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Abstract. In this paper, we propose a new scheme for the integration of the periodic nonlinear
Schrödinger equation and rigorously prove convergence rates at low regularity. The new integrator
has decisive advantages over standard schemes at low regularity. In particular, it is able to handle
initial data inH s for 0 < s � 1. The key feature of the integrator is its ability to distinguish between
low and medium frequencies in the solution and to treat them differently in the discretization. This
new approach requires a well-balanced filtering procedure which is carried out in Fourier space.
The convergence analysis of the proposed scheme is based on discrete (in time) Bourgain space
estimates which we introduce in this paper. A numerical experiment illustrates the superiority of
the new integrator over standard schemes for rough initial data.

Keywords. Numerical analysis of nonlinear Schrödinger equations, discrete Bourgain spaces, low
regularity, error analysis

1. Introduction

We consider the cubic periodic Schrödinger equation (NLS)

i@tu D �@
2
xuC juj

2u; .t; x/ 2 R � T ; (1.1)

which, together with its full space counterpart, has been extensively studied in the literat-
ure. In the last decades, Strichartz estimates and Bourgain spaces allowed various authors
to establish well-posedness results for dispersive equations in low regularity spaces (see
[2, 3, 20, 21]). The numerical theory of dispersive PDEs, on the other hand, is still restric-
ted to smooth solutions, in general. In the case of the nonlinear Schrödinger equation (1.1)
this stems from the following two reasons:
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(A) Standard time stepping techniques, e.g., splitting methods [13] or exponential integ-
rators [6], are based on freezing the free Schrödinger flow S.t/ D eit@

2
x during a step

of size � . Such freezing techniques, related to Taylor series expansion of the linear
flow, however, produce derivatives in the local error terms restricting the approx-
imation property to smooth solutions. More precisely, for first-order methods, the
expansion of the free flow S.t C �/ D S.t/ C O.�@2x/, 0 < � � � , requires the
boundedness of (at least) two additional derivatives, while higher-order approxima-
tions increase the regularity requirements by two more derivatives for each additional
order.

(B) Standard stability arguments in addition require smooth Sobolev spaces. Indeed, they
rely on classical product estimates

kfgkH s � Ckf kH skgkH s ; s > 1=2;

to handle the nonlinear terms in the error analysis. This restricts the global error
analysis to smooth Sobolev spaces H s with s > 1=2 leaving out the important class
of L2 spaces.

The standard local error structure introduced by the Schrödinger operator, i.e., the loss
of two derivatives, together with a standard stability argument thus restricts global first-
order convergence to H 2C1=2C" solutions (for any " > 0). Using a refined global error
analysis, by first proving fractional convergence of the scheme in a suitable higher-order
Sobolev space (which implies a priori the boundedness of the numerical solution in this
space [13]), allows one to obtain stability in L2 for H 1=2C" solutions. However, due to
the standard local error structure O.�2@2x/, the first-order convergence rate is neverthe-
less only retained for H 2 solutions. The latter is not only a technical formality. The order
reduction in the case of nonsmooth solutions is also observed numerically (see, e.g., the
examples in [10, 16] and Fig. 1 in Section 9 below). Very little is known on how to over-
come this problem.

Recently, the first obstacle (A) could be overcome partly by developing specifically
tailored schemes which optimize the structure of the local error approximation. This has
been achieved by employing Fourier based techniques that are able to discretize the central
oscillations in an efficient and correct way (see [7, 16, 17, 19]). The second obstacle (B),
on the other hand, is much harder to circumvent. The control of nonlinear terms in PDEs
is an ongoing challenge in (computational) mathematics at large, and in contrast to the
parabolic setting no pointwise smoothing can be expected for dispersive PDEs. On the
continuous level, however, important space time estimates featuring a gain in integrability
can be used to extend well-posedness results to lower regularity spacesH s with s < 1=2.
On the full space, the Strichartz estimates

keit@
2
xu0kLqt L

r
x
� cq;rku0k2 for 2 � q; r � 1; 2=q C 1=r D 1=2; (1.2)

can be used. In the periodic setting, though waves do not disperse, one can gain integrabil-
ity by using Bourgain spaces (we shall give the definition of these spaces in Section 2).
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For (1.1) on the torus, the crucial estimate used in the analysis is

kukL4.R�T/ � CkukX0;3=8 (1.3)

which leads to global well-posedness for initial data in L2. We refer for example to [2, 3,
20, 21].

The natural question therefore arises: To what extent can we inherit this subtle smooth-
ing property on a discrete level? The critical issue here is twofold: the estimates (1.2)
and (1.3) are not pointwise in time and moreover their gain lies in integrability and not
regularity. Discrete versions of these estimates are therefore delicate to reproduce. At the
same time they are essential for establishing numerical stability in the same space where
we have stability of the PDE. While discrete Strichartz-type estimates were successfully
employed on the full space Rd (see, e.g., [8, 9, 15]) a global low regularity analysis on
bounded domains � � Rd remains an open problem. The step from the full space to the
bounded setting is – as in the continuous setting – nontrivial due to the loss of dispersion.
Strichartz estimates are weaker on bounded domains as the solution cannot “disperse” to
infinity in space. Nevertheless bounded domains are computationally very interesting as
spatial discretizations of nonlinear PDEs are in general restricted to truncated domains.

In this work we introduce discrete Bourgain spaces for the periodic Schrödinger equa-
tion (1.1). This will allow us to break standard stability restrictions on the torus. In
particular, we establish a discrete version of (1.3) permitting L2 error estimates in H s

also for s � 1=2. Note that the resulting stability analysis can be extended to various other
numerical schemes, e.g., splitting methods. For the discretization of (1.1) we propose a
new twice-filtered Fourier based technique that correctly discretizes the central oscilla-
tions of the problem. In particular, it involves a frequency localization through a filter…K
(see (1.8)) which projects on frequencies jkj � K and which will allow us to optimize
the total (time and frequency) discretization error. This novel discretization approach can
be applied to a larger class of dispersive equations. For simplicity, however, we restrict
our attention here to the cubic Schrödinger equation. The precise form of the proposed
scheme is given in (1.11) below. Employing the particular structure of its local error in
combination with the stability bounds that result from our discrete Bourgain type estim-
ates we can prove the following global error estimate.

Theorem 1.1. For every T > 0 and u0 2H s0 , 0 � s0 � 1, denote by u 2 C.Œ0; T �;H s0/

the exact solution of (1.1) with initial datum u0, and by un� the sequence defined by the
scheme (1.11) below. Then we have the following error estimates:

(i) for K D ��1=2 and 0 < s0 � 1=4, there exist �0 > 0 and CT > 0 such that for every
step size � 2 .0; �0�,

kun� � u.tn/kL2 � CT �
s0=2; 0 � n� � T I (1.4)

(ii) for 1=4 < s0 � 1=2, and any " > 0 such that 1=4C " < s0, with the choice K D

�
�
s0C1=8�"=2

s0C1=2 , there exist �0 > 0 and CT > 0 such that for every step size � 2 .0; �0�,

kun� � u.tn/kL2 � CT �
s0.1�

1
2s0C1

.3=4C"//
; 0 � n� � T I (1.5)
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(iii) for 1=2 < s0 � 1 and " 2 .0; 1=4/, with the choiceK D ��1C
1
s0
.1=8C"=2/, there exist

�0 > 0 and CT > 0 such that for every step size � 2 .0; �0�,

kun� � u.tn/kL2 � CT �
s0�.1=8C"=2/; 0 � n� � T: (1.6)

In case (i), the error estimate we obtain for our new Fourier based discretization is not
better than the one we would expect for standard schemes (based on classical Taylor series
expansion techniques). The interesting feature, however, is that the analysis we develop is
able to provide an error estimate even for data at this low level of regularity. So far error
estimates (even with arbitrarily low order of convergence) were restricted to solutions (at
least) in H s , s > 1=2. We note that our analysis can be employed for a large class of
schemes, e.g., splitting methods or exponential integrators.

In cases (ii) and (iii), we observe that we get a better estimate than � s0=2 which is the
one we would expect for standard numerical schemes with a loss of two derivatives in the
local error (cf. (A)). Observe, for example, that for s0 D 1, we get an error estimate of
order �7=8, which is much better than the standard �1=2: Note that it is even (slightly) bet-
ter than the convergence order �5=6 which we obtained with the help of discrete Strichartz
estimates on the full space in [15], though dispersive effects are much weaker in the peri-
odic case. This comes from our improved Fourier based discretization with the use of
the two different filters …��1=2 and …K . The favourable error behaviour is numerically
underlined in Fig. 1 (see Section 9 below).

It seems also possible to extend the analysis developed in this paper to higher dimen-
sions and more general nonlinearities. A large part of the framework that we introduce
can be readily extended; the central task would be to establish the corresponding discrete
counterpart of the continuous Bourgain estimates given in [2] in the various cases, as done
here in Lemma 3.6.

The main idea in our discretization is the following. Instead of attacking (1.1) directly,
we discretize the projected equation

i@tu
K
D �@2xu

K
C 2…K.…��1=2u

K…��1=2u
K…KCu

K/

C…K.…��1=2u
K…��1=2u

K…Ku
K/; (1.7)

where the projection operator …L for L > 0 is defined by the Fourier multiplier

…L D �
2

�
�i@x

L

�
D …L; (1.8)

and where …KC projects on the intermediate frequencies ��1=2 � jkj � K, i.e.,

…KC D …K �…��1=2 : (1.9)

Here � is a smooth nonnegative even function which is 1 on Œ�1; 1� and supported in
Œ�2; 2�. The numberK � 1 is considered as a parameter that will later depend on the step
size � . Note that the projection operator …K in Fourier space reads

1…K�` Dc�`�2� `
K

�
; ` 2 Z:
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Splitting methods with numerical filters have been successfully introduced in [1] for non-
linear Schrödinger equations in the semiclassical regime with attractive interaction to
numerically suppress the modulation instability.

Here, the relation between K and � can be seen as a CFL-type condition linking
the time discretization parameter to the highest frequency in the system. We optimize
this relation in such a way that the optimal rate of convergence is achieved for a given
regularity; see Theorem 1.1.

The reason why we base our discretization on (1.7) is twofold. First, we consider

i@tv
K
D �@2xv

K
C…K.j…Kv

K
j
2…Kv

K/; vK.0/ D …Ku0; (1.10)

as an intermediate problem for the single-filtered equation where all high frequencies are
truncated. The difference between solutions of (1.1) and (1.10) is estimated in Corol-
lary 2.6 and easy to control. Second, we refine the truncated model (1.10) by consid-
ering a second projection …��1=2 to low frequencies. Roughly speaking, each function
with frequencies below K is then decomposed into two parts: low frequencies for which
jkj � ��1=2 and the remaining intermediate frequencies. Since the original problem is
cubic, these two projections lead to six terms in total. For our discretization, we only con-
sider those terms in which two of the factors are of low frequencies. This motivates us to
consider the twice-filtered equation (1.7) as an approximation to (1.1).

The discretization of the twice-filtered Schrödinger equation (1.7) is carried out in
such a way that the terms with intermediate frequencies ��1=2 < jkj � K are treated
exactly, while the lower order terms with frequencies jkj � ��1=2 are approximated in a
suitable manner. This approach allows low regularity approximation of solutions of (1.1).
Motivated by our previous work [11], we thus propose the following numerical scheme:

unC1� DW ˆK� .u
n
� /

D ei�@
2
xun� � 2i…Kei�@

2
xJ�1.…��1=2u

n
� ;…KCu

n
� ;…��1=2u

n
� /

� i…Kei�@
2
xJ�2.…Ku

n
� ;…��1=2u

n
� ;…��1=2u

n
� /;

u0� D …Ku.0/;

(1.11)

where

J�1.v1; v2; v3/ D
i

2
e�i�@

2
x Œ.ei�@

2
x@�1x v2/e

i�@2x@�1x .v1v3/�

�
i

2
.@�1x v2/@

�1
x .v1v3/C �

b.v2/0v1v3 C �.v2 �b.v2/0/1.v1v3/0;
(1.12)

J�2.v1; v2; v3/ D
i

2
e�i�@

2
x@�1x Œ.e

�i�@2x@�1x v1/.e
i�@2xv2v3/�

�
i

2
@�1x .v2v3@

�1
x v1/C �

3.v1v2v3/0 C �b.v1/0
�
v2v3 � 1.v2v3/0

�
:

(1.13)
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Here, for any function f 2 L2.T / we define the operator @�1x by

@�1x f .x/ D
X
k¤0

.ik/�1cfk eikx :

Note that un� in (1.11) is considered as an approximation to the exact solution of the
nonlinear Schrödinger equation (1.1) at time tn D n� .

Outline of the paper. The paper is organized as follows. In Section 2, we recall the main
steps of the analysis of the Cauchy problem for (1.1) and we use them to estimate the dif-
ference between the exact solution of (1.1) and the solution of the projected equation (1.7).
In particular, we prove that

sup
Œ0;T �

ku � uKkL2 � CT

�
1

Ks0
C � s0

�
I (1.14)

see Corollary 2.6 and Proposition 2.7.
In Section 3, we introduce a notion of discrete Bourgain spaces for sequences .un/n 2

.L2.T //N and prove their main properties. The crucial property for the error analysis is
the following L4 estimate:

k…Kunkl4�L4 � C.K�
1=2/1=2kunkX0;3=8�

;

which holds uniformly for K � ��1=2 and 0 < � � 1. This estimate is proven in Sec-
tion 8. The lp� norm for vector valued sequences is defined in (3.21). From this property,
we see that the choice K D ��1=2 allows one to get an estimate without loss similar to
the continuous case (1.3). Nevertheless, such a choice of K yields a rather bad space dis-
cretization error (1.14). We shall thus optimize K by taking it of the form K D ��˛=2 for
˛ 2 Œ1; 2� to get the best possible total error.

In Section 4, we establish embedding estimates between discrete and continuous
Bourgain spaces.

In Section 5, we analyze the local error of our scheme, and in Section 6 we provide
global error estimates. Finally, in Section 7, we prove the main error estimate of The-
orem 1.1.

We conclude in Section 9 with numerical experiments underlying the favourable error
behaviour of the new scheme for rough data.

Notations. We close this section with some notation that will be used throughout the
paper. For two expressions a and b, we write a . b whenever a � Cb with some constant
C > 0, uniformly in � 2 .0; 1� and K � 1. We further write a � b if b . a . b. When
we want to emphasize that C depends on an additional parameter 
 , we write a .
 b. In
cases where a certain estimate holds for all parameters p > q (with constants that might
blow up for p tending to q) we say that this estimate holds for qC. In the same way, we
use the notation q� to indicate the number q � " for any (fixed) " > 0. Further, we denote
h � i D .1C j � j2/1=2.
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2. Cauchy problem for (1.1)

Let us recall the definition of Bourgain spaces. A tempered distribution u.t; x/ on R � T
belongs to the Bourgain space X s;b if the following norm is finite:

kukXs;b D

�Z
R

X
k2Z

.1C jkj

�2s
.1C j� C k2j/2bjzu.�; k/j2 d�/1=2; (2.1)

where zu is the space-time Fourier transform of u:

zu.�; k/ D

Z
R�T

e�i�t�ikxu.t; x/ dt dx:

We shall also use a localized version of this space: u 2 X s;b.I / where I � R is an open
interval if kukXs;b.I / <1, where

kukXs;b.I / D inf ¹kukXs;b W ujI D uº:

When I D .0; T / we will often simply use the notation X s;b.T /.
We shall now recall well-known properties of these spaces. For details, we refer for

example to [2], and the books [12, 21].

Lemma 2.1. For � 2 C1c .R/, we have

k�.t/eit@
2
xf kXs;b .�;b kf kH s ; s 2 R; b 2 R; f 2 H s.T /; (2.2)

k�.t/ukXs;b .�;b kukXs;b ; s 2 R; b 2 R; (2.3)

k�.t=T /ukXs;b0 .�;b;b0 T b�b
0

kukXs;b ; s 2 R;�1=2 < b0 � b < 1=2; 0 < T � 1;
(2.4)



�.t/ Z t

�1

ei.t�s/�F.s/ ds





Xs;b

.�;b kF kXs;b�1 ; s 2 R; b > 1=2; (2.5)

kukL1.R;H s/ .b kukXs;b ; b > 1=2; s 2 R: (2.6)

We actually have the continuous embedding X s;b � C.R;H s/ for b > 1=2. Note that
we shall discuss below an extension of the definition of the Bourgain spaces and of this
lemma to a discrete setting suitable for the analysis of numerical schemes and give the
proofs in this discrete setting.

The crucial estimate for the analysis of the cubic NLS on the torus T is the following:

Lemma 2.2. There exists a constant C > 0 such that for every u 2 X0;3=8, we have the
estimate

kukL4.R�T/ � CkukX0;3=8 :

Again, we refer to [21, Proposition 2.13] for the proof. Note that, by duality, we also
obtain

kukX0;�3=8 . kukL4=3.R�T/:
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By combining the two estimates with Hölder, this further implies that

kuvwkX0;�3=8 . kukX0;3=8kvkX0;3=8kwkX0;3=8 : (2.7)

For (1.1), we have the following global well-posedness result.

Theorem 2.3. For every T > 0 and u0 2 L2, there exists a unique solution u of (1.1)
such that u 2 C.Œ0; T �;L2/\X0;b.T / for any b 2 .1=2; 5=8/. Moreover, if u0 2H s0 for
some s0 > 0, then u 2 C.Œ0; T �;H s0/ \X s0;b.T /.

Proof. Let us recall the main steps of the proof. The existence is proven by a fixed point
argument for the following truncated problem:

v 7! F.v/

where

F.v/.t/ D �.t/ eit@
2
xu0 � i�.t/

Z t

0

ei.t�s/@
2
x
�
�.s=ı/jv.s/j2v.s/

�
ds; (2.8)

with � 2 Œ0; 1� a smooth compactly supported function which is equal to 1 on Œ�1; 1� and
supported in Œ�2; 2�. For jt j � ı � 1=2, a fixed point of F gives a solution of the original
Cauchy problem, denoted by u.

Thanks to Lemma 2.1, there exists C > 0 which does not depend on u0 such that

k�.t/ eit@
2
xu0kX0;b � Cku0kL2 :

Moreover, by using Lemma 2.1 and (2.7), we can estimate the Duhamel term by



�.t/ Z t

0

ei.t�s/�
�
�

�
s

ı

�
jv.s/j2v.s/

�
ds





X0;b
� C





�� sı
�
jv.s/j2v.s/






X0;b�1

� Cı"0


jv.s/j2v.s/



X0;�3=8
� Cı"0kvk3

X0;3=8
� Cı"0kvk3

X0;b
;

where C > 0 is again a generic constant and "0 D 5=8� b > 0 by the choice of b. There-
fore, we have obtained

kF.v/kX0;b � Cku0kL2 C Cı
"0kvk3

X0;b
:

In a similar way, we show that if v1 and v2 are such that kv1kX0;b � R; kv2kX0;b � R,
then

kF.v1/ � F.v2/kX0;b � 4Cı
"0R2kv1 � v2kX0;b :

Consequently, by takingRD 2Cku0kL2 , we find that there exists ı > 0 sufficiently small
that depends only on ku0kL2 such that F is a contraction on the closed ball B.0; R/
of X0;b : This proves the existence of a fixed point v for F and hence the existence of a
solution u of (1.1) on Œ0; ı�. By using Lemma 2.1, we actually see that u 2 C.Œ0; ı�; L2/.
Since for s � 0,

kF.v/kXs;b � Cku0kH s C Cı
"0kvk2

X0;b
kvkXs;b ;
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we also see that if u0 is in H s then u 2 X s;b.Œ0; ı�/. Since the L2 norm is conserved
for (1.1), we can reiterate the construction on Œı;2ı�; : : : to get a global solution. Moreover,
since ı depends only on the L2 norm of u0, we deduce that if u0 is in H s , s � 0, then
u 2 X s;b.T / and thus u 2 C.Œ0; T �;H s/ for every T .

Let us now consider vK that solves the frequency truncated equation

i@tv
K
D �@2xv

K
C…K.j…Kv

K
j
2…Kv

K/; vK.0/ D …Ku0: (2.9)

As in Theorem 2.3, we can easily get

Proposition 2.4. For u0 2 H s0 , s0 � 0, and K � 1, there exists a unique solution vK

of (2.9) such that vK 2X s0;b.T / for b 2 .1=2; 5=8/ and every T > 0. Moreover, for every
T > 0, there exists MT such that for every K � 1, we have the estimate

kvKkXs0;b.T / �MT :

We shall not detail the proof of this proposition that follows exactly the lines of the
proof of Theorem 2.3.

Remark 2.5. Since …2K…K D…K , we see that …2Kv
K solves the same equation (2.9)

with the same initial data. Hence, by uniqueness,

…2Kv
K.t/ D vK.t/ for all t 2 Œ0; T �.

We can also easily get the following corollary.

Corollary 2.6. For u0 2H s0 , s0 � 0, and every T > 0, there exists CT > 0 such that for
every K � 1 we have the estimate

ku � vKkX0;b.T / � CTK
�s0 ;

where b is as in Theorem 2.3.

Proof. For appropriately chosen ı > 0 and � as in (2.8), we observe that on Œ0; ı�, vK is
the restriction of V K 2 X s0;3=8.R/ that solves

V K.t/D �.t/eit@
2
xvK.0/� i�.t/

Z t

0

ei.t�s/@
2
x

�
�

�
s

ı

�
…K

�
j…KV

K.s/j2…KV
K.s/

��
ds:

Consequently, denoting byU 2X s0;3=8.R/ the fixed point of F such that on Œ0; ı�,U D u,
we obtain

U.t/ � V K.t/ D �.t/eit@
2
x .1 �…K/u0

� i�.t/

Z t

0

ei.t�s/@
2
x

�
�

�
s

ı

�
…K

�
jU.s/j2U.s/ � j…KU.s/j

2…KU.s/
��

ds

� i�.t/

Z t

0

ei.t�s/@
2
x

�
�

�
s

ı

�
…K

�
j…KU.s/j

2…KU.s/ � j…KV
K.s/j2…KV

K.s/
��

ds

� i�.t/

Z t

0

ei.t�s/@
2
x

�
�

�
s

ı

�
.1 �…K/

�
jU.s/j2U.s/

��
ds:
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Now, let us fix MT independent of K � 1 such that

kV KkXs0;b C kU kXs0;b �MT :

Note that for every f ,

kf �…Kf kX0;b .
1

Ks0
kf kXs0;b :

By employing the same estimates as before, we thus obtain

kU � V KkX0;b .
1

Ks0
ku0kH s0 C ı

"0kU �…KU kX0;bkU k
2
X0;b

C ı"0kU � V KkX0;b .kU k
2
X0;b
C kV Kk2

X0;b
/

C ı"0
1

Ks0



jU j2U 


Xs0;b�1

.
1

Ks0
.ku0kH s0 CM

3
T /C ı

"0M 2
T kU � V

K
kX0;b :

For ı sufficiently small, this yields the desired estimate. We can then iterate in order to
get the estimate on Œ0; T �:

Instead of performing directly a time discretization of equation (2.9), it will be con-
venient for our analysis to study a slightly modified equation. Let uK be the solution
of

i@tu
K

D�@2xu
K
C 2…K.…��1=2u

K…��1=2u
K…KCu

K/C…K.…��1=2u
K…��1=2u

K…Ku
K/

(cf. (1.7)), again with the initial data uK.0/ D …Ku0. Note that the difference between
this truncated equation and (2.9) is in the trilinear terms, where we can always project at
least two factors on frequencies less than ��1=2. Further, note that uK depends also on �
though we do not explicitly mention it in order to keep reasonable notation. However, we
will henceforth link K and � by the relation

K D ��˛=2; ˛ � 1;

with the (optimal) value of ˛ still to be determined.
Again, we have existence and uniqueness of the solution.

Proposition 2.7. For u0 2 H s0 , s0 � 0, and K � 1, there exists a unique solution uK

of (1.7) such that uK 2 X s0;b.T / .with b as in Theorem 2.3/ for every T > 0. Moreover,
for every T > 0, there exists MT such that for every K � 1, we have the estimate

kuKkXs0;b.T / �MT :

Further, uniformly for K � 1,

kuK � vKkX0;b.T / � CT �
s0 :
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Observe that by combining the last estimate with the estimate of Corollary 2.6, we
actually get

ku � uKkX0;b.T / � CT �
s0˛=2 (2.10)

for K D ��˛=2 and ˛ such that 1 � ˛ � 2.

Proof of Proposition 2.7. The proof of the first part follows again the lines of the proof of
Theorem 2.3. Let us explain how to prove the error estimate. Let us denote by G�;K.uK/
the nonlinear term on the right-hand side of (1.7). We first observe that we can write

…K.j…Kv
K
j
2…Kv

K/ D G�;K.v
K/CRK.v

K/;

where the remainder is a sum

RK.v
K/ D

X
.i1;i2;i3/

…K.Qi1v
KQi2v

KQi3v
K/

and where Qi can be …��1=2 or .1 �…��1=2/…K and at least two different Qi are .1 �
…��1=2/…K . Let us again denote by UK and V K the fixed points of the corresponding
Duhamel term extended by � such that uniformly for K � 1, we have

kV KkXs0;3=8 C kU
K
kXs0;3=8 �MT :

Then

UK.t/ � V K.t/ D �i�.t/

Z t

0

ei.t�s/�
�
�

�
s

ı

��
G�;K.U

K.s// �G�;K.V
K.s//

��
ds

� i�.t/

Z t

0

ei.t�s/�
�
�

�
s

ı

�
RK.V

K.s//

�
ds:

By using the properties of Bourgain spaces and the estimate

kf �…��1=2f kX0;b . � s0=2kf kXs0;b ; 8f 2 X
s0;b;

we obtain

kUK � V KkX0;b . ı1=4kUK � V KkX0;bM
2
T C kV

K
�…��1=2V

K
k
2
X0;b
kV KkX0;b

. ı1=4kUK � V KkX0;bM
2
T C �

s0M 3
T

and we can conclude the proof as before.

We shall need the following corollary about the propagation of higher regularity with
respect to the b parameter.

Corollary 2.8. Let b 2 .5=8; 1� and assume that s0 > 0. Then for every 0 � s00 < s0 and
every T > 0, uniformly in � ,

kuKk
X
s0
0
;b
.T /
�MT :
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Proof. Since uK solves (1.7), we have

uK.t/ D eit@
2
x…Ku0 C

Z t

0

ei.t�s/@
2
xF.uK.s// ds;

where we set for short

iF .uK/ D 2…K.…��1=2u
K…��1=2u

K…KCu
K/C…K.…��1=2u

K…��1=2u
K…Ku

K/:

Let uK;� denote the solution of the truncated Duhamel equation

uK;�.t/ D �.t/eit@
2
xu0 C �.t/

Z t

0

ei.t�s/@
2
x�.s/F.uK;�.s// ds; (2.11)

which belongs to the global Bourgain space X s0;b.R � T / for b 2 .1=2; 5=8/ as estab-
lished in the previous proposition. From the same estimates as before, we obtain

kuK;�k
X
s0
0
;b . ku0k

H
s0
0
C kF.uK;�/k

X
s0
0
;b�1 :

In order to estimate F.uK;�/, we first just use b � 1 � 0 so that

kF.uK;�/k
X
s0
0
;b�1 . kh@xis

0
0F.uK;�/kL2.R�T/;

where h@xis stands for the Fourier multiplier hkis . Then, by using the generalized Leibniz
rule (which reads, see for example [14],

kh@xi
s.fg/kLp . kh@xisf kLp1 kgkLq1 C kf kLp2 kh@xisgkLq2 (2.12)

for every s > 0 and all p 2 .1;1/; p1; p2; q1; q2 2 .1;C1� such that p�1 D p�11 C q
�1
1

D p�12 C q
�1
2 ) we get

kF.uK;�/k
X
s0
0
;b�1 . kh@xis

0
0uK;�k3

L6.R�T/: (2.13)

To conclude, we use another X s;b space estimate due to Bourgain [2]: for every " > 0 and
b0 > 1=2, we have the continuous embeddingX";b

0

� L6.R�T /, that is to say, for every
f 2 X";b

0

,
kf kL6.R�T/ . kf kX";b0 :

By using this last estimate in (2.13), we thus get

kF.uK;�/k
X
s0
0
;b�1 . kuK;�k3

X
s0
0
C";b0

:

Since we can choose b0 < 5=8 and " > 0 such that s00 C " � s0, the right-hand side is
already controlled thanks to Proposition 2.7. This ends the proof.

3. Discrete Bourgain spaces

For a sequence .un/n2Z, we shall define its Fourier transform as

F� .un/.�/ D �
X
m2Z

umeim�� : (3.1)
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This defines a periodic function on Œ��=�;�=�� and we have the inverse Fourier transform
formula

um D
1

2�

Z �=�

��=�

F� .un/.�/ e�im�� d�:

With these definitions the Parseval identity reads

kunkl2� D kF� .un/kL2.��=�;�=�/;

where the norms are defined by

kunk
2

l2�
D �

X
n2Z

junj
2; kF� .un/k

2
L2.��=�;�=�/

D
1

2�

Z �=�

��=�

jF� .un/.�/j
2 d�:

In this section, we write L2 instead of L2.��=�; �=�/ for short. We stress that this is not
the standard way of normalizing the Fourier series.

We then define in a natural way Sobolev spaces H b
� of sequences .un/n2Z by

kunkHb�
D khd� .�/i

bF� .un/kL2 ;

with d� .�/ D ei���1
�

so that we have equivalent norms

kunkHb�
D khD� i

bunkl2� ;

where the operator D� is defined by .D� .un//n D .un�1�un�
/n since by definition of the

Fourier transform,
F� .D�un/.�/ D d� .�/F� .un/.�/:

Note that d� is 2�=� -periodic and uniformly in � , we have jd� .�/j � j� j for j�� j � � .
For sequences of functions .un.x//n2Z; we define the Fourier transform fun.�; k/ by

F�;x.un/.�; k/ Dfun.�; k/ D � X
m2Z

cum.k/ eim�� ; cum.k/ D 1

2�

Z �

��

um.x/ e�ikx dx:

Parseval’s identity then reads

kfunkL2l2 D kunkl2�L2 ; (3.2)

where

kfunk2L2l2 D Z �=�

��=�

X
k2Z

jfun.�; k/j2 d�; kunk2l2�L2 D �
X
m2Z

Z �

��

jum.x/j
2 dx:

We then define the discrete Bourgain spaces X s;b� for s � 0, b 2 R, � > 0 by

kunkXs;b�
D ke�in�@

2
xunkHb�H s

D khD� i
b
h@xi

s.e�in�@
2
xun/kl2�L2 : (3.3)

As in the continuous case, we obtain the following properties.
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Lemma 3.1. With the above definition, we have

kunkXs;b�
� khkishd� .� � k

2/ibfun.�; k/kL2l2 : (3.4)

Moreover, for s 2 R and b > 1=2, we have X s;b� � l1� H
s:

kunkl1� H s .b kunkXs;b� : (3.5)

The weight d� .� � k2/ obviously vanishes if �.� � k2/ D 2m� for m 2 Z. For a
localized function such that k is constrained to jkj . ��1=2 this weight will behave as
in the continuous case with only a cancellation when � D k2. For larger frequencies,
however, there are additional cancellations that will create some loss in product estimates.

Note that the seemingly different behaviour that we have here in the discrete case
compared with the definition (2.1) in the continuous case comes from our definition (3.1)
of the discrete Fourier transform. Let us recall that in the continuous case

kukXs;b D kukXs;b
�Dk2

;

where kuk
X
s;b

�Dk2

Dkhkish� � k2ib QukL2.R�Z/ so that we can easily deduce the properties

of X s;b
�Dk2

from the properties of X s;b .

Proof of Lemma 3.1. Let us set fn.x/D e�in�@
2
xun.x/. From the definition of F� , we getefn.�; k/ D � X

m2Z

cum.k/ eim�.�Ck
2/

so that efn.�; k/ Dfun.� C k2; k/: (3.6)

Therefore,

kunk
2

X
s;b
�

D

X
k2Z

Z �=�

��=�

hd� .�/i
2b
hki2sjfun.� C k2; k/j2 d�

and the result follows by a change of variables.
To prove the embedding (3.5), it suffices to prove that

kfnkl1� H s . kfnkHb�H s :

Since bfn.k/ D Z �=�

��=�

efm.�; k/e�in�� d�;

from Cauchy–Schwarz we get

jbfn.k/j . �Z �=�

��=�

1

hd� .�/i2b
d�
�1=2
khd� .�/i

b efm.�; k/kL2 :
The result then follows by multiplying the above inequality by hkis and taking the L2

norm with respect to k.
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Remark 3.2. From Lemma 3.1, we can make the following useful observation:

sup
ı2Œ�4;4�

kein�ı@
2
xunkXs;b�

.b kunkXs;b� : (3.7)

Note that this follows at once from jd� .� � k2 C ı/j . hd� .� � k2/i.

Remark 3.3. Since hd� .�/i . 1=� , the discrete spaces satisfy the embedding

kunkX0;b�
.

1

�b�b
0
kunkX0;b

0

�
; b � b0: (3.8)

Indeed, from the above observation we find that the inequality is true for b � 0, b0 D 0.
Next, by interpolation we obtain the case b � b0 � 0. The case 0 � b � b0 then follows
by duality, and the general case by composition.

We shall now establish the counterpart of Lemma 2.1 at the discrete level.

Lemma 3.4. For � 2 C1c .R/ and � 2 .0; 1�, we have

k�.n�/ein�@
2
xf k

X
s;b
�

.�;b kf kH s ; s 2 R; b 2 R; f 2 H s; (3.9)

k�.n�/unkXs;b�
.�;b kunkXs;b� ; s 2 R; b 2 R; un 2 X

s;b
� ; (3.10)



��n�T

�
un






X
s;b0

�

.�;b;b0 T b�b
0

kunkXs;b�
; s 2 R;�1=2 < b0 � b < 1=2;

0 < T D N� � 1; N � 1: (3.11)

In addition, for

Un.x/ D �.n�/�

nX
mD0

ei.n�m/�@
2
xum.x/;

we have
kUnkXs;b�

.�;b kunkXs;b�1�
; s 2 R; b > 1=2: (3.12)

We stress that all the above estimates are uniform in � .

Proof. We begin with (3.9). Let us set un.x/ D �.n�/ein�@
2
xf .x/. We first observe that

fun.�; k/ D F� .�.n�//.� � k
2/ yf .k/:

The function g.�/ D F� .�.n�//.�/ is fast decreasing in the sense that

jd� .�/
Lg.�/j . 1; (3.13)

where the estimate is uniform in � and � for every integer L � 1. Indeed,

d� .�/g.�/ D �
X
n2Z

�..n � 1/�/ � �.n�/

�
ein��

and therefore
jd� .�/g.�/j . 1 (3.14)
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by the smoothness of �. We easily get the boundedness of higher powers by induction.
The estimate then follows easily from Lemma 3.1.

Let us prove (3.10). We recall that

�.n�/ D
1

2�

Z �=�

��=�

g.�/ e�in�� d�:

We deduce from (3.13) that for every L � 1, there exists C > 0 such that for every � 2
.0; 1� and � with �� 2 Œ��; ��,

jg.�/j � C=h�iL: (3.15)

This yields, by using the fast decay of g.�/,

k�.n�/unkXs;b�
.
Z �=�

��=�

1

h�0iL
kun e�in��0k

X
s;b
�

d�0:

Next, since F�;x.un e�in��0/.�; k/ Dfun.� � �0; k/ and

hd� .� � �0 � k
2/ib . h�0ijbjhd� .� � k2/ib;

we get

k�.n�/unkXs;b�
�

Z �=�

��=�

1

h�0iL�jbj
d�0 kunkXs;b� . kunkXs;b�

by choosing L sufficiently large.
We turn to the proof of (3.11). We follow the steps of the proof of the continuous

case in [21]. We observe that by composition it suffices to handle the cases 0 � b0 � b or
b0 � b � 0. By duality, it suffices then to establish the inequality in the case 0 � b0 � b.
By standard interpolation, we have



��n�T

�
un






X
s;b0

�

�





��n�T
�
un





1�b0=b
X
s;0
�





��n�T
�
un





b0=b
X
s;b
�

:

It thus suffices to prove that 



��n�T
�
un






X
s;b
�

. kunkXs;b� (3.16)

and 



��n�T
�
un






X
s;0
�

� T bkunkXs;b�
(3.17)

for b < 1=2, where the estimates are uniform for T 2 .0;1�. We start with the first estimate.
Note that we cannot use (3.10) directly to get an estimate uniform in T . Let us set fn D
e�in�@

2
xun and Un D �.n�=T /fn. We want to estimate



��n�T

�
fn






Hb�H

s

D kUnkHb�H s
:
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We have fUm.�; k/ D 1

2�

Z �=�

��=�

gT .� � �
0/ efm.� 0; k/ d� 0;

where we have set

gT .�/ D �
X
n

�

�
n�

T

�
ein�� :

Using the same argument as above, we observe that for every L � 0,

jgT .�/j .L
T

hT�iL
: (3.18)

In particular, this yields

kgT kL1.��=�;�=�/ . 1; kh�ibgT kL2.��=�;�=�/ . T 1=2�b;

kh�ibgT kL1.��=�;�=�/ . T �b :
(3.19)

We can first write, by using Young’s inequality for convolutions,

khd� .�/i
bfUm.�; k/kL2 . kgT kL1khd� ib efm.�; k/kL2

C





Z �=�

��=�

jhd� .� � �
0/ibgT .� � �

0/j efm.� 0; k/j d� 0




L2
:

To estimate the last integral, we split efm.� 0; k/D efm.� 0; k/1j� 0T j�1C efm.� 0; k/1j� 0T j�1.
For the first contribution, we write



Z �=�

��=�

jhd� .� � �
0/ibgT .� � �

0/j efm.� 0; k/j1j� 0T j�1 d� 0





L2

. kh�ibgT kL2.��=�;�=�/k1j�T j�1 efm.�; k/kL1

. T 1=2�bT b�1=2k efm.�; k/kL2 ;
where we have used Cauchy–Schwarz to get the last estimate. For the second contribution,
we use



Z �=�

��=�

jhd� .� � �
0/ibgT .� � �

0/j efm.� 0; k/j1j� 0T j�1 d� 0





L2

. kh�ibgT kL1.��=�;�=�/k1j�T j�1 efm.�; k/kL2

. T �bk1j�T j�1 efm.�; k/kL2 . kh�ib efm.�; k/kL2 ;
where we have used T �b . h�ib for j�T j � 1. We have thus obtained

khd� i
bfUm.�; k/kL2 . khd� ib efm.�; k/kL2 :

It suffices to multiply by hkis and to take the L2 norm in k to get (3.16).
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We next prove (3.17). Again, it suffices to prove that

kUnkl2�H s . T bkfnkHb�H s
:

To establish this estimate, we split fn D fn;1 C fn;2 with

efm;1.�; k/ D efm.�; k/1jT� j�1; efm;2.�; k/ D efm.�; k/1jT� j�1:
For the first part, we readily deduce from the definition of the norm that

kfn;1kl2�H s . T bkfnkHb� ;H s

since 1 . T bj� jb on the support of integration. Since � is bounded,



��n�T
�
fn;1






l2�H

s

. T bkfnkHb�H s
:

For the other part, we use

bfn;2.k/ D
Z �=�

��=�

e�in�� j� j�b1T j� j�1j� jb efm.�; k/ d�:

This yields, by Cauchy–Schwarz,

jbfn;2.k/j2 . T 2b�1
�Z �=�

��=�

hd� .�/i
2b
j efm.�; k/j2 d�

�
and therefore, for every n,

kfn;2k
2
H s D khki

sbfn;2k2l2 . T 2b�1kfmk
2

l2�H
s :

This yields



��n�T
�
fn;2





2
l2�H

s

D �
X
n

�

�
n�

T

�2
kfn;2k

2
H s

. �
X
n

�

�
n�

T

�2
T 2b�1kfmk

2

l2�H
s . T T 2b�1kfmk

2

l2�H
s

and we get (3.17), which concludes the proof of (3.11).
We finally prove (3.12). Let us set

Fn.x/ D e�in�@
2
xUn.x/; fn.x/ D e�in�@

2
xun.x/

so that

Fn.x/ D �.n�/�

nX
mD0

fm:

It suffices to prove that
kFnkHb�H s

. kfnkHb�1� H s :
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We shall only prove the estimate for s D 0; the general case follows by applying h@xis .
Let us use the function g.�/ D F� .�.n�//.�/ as above. By direct computation,

cFn.k/ D �.n�/� Z �=�

��=�

efm.�0; k/1 � e�i.nC1/��0

1 � e�i��0
d�0

and therefore

fFm.�; k/ D Z �=�

��=�

ei��0

d� .�0/
efm.�0; k/�g.�/ � e�i��0g.� � �0/

�
d�0:

We then split fFm.�; k/ D eFm;1.�; k/C eFm;2.�; k/;
where we replace efm by efm.�0; k/1j�0j�1 in eFm;1.�; k/, and efm by efm.�0; k/1j�0j�1 in
eFm;2.�; k/. By using the fast decay (3.18) of g, this yields

hd� i
b
jeFm;1.�; k/j . h�ib�L

�Z �=�

��=�

1

hd� .�0/i2b
d�0

�1=2
khd� i

b�1 efm.�; k/kL2
C

Z �=�

��=�

hd� .�0/i
b�1
j efm.�0; k/jh� � �0ib�L d�0:

Therefore, by taking the L2 norm in � , and by using Young’s inequality for convolutions
for the second term, we obtain, since b > 1=2,

khd� i
b eFm;1.�; k/kL2 . kcfm.k/kHb�1�

:

To estimate eFm;2, we observe that for j�0j � 1, we can use Taylor’s formula to getˇ̌̌̌
hd� .�0/i

b

d� .�0/

�
g.�/ � e�i��0g.� � �0/

�ˇ̌̌̌
.

1

h� � �0iL
:

The estimate then follows from the same arguments.
We have thus proven that

khd� i
bfFm.�; k/kL2 . kcfm.k/kHb�1�

:

To conclude the proof, it suffices to take the L2 norm with respect to k.

Remark 3.5. Note that in the proof of (3.10), we have also established a useful time
translation invariance property of discrete Bourgain spaces:

sup
ı2Œ�4;4�

kein�ıunkXs;b� .b kunkXs;b� : (3.20)

To end this section we shall study the discrete counterpart of Lemma 2.2 which is
crucial for the analysis of nonlinear problems.

In the discrete setting, for a sequence .un/ 2 lp.Z; X/ with X a normed space, we
use the norm

kunklp� .X/ D
�
�
X
n2Z

kunk
p
X

�1=p
: (3.21)
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Lemma 3.6. For K � ��1=2, we have

k…Kunkl4�L4 . .K�1=2/1=2kunkX0;3=8�
: (3.22)

The above inequality is important for our paper, but understanding its proof requires
tools not yet introduced and is not necessary to continue reading the paper. Therefore, we
postpone the proof to Section 8.

By duality, we also deduce from (3.22) that

k…KunkX0;�3=8�
. .K�1=2/1=2kunkl4=3� L4=3

: (3.23)

As a consequence, we obtain the following crucial product estimates for sequences
un, vn, and wn.

Corollary 3.7. We have the following product estimate:

k…K.…��1=2un…��1=2vn…Kwn/kX0;�3=8�

. K�1=2kunkX0;3=8�
kvnkX0;3=8�

kwnkX0;3=8�
: (3.24)

Moreover, for any s1 > 1=4,

k…K.…��1=2un…��1=2vn…Kwn/kX0;�3=8�

. .K�1=2/1=2kunkX0;3=8�
kvnkX0;3=8�

kwnkl4�H s1 ; (3.25)

k…K.…��1=2un…��1=2vn…Kwn/kX0;�3=8�

. kunk
X
s1;3=8
�

kvnk
X
s1;3=8
�

kwnkl1� L2 ; (3.26)

and for s2 > 1=2,

k…K.…��1=2un…��1=2vn…Kwn/kX0;�3=8�

. kunkX0;3=8�
k…��1=2vnkl4�H s1 kwnkl

1
� H s2 ; (3.27)

k…K.…��1=2un…��1=2vn…Kwn/kX0;�3=8�

. kunkX0;3=8�
kvnkX0;3=8�

kwnkl1� H s2 : (3.28)

Note that (3.26) is of particular interest if the two lower frequency factors have at
least 1=4 regularity. Then we do not need the factor K�1=2 which is large if ˛ > 1 (recall
that K D ��˛=2). This will be useful to prove the stability of the scheme for ˛ > 1. The
estimate (3.25) will turn out to be useful to optimize the convergence rate of the scheme
when s0 is large enough.

Proof of Corollary 3.7. We start by proving (3.24). We first deduce from the estimate
(3.23) that

k…K.…��1=2un…��1=2vn…Kwn/kX0;�3=8�

. .K�1=2/1=2k…K.…��1=2un…��1=2vn…Kwn/kl4=3� L4=3
:



Fourier integrator for periodic NLS 3933

From the continuity of …K on Lp and the Hölder inequality, we next get

k…K.…��1=2un…��1=2vn…Kwn/kX0;�3=8�

. .K�1=2/1=2k…��1=2unkl4�L4k…��1=2vnkl4�L4k…Kwnkl4�L4 : (3.29)

By using again (3.22), we thus find

k…K.…��1=2un…��1=2vn…Kwn/kX0;�3=8�
. K�1=2kunkX0;3=8�

kvnkX0;3=8�
kwnkX0;3=8�

:

This proves (3.24).
For the proof of (3.25), we use again (3.29). However, we only estimate

k…��1=2unkl4�L4 and k…��1=2vnkl4�L4 with the help of (3.22). For the last term, we use
the Sobolev embedding H s1 � L4 to get

k…Kwnkl4�L4 . k…Kwnkl4�H s1 :

To get (3.26), we just use

k…K.…��1=2un…��1=2vn…Kwn/kX0;�3=8�

. k…��1=2un…��1=2vn…KwnkX0;0�
(3.30)

and employ Hölder’s inequality to get

k…��1=2un…��1=2vn…KwnkX0;�3=8�

. k…��1=2unkl4�L1k…��1=2vnkl4�L1k…Kwnkl
1
� L2 :

We then use (3.5) to write

k…Kwnkl1� L2 . kwnkX0;b� ;

and the Sobolev embedding W s1;4 � L1 and (3.22) to obtain

k…��1=2unkl4�L1 . kunk
X
s1;3=8
�

; k…��1=2vnkl4�L1 . kvnk
X
s1;3=8
�

:

This concludes the proof of (3.26).
For (3.27) and (3.28), we just use (3.30) again, and then the inequality

k…��1=2un…��1=2vn…KwnkX0;0 . k…��1=2unkl4�L4k…��1=2vnkl4�L4k…Kwnkl
1
� L1 :

To conclude the proof, we use Lemma 3.6 and the Sobolev embedding H s2 � L1 or
Lemma 3.6 and the Sobolev embeddings H s2 � L1, H s1 � L4 .

Remark 3.8. Another version intermediate between (3.25) and (3.26) will also be useful.
We have

k…K.…��1=2un…��1=2vn…Kwn/kX0;�3=8�

. .K�1=2/1=2kunkX0;3=8�
kvnk

X
s1;3=8
�

kwnkl4�L2 (3.31)
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with s1 > 1=4. Indeed, we first use (3.23) to get

k…K.…��1=2un…��1=2vn…Kwn/kX0;�3=8�

� .K�1=2/1=2k…K.…��1=2un…��1=2vn…Kwn/kl4=3� L4=3

and we employ Hölder’s inequality to get

k…K.…��1=2un…��1=2vn…Kwn/kl4=3� L4=3

� k…Kwnkl4�L2k…��1=2vnkl4�L1k…��1=2unkl4�L4 :

We conclude the proof by using the Sobolev embedding W s1;4 � L1 and (3.22).

4. Estimates of the exact solution in discrete Bourgain spaces

In this section, we shall prove that the sequence uK.tn/ is an element of X s;b� for suit-
able s. It will be convenient to use the following general lemma.

Lemma 4.1. For any b � 0, b0 > 1=2 and s 2 R, consider a sequence of functions
.un.x//n2Z of the form un.x/ D u.n�; x/. Then

kunkXs;b�
.b kukXs;bCb0 :

Proof. By setting f D e�it@
2
xu and fn.x/ D f .n�; x/, it suffices to prove that

kfnkHb� L2
. kf kHbCb0L2 ;

extension to general s being straightforward. Since by definitionefm.�; k/ D �X
n2Z

zf .n�; k/ ein�� ;

Poisson’s summation formula implies that

efn.�; k/ DX
m2Z

zf

�
� C

2�

�
m; k

�
:

Therefore,

hd� .�/i
b efn.�; k/ DX

m2Z

�
d�

�
� C

2�

�
m

��b
zf

�
� C

2�

�
m; k

�
;

since d� is also a 2�=� -periodic function. Since jd� .�/j . h�i, this yields, by Cauchy–
Schwarz,

jhd� .�/i
b efn.�; k/j2 .

X
�

1˝
� C 2�

�
�
˛2b0 X

m2Z

�
� C

2�

�
m

�2bC2b0 ˇ̌̌̌
zf

�
� C

2�

�
m; k

�ˇ̌̌̌2
.
X
m2Z

�
� C

2�

�
m

�2bC2b0 ˇ̌̌̌
zf

�
� C

2�

�
m; k

�ˇ̌̌̌2
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since 2b0 > 1. By integrating with respect to � , we obtain

khd� i
b efn.�; k/kL2.��=�;�=�/ . kh�ibCb0 zf .�; k/k2

L2.R/:

We finish the proof by summing over k.

As a consequence of the previous lemma, we obtain the following result.

Proposition 4.2. Let uK be the solution of (1.7) and define uKn .x/ D uK.n� C t 0; x/.
Assume that u0 2 H s0 , s0 > 0. Then, for every s1 such that 0 � s1 < s0,

sup
t 02Œ0;4��

k�.n�/uKn kXs1;3=8�

� CT :

Proof. It suffices to combine Lemma 4.1 and Corollary 2.8 by taking b0 arbitrarily close
to 1=2.

5. Local error of time discretization

In this section we analyse the time discretization error which is introduced when discret-
izing the twice-filtered Schrödinger equation (1.7) with the scheme (1.11).

Setting

A D
®
� D .�1; �2; �3/ W �1; �2; �3 2 ¹�

�1=2; KCº; 9i ¤ j W �i D �j D �
�1=2

¯
D ¹.��1=2; ��1=2; ��1=2/; .��1=2; ��1=2; KC/;

.��1=2; KC; ��1=2/; .KC; ��1=2; ��1=2/º (5.1)

allows us to express the filtered Schrödinger equation (1.7) as follows:

i@tu
K
D �@2xu

K
C

X
�2A

…K.…�1u
K…�2u

K…�3u
K/ (5.2)

and Duhamel’s formula (with step size � ) takes the form

uK.tn C �/ D ei�@
2
xuK.tn/ � i…Kei�@

2
x

X
�2A

T�.u
K/.�; tn/; (5.3)

where

T�.u
K/.�; tn/ D

Z �

0

e�is@
2
x
�
…�1u

K.tn C s/…�2u
K.tn C s/…�3u

K.tn C s/
�

ds: (5.4)

Henceforth, we will use the following notation:

V K�` .s; t/ D eis@
2
x…�`u

K.t/; W K
�`
.s; t/ D eis@

2
x…�`…K

X
�2A

T� .u
K/.s; t/:

Iterating Duhamel’s formula (5.3), i.e., plugging the expansion

…�`u
K.tn C s/ D V

K
�`
.s; tn/ � iW

K
�`
.s; tn/
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into (5.3), yields the representation

uK.tnC�/ D ei�@
2
xuK.tn/� i…Kei�@

2
x

X
�2A

Z �

0

e�is@
2
x ŒV K�1 .s; tn/V

K

�2
.s; tn/V

K
�3
.s; tn/� ds

� i…Kei�@
2
x

X
�2A

E�.�; tn/ (5.5)

with the remainder

E�.�; tn/ D

Z �

0

e�is@
2
x .E�;1 CE�;2 CE�;3 CE�;4 CE�;5 CE�;6 CE�;7/.s; tn/ ds

(5.6)
defined by

E�;1.s; tn/ D iV
K
�1
.s; tn/W

K

�2
.s; tn/V

K
�3
.s; tn/;

E�;2.s; tn/ D �iV
K
�1
.s; tn/V

K

�2
.s; tn/W

K
�3
.s; tn/;

E�;3.s; tn/ D �iW
K
�1
.s; tn/V

K

�2
.s; tn/V

K
�3
.s; tn/;

E�;4.s; tn/ D W
K
�1
.s; tn/W

K

�2
.s; tn/V

K
�3
.s; tn/;

E�;5.s; tn/ D �W
K
�1
.s; tn/V

K

�2
.s; tn/W

K
�3
.s; tn/;

E�;6.s; tn/ D V
K
�1
.s; tn/W

K

�2
.s; tn/W

K
�3
.s; tn/;

E�;7.s; tn/ D �iW
K
�1
.s; tn/W

K

�2
.s; tn/W

K
�3
.s; tn/:

(5.7)

It remains to analyse the error introduced by the time discretization of the integrals in
(5.5), where the discretization is carried out in such a way that the dominant terms in
(5.5), i.e., the intermediate frequency terms ��1=2 < jkj � K, are treated exactly, while
the lower-order frequency terms jkj � ��1=2 are approximated in a suitable manner.

Lemma 5.1. For sufficiently smooth functions v;w,Z �

0

e�is@
2
x Œ.eis@

2
xv/jeis@

2
xwj2� ds D J�1.w; v; w/CR1.w; v; w/ (5.8)

with J�1 defined in (1.12) and the remainder given by

R1.v1; v2; v3/ D �2i

Z �

0

e�is@
2
x

�
.eis@

2
xv2/

Z s

0

ei.s�s1/@
2
x Œ.e�is1@

2
x@2xv1/.e

is1@
2
xv3/

C .e�is1@
2
x@xv1/.eis1@

2
x@xv3/� ds1

�
ds: (5.9)

Proof. The proof is in two steps. First we will show that in fact

J�1.w; v; w/ D

Z �

0

e�is@
2
x Œ.eis@

2
xv/eis@

2
x jwj2� ds: (5.10)

The Fourier expansion of the above integral together with the relation

.�k1 C k2 C k3/
2
� .k22 C .�k1 C k3/

2/ D 2k2.�k1 C k3/

yields
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0

e�is@
2
x Œ.eis@

2
xv/eis@

2
x jwj2� ds

D

X
k1;k2;k32Z

kD�k1Ck2Ck3

Owk1 Ovk2 Owk3eikx
Z �

0

eis.�k1Ck2Ck3/
2

e�is.k
2
2
C.�k1Ck3/

2/ ds

D

X
k1;k2;k32Z

kD�k1Ck2Ck3

Owk1 Ovk2 Owk3eikx
Z �

0

e2isk2.�k1Ck3/ ds

D

X
k1;k2;k32Z
k2¤0; k1¤k3
kD�k1Ck2Ck3

Owk1 Ovk2 Owk3eikx
Z �

0

e2isk2.�k1Ck3/ ds C � Ov0jwj2 C � 1.jwj2/0.v � Ov0/

D

X
k1;k2;k32Z
k2¤0; k1¤k3
kD�k1Ck2Ck3

Owk1 Ovk2 Owk3eikx
e2i�k2.�k1Ck3/ � 1
2ik2.�k1 C k3/

C � Ov0jwj
2
C � 1.jwj2/0.v � Ov0/

D
i

2
e�i�@

2
x Œ.ei�@

2
x@�1x v/e

i�@2x@�1x jwj
2� �

i

2
.@�1x v/@

�1
x jwj

2
C � Ov0jwj

2

C � 1.jwj2/0.v � Ov0/;
which implies (5.10). Thanks to (5.10) we can furthermore conclude by (5.8) that

R1.w; v; w/ D

Z �

0

e�is@
2
x
�
.eis@

2
xv/Œjeis@

2
xwj2 � eis@

2
x jwj2�

�
ds: (5.11)

We note that

�2i

Z s

0

ei.s�s1/@
2
x Œ.e�is1@

2
x@2xw/.e

is1@
2
xw/C jeis1@

2
x@xwj

2� ds1

D �2i
X

`1;`22Z

Ow`1 Ow`2ei.�`1C`2/xe�is.�`1C`2/
2

�

Z s

0

eis1.�`1C`2/
2

eis1.`
2
1
�`2
2
/.�`21 C `1`2/ ds1

D

X
`1;`22Z

Ow`1 Ow`2ei.�`1C`2/xe�is.�`1C`2/
2

.eis.�`1C`2/
2

eis.`
2
1
�`2
2
/
� 1/

D

X
`1;`22Z

Ow`1 Ow`2ei.�`1C`2/x.eis.`
2
1
�`2
2
/
� e�is.�`1C`2/

2

/ D jeis@
2
xwj2 � eis@

2
x jwj2:

Plugging the above relation into (5.11) yields (5.9). This concludes the proof.

Lemma 5.2. For sufficiently smooth functions v;w,Z �

0

e�is@
2
x Œ.e�is@

2
xv/.eis@

2
xw/2� ds D J�2.v; w;w/CR2.v; w;w/ (5.12)

with J�2 defined in (1.13) and the remainder given by

R2.v1; v2; v3/ D �2i

Z �

0

e�is@
2
x

�
.e�is@

2
xv1/

�

Z s

0

ei.s�s1/@
2
x .eis1@

2
x@xv2/.eis1@

2
x@xv3/ ds1

�
ds: (5.13)
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Proof. Again we prove the assertion in two steps. First we show that in fact

J�2.v; w;w/ D

Z �

0

e�is@
2
x Œ.e�is@

2
xv/.eis@

2
xw2/� ds: (5.14)

This follows by Fourier expansion of the integral together with the relation

.�k1 C k2 C k3/
2
C k21 � .k2 C k3/

2
D �2k1.�k1 C k2 C k3/;

which implies thatZ �

0

e�is@
2
x Œ.e�is@

2
xv/.eis@

2
xw2/� ds

D

X
k1;k2;k32Z

kD�k1Ck2Ck3

Ovk1 Owk2 Owk3eikx
Z �

0

eis.�k1Ck2Ck3/
2

eis.k
2
1
�.k2Ck3/

2/ ds

D

X
k1;k2;k32Z

kD�k1Ck2Ck3

Ovk1 Owk2 Owk3eikx
Z �

0

e�2isk1k ds

D

X
k1;k2;k32Z

kD�k1Ck2Ck3

Ovk1 Owk2 Owk3eikx
e�2ik1k� � 1
�2ik1k

D
i

2
e�i�@

2
x@�1x Œ.e

�i�@2x@�1x v/.e
i�@2xw2/� �

i

2
@�1x .w

2@�1x v/C �
1.vw2/0

C � Ov0
�
w2 � b.w2/0

�
: (5.15)

Thanks to (5.14) we can furthermore conclude by (5.12) that

R2.v; w;w/ D

Z �

0

e�is@
2
x
�
.e�is@

2
xv/Œ.eis@

2
xw/2 � eis@

2
xw2�

�
ds: (5.16)

We note that

�2i

Z s

0

ei.s�s1/@
2
x .eis1@

2
x@xw/

2 ds1

D 2i
X

`1;`22Z

Ow`1 Ow`2ei.`1C`2/xe�is.`1C`2/
2

Z s

0

eis1.`1C`2/
2

e�is1.`
2
1
C`2
2
/`1`2 ds1

D 2i
X

`1;`22Z

Ow`1 Ow`2ei.`1C`2/xe�is.`1C`2/
2

Z s

0

e2is1`1`2`1`2 ds1

D

X
`1;`22Z

Ow`1 Ow`2ei.`1C`2/xe�is.`1C`2/
2

.eis.`1C`2/
2

e�is.`
2
1
C`2
2
/
� 1/

D .eis@
2
xw/2 � eis@

2
xw2:

Plugging the above relation into (5.16) proves the assertion.
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Lemma 5.3 (Local error). The local error

E.�; tn/ WD u
K.tn C �/ �ˆ

K
� .u

K.tn//

of the time discretization scheme (1.11) applied to the filtered Schrödinger equation (1.7)
equals

E.�; tn/ D �2i…Kei�@
2
xR1

�
…��1=2u

K.tn/;…KCu
K.tn/;…��1=2u

K.tn/
�

� i…Kei�@
2
xR2

�
…Ku

K.tn/;…��1=2u
K.tn/;…��1=2u

K.tn/
�

� i…Kei�@
2
x

X
�2A

E�.�; tn/; (5.17)

where E�.�; tn/ is defined in (5.6) and the remainders R1 and R2 are given in (5.9) and
(5.13), respectively.

Proof. The assertion follows by the expansion of the exact solution uK.tn C �/ given in
(5.5) together with Lemmas 5.1 and 5.2.

More precisely, employing Lemma 5.1 to approximate the integral arising for �1 D
KC or �3 DKC in (5.5) and Lemma 5.2 to approximate the integrals arising for �2 DKC

or �1 D �2 D �3 D ��1=2 in (5.5) yields

uK.tnC�/ D ei�@
2
xuK.tn/�2i…Kei�@

2
xJ�1

�
…��1=2u

K.tn/;…KCu
K.tn/;…��1=2u

K.tn/
�

�i…Kei�@
2
xJ�2

�
…Ku

K.tn/;…��1=2u
K.tn/;…��1=2u

K.tn/
�

�2i…Kei�@
2
xR1

�
…��1=2u

K.tn/;…KCu
K.tn/;…��1=2u

K.tn/
�

�i…Kei�@
2
xR2

�
…Ku

K.tn/;…��1=2u
K.tn/;…��1=2u

K.tn/
�

�i…Kei�@
2
x

X
�2A

E�.�; tn/: (5.18)

The assertion thus follows by taking the difference of the expansion of the exact solution
given in (5.18) and the numerical flow defined in (1.11).

6. Global error analysis

Let enC1 D uK.tnC1/ � u
nC1
� denote the time discretization error, i.e., the difference

between the numerical solution unC1� D ˆK� .u
n
� / defined in (1.11) and the exact solution

of the filtered Schrödinger equation (1.7). Inserting a zero in terms of˙ˆK� .u
K.tn//, i.e.,

using
enC1 D uK.tnC1/ �ˆ

K
� .u

K.tn//Cˆ
K
� .u

K.tn// �ˆ
K
� u

n
� ;

we obtain, by the definition of the numerical flow ˆK� in (1.11),

enC1 D ei�@
2
xen � 2i…Kei�@

2
x
�
J�1
�
…��1=2u

K.tn/;…KCu
K.tn/;…��1=2u

K.tn/
�

� J�1.…��1=2u
n
� ;…KCu

n
� ;…��1=2u

n
� /
�

� i…Kei�@
2
x
�
J�2
�
…Ku

K.tn/;…��1=2u
K.tn/;…��1=2u

K.tn/
�

� J�2.…Ku
n
� ;…��1=2u

n
� ;…��1=2u

n
� /
�

C E.�; tn/; (6.1)
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where J�1 and J�2 are defined in (1.12) and (1.13) and the local error (5.17) is given in
Lemma 5.3.

By solving the above recursion, we find that for 0 � n � N1 D bT1=�c with T1 � T ,
the global error en satisfies

en D ��.tn/

n�1X
kD0

ei.n�k/�@
2
x�

�
k�

T1

�
…KGk CR1;n CR2;n; (6.2)

where

Gn D
�2i

�

�
J�1
�
…��1=2u

K.tn/;…KCu
K.tn/;…��1=2u

K.tn/
�

� J�1.…��1=2u
n
� ;…KCu

n
� ;…��1=2u

n
� /
i

�
i

�

�
J�2
�
…Ku

K.tn/;…��1=2u
K.tn/;…��1=2u

K.tn/
�

� J�2.…Ku
n
� ;…��1=2u

n
� ;…��1=2u

n
� /
�
; (6.3)

and

Ri;n D ��.tn/

n�1X
kD0

ei.n�k/�@
2
x�.tk/…KFi .tk/; i D 1; 2;

with

F1.tn/ D
1

�

�
�2i…KR1

�
…��1=2u

K.tn/;…KCu
K.tn/;…��1=2u

K.tn/
�

� i…KR2
�
…Ku

K.tn/;…��1=2u
K.tn/;…��1=2u

K.tn/
��
; (6.4)

F2.tn/ D �
i

�
…K

X
�2A

E�.�; tn/: (6.5)

Note that E� is defined in (5.6) and R1, R2 in (5.9) and (5.13). We have introduced the
truncation function � in order to work with global Bourgain spaces. As before, we will
assume that un� and uK are globally defined, though they coincide with the actual solutions
of the scheme and the PDE on a finite interval of time. We will choose T1 sufficiently small
later.

We shall first estimate R1;n, which gives the dominant contribution to the error.

Lemma 6.1. Let s0 2 .0; 1� and b 2 .1=2; 5=8/. For s0 > 0,

kR1;nkX0;b�
� CTK�

1=2� .s0/� : (6.6)

Moreover, if s0 > 1=4, then

kR1;nkX0;b�
� CT .K�

1=2/1=2� s0�.1=8/C ; (6.7)

and if s0 > 1=2, then
kR1;nkX0;b�

� CT �
s0�.1=8/C : (6.8)
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Proof. By using again (3.11) and (3.12), we get

kR1;nkX0;b�
. kF1.tn/kX0;�3=8�

:

By using (6.4) this amounts to estimating

I1 D
1

�



R1�…��1=2u
K.tn/;…KCu

K.tn/;…��1=2u
K.tn/

�


X
0;�3=8
�

;

I2 D
1

�



R2�…KuK.tn/;…��1=2u
K.tn/;…��1=2u

K.tn/
�


X
0;�3=8
�

:

We first prove (6.6). We start with the estimate of I2. We use (5.13), (3.24) and Remark 3.2
to obtain

I2 . K�1=2kuK.tn/kX0;3=8�
k�1=2@x…��1=2u

K.tn/k
2

X
0;3=8
�

:

By using Proposition 4.2, this yields

I2 . K�1=2kuKkXs0;bk�
1=2@x…��1=2u

K
k
2

Xs2;b

with s0 > s2 > 0, s2 arbitrarily small and b 2 .7=8; 1/. Consequently, from the frequency
localization, we find that

I2 . � s0�s2.K�1=2/kuKkXs0;bk…��1=2u
K
k
2

Xs0;b
� CT �

s0�s2.K�1=2/;

where we use Corollary 2.8 for the last estimate.
It remains to estimate I1. By using the definition (5.9) and the same arguments, we

get

I1 . K�1=2k.�1=2@x/
2…��1=2ukXs2;bk…KCu

K
kXs2;bku

K
kXs2;b

CK�1=2kuKkXs0;bk�
1=2@x…��1=2u

K
k
2

Xs2;b

again with s0 > s2 > 0 and s2 arbitrarily small. The second term is similar to the one
before. For the first term, by using frequency localization, in particular the fact that
�1=2j�j � 1 on the support of …KC , we then obtain

k.�1=2@x/
2…��1=2ukXs2;b . � .s0�s2/=2kukXs0;b ;

k…KCu
K
kXs2;b . � .s0�s2/=2kuKkXs0;b :

This also yields
I1 � CT �

s0�s2 .K�1=2/;

which concludes the proof of (6.6).
To prove (6.7), we follow the same lines, but we use (3.25) instead of (3.24) since

s0 > 1=4. This yields

kR1;nkX0;b�
. .K�1=2/1=2kuK.tn/kl4�H

.1=4/C k�
1=2@x…��1=2u

K.tn/k
2

X
0;3=8
�

C .K�1=2/1=2k.�1=2@x/
2…��1=2u

K.tn/kX0;3=8�
k…KCu

K.tn/kl4�H
.1=4/C

k…��1=2u
K.tn/kX0;3=8�

:
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By using again the same estimates as above, it only remains to estimate kuK.tn/kl4�H .1=4/C
and k…KCu

K.tn/k
l4�H

. 1
4
/C

. We can just use

kuK.tn/kl4�H
.1=4/C . T 1=4kuKkL1

T
H s0 . T 1=4kuKkXs0;b ; b > 1=2;

and, by frequency localization for j�j � ��1=2,

k…KCu
K.tn/kl4�H

.1=4/C .T �
1
2 .s0�.1=4/C/kuKkL1

T
H s0 : (6.9)

This yields (6.7).
Finally, to get (6.8), we follow the same lines but we now use (3.27) and (3.28) . This

yields

kR1;nkX0;b�
. k�1=2@x…��1=2u

K.tn/k
2

X
0;3=8
�

kuK.tn/kl1� H .1=2/C

C k.�1=2@x/
2…��1=2u

K.tn/kX0;3=8�
k…KCu

K.tn/kl4�H
.1=4/C ku

K.tn/kl1� H .1=2/C
:

We then use the same estimates, in particular (6.9) and the fact that

kuK.tn/kl1� H .1=2/C
� kuKk

L1
T
H .1=2/C

:

This ends the proof.

We shall next estimate R2;n.

Lemma 6.2. For s0 > 0 and b 2 .1=2; 5=8/,

kR2;nkX0;b�
� CT

�
�1=4.K�1=2/2 C �1=2.K�1=2/3 C �3=2.K�1=2/4

�
: (6.10)

Moreover if s0 > 1=4, then

kR2;nkX0;b�
� CT .K�

1=2/1=2�5=8; (6.11)

and if s0 > 1=2, then
kR2;nkX0;b�

� CT �: (6.12)

Proof. We first use (3.12) and Remark 3.2 to estimate

kR2;nkX0;b�
. kF2.tn/kX0;�3=8�

:

Next, by using (5.6) and the product estimate (3.24), we get

kF2;nkX0;�3=8�
. K�1=2

X
�2A

�
kuK.tn/k

2
X0;3=8

kT�.u
K.tn//kX0;3=8�

C kuK.tn/kX0;3=8�
kT�.u

K.tn//k
2

X
0;3=8
�

C kT�.u
K.tn//k

3

X
0;3=8
�

�
:
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Next, by using (5.4), we get

kT�.u
K.tn//kX0;3=8�

. � sup
t 02Œ0;��

X
�2A

k…�1u
K.tn C t

0/…�2u
K.tn C t

0/…�3u
K.tn C t

0/k
X
0;3=8
�

:

By using (3.8), we thus obtain

kT�.u
K.tn//kX0;3=8�

. �1=4 sup
t 02Œ0;��

X
�2A

k…�1u
K.tn C t

0/…�2u
K.tn C t

0/…�3u
K.tn C t

0/k
X
0;�3=8
�

:

Consequently, by using the product estimate (3.24) again, we find that

kT�.u
K.tn//kX0;3=8�

. �1=4.K�1=2/ sup
t 02Œ0;��

kuK.tn C t
0/k3
X
0;3=8
�

:

Then, by Proposition 4.2,

kT�.u
K.tn//kX0;3=8�

. �1=4.K�1=2/CT

and hence

kR2;nkX0;b�
. K�1=2

�
�1=4.K�1=2/C .�1=4.K�1=2//2 C .�1=4.K�1=2//3

�
CT :

This proves (6.10).
To get (6.11), we use (3.23) and (3.25) to get

kR2;nkX0;b�
. kF2.tn/kX0;�3=8�

. .K�1=2/1=2
X
�2A

�
kuK.tn/k

2

X
0;3=8
�

kT�.u
K.tn//kl4�H

.1=4/C

C kuK.tn/kX0;3=8�
kuK.tn/kl4�H

.1=4/C kT�.u
K.tn//kX0;3=8�

C kT�.u
K.tn//k

2

X
0;3=8
�

kuK.tn/kl4�H
.1=4/C

C kT�.u
K.tn//kX0;3=8�

kuK.tn/kX0;3=8�
kT�.u

K.tn//kl4�H
.1=4/C

C kT�.u
K.tn//k

2

X
0;3=8
�

kT�.u
K.tn//kl4�H

.1=4/C

�
:

We can again use (3.8) and the trivial estimate

kuK.tn/kl4�H
.1=4/C . T 1=4kuKk

L1H .1=4/C

so that it only remains to estimate kT�.uK.tn//kX0;3=8�
and kT�.uK.tn//kl4�H .1=4/C . For

the first one, we use again (3.8) to write

kT�.u
K.tn//kX0;3=8�

. �5=8 sup
t 02Œ0;��

X
�2A

k…�1u
K.tn C t

0/…�2u
K.tn C t

0/…�3u
K.tn C t

0/k
X
0;0
�
:
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Next, from Hölder’s inequality and the Sobolev embedding W .1=4/C;4 � L1, we get

kT�.u
K.tn//kX0;3=8�

. �5=8 sup
t 02Œ0;��

k…��1=2u
K.tn C t

0/k2
l4�W

.1=4/C;4
k…Ku

K.tn C t
0/kl1� L2

and hence by using (3.22), Proposition 4.2 and (3.7) we get, for s0 > 1=4,

kT�.u
K.tn//kX0;3=8�

. �5=8kuKk3
Xs0;b

. CT �
5=8:

Next, we estimate kT�.uK.tn//kl4�H .1=4/C . We begin with

kT�.u
K.tn//kl4�H

.1=4/C

. � sup
t 02Œ0;��

X
�2A

k…�1u
K.tn C t

0/…�2u
K.tn C t

0/…�3u
K.tn C t

0/k
l4�H

.1=4/C : (6.13)

Then we observe that for all sequences .un/, .vn/, .wn/, and s > 0, we have

k…KCun…��1=2vn…��1=2wnkH s

. k…KCunkH sk…��1=2vnkL1k…��1=2wnkL1 : (6.14)

Indeed, by using the generalized Leibniz rule (2.12), we have

k…KCun…��1=2vn…��1=2wnkH s . k…KCunkH sk…��1=2vnkL1k…��1=2wnkL1

C k…KCunkL2kh@xi
s…��1=2vnkL1k…��1=2wnkL1

C k…KCunkL2k…��1=2vnkL1kh@xi
s…��1=2wnkL1 :

By frequency localization, we observe that

k…KCunkL2 . � s=2kunkH s ; kh@xi
s…��1=2vnkL1 . 1=� s=2kvnkL1 ;

kh@xi
s…��1=2wnkL1 .

1

� s=2
kwnkL1 ;

and hence (6.14) follows. We thus deduce from (6.13) and (6.14) that

kT�.u
K.tn//kl4�H

.1=4/C

. sup
t 02Œ0;��

�kuK.tn C t
0/k

l1� H .1=4/C
k…��1=2u

K.tn C t
0/k2

l8�W
.1=4/C;4

. sup
t 02Œ0;��

�3=4 sup
t 02Œ0;��

�kuK.tn C t
0/k

l1� H .1=4/C
k…��1=2u

K.tn C t
0/k2

l4�W
.1=4/C;4

:

Hence by using (3.22), Proposition 4.2 and (3.7) again we finally get

kT�.u
K.tn//kl4�H

.1=4/C . CT �
3=4

if s0 > 1=4: We thus deduce (6.11).
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It remains to prove (6.12). We now use (3.27) and (3.28) to get

kR2;nkX0;b�
. kF2.tn/kX0;�3=8�

. kuK.tn/k2
X
0;3=8
�

kT�.u
K.tn//kl1� H .1=2/C

C kuK.tn/kX0;3=8�
kT�.u

K.tn//kl4�H
.1=4/C ku

K.tn/kl1� H .1=2/C

C kuK.tn/kX0;3=8�
kT�.u

K.tn//kl4�H
.1=4/C kT�.u

K.tn//kl1� H .1=2/C

C kT�.u
K.tn//k

2

l4�H
.1=4/C

kT�.u
K.tn//kl1� H .1=2/C

:

Note that for the last term in the above right-hand side, we have used the fact that in the
estimate (3.27), we can replace in the right-hand side the norm kunkX0;3=8�

by the norm
kunkl4�H

.1=4/C by using the Sobolev embedding in space instead of the Bourgain estim-
ate (3.22). Since we have the obvious estimate kuK.tn/kl1� H .1=2/C

. kuKk
L1
T
H .1=2/C

and since
kT�.u

K.tn//kl4�H
.1=4/C . T 1=4kT�.u

K.tn//kl1� H .1=2/C
;

it only remains to estimate kT�.uK.tn//kl1� H .1=2/C
. From standard product estimates,

since H .1=2/C is an algebra, we get

kT�.u
K.tn//kl1� H .1=2/C

. �kuK.tn/k
3

l1� H .1=2/C
. CT �:

This concludes the proof.

7. Proof of Theorem 1.1

We first observe that thanks to (2.10), the triangle inequality yields

ku.tn/ � u
n
� kL2 � CT �

s0˛=2 C kuK.tn/ � u
n
� kL2 � CT �

s0˛=2 C kenkl1� L2 ; (7.1)

where en solves (6.2). To get the error estimates of Theorem 1.1, it thus suffices to estim-
ate kenk

X
0;b
�

for some b 2 .1=2; 5=8/ thanks to (3.5). Note that there are two parts in
the total error, the space discretization part above and the time discretization error on the
right-hand side of (6.2), which is estimated in Lemmas 6.1 and 6.2. We shall optimize the
total error by choosing the best possible ˛ as regularity allows.

We first prove (1.4). For very rough data, when 0 < s0 � 1=4, we need the estimate
(3.22) without loss. This forces us to choose K D ��1=2, hence ˛ D 1 without allowing
us to optimize the error. We thus deduce from Lemmas 6.1 and 6.2 that

kR1;nkX0;b�
C kR2;nkX0;b�

� CT .�
s0�0C C �1=4/ � CT �

s0�0C : (7.2)

Next, we decompose
Gn D Ln �Qn C Cn (7.3)
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with
Ln D �

2i

�

�
Jr1
�
…��1=2e

n;…KCu
K.tn/;…��1=2u

K.tn/
�

C Jr1
�
…��1=2u

K.tn/;…KCe
n;…��1=2u

K.tn/
�

C Jr1
�
…��1=2u

K.tn/;…KCu
K.tn/;…��1=2e

n
��

�
i

�

�
Jr2
�
…Ke

n;…��1=2u
K.tn/;…��1=2u

K.tn/
�

C Jr2
�
…Ku

K.tn/;…��1=2e
n;…��1=2u

K.tn/
�

C Jr2
�
…Ku

K.tn/;…��1=2uK.tn/;…��1=2e
n
��
; (7.4)

Qn D �
2i

�

�
Jr1
�
…��1=2e

n;…KCe
n;…��1=2u

K.tn/
�

C Jr1
�
…��1=2e

n;…KCu
K.tn/;…��1=2e

n
�

C Jr1
�
…��1=2u

K.tn/;…KCe
n;…��1=2e

n
��

�
i

�

�
Jr2
�
…Ke

n;…��1=2e
n;…��1=2u

K.tn/
�

C Jr2
�
…Ke

n;…��1=2u
K.tn/;…��1=2e

n
�

C Jr2
�
…Ku

K.tn/;…��1=2e
n;…��1=2u

K.tn/
��
; (7.5)

and

Cn D
1

�

�
�2iJr1.…��1=2e

n;…KCe
n;…��1=2e

n/ � iJr2.…Ke
n;…��1=2e

n;…��1=2e
n/
�
:

(7.6)
By using Lemma 3.4 and (7.2), we deduce from (6.2) that

kenk
X
0;b
�
� CT T

"0
1 kGnkX0;�3=8�

C CT �
s0�.0/C ; n� � T1;

where "0 D 5=8 � b > 0. Next, we have

kGnkX0;�3=8�
� kLnkX0;�3=8�

C kQnkX0;�3=8�
C kCnkX0;�3=8�

:

To estimate the right-hand side, we use the equivalent definitions (5.10), (5.14) and again
(3.24) and (3.20) (we recall that for this case we choose K�1=2 D 1). This yields

kenk
X
0;b
�
� CT T

"0
1 .ke

n
k
X
0;b
�
C kenk2

X
0;b
�

C kenk3
X
0;b
�

/C CT �
s0�.0/C :

By choosing T1 sufficiently small we thus get

kenk
X
0;b
�
� CT �

s0�.0/C :

This proves the desired estimate (1.4) for 0 � n � N1 D T1=� . We can then iterate the
argument on T1=� � n� 2T1=� and so on to get the final estimate. We thus finally deduce
from (7.1) that

ku.tn/ � u
n
� kL2 � CT .�

s0=2 C � s0�.0/C/;
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which means that for every 0< "< s0, we have for someCT (depending on ") the estimate

ku.tn/ � u
n
� kL2 � CT .�

s0=2 C � s0�"/:

Since we can always choose " small enough so that s0 � " > s0=2, we get (1.4).
We next prove (1.5). We follow the same lines, but we can now optimize the total

error. From Lemmas 6.1 and 6.2, we get

kR1;nkX0;b�
C kR2;nkX0;b�

� CT
�
.K�1=2/1=2� s0�.1=8/C C .K�1=2/1=2�5=8

�
� CT .K�

1=2/1=2� s0�.1=8/C :

We now choose K such that .K�1=2/1=2� s0�.1=8/C D 1=Ks0 , which gives

K D ��˛=2 D �
�
s0C.1=8/�
s0C1=2 ; ˛ D 2

s0 C .1=8/�

s0 C 1=2
D 2

�
1 �

1

2s0 C 1

�
3

4

�
C

�
: (7.7)

Note that ˛ 2 Œ1; 2� since 1=4 < s0 � 1=2, and further

kR1;nkX0;b�
C kR2;nkX0;b�

� CT �
s0.1�

1
2s0C1

.3=4/C/: (7.8)

By using Lemma 3.4, from (6.2) we get

kenk
X
0;b
�
� CT T

"0
1 .kLnkX0;�3=8�

C kQnkX0;�3=8�
C kCnkX0;�3=8�

/

C CT �
s0.1�

1
2s0C1

.3=4/C/: (7.9)

To estimate Ln, we use the product estimates (3.25), (3.26) to get

kLnkX0;�3=8�
. kunk2

X
.1=4/C;3=8

�

kenkl1� L2 C ke
n
k
X
0;3=8
�
kunk

X
0;3=8
�
kunk

X
.1=4/C;3=8

�

and hence by using again Proposition 4.2 and (3.5), we obtain

kLnkX0;�3=8�
. CT ke

n
k
X
0;b
�
: (7.10)

To estimate Cn, we use again (3.24) and (3.20). This yields

kCnkX0;�3=8�
� CTK�

1=2
kenk3

X
0;3=8
�

: (7.11)

To estimate Qn, we use (3.25) and (3.31) and again Proposition 4.2. This yields

kQnkX0;�3=8�
� CT .K�

1=2/1=2kenk2
X
0;b
�

(7.12)

since s0 > 1=4. By setting Y D kenk
X
0;b
�
=�
s0.1�

1
2s0C1

.3=4/C/, we deduce from the above
estimates and (7.9) that

Y � CT T
"0
1

�
Y C .K�1=2/1=2� s0.1�1=2s0C1.3=4/C/Y 2

C
�
.K�1=2/1=2�

s0.1�
1

2s0C1
.3=4/C/

�2
Y 3
�
C CT :
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We can then check that with the choice (7.7), for 1=4 < s0 � 1=2, the exponent ˇ of

�ˇ D .K�1=2/1=2�
s0.1�

1
2s0C1

.3=4/C/

is positive. Hence, we can argue as before to get (1.5).
It remains to prove (1.6). From Lemmas 6.1 and 6.2, we now get

kR1;nkX0;b�
C kR2;nkX0;b�

� CT �
s0�.1=8/C :

We thus choose K such that � s0�.1=8/C D 1=Ks0 in order to optimize the total error. We
find

K D �
1
s0
.1=8/C�1; ˛ D 2 �

1

s0

�
1

4

�
C

: (7.13)

We can use (7.10)–(7.12) to infer from (6.2) that

kenk
X
0;b
�
� CT T

"0
1

�
kenk

X
0;b
�
C.K�1=2/1=2kenk2

X
0;b
�

CK�1=2kenk3
X
0;b
�

�
CCT �

s0�.1=8/C :

Again, by setting Y D kenk
X
0;b
�
=� s0�.1=8/C , we get

Y � CT T
"0
1

�
Y C .K�1=2/1=2� s0�.1=8/CY 2 C

�
.K�1=2/1=2� s0�.1=8/C

�2
Y 3
�
C CT

and we conclude the proof as before, by observing that the exponent of � in

.K�1=2/1=2� s0�.1=8/C

is positive with the choice (7.13).

8. Proof of Lemma 3.6

We have to prove (3.22). For this purpose, we adapt the proof in [21] (which is attributed
to N. Tzvetkov). We first observe that

k…Kunk
2

l4�L
4 D k.…Kun/

2
kl2�L2

: (8.1)

By the definition of the X0;b� norm and by setting fn D e�in�@
2
x…Kun, it is equivalent to

prove that
k.ein�@

2
xfn/

2
kl2�L2

. K�1=2kfnk
2

H
3=8
� L2

:

By using the space-time Fourier transform we shall decompose efm.�; k/ by using a
Littlewood–Paley decomposition with respect to � . Note that since � 2 Œ��=�; �=��,
there are actually a finite number of terms. We write

fn D
X
l�0

fn;l



Fourier integrator for periodic NLS 3949

where efm;l .�; k/ is supported in 2l�1 � h�i � 2lC1 for every k. By symmetry and the
triangle inequality, it is sufficient to prove thatX

p�q

kein�@
2
xfn;p ein�@

2
xfn;qkl2�L2 . K�1=2kfnk

2

H
3=8
� L2

:

We shall actually prove that there exists " > 0 (we shall see that we can take " D 1=8)
such that for all p; q with p � q,

kein�@
2
xfn;p ein�@

2
xfn;qkl2�L2 . K�1=2 2".p�q/.23p=8kfn;pkl2�L2/.2

3q=8
kfn;qkl2�L2/:

(8.2)

Once this inequality is proven, the result follows easily. Indeed, let us set am D
23m=8kfn;mkl2�L2 , bm D 2"m1m�0: By Parseval, we have jamj . kfn;mkH3=8� L2

and

kamkl2 . kfnkH3=8� L2
:

Moreover, assuming that (8.2) is proven we obtainX
p�q

kein�@
2
xfn;pein�@

2
xfn;qkl2�L2 . K�1=2k.b � a/mam/kl1 . K�1=2kamk

2
l2

from Cauchy–Schwarz and Young’s inequality for sequences (observe that b 2 l1), which
is the desired estimate.

We shall now prove (8.2). From Parseval and by using (3.6), we have

kein�@
2
xfn;p ein�@

2
xfn;qk

2

l2�L
2

D

X
k

Z �=�

��=�

ˇ̌̌ X
k1Ck2Dk

Z
�1C�2D�

efn;p.�1 � k21 ; k1/efn;q.�2 � k22 ; k2/ d�1
ˇ̌̌2

d�:

Now let us notice that we have a nontrivial contribution if �1 � k21 is in the support of
efn;p.�; k1/ and �2 � k22 in the support of efn;q.�; k2/. By periodicity in the � variable, this
means that there exist m1, m2 in Z such thatˇ̌̌̌

�1 � k
2
1 �

2m1�

�

ˇ̌̌̌
. 2p;

ˇ̌̌̌
�2 � k

2
2 �

2m2�

�

ˇ̌̌̌
. 2q :

In other words, �1�k21 2Ep , �2�k22 2Eq whereEl D
S
jmj�N Œ2m�=��2

l ;2m�=�C2l �.
Note that since the frequencies k21 ; k

2
2 are smaller than K2, we can take N . �K2:

By using Cauchy–Schwarz again, we thus get

kein�@
2
xfn;p ein�@

2
xfn;qk

2

l2�L
2 . Mp;qkefn;pk2L2l2kefn;qk2L2l2 ; (8.3)

where
Mp;q D sup

k;�

X
k1Ck2Dk

Z
�1C�2D�; �1�k

2
1
2Ep ; �2�k

2
2
2Eq

d�1:
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To estimateMp;q , we observe that only � 2 k21 C k
2
2 CEp CEq � k

2
1 C k

2
2 C 2Eq gives

a nonzero contribution and that the integral is bounded by a constant times 2p . Since
k1 C k2 D k, we have

k21 C k
2
2 D

1
2
.k2 C .k1 � k2/

2/

and hence
.k1 � k2/

2
2 2� � k2 � 4Eq :

Therefore, k1 � k2 is constrained to intervals of length . 2q=2 and there are at most 2�K2

such intervals. As a consequence,

Mp;q . �K22q=22p D �K22.p�q/=423p=423q=4:

Taking the square root, we thus deduce (8.2) from (8.3). This concludes the proof
of (3.22).

9. Numerical experiment

In this section we illustrate our main result (Theorem 1.1) on the L2 error estimate by a
numerical experiment. For this purpose, we solve the periodic Schrödinger equation (1.1)
with initial value

u.0/ D fH1 C
2 sin x
2 � cos x

on the torus. Here fH1 is a randomizedH 1 function normalized inL2 (see [11] for details
on the construction of fH1 ). We compare our new integrator (1.11) with the previously
introduced single-filtered Fourier based method [15, 16] and two standard integration
schemes for periodic Schrödinger equations: a Lie splitting and exponential integrator
method (see, e.g., [4, 13]). For the latter, we employ a standard Fourier pseudospectral
method for the discretization in space and we choose as largest Fourier mode K D 210

(i.e., the spatial mesh size�x D 0:0061). On the other hand, for our twice-filtered Fourier
based integrator, we have to use the relation K D ��˛=2 with ˛ given in (7.13), as we are
in case (iii) of Theorem 1.1 (recall that s0 D 1). This results in K � ��5=6.

We observe from the experiment that the new twice-filtered Fourier integrator is con-
vergent of order 1 for rough solutions in H 1, whereas the standard discretization tech-
niques as well as our previously introduced single-filtered Fourier based method all suffer
from order reduction; see Figure 1. In particular, the numerically obtained order for the
exponential integrator is reduced down to 0.3, whereas the results for the standard Lie
splitting scheme are highly irregular. Both integrators are thus unreliable and inefficient
for such low regularity initial data. The single-filtered Fourier based integrator shows a
more regular error behaviour for the example considered, but its order is reduced to 3/4.
The only method that is able to appropriately integrate the low regularity problem under
consideration is the twice-filtered Fourier based scheme (1.11) proposed in this paper. For
smooth solutions the new twice-filtered Fourier integrator performs similarly to the Lie
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τ10
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0.0005 0.001 0.002

0.0005

0.001

0.002

Fig. 1. L2 error of the new twice-filtered Fourier based scheme (1.11) (purple), the Lie splitting
scheme (yellow), the exponential integrator (blue), and the original single-filtered Fourier based
scheme (red) proposed in [15,16]. Left: the slope of the (black) reference lines is 1 and 3=4, respect-
ively. Right: zoom into the region of the left lower corner; the slope of the (black) reference line
is 1.

splitting and the exponential integrator. More precisely, for initial values at least in H 2

all three schemes converge with first-order accuracy � ; see, e.g., [5] for the analysis of the
Lie splitting method for H 2 data.
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