2/.z/ D

Z
C
h.w/p"2=2.z � w/ dw

2; 8z 2 C; (1.1)

where the integral is interpreted in the sense of distributional pairing.
For a parameter � > 0, we define the "-Liouville first passage percolation (LFPP)

metric associated with h by

D"
h.z; w/ WD inf

P

Z 1

0

e�h
�
" .P.t//jP 0.t/j dt; 8z; w 2 C; (1.2)

where the infimum is over all piecewise continuously differentiable paths P W Œ0; 1�! C
from z to w. We will be interested in (subsequential) limits of the re-normalized metrics
a�1" D

"
h
, where the normalizing constant is defined by

a" WD median of inf
²Z 1

0

e�h
�
" .P.t//jP 0.t/j dt W P is a left-right crossing of Œ0; 1�2

³
:

(1.3)
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Here, by a left-right crossing of Œ0; 1�2 we mean a piecewise continuously differentiable
path P W Œ0; 1�! Œ0; 1�2 joining the left and right boundaries of Œ0; 1�2.

The goal of this paper is to prove that the metrics a�1" D
"
h

admit subsequential scaling
limits when the parameter � lies in the supercritical phase. The phase transition for LFPP
is described in terms of its distance exponent, the existence of which is provided by the
following proposition.

Proposition 1.1. For each � > 0, there exists Q D Q.�/ > 0 such that

a" D "
1��QCo".1/ as "! 0:

Furthermore, � 7! Q.�/ is continuous, strictly decreasing on .0; 0:7/, non-increasing on
.0;1/, and satisfies lim�!1Q.�/ D 0.

We will prove Proposition 1.1 in Section 2.4 (see also the end of Section 4.3). The
existence of Q.�/ follows from a subadditivity argument, the fact that Q.�/ > 0 fol-
lows from [27], and the other asserted properties of Q.�/ follow from results in [49]. We
remark that Proposition 1.1 in the subcritical phase (see definitions just below) follows
from [26, Theorem 1.5], so the result is only new in the supercritical phase.

The value of Q.�/ is not known explicitly except when � D 1=
p
6, in which case

Q D 5=
p
6 [26].1 See [5, 26, 49] for bounds2 for Q.�/.

We define
�crit WD inf ¹� > 0 W Q.�/ D 2º: (1.4)

The best currently known bounds for �crit come from [49, Theorem 2.3], which gives

0:4135 � �crit � 0:4189: (1.5)

We do not have a conjecture as to the value of �crit (but see [26, Section 1.3] for some
speculation).

We call .0; �crit/ the subcritical phase and .�crit;1/ the supercritical phase. It was
shown in [22] that in the subcritical phase � 2 .0; �crit/, the re-scaled LFPP metrics a�1" D

"
h

are tight with respect to the topology of uniform convergence on compact subsets of
C � C. Moreover, every possible subsequential limit is a metric on C which induces
the same topology as the Euclidean metric. Subsequently, it was shown in [47] (building
on [31, 44, 45]) that the subsequential limiting metric is unique. This limiting metric can
be thought of as the Riemannian distance function associated with a so-called Liouville
quantum gravity surface with matter central charge cM D 25� 6Q

2 2 .�1; 1/, or equiv-

1As per the discussion in Section 1.3 below, � D 1=
p
6 corresponds to Liouville quantum

gravity with parameter 
 D
p
8=3 (equivalently, matter central charge cM D 0), and the fact that

Q.1=
p
6/ D 5=

p
6 is a consequence of the fact that

p
8=3-LQG has Hausdorff dimension 4.

2The bounds in [5, 26, 49] are stated for LFPP defined using slightly different approximations
of the GFF from the one defined in (1.1). However, it is not hard to show using basic comparison
lemmas from [5, 25, 26] that the different variants of LFPP have the same distance exponents.
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alently with coupling constant 
 2 .0; 2/ satisfying Q D 2=
 C 
=2. See Section 1.3 for
further discussion.

The main results of this paper, stated just below, give the tightness of a�1" D
"
h

for all
� > 0 and some basic properties of the subsequential limiting metrics. In the supercritical
phase � > �crit, the subsequential limiting metricDh does not induce the same topology as
the Euclidean metric. Rather, there is an uncountable, dense, but zero-Lebesgue measure
set of “singular points” which lie at infinite Dh-distance from every other point. As we
will explain in Section 1.3, we expect that in the supercritical phase,Dh is closely related
to Liouville quantum gravity with matter central charge cM D 25 � 6Q

2 2 .1; 25/. For
� D �crit, which corresponds to 
 -Liouville quantum gravity with 
 D 2, we expect (but
do not prove) that the subsequential limiting metric induces the same topology as the
Euclidean metric.

1.2. Main results

Since we do not expect that the limit of a�1" D
"
h

is a continuous function on C � C when
� > �crit, we cannot expect tightness of these metrics with respect to the local uniform
topology. Instead, we will show tightness with respect to a slight modification of the
topology on lower semicontinuous functions on C � C introduced by Beer [9] (actually,
Beer treats the case of upper semicontinuous functions but everything works the same for
lower semicontinuous functions by symmetry). Under this topology, a sequence of lower
semicontinuous functions fn WC �C!R[ ¹˙1º converges to a lower semicontinuous
function f if and only if the following holds:

(A) If ¹.zn; wn/ºn2N is a sequence of points in C �C such that .zn; wn/! .z;w/, then
lim infn!1 fn.zn; wn/ � f .z; w/.

(B) For each .z; w/ 2 C � C, there is a sequence .zn; wn/ ! .z; w/ such that
limn!1 fn.zn; wn/ D f .z; w/.

It is easily verified that if fn! f in the above sense and each fn is lower semicontinuous,
then f is also lower semicontinuous.

It follows from [9, Lemma 1.5] that the above topology is the same as the one induced
by the metric dlsc defined as follows. Let � W R ! .0; 1/ be an increasing homeomor-
phism. Set �.�1/ D 0 and �.1/ D 1. We endow the set R [ ¹˙1º with the metric
d�.s; t/ D j�.s/ � �.t/j, so that R [ ¹˙1º is homeomorphic to Œ0; 1�. Let K be the
space of compact subsets of C � C � .R [ ¹˙1º/ equipped with the Hausdorff dis-
tance dHaus induced by the product of the Euclidean metric on C � C and the metric d�
on R[ ¹˙1º. If f WC �C!R[ ¹˙1º is lower semicontinuous, then the “overgraph”

U.f / WD ¹.z; w; t/ 2 C �C � .R [ ¹˙1º/ W f .z; w/ � tº

is closed, so for each r > 0 the set Ur .f / WD U.f / \ Br .0/ � Br .0/ � .R [ ¹˙1º/ is
compact. We then set

dlsc.f; g/ WD

Z 1
0

e�r
�
dHaus.Ur .f /; Ur .g// ^ 1

�
dr:
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Theorem 1.2. Let � > 0. For every sequence of positive "-values tending to zero, there is
a subsequence E for which the following is true.

(1) a�1" D
"
h

converges in law to a lower semicontinuous function Dh W C � C ! Œ0;1�

with respect to the above topology as "! 0 along E .

(2) Each possible subsequential limitDh is a metric on C, except that pairs of points are
allowed to have infinite distance from each other.

(3) ¹a�1" D
"
h
.u; v/ºu;v2Q2 ! ¹Dh.u; v/ºu;v2Q2 in law as "! 0 along E , jointly with the

convergence a�1" D
"
h
! Dh.

(4) For each rational r > 0, the limit cr WD limE3" ra"=r=a" exists and satisfies cr D

r�QCor .1/ as r ! 0 or r !1.

We will also establish a number of properties of the subsequential limiting metric Dh
of Theorem 1.2. Let us first note that (by the Prokhorov theorem) after possibly passing
to a further subsequence of the one in Theorem 1.2 we can arrange that the joint law
of .h; a�1" D

"
h
/ converges to a coupling .h; Dh/ (here the first coordinate is given the

distributional topology). Following [51], for ˛ � 0 we say that z 2 C is an ˛-thick point
of h if

lim inf
r!0

hr .z/

log r
� ˛; (1.6)

where hr .z/ is the average over h over the circle of radius r centered at z. It is shown
in [51] that for ˛ 2 .0; 2/, a.s. the set of ˛-thick points has Hausdorff dimension 2� ˛2=2,
and for ˛ > 2, a.s. the set of ˛-thick points is empty.

Theorem 1.3. Let .h;Dh/ be a subsequential limiting coupling of h with a random metric
as in Theorem 1.2. Almost surely, the following is true.

(1) Dh.z; w/ <1 for Lebesgue-a.e. .z; w/ 2 C �C.

(2) Every Dh-bounded subset of C is also Euclidean-bounded.

(3) The identity map from C equipped with the metric Dh to C equipped with
the Euclidean metric is locally Hölder continuous with any exponent less than
Œ�.QC 2/��1. If � > �crit, the inverse of this map is not continuous.

(4) Say that z 2 C is a singular point for Dh if Dh.z; w/ D 1 for every w 2 C n ¹zº.
Then Dh is a complete, finite-valued metric on C n ¹singular pointsº.

(5) Any two non-singular points z;w 2 C can be joined by aDh-geodesic .i.e., a path of
Dh-length exactly Dh.z; w//.

(6) If � > �crit and ˛ > Q, then a.s. each ˛-thick point z of h is a singular point, i.e., it
satisfies Dh.z; w/ D1 for every w 2 C n ¹zº.

Assertion (3) should be compared to [22, Theorem 1.7], which shows that in the sub-
critical phase the identity map from .C; Dh/ to .C; j � j/ is locally Hölder continuous
with any exponent less than Œ�.Q C 2/��1 and the inverse of this map is Hölder contin-
uous with any exponent less than �.Q � 2/. The latter Hölder exponent goes to zero as
� ! �crit, so it is natural that the inverse map is not continuous for � > �crit.
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Assertion (6) implies that in the supercritical phase, the set of singular points for Dh
is uncountable and dense. We can visualize these singular points as infinite “spikes”.
However, Dh-distances between typical points are still finite by assertion (1). This is
because two typical points are joined by a Dh-geodesic which avoids the singular points.
Assertion (6) has several interesting consequences, for example the following.

� .C; Dh/ has infinitely many “ends” in the sense that the complement of a Dh-metric
ball centered at a typical point has infinitely many connected components of infinite
Dh-diameter (a proof of this assertion appears in the subsequent paper [56]).

� A Dh-metric ball cannot contain a Euclidean-open set (since every Euclidean-open set
contains a singular point).

� The restriction of Dh to C n ¹singular pointsº does not induce the Euclidean topology.
This is because any z 2 C can be expressed as a Euclidean limit of points zn which are
not themselves singular points, but which are close enough to singular points so that
Dh.zn; z/!1.

� .C n ¹singular pointsº;Dh/ is not locally simply connected. This is because any Jordan
loop in C surrounds a singular point, so cannot be Dh-continuously contracted to a
point. In particular, .C n ¹singular pointsº;Dh/ is not a topological manifold.

As a partial converse to assertion (6), one can show that points z such that
lim supr!0 hr .z/=log r < Q are not singular points; see [56]. We do not know if points
of thickness exactly Q are singular points, and we expect that determining this would
require much more delicate estimates than the ones in the present paper.

See Figure 1 for a simulation of supercritical LFPP metric balls.
In the supercritical phase, Dh satisfies many properties which are either similar to the

properties of the limit of subcritical LFPP which were established in [22,31,44,46,47,50]
or are related to properties of LQG with cM 2 .1; 25/ which are discussed in [43]. Several
such properties are established in the subsequent works [42, 56]:

� Measurability: Dh is a.s. given by a measurable function of h (cf. [31, Lemma 2.20]).

� Weyl scaling: Adding a continuous function f to h corresponds to scaling the Dh-
length of each path by a factor of e�f (cf. [31, Lemma 2.12]).

� Moments: For any fixed z; w 2 C, Dh.z; w/ has finite moments up to order 2Q=�.
More generally, if ˛; ˇ 2 .�1; Q/ and h˛;ˇ D h � ˛ log j � �zj � ˇ log j � �wj,
then Dh˛;ˇ .z; w/ has finite moments up to order 2

�
.Q � max¹˛; ˇº/ (cf. [31, Theo-

rem 1.11]).

� Confluence of geodesics: Two Dh-geodesics with the same starting point and differ-
ent target points typically coincide for a non-trivial initial time interval (cf. [44]).

� Hausdorff dimension: A.s. the Hausdorff dimension of .C; Dh/ is infinite (cf. [43,
Theorem 1.6]).

� KPZ formula: If X � C is a random fractal sampled independently of h, then the
Hausdorff dimensions ofX with respect toDh and with respect to the Euclidean metric
are related by the variant of the KPZ formula from [43, Theorem 1.5] (note that this
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Fig. 1. Simulations of LFPP metric balls for � D 0:5 (top left), � D 0:9 (top right), � D 1:3 (bottom
left), and � D 1:7 (bottom right), produced from the same GFF instance. The colors indicate distance
to the center point (marked with a black dot) and the black curves are geodesics from the center point
to other points in the ball. Note that all of these values of � are supercritical by (1.5). In particular,
the metric balls for the subsequential limiting metrics have empty Euclidean interior (despite the
appearance of the figures). The simulations were produced using LFPP with respect to a discrete
GFF on a 1024 � 1024 subset of Z2. It is believed that this variant of LFPP falls into the same
universality class as the variant in (1.1). The geodesics go from the center of the metric ball to
points in the intersection of the metric ball with the grid 20Z2. The code for the simulations was
provided by J. Miller.

formula shows that the Hausdorff dimension of X with respect to Dh is infinite if the
dimension of X with respect to the Euclidean metric is sufficiently close to 2).

We also expectDh to satisfy the following further properties, which have not been proven
yet.

� Uniqueness: The metricDh is uniquely characterized (up to multiplication by a deter-
ministic positive constant) by a list of axioms similar to the list in [47].

� Coordinate change: If a 2 C n ¹0º and b 2 C, then a.s. Dh.az C b; aw C b/ D
Dh.a�Cb/CQ log jaj.z; w/ for all z; w 2 C (cf. [47]). More generally, if we extend the
definition ofDh to the case when h is a field on a general open domain U �C (e.g., via
local absolute continuity) then for a conformal map � W zU !U , a.s.Dh.�.z/;�.w//D
Dhı�CQ log j�0j.z; w/ for all z; w 2 zU (cf. [46]).
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It may be possible to prove these last two properties by adapting the arguments of [46,47]
(which prove analogous results in the subcritical case), but these papers use the fact that
the metric induces the Euclidean topology, so non-trivial new ideas would be needed.
Alternatively, it would also be of interest to find a completely different proof of these
properties.

Remark 1.4. The reader might wonder whether one has the convergence a�1" D
"
h
! Dh

in law with respect to some local variant of the Gromov–Hausdorff distance. We expect
that no such convergence statement holds when � > �crit. The reason for this is that for
� > �crit, Dh-metric balls are not Dh-compact (this is proven in [56]).

1.3. Connection to Liouville quantum gravity

Liouville quantum gravity (LQG) is a one-parameter family of random surfaces which
describe two-dimensional quantum gravity coupled with conformal matter fields. LQG
was first introduced by Polyakov [57] in order to define a “sum over Riemannian metrics”
in two dimensions, which he was interested in for the purposes of bosonic string theory.

One way to define LQG is in terms of the so-called matter central charge cM 2

.�1; 25/. Let D be a simply connected topological surface.3 For a Riemannian met-
ric g on D , let �g be its Laplace–Beltrami operator. Heuristically speaking, an LQG
surface with matter central charge cM is the random two-dimensional Riemannian man-
ifold .D ; g/ sampled from the “Lebesgue measure on the space of Riemannian metrics
on D weighted by .det�g/�cM=2”. This definition is far from making literal sense, but
see [6] for some progress on interpreting it rigorously. In physics, one thinks of an LQG
surface as representing “gravity coupled to matter fields”. The parameter cM is the central
charge of the conformal field theory given by these matter fields, and .det�g/�cM=2 can
be thought of as the associated partition function.

We refer to the case when cM 2 .�1; 1/ (resp. cM 2 .1; 25/) as the subcritical (resp.
supercritical) phase. As we will see below, these phases correspond to the subcritical and
supercritical phases of LFPP. We refer to Figure 2 for a table of the relationship between
the parameters in the subcritical and supercritical phases.

LQG metric tensor in the subcritical phase. The so-called DDK ansatz [17,29] is a heuris-
tic argument which allows us to describe the Riemannian metric tensor of an LQG surface
directly in the subcritical (or critical) case, cM 2 .�1; 1�. The DDK ansatz implies that
the Riemmanian metric tensor of an LQG surface with cM 2 .�1; 1� should be given by

e
h .dx2 C dy2/ (1.7)

3LQG can also be defined for non-simply-connected surfaces, but we consider only the simply
connected case for simplicity. See [20,41] for works concerning on LQG on non-simply-connected
surfaces.
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Phase LFPP
parameter

LFPP
exponent

Coupling
constant

Matter central
charge

Subcritical � 2 .0; �crit/ Q > 2 
 2 .0; 2/ cM 2 .�1; 1/

Supercritical � > �crit Q 2 .0; 2/

 complex,
j
 j D 2

cM 2 .1; 25/

Fig. 2. Table of the parameter ranges for LQG / LFPP in the subcritical and supercritical phases.

where h is a variant of the Gaussian free field, dx2 C dy2 is a fixed smooth metric tensor
(e.g., the Euclidean metric tensor if D �C), and the coupling constant 
 2 .0;2� is related
to cM by

cM D 25 � 6

�
2



C



2

�2
: (1.8)

Remark 1.5. Another way of thinking about the DDK ansatz (which is closer to the orig-
inal physics phrasing) is that the partition function of LQG can be obtained by integrating
.det�g/�cM=2 times the partition function of Liouville conformal field theory (LCFT)
over the moduli space of D . The central charge of the LCFT corresponding to LQG with
matter central charge cM is cL D 26 � cM. See [19, 20, 41, 52] for rigorous constructions
of LCFT on various surfaces.

The Riemannian metric tensor (1.7) does not make literal sense since h is a distri-
bution (generalized function), not an actual function. However, one can define various
objects associated with an LQG surface rigorously via regularization procedures. For
example, one can construct the volume form, also known as the LQG area measure
“�h D e
h dx dy” (where dx dy denotes Lebesgue measure) [36, 54, 58] (see [34, 35]
for the critical case cM D 1, 
 D 2). Similarly, one can construct a natural diffusion on
LQG, called Liouville Brownian motion [10, 40] (see [60] for the critical case).

As explained in [26], for 
 2 .0; 2� a natural way to approximate the Riemannian
distance function associated with (1.7) is to consider LFPP with parameter � D 
=d
 ,
where d
 > 2 is the dimension exponent associated with 
 -LQG, as defined in [26, 28].
It is shown in [50] that d
 is the Hausdorff dimension of a 
 -LQG surface, viewed as a
metric space. For this choice of � , one has [26, Theorem 1.5]

Q D Q.�/ D 2=
 C 
=2: (1.9)

It is shown in [26, Proposition 1.7] that 
=d
 is strictly increasing in 
 , which means that

 2 .0; 2/ corresponds exactly to � 2 .0; �crit/ and

�crit D 2=d2: (1.10)

It is shown in [22, 47] that subcritical LFPP converges to a random metric on C
which can be interpreted as the Riemannian distance function associated with LQG for
cM 2 .�1; 1/.



J. Ding, E. Gwynne 3842

LQG in the supercritical phase. LQG in the supercritcal phase cM 2 .1; 25/ is much less
well-understood than in the subcritical and critical cases. Part of the reason for this is
that when cM 2 .1; 25/, the coupling constant 
 in (1.8) is complex with modulus 2.
Consequently, analytic continuations of certain formulas from the case cM < 1 to the case
cM 2 .1; 25/ (such as the KPZ formula [36,55] or predictions for the Hausdorff dimension
of LQG [26, 63]) yield nonsensical complex answers. Moreover, it is not clear whether
there is any natural notion of “volume form” or “diffusion” associated with supercritical
LQG. The recent paper [53] shows how to make sense of random distributions of the form
“e
h dx dy” for complex 
 , but j
 j D 2 falls outside the feasible region for the techniques
of that paper. See [6, 43] for further discussion and references concerning supercritical
LQG.

However, it is expected that there is a notion of Riemannian distance function (metric)
associated with supercritical LQG. The paper [43] provides one possible approximation
procedure for such a metric, based on a family ¹�"

h
º">0 of random tilings of the plane

by dyadic squares constructed from the GFF, depending on the central charge cM. The
collection ¹�"

h
º">0 of squares is a.s. locally finite for cM 2 .�1; 1/. In contrast, for cM in

.1;25/ there is an uncountable, zero-Lebesgue measure set of “singular points” z 2C such
that every neighborhood of z contains infinitely many small squares of �"

h
(these singular

points are analogous to the points which are at infinite Dh-distance from every other
point in the setting of Theorem 1.3). It is conjectured in [43] that the graph distance in the
adjacency graph of squares of �"

h
, suitably re-scaled, converges to the metric associated

with LQG for all cM 2 .�1; 25/.
Another possible approximation procedure is supercritical LFPP. Indeed, if 
 and cM

are related by (1.8) then for cM 2 .1; 25/ the parameterQ from (1.9) lies in .0; 2/. Hence,
analytically continuing the relationship between LFPP and LQG to the supercritical phase
shows that LQG for cM 2 .1; 25/ should correspond to LFPP with � > �crit. More pre-
cisely, (1.8) and (1.9) suggest that � and cM should be related by

cM D 25 � 6Q.�/
2: (1.11)

Further evidence of this relationship comes from the dyadic tiling model of [43]. As dis-
cussed in [43, Section 2.3], it is expected that if �"

h
is the dyadic tiling above for a given

value of cM, then the �"
h
-graph distance between the squares containing two typical points

of C is of order "��Co.1/, where � is as in (1.11). This is analogous to the relationship
between LFPP and Liouville graph distance in the subcritical phase, which was estab-
lished in [26, Theorem 1.5]. Consequently, in the supercritical phase the subsequential
limiting metrics Dh of Theorem 1.2 are candidates for the distance function associated
with LQG with cM 2 .1; 25/.

Remark 1.6. Many works [3,4,7,13,15,16,18,37] have suggested that LQG surfaces with
cM > 1 should correspond to “branched polymers”, i.e., they should look like continuum
random trees. At a first glance, this seems to be incompatible with the results of this
paper since the metric Dh of Theorem 1.2 is not tree-like. However, as explained in [43,
Section 2.2], the tree-like behavior should only arise when the surfaces are in some sense
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conditioned to have finite volume. In our setting, we are not imposing any constraints
which force the LQG surface to have finite volume so we get a non-trivial metric structure.
We expect that similar statements hold if we condition the surfaces to have finite diameter
instead of finite volume.

Remark 1.7. We do not expect that LQG with cM 2 .1; 25/ and supercritical LFPP are
related to the purely atomic LQG measures for 
 > 2 considered in [8,32,33,59]. Indeed,
by (1.8) the matter central charge corresponding to 
 > 2 is the same as the matter central
charge corresponding to the dual parameter 
 0 D 4=
 2 .0; 2/, so lies in .�1; 1/. Matter
central charge in .1; 25/ corresponds to a complex value of 
 .

1.4. Outline

Here we will give a rough outline of the content of the rest of the paper. More detailed
outlines of the more involved arguments in the paper can be found at the beginnings of
the respective sections and subsections. We will also comment on the similarities and
differences between the arguments in this paper and those in [22–24, 30], which prove
tightness for various approximations of LQG distances in the subcritical phase.

In Section 2, we fix some notation, then introduce a variant of LFPP based on the
white noise decomposition of the GFF which we will work with throughout much of the
paper. In particular, we letW be a space-time white noise on C �R and form;n 2N with

m < n we let ˆm;n.z/ WD
p
�
R 2�2m
2�2n

R
C pt=2.z � w/W.dw; dt/ where pt=2 is the heat

kernel. We letDm;n be the LFPP metric associated withˆm;n, i.e., it is defined as in (1.2)
but with ˆm;n in place of h�" . As we will see in Section 4, D0;n is a good approximation
for D"

h
. However, due to the exact spatial independence properties of the white noise,

D0;n is sometimes easier to work with than D"
h
.

We will also record several estimates for D0;n which were proven in [22] (for general
values of �). In particular, this includes a concentration bound forD0;n-distances between
sets (Proposition 2.4) which will play a crucial role in our arguments. We note that, unlike
in other works proving tightness results for approximations of LQG distances, we do not
need to prove an RSW estimate or any a priori estimates for distances across rectangles.
The reason is that we can re-use the relevant estimates from [22], which were proven for
general � > 0. Finally, we will establish a variant of Proposition 1.1 for D0;n (Proposi-
tion 2.5) using a subadditivity argument. Proposition 1.1 will be deduced from this variant
in Section 4.3.

In Section 3, we will establish a concentration result for the log left-right crossing
distance logL0;n, where

L0;n WD inf
²Z 1

0

e�ˆ0;n.P.t//jP 0.t/j dt W P is a left-right crossing of Œ0; 1�2
³

(cf. (1.3)). This is the most technically involved part of the paper and will be done using
an inductive argument based on the Efron–Stein inequality. See Section 3.2 for a detailed
outline of the argument.
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The papers [22–24, 30] also use the Efron–Stein inequality and induction to prove
similar concentration statements (in the subcritical phase), but the arguments in these
papers are otherwise very different from the ones in the present paper. Here, we will
briefly explain the differences between our argument and the one in [22].

We want to prove a variance bound for logL0;n by induction on n. To do this, we fix
a large integer K (which is independent of n) and assume that we have proven a variance
bound for logL0;n�K . Let �K be the set of 2�K � 2�K dyadic squares S � Œ0; 1�2. In [22],
the authors use the Efron–Stein inequality to reduce to bounding

P
S2�K

EŒZ2S �, where
ZS is the change in logL0;n when we re-sample the restriction of the field to the square S ,
leaving the other squares fixed. A necessary condition in order to bound this sum is as
follows. If P W Œ0;L0;n�! Œ0; 1�2 is aD0;n-geodesic between the left and right boundaries
of Œ0; 1�2, then the maximum over all S 2 �K of the time that P spends in S is negligible
in comparison to L0;n. In [22], this condition is achieved by a crude upper bound on the
maximum of the field ˆ0;K (see [22, Proposition 21]).

In the supercritical case, the bound for the maximum ofˆ0;K is not sufficient: indeed,
there will typically be squares S 2 �K such that the D0;n-distance between the inner and
outer boundaries of the annular regionB2�K .S/ nS (hereB2�K .S/ is the Euclidean 2�K-
neighborhood of S ) is larger than L0;n. In order to get around this difficulty, instead of
applying the Efron–Stein inequality to bound VarŒlogL0;n� directly, we will instead apply
it to bound VarŒEŒlog L0;n jˆK;n�� (actually, for technical reasons we will work with
a slightly modified version of ˆ0;n). We will bound EŒVarŒlogL0;n jˆK;n�� separately
using a Gaussian concentration inequality, then combine the bounds to get our needed
bound for VarŒlogL0;n�.

For our application of the Efron–Stein inequality, we will show that the contribution to
EŒlogL0;n jˆK;n� from each square S is negligible in comparison to EŒlogL0;n jˆK;n�.
This can be done because, even though there will typically be some squares S for which
the D0;n-distance across B2�K .S/ n S is larger than L0;n, for a fixed square S the D0;n-
distance acrossB2�K .S/ nS is typically much smaller thanL0;n. We can show (using our
inductive hypothesis) that this continues to be the case even if we condition onˆK;n. This
allows us to get much better bounds than we would get by just looking at the maximum
of the coarse field, but requires us to argue in a quite different manner from [22].

Thanks to the concentration result forD0;n-distances between sets from [22] (Proposi-
tion 2.4), once the concentration of logL0;n is established, we immediately obtain strong
up-to-constants tail bounds forD0;n-distances between general compact sets (see Proposi-
tion 3.2). The purpose of Sections 4 and 5 is to use these tail bounds together with various
“concatenating paths” arguments to establish our main results, Theorems 1.2 and 1.3. The
arguments in these sections are more standard than the ones in Section 3, but some care
is still needed due to the existence of singular points (which makes it impossible to get
uniform convergence for our metrics).

In Section 4, we will use the concentration of logL0;n to establish the tightness of
D0;n.z; w/ (appropriately re-scaled) for fixed points z; w 2 C. This is done by summing
estimates for the D0;n-distances between non-trivial connected sets over dyadic scales
surrounding each of z and w. We will then transfer our estimates for D0;n to estimates
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for D"
h

using comparison lemmas for different approximations of the GFF. We will work
with D"

h
for the rest of the paper.

In Section 5, we will consider a sequence of "-values tending to zero along which
a certain countable collection of functionals of the re-scaled LFPP metrics a�1" D

"
h

con-
verge jointly. This will include the a�1" D

"
h
-distances between rational points as well as

a�1" -distances across and around annuli whose boundaries are circles with rational radii
centered at rational points. We will then use these functionals to construct a metric Dh
which satisfies the conditions of Theorems 1.2 and 1.3. The proofs in this section have
essentially no similarities to the arguments in [22–24,30]. This is because we are showing
convergence with respect to the topology on lower semicontinuous functions rather than
the uniform topology; and because our limiting metric can take on infinite values.

Appendix A contains some basic estimates for Gaussian processes which are needed
for our proofs.

2. Preliminaries

2.1. Basic notation

Integers and asymptotics. We write N D ¹1; 2; 3; : : : º and N0 D N [ ¹0º. For a < b, we
define the discrete interval Œa; b�Z WD Œa; b� \ Z.

If f W .0;1/ ! R and g W .0;1/ ! .0;1/, we say that f ."/ D O".g."// (resp.
f ."/ D o".g."//) as "! 0 if f ."/=g."/ remains bounded (resp. tends to zero) as "! 0.
We similarly define O.�/ and o.�/ errors as a parameter goes to infinity.

If f; g W .0;1/! Œ0;1/, we say that f ."/ � g."/ if there is a constant C > 0 (inde-
pendent of " and possibly of other parameters of interest) such that f ."/ � Cg."/. We
write f ."/ � g."/ if f ."/ � g."/ and g."/ � f ."/.

We will often specify any requirements on the dependencies on rates of convergence
in O.�/ and o.�/ errors, implicit constants in �, etc., in the statements of lemmas/propo-
sitions/heorems, in which case we implicitly require that errors, implicit constants, etc.,
appearing in the proof satisfy the same dependencies.

Metrics. Let .X;D/ be a metric space. For a curve P W Œa; b�! X , the D-length of P is
defined by

len.P ID/ WD sup
T

#TX
iD1

D.P.ti /; P.ti�1//

where the supremum is over all partitions T W a D t0 < � � � < t#T D b of Œa; b�. Note that
the D-length of a curve may be infinite.

For Y � X , the internal metric of D on Y is defined by

D.x; yIY / WD inf
P�Y

len.P ID/; 8x; y 2 Y; (2.1)

where the infimum is over all paths P in Y from x to y. Then D.�; �IY / is a metric on Y ,
except that it is allowed to take infinite values.
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We say that D is a length metric if for any x; y 2 X and each ı > 0, there exists
a curve of D-length at most D.x; y/ C ı from x to y. We say that D is a geodesic
metric if for any x; y 2 X , there exists a curve of D-length exactly D.x; y/ from x to y.
By [14, Proposition 2.5.19], if .X;D/ is compact and D is a length metric then D is a
geodesic metric.

Subsets of the plane. We write SD Œ0; 1�2 for the unit square. For a rectangleR �C with
sides parallel to the coordinate axes, we write @LR and @RR for its left and right sides.
For a set A � C and r > 0, we write

Br .A/ WD ¹z 2 C W Euclidean distance from z to A is < rº

For z 2 C we write Br .z/ D Br .¹zº/ for the Euclidean ball of radius r centered at z.
An annular region is a bounded open set A � C such that A is homeomorphic to an
open or closed Euclidean annulus. If A is an annular region, then @A has two connected
components, one of which disconnects the other from1. We call these components the
outer and inner boundaries of A, respectively.

Definition 2.1 (Distance across and around annuli). Let D be a length metric on C. For
an annular region A � C, we define D.across A/ to be the D-distance between the inner
and outer boundaries of A. We defineD.around A/ to be the infimum of theD-lengths of
paths in A which disconnect the inner and outer boundaries of A.

Note that both D.across A/ and D.around A/ are determined by the internal metric
of D on A.

2.2. White-noise decomposition

Here we will introduce a variant of LFPP defined using the white noise decomposition of
the GFF, which we will use in place of D"

h
for all of Section 3 and part of Section 4.

Let W be a space-time white noise on C � Œ0; 1�, so that W is a distribution (gen-
eralized function) and for any L2 functions f; g W C � Œ0; 1�! R, the random variableR 1
0

R
C f .u; t/g.u; t/W.du;dt/ (with the integral interpreted in the sense of distributional

pairing) is centered Gaussian with variance
R 1
0

R
C f .u; t/g.u; t/ du dt . Also let

pt .z/ WD
1

2�t
e�
jzj2

2t (2.2)

be the heat kernel on C. For m; n 2 N0 with m � n, we define

ˆm;n.z/ WD

Z 2�2m

2�2n

Z
C
pt=2.z � u/W.du; dt/: (2.3)

Then ˆm;n is a smooth centered Gaussian process with variance

Varˆm;n.z/ D .n �m/ log 2: (2.4)
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It is clear from the definition that for any z 2 C, ˆm;n.� � z/
d
D ˆm;n.�/. The pro-

cesses ˆm;n also have the following scale invariance property (see [22, Section 2.1] for
an explanation):

ˆm;n.2
k
�/
d
D ˆmCk;nCk.�/: (2.5)

We will also need the following basic modulus of continuity estimate for ˆ0;n, which is
proven in [22, Proposition 3].

Lemma 2.2 ([22]). For each bounded open set U � C, there are constants c0; c1 > 0

depending on U such that for each n 2 N,

P
h
2�n sup

z2U

jrˆ0;nj > x
i
� c0e

�c1x
2

; 8x > 0: (2.6)

Proof. The special case when U D S is the unit square is [22, Proposition 3]. The general
case follows by covering U by translates of Œ0; 1�2 and using the translation invariance of
the law of ˆ0;n.

For any z; w 2 C, the correlation of ˆm;n.z/ and ˆm;n.w/ is positive. In some of
our arguments this property is undesirable since we want to use percolation techniques
and/or the Efron–Stein inequality, for which exact long-range independence is useful.
We therefore define a truncated version ‰m;n of ˆm;n which lacks the scale invariance
property (2.5) but has a finite range of dependence. In particular, let � W Œ0; 1�! C be a
smooth, radially symmetric bump function which is identically equal to 1 on B1.0/ and
identically equal to 0 on C n B2.0/. Also fix a positive constant "0 2 .0; 1=100/ which
will be chosen later (in a universal manner). Using the notation (2.2), we define

zpt .z/ WD pt .z/�.z=�t / where �t WD
1

100

p
t jlog2 t j

"0 : (2.7)

The reason for the choice of �t is that a Brownian motion is unlikely to travel distance
more than �t in t units of time, so the mass of pt .z/ is concentrated in the �t -neighbor-
hood of the origin. This makes zpt a good approximation for pt .

For m; n 2 N with m < n, we define

‰m;n.z/ WD

Z 2�2m

2�2n

Z
C
zpt=2.z � u/W.du; dt/: (2.8)

Since zpt is smooth, ‰m;n is a smooth centered Gaussian process. Furthermore, since
zpt is supported on the Euclidean ball of radius 2�t centered at zero, it follows that
‰m;n.z/ and ‰m;n.w/ are independent if jz � wj � 2�2�2m , which is the case provided
jz � wj � 2�mm"0 .

The following lemma, which is [22, Proposition 5], allows us to transfer results
between ˆm;n and ‰m;n.

Lemma 2.3 ([22]). Let U � C be a bounded open set. There are constants c0; c1 > 0

depending only on U such that for x > 0,

P
h

sup
n2N

sup
z2U

jˆ0;n.z/ �‰0;n.z/j > x
i
� c0e

�c1x
2

: (2.9)
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Proof. The special case when U D S is the unit square is [22, Proposition 5]. The general
case follows by covering U by translates of Œ0; 1�2 and using the translation invariance of
the joint law of ˆ0;n and ‰0;n.

2.3. Basic definitions for white noise LFPP

Fix � > 0. Form;n 2 N withm � n, we define the LFPP metric associated with the field
ˆm;n of (2.3) by

Dm;n.z; w/ WD inf
P

Z 1

0

e�ˆm;n.P.t//jP 0.t/j dt (2.10)

where the infimum is over all piecewise continuously differentiable paths P W Œ0; 1�! C
joining z and w. We also define

L0;n WD D0;n.@LS; @RSIS/; (2.11)

i.e., L0;n is the D0;n-distance between the left and right boundaries of the unit square
restricted to paths which are contained in the (closed) unit square. The random variable
L0;n will be the main observable considered in our proofs.

For p 2 Œ0; 1� and n 2 N, define the pth quantile

`n.p/ WD inf ¹x 2 R W P ŒL0;n � x� � pº: (2.12)

It is easy to see from the fact that ˆ0;n is a Gaussian process with non-zero variances that
in fact P ŒL0;n � `n.p/� D p. We define the median

�n WD `n.1=2/; (2.13)

which will be the normalizing factor for distances in our scaling limit results (note that �n
is defined in the same way as a" from (1.3) but with ˆ0;n in place of h�" ). We also define
the maximal quantile ratio

ƒn.p/ WD max
k�n

`n.1 � p/

`n.p/
; 8p 2 .0; 1=2/: (2.14)

We define zDm;n, zL0;n, z̀n.p/, and zƒn.p/ in the same manner as above but with the
field ‰m;n of (2.8) in place of ˆm;n. The starting point of our proofs is some a priori
estimates for D0;n and zD0;n. These estimates were established (for general values of �)
in [22, Section 4] using comparison to percolation.

Proposition 2.4. For each � > 0, there is a constant p 2 .0; 1=2/ such that the following
is true. Let U � C be an open set and letK1;K2 � U be disjoint compact connected sets
which are not singletons. Recall the definition of the internal metric D0;n.�; �IU/ on U
from Section 2.1. There are constants c0; c1 > 0 depending only on U;K1;K2; � such that
for n 2 N and T > 3,

P ŒD0;n.K1; K2IU/ < T
�1`n.p/� � c0e

�c1.logT /2 (2.15)
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and
P ŒD0;n.K1; K2IU/ > Tƒn.p/`n.p/� � c0e

�c1.logT /2=log logT : (2.16)

The same is true with zD0;n in place of D0;n.

It is easy to see from Proposition 2.4 that both estimates from the proposition also
hold with D0;n.K1; K2IU/ replaced by either D0;n.around A/ or D0;n.across A/ for an
annular region A (Definition 2.1), with the constants c0; c1 depending only on A and � .

Proof of Proposition 2.4. It is shown in [22, Corollary 17 and Proposition 18] that there is
a constant p 2 .0; 1=2/ as in the proposition statement and constants a0; a1 > 0 depending
only on � such that if R WD Œ0; 1� � Œ0; 3�, then for n 2 N and T > 3,

P ŒD0;n.@LR; @RRIR/ < T
�1`n.p/� � c0e

�c1.logT /2 (2.17)

and
P ŒD0;n.@UR; @TRIR/ > Tƒn.p/`n.p/� � c0e

�c1.logT /2=log logT : (2.18)

To deduce (2.15) from (2.17), we choose a finite collection of rectangles
R1; : : : ; RK � U (in a manner depending only on U; K1; K2) which each have aspect
ratio 3 with the following property: any path from K1 to K2 in U must cross one of the
Rk’s in the “easy” direction (i.e., it must cross between the two longer sides of Rk). We
then apply (2.17) together with the scale, translation, and rotation invariance properties of
ˆ0;n to simultaneously lower-bound the distance between the two longer sides of Rk for
each k 2 Œ1;K�Z. This gives (2.15).

To deduce (2.16) from (2.18), we apply a similar argument. We look at a collection
of rectangles R1; : : : ; RK � U with aspect ratio 3 with the following property: if �k for
k 2 Œ1;K�Z is a path inRk between the two shorter sides ofRk , then the union of the �k’s
contains a path from K1 to K2. We then apply (2.18) to upper-bound the D0;n-distance
between the two shorter sides of each Rk and thereby deduce (2.16).

The bounds with zD0;n in place of D0;n follow from the bounds for D0;n combined
with Lemma 2.3.

2.4. Existence of an exponent for white noise LFPP

We will need a variant of Proposition 1.1 for the white noise LFPP metrics D0;n.

Proposition 2.5. For each � > 0, there exists Q D Q.�/ > 0 such that

�n D 2
�n.1��Q/Con.n/ as n!1: (2.19)

Furthermore, � 7! Q.�/ is continuous, strictly decreasing on .0; 0:7/, non-increasing on
.0;1/, and satisfies lim�!1Q.�/ D 0.

From now on we defineQ.�/ as in Proposition 2.5. We will show that Proposition 1.1
holds (with the same value of Q) in Section 4.3.
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In this subsection, we will establish all of Proposition 2.5 except for the statement
that Q > 0, which will be proven in Section 2.5 using the results of [27]. To prove the
existence of Q, we will use a subadditivity argument. We first need an a priori estimate
for the maximal quantile ratio from (2.14).

Lemma 2.6. Let p be as in Proposition 2.4. There is a constant c > 0 depending only
on � such that for each n 2 N,

ƒn.p/ � e
c
p
n: (2.20)

Proof. The random variable logL0;n is a �-Lipschitz function of the continuous cen-
tered Gaussian process ˆ0;n. Since Varˆ0;n.z/ D n log 2 for each z 2 C, we can apply
Lemma A.1 to get

Var logL0;n � n (2.21)

with the implicit constant depending only on � . We now obtain (2.20) by a trivial bound
for quantile rations in terms of variance (see, e.g., [22, Lemma 3.2] applied with Z D
logL0;n).

Instead of proving the subadditivity of log�n directly, we will instead prove subaddi-
tivity for a slightly different quantity which is easier to work with. For a square S , let AS

be the closed square annulus between @S and the boundary of the square with the same
center and three times the radius of S . For n 2 N, let

�n WD EŒD0;n.around AS/�I (2.22)

we recall that S is the closed unit square. The following lemma allows us to compare �n
and �n.

Lemma 2.7. For each p > 0, there are constants c0; c1 > 0 depending only on p and �
such that

c0e
�c1
p
n�pn � EŒD0;n.around AS/

p� � c0e
c1
p
n�pn : (2.23)

Proof. By integrating the estimates of Proposition 2.4, we obtain

`n.p/
p
� EŒD0;n.around AS/

p� � .ƒn.p/`n.p//
p:

Combining this with Lemma 2.6 yields (2.23).

For m 2 N, define the collection of squares

y�m WD ¹2
�m
� 2�m dyadic squares contained in ASº: (2.24)

The reason for the hat in the notation is to avoid confusion with the collection �K of dyadic
squares used in Section 3. Due to the scaling property of LFPP, we have the following
formula, which will be a key input in the proof of the submultiplicativity of �n.

Lemma 2.8. Let m; n 2 N with m < n. For each S 2 y�m,

EŒDm;n.around AS /� D 2
�m�n�m: (2.25)
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Proof. By the scaling property (2.5) of ˆm;n and the translation invariance of the law
of ˆm;n,

Dm;n.around AS /
d
D 2�mD0;n�m.around AS/:

Taking expectations now gives the lemma statement.

We can now prove the existence of an exponent for �n.

Lemma 2.9. Let �n for n 2N be as in (2.22). For each � > 0, there exists ˛ D ˛.�/ 2 R
such that

lim
n!1

log�n
logn

D �˛: (2.26)

Proof. We will show that for n;m 2 N with n > m,

�n � 2
2n2=3�m�n�m (2.27)

with the implicit constant depending only on �. By a version of Fekete’s subadditiv-
ity lemma with an error term (see, e.g., [21, Lemma 6.4.10]) applied to log �n, this
implies (2.26). Throughout the proof, c0 and c1 denote positive constants depending only
on � which may change from line to line.

Step 1: regularity event for ˆ0;m. Let U be a bounded open subset of C which con-
tains AS . For T > 0, let

Em;n WD

²
2�m sup

z2U

jrˆ0;n.z/j �
log 2
�
n2=3

³
; (2.28)

so that by Lemma 2.2,
P ŒEm;n� � 1 � c0 exp.�c1n4=3/: (2.29)

Step 2: lower bound for D0;m in terms of a sum over 2�m � 2�m squares. Let P0;m
be a path around AS with D0;m-length D0;m.around AS/, parametrized by its D0;m-
length. Let t0 D 0 and let S0 2 y�m be chosen so that P0;m.0/ 2 S0. Inductively, suppose
that j 2 N and tj�1 and Sj�1 have been defined. Let tj be the first time t � tj�1 for
which P0;m.t/ … B2�m�1.Sj�1/, or tj D D0;m.around AS/ if no such time exists. Also
let Sj 2 y�m be chosen so that P0;m.tj / 2 Sj . Note that Sj necessarily shares a corner or
a side with Sj�1. Let

J WD min ¹j 2 N W tj D D0;m.around AS/º: (2.30)

By the definition of D0;m, on Em;n it holds for j 2 Œ0; J � 1�Z that

tjC1 � tj � D0;m
�
across B2�m�1.Sj / n Sj

�
� 2�m exp

�
� min
z2B

2�m�1
.Sj /

ˆ0;m.z/
�

� 2�m�n
2=3

e
�ˆ0;m.vSj /; (2.31)
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where vSj is the center of Sj and the implicit constant in � is universal. Therefore,
on Em;n,

D0;m.around AS/ � T
�12�m�n

2=3
J�1X
jD0

e
�ˆ0;m.vSj /: (2.32)

Step 3: upper bound for D0;n in terms of a sum over 2�m � 2�m squares. Since the
squares Sj and SjC1 share a corner or a side for each j 2 Œ0; J � 1�Z, if �j is a path
around ASj for j 2 Œ0;J � 1�Z, then the union of the paths �j contains a path around AS.
Consequently,

D0;n.around AS/ �

J�1X
jD0

D0;n.around ASj /: (2.33)

Since ˆ0;n D ˆ0;m Cˆm;n, it follows that on Em;n,

D0;n.around ASj / � exp
�
� max
z2ASj

ˆ0;m.z/
�
Dm;n.around ASj /

� 2n
2=3

e
�ˆ0;m.vSj /Dm;n.around ASj /: (2.34)

Hence, on Em;n,

D0;n.around AS/ � T

J�1X
jD0

e
�ˆ0;m.vSj /Dm;n.around ASj /: (2.35)

Step 4: comparison of �n and �m�n�m. The event Em;n and the squares Sj for j 2
Œ0; J �Z are a.s. determined by ˆ0;m, which is independent of Dm;n. Therefore,

EŒD0;n.around AS/1Em;n �

� 2n
2=3

E
hJ�1X
jD0

e
�ˆ0;m.vSj /1Em;n

i
EŒDm;n.around ASj /� (by (2.35))

� 2mC2n
2=3

EŒD0;m.around AS/� � 2
�m�n�m (by (2.32) and Lemma 2.8)

D 22n
2=3

�m�n�m: (2.36)

We need to show that the left side of (2.36) is not too much smaller than �n. We have

�n � EŒD0;n.around AS/1Em;n �C EŒD0;n.around AS/1Ecm;n �: (2.37)

By the Cauchy–Schwarz inequality followed by Lemma 2.7 and (2.29),

EŒD0;n.around AS/1Ecm;n �

� EŒD0;n.around AS/
2�1=2P ŒEcm;n�

1=2 (by Cauchy–Schwarz)

� c0e
c1
p
n�n � c0e

�c1n
4=3

(by Lemma 2.7 and (2.29))

� c0e
�c1n

4=3

�n (by Lemma 2.7): (2.38)
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By plugging (2.38) into (2.37), we obtain

�n � EŒD0;n.around AS/1Em;n �C c0e
�c1n

4=3

�n:

Since c0e�c1n
4=3
� 1 for large enough n, we can re-arrange this last inequality to get, for

large enough n,
�n � 2EŒD0;n.around AS/1Em;n �: (2.39)

Plugging (2.39) into (2.36) gives (2.27) when n is sufficiently large. By possi-
bly increasing the implicit constant to deal with finitely many small values of n, we
obtain (2.27) in general.

Proof of Proposition 2.5. Let ˛ D ˛.�/ be as in Lemma 2.9. By Lemmas 2.9 and 2.7, we
have �n D 2on.n/�n D 2�˛nCon.n/. Therefore, (2.19) holds with Q WD .1 � ˛/=� .

We prove that Q > 0 for all � > 0 in Lemma 2.10 below. The remaining properties
of Q asserted in the proposition statement are essentially proven in [49], but the results
there are for LFPP defined using the circle average process of a GFF instead of the white
noise approximation. The median left-right crossing distance of S for the two variants of
LFPP can be compared up to multiplicative errors of the form 2on.n/ due to [25, Propo-
sition 3.3]. Hence, we can apply [49, Lemma 1.1] to find that � 7! Q.�/ is continuous
and [49, Lemma 4.1] to deduce that � 7! Q.�/ is strictly decreasing on .0; 0:7/, non-
increasing on .0;1/, and satisfies lim�!1Q.�/ D 0.

2.5. Positivity of Q

To conclude the proof of Proposition 2.5 it remains to check the following.

Lemma 2.10. There are universal constants c0; c1 > 0 such that with Q D Q.�/ as in
Proposition 2.5,

Q.�/ � c0�
�1e�c1� ; 8� > 0: (2.40)

In particular, Q > 0 for all � > 0.

Lemma 2.10 will be extracted from [27, Theorem 1.1], which gives a similar result
for LFPP defined using the discrete GFF. To explain this result, for n 2 N, let Bn WD

Œ�2n; 2n�2Z and let hZ
n be the discrete Gaussian free field on Bn, with zero boundary

conditions, normalized so that EŒhZ
n .z/h

Z
n .w/�D

�
2

GrBn.z;w/ for any z;w 2Bn, where
GrBn is the discrete Green function. For � > 0, we define the discrete LFPP metric with
parameter � associated with hZ

n by

DZ
n .z; w/ D inf

P Wz!w

jP jX
jD1

e�h
Z
n .P.j //; 8z; w 2 Bn;

where the infimum is over all nearest-neighbor paths P W Œ0; jP j�Z ! Bn with P.0/ D z
and P.jP j/ D w. We define the discrete square annulus

An WD Œ2
n�1=2; 2n�1=2�2Z n Œ2

n�1; 2n�1�2Z � Bn
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and we define DZ
n .across An/ to be the DZ

n -distance between the inner and outer bound-
aries of An.

It is shown in [27, Theorem 1.1] that there are universal constants c0; c1 > 0 such that

lim
n!1

P ŒDn.across An/ � exp.c0e�c1�n/� � 1=2: (2.41)

To deduce Lemma 2.10 from (2.41) we need to establish that distances in discrete LFPP
can be described in terms of Q.

Lemma 2.11. With Q as in Proposition 2.5, for each ı > 0,

lim
n!1

P Œ2n.�Q�ı/ � DZ
n .across An/ � 2

n.�QCı/� D 1: (2.42)

Proof. Let A WD Œ2�1=2; 2�1=2� n Œ2�1; 2�1� be the continuum analog of An. By Propo-
sition 2.5, we have �n D 2�n.1��Q/Con.1/. By combining this with Proposition 2.4 and
Lemma 2.6 (saying that `n.p/ � �n and ƒn.p/ � 1), it follows that for each ı > 0,

lim
n!1

P Œ2�n.1��QCı/ � D0;n.across A/ � 2�n.1��Q�ı/� D 1: (2.43)

We now want to apply the main result of [5] to transfer from (2.43) to (2.42). How-
ever, [5] considers LFPP defined using the circle average process of the GFF rather than
the white noise approximation, so we need an intermediate step. Let Vh be a zero-boundary

GFF on Œ�1; 1�2 and defineD Vhn in the same manner asD0;n but with the radius 2�n circle
average process Vh2�n for Vh in place ofˆ0;n. By applying [25, Proposition 3.3], to compare
Vh2�n and ˆ0;n, we see that (2.43) remains true with D Vhn in place of D0;n.

We now apply [5, Theorem 1.4] to deduce (2.42) from the version of (2.43) with D Vhn
in place ofD0;n. Note that in our setting, space is re-scaled by a factor of 2�n as compared
to the setting of [5, Theorem 1.4] (which considers a GFF on Œ0; n�2 and averages over
circles of radius 1). This is the reason why the estimates in (2.42) and (2.43) differ by a
factor of 2�n. We also note that the factor of

p
�=2 in [5] does not appear in our setting

due to our normalization of the discrete GFF.

Proof of Lemma 2.10. This is immediate from Lemma 2.11 and (2.41).

3. Concentration of left/right crossing distance

3.1. Statement and setup

The goal of this section is to prove the following proposition.

Proposition 3.1. Let � > 0, let p be the constant from Proposition 2.4, and define the
maximal quantile ratio ƒn.p/ as in (2.14). We have

sup
n2N

ƒn.p/ <1: (3.1)
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As an immediate corollary of Propositions 2.4 and 3.1, we get the following improve-
ment on Proposition 2.4.

Proposition 3.2. Let � > 0 and for n 2 N let �n be the median D0;n-distance across
S, as in (2.13). Let U � C be an open set and let K1; K2 � U be disjoint compact
connected sets which are not singletons. There are constants c0; c1 > 0 depending only
on U;K1; K2; � such that for n 2 N and T > 3,

P ŒD0;n.K1; K2IU/ < T
�1�n� � c0e

�c1.logT /2 (3.2)

and
P ŒD0;n.K1; K2IU/ > T �n� � c0e

�c1.logT /2=log logT : (3.3)

The same is true with zD0;n in place of D0;n. In particular, the random variables
��1n D0;n.K1; K2IU/ and their reciprocals as n varies are tight.

Proof. This follows since Proposition 3.1 implies that the quantities `n.p/ and
ƒn.p/`n.p/ appearing in Proposition 2.4 are bounded above and below by �-dependent
constants times �n.

Due to Lemma 2.3, Proposition 3.1 is equivalent to the analogous statement with
distances defined using the truncated field ‰0;n of (2.8) instead of the original field ˆ0;n.
Recall that objects defined with ‰0;n instead of ˆ0;n are denoted by a tilde. For the proof
of Proposition 3.1, we will mostly work with ‰0;n since the long-range independence of
‰0;n is useful for our application of the Efron–Stein inequality. We will bound the quantile
ratioƒn.p/ in terms of the variance of the log of the left-right crossing distance zL0;n. This
will be accomplished using the following elementary lemma.

Lemma 3.3. There is a constant c > 0 depending only on � such that for each n 2 N,

`n.1 � p/

`n.p/
� exp

�
c

q
VarŒlog zL0;n�

�
: (3.4)

Proof. By exponentiating both sides of the estimate from [22, Lemma 22], applied with
Z D log zL0;n, we get

z̀
n.1 � p/

z̀
n.p/

� exp
�p

2

p

q
VarŒlog zL0;n�

�
; 8p 2 .0; 1=2/; (3.5)

where z̀n.�/ is the quantile function for zL0;n. By Lemma 2.3, `n.p/� z̀n.zp/ and `n.1� p/

� z̀n.1 � zp/ for zp 2 .0; 1=2/ depending only on p; � (hence only on �). Therefore (3.4)
follows from (3.5) applied with p D zp.

In light of Lemma 3.3, to prove Proposition 3.1 we need a uniform upper bound for
VarŒlog zL0;n�. To prove such a bound we fix a large constant K (to be chosen later, inde-
pendently of n) and we use the decomposition

VarŒlog zL0;n� D E
�
VarŒlog zL0;n j‰K;n�

�
C Var

�
EŒlog zL0;n j‰K;n�

�
: (3.6)
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The expectation of the conditional variance is easy to control using a Gaussian concentra-
tion bound, as explained in the following lemma.

Lemma 3.4. Almost surely,

VarŒlog zL0;n j‰K;n� � K; (3.7)

with a deterministic implicit constant depending only on �.

Proof. If we condition on ‰K;n, then under the conditional law the random variable
log zL0;n is a measurable functional of the continuous centered Gaussian process ‰0;K jS,
which satisfies Var‰0;K.z/ � K log 2 for each z 2 S. Furthermore, if f is a continuous
function on S then adding f to ‰0;K can increase or decrease the value of zL0;n by a
factor of at most e�kf k1 , where kf k1 is the L1 norm. From this, we infer that log zL0;n
is a �-Lipschitz continuous function of ‰0;kjS with respect to the L1 norm under the
conditional law given ‰K;n. By Lemma A.1 (and a simple approximation argument to
reduce to the case of a finite-dimensional Gaussian vector), we now obtain (3.7).

The main difficulty in the proof is bounding the variance of the conditional expectation
in (3.6). This will be done using the Efron–Stein inequality and induction. Let us first
describe the setup for the Efron–Stein inequality.

Definition 3.5. Let "0 be the positive constant from (2.7). We define �K to be the set of
2�K � 2�K dyadic squares S which are contained in the 2�KC1K"0 -neighborhood of the
Euclidean unit square S.

As in [22, (2.18)], for a 2�K � 2�K dyadic square S 2 �K and z 2 C, let

 SK;n.z/ WD

Z 2�2K

2�2n

Z
S

zpt=2.z � u/W.du; dt/; (3.8)

where zpt is the truncated heat kernel as in (2.7). By the spatial independence property
of the white noise W , the random functions  SK;n for different choices of S are indepen-
dent. Furthermore, since zpt=2 is supported on the 2�KK"0 -neighborhood of 0 for each
t � 2�2K , it follows that  SK;n is supported on the 2�KK"0 -neighborhood of S and

‰K;n D
X
S2�K

 SK;n on S:

Let ‰SK;n WD ‰K;n �  
S
K;n C

y SK;n, where y SK;n is a copy of  SK;n sampled indepen-
dently of everything else. Also let

‰S0;n WD ‰
S
K;n C‰0;K : (3.9)

Then ‰S0;n
d
D ‰0;n.
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Write zDS
0;n for the LFPP distance defined with ‰S0;n in place of ‰0;n. Define zLS0;n in

the same manner as zL0;n but with ‰S0;n in place of ‰0;n, i.e.,

zLS0;n WD
zDS
0;n.@LS; @RSIS/: (3.10)

Let us now record what we get from the Efron–Stein inequality.

Lemma 3.6. For each n 2 N,

Var
�
EŒlog zL0;n j‰K;n�

�
�

X
S2�K

E
h X
S2�K

.EŒlog zLS0;n j‰
S
K;n� � EŒlog zL0;n j‰K;n�/2C

i
:

(3.11)

Proof. Consider the measurable functional F from continuous functions on S to R
defined by

F. / WD EŒlog zL0;n j‰K;n D  �: (3.12)

Since ‰0;K and ‰K;n are independent, to define F. /, we can first sample ‰0;K from its
marginal law and then consider the LFPP metric on S with ‰0;K C  in place of ‰0;n.
From this description, we see that

EŒlog zL0;n j‰K;n� D F.‰K;n/ and EŒlog zLS0;n j‰
S
K;n� D F.‰

S
K;n/; 8S 2 �K :

(3.13)

The random function‰K;n is the sum of the independent random functions  SK;n of (3.8).
Consequently, we can apply the Efron–Stein inequality [38] to get (3.11).

3.2. Outline of the proof

The rest of this section is devoted to bounding the right side of (3.11). To do this, we will
fix C > 1 and K 2 N and assume the inductive hypothesis

ƒn�K.p/ � e
C
p
K : (3.14)

We will show that (3.14) implies that the right side of (3.11) is bounded above by
2�˛KCoK .K/ for an exponent ˛ > 0 depending on � (see Proposition 3.9). By com-
bining this estimate with Lemma 3.4 and (3.6), we will find that (3.14) implies that
VarŒlog zL0;n� � K, with the implicit constant depending only on �. By Lemma 3.3, this
will show that (3.14) implies ƒn.p/ � eC

p
K provided C and K are chosen to be suffi-

ciently large, depending only on � .
Before getting into the details, in the rest of this subsection we give an outline of

how (3.14) leads to an upper bound for the right side of (3.11). To lighten notation, let

ZS WD .EŒlog zLS0;n j‰
S
K;n� � EŒlog zL0;n j‰K;n�/C
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be the quantity appearing inside the expectation on the right side of (3.11). By the
Cauchy–Schwarz inequality,

E
h X
S2�K

Z2S

i
� E

h� X
S2�K

ZS

�2i1=2
E
h�

max
S2�K

ZS

�2i1=2
: (3.15)

We will show that (3.14) implies upper bounds for each of the two factors on the right
side of (3.15).

Section 3.3: bound for ZS . In Section 3.3, we upper-bound ZS in terms of a quantity
which is easier to work with. For each 2�K � 2�K square S 2 �K , we letAS be an annulus
surrounding S with aspect ratio 2 and radius approximately 2�KK"0 (which we recall is
an upper bound for the range of dependence for the function ‰K;n; see the discussion just
after (2.8)). See (3.24) for a precise definition.

If P is a path between the left and right sides of S which gets within Euclidean dis-
tance 2�KK"0 of S , thenP must crossAS . By replacing a segment ofP by a segment of a
path around AS , we get a new path between the left and right sides of S which stays away
from S and whose zD0;n-length is at most the zD0;n-length of P plus zD0;n.around AS /.
This leads to the a.s. bound

ZS � E

�
1

zL0;n
1FS zD0;n.around AS /

ˇ̌̌̌
‰K;n

�
; (3.16)

where FS is the event that the zD0;n-geodesic between the left and right sides of S gets
within distance 2�KK"0 of S . See Lemma 3.8 for a precise statement.

Section 3.4: proof conditional on estimates for the right side of (3.15). We explain
how to conclude the proof of Proposition 3.1 assuming upper bounds for each of the two
factors on the right side of (3.15) (given in Propositions 3.10 and 3.11). The rest of the
section is devoted to the proofs of these two propositions.

Section 3.5: bounds for distances around and across annuli. With a view toward
bounding the right side of (3.16), we use our inductive hypothesis (3.14) and the a priori
estimates from Proposition 2.4 to show that with high probability the following is true.
For each S 2 �K , the zD0;n-distance across AS and the zD0;n-distance around AS are each
comparable to 2�K�n�Ke�ˆ0;K .vS /, where vS is the center of S . See Lemma 3.13 for a
precise statement. Combined with (3.16), this shows that with high probability,

ZS � 2
�KCoK .K/�n�KE

�
1

zL0;n
1FS e

�ˆ0;K .vS /

ˇ̌̌̌
‰K;n

�
; 8S 2 �K : (3.17)

Section 3.6: bound for
P
S2�K

ZS . Our bound for the first factor on the right side
of (3.15) is stated in Proposition 3.10 and proven in Section 3.6. We first note that a
zD0;n-geodesic between the left and right boundaries of S must cross each annulus AS for
S 2 �K for which FS occurs. After accounting for the overlap of the SK’s, this implies
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that with high probability,X
S2�K

1FS zD0;n.across AS / � 2oK .K/ zL0;n (3.18)

(Lemma 3.16). By the annulus estimates described just above, (3.18) also holds with
“around” in place of “across” (Lemma 3.17). Using (3.16), we therefore conclude that
with high probability, X

S2�K

ZS � 2
oK .K/: (3.19)

Sections 3.7 through 3.9: bound for maxS2�K ZS . Our upper bound for the second fac-
tor on the right side of (3.15) is more involved than the upper bound for the first factor, and
is carried out in Sections 3.7 through 3.9. This upper bound is based on the combination
of two estimates. The first estimate (Lemma 3.19) says that with high probability,

zL0;n D 2
�.1��Q/KCoK .K/�n�K ; (3.20)

and is proven by looking at the times when aD0;K- orD0;n-geodesic between the left and
right boundaries of S crosses the annuli AS (this is similar to the subadditivity argument
of Lemma 2.9).

The second estimate is based on the following observation. The random variable
ˆ0;K.vS / is a centered Gaussian random variable of variance K log 2 and is indepen-
dent of ‰K;n. On the event FS that the zD0;n-geodesic between the left and right sides of
S gets close to S , the contribution to the zD0;n-length of this geodesic coming from its
crossing of AS must be at most zL0;n. By (3.17) and the lower bound for zD0;n.across AS /
discussed above, this implies that on FS , with high probability,

2�KCoK .K/�n�Ke
�ˆ0;K .vS / � zD0;n.across AS / � zL0;n � 2�.1��Q/KCoK .K/�n�K :

(3.21)

Re-arranging this bound shows that on FS , typically ˆ0;K.vS / � .Q C oK.1//K log 2.
Hence, with high probability, e�ˆ0;K .vS /1FS is bounded above by e�X1X�.Q log2CoK .1//K

where X is a centered Gaussian random variable of variance K log 2 which is indepen-
dent of ‰K;n. By a straightforward calculation for the standard Gaussian distribution
(Lemma A.2) this shows that EŒe�ˆ0;K .vS /1FS j‰K;n� � 2

�Œ�.�^Q/�.�^Q/2=2�KCoK .K/.
Combined with (3.17) and (3.20), this shows that with high probability,

max
S2�K

ZS � 2
�KCoK .K/�n�K max

S2�K

E

�
1

zL0;n
1FS e

�ˆ0;K .vS /

ˇ̌̌̌
‰K;n

�
� 2�KCoK .K/�n�K � 2

.1��Q/KCoK .K/��1n�K � 2
�Œ�.�^Q/�.�^Q/2=2�KCoK .K/

D 2�˛KCoK .K/; (3.22)

where ˛ is an explicit, positive, �-dependent constant.

Conclusion. Plugging (3.19) and (3.22) into (3.15) and then into (3.11) shows that
VarŒEŒlog zL0;n j‰K;n�� � 2�˛KCoK .K/. Combined with (3.6) and Lemma 3.4, this gives
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VarŒlog zL0;n� � K, which by Lemma 3.3 implies thatƒn.p/ � eC
p
K provided C is cho-

sen to be large enough (depending only on �). This completes the induction, hence the
proof of Proposition 3.1.

Remark 3.7. The estimates in Sections 3.6 through 3.9 are all consequences of the esti-
mates for distances around and across annuli from Section 3.5, Hölder’s inequality, and
the fact that the “scaleK” field ˆ0;K is a centered Gaussian process independent of ‰K;n
with Varˆ0;K.z/DK log2 for each z 2 C. The use of this description of the conditional
law of ˆ0;K , rather than just estimates for the maximum of ˆ0;K , is the key idea which
allows us to establish the tightness of LFPP for all � > 0, not just for � < �crit. More
precisely, the description of the conditional law of ˆ0;K given ‰K;n is used in the proofs
of (3.76) of Lemma 3.23 and Step 2 in Section 3.9, which are perhaps the most interesting
parts of the argument in Sections 3.6 through 3.9.

3.3. Upper bound for Efron–Stein differences in terms of annulus crossings

Instead of estimating the differences of conditional expectations appearing in (3.11)
directly, we will instead estimate certain functionals of zD0;n. To describe these func-
tionals, let mK 2 N be chosen so that

2�mK � K"0 � 2�mKC1:

For S 2 �K , let
vS WD .center of S/ (3.23)

and define the annulus

AS WD B2�.K�mK/C1.vS / n B2�.K�mK/.vS /: (3.24)

The reason for the definition of AS is that its aspect ratio is of constant order and the field
‰K;n �‰

S
K;n vanishes outside of B2�.K�mK/.vS / (see the discussion just after (3.8)).

Lemma 3.8. Let zP0;n W Œ0; zL0;n�! S be a path in S between the left and right boundaries
of S of minimal zD0;n-length. For S 2 �K , let

FS WD ¹ zP0;n \ B2�mK .vS / 6D ;º: (3.25)

Almost surely,

EŒlog zLS0;n j‰
S
K;n� � EŒlog zL0;n j‰K;n�

� E

�
1

zL0;n
1FS zD0;n.around AS /

ˇ̌̌̌
‰K;n

�
; 8S 2 �K : (3.26)

Once Lemma 3.8 is established, we will never work with the left side of (3.26) directly.
Instead, we will prove bounds for the right side of (3.26).
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P̃0,n

S

AS

πS

P̃0,n(τ0)

P̃0,n(τ1)

S

AS

πS

P̃0,n(τ0)

P̃0,n(τ1)

∂LS

P̃0,n

Fig. 3. Illustration of the proof of Lemma 3.8 in the case when B
2�.K�mK/

.vS / does not intersect
@S (left) and the case when B

2�.K�mK/
.vS / intersects @LS (right). In each case, the union of

zP0;njŒ0;�0�, zP0;njŒ�1;zL0;n�, and the path �S around AS contains a path in S between the left and
right boundaries of S which does not intersect B

2�.K�mK/
.vS /. Note that in the figure on the right,

we have �0 D 0 and the starting point of the new path is not the same as the starting point of zP0;n.

Proof of Lemma 3.8. We first note that by the definition of‰K;n, the fields‰SK;n and‰K;n
agree on C nB2�.K�mK/.vS /. Since‰S0;n �‰

S
K;n D‰0;n �‰K;n D‰0;K , it follows that

‰S0;n and ‰0;n agree on C n B2�.K�mK/.vS /. We will now use this fact to compare zLS0;n
and zL0;n.

If zP0;n does not enter B2�.K�mK/.vS / (i.e., FS does not occur), then the zDS
0;n-length

of zP0;n is the same as its zD0;n-length, so zLS0;n � zL0;n.
If zP0;n enters B2�.K�mK/.vS / (i.e., FS occurs), let �0 be the first entrance time and let

�1 be the last exit time of zP0;n fromB2�.K�mK/.vS /. Note that it is possible that �0 D 1 or
that �1 D zL0;n if vS is within Euclidean distance 2�.K�mK / of the left or right boundary
of S. Also let �S be a path in AS of minimal zD0;n-length, i.e., the zD0;n-length of �S is
zD0;n.around AS /. Then the union of zP0;njŒ0;�0�, �S , and zP0;njŒ�1;zL0;n� contains a simple

path in S between the left and right boundaries of S (see Figure 3). This path does not enter
B2�.K�mK/.vS /, so its zD0;n-length is the same as its zDS

0;n-length. Therefore, on FS , a.s.,

zLS0;n � �0 C .
zL0;n � �1/C zD0;n.around AS / � zL0;n C zD0;n.around AS /:

Combining the preceding two paragraphs shows that, a.s.,

zLS0;n �
zL0;n C 1FS zD0;n.around AS /:

By the mean value theorem, a.s.,

log zLS0;n � log zL0;n � log
�
zL0;n C 1FS zD0;n.around AS /

�
� log zL0;n

� zL�10;n1FS zD0;n.around AS /: (3.27)
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The random variable log zL0;nC zL�10;n1FS zD0;n.around AS / is �.‰0;n/-measurable, hence
it is conditionally independent of ‰SK;n given ‰K;n. On the other hand, log zLS0;n is a mea-
surable function of ‰S0;n so is conditionally independent of ‰K;n given ‰SK;n. Therefore,

EŒlog zLS0;n j‰
S
K;n� D EŒlog zLS0;n j‰

S
K;n; ‰K;n�

� EŒlog zL0;nC zL�10;n1FS zD0;n.around AS / j‰SK;n; ‰K;n� (by (3.27))

D EŒlog zL0;nC zL�10;n1FS zD0;n.around AS / j‰K;n�: (3.28)

Subtracting EŒlog zL0;n j‰K;n� now gives (3.26).

3.4. Proof of Proposition 3.1 assuming moment estimates

As explained in Section 3.2, to bound EŒVarŒlog zL0;n j‰K;n��, and thereby prove Proposi-
tion 3.1, we will induct on n, taking (3.14) as our inductive hypothesis. The main estimate
which we prove using (3.14) is the following proposition. For the statement, we introduce
the �-dependent exponent

˛.�/ WD

´
�Q � �2=2; � � Q;

Q2=2; � > Q:
(3.29)

Note that ˛.�/ > 0 since Q > 0 (Proposition 2.5).

Proposition 3.9. Assume the inductive hypothesis (3.14). Let ˛.�/ for � > 0 be as
in (3.29). For each fixed � > 0,

E

� X
S2�K

�
E

�
1

zL0;n
1FS zD0;n.around AS /

ˇ̌̌̌
‰K;n

��2�
� 2�.˛.�/��/K ; (3.30)

with the implicit constant depending only on �; �; C .

Note that due to Lemma 3.8, Proposition 3.9 implies an upper bound for the right
side of (3.11) from Lemma 3.6. As we will explain just below, Proposition 3.9 is an easy
consequence of the following two propositions, whose proofs will occupy most of the rest
of this section.

Proposition 3.10. Assume the inductive hypothesis (3.14). We have

E

�� X
S2�K

E

�
1FS

1

zL0;n

zD0;n.across AS /
ˇ̌̌̌
‰n;K

��2�1=2
� K exp.K2=3/; (3.31)

with the implicit constant depending only on �; C .

Proposition 3.11. Assume the inductive hypothesis (3.14). Let ˛.�/ for � > 0 be as
in (3.29). For each fixed � > 0,

E

��
max
S2�K

E

�
1FS

1

zL0;n

zD0;n.across AS /
ˇ̌̌̌
‰n;K

��2�1=2
� 2�.˛.�/��/K ; (3.32)

with the implicit constant depending only on �; �; C .
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Proof of Proposition 3.9, assuming Propositions 3.10 and 3.11. To lighten notation, let

XS WD E

�
1FS

1

zL0;n

zD0;n.across AS /
ˇ̌̌̌
‰n;K

�
: (3.33)

By the Cauchy–Schwarz inequality,

E
h X
S2�K

X2S

i
� E

h�
max
S2�K

XS

�� X
S2�K

XS

�i
� E

h�
max
S2�K

XS

�2i1=2
E
h� X
S2�K

XS

�2i1=2
:

(3.34)

We use Proposition 3.11 to bound the first factor on the right in (3.34), and Proposi-
tion 3.10 to bound the second factor on the right in (3.30). This gives

E
h X
S2�K

X2S

i
� 2�.˛.�/��/KK exp.K2=3/:

Slightly shrinking � to absorb the factor of K exp.K2=3/ now gives (3.30).

Before proving Propositions 3.10 and 3.11, we explain how to deduce Proposition 3.1
from Proposition 3.9.

Lemma 3.12. Assume the inductive hypothesis (3.14). Also let ˛.�/ be as in (3.29) and
fix � > 0. We have

Var
�
EŒlog zL0;n j‰K;n�

�
� 2�.˛.�/��/K ; (3.35)

with the implicit constant depending only on �; �; C .

Proof of Lemma 3.12, assuming Proposition 3.9. By plugging the estimate of Lemma 3.8
into the estimate of Lemma 3.6, we get

Var
�
EŒlog zL0;n j‰K;n�

�
� E

� X
S2�K

�
E

�
1

zL0;n
1FS zD0;n.around AS /

ˇ̌̌̌
‰K;n

��2�
;

(3.36)

which we can then bound by means of Proposition 3.9.

Proof of Proposition 3.1, assuming Proposition 3.9. Fix � > 0, K 2 N, and C > 0 to be
chosen later in a manner depending only on � . We proceed by induction on n 2N to show
that

ƒn.p/ � e
C
p
K (3.37)

for all n 2 N. By Lemma 2.6, if C > 0 is chosen to be large enough (depending on �)
then (3.37) holds for n 2 Œ1;K�Z. This gives the base case.

For the inductive step, assume that n � K C 1 and ƒn�K.p/ � eC
p
K . Let M be the

implicit constant in Lemma 3.4 (which depends only on �) and let NC be the implicit
constant of Lemma 3.12 (which depends on �; �; C ). By plugging the estimates of Lem-
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mas 3.4 and 3.12 into (3.6), we see that our inductive hypothesis implies that

VarŒlog zL0;n� �MK CNC 2�.˛.�/��/K : (3.38)

Since ˛.�/ > 0, we can choose � 2 .0; ˛.�//. Henceforth fix such a �.
There exists KC 2 N (depending on �; �; C ) such that if K � KC , then

NC 2
�.˛.�/��/K � K. For K � KC , (3.38) implies that VarŒlog zL0;n� � .M C 1/K. By

Lemma 3.3, this implies that

`n.1 � p/

`n.p/
� exp

�
c
p
.M C 1/K

�
(3.39)

for a constant c > 0 depending only on �. Since ƒn0�K.p/ � ƒn�K.p/ for any n0 � n,
we infer that if ƒn�K.p/ � eC

p
K then (3.39) holds with n replaced by any n0 � n and

hence ƒn.p/ � exp.c
p
.M C 1/K/.

Therefore, if the constant C from (3.14) is chosen to be at least c
p
M C 1 (note that

this last quantity depends only on �) then so long as K � KC we find that ƒn�K.p/ �
eC
p
K implies ƒn.p/ � eC

p
K . This completes the induction, so we obtain (3.37) for

every n 2 N.
Since C and � have each been chosen in a manner depending only on �, and K has

been chosen in a manner depending only on �; �;C (hence only on �), the constant eC
p
K

depends only on �. Thus (3.1) holds.

3.5. Bounds for distances around and across annuli

A key tool in our proofs of Propositions 3.10 and 3.11 are bounds for theD0;n- and zD0;n-
distances across and around the annuli AS from (3.24), as given by the following lemma.
For the statement, we recall that vS is the center of S .

Lemma 3.13. Assume the inductive hypothesis (3.14). For T > 2K
1=2C3"0 ,

P
h

min
S2�K

e��ˆ0;K .vS /D0;n.across AS / < T �12�K�n�K
i
� c05

K exp
�
�c1

.logT /2

K3"0

�
(3.40)

and

P
h

max
S2�K

e��ˆ0;K .vS /D0;n.around AS / > T 2�K�n�K
i

� c05
K exp

�
�c1

.logT /2

K3"0 log logT

�
; (3.41)

where c0; c1 > 0 are constants depending only on � and C . Moreover, the same estimates
also hold with D0;n replaced by zD0;n and/or with AS replaced by the smaller annulus

A0S WD B2�K .S/ n S: (3.42)

To prove Lemma 3.13, we first need the following trivial extension of Proposition 2.4
where we do not require that the sets under consideration are of constant-order size.
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Lemma 3.14. Let � > 0 and let p be as in Proposition 2.4. Let U � C be an open set
and let K1; K2 � U be disjoint compact connected sets which are not singletons. There
are constants c0; c1 > 0 depending only on U;K1;K2; � such that for n 2N, each R > 1,
and each T > 3,

P ŒD0;n.RK1; RK2IRU/ < T
�1`n.p/� � c0Re

�c1.logT /2 (3.43)

and

P ŒD0;n.RK1; RK2IRU/ > TRƒn.p/`n.p/� � c0Re
�c1.logT /2=log logT : (3.44)

Proof. To prove (3.43), choose (in a manner depending only on U; K1; K2) a smooth,
bounded path … in U which disconnects K1 from K2. There are constants 0 < c < C

depending only on U; K1; K2 such that for each R > 1, we can cover … by m � CR
Euclidean ballsBc.z1/; : : : ;Bc.zm/ such that the ballsB2c.zi / for i 2 Œ1;m�Z are disjoint
from K1 and K2. By Proposition 2.4, the translation invariance of the law of ˆ0;n, and a
union bound over i 2 Œ1; m�Z, there are constants c0; c1 as in the lemma statement such
that

P
�
D0;n

�
across B2c.zi / n Bc.zi /

�
� T �1`n.p/; 8i 2 Œ1;m�Z

�
� 1 � c0Re

�c1.logT /2 :

Every path in U fromK1 toK2 must cross between the inner and outer boundaries of one
of the annuli B2c.zi / n Bc.zi /. This gives (3.43).

To prove (3.44), choose (in a manner depending only on U;K1;K2) a smooth path …
in U from K1 to K2. Since K1 and K2 are connected and not singletons, there are
constants 0 < c < C depending only on U; K1; K2 such that for each R > 1, we can
cover … by m � CR Euclidean balls Bc.z1/; : : : ; Bc.zm/ such that the balls B2c.zi / for
i 2 Œ1; m�Z are contained in U ; any path separating the inner and outer boundaries of
B2c.z1/ n Bc.z1/ must intersect K1; and any path separating the inner and outer bound-
aries of B2c.zm/ n Bc.zm/ must intersect K2. By Proposition 2.4 (applied with C�1T
in place of T ), the translation invariance of the law of ˆ0;n, and a union bound over
i 2 Œ1;m�Z, there are constants c0; c1 as in the lemma statement such that

P
�
D0;n

�
around B2c.zi / n Bc.zi /

�
� C�1Tƒn.p/`n.p/; 8i 2 Œ1;m�Z

�
� 1 � c0Re

�c1.logT /2=log logT : (3.45)

If �i is a path around the annulus B2c.zi / nBc.zi / for each i 2 Œ1;m�Z, then the union of
the �i ’s contains a path inU fromK1 toK2. Sincem�CR, if the event in (3.5) holds then
we can find such a path with D0;n-length at most TRƒn.p/`n.p/. This gives (3.44).

We can now establish bounds for the DK;n-distances across and around AS and A0S .

Lemma 3.15. Assume the inductive hypothesis (3.14). For each T > 2
p
K ,

P
h

min
S2�K

DK;n.across AS / < T �12�K�n�K
i
� c05

K exp.�c1.logT /2/ (3.46)
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and

P
h

max
S2�K

DK;n.around AS / > T 2�K�n�K
i
� c05

K exp
�
�c1

.logT /2

log logT

�
; (3.47)

where c0; c1 > 0 are constants depending only on � and C . Moreover, the bounds (3.46)
and (3.47) also hold with A0S from (3.42) in place of AS .

Proof. Throughout the proof c0; c1 denote constants which depend only on � and C and
which are allowed to change from line to line. Basically, the idea of the proof is to re-scale
space by a factor of 2K , then apply Lemma 3.14 to each of the annuli 2KA0S , which have
size of order 2mK . We will then take a union bound over all S 2 �K to conclude.

Step 1: re-scaling space. By the scale and translation invariance properties of ˆK;n
(see (2.5)),

ˆK;n.�/
d
D ˆ0;n�K.2

K
� C vS /: (3.48)

Therefore,

DK;n.across AS /
d
D 2�KD0;n�K

�
across B2mKC1.0/ n B2mK .0/

�
(3.49)

and the same holds with “around” instead of “across”.

Step 2: proof of (3.46). By (3.43) of Lemma 3.14 (applied with R D 2mK ),

P
�
D0;n�K

�
across B2mKC1.0/ n B2mK .0/

�
< T �1`n�K.p/

�
� c02

mK exp.�c1.logT /2/:
(3.50)

We now apply (3.50) to estimate the right side of (3.49) for each S 2 �K , then take a
union bound over all S 2 �K . This gives

P
h

min
S2�K

DK;n.across AS / < T �1��2�K`n�K.p/
i
� c02

2KCmK exp.�c1.logT /2/:

(3.51)

To simplify the estimate (3.51), we first use (3.14) to deduce that `n�K.p/ �
e�C

p
K`n�K.1=2/ D e�C

p
K�n�K . We also note that since mK � log2 K, we have

22KCmK � 5K . Therefore, (3.51) implies that

P
h

min
S2�K

DK;n.across AS / < T �1��2�K�C
p
K�n�K

i
� c05

K exp.�c1.logT /2/: (3.52)

We now apply (3.52) with T replaced by .T 2�C
p
K/1=.1C�/, which is bounded above and

below by �; C -dependent constants times �; C -dependent powers of T since T > 2
p
K .

This gives (3.46) after possibly adjusting c0 and c1.

Step 3: proof of (3.47). The proof of (3.47) is similar to the proof of (3.46). By (3.44) of
Lemma 3.14,

P
�
D0;n�K

�
across B2mKC1.0/ n B2mK .0/

�
> T 2mKƒn�K.p/`n�K.p/

�
� c02

mK exp
�
�c1

.logT /2

log logT

�
: (3.53)
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By applying (3.53) to estimate the right side of (3.49), then taking a union bound over all
S 2 �K , we obtain

P
h

max
S2�K

DK;n.around AS / > T 1C�2�.K�mK /ƒn�K.p/`n�K.p/
i

� c02
2KCmK exp

�
�c1

.logT /2

log logT

�
: (3.54)

To simplify this estimate, we apply (3.14) to get ƒn�K.p/`n�K.p/ � eC
p
K�n�K , use

that 2mK � K � e
p
K to absorb the factor of 2mK into a factor of e

p
K , and apply the

bound 22KCmK � 5K as above. This gives

P
h

max
S2�K

DK;n.around AS / > T 1C�2�KC.CC1/
p
Kƒn�K.p/`n�K.p/

i
� c05

K exp
�
�c1

.logT /2

log logT

�
: (3.55)

We apply this last estimate with T replaced by by .T 2�.CC1/
p
K/1=.1C�/ to get (3.47).

The proof of (3.46) and (3.47) with A0S in place of AS is essentially identical, except
that we are working with an annulus of size of order 2�K instead of 2�.K�mK / so we do
not have to worry about extraneous factors of 2mK .

Proof of Lemma 3.13. Basically, the idea of the proof is that adding the coarse fieldˆ0;K
to ˆK;n in order to get ˆ0;n scales distances in each annulus AS by approximately
e�ˆ0;K .vS /. Since ˆ0;K is not constant on AS , we need some basic modulus of conti-
nuity estimates to compare the maximal and minimal values ofˆ0;K on AS toˆ0;K.vS /,
which we now explain.

By Lemma 2.2,

P
h
2�K sup

z2S
jrˆ0;K.z/j > logT

i
� c04

Ke�c1.logT /2 : (3.56)

For each S 2 �K , each point of AS \ S is joined to vS by a line segment in S of length
at most 2�.K�mK /C1. By the mean value theorem and (3.56),

P
h

max
S2�K

sup
z2AS

jˆ0;K.z/ �ˆ0;K.vS /j > 2
mKC1 logT

i
� c04

Ke�c1.logT /2 : (3.57)

Since 2mK � 2K"0 , we deduce from (3.57) that

P
h

max
S2�K

sup
z2AS

jˆ0;K.z/ �ˆ0;K.vS /j � 4K
"0 logT

i
� c04

Ke�c1.logT /2 : (3.58)

By combining (3.46) and (3.58), we therefore find that for T > 2
p
K , it holds with

probability at least 1 � c05K exp.�c1.logT /2/ that for each S 2 �K ,

D0;n.across AS / � exp
�
� min
z2AS

ˆ0;K

�
DK;n.across AS / (since ˆ0;n D ˆ0;K CˆK;n)

� exp.�ˆ0;K.vS / � 4�K"0 logT /DK;n.across AS / (by (3.58))

� T �1�4�K
"0
2�Ke�ˆ0;K .vS /�n�K (by (3.46)): (3.59)
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If T > 2K
1=2C3"0 , we can apply this last bound with T 1=.1C4�K

"0 / in place of T to get

P
h

min
S2�K

e��ˆ0;K .vS /D0;n.across AS / < T �12�K�n�K
i

� c05
K exp

�
�c1

.logT /2

.1C 4�K"0/2 logK

�
:

Since .1C 4�K"0/2 logK is bounded above by a constant timesK3"0 , this implies (3.40).
We similarly obtain (3.41) using (3.47) instead of (3.46). The estimates with A0S

in place of AS follow from the same argument, using the analogs of (3.46) and (3.47)
with A0S in place of AS . The estimates with zD0;n in place of D0;n follow from the esti-
mates for D0;n together with Lemma 2.3.

3.6. Proof of Proposition 3.10

In this section we will prove Proposition 3.10, which is the easier of the two
unproven propositions in Section 3.4. The idea of the proof is to show thatP
S2�K

1FS zD0;n.around AS / is very unlikely to be much larger than zL0;n. This will be
done in two steps. First, we show the analogous statement with “across AS” in place of
“around AS” using the fact that the zD0;n-geodesic zP0;n must cross each annulus AS for
which FS occurs (Lemma 3.16). Then, we show that zD0;n.around AS /= zD0;n.across AS /
is small with high probability using Lemma 3.13 (Lemma 3.17).

Lemma 3.16. Let zP0;n be the path as in Lemma 3.8 and define the event FS for S 2 �K
as in (3.25). Almost surely,X

S2�K

1FS zD0;n.across AS / � K zL0;n: (3.60)

Proof. If FS occurs, then zP0;n enters the region surrounded by the annulus AS , so zP0;n
must cross between the inner and outer boundaries of AS at least once (it must cross
between the inner and outer boundaries twice if AS does not surround the starting or
ending point of zP0;n). For each S 2 �K for which FS occurs, let ŒaS ; bS � � Œ0; zL0;n� be
a time interval such that zP0;n.ŒaS ; bS �/ � AS and zP0;n.aS / and zP0;n.bS / lie on opposite
boundary circles of AS . If FS does not occur, instead set aS D bS D 0. Then

bS � aS � 1FS zD0;n.across AS /: (3.61)

We want to prove (3.60) by summing (3.61) over all S 2 �K . However, we need to deal
with the potential for overlap between the intervals ŒaS ; bS �.

For S; S 0 2 �K , the intervals ŒaS ; bS � and ŒaS 0 ; bS 0 � can intersect only if AS \ AS 0
6D ;, which can happen only if the Euclidean distance between S and S 0 is at most
2�.K�mK /C1. Since �K consists of dyadic squares of length 2�K , it follows that for
each S 2 �K there are at most a constant times 22mK squares S 0 2 �K for which
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ŒaS ; bS � \ ŒaS 0 ; bS 0 � 6D ;. Therefore,

zL0;n �
X
S2�K

2�2mK .bS � aS / �
X
S2�K

2�2mK1FS zD0;n.across AS /:

Recalling that mK � log2K
"0 �

1
2

log2K, we now obtain (3.60).

Now we upgrade the statement of Lemma 3.16 from a bound for distances across
annuli to a bound for distances around annuli using Lemma 3.13.

Lemma 3.17. Assume the inductive hypothesis (3.14). Let zP0;n be the path as in
Lemma 3.8 and define the event FS for S 2 �K as in (3.25). For each T > 2K

1=2C3"0 ,

P
h X
S2�K

1FS zD0;n.around AS / > TK zL0;n
i
� c05

K exp
�
�c1

.logT /2

K3"0 log logT

�
; (3.62)

where c0; c1 > 0 are constants depending only on � and C .

Proof. By combining the two estimates from Lemma 3.13 (each applied with T 1=2 in
place of T ), we get

P

�
max
S2�K

zD0;n.around AS /
zD0;n.across AS /

> T

�
� c05

K exp
�
�c1

.logT /2

K3"0 log logT

�
: (3.63)

Combining (3.63) with Lemma 3.16 gives (3.62).

By integrating the bound from Lemma 3.17, we can convert from a probability esti-
mate to a moment estimate.

Lemma 3.18. Assume the inductive hypothesis (3.14). Let zP0;n be the path as in
Lemma 3.8 and define the event FS for S 2 �K as in (3.25). For each T > 1,

E

��
1

zL0;n

X
S2�K

1FS zD0;n.around AS /
�2�
� K2 exp.2K2=3/; (3.64)

with the implicit constant depending only on � and C .

Proof. By Lemma 3.17 (for T � exp.K2=3/) and a trivial bound (forK 2 Œ0; exp.K2=3//)
we have

P

�
1

K zL0;n

X
S2�K

1FS zD0;n.around AS / > T
�

�

´
c05

K exp
�
�c1

.logT /2

K3"0 log logT

�
; T � exp.K2=3/;

1; T < exp.K2=3/:



J. Ding, E. Gwynne 3870

Integrating this estimate over T 2 Œ0;1/ gives

E

��
1

K zL0;n

X
S2�K

1FS zD0;n.around AS /
�2�

D 2

Z 1
0

TP

�
1

K zL0;n

X
S2�K

1FS zD0;n.around AS / > T
�
dT

� exp.2K2=3/C 5K
Z 1

exp.K2=3/
exp

�
�c1

.logT /2

K3"0 log logT

�
dT

� exp.2K2=3/C 5K exp.�c1K4=3�3"0=log logK/

� exp.2K2=3/:

Proof of Proposition 3.10. By Jensen’s inequality (to move the power of 2 inside the con-
ditional expectation) followed by Lemma 3.18,

E

�� X
S2�K

E

�
1

zL0;n
1FS zD0;n.around AS /

ˇ̌̌̌
‰K;n

��2�
� E

�
E

�� X
S2�K

1

zL0;n
1FS zD0;n.around AS /

�2 ˇ̌̌̌
‰K;n

��
� E

��
1

zL0;n

X
S2�K

1FS zD0;n.around AS /
�2�
� K2 exp.2K2=3/: (3.65)

Taking the 1=2 power of both sides of (3.65) now gives (3.31).

3.7. Bound for left-right crossing distance

In this section we use Lemma 3.13 to prove a bound for the left-right crossing distance
zL0;n, assuming the inductive hypothesis.

Lemma 3.19. Assume the inductive hypothesis (3.14). Also fix � > 0. For each T >

2K
1=2C3"0 ,

P ŒzL0;n < T
�12�.1��QC�/K�n�K � � c05

K exp
�
�c1

.logT /2

K3"0 log logT

�
(3.66)

and

P ŒzL0;n > T 2
�.1��Q��/K�n�K � � c05

K exp
�
�c1

.logT /2

K3"0 log logT

�
(3.67)

for constants c0; c1 > 0 depending only on �; �; C .

For the proof of Lemma 3.19 we will need an a priori estimate for L0;n which holds
without assuming the inductive hypothesis (3.14).
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Lemma 3.20. Fix a small parameter � > 0. For each n 2 N and each T > 1,

P ŒT �12�.1��QC�/n � L0;n � T 2
�.1��Q��/n� � 1 � c0 exp

�
�c1

.logT /2

log logT

�
(3.68)

for constants c0; c1 > 0 depending only on �; �.

Proof. Lemma 2.6 implies that there is a constant c > 0 depending only on � such that
for each n 2 N, we have `n.p/ � e�c

p
n�n and ƒn.p/`n.p/ � ec

p
n�n. Furthermore,

Proposition 2.5 implies that 2�.1��QC�/n � �n � 2�.1��Q��/n with implicit constants
depending only on �; �. Plugging these estimates into Proposition 2.4 and absorbing the
factor of ec

p
n into a small power of 2n gives (3.68).

Proof of Lemma 3.19. We first prove (3.66). The proof is similar to the proof of
Lemma 2.9. Let zP0;n W Œ0; zL0;n�! S be a path in S between the left and right bound-
aries of S with minimal zD0;n-length. We will approximate zP0;n by a path of squares
in �K , then use this path of squares together with Lemma 3.13 to build a path between the
left and right boundaries of S whose zD0;K-length is bounded above. We will then use our
a priori estimates for zD0;K to deduce (3.66).

Let t0 D 0 and let S0 2 �K be chosen so that zP0;n.0/ 2 S0. Inductively, if j 2 N and
Sj�1 and tj�1 have been defined, let tj be the first time after tj�1 at which zP0;n hits a
square S 2 �K which does not share a corner or side with Sj�1; and let Sj be this square.
If no such time tj exists, we instead set tj D zL0;n and Sj D Sj�1. Let J be the smallest
integer for which tj D zL0;n.

For each j 2 Œ0;J � 1�Z, the path zP0;n crosses between the inner and outer boundaries
of the annulus A0Sj D B2�K .Sj / n Sj during the time interval Œtj ; tjC1�. Consequently,

zL0;n D tJ �

J�1X
jD0

zD0;n.across A0Sj /:

By combining this bound with the variant of (3.40) of Lemma 3.13 for A0Sj , we find that

for each T > 2K
1=2C3"0 ,

P
h
zL0;n � T

�1=22�K�n�K

J�1X
jD0

e
�ˆ0;K .vSj /

i
� 1 � c05

K exp
�
�c1

.logT /2

K3"0

�
: (3.69)

For S 2 �K , let A00S be the annular region consisting of the union of the 16 squares
S 0 2 �K which do not share a corner or a side with S , but which share a corner or a side
with a square which shares a corner or a side with S . Then for each j 2 Œ1; J � 1�Z,
we have Sj � A00Sj�1 . Consequently, if �j is a path in A0Sj which disconnects its inner
and outer boundaries of A0Sj for each j D 0; : : : ; J � 1, then the union of the paths �j
contains a path in S between the left and right boundaries of S. Therefore,

zL0;K �

J�1X
jD0

zD0;K.around A00Sj /: (3.70)
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The bound (3.41) of Lemma 3.13 holds with A00S in place of AS , with the same proof.
By combining (3.70) with this bound in the case when n D K (note that the inductive
hypothesis (3.14) holds vacuously in this case), we find that for T > 2K

1=2C3"0 ,

P
h
zL0;K � T

1=22�K
J�1X
jD0

e
�ˆ0;K .vSj /

i
� 1 � c05

K exp
�
�c1

.logT /2

K3"0 log logT

�
: (3.71)

By (3.69) and (3.71),

P ŒzL0;n � T �n�K zL0;K � � 1 � c05
K exp

�
�c1

.logT /2

K3"0 log logT

�
: (3.72)

By Lemma 3.20 with K in place of n along with Lemma 2.3 (to transfer from L0;K
to zL0;K),

P ŒzL0;K � T
�12�.1��QC�/K � � 1 � c0 exp

�
�c1

.logT /2

log logT

�
: (3.73)

Combining (3.73) with (3.72) and replacing T by T 1=2 gives (3.66).
The proof of the bound (3.67) is essentially identical, with the roles of zD0;n and zD0;K

interchanged.

As an immediate consequence of Lemma 3.19, we get the following bounds for the
median of L0;n which improve on Proposition 1.1.

Lemma 3.21. Assume the inductive hypothesis (3.14). For � > 0,

2�.1��QC�/K�n�K � �n � 2
�.1��Q��/K�n�K ;

with the implicit constants depending only on �; �; C .

Proof. This follows from Lemma 3.19 combined with Lemma 2.3 (to transfer from zL0;n
to L0;n).

3.8. A variant of Proposition 3.11 without the indicator function

In this subsection we prove a variant of Proposition 3.11 in which we do not include the
factor of 1FS inside the conditional expectation. This factor will be added in Section 3.9,
which will lead to a better exponent in the upper bound.

Lemma 3.22. Assume the inductive hypothesis (3.14). Also let � > 0 and p > 0. We have

E

��
max
S2�K

E

�
1

zL
p
0;n

zD0;n.around AS /p
ˇ̌̌̌
‰K;n

��2�1=2
� 2.p

2�2=2�p�QC�/K ; (3.74)

with the implicit constant depending only on �; p; �; C .
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Note that for p D 1 (which is the relevant case in the setting of Proposition 3.11), the
exponent on the right in (3.74) is �2=2 � �Q, which is negative if and only if � < 2Q.
As a consequence of this, Lemma 3.22 can be used in place of Proposition 3.11 to prove
Proposition 3.1 when � < 2Q. However, when � > 2Q > 0, Lemma 3.22 is not sufficient
for our purposes and we instead need the stronger estimate of Proposition 3.11 (which is
proven using Lemma 3.22).

To prove Lemma 3.22, we will separately prove a lower bound for zL0;n via
Lemma 3.19 and an upper bound for maxS2�K

zD0;n.around AS / via Lemma 3.13, then
combine these bounds via Hölder’s inequality. We start with tail estimates, which are
provided by the following lemma.

Lemma 3.23. Assume the inductive hypothesis (3.14). Also fix � > 0 and p > 0. For
T � 2K

1=2C3"0 ,

P
�
EŒzL�p0;n j‰K;n� > T 2

p.1��QC�/K�
�p
n�K

�
� c05

K exp
�
�c1

.logT /2

K3"0 log logT

�
(3.75)

and

P
h

max
S2�K

EŒ zD0;n.around AS /p j‰K;n� > T 2�.p�p
2�2=2��/K�

p
n�K

i
� c05

K exp
�
�c1

.logT /2

K3"0 log logT

�
; (3.76)

where the constants c0; c1 > 0 depend only on �, p, �, and C .

Proof. Step 1: defining a good event. We will first build a “good” event GT on which
zD0;n.around AS / can be bounded above and zL0;n can be bounded below with high con-

ditional probability given ‰K;n. For j 2 N, let

Ej WD
°

max
S2�K

e��ˆ0;K .vS / zD0;n.around AS / 2 2�K�n�K Œ2j�1; 2j �
±
;

E 0j WD
®
zL0;n 2 2

�.1��QC�/K�n�K Œ2
�j ; 2�jC1�

¯
: (3.77)

By Lemmas 3.13 and 3.19, each applied with 2j�1 in place of T we get, for j >K1=2C3"0 ,

E
�
P ŒEj j‰K;n�

�
D P ŒEj � � c05

K exp
�
�c1

j 2

K3"0 log j

�
: (3.78)

By Lemma 3.19, the bound (3.78) also holds withE 0j in place ofEj . By Markov’s inequal-
ity,

P

�
P ŒEj j‰K;n� > exp

�
�
c1

2

j 2

K3"0 log log j

��
� c05

K exp
�
�
c1

2

j 2

K3"0 log j

�
I (3.79)

and the same is true with E 0j in place of Ej .
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For T > 2K
1=2C3"0 , define

GT WD

²
max

®
P ŒEj j‰K;n�;P ŒE

0
j j‰K;n�

¯
� exp

�
�
c1

2

j 2

K3"0 log j

�
; 8j � log2 T

³
:

(3.80)

Since log2 T � K
1=2C3"0 , the probabilities on the right side of (3.79) for j � log2 T are

each bounded above by a constant depending only on �; C , and these probabilities decay
superexponentially fast in j . By a union bound, we therefore have

P ŒGT � � 1 �
1X

jDdlog2 T e

5K exp
�
�
c1

2

j 2

K3"0 log j

�
� 1 � c05

K exp
�
�c1

.logT /2

K3"0 log logT

�
; (3.81)

where we have replaced c0 and c1 by possibly different constants in the last line.
Henceforth assume that GT occurs. We will bound the conditional expectations of

zL
�p
0;n and zD0;n.around AS /p given ‰K;n.

Step 2: bound for zL�p0;n. We use the definition (3.77) of E 0j and the definition (3.80) of
GT to get

E

�
1

zL
p
0;n

ˇ̌̌̌
‰K;n

�
D E

�
1

zL
p
0;n

1
° 1\
jDdlog2 T e

.E 0j /
c
± ˇ̌̌̌
‰K;n

�
C

1X
jDdlog2 T e

E

"
1

zL
p
0;n

1E 0
j

ˇ̌̌̌
‰K;n

#

� 2p.1��QC�/K�
�p
n�K

�
T p C

1X
jDdlog2 T e

2jpP ŒE 0j j‰K;n�

�
� 2p.1��QC�/K�

�p
n�K

�
T p C

1X
jDdlog2 T e

2jp exp
�
�
c1

2

j 2

K3"0 log j

��
; (3.82)

with the implicit constants depending only on �; �; C . Since log2 T � K
1=2C3"0 , the sum

on the last line of (3.82) is of order o.T / < O.T p/. We therefore get, on GT ,

E

�
1

zL
p
0;n

ˇ̌̌̌
‰K;n

�
� T p2p.1��QC�/K�

�p
n�K : (3.83)

By replacing T by a constant times T 1=p (and reducing the value of c1 to compensate)
we now obtain (3.75) from (3.83) together with (3.81).

Step 3: bound for zD0;n.around AS /p . We now prove (3.76) via an argument similar to
the one leading to (3.75), but slightly more complicated. The extra complication comes
from the need to estimate EŒep�ˆ0;K .vS /1Ej j‰K;n� for each S 2 �K instead of just
P ŒEj j‰K;n�.
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By the definition (3.77) of Ej , for each S 2 �K ,

EŒ zD0;n.around AS /p j‰K;n�

� 2�pK�
p
n�K

�
T pEŒep�ˆ0;K .vS / j‰K;n�C

1X
jDdlog2 T e

2pjEŒ1Ej e
p�ˆ0;K .vS / j‰K;n�

�
:

(3.84)

The random variable ˆ0;K.vS / is independent of ‰K;n and is centered Gaussian with
variance K log 2, so for each s 2 R we have

EŒesˆ0;K .vS / j‰K;n� D 2
s2K=2: (3.85)

This already gives us a bound for the first term in the parentheses on the right in (3.84).
To bound the sum in (3.84), we apply Hölder’s inequality with exponents q WD

.1C �/=� and 1C � to find that for each j � log2 T ,

EŒ1Ej e
p�ˆ0;K .vS / j‰K;n� � P ŒEj j‰K;n�

1=qEŒe.1C�/p�ˆ0;K .vS / j‰K;n�
1=.1C�/:

By combining this estimate with (3.85) and the definition (3.80) of GT , we get

EŒ1Ej e
�.1C�/ˆ0;K .vS / j‰K;n� � exp

�
�
c1

2q

j 2

K3"0 log j

�
2.1C�/

2p2�2K=2: (3.86)

We now use (3.86) to bound each term in the sum on the right side of (3.84), and (3.85)
to bound the first term in the parentheses on the right side of (3.84). We find that on GT ,

2pK�
�p
n�KEŒ zD0;n.around AS /p j‰K;n�

� T p2p
2�2K=2

C 2.1C�/
2p2�2K=2

1X
jDdlog2 T e

exp
�
�
c1

2q

j 2

K3"0 log j

�
� T p2p

2�2K=2
C 2.1C�/

2p2�2K=2
� T p2.1C�/

2p2�2K=2: (3.87)

Note that in the second inequality, we use the fact that log2 T � K
1=2C3"0 to ensure

that the sum is of at most constant order. By replacing T with T 1=p (and reducing the
value of c1 to compensate) we deduce from (3.87) and (3.81) that (3.76) holds with
2�.p�.1C�/

2p2�2=2/K instead of 2�.p�p
2�2=2��/K . We can now apply this variant of (3.76)

with an appropriate choice of z� D z�.p; �/ < � in place of � to obtain (3.76).

We now use Hölder’s inequality to combine the bounds from Lemma 3.23.

Lemma 3.24. Assume the inductive hypothesis (3.14). Also fix p > 0 and � > 0. For
T � 2K

1=2C3"0 ,

P

�
max
S2�K

E

�
1

zL
p
0;n

zD0;n.around AS /p
ˇ̌̌̌
‰K;n

�
> T 2.p

2�2=2�p�QC�/K

�
� c05

K exp
�
�c1

.logT /2

K3"0 log logT

�
; (3.88)

where the constants c0; c1 > 0 depend only on �; p, �, and C .
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Proof. Let q D .1 C �/=�, so that 1=q C 1=.1 C �/ D 1. By Hölder’s inequality with
exponents q and 1C �, for each S 2 �K ,

E

�
1

zL
p
0;n

zD0;n.around AS /p
ˇ̌̌̌
‰K;n

�
� E

�
1

zL
pq
0;n

ˇ̌̌̌
‰K;n

�1=q
EŒ zD0;n.around AS /.1C�/q j‰K;n�1=.1C�/: (3.89)

By Lemma 3.23, it holds with probability at least 1 � c05K exp
�
�c1

.logT /2

K3"0 log logT

�
that

EŒzL�pq0;n j‰K;n�
1=q
� T 1=q2p.1��QC�/K�

�p
n�K

and

max
S2�K

EŒ zD0;n.around AS /.1C�/p j‰K;n�1=.1C�/ � T 1=.1C�/2�.p��
2p2=2�o�.1//K�

p
n�K ;

where o� .1/ denotes a deterministic quantity which tends to zero as � ! 0 and depends
only on p; �. Plugging these last two estimates into (3.89) and canceling the factors of
�
�p
n�K and �pn�K shows that with probability at least 1 � c05K exp

�
�c1

.logT /2

K3"0 log logT

�
,

max
S2�K

E

�
1

zL
p
0;n

zD0;n.around AS /p
ˇ̌̌̌
‰K;n

�
� T 2.p

2�2=2�p�QCo�.1//K :

This gives (3.88) with o� .1/ instead of �. We then apply this variant of (3.88) with an
appropriate choice of z� D z�.p; �/ < � in place of � to obtain (3.88).

To conclude the proof, it remains to transfer from a probability estimate to a moment
estimate.

Proof of Lemma 3.22. To lighten notation let

YS WD E

�
1

zL
p
0;n

zD0;n.around AS /p
ˇ̌̌̌
‰K;n

�
:

By Lemma 3.24, for each T > exp.K2=3/,

P
h

max
S2�K

YS > T 2
.p2�2=2�p�QC�/K

i
� c05

K exp
�
�c1

.logT /2

K3"0 log logT

�
: (3.90)

We use the bound (3.90) for T � exp.K2=3/ and the trivial bound P Œ� � � � � 1 for T �
exp.K2=3/ to get

E
h�
2�.p

2�2=2�p�QC�/K max
S2�K

YS

�2i
D 2

Z 1
0

TP
h
2�.p�

2=2�p�QC�/K max
S2�K

YS >T
i
dT

� exp.2K2=3/C 5K
Z 1

exp.K2=3/
exp

�
�c1

.logT /2

K3"0 log logT

�
dT

� exp.2K2=3/C 5K exp.�c1K4=3�3"0=log logK/ � exp.2K2=3/:
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Hence

E
h�

max
S2�K

YS

�2i1=2
� exp.K2=3/2.p

2�2=2�p�QC�/K :

We now slightly increase � to absorb the factor of exp.K2=3/. This gives (3.74).

3.9. Proof of Proposition 3.11

The idea of the proof is as follows. Just below, we will define a high-probability regularity
event E. We will then use the bound

E

��
max
S2�K

E

�
1FS

1

zL0;n

zD0;n.across AS /
ˇ̌̌̌
‰n;K

��2�
� 2E

��
max
S2�K

E

�
1FS\E

1

zL0;n

zD0;n.across AS /
ˇ̌̌̌
‰n;K

��2�
C 2E

��
max
S2�K

E

�
1Ec

1

zL0;n

zD0;n.across AS /
ˇ̌̌̌
‰n;K

��2�
: (3.91)

We will show (using a Gaussian estimate) that the first term on the right in (3.91) is
bounded above by a constant times 2�.˛.�/��/K . As for the second term, we will use the
Cauchy–Schwarz inequality together with the fact that P ŒEc � is small and Lemma 3.22
to show that this term is smaller than any negative power of 2K .

Step 1: high-probability regularity event. Let E be the event that the following is true:

(1) zL0;n � 2�.1��Q��/KCK
2=3
�n�K .

(2) zL0;n � 2�.1��QC�/K�K
2=3
�n�K .

(3) minS2�K e
��ˆ0;K .vS / zD0;n.across AS / � 2�K�K

2=3
�n�K .

(4) maxS2�K e
��ˆ0;K .vS / zD0;n.around AS / � 2�KCK

2=3
�n�K .

Lemmas 3.19 and 3.13 (applied with T D 2K
2=3

) give us bounds for the probabilities of
each the four conditions in the definition of E. Combined, these bounds yield

P ŒEc �DE
�
P ŒEcT j‰K;n�

�
� c05

K exp
�
�c1

K4=3

K3"0 logK

�
� c0 exp.�c1K4=3�3"0=logK/

(3.92)
where in the last inequality we decreased c1 to absorb the factor of 5K .

Step 2: bound for the conditional expectation on E. The key observation for this step is
that if S 2 �K is such that FS occurs, then the zD0;n-geodesic zP0;n must cross between
the inner and outer boundaries of the annulus AS at least once. Consequently,

FS H)
®
zD0;n.across AS / � zL0;n

¯
: (3.93)

We will now investigate what this bound gives us on the event E. By (3.93) together with
conditions (1) and (3) in the definition of E, for each S 2 �K ,

FS \E � HS WD
®
e�ˆ0;K .vS / � 2.�QC�/KC2K

2=3¯
:
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By conditions (2) and (4) in the definition of E, we also have

1E
1

zL0;n

zD0;n.across AS / � 2�.�Q��/KC2K
2=3

e�ˆ0;K .vS /:

Combining the above two inequalities gives

E

�
1FS\E

1

zL0;n

zD0;n.across AS /
ˇ̌̌̌
‰n;K

�
� 2�.�Q��/KC2K

2=3

EŒe�ˆ0;K .vS /1HS j‰n;K �:

(3.94)

The random variable ˆ0;K.vS / is centered Gaussian with variance K log 2 and is
independent of‰n;K . By the definition ofHS in (3.9) and a basic estimate for exponential
moments of a Gaussian random variable (Lemma A.2 applied with R D K log 2 and with
ˇ slightly larger than Q), we get

EŒe�ˆ0;K .vS /1HS j‰n;K � D EŒe�ˆ0;K .vS /1HS � D 2
Œ�.�^Q/�.�^Q/2=2Co�.1/�KCOK .K

2=3/

where the o� .1/ tends to zero as � ! 0 at a deterministic rate which depends only on �;
and the implicit constant in the OK.K2=3/ is deterministic and depends only on �; �. By
combining this last estimate with (3.94), we arrive at

E

�
1FS\E

1

zL0;n

zD0;n.across AS /
ˇ̌̌̌
‰n;K

�
� 2�.˛.�/Co�.1//KC2K

2=3

; 8S 2 �K ;

where ˛.�/ is as in (3.29). Consequently,

E

��
max
S2�K

E

�
1FS\E

1

zL0;n

zD0;n.across AS /
ˇ̌̌̌
‰n;K

��2�
� 2�2.˛.�/Co�.1//KC4K

2=3

:

(3.95)

Step 3: bound for the conditional expectation on Ec . By the Cauchy–Schwarz inequality,

E

�
1Ec

1

zL0;n

zD0;n.across AS /
ˇ̌̌̌
‰n;K

�
� P ŒEc j‰K;n�

1=2E

�
1

zL20;n

zD0;n.across AS /2
ˇ̌̌̌
‰n;K

�1=2
:

Therefore,

E

��
max
S2�K

E

�
1Ec

1

zL0;n

zD0;n.across AS /
ˇ̌̌̌
‰n;K

��2�
� E

�
P ŒEc j‰K;n� max

S2�K

E

�
1

zL20;n

zD0;n.across AS /2
ˇ̌̌̌
‰n;K

��
� E

�
P ŒEc j‰K;n�

2
�1=2

E

��
max
S2�K

E

�
1

zL20;n

zD0;n.across AS /2
ˇ̌̌̌
‰n;K

��2�1=2
(by Cauchy–Schwarz): (3.96)
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Since P ŒEc j‰K;n� � 1 and by (3.92),

E
�
P ŒEc j‰K;n�

2
�1=2
� E

�
P ŒEc j‰K;n�

�1=2
D P ŒEc �1=2 � c0 exp.�c1K4=3�3"0/:

(3.97)

By Lemma 3.22,

E

��
max
S2�K

E

�
1

zL20;n

zD0;n.across AS /2
ˇ̌̌̌
‰n;K

��2�1=2
� 2.2�Q�2�

2C�/K : (3.98)

By plugging (3.97) and (3.98) into (3.96), then absorbing a power of 2K into a power of
eK

4=3�3"0 , we arrive at

E

��
max
S2�K

E

�
1Ec

1

zL0;n

zD0;n.across AS /
ˇ̌̌̌
‰n;K

��2�
� c0 exp.�c1K4=3�3"0/: (3.99)

Step 4: Conclusion. By plugging (3.99) and (3.95) into (3.91) and adjusting �, we
obtain (3.32).

4. Tightness of point-to-point distances

This section has two main purposes.

� We establish tightness for the ��1n D0;n-distances between points (not just between non-
trivial connected sets, which is the setting covered by Proposition 3.2).

� We transfer our tightness results for ��1n D0;n to tightness results for the variant of LFPP
used in Theorem 1.2, namely a�1" D

"
h
, which is defined using convolutions of the GFF

with the heat kernel rather than the white noise decomposition (see (1.2)).

The following proposition is the main result of this section, and will be proven in Sec-
tion 4.3.

Proposition 4.1. Let � > 0. Let U � C be a connected open set and let K1; K2 � U
be disjoint compact connected sets (allowed to be singletons). The random variables
a�1" D

"
h
.K1; K2IU/ and .a�1" D

"
h
.K1; K2IU//

�1 for " 2 .0; 1/ are tight. Moreover, there
are constants c0; c1 > 0 depending only on � such that if n D log2 "

�1, then4

c0 � a�1" �n � c1: (4.1)

Our proof of Proposition 4.1 combined with Lemma 3.21 will also yield bounds for
the scaling constants a" appearing in Theorem 1.2, which will eventually be used to obtain
assertion (4) of Theorem 1.2.

4Note that n is not required to be an integer, but the definition of �n in Section 2.2 still makes
sense for non-integer values of n.
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Proposition 4.2. Let � > 0. For each � > 0, we have

r�QC� �
ra"=r

a"
� r�Q�� ; 8r 2 .0; 1/; 8" 2 .0; r/; (4.2)

r�Q�� �
ra"=r

a"
� r�QC� ; 8r > 1; 8" 2 .0; 1/; (4.3)

with the implicit constants depending only on �; �.

The rest of this section is structured as follows. In Section 4.1, we prove the tightness
of D0;n-distances between points by applying the estimate of Proposition 3.2 at dyadic
scales, then summing over scales. In Section 4.2, we explain why our estimates for D0;n
continue to hold when n is not required to be an integer (this is important since we do not
restrict to dyadic values of " in Proposition 4.1). In Section 4.3, we prove a comparison
lemma for D0;n and D"

h
(Lemma 4.10) and use it to extract Propositions 1.1, 4.1, and 4.2

from the analogous results forD0;n. In Section 4.4, we record some basic estimates forD"
h

which are consequences of our previously known estimates for D0;n.

4.1. Pointwise tightness for white-noise LFPP

Proposition 3.2 shows that ��1n D0;n-distances between infinite connected sets are tight.
In this subsection, we will show that also ��1n D0;n-distances between points are tight.

Proposition 4.3. Let � > 0. Let z; w 2 C be distinct and let U � C be a con-
nected open set containing z and w. The random variables ��1n D0;n.z; wI U/ and
.��1n D0;n.z; wIU//

�1 for n 2 N are tight.

The tightness of .��1n D0;n.z; wI U//
�1 follows directly from Proposition 3.2,

so the main difficulty in the proof of Proposition 4.3 is showing the tightness of
��1n D0;n.z; wIU/. The idea of the proof is to first apply Proposition 3.2 at dyadic scales
to build paths around and across dyadic annuli surrounding each point whose ��1n D0;n-
lengths are bounded above. We will then string together such paths to build paths between
points whose D0;n-lengths are bounded above. We first need a variant of Proposition 3.2
which can be applied at multiple scales.

Lemma 4.4. Fix � > 0. Let U � C be open and let K1; K2 � U be disjoint compact
connected sets which are not singletons. There are constants c0; c1 > 0 depending only
on �;U;K1;K2; � such that the following is true. For each n; k 2N0 with k � n and each
T > 3,

P Œ��1n D0;n.2
�kK1; 2

�kK2I 2
�kU/ < T �12�.�QC�/ke�ˆ0;k.0/� � c0e

�c1.logT /2 (4.4)

and

P Œ��1n D0;n.2
�kK1; 2

�kK2I 2
�kU/ > T 2�.�Q��/ke�ˆ0;k.0/� � c0e

�c1.logT /2=log logT :

(4.5)
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Proof. The idea of the proof is to re-scale space and then apply Proposition 3.2. By the
scale invariance property (2.5) of ˆ0;n,

ˆk;n.�/
d
D ˆ0;n�k.2

k
�/:

Therefore,
Dk;n.2

�kK1; 2
�kK2I 2

�kU/
d
D 2�kD0;n�k.K1; K2IU/:

By Proposition 3.2 applied with n � k in place of n, we thus obtain

P ŒDk;n.2
�kK1; 2

�kK2I 2
�kU/ < T �1=22�k�n�k � � c0e

�c1.logT /2 (4.6)

and

P ŒDk;n.2
�kK1; 2

�kK2I 2
�kU/ > T 1=22�k�n�k � � c0e

�c1.logT /2=.log logT /: (4.7)

We now temporarily impose the assumption that U is bounded (we will remove this
assumption at the end of the proof). We want to transfer from estimates for Dk;n to
estimates for D0;n using the fact that ˆ0;n D ˆk;n C ˆ0;k . To this end, we first use
Lemma 2.2 (with k in place of n) and the mean value theorem to get

P

�
sup

z22�kU

jˆ0;k.z/ �ˆ0;k.0/j >
1

2�
logT

�
� c0e

�c1.logT /2 : (4.8)

Since ˆ0;n D ˆk;n Cˆ0;k ,

exp
�
� min
z22�kU

ˆ0;k.z/
�
Dk;n.2

�kK1; 2
�kK2I 2

�kU/

� D0;n.2
�kK1; 2

�kK2I 2
�kU/

� exp
�
� max
z22�kU

ˆ0;k.z/
�
Dk;n.2

�kK1; 2
�kK2I 2

�kU/: (4.9)

By (4.8) and (4.9), with probability at least 1 � c0e�c1.logT /2 ,

T �1=2e�ˆ0;k.vS /Dk;n.2
�kK1; 2

�kK2I 2
�kU/

� D0;n.2
�kK1; 2

�kK2I 2
�kU/

� T 1=2e�ˆ0;k.vS /Dk;n.2
�kK1; 2

�kK2I 2
�kU/: (4.10)

Combining (4.10) with (4.6) and (4.7) shows that

P ŒD0;n.2
�kK1; 2

�kK2I 2
�kU/ � T �12�k�n�k � � 1 � c0e

�c1.logT /2 ;

P ŒD0;n.2
�kK1; 2

�kK2I 2
�kU/ � T 2�k�n�k � � 1 � c0e

�c1.logT /2=log logT :
(4.11)

By Lemma 3.21, 2.1��Q��/k�n � �n�k � 2.1��QC�/k�n with the implicit constants
depending only on �; �. Combining this with (4.11) gives (4.4) and (4.5) when U is
bounded.
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To deduce (4.4) when U is unbounded, choose a compact set K 0 which discon-
nects K1 from K2 and a bounded open set U 0 � C which contains K1; K2; K 0. Then
apply (4.4) with U 0 in place of U and K 0 in place of K2. The estimate (4.5) in the case
when U is unbounded is immediate from the bounded case since increasing U causes
D0;n.2

�kK1; 2
�kK2I 2

�kU/ to decrease.

The following lemma is the main input in the proof of Proposition 4.3.

Lemma 4.5. Fix � > 0, a bounded open set V � C, and an open set U � C with V � U .
There are constants c0; c1 > 0 depending only on �; V;U; � such that for each n 2 N and
each T > 3, with probability at least 1 � c0e�c1.logT /2=log logT the following is true. For
each z; w 2 V with jz � wj � 2 dist.V ; @U / .here dist denotes Euclidean distance/,

��1n D0;n.z; wIU/ � T

nX
jDdlog2 jz�wje

2�.�Q��/j .e�ˆ0;j .z/ C e�ˆ0;j .w//: (4.12)

Proof. See Figure 4 for an illustration of the proof. Throughout the proof, c0; c1 denote
deterministic constants which depend only on �; V; U; � and which are allowed to change
from line to line. We also require all implicit constants in� to be deterministic and depend
only on �; V; U; �.

z
w

Fig. 4. Illustration of the proof of Lemma 4.5. The red (resp. blue) curves are D0;n-geodesics
around (resp. across) Euclidean annuli surrounding z (resp. w). We upper-bound the D0;n-lengths
of these geodesics using Proposition 3.2, then use that the union of these geodesics is connected to
upper-bound D0;n.z; w/.

Step 1: defining a high-probability regularity event. For k 2 Œ0; n�Z, let Xk be a collection
ofOk.4k/ points x 2 C so that the balls B2�k�2.x/ for x 2Xk cover V . For x 2Xk and
T > 3, let Ek.x; T / be the event that

��1n D0;n
�
across B2�kC4.x/ n B2�k�2.x/

�
� T 2�.�QC�/ke�ˆ0;k.x/ (4.13)

and

��1n D0;n
�
around B2�kC1.x/ n B2�k .x/

�
� T 2�.�Q��/ke�ˆ0;k.x/: (4.14)
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By Lemma 4.4 (applied with �=2 in place of � and 2.�=2/kT in place of T ) and the trans-
lation invariance of the law of ˆ0;n,

P ŒEk.x; T /
c � � c0 exp

�
�c1

.k C logT /2

log.k C logT /

�
; 8k 2 N; 8x 2 Xk : (4.15)

Therefore,

P
h� \
x2Xk

Ek.x; T /
�ci
� c04

k exp
�
�c1

.k C logT /2

log.k C logT /

�
: (4.16)

The events Ek.x; T / are not quite sufficient for our purposes since they only allow
us to bound distances in terms of ˆ0;k.x/ for x 2 Xk , but we want to bound distances
in terms of ˆ0;k.z/ for an arbitrary z 2 U . For this purpose we also need a continuity
condition for ˆ0;k . By Lemma 2.2 (applied with x D 1

�
.logT C �k/), for each k 2 N it

holds with probability at least 1 � c0 exp.�c1.logT C log k/2/ that

2�k sup
z2B2.U /

jrˆ0;k.z/j �
1

�
.logT C �k/: (4.17)

For k 2 N, let Ek.T / be the union of
S
x2Xk

Ek.x; T / and the event in (4.17). Then

P ŒEk.T /
c � � c04

k exp
�
�c1

.kClogT /2

log.kClogT /

�
. Therefore, if we set

E.T / WD

n\
kD0

Ek.T / (4.18)

then by a union bound over k 2 Œ0; n�Z,

P ŒE.T /c � � c0

nX
kD0

4k exp
�
�c1

.k C logT /2

log.k C logT /

�

� c0

nCblogT cX
jDblogT c

4j�logT exp
�
�c1

j 2

log j

�
� c0 exp

�
�c1

.logT /2

log logT

�
: (4.19)

Step 2: building a path using (4.13) and (4.14). Henceforth assume that E.T / occurs, so
that (4.13) and (4.14) hold for every k 2 Œ0; n�Z and x 2 Xk and (4.17) holds for every
k 2 Œ0; n�Z. We will show that (4.12) holds.

For z 2 U and k 2 Œ0; n�Z, let xz
k
2Xk be chosen so that z 2 B2�k�2.x/. Also let P z

k

(resp. zP z
k

) be a path across (resp. around) B2�kC4.x
z
k
/ nB2�k�2.x

z
k
/ (resp. B2�kC1.x

z
k
/ n

B2�k .x
z
k
/) of minimalD0;n-length. Note that theD0;n-lengths of these paths are bounded

by (4.13) and (4.14). For k 2 Œ1; n�Z, the annuli

B2�kC1.x
z
k/ n B2�k .x

z
k/ and B2�kC2.x

z
k�1/ n B2�kC1.x

z
k�1/ (4.20)
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are each contained in B2�kC4.x
z
k
/ n B2�k�2.x

z
k
/. Consequently, the union of the paths

P z
k

, zP z
k

, and zP z
k�1

is connected. By iterating this, for each k 2 Œ0; n�Z, the union of the
paths P zj and zP zj for j 2 Œk; n�Z is connected. In particular, since P zn � B2�nC2.z/, we
can use (4.13) and (4.14) to get

D0;n.B2�nC2.z/; P
z
k / C .D0;n-length of P zk / � 2T

nX
jDk

2�.�Q��/j e
�ˆ0;j .x

z
j
/
: (4.21)

Step 3: comparing ˆ0;k.xzk/ and ˆ0;k.z/. Since jxz
k
� zj � 2�j�2 for each j 2 Œ0; n�Z,

it follows from (4.17) that

jˆ0;k.x
z
k/ �ˆ0;k.z/j �

1

�
.logT C �k/: (4.22)

Furthermore, by integrating e�ˆ0;n.�/ along a straight-line path from z to u and
using (4.17), we obtain

��1n sup
u2B

2�nC2
.z/

D0;n.u; z/ � T �
�1
n 2
�nC2e�ˆ0;n.z/ � T 2�.�Q��/ne�ˆ0;n.z/ (4.23)

where in the last inequality we use that �n � 2�.1��QC�/n (Proposition 2.5). Plug-
ging (4.22) and (4.23) into (4.21) gives

��1n D0;n.z; P
z
k /C �

�1
n .D0;n-length of P zk /

� ��1n D0;n.B2�nC2.z/; P
z
k /C �

�1
n .D0;n-length of P zk /C �

�1
n sup

u2B
2�nC2

.z/

D0;n.u; z/

� T 2
nX

jDk

2�.�Q�2�/j e�ˆ0;j .z/: (4.24)

Step 4: distance between two points. If z; w 2 U with jz � wj 2 Œ2�k ; 2�kC1�, then the
paths P z

k
and Pw

k
necessarily intersect. Moreover, if dist.z; w/ � 2 dist.V ; @U /, then the

paths P z
k

and Pw
k

are contained in U . Therefore, by (4.24) (applied to each of z and w)
together with the triangle inequality, we obtain that on E.T /,

��1n D0;n.z; wIU/ � T
2

nX
jDk

2�.�Q�2�/j .e�ˆ0;j .z/ C e�ˆ0;j .w//: (4.25)

Replacing T by T 1=2 and � by �=2 (which results in an adjustment to c0; c1 in (4.19))
now gives (4.12).

Proof of Proposition 4.3. To establish the tightness of ��1n D0;n.z;wIU/, we note that the
random variables ˆ0;k.z/ and ˆ0;k.w/ for k 2 N are centered Gaussian with variance
k log 2. From this, it is easily seen that if � is chosen to be small enough that �Q � � > 0,
then the sum on the right side of (4.12) converges a.s. as n!1 (with T , z, w fixed).

If jz � wj < 2 dist.¹zº [ ¹wº; @U /, then we can find a bounded connected open
set V with V � U such that z; w 2 V and jz � wj � 2 dist.V ; @U /. Therefore, in
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this case the tightness of ��1n D0;n.z; wI U/ follows from Lemma 4.5. If jz � wj �
2 dist.¹zº [ ¹wº; @U /, then we can find finitely many points z D z0; : : : ; zN D w in U
such that for each j 2 Œ1; N �Z, we have jzj � zj�1j � 2 dist.¹zj�1º [ ¹wj º; @U /. The
tightness of ��1n D0;n.z;wIU/ then follows from the triangle inequality and the tightness
of ��1n D0;n.zj�1; zj IU/ for each j 2 Œ1; N �Z.

To check tightness for .��1n D0;n.z; w//
�1, let A be a Euclidean annulus which

lies at positive distance from each of z and w and which disconnects z from w.
Then D0;n.z; w/ � D0;n.across A/. Proposition 3.2 implies that the random variables
.��1n D0;n.across A//�1 are tight, so also the random variables .��1n D0;n.z; w//

�1 are
tight.

4.2. Tightness for non-dyadic scales

So far, all of our results have only been proven for dyadic scales, i.e., for D0;n with an
integer value of n. However, our main theorems are stated for general values of " which
are not necessarily dyadic. So, we need to extend our results to the case of non-dyadic
scales.

We extend the definition (2.3) of ˆm;n to the case when m and n are not necessarily
integers. We similarly extend the definitions of Dm;n and �n from (2.10) and (2.13),
respectively, to non-integer values ofm;n. The purpose of this brief subsection is to show
that our tightness results for D0;n continue to hold if n is not required to be an integer.

Proposition 4.6. Propositions 3.2 and 4.3 continue to hold when n is allowed to be any
positive real number, not just an integer.

Throughout the rest of the paper, we will use Propositions 3.2 and 4.3 when n is not
necessarily an integer, without comment. The key input in the proof of Proposition 4.6 is
the following lemma.

Lemma 4.7. For each s 2 Œ�1; 1� and each n 2N, there is a coupling of two white noises
W;W 0 on C � R such that the following is true. Suppose that ˆ0;n is defined using the
white noise W and ˆ00;nCs is defined in the same manner as ˆ0;nCs but with W 0 in place
of W . For each bounded open set U � C, there are constants c0; c1 > 0 depending only
on U such that for each T > 1,

P
h

sup
z2U

jˆ00;nCs.z/ �ˆ0;n.2
sz/j > T

i
� c0e

�c1T
2

: (4.26)

Proof. We will treat the case when s � 0; the case when s < 0 is treated similarly but
with the roles of ˆ0;n and ˆ0;nCs interchanged. The relation (2.5) continues to hold with
non-integer values of n;m; k. In particular,

ˆ0;n.2
s
�/
d
D ˆs;nCs.�/:

Hence, we can find a coupling of two white noises W d
D W 0 such that if ˆ00;nCs , ˆ

0
0;s ,

andˆ0s;nCs are defined withW 0 in place ofW , then a.s.ˆ0;n.2s �/D ˆ0s;nCs.�/. Recalling
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that ˆ00;nCs D ˆ
0
s;nCs Cˆ

0
0;s , we have

sup
z2U

jˆ00;nCs.z/ �ˆ0;n.2
sz/j D sup

z2U

jˆ00;s.z/j: (4.27)

The function ˆ00;s is continuous and centered Gaussian with pointwise variance s log 2.
By the Borell-TIS inequality [12, 62] (see, e.g., [2, Theorem 2.1.1]), there are constants
c0; c1 > 0 depending only on U such that for each T > 1,

P

�
sup
z2U

jˆ00;s.z/j � E
h

sup
z2U

jˆ00;s.z/j
i
> T

�
� c0e

�c1T
2

: (4.28)

By Fernique’s criterion [39] (see [1, Theorem 4.1] or [28, Lemma 2.3] for the version
we use here) together with [22, Lemma 4], EŒsupz2U jˆ

0
0;s.z/j� is bounded above by a

constant depending only on U . By combining this with (4.28) and recalling (4.27), we
get (4.26) (with possibly modified values of c0; c1).

Lemma 4.8. For each n 2 N and each s 2 Œ�1; 1�, we have �nCs � �n with the implicit
constant depending only on � .

Proof. For p 2 .0; 1/, let `sn.p/ be the pth quantile of D0;n.2s@LS; 2s@RSI 2sS/, i.e.,
`sn.p/ is defined in the same manner as `n.p/ from (2.12) but with 2sS instead of S.
Lemma 4.7 implies that there is a p 2 .0; 1/ depending only on � such that `sn.p/ �
�nCs � `

s
n.1 � p/. By Proposition 3.2, `sn.p/ and `sn.1 � p/ each differ from �n by at

most a �-dependent positive constant factor. Thus the lemma statement holds.

Proof of Proposition 4.6. This follows by combining Propositions 3.2 and 4.3, respec-
tively, with Lemmas 4.7 and 4.8.

4.3. Comparison of D0;n and D"
h

Recall the definitions of h�" from (1.1), D"
h

from (1.2), and a" from (1.3). Before we
transfer our above results for D0;n to results for D"

h
, we need some further preliminary

facts and definitions concerning D"
h
.

The metricsD"
h

possess an important scale invariance property which is easy to check
from the definition (see [31, Lemma 2.6]). To state this property, we let hr .z/ for r > 0
and z 2 C be the average of h over the circle @Br .z/ (see [36, Section 3.1] for more on
the circle average process). Then our scale invariance property reads

.D
"=r

h
.z; w//z;w2C

d
D .r�1e��hr .0/D"

h.rz; rw//z;w2C; 8r; " > 0: (4.29)

The random variable h�" .z/ does not depend locally on h since the heat kernel p"2=2
is non-zero on all of C. For this reason we will also need to work with a localized version
of h�" , which we will denote by yh�" . The same function yh�" is also used in [31, Section 2.1].

For " > 0, let �" W C ! Œ0; 1� be a deterministic, smooth, radially symmetric bump
function which is identically equal to 1 onB"1=2=2.0/ and vanishes outside ofB"1=2.0/ (in
fact, the power 1=2 could be replaced by any p 2 .0; 1/). We can choose �" in such a way
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that " 7! �" is a continuous mapping from .0;1/ to the space of continuous functions
on C, equipped with the uniform topology. We define

yh�" .z/ WD

Z
C
h.w/�".z � w/p"2=2.z; w/ dw; (4.30)

with the integral interpreted in the sense of distributional pairing. Since  " vanishes out-
side of B"1=2.0/, it follows that yh�" .z/ is a.s. determined by hjB

"1=2
.z/. It is easy to see that

yh�" a.s. admits a continuous modification (see Lemma 4.9 below). We henceforth assume
that yh�" is replaced by such a modification.

As in (1.2), we define the localized LFPP metric

yD"
h.z; w/ WD inf

P Wz!w

Z 1

0

e�
yh�" .P.t//jP 0.t/j dt; (4.31)

where the infimum is over all piecewise continuously differentiable paths from z to w. By
the definition of yh�" ,

for any open U � C, the internal metric yD"
h.�; �IU/ is a.s. determined by hjB

"1=2
.U /

(4.32)
(we make this a numbered equation for ease of reference later).

The following lemma is essentially a restatement of [31, Lemma 2.1].

Lemma 4.9 ([31]). Almost surely, .z; "/ 7! yh�" .z/ is continuous. Furthermore, for each
bounded open set U � C, a.s.,

lim
"!0

sup
z2U

jh�" .z/ �
yh�" .z/j D 0: (4.33)

In particular, a.s.,

lim
"!0

yD"
h
.z; wIU/

Dh.z; wIU/
D 1; uniformly over all z; w 2 U with z 6D w: (4.34)

The same is true if we replace h by a zero-boundary GFF on an open subset V of C and
we require that U � V .

The last part of Lemma 4.9 (concerning the zero-boundary GFF) is not explicitly
stated in [31], but it follows from the same proof as in the case of a whole-plane GFF.

The following lemma is our main tool for transferring results between D0;n and D"
h
.

Lemma 4.10. Let U � C be a bounded open set. Let " 2 .0; 1/ and let n WD log2 "
�1

.note that n is not required to be an integer/. There is a coupling of h with the white noise
W from (2.3) and constants c0; c1 > 0 depending only on U; � such that

P
h

sup
z2U

jˆ0;n.z/ � h
�
" .z/j > x

i
� c0e

�c1x
2

C o".1/; 8x > 0; (4.35)

where the o".1/ is deterministic and tends to zero as "! 0.
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Proof. Throughout the proof, c0; c1 denote deterministic positive constants depending
only on U; � which may change from line to line. Let U 00 � U 0 � U be bounded open sets
withU �U 0 andU 0�U 00. Let Vh be a zero-boundary GFF onU 00. Define Vh�" .z/ for z 2U 00

as in (1.1) but with Vh in place of h (we take VhD 0 outside of U 00). By [22, Proposition 29],
there is a coupling of Vh with ˆ0;n such that

P
h

sup
z2U 0

jˆ0;n.z/ � Vh
�
" .z/j > x

i
� c0e

�c1x
2

: (4.36)

To transfer from Vh to h, we use the Markov property of h (see, e.g., [48, Lemma 2.1])
to couple h and Vh in such a way that hjU 00 D VhC h, where h is a random centered Gaussian
harmonic function on U 00. Since h is continuous on U 0, the Borell-TIS inequality implies
that

P
h

sup
z2U 0

jh.z/j > x
i
� c0e

�c1x
2

: (4.37)

We want to use (4.37) to compare h�" .z/ and Vh�" .z/, but we cannot do this directly since
h�" .z/ is not determined by hjU 0 . So, we instead need to use localized versions of h�" .z/

and Vh�" .z/. Define yh�" as in (4.30) and define
y
Vh�" as in (4.30) with Vh in place of h. Also note

that by the mean value property of h, if we define yh�" .z/ as in (4.30) with h in place of

h, then yh�" .z/ D h.z/ whenever B"1=2.z/ � U
00. Since yh�" .z/ (resp.

y
Vh�" .z/) is determined

by the restriction of h (resp. Vh) to B"1=2.z/, it follows from (4.37) that whenever "1=2 is
smaller than the Euclidean distance from U to @U 0,

P
h

sup
z2U

jyh�" .z/ �
y
Vh�" .z/j > x

i
� c0e

�c1x
2

: (4.38)

On the other hand, by Lemma 4.9, a.s.,

lim
"!0

sup
z2U

max ¹jh�" .z/ � yh
�
" .z/j; j

Vh�" .z/ �
y
Vh�" .z/jº D 0: (4.39)

By combining (4.36), (4.38), and (4.39) we obtain (4.35).

Proof of Proposition 4.1. First assume that U is bounded. By Lemma 4.10, if we set n D
log2 "

�1 then the metrics D0;n and D"
h

can be coupled together so that the corresponding
internal metrics on U are bi-Lipschitz equivalent, and moreover the laws of the Lipschitz
constants in each direction can be bounded independently of ". From this bi-Lipschitz
equivalence applied with U equal to a neighborhood of the unit square S, it follows that
there exists p 2 .0; 1=2/ depending only on � such that in the notation (2.12),

`n.p/ � a" � `n.1 � p/:

Due to the tightness of the law of ��1n L0;n, we have `n.p/ � �n and `n.1 � p/ � �n,
with the implicit constants depending only on � . Thus (4.1) holds.
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The tightness of a�1" D
"
h
.K1; K2I U/ and its reciprocal for bounded U now fol-

lows from the analogous tightness statement for ��1n D0;n.K1; K2IU/ (Propositions 3.2
and 4.3) together with Proposition 4.6 (to allow for non-integer values of n).

We now treat the case whenU is unbounded. Let V �U be a bounded connected open
set which containsK1 andK2. ThenD"

h
.K1;K2IU/ �D

"
h
.K1;K2IV / so the case when

U is bounded already implies that a�1" D
"
h
.K1; K2IU/ is tight. To get the tightness of

.a�1" D
"
h
.K1;K2IU//

�1, let… be Jordan curve in V which disconnectsK1 fromK2 [ @V .
Then

D"
h.K1; K2IU/ � D

"
h.K1;…IU/ D D

"
h.K1;…IV / (4.40)

so the tightness of the reciprocal .a�1" D
"
h
.K1; K2IU//

�1 follows from the tightness of
.a�1" D

"
h
.K1;…IV //

�1.

Proof of Proposition 1.1. This is immediate from Proposition 2.5 and (4.1) (plus
Lemma 4.8 to deal with non-integer values of n).

Proof of Proposition 4.2. By Lemma 3.21 combined with Lemma 4.8 (to allow for non-
integer n and K), it holds for each n > K > 0 that

2�.1��QC�/K �
�n

�n�K
� 2�.1��Q��/K ; (4.41)

with the implicit constants depending only on �; � . To prove (4.2), we apply Lemma 3.21
with n > 0 such that "D 2�n andK > 0 such that 2�K D r , then use (4.1) to compare a"
with �n and a"=r with �n�K . To prove (4.3), we apply Lemma 3.21 with n > 0 such that
"=r D 2�n and K > 0 such that 2�K D r , then use (4.1) to compare a"=r with �n and a"
with �n�K .

4.4. Additional estimates for D"
h

With Proposition 4.1 established, we can now prove some useful estimates for the LFPP
metricD"

h
. We first have a variant of Lemma 4.4 forD"

h
. For the statement, we recall that

hr .0/ is the average of h over the circle of radius r centered at 0.

Lemma 4.11. Let U �C be a bounded open set and letK1;K2 � U be disjoint compact
connected sets which are not singletons. There are constants c0; c1 > 0 depending only
on U;K1; K2; � such that for each r > 0, each " 2 .0; r/, and each T > 3,

P ŒD"
h.rK1; rK2I rU / < T

�1ra"=re
�hr .0/� � c0e

�c1.logT /2
C o".1/ (4.42)

and

P ŒD"
h.rK1; rK2I rU / > T ra"=re

�hr .0/� � c0e
�c1.logT /2=log logT

C o".1/; (4.43)

where the rate of convergence of the o".1/ depends on U;K1; K2; �; T; r .



J. Ding, E. Gwynne 3890

Proof. By Proposition 3.2 combined with Lemma 4.10 (to compare D"
h

and D0;n)
and (4.1) of Proposition 4.1 (to compare a" and �n), we obtain the lemma statement
in the case when r D 1. For a general choice of r , we use (4.29) which gives

D
"=r

h
.K1; K2IU/

d
D r�1e��hr .0/D"

h.rK1; rK2I rU /:

So, the lemma for a general choice of r follows from the case when r D 1 (with "=r in
place of r).

Our next lemma tells us that, in a certain precise sense, D"
h
-distance from a compact

set to1 is infinite.

Lemma 4.12. For each fixed r > 0 and each T > 1,

lim
R!1

lim
"!0

P Œa�1" D
"
h.@Br .0/; @BR.0// � T � D 1: (4.44)

Proof. Fix a small constant � > 0. By Lemma 4.11 (applied with T D 2�k), for each
k 2 N,

lim
"!0

P

�
a�1" D

"
h

�
across B2k .0/ n B2k�1.0/

�
� 2��k

2ka2�k"
a"

e�h2k .0/
�
D 1: (4.45)

By Proposition 4.2, 2ka2�k"=a" D 2
�QkCok.k/ as k !1, uniformly over all " 2 .0; 1/.

Since h2k .0/ is centered Gaussian with variance k log 2, it holds with probability tending
to 1 as k!1 that h2k .0/ �

�
�
k log2. By combining these last two estimates with (4.45)

and shrinking the value of �, we get

lim
k!1

lim
"!0

P
�
a�1" D

"
h

�
across B2k .0/ n B2k�1.0/

�
� 2.�Q��/k

�
D 1: (4.46)

If � 2 .0; �Q/, then limk!1 2
.�Q��/k D1. Furthermore, if 2k 2 Œ2r; R�, then

D"
h.@Br .0/; @BR.0// � D

"
h

�
across B2k .0/ n B2k�1.0/

�
:

Hence (4.44) follows from (4.46).

5. Tightness of LFPP

5.1. Subsequential limits

In this subsection we will extract a subsequence of "-values tending to zero along which a
number of functionals of a�1" D

"
h

converge jointly in law. In Section 5.2, we will use these
convergence statements to produce a subsequential limiting metric Dh. The rest of the
section is devoted to showing that Dh satisfies the conditions of Theorems 1.2 and 1.3.

We start with some definitions which will be convenient since we can only show the
subsequential convergence of the joint law of countably many functionals of a�1" D

"
h
.
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Definition 5.1. A rational circle is a circle of the form O D @Br .u/ for r 2 Q \ Œ0;1/
and u2Q2. In order to make statements more succinct, we view a point in Q2 as a rational
circle with radius 0. A rational annulus is the closure of the region A between two non-
intersecting rational circles with positive radii. We say that a rational circle with positive
radius or a rational annulus surrounds z 2 C if it does not contain z and it disconnects z
from1.

By countably many applications of Proposition 4.1, for any sequence of "-values tend-
ing to zero we can find a subsequence E and a coupling of the GFF h with random
variables VDh.O1; O2/ for rational circles O1; O2, random variables D"

h
.around A/ for

rational annuli A for which the following is true. Let h" for " 2 E be a random variable
with the same law as h, and assume that D"

h
has been defined with h" in place of h. Then

we have the following joint convergence in law as E 3 "! 0:

a�1" D
"
h.O1; O2/!

VDh.O1; O2/; 8 rational circles O1; O2; (5.1)

a�1" D
"
h.around A/! VDh.around A/; 8 rational annuli A; (5.2)

h"r ! hr in local uniform topology and h" ! h in the distributional topology: (5.3)

The reason why we write VDh instead ofDh for the limiting random variables is that we do
not know a priori that these quantities are distances with respect to the metric Dh which
we define below. Nevertheless, by a slight abuse of notation, for a rational annulus A, we
define

VDh.across A/ WD VDh.O1; O2/; (5.4)

where O1; O2 are the boundary circles of A.
In order to use various scaling arguments and also to check assertion (4) of Theo-

rem 1.2, we will also need to extract subsequential limits of the ratios of scaling constants
a". By Proposition 4.2, after possibly replacing E by a further subsequence we can arrange
that there are numbers cr > 0 for each r 2 Q \ .0;1/ such that

lim
E3"

ra"=r

a"
D cr : (5.5)

Note that Proposition 4.2 implies that

cr D r
�QCor .1/ as Q 3 r ! 0 or Q 3 r !1: (5.6)

Throughout the rest of this section we fix a sequence E for which the convergences of
joint laws (5.1), (5.2), and (5.3) hold and also (5.5) holds.

By the Skorokhod embedding theorem, we can find a coupling of ¹.h";D"
h
/º"2E with

the random variables VDh.O1; O2/ and VDh.around A/ such that the convergences (5.1),
(5.2), and (5.3) occur a.s. Note that with this choice of coupling, ¹D"

h
º"2E are defined

using h" dD h instead of h.
We have the following elementary relations between the random variables defined

above, which are the starting point of the proofs in this section.
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A

O′
1

O′
2

O1

O2
O1

O2 O3

O4

O5

O0

Fig. 5. Left: Illustration of the proof of Lemma 5.2 (i) in the case when k D 5. Note that hereO5 is a
rational circle of radius 0 (i.e., a point). The lemma follows since any path fromO0 toO5 must pass
through O1; O2; O3; O4. Right: Illustration of the proof of Lemma 5.2 (ii). The paths of minimal
a�1" D"

h
-length from O1 to O 01 and from O2 to O 02 must each cross A. So, the union of these two

paths with a path of minimal a�1" D"
h

-length around A is connected. This gives us an upper bound
for a�1" D"

h
.O1; O2/. Note that it does not matter whether O1 and O2 lie in the same connected

component of C n A or not. Also note that one or more of O1; O 01; O2; O
0
2 is allowed to be equal

to the inner or outer boundary of A.

Lemma 5.2. Almost surely, the following is true.

(i) LetO0; : : : ;Ok be disjoint rational circles such thatOj disconnectsOj�1 fromOjC1
for each j 2 Œ1; k � 1�Z. Then VDh.O0; Ok/ �

Pk
jD1

VDh.Oj ; Oj�1/.

(ii) Let O1; O 01; O2; O
0
2 be rational circles and suppose that A is a rational annulus

whose interior is disjoint from each of O1; O 01; O2; O
0
2. Suppose also that O1; O 01

lie in different connected components of C n A and O2; O 02 lie in different con-
nected components of C n A. Then VDh.O1; O2/ � VDh.O1; O 01/C VDh.O2; O

0
2/C

VDh.around A/.

(iii) If O1; O2 are disjoint rational annuli then VDh.O1; O2/ > 0.

Proof. To prove assertions (i) and (ii), note that the analogous statements with a�1" D
"
h

in place of VD"
h

are obvious from the fact that a�1" D
"
h

is a length metric (see Figure 5).
Passing through to the limit gives these two assertions. Assertion (iii) follows since the
random variables .a�1" D

"
h
.O1; O2//

�1 are tight (Proposition 4.1).

Roughly speaking, Lemma 5.2 says that the random variables VDh.O0; Ok/ and
VDh.across A/ behave like distances with respect to a length metric, even though we do

not know that these random variables are actual distances with respect to a length metric.

5.2. Definition of the limiting metric

We now define the subsequential limiting metric appearing in our main theorem state-
ments. For z; w 2 C, let

Dh.z; w/ WD

´
limOz#z;Ow#w

VDh.Oz ; Ow/; z 6D w;

0; z D w;
(5.7)
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where the limit is over any sequence of rational circles with positive radii Oz surround-
ing z and Ow surrounding w whose radii shrink to zero. The following lemma tells us
that (5.7) is well-defined.

Lemma 5.3. Almost surely, the limit in (5.7) exists for all pairs of distinct points z;w 2C
.it is allowed to be equal to1/ and does not depend on the sequence of approximating
circles.

Once Lemma 5.3 is established, it is immediate from (5.7) that Dh is symmetric.
Furthermore, Lemma 5.2 (iii) (together with the monotonicity considerations described in
the proof of Lemma 5.3 just below) implies that Dh is positive definite. We will check
thatDh satisfies the triangle inequality in Lemma 5.10 below, so thatDh is a metric on C,
although it is allowed to take on infinite values. For the proof of Lemma 5.3 we need the
following definition.

Definition 5.4. We say that a sequence ¹Omºm2N of rational circles with positive radii
nests down to z ifOm surroundsOmC1 for eachm 2N,Om surrounds z for eachm 2N,
and the radii of the Om’s tend to zero as m!1.

Proof of Lemma 5.3. The key observation is as follows. If Oz ; O 0z are rational circles
surrounding z and Ow ; O 0w are rational circles surrounding w such that Oz \ Ow D ;,
Oz surrounds O 0z , and Ow surrounds O 0w , then by Lemma 5.2 (i),

VDh.Oz ; Ow/ � VDh.O
0
z ; O

0
w/: (5.8)

This gives us a monotonicity property for the limit in (5.7) which will allow us to check
convergence. We remark that this monotonicity property is the main reason why we define
Dh.z; w/ in terms of VDh-“distances” between rational circles which shrink to z and w
rather than in terms of VDh-“distances” between rational points which converge to z andw.

We first check convergence for sequences ¹Omz ºm2N and ¹Omw ºm2N of rational circles
which nest down to z and w, respectively. By (5.8), VDh.Omz ; O

m
w / is non-decreasing

in m provided m is large enough that the radii of the circles are smaller than jz � wj=2.
Therefore, the limit

ˇ WD lim
m!1

VDh.O
m
z ; O

m
w / (5.9)

exists (it is allowed to be equal to1).
We will now check that this limit does not depend on the choice of ¹Omz ºm2N and

¹Omw ºm2N . Let ¹ zOmz ºm2N and ¹ zOmw ºm2N be another pair of sequences of rational circles
which nest down to z and w respectively, and let ž WD limm!1

VDh.O
m
z ; O

m
w /. We will

show that ˇ � ž (the inequality in the other direction follows by symmetry). Indeed, since
the radii of the Omz ’s and Omw ’s tend to zero, for each m0 2 N there exists m1 � m0 such
that zOm0z surrounds Omz and zOm0w surrounds Omw for each m � m1. By (5.8), it follows
that

VDh. zO
m0
z ; zOm0w / � VDh.O

m
z ; O

m
w /; 8m � m1: (5.10)

Sending m!1 and then m0 !1 shows that ž � ˇ, as required.
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If ¹Omz ºm2N and ¹Omw ºm2N are arbitrary sequences of rational circles surrounding z
and w, respectively, whose radii shrink to zero (which are not necessarily nested) then
there is a subsequence mj ! 1 along which Omjz and Omjw nest down to z and w,
respectively. By the preceding paragraph it follows that every subsequence of the num-
bers VDh.Omz ; O

m
w / has a further subsequence which converges to ˇ. This implies that

limm!1
VDh.O

m
z ; O

m
w / D ˇ. Hence the limit in (5.7) exists and equals ˇ.

We have the following trivial consequence of Lemma 5.2 which allows us to bound
Dh-distances instead of just VDh-“distances”.

Lemma 5.5. Almost surely, the following is true.

(i) Let z; w 2 C be distinct and let O0; : : : ; Ok be disjoint rational circles such that Oj
disconnects Oj�1 from OjC1 for each j 2 Œ1; k � 1�Z, O0 disconnects z from O1,
and Ok disconnects w from Ok�1. Then Dh.z; w/ �

Pk
jD1

VDh.Oj ; Oj�1/.

(ii) Let z;w; z0; w0 2 C and suppose that A is a rational annulus which does not contain
any of z; w; z0; w0. Suppose also that z; z0 lie in different connected components of
C n A and w;w0 lie in different connected components of C n A. Then Dh.z; w/ �
Dh.z; z

0/CDh.w;w
0/C VDh.around A/.

Proof. This follows by applying Lemma 5.2 with some of the rational circles equal to the
circles Omz and Omw in the definition (5.7) of Dh, then taking a limit as m!1.

5.3. Lower semicontinuity

We now check assertion (1) of Theorem 1.2.

Proposition 5.6. In the coupling defined in Section 5.1, we have a�1" D
"
h
! Dh a.s. as

E 3 " ! 0 with respect to the topology on lower semicontinuous functions defined in
Section 1.2. In particular, Dh is lower semicontinuous.

To prove Proposition 5.6, we will check the two conditions for convergence of lower
semicontinuous functions in terms of sequences of points. The following lemma corre-
sponds to condition (A).

Lemma 5.7. Almost surely, the following is true. Let z; w 2 C and let ¹z"º"2E and
¹w"º"2E be such that z" ! z and w" ! w. Then

Dh.z; w/ � lim inf
E3"!0

a�1" D
"
h.z

"; w"/: (5.11)

Proof. For m 2 N, let Omz be a rational circle surrounding B2�m�1.z/ with radius 2�m.
Similarly define Omw . For small enough " 2 E we have z" 2 B2�m�1.z/ and w" 2

B2�m�1.w/, in which case Omz (resp. Omw ) surrounds z" (resp. w"). Therefore,

a�1" D
"
h.z

"; w"/ � a�1" D
"
h.O

m
z ; O

m
w /: (5.12)
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Taking the liminf of both sides gives

lim inf
E3"!0

a�1" D
"
h.z

"; w"/ � VDh.O
m
z ; O

m
w /; 8m 2 N: (5.13)

By (5.7), the right side of (5.11) converges to Dh.z; w/ as m ! 1. Hence (5.13)
implies (5.11).

The next lemma corresponds to the other condition (B) needed for convergence.

Lemma 5.8. Almost surely, the following is true. For each z;w 2C, there exist sequences
¹z"º"2E and ¹w"º"2E such that z" ! z, w" ! w, and

Dh.z; w/ D lim
E3"!0

a�1" D
"
h.z

"; w"/: (5.14)

Proof. Let ¹Omz ºm2N and ¹Omw ºm2N be sequences of rational circles nesting down to z
and w, respectively. For " 2 E and m 2 N, let z";m 2 Omz and w";m 2 Omw be such that

a�1" D
"
h.z

";m; w";m/ D a�1" D
"
h.O

m
z ; O

m
w /:

Then for each fixed m 2 N, we have a�1" D
"
h
.z";m; w";m/! VDh.O

m
z ; O

m
w / along E , so

by (5.7) we have a�1" D
"
h
.z";m; w";m/! Dh.z; w/ as "! 0 and then m!1.

We will now pass to a suitable “diagonal subsequence” of z";m in order to get a
sequence satisfying (5.14). For m 2 N, choose "m 2 E such that

ja�1" D
"
h.z

";m; w";m/ � VDh.O
m
z ; O

m
w /j � 2

�m; 8" 2 E with " � "m: (5.15)

We can take "m to be strictly decreasing in m, so that "m ! 0 as m ! 1. For
each " 2 Œ"m; "mC1/ \ E , we define z" WD z";m, w" WD w";m, and m."/ WD m. Since
m."/ ! 1 as "m ! 0, it follows that the radii of Om."/z and Om."/w tend to zero as
"! 0. Therefore, z" ! z, w" ! w, and the definition (5.7) of Dh.z; w/ implies that
lim"!0

VDh.O
m."/
z ; O

m."/
w / D Dh.z; w/. By (5.15),

ja�1" D
"
h.z

"; w"/ � VDh.O
m."/
z ; Om."/w /j � 2�m."/ ! 0 as E 3 "! 0:

Therefore, (5.14) holds.

Proof of Proposition 5.6. Combine Lemmas 5.7 and 5.8.

We note that Lemma 5.7 immediately implies the following.

Lemma 5.9. For any fixed z; w 2 C, a.s. Dh.z; w/ <1.

Proof. By Proposition 4.1, the random variables a�1" D
"
h
.z; w/ are tight. Consequently, it

is a.s. the case that there is a random C > 0 and a random subsequence E 0 � E such that
a�1" D

"
h
.z;w/ � C for each " 2 E 0. Hence a.s. lim inf"!0 a�1" D

"
h
.z;w/ <1. The lemma

statement now follows from Lemma 5.7.
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5.4. Triangle inequality

Our next goal is to check the triangle inequality for Dh, and thereby establish that Dh is
a metric.

Proposition 5.10. Almost surely, the functionDh satisfies the triangle inequality, i.e., for
all x; y; z 2 C we have

Dh.x; z/ � Dh.x; y/CDh.y; z/: (5.16)

Hence Dh is a metric on C.

The proof of Proposition 5.10 is more involved than one might initially expect, for the
following reason. Suppose ¹Omx ºm2N , ¹Omy ºm2N , and ¹Omz ºm2N are sequences of ratio-

nal circles nesting down to x; y; z, respectively .Definition 5.4/, so that VDh.Omx ;O
m
y /!

Dh.x; y/ and similarly for .y; z/ and .x; z/. It is not necessarily the case that

VDh.O
m
x ; O

m
z / �

VDh.O
m
x ; O

m
y /C

VDh.O
m
y ; O

m
z /: (5.17)

The heuristic reason for this is that the points onOmy at “minimal VDh-distance” from each
of Omx and Omz are not necessarily the same. To deal with this difficulty, we need a way
to “join up” a “path” from Omx to Omy and a “path” from Omy to Omz into a “path” from

Omx to Omz (the reason for all of the quotations marks is that we do not know that “ VDh-
distances” come from an actual length metric). We will do this by showing that we can
chooseOmy in such a way that there is an annulus Amy withOmy as its inner boundary such
that VDh.around Amy / is small, then using Lemma 5.2 (ii). See Figure 6.

In order to ensure the existence of the annulus Amy , we will work with a certain spe-
cial sequence of rational circles nesting down to y, which we construct in the following
lemma.

Lemma 5.11. There is a deterministic constant C > 0 depending only on � such that
the following is true almost surely. For each z 2 C, there exists a sequence ¹Omºm2N

of rational circles nesting down to z (Definition 5.4) with the following properties. For
m 2 N, let yOm be the circle with the same center as Om and twice the radius and let
Am be the rational annulus between Om and yOm. Then for each m 2 N, Om surrounds
yOmC1 and

VDh.around Am/ � C VDh.across Am/: (5.18)

As discussed above, the reason why the control on VDh.around Am/ from condi-
tion (5.18) is useful is that it allows us to “link up paths from Om to points outside of
Om” via Lemma 5.2 (ii). Before we prove Lemma 5.11, we record the following supple-
mentary lemma which will often be useful when we apply Lemma 5.11.

Lemma 5.12. Almost surely, the following is true. Let z 2 C and let ¹Omºm2N be a
sequence of rational circles nesting down to z satisfying the conditions of Lemma 5.11.
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Also let Am be the rational annuli as in Lemma 5.11. If there exists w 2 C n ¹zº such that
Dh.z; w/ <1, then

lim
m!1

VDh.around Am/ D lim
m!1

VDh.across Am/ D 0: (5.19)

Proof. By (5.18) we only need to show that limm!1
VDh.across Am/ D 0. Fix a point

w 2 C n ¹zº such that Dh.z; w/ is finite. By possibly ignoring finitely many of the Am’s
we can assume without loss of generality that w is not contained in or disconnected from
1 byA1. By Lemma 5.11 the annuliAm form 2N are disjoint. Therefore, Lemma 5.2 (i)
together with the definition (5.7) of Dh.z; w/ implies that

Dh.z; w/ �

1X
mD1

VDh.across Am/: (5.20)

SinceDh.z;w/ is finite by hypothesis and VDh.across Am/ � 0 for everym 2 N, the sum
on the right side of (5.20) can have at most finitely many terms larger than any " > 0. It
follows that limm!1

VDh.across Am/ D 0, as required.

We now turn our attention to the proof of Lemma 5.11. We first prove an analogous
statement for the LFPP metrics D"

h
using the tightness of distances around and across

Euclidean annuli (Proposition 4.1) together with the near-independence of the restriction
of the GFF to disjoint concentric annuli [45, Lemma 3.1].

For C > 1, u 2 C, k 2 N0, and " > 0, let

E"k.uIC/ WD
®
D"
h

�
around B2�kC1.u/nB2�k .u/

�
�CD"

h

�
across B2�kC1.u/nB2�k .u/

�¯
:

(5.21)

Define yE"
k
.uIC/ similarly but with the localized LFPP metric yD"

h
of (4.31) used in place

of D"
h
. We now check that E"

k
.uIC/ occurs with high probability when C is large.

Lemma 5.13. For each p 2 .0; 1/, there exists C > 1 .depending only on �/ such that
for each u 2 C and each k 2 N0,

P ŒE"k.uIC/� � p � o".1/; 8" 2 .0; 1/; (5.22)

where the o".1/ tends to zero as "! 0 at a rate depending only on �; k; p .not on u/. The
same holds with yE"

k
.uIC/ in place of E"

k
.uIC/.

Proof. By Proposition 4.1, the random variables a�1" D
"
h
.around B2.0/ n B1.0// and

.a�1" D
"
h
.across B2.0/ n B1.0///�1 are tight. Consequently, we can find C > 1 such that

P ŒE"0.0IC/� � p; 8" 2 .0; 1/: (5.23)

By (4.29), we have the scaling relation

.D2k"
h .z; w//z;w2C

d
D
�
2ke��h2�k .0/D"

h.2
�kz; 2�kw/

�
z;w2C

; (5.24)



J. Ding, E. Gwynne 3898

where h2�k .0/ is the average of h over @B2�k .0/. Since scaling D"
h

by a constant factor
does not affect the occurrence of E"

k
.uIC/, we infer from (5.23), (5.24), and the transla-

tion invariance of the law of h modulo additive constant that

P ŒE"k.uIC/� � p; 8" 2 .0; 2
�k/: (5.25)

This gives (5.22).
We obtain (5.22) with yE"

k
.uI C/ in place of E"

k
.uI C/ by replacing C by 2C and

applying Lemma 4.9 together with the translation invariance of the law of yh�" , modulo
additive constant.

The following lemma is the main technical estimate needed for the proof of
Lemma 5.11.

Lemma 5.14. Fix a bounded open set U � C. There exists C > 1 depending only on �
such that for each K 2 N and " 2 .0; 1/, it holds with probability 1 �OK.2�K/ � o".1/
that the following is true .here the implicit constant in the OK.�/ depends only on
U; � and the rate of convergence of the o".1/ depends only on K; U; �/. For each u 2
.2�K�4Z2/ \ U , there exists k 2 ŒK=2;K�Z for which E"

k
.uIC/ occurs.

Proof. Fix p 2 .0; 1/, close to 1, which we will choose later in a universal manner. Let C
be as in Lemma 5.13 for this choice of p, so that

P ŒE"k.uIC/� � p � o".1/; 8" 2 .0; 1/; 8u 2 C; 8k 2 N0: (5.26)

By the locality property (4.32) of yh�" .u/, the event yE"
k
.uI C/ for k 2 Œ0; K�Z is deter-

mined by the restriction of h to B2�kC1C"1=2.u/ n B2�k�"1=2.u/. In fact, yE"
k
.uI C/ is

determined by this restriction of h viewed modulo additive constant since adding a con-
stant to h results in scaling yD"

h
by a constant. In particular, if " is smaller than 2�2K�2,

then yE"
k
.uIC/ is determined by the restriction of h to B2�kC2.u/ n B2�k�1.u/, viewed

modulo additive constant.
By a basic near-independence estimate for the restrictions of the GFF to disjoint con-

centric annuli (see [45, Lemma 3.1, assertion 1]), it follows that if p is chosen to be
sufficiently close to 1 (in a universal manner) and " is sufficiently small (depending onK),
then the following is true. For each u 2 C,

P
�
E"k.uIC/ occurs for at least one k 2 ŒK=2;K�Z

�
� 1 �OK.2

�3K/: (5.27)

By a union bound over the OK.22K/ points u 2 .2�K�4Z2/ \ U , we now obtain the
lemma statement with yE"

k
.uIC/ in place of E"

k
.uIC/. The statement for E"

k
.uIC/ (with

a slightly larger value of C ) follows from the statement for yE"
k
.uI C/ together with

Lemma 4.9.

Lemma 5.15. Fix a bounded open set U � C. There exists C > 1 depending only on �
such that for each K 2 N, with probability 1 � OK.2�K/ for each u 2 .2�2KZ2/ \ U ,
there exists k 2 ŒK=2;K�Z for which

VDh
�
around B2�kC1.u/ n B2�k .u/

�
� C VDh

�
@B2�kC1.u/; @B2�k .u/

�
: (5.28)
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Proof. This follows by passing to the (subsequential) limit in Lemma 5.14.

Proof of Lemma 5.11. Fix a large R > 1. It suffices to prove that the lemma statement
holds a.s. for each z 2 BR.0/. By Lemma 5.15 and the Borel–Cantelli lemma, it is a.s.
the case that for each large enoughK 2N and each u 2 .2�K�4Z2/\BR.0/ there exists
k D k.u;K/ 2 ŒK=2;K�Z such that

VDh
�
around B2�kC1.u/ n B2�k .u/

�
� C VDh

�
across B2�kC1.u/ n B2�k .u/

�
: (5.29)

For a given z 2 BR.0/ and K 2 N large enough that the preceding statement holds, let
uKz 2 .2

�K�4Z2/\BR.0/ be chosen so that z 2B2�K .uKz / and let zAKz WDB2�kC1.u
K
z / n

B2�k .u
K
z /. Then each zAKz is an annulus surrounding z which satisfies the bound (5.18)

(with zAKz in place of Am) and the radii of the zAKz ’s tends to zero as K !1. If we let
¹Amºm2N be a sufficiently sparse subsequence of the AKz ’s, then the Am’s are disjoint
and Am disconnects AmC1 from 1 for each m 2 N. Thus the lemma statement is true
with Om equal to the inner boundary of Am.

y

Om
y

Am
y

x

Om
x

Am
x

z

Om
z

Am
z

Fig. 6. Illustration of the proof of Proposition 5.10. We use the short (by Lemma 5.12) red “path”
around Amy to join together “paths” from Omx to Omy and from Omy to Omz into a “path” from Omx
to Omz . Note that the paths in the figure are meant to illustrate the intuition behind assertion (ii)
rather than to represent literal paths, since we do not know that VDh-distances are the same as Dh-
distances or that VDh is an actual metric.

Proof of Proposition 5.10. Since Dh.w; w/ D 0 for any w 2 C, we can assume without
loss of generality that x; y; z are distinct. We can also assume without loss of generality
that Dh.x; y/ and Dh.y; z/ are both finite (otherwise, (5.16) holds trivially).

Let ¹Omx ºm2N , ¹Omy ºm2N , and ¹Omz ºm2N be sequences of rational circles nesting
down to x; y; z, respectively, which satisfy the conditions of Lemma 5.11. Also let
Amx ; A

m
y ; A

m
z be the corresponding annuli as in Lemma 5.11. By possibly dropping a

finite number ofm-values, we can assume without loss of generality thatO1x ,O1y , andO1z
are disjoint. By Lemma 5.2 (ii) applied with O1 D Omx , O2 D Omz , O 01 D O

0
2 D O

m
y , and

A D Am, we have

VDh.O
m
x ; O

m
z / �

VDh.O
m
x ; O

m
y /C

VDh.O
m
y ; O

m
z /C

VDh.around Amy /I (5.30)
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see Figure 6 for an illustration. By Lemma 5.12 and our assumption that Dh.x; y/ <1,
we have limm!1Dh.around Amy /D 0. By the definition (5.7) ofDh, the triangle inequal-
ity now follows by sendingm!1 in (5.30). SinceDh is positive definite and symmetric
by definition (see the discussion just after Lemma 5.3) it follows that Dh is a metric.

5.5. Consistency at rational points

Recall that points in Q2 are considered as rational circles of radius 0. In particular,
VDh.u; v/ is defined for each u; v 2 Q2. The goal of this subsection is to establish the

following proposition, which implies assertion (3) of Theorem 1.2.

Proposition 5.16. Almost surely, for any u; v 2 Q2, we have Dh.u; v/ D VDh.u; v/.

The proof of Proposition 5.16 is based on Lemma 5.11 together with the following
lemma, which is a consequence of the explicit bounds for point-to-point distances from
Lemma 4.5.

Lemma 5.17. For each fixed z 2C, we have a�1" D
"
h
.z;w/! 0 in law as "! 0 and then

w ! z.

Proof. By Lemma 4.5 and the fact that the random variables ˆ0;k.z/ are Gaussian with
variance k log 2, it is easily seen that ��1n D0;n.z; w/ ! 0 in law as n ! 1 and then
w ! z. The lemma statement follows by combining this with Lemma 4.10.

As a consequence of Lemma 5.17, we have the following.

Lemma 5.18. Almost surely, for each u 2 Q2 and each sequence ¹Omºm2N of rational
circles nesting down to u, we have limm!1

VDh.u;O
m/ D 0.

Proof. By countability it suffices to prove the lemma for a fixed u 2Q2. Let q 2Q2 n ¹uº.
Since VDh.u;q/D lim"!0 a�1" D

"
h
.u;q/, it follows from Lemma 5.17 that VDh.u;q/! 0 in

law (hence also in probability) as q! u. If q is not surrounded byOmu , then Lemma 5.2 (i)
(applied with O1 D ¹uº, O2 D Om, and O3 D ¹qº) implies that VDh.u;Om/ � VDh.u; q/.
Since the radius of Om tends to zero as m!1, we infer that VDh.u;Om/! 0 in proba-
bility as m!1. Since VDh.u;Om/ is decreasing in m (Lemma 5.2 (i)), it follows that in
fact VDh.u;Om/! 0 a.s. as m!1.

Proof of Proposition 5.16. If uD v then obviouslyDh.u; v/D VDh.u; v/D 0. By count-
ability it therefore suffices to prove the lemma for a fixed choice of distinct points
u; v 2 Q2 with u 6D v. Let ¹Omu ºm2N and ¹Omv ºm2N be sequences of rational circles
nesting down to u and v, respectively, which satisfy the conditions of Lemma 5.11. Also
let yOmu , yOmv and Amu ; A

m
v be the corresponding outer circles and rational annuli as in

Lemma 5.11. ThenDh.u; v/D limm!1
VDh.O

m
u ;O

m
v /. It is obvious from Lemma 5.2 (ii)

that VDh.Omu ; O
m
v / �

VDh.u; v/ for each m 2 N, whence Dh.u; v/ � VDh.u; v/. We only
need to prove that VDh.u; v/ � Dh.u; v/.
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Ôm
v

Om
v

Am
v

v

Fig. 7. Illustration of the two applications of Lemma 5.2 (ii) in the proof of Proposition 5.16. In each
case, the lengths of the purple and red “paths” are each at most ı. Note that the paths in the figure
are meant to illustrate the intuition behind assertion (ii) rather than to represent literal paths, since
we do not know that VDh-distances are the same as Dh-distances or that VDh is an actual metric.

By Lemmas 5.12 and 5.18, we find that for each ı > 0 and large enough m 2 N,

VDh.u; yO
m
u / � ı;

VDh.around Amu / � ı; (5.31)

and the same is true with v in place of u.
See Figure 7 for an illustration of the next steps of the proof. By Lemma 5.2 (ii)

(applied with O1 D ¹uº, O 01 D yO
m
u , O2 D Omv , O 02 D Omu , and A D Amu ) together

with (5.31),

VDh.u;O
m
v / �

VDh.O
m
u ; O

m
v /C

VDh.u; yO
m
u /C

VDh.around Amu / � VDh.O
m
u ; O

m
v /C 2ı:

(5.32)

By another application of Lemma 5.2 (ii) (with O1 D ¹uº, O 01 D O
m
v , O2 D ¹vº, O 02 D

yOmv , and A D Amv ) together with (5.31),

VDh.u; v/ � VDh.u;O
m
v /C

VDh.v; yO
m
v /C

VDh.around Amv / � VDh.u;O
m
v /C 2ı: (5.33)

Applying (5.32) to bound the right side of (5.33) gives VDh.u; v/ � Dh.Omu ; O
m
v /C 4ı.

Sendingm!1 gives VDh.u; v/�Dh.u; v/C 4ı. Since ı > 0 is arbitrary this concludes
the proof.
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5.6. Hölder continuity and thick points

In this subsection we will prove several quantitative properties of Dh which are part of
Theorems 1.2 and 1.3. We start with the following proposition, which is assertion (2) of
Theorem 1.3.

Proposition 5.19. Almost surely, limR!1Dh.K; @BR.0// D 1 for every compact set
K � C. In particular, every Dh-bounded subset of C is also Euclidean bounded.

Proof. Choose a rational r > 0 such that K � Br .0/. By Lemma 4.12 and (5.1), for any
T > 1,

lim
Q3R!1

P
�
VDh
�
@Br .0/; @BR=2.0/

�
� T

�
D 1: (5.34)

By Lemma 5.5 (i) (applied with z 2K, w 2 @BR.0/,O0 D @Br .0/, andO2 D @BR=2.0/),
we have Dh.K; @BR.0// � VDh.@Br .0/; @BR=2.0//. The proposition statement therefore
follows from (5.34).

The next proposition is assertion (3) of Theorem 1.3.

Proposition 5.20. Almost surely, the identity map from C equipped with the metric Dh
to C equipped with the Euclidean metric is locally Hölder continuous with any exponent
less than Œ�.QC 2/��1.

For the proof of Proposition 5.20 we need yet another variant of Proposition 2.4.

Lemma 5.21. Let A � C be a rational annulus and define the constants cr for r in
Q \ .0;1/ as in (5.5). There are constants c0; c1 > 0 depending only on A; � such that
for each rational r > 0, each q 2 Q2, and each T > 3,

P Œ VDh.across rAC q/ < T �1cre�hr .q/� � c0e�c1.logT /2 (5.35)

and
P Œ VDh.around rAC q/ > T cre

�hr .q/� � c0e
�c1.logT /2=log logT : (5.36)

Proof. We first note that by the translation invariance of the law of h, modulo additive

constant, e��hr .q/ VDh.across rAC q/ dD e��hr .0/ VDh.across rA/, and the same is true for
VDh.around rAC q/. Therefore, it suffices to prove the lemma in the case when q D 0. In

this case, the lemma follows from Lemma 4.11 upon sending "! 0 along E , using (5.3) to
deal with the convergence of circle averages, and using (5.5) to deal with the convergence
of rar="=a".

Proof of Proposition 5.20. Fix R > 1. We will show that a.s. there is a random constant
c 2 .0; 1/ such that

Dh.z; w/ � cjz � wj
�.QC2/C� ; 8z; w 2 BR.0/: (5.37)

For k 2 N and u 2 .2�k�4Z2/ \ BR.0/, define the rational annulus

Ak.u/ WD B2�k .u/ n B2�k�1.u/: (5.38)
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By Lemma 5.21 (applied with T D 2�k and r D 2�k), there are constants c0; c1 > 0

depending only on � and � such that for each such k and u,

P Œ VDh.across Ak.u// < 2��kc2�ke
�h
2�k

.0/� � c0e
�c1k

2

: (5.39)

By taking a union bound over all u 2 .2�k�4Z2/ \ BR.0/ and possibly adjusting c0; c1
to absorb a factor of Ok.4k/, we find that for each k 2 N, with probability at least
1 � c0e

�c1k
2
,

VDh.across Ak.u// � 2��kc2�ke
�h
2�k

.0/; 8u 2 .2�k�4Z2/ \ BR.0/: (5.40)

Each of the random variables h2�k .u/ is centered Gaussian with variance
k log 2 C Ok.1/. Therefore, the Gaussian tail bound and a union bound over all u in
.2�k�2Z2/ \ BR.0/ shows that with probability at least 1 � c02�Œ.2C�/

2=2�2/k�,

jh2�k .u/j � .2C �/k log 2; 8u 2 .2�k�4Z2/ \ BR.0/: (5.41)

By the Borel–Cantelli lemma, a.s. there existsK 2N such that (5.40) and (5.41) both
hold for all k �K. Henceforth assume that this is the case. For distinct z;w 2 BR.0/with
jz � wj � 2�K�2, choose k D k.z; w/ � K such that 2�kC1 � jz � wj � 2�kC2. There
is a u 2 .2�k�4Z2/ \ BR.0/ such that z and w lie in different connected components of
C n Ak.u/. By Lemma 5.5 (i), followed by (5.40) and (5.41),

Dh.z; w/ � VDh.across Ak.u// � 2�.2�C.1C�/�/kc2�k : (5.42)

Since c2�k D 2��QkCok.k/ by (5.6), we deduce from (5.42) that Dh.z; w/ �

2�Œ�.QC2/C.2C�/��k , where c0 > 0 is a deterministic constant depending only on �; � (note
that we have absorbed the 2ok.k/ into an extra factor of 2�k). By replacing � by �=.2C �/
and recalling our choice of k D k.z; w/, we find that a.s. for each large enough K 2 N,

Dh.z; w/ � c0jz � wj
�.QC2/C� ; 8z; w 2 BR.0/ with jz � wj � 2�K�1: (5.43)

We now obtain (5.37) by replacing c0 by a smaller, K-dependent constant c to deal with
the case when jz � wj > 2�K�1.

Finally, we prove assertion (6) of Theorem 1.3.

Proposition 5.22. Let ˛ > Q. Almost surely, for each ˛-thick point z of h, we have
Dh.z; w/ D1 for every w 2 C n z.

Proof. Fix R > 1. We will prove that the condition in the lemma statement holds a.s. for
each ˛-thick point inBR.0/. By Lemma 5.21 (applied with T D 2k

2=3
) and a union bound

over all u 2 .2�2kZ2/ \ BR.0/, there are constants c0; c1 > 0 depending only on R; �; �
such that with probability at least 1 � c0e�c1k

4=3
,

VDh
�
across B2�k .u/ n B2�k�1.u/

�
� 2�k

2=3

c2�ke
�h
2�k

.0/; 8u 2 .2�2kZ2/ \ BR.0/:
(5.44)
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By the Borel–Cantelli lemma, a.s. (5.44) holds for all large enough k 2 N. By a basic
continuity estimate for the circle average process (see, e.g., [51, Proposition 2.1]), a.s.
there exists a random constant C > 1 such that for all z; w 2 BR.0/ and all r 2 .0; 1/,

jhr .z/ � hr .w/j � Cr
�1=2
jz � wj.1��/=2: (5.45)

Henceforth assume that (5.44) holds for large enough k 2 N and (5.45) holds. Let
z 2 BR.0/ be an ˛-thick point, so that h2�k .z/ � .˛ C ok.1//k log 2 as k ! 1. For
k 2 N, choose uk 2 .2�2kZ2/ \ BR.0/ such that z 2 B2�2kC1.uk/. By (5.45),

jh2�k .z/ � h2�k .uk/j � C2
�k=2.2�2kC1/.1��/=2 D ok.1/ as k !1: (5.46)

Therefore, h2�k .uk/ � .˛ C ok.1//k log 2. By (5.44),

VDh
�
across B2�k .uk/ n B2�k�1.uk/

�
� c2�k2

�˛kCok.k/: (5.47)

By (5.6), c2�k D 2
�QkCok.k/, so the right side of (5.47) is at least 2�.˛�Q/kCok.k/, which

tends to 1 as k !1. For any w 2 C n ¹zº, the annulus B2�k .uk/ n B2�k�1.uk/ dis-
connects z from w for large enough k. Therefore, Lemma 5.5 (i) implies that

Dh.z; w/ � lim sup
k!1

VDh
�
across B2�k .uk/ n B2�k�1.uk/

�
D1:

5.7. Singular points, completeness, and geodesics

We know from Proposition 5.22 that Dh takes on infinite values when � > �crit. We now
provide additional detail on which pairs of points can lie at infinite distance from others.
As in Theorem 1.3, we say that z 2 C is a singular point for Dh if Dh.z; w/ D 1 for
every w 2 C n ¹zº.

By Lemma 5.9, for a fixed z 2 C, a.s. z is not a singular point for Dh. In particular,
the set of singular points a.s. has Lebesgue measure zero. On the other hand, by Proposi-
tion 5.22, a.s. each ˛-thick point of h for ˛ > Q is a singular point for Dh. In particular,
if Q < 2 (equivalently, � > �crit) then a.s. the set of singular points is uncountable and
dense.

We will now show that two points can be at infinite Dh-distance from each other
only if at least one of them is a singular point. In particular, Dh is a finite metric on
C n ¹singular pointsº (we already know that Dh is a metric from Proposition 5.10).

Lemma 5.23. Almost surely, the following is true. Suppose z; z0; w; w0 2 C such that
z 6D z0,w 6Dw0,Dh.z; z0/ <1, andDh.w;w0/ <1. ThenDh.z;w/ <1. In particular,
if z; w 2 C are such that Dh.z; w/ D1, then either z or w is a singular point for Dh.

Proof. See Figure 8 for an illustration. Let Az be a rational annulus such that z (resp. z0)
lies in the bounded (resp. unbounded) connected component of C n Az and let Oz be the
inner boundary of Az . Similarly define Aw and Ow .

By Lemma 5.8, we can find sequences of points z"; z0" for " 2 E such that z" ! z,
z0"! z0, and a�1" Dh.z"; z

0
"/!Dh.z; z

0/. For small enough " 2 E , z" (resp. z0") lies in the
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bounded (resp. unbounded) connected component of C n Az . Using that D"
h

is a length
metric, we can concatenate paths (see Figure 8) to get

D"
h.z"; Ow/ � D

"
h.z"; z

0
"/CD

"
h.Oz ; Ow/CD

"
h.around Az/: (5.48)

Dividing by a" in (5.48), taking the liminf of both sides, and applying Lemma 5.7 on the
left gives

Dh.z;Ow/ � Dh.z; z
0/C VDh.Oz ; Ow/C VDh.around Az/ <1: (5.49)

We will now use a similar argument to prove an upper bound for Dh.z; w/ in terms
ofDh.z;Ow/. To this end, let x 2 Ow be chosen so thatDh.z; x/ �Dh.z;Ow/C 1. We
use Lemma 5.8 to choose sequences of points w" ! w, w0" ! w0, z" ! z, and x" ! x

such that

lim
E3"!0

Dh.w";w
0
"/DDh.w;w

0/ and lim
E3"!0

Dh.z";x"/DDh.z;w/�Dh.z;Ow/Cı:

Using that D"
h

is a length metric, we can concatenate paths (see Figure 8) to get

D"
h.z"; w"/ � D

"
h.w"; w

0
"/CD

"
h.around Aw/CD"

h.w"; x"/: (5.50)

Dividing by a" in (5.50), taking the liminf of both sides, and applying Lemma 5.7 on the
left gives

Dh.z; w/ � Dh.w;w
0/C VDh.around Aw/CDh.z;Ow/C 1; (5.51)

which is finite due to (5.49).
To get the last assertion of the lemma, we note that if neither z nor w is a singular

point then there exist z0 6D z and w0 6D w such that Dh.z; z0/ <1 and Dh.w;w0/ <1,
which implies that Dh.z; w/ <1 by the first assertion.

To complete the proofs of our main theorems, it remains to establish that Dh is a
complete geodesic metric on C n ¹singular pointsº. We start with completeness.

Proposition 5.24. Almost surely, everyDh-Cauchy sequence is convergent. In particular,
the restriction of Dh to C n ¹singular pointsº is complete.

Proof. Let ¹znºn2N be a Cauchy sequence with respect to Dh. Then ¹znºn2N is Dh-
bounded, so by Proposition 5.19, ¹znºn2N is contained in some Euclidean-compact subset
of C. By Proposition 5.20, ¹znºn2N is also Cauchy with respect to the Euclidean metric,
so there is a z 2 C such that jzn � zj ! 0. We need to show that Dh.zn; z/ ! 0. To
this end, let " > 0. By the Cauchy condition, we can find n� D n�."/ 2 N such that
Dh.zn; zm/ � " for all n; m � n�. By lower semicontinuity (Proposition 5.6), for each
n � n� we have Dh.z; zn/ � lim infm!1Dh.zm; zn/ � ".

Proposition 5.25. Almost surely, the restriction of Dh to C n ¹singular pointsº is a
geodesic metric, i.e., for any z; w 2 C with Dh.z; w/ < 1, there is a path from z to
w of Dh-length exactly Dh.z; w/.
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Fig. 8. Illustration of the proof of Lemma 5.23. Left: The union of the red paths includes a path
from z" to Ow , which leads to (5.48). Right: The union of the blue paths contains a path from w"
to z", which leads to (5.50).

Proof. Recall that Dh is a complete metric on C n ¹singular pointsº (Proposition 5.24).
So, by [14, Theorem 2.4.16], it suffices to show that for any non-singular points z;w 2C,
there exists a midpoint between z and w, i.e., a point x 2 C such that Dh.z; x/ D
Dh.w; x/ D

1
2
Dh.z; w/. Note that Lemma 5.23 implies that Dh.z; w/ <1.

To produce such a midpoint, let z" ! z and w" ! w be sequences as in Lemma 5.8,
so that

Dh.z; w/ D lim
E3"

a�1" D
"
h.z

"; w"/: (5.52)

Since D"
h

is a smooth Riemannian distance function, it follows that D"
h

is a geodesic
metric. Therefore, for any z; w 2 C there is a point x" 2 C (i.e., the midpoint of the
D"
h
-geodesic from z" to w") such that D"

h
.z"; x"/ D D"

h
.w"; x"/ D 1

2
D"
h
.z"; w"/. By

Proposition 5.19, it holds with probability tending to 1 as "! 0 and then R !1 that
x" 2 BR.0/. Since BR.0/ is compact, we can a.s. find a subsequence E 0 of E and a point
x 2 C such that x" ! x. By Lemma 5.7,

Dh.z; x/ � lim inf
E03"!0

a�1" D
"
h.z

"; x"/ D
1

2
lim inf
E03"!0

a�1" D
"
h.z

"; w"/ D
1

2
Dh.z; w/

where the last equality is by (5.52). Similarly,Dh.w;x/� 1
2
Dh.z;w/. By combining this

with the triangle inequality (Proposition 5.10), we get

Dh.z; w/ � Dh.z; x/ C Dh.w; x/ �
1

2
Dh.z; w/ C

1

2
Dh.z; w/ D Dh.z; w/: (5.53)
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Hence both inequalities must in fact be equalities, which is only possible if Dh.w; x/ D
Dh.z; x/ D

1
2
Dh.z; w/.

5.8. Proofs of main theorems

We have now proven all of the assertions of our main theorems. Here, we record exactly
where each assertion was proven.

Proof of Theorem 1.2. Assertion (1) is proven in Proposition 5.6. Assertion (2) is proven
in Proposition 5.10. Assertion (3) follows from Proposition 5.16 and the fact that our
original coupling was chosen so that a�1" D

"
h
.u; v/!Dh.u; v/ for each u;v 2Q2. Asser-

tion (4) follows from (5.5) and (5.6).

Proof of Theorem 1.3. Assertion (1) is proven in Lemma 5.9. Assertion (2) is proven
in Proposition 5.19. Assertion (3) is proven in Proposition 5.20. Assertion (4) follows
from Lemma 5.23 and Proposition 5.24. Assertion (5) follows from Proposition 5.25.
Assertion (6) is proven in Proposition 5.22.

Appendix A. Gaussian estimates

Here we record some elementary estimates for Gaussian random variables which are
needed for our proofs.

Lemma A.1. Let X D .X1; : : : ; Xn/ be a centered Gaussian vector such that
maxi2Œ1;n�Z VarXi D �2. LetC >0 and letF WRn!R be a function which isC -Lipschitz
continuous with respect to the L1 norm. We have

VarF.X/ � C 2�2 (A.1)

with a universal implicit constant.

Proof. Let m be the median of F.X/ and let B WD F �1..�1; m�/ and B 0 WD

F �1.Œm;1//. Then P ŒX 2 B� � 1=2 and P ŒX 2 B 0� � 1=2. By a standard Gaussian
concentration inequality (see, e.g., [28, Lemma 2.1]), there is a universal constant c0 > 0
such that for each T � c0� ,

P
h
min
x2B
jX � xj1 > T

i
� c0 exp

�
�
.T � c0�/

2

2�2

�
(A.2)

and the same is true with B 0 in place of B . Hence, with probability at least 1 �
2c0 exp

�
�
.T�c0�/

2

2�2

�
, there exist x; x0 2 Rn such that F.x/ � m, F.x0/ � m, and

max ¹jX � xj1; jX � x0j1º � T . Since F is C -Lipschitz, this means that

F.X/ �m � F.X/ � F.x/ � C jX � xj1 � CT; (A.3)
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and similarly F.x/ �m � �CT . Hence for T > c0� ,

P ŒjF.X/ �mj > CT � � c0 exp
�
�
.T � c0�/

2

2�2

�
: (A.4)

By substituting S D CT in (A.4), we compute

VarF.X/ � EŒ.F .X/ �m/2�

D 2

Z 1
0

SP ŒjF.X/ �mj > S� dS

� C 2c20�
2
C 2c0

Z
Cc0�

S exp
�
�
.S � Cc0�/

2

2C 2�2

�
dS: (A.5)

The last integral is equal to 2�C�EŒ.Y C Cc0�/1.Y�0/� where Y is a centered Gaussian
random variable with variance C 2�2. Hence this integral is bounded above by a universal
constant times C 2�2. Combining this bound with (A.5) now yields (A.1).

Lemma A.2. LetR> 1 and letX be a centered Gaussian random variable with variance
R. Also let �; ˇ > 0. We have

EŒe�X1.X�ˇR/� D e
.�.�^ˇ/�.�^ˇ/2=2/RCo.R/ as R!1. (A.6)

Proof. By the Gaussian tail bound,

EŒe�X1.X�ˇR/� � e
�.�^ˇ/RP

�
X 2 Œ.� ^ ˇ/R � 1; .� ^ ˇ/R�

�
� e.�.�^ˇ/�.�^ˇ/

2=2/RCo.R/: (A.7)

This gives the lower bound in (A.6).
To prove the upper bound, fix a small parameter � > 0. Let 0 D ˛0 < ˛1 < � � � < ˛N

D ˇ be a partition of Œ0; ˇ� with maxi2Œ1;N �Z.˛i � ˛i�1/ � �. By the Gaussian tail bound,
for each i 2 Œ1; N �Z,

P
�
X 2 Œ˛i�1R; ˛iR�

�
� e�˛

2
i�1

R=2: (A.8)

We can therefore compute

EŒe�X1.X�ˇR/� D EŒe�X1.X<0/�C
NX
iD1

EŒe�X1.X2Œ˛i�1R;˛iR�/�

� 1C

NX
iD1

e.�˛i�˛
2
i�1

=2/R
� 1C max

˛2Œ0;ˇ�
e.�˛�˛

2=2Co�.1//R (A.9)

where in the last line we used that ˛i � ˛i�1 � �. Here, o� .1/ denotes a deterministic
quantity which converges to 0 as � ! 0 and depends only on �; ˇ. The maximum of
�˛ � ˛2=2 over all ˛ 2 Œ0; ˇ� is attained at � ^ ˇ, where it equals �.� ^ ˇ/� .� ^ ˇ/2=2.
Plugging this into (A.9) and letting � ! 0 sufficiently slowly as R !1 now gives the
upper bound in (A.6).
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