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Abstract. We construct a category of Breuil–Kisin GK -modules to classify integral semi-stable
Galois representations. Our theory uses Breuil–Kisin modules and Breuil–Kisin–Fargues modules
with Galois actions, and can be regarded as the algebraic avatar of the integral p-adic cohomology
theories of Bhatt–Morrow–Scholze and Bhatt–Scholze. As a key ingredient, we classify Galois
representations that are of finite E.u/-height.
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1. Introduction

1.1. Overview and main theorems

In this paper, we construct a certain “algebraic avatar” of some integral p-adic cohomol-
ogy theories. Let us first fix some notations.

Notation 1.1.1. Let p be a prime. Let k be a perfect field of characteristic p, let W.k/
be the ring of Witt vectors, and let K0 WD W.k/Œ1=p�. Let K be a totally ramified finite
extension of K0, let OK be the ring of integers, and let e WD ŒK W K0�. Fix an algebraic
closure K of K and set GK WD Gal.K=K/. Let Cp be the p-adic completion of K, and
let OCp be the ring of integers. Let vp be the valuation on Cp such that vp.p/ D 1.

The study of p-adic Hodge theory is roughly divided into two closely related direc-
tions: in the geometric direction, one studies p-adic cohomology theories and their com-
parisons; while in the algebraic direction, one studies (semi)linear algebra categories and
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uses them to classify p-adic Galois representations. Let us first recall some foundational
theorems.

Theorem 1.1.2 ([19,29,40]). Let X be a proper formal scheme over OK with semi-stable
reduction. Let R�log-crys .resp. R�dR, R�Ket/ denote the log-crystalline .resp. de Rham,
étale/ cohomology theory. Let Bst be Fontaine’s semi-stable period ring. We have

R�log-crys.Xk=W.k//Œ1=p�˝K0 K ' R�dR.X=OK/Œ1=p�I (1.1.1)

R�log-crys.Xk=W.k//Œ1=p�˝K0 Bst ' R�Ket.XK ;Zp/Œ1=p�˝Qp Bst: (1.1.2)

Here, when X is a scheme, (1.1.1) is proved by Hyodo–Kato, and (1.1.2) (the Cst-
conjecture of Fontaine–Jannsen) is proved by Tsuji; the general case when X is a formal
scheme is proved by Colmez–Nizioł. These comparisons imply that the log-crystalline
cohomology groups equipped with their natural .';N /- and filtration structures give rise
to admissible filtered .';N /-modules (recall that admissible means “coming from Galois
representations”). The following theorem of Colmez–Fontaine, which says that “weakly
admissible implies admissible”, can be regarded as the algebraic avatar of Thm. 1.1.2.

Theorem 1.1.3 ([18]). The category of weakly admissible filtered .'; N /-modules is
equivalent to the category of semi-stable representations of GK .

Note that in Thm. 1.1.2, the integral and torsion information in all the cohomology
theories are lost in the comparison theorems. Recently, Bhatt–Morrow–Scholze [5,6] and
Bhatt–Scholze [7] defined some integral p-adic cohomology theories (in the good reduc-
tion case) which specialize to all these classical p-adic cohomology theories (and keep all
the integral and torsion information). Let us first introduce some notations and definitions.

Notation 1.1.4. Let � 2K be a fixed uniformizer, and letE.u/ 2W.k/Œu� be the minimal
polynomial of � overK0. Fix a sequence of elements �n 2K inductively such that �0D�
and .�nC1/p D �n. Let K1 WD

S1
nD1 K.�n/ and let G1 WD Gal.K=K1/. Let S WD

W.k/JuK.
Let R WD O[

Cp
be the tilt of the perfectoid ring OCp , let mR be its maximal ideal,

and let W.R/ (also denoted as Ainf) be the ring of Witt vectors. Let � W W.R/! OCp be
the usual map; let � be a generator of the principal ideal Ker � . Let FrR WD C [p be the
fractional field of R, and let W.FrR/ be the ring of Witt vectors.

Note that � WD .�n/n�0 defines an element in R; let Œ�� 2 W.R/ be the Teichmüller
lift of � . Then we can define a W.k/-linear embedding S ,! W.R/ via u 7! Œ��; hence
E.u/maps to a generator of Ker � . The Frobenius ' W R! R, x 7! xp , induces Frobenii
(always denoted as ') on W.R/ and S.

Fix �n 2 K inductively such that �0 D 1, �1 is a primitive p-th root of unity and
.�nC1/

p D �n. Let Kp1 WD
S1
nD1 K.�n/. Let " D .1; �1; �2; : : :/ 2 R, and let Œ"� 2

W.R/ be the Teichmüller lift.

Definition 1.1.5. (1) A Breuil–Kisin module is a finitely generated S-module M

equipped with an SŒ1=E.u/�-linear isomorphism

M˝';S SŒ1=E.u/�!MŒ1=E.u/�I
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it is said to be of .non-negative/ finite E.u/-height if under the isomorphism, the
image of M˝';S S is contained in M.

(2) Let yM be a finitely presented W.R/-module such that yMŒ1=p� is finite free over
W.R/Œ1=p�.

(a) It is called a (non-'-twisted) Breuil–Kisin–Fargues module if it is equipped with
a W.R/Œ1=��-linear isomorphism

yM˝';W.R/ W.R/Œ1=��! yMŒ1=��:

(b) It is called a '-twisted Breuil–Kisin–Fargues module if it is equipped with a
W.R/Œ1='.�/�-linear isomorphism

yM˝';W.R/ W.R/Œ1='.�/�! yMŒ1='.�/�:

Remark 1.1.6. (1) Given a (non-'-twisted) Breuil–Kisin–Fargues module yM, the ten-
sor product yM˝';W.R/ W.R/ is a '-twisted Breuil–Kisin–Fargues module. As ' is an
automorphism on W.R/, this induces an equivalence between the relevant categories.

(2) It seems to us that both versions of “Breuil–Kisin–Fargues modules” deserve their
merits. Indeed, the '-twisted version (which is precisely [5, Def. 4.22]) is perhaps the
(geometrically) natural version as it naturally appears in cohomology and comparison
theorems (see Thm. 1.1.7 below). However, the non-'-twisted version (which, e.g., is
also used in [21, Def. 4.2.1]) has the technical convenience that it is more “parallel” to the
Breuil–Kisin modules: for example, one can choose � D E.u/. In addition, in our alge-
braic study of Breuil–Kisin modules, we also need to embed S into various other rings
(without '-twisting), hence the process is more uniform if we use the non-'-twisted ver-
sion throughout: this is indeed what we do in this paper (see Def. 1.1.8 and Rem. 1.1.10).

Theorem 1.1.7 ([5–7]). Let X be a proper smooth formal scheme over OK . There exist
cohomology theories R�S.X/ and R�Ainf.XOCp

/ which are equipped with morphisms ',
such that the cohomology groups are Breuil–Kisin modules and '-twisted Breuil–Kisin–
Fargues modules respectively, and such that we have the following comparisons:

R�S.X/˝';S Ainf ' R�Ainf.XOCp
/I (1.1.3)

R�S.X/˝
L
';S W.k/ ' R�crys.Xk=W.k//I (1.1.4)

R�S.X/˝
L
';S OK ' R�dR.X=OK/I (1.1.5)

R�Ainf.XOCp
/˝Ainf AinfŒ1=�� ' R�Ket.XK ;Zp/˝Zp AinfŒ1=��: (1.1.6)

Here, the .derived/ tensor product in (1.1.3) is via the flat .see [5, Lem. 4.30]/ morphism
S

'
�! S ,! Ainf where the second map is the W.k/-linear embedding sending u to Œ��;

the derived tensor product in (1.1.4) is via S
'
�! S! W.k/ where the second map is

the W.k/-linear map sending u to 0; the derived tensor product in (1.1.5) is via S
'
�! S

! OK where the second map is the W.k/-linear map sending u to �; and the element �
in (1.1.6) is Œ"� � 1.
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All the above results were first proved by Bhatt–Morrow–Scholze [5, 6]. Recently,
Bhatt–Scholze [7] developed the prismatic cohomologies and reproved all these results;
in particular, (1.1.3) can now be regarded as a prismatic base-change theorem. Let us
mention that it is natural to expect the existence of a “log”-version of the prismatic site,
and hence the log-prismatic cohomologies (e.g., the semi-stable version of R�Ainf has
already been constructed by Česnavičius–Koshikawa [13]).

The main goal of this paper is to construct the algebraic avatar of these integral p-adic
cohomologies (modulo p-power torsion) and the comparisons amongst them, which is
the following:

Definition 1.1.8. Define Mod';GK ;Œ�1;C1�
S;W.R/

to be the category consisting of triples
.M; 'M; GK/, which we call Breuil–Kisin GK-modules, where

(1) .M; 'M/ is a finite free Breuil–Kisin module;

(2) GK is a continuous 'bM-commuting W.R/-semilinear GK-action on the (non-'-

twisted) Breuil–Kisin–Fargues module cM WD W.R/˝S M such that

(a) M �cMG1
via the embedding M ,!cM;

(b) M=uM � .cM=W.mR/cM/GK via the embedding M=uM ,!cM=W.mR/cM.

Remark 1.1.9. After choosing a basis of M, the data in the definition above can be
expressed using two matrices (always so if p > 2 and can be made so if p D 2), one for '
and one for � (see Notation 1.4.3 for � and discussions about p D 2 case).

Remark 1.1.10. (1) The module yM together with its GK-action is called a “Breuil–
Kisin–Fargues GK-module” in [21, Def. 4.2.3]. Here, we call it a “Breuil–Kisin GK-
module” to emphasize the role played by Breuil–Kisin modules in our theory.

(2) If we replace “cM WDW.R/˝S M” in Def. 1.1.8 by “cM WDW.R/˝';S M”, then
by Rem. 1.1.6, we get an equivalent “'-twisted category”.

(3) (I thank Peter Scholze for useful discussions on this remark.) One observes that
the cohomology theories R�S.X/ and R�Ainf.XOCp

/ in Thm. 1.1.7 “satisfy” conditions
in the '-twisted version of Def. 1.1.8 (although the cohomology groups are not neces-
sarily finite free). Namely, there is a '-commuting GK-action on R�Ainf.XOCp

/; via the
isomorphism (1.1.3), the image of R�S.X/ in R�Ainf.XOCp

/ is fixed by G1, and the
image of R�S.X/ ˝

L
';S W.k/ is furthermore fixed by GK . All these follow from the

constructions in [5,6], but they look most natural using the base change theorem for pris-
matic cohomologies in [7]. Indeed, we have (cf. loc. cit. for notations concerning prisms
and prismatic cohomology),

R�Ainf.XOCp
/ ' '�Ainf

R��.XOCp
=Ainf/; by [7, §17]; (1.1.7)

R�S.X/ ' R��.X=S/; by [7, §15.2]. (1.1.8)

(In particular, R��.XOCp
=Ainf/ in [7] gives non-'-twisted Breuil–Kisin–Fargues mod-

ules.) Now, the '-commuting action of GK on R��.XOCp
=Ainf/ is induced by the

GK-action on the prism .Ainf; .�// 2 .OCp /�. The morphism ' W S ! Ainf induces a
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morphism of prisms in .OK/�:

.S; .E.u///! .Ainf; .'.�///I (1.1.9)

this morphism, by the base change theorem for prismatic cohomologies, induces an iso-
morphism

R��.X=S/˝';S Ainf ' '
�
Ainf
R��.XOCp

=Ainf/; (1.1.10)

which then induces a GK-action on the left hand side. Given g 2 G1, the composite
S

'
�! Ainf

g
�! Ainf induces exactly the same morphism in (1.1.9) (since S � .Ainf/

G1 )
and hence exactly the same isomorphism in (1.1.10); this implies thatR��.X=S/ is fixed
by G1. Finally, by reduction modulo W.mR/, (1.1.9) induces a morphism of prisms
in .OK/�:

.W.k/; .p//! .W.k/; .p//: (1.1.11)

Since W.k/ � .W.k//GK , we deduce again by the prismatic base change theorem that
R��.X=S/˝

L
';S W.k/ is fixed by GK .

The following is our main theorem, which, in view of Rem. 1.1.10, can be regarded
as the algebraic avatar of Thm. 1.1.7.

Theorem 1.1.11 (see Thm. 7.1.71). The category of Breuil–Kisin GK-modules is equiva-
lent to the category of GK-stable Zp-lattices in semi-stable representations of GK .

Remark 1.1.12. (1) We have a crystallinity criterion to tell when a Breuil–Kisin GK-
module comes from a crystalline representation (see Prop. 7.1.10).

(2) Loosely speaking, Thm. 1.1.11 “implies” that the information in (1.1.3) and (1.1.4)
is already enough to “recover” R�Ket.XK ;Zp/ (modulo torsion). Given a Breuil–Kisin
GK-module as in Def. 1.1.8, let '�M WDS˝';S M and let '�cM WDW.R/˝';W.R/cM.
Then we can show (see Prop. 7.1.11)

'�M=E.u/'�M � .'�cM=E.u/'�cM/GK I

this can be regarded as the algebraic avatar of the de Rham comparison (1.1.5).

We now give some historical remarks about (algebraic) integral p-adic Hodge theory,
and compare some of the theories.

Remark 1.1.13. (1) In algebraic integral p-adic Hodge theory, we use various
(semi)linear objects to classify Zp-lattices in semi-stable Galois representations. For ex-
ample, we have Fontaine–Laffaille theory [23], the theory of Wach modules [41, 42]
(refined by [2, 16]), and Breuil’s theory of strongly divisible S -lattices (conjectured
in [11], fully proved in [24, 36] using input from [32]). However, these theories are valid
only with certain restrictions on ramification of the base field or on Hodge–Tate weights,

1In Thm. 7.1.7, we will stick to representations of non-negative Hodge–Tate weights, as well
as Breuil–Kisin modules of non-negative E.u/-heights; this makes the writing easier. The general
case (as stated in Thm. 1.1.11) can be easily deduced by twisting.



H. Gao 6

or are valid only for certain crystalline representations. Liu’s theory of .'; yG/-modules
[37] (with input from Kisin [32]) is so far the only theory that works for all inte-
gral semi-stable representations. However, unlike our Breuil–Kisin GK-modules which
can be regarded as the algebraic avatar of some cohomology theories, the ring yR (see
Appendix B) in Liu’s theory is too implicit, and it seems hopeless to construct some
cohomology theory over it.

(2) Indeed, the author and Tong Liu recently realized that we actually do not know
if the ring yR is p-adically complete or not: this means that there is a gap in our earlier
work on limit of torsion semi-stable Galois representations in [25, 35] (these results are
not used in the current paper). Fortunately, this gap can now be (easily) fixed by using the
Breuil–Kisin GK-modules (see Appendix B). Note that the gap arises in the application
of the theory of .'; yG/-modules (namely, the theory is inadequate for this application),
but the theory per se remains valid; see also the next item.

(3) In [26], we will show that the theory of Breuil–Kisin GK-modules specializes to
(and hence recovers) the theory of .'; yG/-modules (see §7.2 for more remarks). Let us
mention here that the proof of our main theorem is independent of the theory of .'; yG/-
modules (except some relatively easy results, e.g. Prop. 7.1.4); in particular, we will not
use yR anywhere.

We make some speculations about the theory and its possible applications.

Remark 1.1.14. (1) Like all the integral theories listed in Rem. 1.1.13 (1), we would like
to use our Breuil–Kisin GK-modules to study reduction of semi-stable Galois represen-
tations as well as the relevant semi-stable Galois deformation rings (these results always
play important roles in automorphy lifting theorems). In fact, our result can already at least
simplify some of the constructions of the semi-stable substack in Emerton–Gee’s stack of
.';�/-modules (see §7.3). In particular, we would like to use our theory to investigate the
explicit structures of some semi-stable Galois deformation rings.

(2) In some sense, one can also regard Thm. 1.1.11 as some sort of integral version of
the Colmez–Fontaine theorem, particularly because all the modules in both theories are
avatars of cohomology theories. It is interesting to speculate if our theory can play some
integral role in places where the Colmez–Fontaine theorem is used (e.g., in the study of
p-adic period domains and period morphisms). We also wonder if there is any connection
between our theory and the Fargues–Fontaine curve.

(3) Recently, Bhatt and Scholze [8] established an equivalence between the category
of prismaticF -crystals on .OK/� and the category of lattices in crystalline representations
of GK . (The semi-stable version is then proved by Du–Liu [20] using the log-prismatic
site of Koshikawa [34].) It seems that the direct link between their theory and ours is still
unclear: in particular, can we directly construct a prismatic F -crystal from a Breuil–Kisin
GK-module, and vice versa? It seems likely explorations about theses questions could
shed new light on prismatic crystals.

Let us now sketch the main ideas in the proof of Thm. 1.1.11. Indeed, a key ingredient
is the classification of Galois representations which are of finite E.u/-height.
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Definition 1.1.15. Let T be a finite free Zp-representation of GK . It is called of finite
E.u/-height if there exists a finite free Breuil–Kisin module M of non-negative finite
E.u/-height such that there is a G1-equivariant isomorphism

T jG1 ' .M˝S W.FrR//'D1; (1.1.12)

where the G1-action on the right hand side of (1.1.12) comes from that on W.FrR/.

The following theorem in particular answers positively [37, Question 4.3.1 (2)] by
Tong Liu.

Theorem 1.1.16 (= Thm. 6.2.4). LetKur �K be the maximal unramified extension ofK,
let

m WD 1Cmax ¹i � 1 W �i 2 Kur
º;

and let Km D K.�m�1/. Let T be a finite free Zp-representation of GK , and let V D
T Œ1=p�. Then T is of finite E.u/-height if and only if V jGKm can be extended to a semi-
stable GK-representation with non-negative Hodge–Tate weights. In particular, if T is of
finite E.u/-height, then V is potentially semi-stable.

Theorem 1.1.16 is the most difficult part of our paper, and indeed takes the majority
of space. In fact, once it is proved, it is then relatively straightforward to prove the main
theorem Thm. 1.1.11 by using Thm. 1.1.16 and “comparisons” among various modules.

Thus, we will dedicate the entire §1.2 below to explain the proof of Thm. 1.1.16;
before we do so, we list some remarks about this theorem.

Remark 1.1.17. The notion “of finite E.u/-height” indeed depends on the choices
¹�nºn�0 (as does the embedding S ,! W.R/). If T is of finite height with respect to all
such choices, then we can use Thm. 1.1.16 to show that V is semi-stable; this intriguing
result is due to Gee (see Thm. 7.3.1). Indeed, this result, as we learnt from Gee, is inspired
by considerations in the construction of the stack of (semi-stable) .';�/-modules in [21];
see §7.3 for some more comments.

Remark 1.1.18. In [41], Wach studied some “finite height” .'; �/-modules; it is shown
in [41, A.5] that they give rise to de Rham (indeed, potentially crystalline) Galois repre-
sentations if there is some additional condition on the Lie algebra operator associated to
the �-action. Note however that the “finite height” condition in loc. cit. is of a different
type than the one here. Indeed, the analogue of our finiteE.u/-height condition in the set-
ting of .'; �/-modules should be the “finite q-height” condition, where q WD .1CT /p�1

T

is a polynomial (see, e.g., [2, 33]). In fact, we can use similar ideas in the current paper
to study finite q-height .'; �/-modules; in parallel, we can also study the finite height
.'; �/-modules (without E.u/ in the play) similarly to [41]. All these will be discussed
elsewhere.

Remark 1.1.19. Caruso gave a proof of Thm. 1.1.16 in [12, Thm. 3] (for p > 2), which
unfortunately contains a rather serious gap. (Indeed, even the statement in loc. cit. contains
an error, see Rem. 6.2.5.) The gap was first discovered by Yoshiyasu Ozeki, and is dis-
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cussed in Appendix A. The gap arises when Caruso tries to define a monodromy operator
on the .'; �/-modules (cf. below) associated to finite E.u/-height Galois representations,
using the “truncated log” [12, §3.2.2]; very roughly speaking, Caruso tries to define a log-
operator via p-adic approximation technique (using p-adic topology on various rings).
As will be explained in the next subsection, our approach is completely different and has
no p-adic approximation technique; in particular, our method uses overconvergent .'; �/-
modules which have been made available only very recently. Indeed, we do not regard our
proof as a “fix” to Caruso’s proof; see also Rem. 1.2.6 and Rem. 1.2.7.

1.2. Strategy of proof of Thm. 1.1.16

The main tool to prove Thm. 1.1.16 is the theory of overconvergent .'; �/-modules. Let us
first give some general remarks about the theory of .'; �/-modules. Recall that we already
defined K1 D

S1
nD1K.�n/ and Kp1 D

S1
nD1K.�n/. Let L WD K1Kp1 :

As already mentioned in the last subsection, in the algebraic study of p-adic Hodge
theory, we use various linear algebra tools to study p-adic representations of GK . A key
idea in p-adic Hodge theory is to first restrict the Galois representations to some subgroup
of GK . The .'; �/-modules used in this paper are constructed by using the subgroup
G1 WD Gal.K=K1/; they are analogues of the more classical .'; �/-modules which are
constructed using the subgroup Gp1 WD Gal.K=Kp1/. Here let us only quickly mention
that the � is the group Gal.Kp1=K/, and the � is a topological generator of the group
Gal.L=Kp1/ (see Notation 1.4.3).

Similar to the .'; �/-modules, the .'; �/-modules also classify all p-adic represen-
tations of GK . Although these two theories are equivalent, they each have their own
technical advantage, and both are indispensable. The .'; �/-modules are perhaps “eas-
ier” in the sense that both the '- and �-actions are defined over the same ring; whereas
the � -action in .'; �/-modules can only be defined over a much bigger ring. However,
the '-action in .'; �/-modules stays tractable even when K has ramification; in contrast,
the '-action in .'; �/-modules becomes quite implicit when K has ramification. This
dichotomy becomes much more substantial when we consider semi-stable Galois rep-
resentations: in this situation, there exist very well-behaved Breuil–Kisin modules (also
called Kisin modules, or .'; yG/-modules in different contexts) which are a special type
of .'; �/-modules; in contrast, such special type .'; �/-modules (called Wach modules)
exist only if we consider crystalline representations and ifK �

S
n�1K0.�n/ (e.g., when

K D K0 is unramified). To save space, we refer the reader to the introduction in [28]
for some discussion and comparison of the applications of these two theories in different
contexts. Indeed, this paper shows once again that when we consider semi-stable repre-
sentations, it is fruitful to use the .'; �/-modules.

Let us be more precise now. First, recall that the '-action of a .'; �/-module is defined
over the field

BK1 WD
° C1X
iD�1

aiu
i
W ai 2K0; lim

i!�1
vp.ai /DC1; and inf

i2Z
vp.ai / >�1

±
: (1.2.1)
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The � -action is defined over a bigger field zBL which we do not recall here (see §3).
Indeed, roughly speaking, a .'; �/-module D is a finite free BK1 -vector space equipped
with certain commuting maps ' W D ! D and � W zBL ˝BK1 D ! zBL ˝BK1 D. By
[12, Thm. 1], the (étale) .'; �/-modules classify all Galois representations of GK . One
readily observes that a Galois representation is of finite E.u/-height as in Def. 1.1.15 if
and only if there exists a '-stable Breuil–Kisin lattice inside the corresponding .'; �/-
module; note that this property has nothing to do with the � -action.

To prove Thm. 1.1.16, we need to define a natural monodromy operator on these
.'; �/-modules. Instead of the p-adic rings mentioned in Rem. 1.1.19, what we propose
in the current paper is that one should use certain Fréchet rings (e.g., various Robba-
style rings) instead. In fact, we can get a monodromy operator directly (no approximation
needed) using techniques of locally analytic vectors. Furthermore, our monodromy oper-
ator will be defined for all (rigid-overconvergent, see Thm. 1.2.1 below) .'; �/-modules
(not just finiteE.u/-height ones). Before we state the theorem concerning the monodromy
operator, let us recall the overconvergence result for .'; �/-modules.

Theorem 1.2.1 ([27,28]). The .';�/-modules .attached to p-adic representations ofGK/
are overconvergent. That is .roughly speaking/, the '-action can be defined over the sub-
field

B�K1 WD
° C1X
iD�1

aiu
i
2 BK1 W lim

i!�1
.vp.ai /C i˛/ D C1 for some ˛ > 0

±
I (1.2.2)

also, the � -action can be defined over some subfield zB�L � zBL.

Remark 1.2.2. (1) Thm. 1.2.1 was first conjectured by Caruso [12] (as an analogue of
the classical overconvergence theorem for .';�/-modules by Cherbonnier–Colmez [15]).
A first proof (which only works for K=Qp a finite extension) was given in a joint work
with Liu [27], using a certain “crystalline approximation” technique; later a second proof
(which works for all K) was given in a joint work with Poyeton [28], using the idea of
locally analytic vectors.

(2) Let us mention that it is the second proof in [28] that will be useful in the current
paper. Not only because it works for all K (which is a minor issue), but also more impor-
tantly, the idea of locally analytic vectors will be very critically used in the current paper
to define the monodromy operator.

Let us introduce the following Robba ring (which contains B�K1 ):

B�rig;K1 WD
°
f .u/ D

C1X
iD�1

aiu
i
W ai 2 K0; f .u/ converges

for all u 2 K with 0 < vp.u/ < �.f / for some �.f / > 0
±
: (1.2.3)

Let V be a p-adic Galois representation of GK , and let D�
K1

.V / be the overconvergent
.'; �/-module associated to V by Thm. 1.2.1. Define

D
�
rig;K1

.V / WD B�rig;K1 ˝B�
K1

D
�
K1

.V /;
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which we call the rigid-overconvergent .'; �/-module associated to V ; as we will see, it
is the natural space which the monodromy operator lives in.

Theorem 1.2.3 (Thm. 4.2.12). Let r� WD .log �p
n
/=pn for n � 0 be the Lie-algebra

operator with respect to the � -action, and define Nr WD 1
pt
� r� where t is a certain

“normalizing” element .see §4). .Note that there might be some modification in certain
cases when p D 2:/ Then

Nr.D
�
rig;K1

.V // � D
�
rig;K1

.V /;

so Nr is a well-defined monodromy operator on D�
rig;K1

.V /.

Remark 1.2.4. (1) For comparison, if we useD�
rig;Kp1

.V / (denoted asD�
rig;K.V / in [1])

to denote the rigid-overconvergent .'; �/-module associated to the V (which exists by
[15]), then one can easily define a monodromy operator

rV W D
�
rig;Kp1

.V /! D
�
rig;Kp1

.V /

as in [1, §5.1]. Here rV (notation of [1]) is precisely the Lie-algebra operator associated
to the �-action.

(2) The difficulty in defining Nr for .'; �/-modules is that � (hence r� ) does not
act on D�

rig;K1
.V / itself (whereas � acts directly on D�

rig;Kp1
.V /); the action is defined

only when we base change D�
rig;K1

.V / over a much bigger ring zB�rig;L (see Def. 2.5.3).
Fortunately, after dividing r� by pt, and using ideas of locally analytic vectors, one gets
back to the level of D�

rig;K1
.V /.

Now, to prove Thm. 1.1.16, via results of Kisin (and some consideration of locally
analytic vectors), it suffices to show the following “monodromy descent” result, which
we achieve via a “Frobenius regularization” technique.

Proposition 1.2.5 (= Prop. 6.1.1). Let M be the finite height Breuil–Kisin lattice inside a
.'; �/-module corresponding to a GK-representation of finite E.u/-height. Then

Nr.M/ � O ˝S M:

Here O � B�rig;K1 is the subring consisting of f .u/ that converge for all u 2 K such that
0 < vp.u/ � C1.

Remark 1.2.6. Indeed, the “road map” of our proof of Thm. 1.1.16 is roughly the same as
in [12]. Namely, one first defines a certain monodromy operator, then one shows that (in
the finiteE.u/-height case) the operator can be defined over the smaller ring O. However,
even as Thm. 1.2.3 provides a correct alternative in defining the monodromy operator, the
technical details in the latter half of our argument (Prop. 1.2.5, proved in §6.1) are also

2Léo Poyeton informed the author that he also obtained Thm. 1.2.3 independently.
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completely different from those of Caruso. Indeed, Caruso’s argument uses several newly-
defined rings (all with p-adic topology), see [12, upper half of p. 2583, Figure 2]; as far
as we know, these rings have not been used elsewhere in the literature. In comparison,
all the rings we use in §6.1 have already been studied in [28]; in particular, they are all
natural analogues of the rings used in .';�/-module theory, which have been substantially
studied since their introduction in, e.g., [1]. Indeed, it seems that our argument is much
easier and more natural.

Remark 1.2.7. As discussed in Rem. 1.2.6, we do not know if we can actually fix the gap
in Caruso’s work. That is, we do not know if we can use p-adic approximation technique
to fix [12, Prop. 3.7] (see Appendix A); we do not know either if we can use the p-adic
argument as in [12] to prove Thm. 1.1.16.

Remark 1.2.8. As a final remark, let us mention that the current paper is (almost com-
pletely) independent of [12]. The only exception is that we do use Caruso’s category of
étale .'; �/-modules and its equivalence with the category of p-adic Galois representa-
tions (i.e., the content of [12, Thm. 1]); but these are easy consequences of the theory of
the field of norms (with respect to the field K1), which was already partially developed
e.g. in [10, §2]. We refer to Rem. 7.4.1 for some more comments regarding the relation
between the current paper and [12].

1.3. Structure of the paper

In §2, we review many period rings in p-adic Hodge theory; in particular, we compute
locally analytic vectors in some rings. In §3, we review the theory of .'; �/-modules
and the overconvergence theorem. In §4, we define the monodromy operator on rigid-
overconvergent .'; �/-modules. In §5, we review Kisin’s theory of O-modules (for
semistable representations) and show that the monodromy operator there coincides with
ours in §4. In §6, when the .';�/-module is of finiteE.u/-height, we use a Frobenius regu-
larization technique to descend the monodromy operator to O; this implies that the attached
representation is potentially semi-stable. In §7, we construct the Breuil–KisinGK-modules
and prove our main theorem; we also compare our theory with some results of Gee and Liu.

1.4. Some notations and conventions

Notation 1.4.1. Recall that we have already defined

K1 D

1[
nD1

K.�n/; Kp1 D

1[
nD1

K.�n/; L D

1[
nD1

K.�n; �n/:

Let

G1 WDGal.K=K1/; Gp1 WDGal.K=Kp1/; GL WDGal.K=L/; yG WDGal.L=K/:

When Y is a ring with a GK-action, X � K is a subfield, we use YX to denote the
Gal.K=X/-invariants of Y ; we will use the cases when X D L;K1.
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1.4.2. Locally analytic vectors. Let us very quickly recall the theory of locally analytic
vectors; see [4, §2.1] and [3, §2] for more details. Indeed, almost all the explicit calcula-
tions of locally analytic vectors used in this paper are already carried out in [28], hence
the reader can refer there for more details.

Recall that a Qp-Banach space W is a Qp-vector space with a complete non-
Archimedean norm k � k such that kawk D kakpkwk for all a 2 Qp; w 2 W , where
kakp is the p-adic norm on Qp . Recall the multi-index notations: if c D .c1; : : : ; cd /

and k D .k1; : : : ; kd / 2 Nd (here N D Z�0), then we let ck D c
k1
1 � : : : � c

kd
d

.
Let G be a p-adic Lie group, and let .W; k � k/ be a Qp-Banach representation of G.

Let H be an open subgroup of G such that there exist coordinates c1; : : : ; cd W H ! Zp
giving rise to an analytic bijection c W H ! Zdp . We say that an element w 2 W is an
H -analytic vector if there exists a sequence ¹wkºk2Nd with wk ! 0 in W such that

g.w/ D
X

k2Nd

c.g/kwk; 8g 2 H:

LetW H -an denote the space ofH -analytic vectors. We say that a vector w 2 W is locally
analytic if there exists an open subgroup H as above such that w 2 W H -an. Let W G-la

denote the space of such vectors. We have W G-la D
S
H W

H -an where H runs through
open subgroups of G. We can naturally extend these definitions to the case when W is a
Fréchet or LF-representation of G, and we use W G-pa to denote the pro-analytic vectors
[3, §2].

Notation 1.4.3. Let yG D Gal.L=K/ be as in Notation 1.4.1, which is a p-adic Lie group
of dimension 2. Below we recall the structure of this group.

(1) Recall that:

� if K1 \ Kp1 D K (always valid when p > 2, see [36, Lem. 5.1.2]), then
Gal.L=Kp1/ and Gal.L=K1/ generate yG;

� if K1 \Kp1 © K, then necessarily p D 2, and K1 \Kp1 D K.�1/ (see [37,
Prop. 4.1.5]) and˙i … K.�1/, and hence Gal.L=Kp1/ and Gal.L=K1/ generate
an open subgroup of yG of index 2.

Let us mention that whenK1 \Kp1 DK.�1/, some modifications might be needed
in some of our arguments, notably with respect to the � -operator (see (1.4.1) below),
and to the Nr-operator (see §4). (As a side-note, when p D 2, by [43, Lem. 2.1] we
can always choose some ¹�nºn�0 so that K1 \Kp1 D K.)

(2) Note that:

� Gal.L=Kp1/ ' Zp , and let � 2 Gal.L=Kp1/ be the topological generator such
that ´

�.�i / D �i�i ;8i � 1; if K1 \Kp1 D KI

�.�i / D �i�i�1 D �i�
2
i ;8i � 2; if K1 \Kp1 D K.�1/:

(1.4.1)

� Gal.L=K1/ (� Gal.Kp1=K/ � Z�p ) is not necessarily pro-cyclic when p D 2;
however, this issue will never bother us in this paper.
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Notation 1.4.4. We set up some notations with respect to representations of yG.

(1) Given a yG-representation W , we use

W �D1; W D1

to mean
W Gal.L=Kp1 /D1; W Gal.L=K1/D1:

And we use
W � -la; W � -an; W �n-an .for n � 1/; W  -la

to mean

W Gal.L=Kp1 /-la; W Gal.L=Kp1 /-an; W h�
pn i-an; W Gal.L=K1/-la;

where h�p
n
i � Gal.L=Kp1/ is the subgroup topologically generated by �p

n
.

(2) Let W � -la;D1 WD W � -la \W D1. Then by [28, Lem. 3.2.4],

W � -la;D1
� W

yG-la:

Remark 1.4.5. Note that we never define  to be an element of Gal.L=K1/; although
when p > 2 (or in general, when Gal.L=K1/ is pro-cyclic), we could have defined it as
a topological generator of Gal.L=K1/. In particular, although “ D 1” might be slightly
ambiguous (but only when p D 2), we use the notation for brevity.

1.4.6. Covariant functors, Hodge–Tate weights, Breuil–Kisin heights, and minus signs

� In this paper we will use many categories of modules and functors relating them; we
will always use covariant functors. This makes the comparisons amongst them easier
(i.e., using tensor products rather than Hom’s).

� For example, our Dst.V / is defined as .V ˝Qp Bst/
GK , and hence the Hodge–Tate

weight of the cyclotomic character �p is �1.

� Indeed, in the main argument of the paper, we will focus on representations with
non-negative Hodge–Tate weights and Breuil–Kisin modules with non-negative E.u/-
heights. For example, the Breuil–Kisin module associated to ��1p has E.u/-height 1.

� We will define several differential operators, and we always remove minus signs (for
convenience) in our choices: see in particular Rem. 2.7.3 for the N -operator and Rem.
4.1.3 for the Nr-operator.

1.4.7. Some other notations. Throughout this paper, we reserve ' for the Frobenius oper-
ator. We sometimes add subscripts to indicate on which object Frobenius is defined. For
example, 'M is the Frobenius defined on M. We always drop these subscripts if no con-
fusion arises. Given a homomorphism ' W A! A of rings and an A-module M , denote
'�M WD A˝';AM . We use Mat.A/ to denote the set of matrices with entries in A (the
size of the matrix is always obvious from context). Let i .x/ WD xi=iŠ be the usual divided
power.
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2. Rings and locally analytic vectors

In this section, we review some period rings in p-adic Hodge theory. In particular, we
compute the locally analytic vectors in some rings. In §2.1, we review some basic period
rings; in §2.2, we discuss variations of these rings with respect to extension of fields. In
§2.3 and §2.4, we define the rings zBI , BI and study theirG1-invariants; in §2.5, we study
the relation of these rings via locally analytic vectors. In §2.6, we study a locally analytic
element t, which plays a role in the definition of our monodromy operator. In §2.7, we
review some log-rings.

2.1. Some basic period rings

Let zEC be the tilt of OCp (denoted as R in Notation 1.1.4), and let zE WD Fr zEC be the tilt
of Cp . An element of zE can be uniquely represented by .x.n//n�0 where x.n/ 2 Cp and
.x.nC1//p D .x.n//; let vzE be the usual valuation where vzE.x/ WD vp.x

.0//. Let

zAC WD W.zEC/; zA WD W.zE/; zBC WD zACŒ1=p�; zB WD zAŒ1=p�;

whereW.�/means the ring of Witt vectors. There is a natural Frobenius operator x 7! xp

on zE, which induces natural Frobenius operators (always denoted by ') on all the rings
defined above (and below); there are also natural GK-actions on the rings defined above
induced from that on zE. Note that the GK-action on zE is continuous with respect to the
vzE-topology (but not the discrete topology); the action on zB is continuous with respect to
the weak topology (but not the strong p-adic topology).

Let � WD ¹�nºn�0 2 zEC. Let ECK1 WD kJ�K, EK1 WD k..�//, and let E be the sepa-
rable closure of EK1 in zE.

Let Œ�� 2 zAC be the Teichmüller lift of � . Let ACK1 WD W.k/JuK with Frobenius
' extending the arithmetic Frobenius on W.k/ and '.u/ D up . There is a W.k/-linear
Frobenius-equivariant embedding ACK1 ,! zAC via u 7! Œ��. Let AK1 be the p-adic
completion of ACK1 Œ1=u�. Our fixed embedding ACK1 ,! zAC determined by � uniquely
extends to a '-equivariant embedding AK1 ,! zA, and we identify AK1 with its image
in zA. We note that AK1 is a complete discrete valuation ring with uniformizer p and
residue field EK1 .

Let BK1 WD AK1 Œ1=p� (which is precisely the field in (1.2.1)). Let B be the comple-
tion for the p-adic norm of the maximal unramified extension of BK1 inside zB, and let
A � B be the ring of integers. Let AC WD zAC \ A. Then

.A/G1 D AK1 ; .B/G1 D BK1 ; .AC/G1 D ACK1 :

2.2. Rings with respect to field extensions

(The discussions in this subsection will not be used until §3.3.) Note that the rings
zEC; zAC; zA (and the B-variants) depend only on Cp , in the sense that if we letE be another
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complete discrete valuation field with perfect residue field where K � E � Cp , then we
get exactly the same zEC; zAC; zA as if we started with K. However, the rings E;A; B,
although without subscripts, indeed depend onK andK1. For example, letK � E � Cp
be as aforementioned, and choose some E1 (analogue of K1). Then in general we can-
not compare the newly constructed E;A;B with the ones constructed using K and K1
(as we cannot even compare K1 and E1; in general we do not even have K1 � E1).

This is very different from the .'; �/-module setting, where once we fix �n as in
Notation 1.4.1, we can always make some comparison since we always haveKp1 �Ep1
(and then we can apply the theory of field of norms). This is indeed used e.g. in [15, §II.4].

Fortunately, for our purpose in this paper, we only need to work with certain special
case of K � E � Cp , where we can easily make some comparisons.

Notation 2.2.1. Let K 0=K be a (not necessarily finite) unramified extension contained
in K, and let m � 0. Let E be the p-adic completion of K 0.�m/, and let E1 WDS
n�mE.�n/. Let �E WD ¹�nºn�m 2 zEC, and let uE 2 zAC be its Teichmüller lift. Then

we can analogously construct EE1 ;ACE1 ;AE1 , and E.E/;AC.E/;A.E/, as well as
the B-variants of these rings. (Here we write EC.E/ etc. instead of E.E; E1/ etc. for
brevity). Then indeed,

E ,! E.E/I

and the theory of Cohen rings then induces a map A ,! A.E/. Furthermore, we have a
natural embedding

AK1 ,! AE1
using the embedding W.k/ ,! W.k0/ (where k0 is the residue field of K 0) and using
u 7! u

pm

E .

2.3. The rings zBI and their G1-invariants

Recall that we defined the element " D .1; �1; �2; : : :/ 2 zEC in Notation 1.1.4. Let � D
" � 1 2 zEC (this is not �), and let Œ�� 2 zAC be its Teichmüller lift. When A is a p-adic
complete ring, we use A¹X; Y º to denote the p-adic completion of AŒX; Y �.

Definition 2.3.1. For r 2 Z�0Œ1=p�, let zAŒr;C1� WD zAC¹p=Œ��rº, which is a subring
of zA. Here, to be rigorous, zAC¹p=Œ��rº is defined as zAC¹Xº=.Œ��rX � p/, and sim-
ilarly for other similar occurrences later; see [1, §2] for more details. Let zBŒr;C1� WD
zAŒr;C1�Œ1=p� � zB.

Definition 2.3.2. Suppose r 2 Z�0Œ1=p�, and let x D
P
i�i0

pi Œxi � 2 zBŒr;C1� (� zB).
Denote wk.x/ WD infi�k vzE.xi / . For s � r and s > 0, let

W Œs;s�.x/ WD inf
k�i0

²
k C

p � 1

ps
� vzE.xk/

³
D inf
k�i0

²
k C

p � 1

ps
� wk.x/

³
I

this is a well-defined valuation (see [17, Prop. 5.4]). For I � Œr;C1/ a non-empty closed
interval such that I ¤ Œ0; 0�, let

W I .x/ WD inf
˛2I; ˛¤0

W Œ˛;˛�.x/:
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Remark 2.3.3. We do not define W Œ0;0� (cf. [28, Rem. 2.1.9]).

Lemma 2.3.4. Suppose r � s 2 Z�0Œ1=p� and s > 0. Then the following holds:

(1) If r > 0, then zAŒr;C1� and zAŒr;C1�Œ1=Œ��� are complete with respect to W Œr;r�.

(2) W Œs;s�.xy/DW Œs;s�.x/CW Œs;s�.y/ for all x;y 2 zBŒr;C1�, soW Œs;s� is multiplicative.

(3) Let x 2 zBŒr;C1�.
(a) If r > 0, then W Œr;s�.x/ D inf ¹W Œr;r�.x/; W Œs;s�.x/º: In particular, this implies

that W Œr;s� is submultiplicative.

(b) W Œ0;s�.x/ D W Œs;s�.x/:

Definition 2.3.5. Let r 2 Z�0Œ1=p�.

(1) Suppose I D Œr; s� � Œr;C1/ is a non-empty closed interval such that I ¤ Œ0; 0�. Let
zAI be the completion of zAŒr;C1� with respect to W I . Let zBI WD zAI Œ1=p�.

(2) Let
zBŒr;C1/ WD

\
n�0

zBŒr;sn�

where sn 2 Z>0Œ1=p� is any sequence increasing to C1. We equip zBŒr;C1/ with its
natural Fréchet topology.

Lemma 2.3.6 ([28, Lem. 2.1.10 (4)]). Let I D Œr; s� be a closed interval as above, and
let V I be the p-adic topology on zBI defined using zAI as ring of integers. Then for any
x 2 zBI , we have V I .x/ D bW I .x/c:

Remark 2.3.7. For our purposes (indeed, also in other literature concerning these rings),
it is only necessary to study (the explicit structure of) these rings when

inf I; sup I 2 ¹0;C1; .p � 1/pZ
º:

Furthermore, for any interval I such that zAI and zBI are defined, there is a natural bijection
(called Frobenius) ' W zAI ' zApI which is valuation-preserving. Hence in practice, it
would suffice if we can determine the explicit structure of these rings for

I 2 ¹Œr`; rk �; Œr`;C1�; Œ0; rk �; Œ0;C1�º with ` � k 2 Z�0;

where rn WD .p � 1/pn�1. The cases of I a general closed interval can be deduced using
Frobenius operation; the cases of I D Œr;C1/ can be deduced by taking Fréchet com-
pletion.

Convention 2.3.8. Throughout the paper, all the intervals I (over zB-rings, B-rings, D-
modules, etc.) satisfy

inf I; sup I 2 ¹0;C1; .p � 1/pZ
º:

If they are not closed, then they are of the form Œ0;C1/ or Œr;C1/. I is never allowed
to be Œ0; 0� (or “ŒC1;C1�”).
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Lemma 2.3.9. We have

zAŒ0;rk � D zAC
²
uep

k

p

³
;

zAŒr`;C1� D zAC
²
p

uep
`

³
;

zAŒr`;rk � D zAC
²
p

uep
`
;
uep

k

p

³
:

Proof. Indeed, these equations are used as definitions in [28, Def. 2.1.1]; these definitions
are equivalent to our current Def. 2.3.5 by Lem. 2.3.6. See [28, §2.1] for more details.

Proposition 2.3.10 ([28, Prop. 2.1.14]). Recall that the subscript K1 signifies G1-
invariants. We have

zBŒ0;rk �K1
D zACK1

²
uep

k

p

³�
1

p

�
;

zBŒr`;C1�K1
D zACK1

²
p

uep
`

³�
1

p

�
;

zBŒr`;rk �K1
D zACK1

²
p

uep
`
;
uep

k

p

³�
1

p

�
:

2.4. The rings BI and their G1-invariants

Definition 2.4.1. Let r 2 Z�0Œ1=p�.

(1) Let
AŒr;C1� WD A \ zAŒr;C1�; BŒr;C1� WD B \ zBŒr;C1�:

(2) Suppose Œr; s� � Œr;C1/ is a non-empty closed interval such that s ¤ 0. Let BŒr;s�

be the closure of BŒr;C1� in zBŒr;s� with respect to W Œr;s�. Let AŒr;s� WD BŒr;s� \ zAŒr;s�,
which is the ring of integers in BŒr;s�.

(3) Let
BŒr;C1/ WD

\
n�0

BŒr;sn�

where sn 2 Z>0Œ1=p� is any sequence increasing toC1.

Definition 2.4.2. (1) For r 2Z�0Œ1=p�, let AŒr;C1�.K0/ be the ring consisting of infinite
series f D

P
k2Z akT

k with ak 2 W.k/ such that f is a holomorphic function on
the annulus defined by

vp.T / 2

�
0;
p � 1

ep
�
1

r

�
:

(Note that when r D 0, this implies that ak D 0 for all k < 0.) Let

BŒr;C1�.K0/ WD AŒr;C1�.K0/Œ1=p�:
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(2) Suppose f D
P
k2Z akT

k 2 BŒr;C1�.K0/.

(a) When s � r and s > 0, let

W Œs;s�.f / WD inf
k2Z

²
vp.ak/C

p � 1

ps
�
k

e

³
:

(b) For I � Œr;C1/ a non-empty closed interval, let

WI .f / WD inf
˛2I; ˛¤0

W Œ˛;˛�.f /:

(3) For r � s 2 Z�0Œ1=p�; s ¤ 0, let BŒr;s�.K0/ be the completion of BŒr;C1�.K0/ with
respect to W Œr;s�. Let AŒr;s�.K0/ be the ring of integers in BŒr;s�.K0/ with respect
to W Œr;s�.

Lemma 2.4.3. (1) For r > 0, BŒr;C1�.K0/ is complete with respect to W Œr;r�, and
AŒr;C1�.K0/ is the ring of integers with respect to this valuation.

(2) For s > 0, we have W Œ0;s�.x/ D W Œs;s�.x/. Furthermore, BŒ0;s�.K0/ is the ring con-
sisting of infinite series f D

P
k2Z akT

k with ak 2K0 such that f is a holomorphic
function on the closed disk defined by

vp.T / 2

�
p � 1

ep
�
1

s
;C1

�
:

(3) For I D Œr; s�� .0;C1/, we have WI .x/D inf ¹W Œr;r�.x/;W Œs;s�.x/º. Furthermore,
BŒr;s�.K0/ is the ring consisting of infinite series f D

P
k2Z akT

k with ak 2K0 such
that f is a holomorphic function on the annulus defined by

vp.T / 2

�
p � 1

ep
�
1

s
;
p � 1

ep
�
1

r

�
:

Proof. In [28, Lem. 2.2.5], we stated the results for Œr; s� D Œr`; rk �; but they are true for
general intervals.

Lemma 2.4.4 ([28, Lem. 2.2.7]). Let AIK1 be the G1-invariants of AI . The map f .T /
7! f .u/ induces isometric isomorphisms

AŒ0;C1�.K0/ ' AŒ0;C1�K1
I

AŒr;C1�.K0/ ' AŒr;C1�K1
Œ1=u� when r > 0I

AI .K0/ ' AIK1 when I � Œ0;C1/ is a closed interval:

We record an easy corollary of the above explicit description of the rings BIK1 .

Corollary 2.4.5. Let I � Œ0;C1� be an interval. Suppose that x 2 BIK1 is such that

'.x/ 2 BIK1 . Then x 2 BI=pK1
.
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Proof. Indeed, by Lem. 2.4.4, x D
P
i2Z aiu

i with ai 2 K0 satisfying certain conver-
gence conditions related to the interval I as described in Lem. 2.4.3. We have '.x/ DP
i2Z '.ai /u

pi , hence using the explicit convergence condition, it is easy to see that
'.x/ 2 BIK1 if and only if x 2 BI=pK1

.

Finally, we write out the explicit structures of some of these rings.

Proposition 2.4.6. [28, Prop. 2.2.10] We have

AŒ0;C1�K1
D ACK1 ;

AŒ0;rk �K1
D ACK1

²
uep

k

p

³
;

AŒr`;C1�K1
D ACK1

²
p

uep
`

³
;

AŒr`;rk �K1
D ACK1

²
p

uep
`
;
uep

k

p

³
:

Remark 2.4.7. Note that ' W zBI ! zBpI is always a bijection; however, the map ' W
BI ! BpI is only an injection. Indeed, B='.B/ is a degree p field extension. However,
one can always find explicit expressions for BIK1 using Lem. 2.4.3.

2.5. Locally analytic vectors in rings

Recall that that we use the subscript L to indicate the Gal.K=L/-invariants. Recall for a
yGDGal.L=K/-representationW , we denoteW � -la;D1 WDW � -la \W D1. The following
theorem in [28] is the main result concerning calculation of locally analytic vectors in
period rings.

Theorem 2.5.1 ([28, Lem. 3.4.2, Thm. 3.4.4]). (1) For I D Œr`; rk � or Œ0; rk �, and for
each n � 0, '�n.u/ 2 .zBIL/

�nCk -an .see Notation 1.4.4/. So in particular,

u 2 .zBŒ0;r0�L /� -an:

(2) For I D Œr`; rk � or Œ0; rk �, we have .zAIL/
� -la;D1 D

S
m�0 '

�m.Ap
mI

K1
/:

(3) For any r � 0, .zBŒr;C1/L /� -pa;D1 D
S
m�0 '

�m.BŒp
mr;C1/

K1
/:

Remark 2.5.2. Let us point out some (fortunately very minor) errors in the proof of the
theorem above, all relating to the “� -issue” in Notation 1.4.3.

(1) Firstly, in [28, Notation 3.2.1], we should always fix the � as we now do in Notation
1.4.3; we are implicitly using the same � in [28], but only when K1 \Kp1 D K.

(2) The problem with this � -issue in concrete computations is that we have´
�.u/ D uŒ"� if K1 \Kp1 D KI

�.u/ D uŒ"�2 if K1 \Kp1 D K.�1/:
(2.5.1)
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(3) In [28, Lem. 3.4.2] and [28, Thm. 3.4.4], if K1 \ Kp1 D K.�1/, then we should
change some of the a there to 2a, in the equation above (3.4.2), in (3.4.3), and in the
equation below (3.4.8); this is because we now have �.u/ D u.1C v/2. The changes
to 2a only make the relevant convergence easier, hence do not change the final results.

Definition 2.5.3. (1) Define the following rings (which are LB spaces):

zB� WD
[
r�0

zBŒr;C1�; B� WD
[
r�0

BŒr;C1�; B�K1 WD
[
r�0

BŒr;C1�K1
:

(2) Define the following rings (which are LF spaces):

zB�rig WD
[
r�0

zBŒr;C1/; B�rig WD
[
r�0

BŒr;C1/; B�rig;K1 WD
[
r�0

BŒr;C1/K1
:

(3) Define the following notations:

zBCrig WD zB
Œ0;C1/; BCrig;K1 WD BŒ0;C1/K1

:

Note that B�K1 (resp. B�rig;K1 ) is precisely the explicitly defined ring in (1.2.2) (resp.
(1.2.3)).

Corollary 2.5.4. We have

.zB�rig;L/
� -pa;D1

D

[
m�0

'�m.B�rig;K1/; .zBCrig;L/
� -pa;D1

D

[
m�0

'�m.BCrig;K1/:

2.6. The element t

In this subsection, we study a locally analytic element t, which plays a useful role in the
definition of our monodromy operators.

Recall we defined Œ"� 2 zAC in Notation 1.1.4. Let t D log.Œ"�/ 2 BCcris be the usual
element. Define

� WD
Y
n�0

�
'n
�
E.u/

E.0/

��
2 BŒ0;C1/K1

� BCcris:

The equation '.x/ D pE.u/
E.0/

� x over zAC has a solution in zAC n pzAC, which is unique up
to units in Zp (see [35, paragraph above Thm. 3.2.2]). By the discussion in [35, Example
5.3.3], there exists a unique solution t 2 zAC such that

p�t D t; (2.6.1)

which holds as an equation in BCcris: Since t 2 zAC � zB�L, and since zB�L is a field [17, Prop.
5.12], there exists some r.t/ > 0 such that 1=t 2 zBŒr.t/;C1�L .

Lemma 2.6.1 ([28, Lem. 5.1.1]). We have t; 1=t 2 .zBŒr.t/;C1/L /
yG-pa.
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2.7. Some “log”-rings

In this subsection, we introduce some log-rings (corresponding to the “rig”-rings in Def.
2.5.3). We first introduce a convention often used here.

Convention 2.7.1. Let A be a topological ring, and let Y be a variable. Then we always
equip AŒY � with the inductive topology using AŒY � WD

S
n�0.

Ln
iD0 A � Y

i / where each
A � Y i has the topology induced from that on A.

Choose some p WD .p0; p1; : : : ; pn; : : : / 2 zEC where p0 D p and ppnC1 D pn for all
n � 0. Let X be a formal variable, and define

zB�log WD
zB�rigŒX�:

Extend the '-operator and GK-action on zB�rig to zB�log such that '.X/ D pX and g.X/ D

X C c.g/t where c.g/ is the cocycle such that g.p/Dp � "c.g/; define a zB�rig-derivationN

on zB�log such that N.X/ D e (Rem. 2.7.3 for this convention). Let

zBClog WD
zBCrigŒX�I

it is a subring of zB�log which is .';GK ; N /-stable.

Proposition 2.7.2 ([17, Prop. 5.15]). With respect to the choice p, there exists a '- and
GK-equivariant map

log W .zB�/� ! zB�rigŒX�

which is uniquely determined by the following properties:

(1) log xy D log x C logyI

(2) log x D
PC1
nD1

�.1�x/n

n
if the series converges;

(3) log Œa� D 0 if a 2 k;

(4) logp D 0 and log Œp� D X:

For this log map, if x D
PC1
kDk0

pk Œxk � with xk0 ¤ 0, then

N.log x/ D e � vzE.xk0/: (2.7.1)

Proof. This is exactly [17, Prop. 5.15] except for in (2.7.1): in [17], it is “N.log x/ D
�vzE.xk0/:” Our (2.7.1) matches the choice N.X/ D e (see Rem. 2.7.3 for the reason for
this choice): in [17], it is “N.X/ D �1”.

Here, let us sketch the construction of this log map. By (4), it suffices to consider
x 2 .zB�/� such that vp.x/ D 0. Then by (1), it suffices to consider the case when
vzE.x/ 2 Z�0; in this case, it can be uniquely written as

x D Œp˛�Œa�y; where ˛ 2 Z�0; a 2 k; y 2 zA \ zB�; vzE.y � 1/ > 0I (2.7.2)

then we can define
log x D ˛X C logy

where logy 2 zB�rig by [17, Lem. 5.14 (2)].
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Remark 2.7.3. Note that theN -operator here equals �e �N in [17]. We make this choice
to haveN.logu/D 1. This choice is the same as that in [32]; in particular, we can remove
minus signs everywhere for this N -operator. This choice is good for us since log u is
important in the study of .'; �/-modules; cf., e.g., Lem. 2.7.7 below. See also Rem. 4.1.3
later where we make some choice to remove minus signs for the Nr-operator.

Lemma 2.7.4 ([17, Lem. 5.14 (1)]). Suppose x D
PC1
kD0 p

k Œxk � is a unit in zAC such that
vzE.x0 � 1/ > 0. Then

PC1
nD1

�.1�x/n

n
converges in zBCrig.

Lemma 2.7.5. Let ˇ 2 zEC with ˛ WD vzE.ˇ/¤ 0, and let x WD Œˇ�2 zAC be the Teichmüller
lift. Then

zB�log D
zB�rigŒlog x�; zBClog D

zBCrigŒlog x�:

Proof. Write x D Œp˛�Œa�y as in (2.7.2). Then y satisfies the condition in Lem. 2.7.4, and

hence log x D ˛X C logy with logy 2 zBCrig.

Definition 2.7.6. Let `u WD logu D log Œ��, and define

B�log;K1
WD B�rig;K1 Œ`u� �

zB�log; BClog;K1
WD BCrig;K1 Œ`u� �

zBClog:

(The containments follow from Lem. 2.7.5.)

Lemma 2.7.7. Let I � Œ0;C1/ be a closed interval, and let k � 1. Then

`ku 2
� kM
iD0

zBIL � `
i
u

�� -an;D1

where
Lk
iD0
zBIL � `

i
u is regarded as a Banach space. Hence, `u is always a � -analytic

vector .not just locally analytic/.

Proof. Note that
g.`u/ D `u C �.g/t; 8g 2 GK ; (2.7.3)

where �.g/ 2 Z�p (is the cocycle) such that g.Œ��/ D Œ��Œ"��.g/; it is then easy to deduce
that `u is a � -analytic vector (e.g., using [28, Lem. 3.1.8]).

Corollary 2.7.8.

.zB�log;L/
� -pa;D1

D

[
m�0

'�m.B�log;K1
/; .zBClog;L/

� -pa;D1
D

[
m�0

'�m.BClog;K1
/:

Proof. This follows from Lem. 2.7.7 and [28, Prop. 3.1.6] (as all `iu are analytic vectors).

3. Modules and locally analytic vectors

In this section, we recall the theory of étale .'; �/-modules and their overconvergence
property. In particular, we discuss the relation between locally analytic vectors and the
overconvergence property.
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In this section and in §5, we will introduce several categories of modules with struc-
tures. We will always omit the definition of morphisms for these categories, which are
obvious (i.e., module homomorphisms compatible with various structures).

3.1. Étale .'; �/-modules

Definition 3.1.1. Objects in the following are called étale '-modules.

(1) Let Mod'AK1 denote the category of finite free AK1 -modules M equipped with a
'AK1 -semilinear endomorphism 'M WM !M such that 1˝ ' W '�M !M is an
isomorphism.

(2) Let Mod'BK1 denote the category of finite free BK1 -modules (indeed, vector spaces)
D equipped with a 'BK1 -semilinear endomorphism 'D W D ! D such that there
exists a finite free AK1 -lattice M such that MŒ1=p� D D, 'D.M/ � M , and
.M; 'DjM / 2 Mod'AK1 .

Definition 3.1.2. Objects in the following are called étale .'; �/-modules.

(1) Let Mod';
yG

AK1 ;zAL
denote the category of triples .M; 'M ; yG/ where

� .M; 'M / 2 Mod'AK1 ;

� yG is a continuous ' OM -commuting zAL-semilinear yG-action on OM WD zAL˝AK1 M

(here, continuity is with respect to the topology induced by the weak topology
on zA);

� regarding M as an AK1 -submodule in OM , we have M � OMGal.L=K1/.

(2) Let Mod';
yG

BK1 ;zBL
denote the category of triples .D; 'D; yG/ which contains a lattice

(in the obvious fashion) .M; 'M ; yG/ 2 Mod';
yG

AK1 ;zAL
.

3.1.3. Let RepQp .G1/ (resp. RepQp .GK/) denote the category of finite-dimensional
Qp-vector spaces V with continuous Qp-linear G1 (resp. GK)-actions.

� For D 2 Mod'BK1 , let

V.D/ WD .zB˝BK1 D/'D1I

then V.D/ 2 RepQp .G1/. If furthermore .D; 'D; yG/ 2 Mod';
yG

BK1 ;zBL
, then V.D/ 2

RepQp .GK/.

� For V 2 RepQp .G1/, let

DK1.V / WD .B˝Qp V /
G1 I

then DK1.V / 2 Mod'BK1 . If furthermore V 2 RepQp .GK/, let

zDL.V / WD .zB˝Qp V /
GL I
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then zDL.V / D zBL ˝BK1 DK1.V / has a yG-action, making .DK1.V /; '; yG/ an étale
.'; �/-module.

As already mentioned in Rem. 1.2.8, Thm. 3.1.4 below is the only place where we use
results from [12].

Theorem 3.1.4. (1) [22, Prop. A 1.2.6] The functors V andDK1 induce an exact tensor
equivalence between the categories Mod'BK1 and RepQp .G1/.

(2) [12, Thm. 1] The functors V and .DK1 ; zDL/ induce an exact tensor equivalence

between the categories Mod';
yG

BK1 ;zBL
and RepQp .GK/.

Proof. Note that item (2) was written only for p > 2 in [12]. Our Def. 3.1.2 is slightly
different from Caruso’s definition (although the underlying idea is the same); see the
discussion in [27, Rem. 2.1.6]. In particular, item (2) above is valid for all p.

3.2. Overconvergence and locally analytic vectors

Let V 2 RepQp .GK/. Given I � Œ0;C1�, let

DI
K1

.V / WD .BI ˝Qp V /
G1 ; zDI

L.V / WD .
zBI ˝Qp V /

GL :

Definition 3.2.1. Let V 2 RepQp .GK/, and let OD D .DK1.V /; '; yG/ be the étale .'; �/-
module associated to it. We say that OD is overconvergent if there exists r > 0 such that
for I 0 D Œr;C1�,

(1) DI 0

K1
.V / is finite free over BI 0K1 , and BK1 ˝BI 0

K1

DI 0

K1
.V / D DK1.V /I

(2) zDI 0

L .V / is finite free over zBI 0L , and zBL ˝zBI 0
L

zDI 0

L .V / D
zDL.V /.

Theorem 3.2.2 ([27, 28]). For any V 2 RepQp .GK/, the associated étale .'; �/-module
is overconvergent.

Remark 3.2.3. As we already mentioned in Rem. 1.2.2, a first proof of Thm. 3.2.2 was
given in [27] (which only works for K=Qp a finite extension), and a second proof was
given in [28]; it is the second proof that will be useful for the current paper; see e.g.
Cor. 3.2.4 below.

Let V 2 RepQp .GK/ of dimension d , and let DI 0

K1
.V / be as in Def. 3.2.1 for I 0 D

Œr.V /;C1� (which exists by Thm. 3.2.2). Let

D
�
K1

.V / WD DI 0

K1
.V /˝BI 0

K1

B�K1 I (3.2.1)

D
�
rig;K1

.V / WD DI 0

K1
.V /˝BI 0

K1

B�rig;K1 : (3.2.2)

We call D�
K1

.V / (resp. D�
rig;K1

.V /) the overconvergent (resp. rigid-overconvergent)
.'; �/-module associated to V .
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Corollary 3.2.4. The subset D
�
rig;K1

.V / generates the .zB�rig;L/
� -pa;D1-module

..zB�rig ˝Qp V /
GL/� -pa;D1. Indeed,

..zB�rig ˝Qp V /
GL/� -pa;D1

D D
�
rig;K1

.V /˝B�rig;K1
.zB�rig;L/

� -pa;D1:

Proof. This is extracted from the proof of Thm. 3.2.2 in [28, Thm. 6.2.6]; indeed, it easily
follows from [28, (6.2.5)].

3.3. Modules with respect to field extensions

(The discussion here is a continuation of §2.2.) Let V 2 RepQp .GK/. Let E be as in
Notation 2.2.1. Then with respect to the GE -representation V jGE , we can also construct
the corresponding .'; �/-module and its overconvergent version; denote them as

DE1.V jGE /; D
�
E1

.V jGE /; D
�
rig;E1

.V jGE /:

These are finite free modules over the rings BE1 ;B
�
E1

;B�rig;E1 respectively, which are
constructed analogously to Notation 2.2.1.

Lemma 3.3.1. We have '-equivariant isomorphisms

DK1.V /˝BK1 BE1 ' DE1.V jGE /I (3.3.1)

D
�
K1

.V /˝B�
K1

B�E1 ' D
�
E1

.V jGE /I (3.3.2)

D
�
rig;K1

.V /˝B�rig;K1
B�rig;E1 ' D

�
rig;E1

.V jGE /: (3.3.3)

Proof. The first two isomorphisms are obvious since both BE1 and B�E1 are fields (see
[15, Prop. II.1.6 (1)] in the .';�/-module setting); the third isomorphism then follows.

4. Monodromy operator for .'; �/-modules

In this section, we define a natural monodromy operator on rigid-overconvergent .'; �/-
modules.

Let log.�p
n
/ denote the (formally written) series .�1/ �

P
k�1.1 � �

pn/k=k. Then

r� WD
log.�p

n
/

pn
for n� 0 is a well-defined Lie-algebra operator acting on yG-locally ana-

lytic representations.

4.1. Monodromy operator over rings

Recall that by Cor. 2.7.8,

.zB�log;L/
� -pa;D1

D

[
m�0

'�m.B�log;K1
/:
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Hence r� induces a map

r� W B�log;K1
! .zB�log;L/

yG-pa:

Recall that by Lem. 2.6.1, we have 1=t 2 .zBŒr.t/;C1/L /
yG-pa. We can define an operator

Nr W B�log;K1
! .zB�log;L/

yG-pa (4.1.1)

by setting

Nr WD

´
1
pt
� r� if K1 \Kp1 D K;

1
p2t
� r� D

1
4t
� r� if K1 \Kp1 D K.�1/ (see Notation 1.4.3).

(4.1.2)

Remark 4.1.1. The p (resp. p2) in the denominator of (4.1.2) makes our monodromy
operator compatible with earlier theory of Kisin in [32], but up to a minus sign, see Rem.
4.1.3 below.

Lemma 4.1.2. The image of Nr in (4.1.1) falls in B�log;K1
, and hence induces

Nr W B�log;K1
! B�log;K1

: (4.1.3)

Explicitly, the differential map Nr sends x 2 B�rig;K1 to � � u d
du
.x/, and Nr.`u/ D �.

Furthermore, the rings BClog;K1
, B�rig;K1 , and BIK1 . for any I � Œ0;C1// are all stable

under Nr .

Proof. Everything follows from easy explicit calculations. For example, if K1 \ Kp1
D K, then �.u/ D uŒ"�, hence we have (using any n� 0)

Nr.u/ D
1

pt
�
�1

pn
�

X
k�1

u.1 � Œ"�p
n
/k

k
D

1

pt
�
1

pn
� u � .pnt / D

ut

pt
D � � u:

The fact that Nr.`u/ D � follows from a similar computation using (2.7.3).

Remark 4.1.3. OurNr equals �Nr in [32, §1.1.1]. Certainly, this sign change makes no
difference for the results in [32] (which we will use later). (Alternatively, we could have
added minus signs in (4.1.2) so that everything is strictly compatible with the conventions
in [32]; but we prefer to remove the minus signs everywhere; cf. also the choice we made
in Rem. 2.7.3.)

4.2. Monodromy operator over modules

By Cor. 3.2.4, we have

..zB�rig ˝Qp V /
GL/

yG-pa
D D

�
rig;K1

.V /˝B�rig;K1
.zB�rig;L/

yG-pa: (4.2.1)

Hence similarly to §4.1, we have a map (using exactly the same formulae as in (4.1.2))

Nr W D
�
rig;K1

.V /! D
�
rig;K1

.V /˝B�rig;K1
.zB�rig;L/

yG-pa: (4.2.2)
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Theorem 4.2.1. The map (4.2.2) induces a map

Nr W D
�
rig;K1

.V /! D
�
rig;K1

.V /; (4.2.3)

so Nr is a well-defined operator on D�
rig;K1

.V /. Furthermore, there exists r 0 � r.V /
.see the notation above (3.2.2)/ such that if I � Œr 0;C1/, then

Nr W D
I
K1

.V /! DI
K1

.V /; (4.2.4)

where we recall that DI
K1

.V / D D
Œr.V /;C1�
K1

.V /˝BŒr.V /;C1�
K1

BIK1 .

Proof. Note that
g�g�1 D ��p.g/ for g 2 Gal.L=K1/;

where �p is the cyclotomic character. Note also that g.t/ D �p.g/t for g 2 Gal.L=K1/.
Hence

gNr D Nrg for g 2 Gal.L=K1/: (4.2.5)

Since Gal.L=K1/ acts trivially onD�
rig;K1

.V /, it also acts trivially on Nr.D
�
rig;K1

.V //

using (4.2.5). Thus, we have

Nr.D
�
rig;K1

.V // �
�
D
�
rig;K1

.V /˝
B
�
rig;K1

.zB�rig;L/
yG-pa�D1

D D
�
rig;K1

.V /˝B�rig;K1
.zB�rig;L/

D1;� -pa

D D
�
rig;K1

.V /˝B�rig;K1

�[
m�0

'�m.B�rig;K1/
�

(by Cor. 2.5.4).

Choose a basis Ee of D�
rig;K1

.V /. Then

Nr.Ee/ � D
�
rig;K1

.V /˝B�rig;K1
'�m.B�rig;K1/ for some m� 0:

Recall '.t/ D pE.u/
E.0/

t. Note that '� D �' over D�
rig;K1

.V /˝
B
�
rig;K1

.zB�rig;L/
yG-pa, hence

Nr' D
pE.u/

E.0/
'Nr : (4.2.6)

Using (4.2.6), we can easily deduce that

Nr.'
m.Ee// � D

�
rig;K1

.V /:

Note that 'm.Ee/ is also a basis of D�
rig;K1

.V /, which concludes the proof of (4.2.3).
Finally, we can use r 0 D pmr.V / to derive (4.2.4).

5. Monodromy operator for semi-stable representations

In this section, we will recall Kisin’s definition of a monodromy operator (up to a minus
sign, by Rem. 4.1.3) on certain modules associated to semi-stable representations. The
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main aim of this section is to show that Kisin’s monodromy operator coincides with the
one defined by us in §4 (in the semi-stable case).

In §5.1, we review a result of Cherbonnier on maximal overconvergent submodules
and use it to study finite height modules. In §5.2, we review Kisin’s construction of
O-modules starting from Fontaine’s filtered .'; N /-modules. In §5.3, we prove the main
result of this section, namely the coincidence of monodromy operators.

We first recall some ring notations commonly used in [14] and [32]. These notations,
unlike the systematic A;B-notations in §2, are ad hoc, but convenient.

Notation 5.0.1. (1) Let S WD ACK1 .

(2) Let OE WD AK1 and O
�

E
WD A�K1 WD AK1 \ B�K1 :

(3) Let O WD BŒ0;C1/K1
(denoted as BCrig;K1 in Def. 2.5.3; also denoted as OŒ0;1/ in [32]).

Explicitly,

O D
°
f .u/ D

C1X
iD0

aiu
i
W ai 2 K0 and f .u/ converges;8u 2 mO

K

±
where mO

K
is the maximal ideal in OK ; i.e., O consists of the series that converge

on the entire open unit disk. Recall that Nr is the operator u� d
du

on O.

(4) Let R be the Robba ring as in [32, §1.3], which is precisely B�rig;K1 in our Def. 2.5.3;
i.e., it consists of the series that converge near the boundary of the open unit disk.
Note that

O D BŒ0;C1/K1
� B�rig;K1 D R:

Convention 5.0.2. From now on, we focus on modules of non-negative heights, and
Galois representations of non-negative (Hodge–Tate) weights (as we use covariant func-
tors throughout this paper). Hence, although the notations such as Mod';�0S , MF';N;�0K0

etc. in the following might be more rigorous, we use Mod'S, MF';NK0 etc. for short.

5.1. Finite height modules and overconvergent modules

In this subsection, we review a result of Cherbonnier, which says that a finite free étale '-
module (see Def. 3.1.1) always contains a maximal finite free overconvergent submodule
(possibly of a smaller rank). If the étale '-module is of finite height, we show that the
S-module inside it generates the maximal overconvergent submodule.

Recall Mod'
OE

is the category of finite free étale '-modules (see Def. 3.1.1). Define

Mod'
O
�

E

analogously; indeed, it consists of finite free O
�

E
-modules M equipped with a

'
O
�

E

-semilinear ' WM !M such that 1˝ ' W '�M !M is an isomorphism.

Definition 5.1.1. (1) Let
j �� W Mod'

O
�

E

! Mod'
OE

denote the functor N 7! N ˝
O
�

E

OE .
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(2) Let M 2 Mod'
OE

. Let F�.M/ be the set of O
�

E
-submodules N � M of finite type

such that '.N / � N : Let j �� .M/ be the union of all elements in F�.M/.

Proposition 5.1.2. Let M 2 Mod'
OE

.

(1) We have j �� .M/ 2 Mod'
O
�

E

, and hence j �� defines a functor

j �� W Mod'
OE
! Mod'

O
�

E

:

Furthermore,
rk

O
�

E

j �� .M/ � rkOE
M; j �� ı j

��
' id:

(2) The functor j �� is a right adjoint of j ��: if N1 2 Mod'
O
�

E

, N2 2 Mod'
OE

, then

Hom.N1; j
�
� .N2// D Hom.j ��.N1/;N2/

where Hom denotes the set of morphisms in each category.

Proof. All is contained in [14, §3.2, Prop. 2] except the claim that j �� ı j �� ' id, which
follows from the fact that O

�

E
! OE is faithfully flat (as noted in [14, beginning of §3.2]).

Let us mention that the “'-operator” in [14, §3.2, Prop. 2] can be any lift of the Frobenius
x 7! xp on the ring OE=pOE [14, beginning of §2.2]; hence [14, §3.2, Prop. 2] applies (to
the different '-actions) in both the .'; �/-module setting and the .'; �/-module setting.

Definition 5.1.3. Let Mod'S be the category consisting of .M; '/ where M is a finite free
S-module and ' WM!M is a 'S-semilinear map such that the S-linear span of '.M/

contains E.u/hM for some h � 0. We say that M is of E.u/-height � h. When M is of
rank d , then

TS.M/ WD .M˝S
zA/'D1

is a finite free Zp-representation of G1 of rank d .

Definition 5.1.4. Let T 2 RepZp .G1/. We say T is of finite E.u/-height with respect to
E� D ¹�nºn�0 if there exists some (hence by [32, Prop. 2.1.12], unique up to isomorphism)
M 2Mod'S such that TS.M/' T . We say that V 2 RepQp .G1/ is of finiteE.u/-height
with respect to E� if there exist someG1-stable Zp-lattice T (equivalently, anyG1-stable
lattice by [32, Lem. 2.1.15]) which is so. We say that V 2 RepQp .GK/ is of finite E.u/-
height with respect to E� if V jG1 is so. Throughout the paper, when E.u/ and E� are
unambiguous, we just say of finite height for short.

Remark 5.1.5. Let T 2 RepZp .G1/, and let M 2 Mod'
OE

be the associated étale '-
module. Then T is of finite height if and only if there is an M 2 Mod'S such that there is
a '-equivariant isomorphism AK1 ˝S M 'M.

Proposition 5.1.6. Suppose T 2 RepZp .G1/ is of finite height, and let M;M be as in

Rem. 5.1.5. Then M˝S O
�

E
' j

�
� .M/:
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Proof. Clearly M � j
�
� .M/ by Def. 5.1.1. By Prop. 5.1.2 (2),

Hom.M˝S O
�

E
; j �� .M// D Hom.M˝S OE ;M/: (5.1.1)

Using the fact that
O
�

E
\ .OE/

�
D .O

�

E
/�; (5.1.2)

one can check that the morphism on the left hand side of (5.1.1) corresponding to the iso-
morphism on the right hand side has to be an isomorphism itself. See e.g. [14, paragraph
above §3.1, Def. 5] for a proof of (5.1.2).

5.2. Filtered .';N /-modules and Kisin’s O-modules

Definition 5.2.1. Let MF';NK0 be the category of .effective/ filtered .'; N /-modules over
K0 which consists of finite-dimensional K0-vector spaces D equipped with

(1) a Frobenius ' W D ! D such that '.ax/ D '.a/'.x/ for all a 2 K0; x 2 D;

(2) a monodromy N W D ! D, which is a K0-linear map such that N' D p'N ;

(3) a filtration .Fili DK/i2Z onDK DD˝K0 K by decreasingK-vector subspaces such
that Fil0DK D DK and Fili DK D 0 for i � 0.

Let MF';N;wa
K0

denote the usual subcategory of MF';NK0 consisting of weakly admissible
objects.

Definition 5.2.2. Let Mod';Nr
O

be the category of finite free O-modules M equipped
with

(1) a 'O-semilinear morphism ' WM !M such that the cokernel of 1˝ ' W '�M !M

is killed by E.u/h for some h 2 Z�0;

(2) Nr W M ! M is a map such that Nr.f m/ D Nr.f /mC fNr.m/ for all f 2 O

and m 2M , and Nr' D
pE.u/
E.0/

'Nr .

5.2.3. With D 2 MF';NK0 , we can associate an object M 2 Mod';Nr
O

by [32]. The con-
struction is rather complicated, and we only give a very brief sketch. (We want to give a
sketch here, since we use it in the construction of the Nr-operator in this section.)

For n � 0, let KnC1 D K.�n/ (hence K1 D K), and let ySn be the completion of
KnC1 ˝W.k/ S at the maximal ideal .u � �n/; ySn is equipped with its .u � �n/-adic
filtration, which extends to a filtration on the quotient field ySnŒ1=.u � �n/�.

There is a naturalK0-linear map O! ySn determined simply by sending u to u. Recall
that we have maps ' W S! S and ' W O ! O which extend the absolute Frobenius on
W.k/ and send u to up . Consider 'W W S! S and 'W W O ! O which act as absolute
Frobenius on W.k/ and send u to u.

Let `u D log u as in Def. 2.7.6. We can extend the map O ! ySn to OŒ`u�! ySn

which sends `u to
1X
iD1

.�1/i�1i�1
�
u � �n

�n

�i
2 ySn:
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Note that OŒ`u� is precisely the BClog;K1
in Def. 2.7.6; we use the explicit notation OŒ`u�

for brevity and for easier comparison with Kisin’s exposition. By the constructions in
§2.7 and Lem. 4.1.2, we can naturally extend ' to OŒ`u� by setting '.`u/ D p`u, and
extend Nr to OŒ`u� by setting Nr.`u/ D � (which, by Rem. 4.1.3, differs from Kisin’s
convention by a minus sign). Finally, write N for the derivation on OŒ`u� which acts as
O-derivation with respect to the formal variable `u, i.e., N.`u/ D 1 (see Rem. 2.7.3 for
this convention).

Given D 2 MF';NK0 , write �n for the composite map

OŒ`u�˝K0 D
'�n
W
˝'�n

�������! OŒ`u�˝K0 D !
ySn ˝K0 D D

ySn ˝K DK (5.2.1)

where the second map is induced from OŒ`u�! ySn. The composite map extends to

�n W OŒ`u; 1=��˝K0 D !
ySnŒ1=.u � �n/�˝K DK : (5.2.2)

Now, set

M.D/ WD
®
x 2 .OŒ`u; 1=��˝K0D/

ND0
W �n.x/ 2 Fil0

�
ySnŒ1=.u��n/�˝KDK

�
;8n� 1

¯
;

(5.2.3)

where Fil0 comes from the tensor product of two filtrations. Then Kisin shows thatM.D/
is in fact a finite free O-module. The map ' ˝ ' on OŒ`u; 1=��˝K0 D induces a map '
on M.D/; the map Nr ˝ 1 on OŒ`u; 1=��˝K0 D induces a map Nr on M.D/. Kisin
shows that this makes M.D/ into an object in Mod';Nr

O
.

Conversely, let M 2 Mod';Nr
O

. Then one can define D.M/ WD M=uM with the
induced '; N -structures (where N WD Nr=uNr); using a certain unique '-equivariant
section � W D.M/ ! M as in [32, Lem. 1.2.6], one can also define a filtration on
D.M/˝K0 K. This gives rise to an object in MF';NK0 .

Theorem 5.2.4 ([32, Thm. 1.2.15]). The constructions in §5.2.3 induce an equivalence
between MF';NK0 and Mod';Nr

O
.

Let Mod';Nr ;0
O

be the subcategory of Mod';Nr
O

consisting of objects M such that
R˝O M is pure of slope 0 in the sense of Kedlaya (see [30, 31] or [32, §1.3]).

Theorem 5.2.5 ([32, Thm. 1.3.8]). The equivalence in Thm. 5.2.4 induces an equivalence
between MF';N;wa

K0
and Mod';Nr ;0

O
:

Let Mod';NS be the category where an object is an M 2 Mod'S together with a K0-
linear map N WM=uMŒ1=p�!M=uMŒ1=p� such that N' D p'N over M=uMŒ1=p�.
Let Mod';NS ˝Qp be its isogeny category.

Theorem 5.2.6. There exists a fully faithful ˝-functor from MF';N;wa
K0

to Mod';NS ˝Qp .

Furthermore, suppose D 2 MF';N;wa
K0

maps to .M; ';N /. Then

(1) there is a '-equivariant isomorphism

M˝S O 'M.D/I (5.2.4)
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(2) there is a canonical G1-equivariant isomorphism

TS.M/˝Zp Qp ' Vst.D/jG1 (5.2.5)

where Vst.D/ is the usual covariant Fontaine functor.

Proof. Item (1) follows from [32, Lem. 1.3.13, Cor. 1.3.15], and (2) is the covariant ver-
sion of [32, Prop. 2.1.5].

5.3. Coincidence of monodromy operators

In this subsection, we show that the monodromy operators in Kisin’s construction and in
our construction coincide in the case of semi-stable representations.

Lemma 5.3.1. Let D 2 MF';NK0 . There is a .';N /-equivariant isomorphism

M.D/˝O OŒ`u; 1=�� ' D ˝K0 OŒ`u; 1=��: (5.3.1)

Proof. Let D0 WD .OŒ`u� ˝K0 D/
ND0 (also considered in [32, proof of Lem. 1.2.2]).

Solving this differential equation using the fact that ND is nilpotent (namely, after choos-
ing a basis of D, we get an easy differential equation), we find that D0 is a finite free
O-module of rank d and

D0 ˝O OŒ`u� ' D ˝K0 OŒ`u�: (5.3.2)

Furthermore, by the construction in (5.2.3), we have

M.D/˝O OŒ1=�� ' D0 ˝O OŒ1=��: (5.3.3)

Hence both sides of (5.3.1) are isomorphic to D0 ˝O OŒ`u; 1=��.

We record some other comparisons between M.D/ and D that will be useful later.

Corollary 5.3.2. Let D 2 MF';NK0 . We have .';N /-equivariant isomorphisms

M.D/˝O
zBClogŒ1=t � ' D ˝K0

zBClogŒ1=t �I (5.3.4)

M.D/˝O
zB�logŒ1=t � ' D ˝K0

zB�logŒ1=t �I (5.3.5)

M.D/˝O
zBŒ0;r0=p�Œ`u� ' D ˝K0 zB

Œ0;r0=p�Œ`u�: (5.3.6)

These isomorphisms induce .compatible/ GK-actions on the left hand sides of these equa-
tions.

Proof. The isomorphisms all follow from Lem. 5.3.1 (for (5.3.6), note that � is a unit in
zBŒ0;r0=p�). Note that one could change the Œ1=t � in (5.3.5) to Œ1=�� since t=� is a unit in
zB�log (see §2.6); but one cannot change Œ1=t � in (5.3.4) to Œ1=��. They induce GK-actions
on the left hand sides of these equations, because the right hand sides of these equations
are GK-stable.
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Proposition 5.3.3. Let V 2 Repst;�0
Qp

.GK/, and let D D Dst.V /. Then we have a
.';N;GK/-equivariant isomorphism

D ˝K0
zB�logŒ1=t � ' D

�
rig;K1

.V /˝B�rig;K1
zB�logŒ1=t �: (5.3.7)

Proof. By [1, Prop. 3.4, Prop. 3.5], we have

D ˝K0
zB�logŒ1=t � ' V ˝Qp

zB�logŒ1=t �: (5.3.8)

By our overconvergence theorem in §3, we have

V ˝Qp
zB�rig ' D

�
rig;K1

.V /˝B�rig;K1
zB�rig: (5.3.9)

Hence (5.3.7) holds by combining (5.3.8) and (5.3.9).

Theorem 5.3.4. Let V 2 Repst;�0
Qp

.GK/, and let D D Dst.V /.

� Let D�
rig;K1

.V / be the rigid-overconvergent .'; �/-module attached to V , and let N la
r

denote the monodromy operator defined in Thm. 4.2.1.

� Let .M.D/; '; NKis
r
/ 2 Mod';Nr ;0

O
be the module corresponding to D constructed by

Kisin. ExtendNKis
r

toM.D/˝O B�rig;K1 byNKis
r
˝ 1C 1˝N

r;B�rig;K1
, which we still

denote as NKis
r

.

Then there is a '-equivariant isomorphism

M.D/˝O B�rig;K1 ' D
�
rig;K1

.V /: (5.3.10)

Furthermore, with respect to this isomorphism, we have NKis
r
D N la

r
.

Proof. By (5.2.4), there is a '-equivariant isomorphism M ˝S O ' M.D/, hence it
suffices to show that there is a '-equivariant isomorphism

M˝S B�K1 ' D
�
K1

.V / (5.3.11)

where D�
K1

.V / is the overconvergent '-module associated to V . The isomorphism in
(5.3.11) holds by using Prop. 5.1.6 and (5.2.5).

By using Lem. 2.7.7 for `u and [28, Lem. 3.1.2 (2)] for 1=�, we have

OŒ`u; 1=�� � .zB�log;LŒ1=��/
� -pa;D1: (5.3.12)

By the construction (5.2.3) and use (5.3.12) above, it is clear that

M.D/ � D ˝K0 OŒ`u; 1=�� � .D ˝K0
zB�log;LŒ1=��/

� -pa;D1: (5.3.13)

Hence the NKis
r

-operator on M.D/, which was defined in an “algebraic” fashion below
(5.2.3), is indeed induced by the “locally analytic” Nr-operator constructed using the
locally analytic � -action on .D ˝K0 zB

�
log;LŒ1=��/

� -pa.
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By (5.3.7), we have GK-equivariant isomorphisms

D ˝K0
zB�logŒ1=�� ' D ˝K0

zB�logŒ1=t � ' D
�
rig;K1

.V /˝B�rig;K1
zB�logŒ1=t �I (5.3.14)

here, the first isomorphism follows from the fact that t=� is a unit in zB�log (see §2.6).

Thus the GK-action on D ˝K0 zB
�
logŒ1=�� is compatible with the GK-action on the rigid-

overconvergent .'; �/-module (which inducesN la
r

). Hence we must haveNKis
r
DN la

r
:

6. Frobenius regularization and finite height representations

In this section, we use our monodromy operator to study finite E.u/-height representa-
tions. In §6.1, we show that the monodromy operator descends to the ring O for a finite
E.u/-height representation; in §6.2, we show such representations are potentially semi-
stable. The results will be used in §7 to construct the Breuil–Kisin GK-modules.

6.1. Frobenius regularization of the monodromy operator

Proposition 6.1.1. Suppose T 2RepZp .GK/ is of finiteE.u/-height .with respect to fixed
choice of E� D ¹�nºn�0/, and let M 2 Mod'S be the corresponding Breuil–Kisin module.
LetNr be the monodromy operator constructed in Thm. 4.2.1. ThenNr.M/�M˝S O.

We will use a “Frobenius regularization” technique to prove Prop. 6.1.1. Roughly,
by Thm. 4.2.1, we already know that the coefficients of the matrix for Nr live near the
boundary of the open unit disk; to show that they indeed live on the entire open unit
disk in the finite height case, we use the Frobenius operator to extend their range of
convergence: this is where we critically use the finite height condition for the Frobenius
operator. Indeed, the proof relies on the following key lemma.

Lemma 6.1.2. Let h 2R>0 and r 2Z>0. For s > 0, let zAŒs;C1/ be the set of x 2 zBŒs;C1/

such that W Œs;s�.x/ � 0, and let AŒs;C1/ WD zAŒs;C1/ \ BŒs;C1/. Then\
n�0

p�hn zAŒr=p
n;C1�

D zAŒ0;C1� D zAC; (6.1.1)\
n�0

p�hn zAŒr=p
n;C1/

� zBŒ0;C1/; (6.1.2)\
n�0

p�hnAŒr=p
n;C1�

K1
D AŒ0;C1�K1

D S; (6.1.3)\
n�0

p�hnAŒr=p
n;C1/

K1
� BŒ0;C1/K1

D O: (6.1.4)

Proof. Relations (6.1.1) and (6.1.2) come from [1, Lem. 3.1]. We can intersect BK1
with (6.1.1) to get (6.1.3). Finally, (6.1.4) follows from a similar argument to that for
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[1, Lem. 3.1]. Indeed, suppose x 2 LHS. Then for each n � 0, we can write x D an C bn
with an 2 p�hnAŒr=p

n;C1�
K1

and bn 2 BŒ0;C1/K1
. Then

an � anC1 � .p
�h.nC1/AŒr=p

n;C1�
K1

/ \ BŒ0;C1/K1
D p�h.nC1/AŒ0;C1�K1

� BŒ0;C1/K1
D O:

By modifying anC1, we can assume an D a for all n � 0, and hence a 2 S by (6.1.3).
Thus, x D aC b0 2 O.

Remark 6.1.3. We use an example to illustrate the idea of (6.1.4). Consider the element
1=u 2

T
n�0BŒr=p

n;C1/
K1

. It does not belong to the left hand side of (6.1.4) because the val-
uations W Œr=pn;r=pn�.1=u/ converge to �1 at an exponential rate, rather than the linear
rate on the left hand side of (6.1.4).

By (6.1.4), the proof of Prop. 6.1.1 will rely on some calculations of valuations and
ranges of convergence; we first give two lemmas. For the reader’s convenience, recall that
for x D

P
i�i0

pi Œxi � 2 zBŒr;C1� and for s � r; s > 0 we have the formula

W Œs;s�.x/ WD inf
k�i0

²
k C

p � 1

ps
� vzE.xk/

³
D inf
k�i0

²
k C

p � 1

ps
� wk.x/

³
: (6.1.5)

Lemma 6.1.4. (1) Suppose x 2 zBC, then

W Œr;r�.x/ � W Œs;s�.x/; 80 < r < s < C1; (6.1.6)

W Œs;s�.'.x// � W Œs;s�.x/; 8s 2 .0;C1/: (6.1.7)

(2) We have
W Œs;s�.E.u// 2 .0; 1�; 8s 2 .0;C1/:

(3) Recall � D
Q
n�0 '

n.E.u/
E.0/

/. Let ` 2 Z�0. Then

W Œs;s�.�/ � �`; 8s 2 .0; r`�:

Proof. Item (1) follows from the definitions.
For (2), first recall that W Œs;s� is multiplicative. Note that E.u/ D

Pe
iD0 aiu

i where
ae D 1, p j ai for i > 0 and p k a0. It is easy to see that W Œs;s�.E.u// > 0 for all
s > 0. When s � r0, W Œs;s�.ue C a0/ D 1 by (6.1.5), W Œs;s�.

Pe�1
iD1 aiu

i / > 1, and hence
W Œs;s�.E.u// D 1 . Hence W Œs;s�.E.u// � 1 if s > r0 by (1).

For (3), we have W Œs;s�.�/ D
P
i�0W

Œs;s�.'i .E.u/=E.0///. Using (1), it suffices to
treat the case s D r`. We have

W Œr`;r`�.�/ D W Œr`;r`�.'`.�//CW Œr`;r`�

�`�1Y
iD0

'i
�
E.u/

E.0/

��
� W Œr0;r0�.�/CW Œr`;r`�

�`�1Y
iD0

'i
�

1

E.0/

��
� �`

where the last row uses W Œr0;r0�.�/ > 0 (note W Œr0;r0�.E.u/
E.0/

/ D 0 and apply (6.1.7)).



H. Gao 36

Lemma 6.1.5. Suppose x 2 BIK1 . Let g.u/ 2 K0Œu� be an irreducible polynomial such
that g.u/ … K0Œup� D '.K0Œu�/. Suppose g.u/h'.x/ 2 BIK1 for some h � 1. Then

x 2 BI=pK1 .

Proof. We can suppose inf I ¤ 0 (otherwise the lemma is trivial). Then we can fur-
ther suppose g.u/ ¤ au for some a 2 K0 (otherwise the lemma follows easily from
Cor. 2.4.5). First we treat the case h D 1. Suppose g D

PN
iD0 biu

i . Let g1 WD
P
pji biu

i

(i.e., g1 contains all the u-powers with p-divisible exponents, including the non-zero con-
stant term) and let g2 WD

P
p−i biu

i ; hence g2 ¤ 0 but g2 ¤ g. Recall that if we write
x D

P
i2Z aiu

i with ai 2K0, then it satisfies certain convergence conditions with respect
to I as described in Lem. 2.4.3; similarly, the expansion of the product g.u/'.x/ D
.g1 C g2/ � .

P
i2Z '.ai /u

pi / satisfies these conditions. However, there is no “intersec-
tion” between the two parts g1'.x/ and g2'.x/ as the former part contains exactly all the
u-powers with p-divisible exponents. Hence both g1'.x/ and g2'.x/ satisfy the afore-
mentioned convergence conditions, and hence both g1'.x/; g2'.x/ 2 BIK1 . Since g and

g2 are coprime in K0Œu�, we must have '.x/ 2 BIK1 . Thus x 2 BI=pK1 by Cor. 2.4.5.
Suppose now h � 2, and write gh D g1 C g2 as above. Similarly we have

g2'.x/ 2 BIK1 . If .gh; g2/ D gk with k < h, then gk'.x/ 2 BIK1 . This reduces the
proof to an induction argument.

Remark 6.1.6. The condition g.u/ … K0Œup� in Lem. 6.1.5 is necessary. For example,
suppose e D p, let g.u/D up � p, and let x D “ 1

u�p
” WD 1

u
.
P
i�0.

p
u
/i / 2 BŒr0;C1/K1

. We

have g.u/'.x/ D 1, but x … BŒr0=p;C1/K1
.

Proof of Proposition 6.1.1. Let Ee be an S-basis of M, and suppose

'.Ee/ D EeA; Nr.Ee/ D EeM with A 2 Mat.S/;M 2 Mat.B�rig;K1/:

Since Nr' D p
E.0/

E.u/'Nr , we have

MACNr.A/ D
p

E.0/
E.u/A'.M/: (6.1.8)

Let B 2 Mat.S/ be such that AB D E.u/h � Id. Then we get

BMAC BNr.A/ D
p

E.0/
E.u/hC1'.M/: (6.1.9)

Suppose N � 0 is maximal such that E.u/ 2 K0Œup
N
�. Denote

Di .u/ WD

iY
kD1

'�k.E.u//; 80 � i � N;

where we always let D0.u/ WD 1. For brevity, we denote E WD E.u/ and Di WD Di .u/.
Let

zM WD DhC1
N M:
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Then from (6.1.9), we have

B zMACDhC1
N BNr.A/ D

p

E.0/
'�N .EhC1/'. zM/: (6.1.10)

Let `� 0 be such that
zM 2 Mat.BŒr`;C1/K1

/:

Note that A;B;Di 2 Mat.S/ and Nr.A/ 2 � �Mat.S/, hence

LHS of (6.1.10) 2 Mat.BŒr`;C1/K1
/:

Since '�N .E/ satisfies the conditions in Lem. 6.1.5, we can iteratively use the lemma
and (6.1.10) to conclude that

zM 2 Mat
�\
n�0

BŒr`=p
n;C1/

K1

�
: (6.1.11)

To show that M 2 Mat.O/, we proceed in two steps: we first show that zM 2 Mat.O/
using Lem. 6.1.2; then we show that M 2 Mat.O/ using a trick of Caruso.

Step 1. Write r D r`: Choose c � 0 (in particular, we ask that c > `) such that

zM 2 Mat.p�cAŒr;C1/K1
/:

Then we have

W Œr;r�.LHS of (6.1.10)/ � min ¹W Œr;r�. zM/;W Œr;r�.�/º .since W Œr;r� is multiplicative/

� min ¹�c;�`º .by Lem. 6.1.4 (3)/

D �c:

By Lem. 6.1.4 (2), we have

W Œr;r�.'�N .E// D W ŒpN r;pN r�.E/ � 1:

Hence using (6.1.10), we have

W Œr=p;r=p�. zM/ D W Œr;r�.'. zM// � �c � .hC 1/:

Iterating the above argument, we find that for all n,

W Œr=pn;r=pn�. zM/ � �c � n.hC 1/:

By Lem. 2.3.6, we have

zM 2 Mat.p�c�n.hC1/AŒr=p
n;C1/

K1
/; 8n:

Using (6.1.4) of Lem. 6.1.2, we conclude that zM 2 Mat.O/.
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Step 2. In this step, we show thatM 2Mat.O/. If N D 0, then there is nothing to prove.
Suppose now N � 1. Then

zM D DhC1
N �M D '�N .EhC1/ �DhC1

N�1 �M 2 Mat.O/: (6.1.12)

From (6.1.8), we also have

MEh CNr.A/B D
p

E.0/
EA'.M/B;

and hence
EhC1DhC1

N�1 � .ME
h
CNr.A/B/ D

p

E.0/
EA'. zM/B:

So we have
EhC1DhC1

N�1 �ME
h
D E2hC1 �DhC1

N�1 �M 2 Mat.O/: (6.1.13)

Note that both '�N .E/ andE are irreducible inK0Œu� and hence they are coprime. Hence
we can use (6.1.12) and (6.1.13) to conclude that

DhC1
N�1 �M 2 Mat.O/:

If N � 1 � 1, we can repeat the above argument. (Note that in the argument of this Step
2, we do not use the fact '�N .E/ …K0Œup�; indeed, this condition is used only to deduce
(6.1.11)). Hence in the end we must have M 2 Mat.O/.

Remark 6.1.7. The argument in Step 2 above is taken from [12, p. 2595, paragraph con-
taining (3.15)]; in particular, the use of DN .u/ is inspired by the argument in loc. cit.
However, the arguments before Step 2 are completely different from those in [12].

6.2. Potential semistability of finite height representations

In this subsection, we show that finite height representations are potentially semi-stable;
in fact, our result is more precise and stronger. Let us first recall two useful lemmas.

For any K � X � K, let

m.X/ WD 1Cmax ¹i � 1 W �i 2 Xº:

Recall for each n � 1, we let Kn D K.�n�1/ (hence K1 D K). Note that

� (for n � 2) Kn here is Kn in [32], but Kn�1 in [37, 39].

Lemma 6.2.1. Let m WD m.Kur/ where Kur is the maximal unramified extension of K
.contained in K/. Suppose V 2 RepQp .GK/ is semi-stable over Kn for some n � 1, then
V is semi-stable over Km.

Proof. This is proved in [39, Rem. 2.5]. Note that this fixes a gap in [37, Thm. 4.2.2],
where Liu claims a similar statement using m WD m.K/ instead. Note that in general, it
is possible that m.Kur/ > m.K/ [39, §5.4]. Let us mention that this lemma is completely
about Galois theory of the fields Kn, and has nothing to do with the .'; yG/-modules
of [39].
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Lemma 6.2.2. Let K � K.1/ � K.2/ be finite extensions such that K.2/=K.1/ is totally
ramified. Then the restriction functor from semi-stable GK.1/ -representations to semi-
stable GK.2/ -representations is fully faithful.

Proof. This is [39, Lem. 4.11]. (It is basically [12, Prop. 3.4], but it is completely elemen-
tary.)

The following definition comes from [39].

Definition 6.2.3. Fix a choice of E� . Let n � 1. We denote by Cn.E�/ the category of finite
free Zp-representations T of GK such that we have an GKn -equivariant isomorphism

T Œ1=p�jGKn ' W jGKn

for some W 2 Repst;�0
Qp

.GK/; namely T Œ1=p�jGKn is semi-stable and can be extended to
a semi-stable GK-representation.

Theorem 6.2.4. Let RepE.u/-ht
Zp

.GK/ be the category of finite E.u/-height Zp-represen-
tations .with respect to a fixed choice of E�/. Then

RepE.u/-ht
Zp

.GK/ D Cm.Kur/.E�/:

In particular, if T 2 RepE.u/-ht
Zp

.GK/, then T Œ1=p�jGKm.Kur/
is semi-stable.

Proof. Suppose T 2 Cm.Kur/.E�/, and let V D T Œ1=p�. Let U 2 Repst;�0
Qp

.GK/ such that

V jGKm.Kur/
' U jGKm.Kur/

:

By Kisin’s result, U is of finite E.u/-height with respect to E� , hence so are U jG1 '
V jG1 , and hence so are V and T (by Def. 5.1.4). (Note that the semistability of
V jGKm.Kur/

is not enough to guarantee that V is of finite height with respect to E� ; it
only guarantees finite height with respect to ¹�nºn�m.Kur/.)

Conversely, let V be a finite height representation. By Prop. 6.1.1, we can construct a
triple .M˝S O;';Nr/2Mod';Nr ;0

O
, which gives us a semi-stableGK-representationW .

Here .M ˝S O; '/ is pure of slope zero because .M ˝S BK1 ; '/ is part of the étale
.'; �/-module associated to V .

Let .DK1.V /; '; yGV / be the étale .'; �/-module associated to V , and let D�
K1

.V /

(resp. D�
rig;K1

.V /) be the overconvergent (resp. rigid-overconvergent) module equipped

with the induced ' and yGV . Let .DK1.W /;'; yGW /,D
�
K1

.W /,D�
rig;K1

.W / be similarly
defined. It is clear that

DK1.V / DM˝S BK1 D DK1.W /;

D
�
K1

.V / DM˝S B�K1 D D
�
K1

.W /;

D
�
rig;K1

.V / DM˝S Brig;K1 D D
�
rig;K1

.W /;

and they carry the same '-action.
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In the following, let Q 2 ¹V; W º. By the definition of locally analytic actions, the
�Q-action over D�

rig;K1
.Q/ can be “locally” recovered by

r�;Q D

´
pt �N la

r;Q if K1 \Kp1 D K;

4t �N la
r;Q if K1 \Kp1 D K.�1/;

whereN la
r;Q is the monodromy operator defined in Thm. 4.2.1. Indeed, let Ee be an S-basis

of M. Then there exists some a� 0 such that

�˛Q.Ee/ D

1X
iD0

˛i �
.r�;Q/

i .Ee/

i Š
; 8˛ 2 paZp: (6.2.1)

Note that a priori, the series in (6.2.1) converges to some element in zB�rig;L ˝B�rig;K1

D
�
rig;K1

.Q/; however since Ee is also a basis for DK1.Q/ and D�
K1

.Q/, the limit has to
fall in

zB�L ˝B�
K1

D
�
K1

.Q/ � zBL ˝BK1 DK1.Q/:

Now, N la
r;V D Nr by construction, and N la

r;W D Nr by Thm. 5.3.4. Thus we have

N la
r;V D N

la
r;W :

This implies that the Gal.L=Kp1.�a//-actions on the two .'; �/-modules are the same.
Since Kp1.�a/ \ K1 � K.�aC1/ (possible equality only when p D 2, cf. Notation
1.4.3). Hence we must have

V jGKaC2 D W jGKaC2 :

We can always first choose a � m.Kur/, and hence by Lem. 6.2.1, V is semi-stable
over Km.Kur/. Thus by Lem. 6.2.2 (using the totally ramified extension KaC2=Km.Kur/),
we have

V jGKm.Kur/
D W jGKm.Kur/

:

Remark 6.2.5. In [12, Thm. 3], the statement there claims that RepE.u/-ht
Zp

.GK/ is the
same as Cm.K/.E�/. However, by our Thm. 6.2.4, and by the examples in [39, Prop.
3.22 (1)] which show that Cm.K/.E�/ ¤ Cm.Kur/.E�/ in general, Caruso’s statement is in
general false.

7. Breuil–Kisin GK -modules

In §7.1, we construct the Breuil–Kisin GK-modules and show that they classify integral
semi-stable Galois representations. In §7.2, we discuss the relation between our the-
ory and Liu’s .'; yG/-modules (only preliminarily here). In §7.3, we discuss the relation
between our theory and some results of Gee and Liu.
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7.1. Breuil–Kisin GK-modules

In this subsection, we construct the Breuil–Kisin GK-modules. Recall that in Notation
1.1.4, we defined the notations R;W.R/;mR; the ring W.R/ is precisely zAC of §2, and
is also denoted by Ainf in the literature. Let FrR be the fraction field ofR, and letW.FrR/
be the Witt vectors; this is precisely the zA of §2.

Definition 7.1.1. Let Mod';GK
S;W.R/

be the category of triples .M; 'M; GK/, which we call
(effective) Breuil–Kisin GK-modules, where

(1) .M; 'M/ 2 Mod'S;

(2) GK is a continuous W.R/-semilinear GK-action on cM WD W.R/˝S M;

(3) GK commutes with 'bM on cM;

(4) M �cMGal.K=K1/
via the embedding M ,!cM;

(5) M=uM � .cM=W.mR/cM/GK via the embedding M=uM ,!cM=W.mR/cM.

We record an equivalent condition for Def. 7.1.1 (5).

Lemma 7.1.2. Let .M; 'M; GK/ be a triple satisfying items (1)–(4) of Def. 7.1.1. Then
the condition in Def. 7.1.1 .5/ is satisfied if and only if cM=W.mR/cM is fixed by GKur .

Proof. Necessity is obvious, and we prove sufficiency. IfcM=W.mR/cM is fixed by GKur ,
then so is M=uM. But M=uM is also fixed by GK1 by Def. 7.1.1 (4), hence it is fixed
by GK as Kur \K1 D K.

Definition 7.1.3. Let wMod';GK
S;W.R/

denote the category of triples .M;'M;GK/ satisfying
items (1)–(4) of Def. 7.1.1.

With cM D .M; 'M; GK/ as in Def. 7.1.3, we can associate a ZpŒGK �-module:

TW.R/.cM/ WD .cM˝W.R/ W.FrR//'D1: (7.1.1)

Proposition 7.1.4. Equation (7.1.1) induces a rank-preserving .i.e., rkZpTW.R/.
cM/ D

rkW.R/cM/, exact, and fully faithful functor TW.R/ W wMod';GK
S;W.R/

! RepZp .GK/.

Proof. The contravariant version of this proposition (except exactness) is proved in [37,
below Rem. 3.1.5]. Note that the proof makes critical use of [37, Lem. 3.1.2, Prop. 3.1.3];
but these results have nothing to do with the ring yR there (and are relatively easy). By
the argument in [27, proof of Thm. 2.3.2], the Zp-dual of our TW.R/.cM/ is isomorphic to
OT .cM/ of [37]; hence the proposition (except exactness) follows.

It is shown in [32, Cor. 2.1.4] that the contravariant functor M 7! HomS;'.M;A/ is
exact (note that Sur there is precisely our A in §2.1). By the discussions in [27, §2.1, 2.2,
2.3] about covariant versions of various functors of [32], one deduces that the covariant
functor M 7! .M ˝S W.FrR//'D1 in Def. 5.1.3 is exact. This implies that TW.R/ is
exact.
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Theorem 7.1.5. We have equivalences of categories

wMod';GK
S;W.R/

TW.R/
����! RepE.u/-ht

Zp
.GK/

D
�! Cm.Kur/.E�/: (7.1.2)

Proof. The last equivalence is Thm. 6.2.4. TW.R/ is fully faithful by Prop. 7.1.4. Hence it
suffices to show that TW.R/ is essentially surjective.

Suppose T 2 RepE.u/-ht
Zp

.GK/, let M be the Breuil–Kisin module attached to T , and
let V D T Œ1=p�. By Thm. 6.2.4, V jGKm is semi-stable where m D m.Kur/. Let E be
the p-adic completion of Kur.�m�1/; then V jGKur.�m�1/

is a semi-stable representation
of GE . Note that this E satisfies the assumption in Notation 2.2.1. Note furthermore that
Kur.�m�1/ is Galois over K.

Since the GE -representation is semi-stable, we can construct an SE -Breuil–Kisin
module ME (whose obvious definition is left to the reader). Recall that by Lem. 3.3.1,
we have a '-equivariant isomorphism

DK1.V /˝BK1 BE1 ' DE1.V jGE /: (7.1.3)

We claim that
M˝S SE 'ME : (7.1.4)

To prove the claim, note that under the map u 7! u
pm�1

E (see Notation 2.2.1), E.u/ maps
to the minimal polynomial of �m�1 over W.k/Œ1=p�; hence M˝S SE is also an SE -
Breuil–Kisin module. The isomorphism (7.1.4) follows because both sides give rise to the
same GE1 -representation T jGE1 .

Now we want to construct a GK-action on M˝S W.R/: indeed, we will show that
M˝S W.R/ is GK-stable inside D�

rig;K1
.V /˝ zB�logŒ1=t �. By the isomorphism (7.1.4),

it is natural to try to use the Galois actions related to ME . Indeed, we will make use of
the following commutative diagram. Here we omit all the subscripts of tensor products
for brevity; the GK’s under the arrows signify GK-equivariances.

V˝zB�logŒ1=t �
'

GK

// DEst .V /˝
zB�logŒ1=t �

'

GK

// D
�
rig;E1

.V /˝zB�logŒ1=t �
'

GK

// D
�
rig;K1

.V /˝zB�logŒ1=t �

DEst .V /˝
zBClogŒ1=t �

'

f

//
?�

GKi

OO

ME˝
zBClogŒ1=t �
?�

OO

'

g
// M˝zBClogŒ1=t �

?�

OO

(7.1.5)
Let us explain the content of this diagram:

(1) Before we even define the objects and maps in the diagram, let us mention that all
maps are obviously '- and N -equivariant; we will hence focus on their Galois equiv-
ariance.

(2) We define DE
st .V / WD .V ˝ Bst/

GE (note that GK acts on it since Kur.�m�1/=K is
Galois).
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(3) By Prop. 5.3.3, we have GE -equivariant isomorphisms

V ˝ zB�logŒ1=t � ' D
E
st .V /˝

zB�logŒ1=t � ' D
�
rig;E1

.V /˝ zB�logŒ1=t �I

they are furthermore GK-equivariant by the construction ofDE
st .V / andD�

rig;E1
.V /.

(4) The vertical embeddings are just submodules.

(5) The isomorphisms f and g follow from Cor. 5.3.2 and (7.1.4) respectively. Since i
is GK-equivariant (namely, zBClogŒ1=t � is GK-stable), it follows that ME ˝

zBClogŒ1=t �

and M ˝ zBClogŒ1=t � are GK-stable. Thus, the maps f; g, and hence all the vertical
embeddings, are indeed GK-equivariant. (Thus we can put GK under all the arrows
in the diagram.)

So now M˝ zBClogŒ1=t � is GK-stable. By the overconvergence theorem, also M˝ zB� is
GK-stable. We have

zB� \ zBClog D
zB� \ zBCrig (by taking N D 0 part) (7.1.6)

D W.R/Œ1=p� (by [1, Lem. 2.18]): (7.1.7)

Hence M˝W.R/Œ1=p�Œ1=t � is GK-stable.
Now fix a basis Em of M. Suppose '. Em/ D EmA and let B 2 Mat.S/ be such that

AB D E.u/h for some h � 0. For any g 2 GK , suppose g. Em/ D EmMg where Mg D

t�aM with M 2 Mat.W.R/Œ1=p�/ for some a � 0. Since ' and g commute, we have
A'.M/ D paMg.A/, and hence

'.M/E.u/h D paBMg.A/: (7.1.8)

For a matrix X defined over W.R/, let vp.X/ be the minimum of the p-adic valuation of
all its entries. We then have vp.'.M/E.u/h/ D vp.M/ and hence we must have a D 0.
This shows that M˝W.R/Œ1=p� is GK-stable. Since M˝W.FrR/ is also GK-stable,
we finally see that M˝W.R/ is GK-stable.

We introduce some notations before we prove our main theorem.

7.1.6. Let � W W.R/! W.R/=W.mR/ D W.k/ be the reduction ring homomorphism.
It naturally extends to � W zBŒ0;r0=p�!W.k/Œ1=p�, e.g., by applying the explicit expression
of zBŒ0;r0=p� using Lem. 2.3.9. It then extends to

� W zBŒ0;r0=p�Œ`u�! W.k/Œ1=p�

by setting �.`u/D 0. The map � is a '-equivariant ring homomorphism; it is furthermore
GK-equivariant by using (2.7.3) (and note �.t/ D 0). For any subring A � zBŒ0;r0=p�Œ`u�,
and a finite free A-module M , the �-map extends to

� WM ! W.k/Œ1=p�˝AM: (7.1.9)

If A is GK-stable and M is equipped with an A-semilinear GK-action, then the map � in
(7.1.9) is GK-equivariant.

The following is our main theorem.
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Theorem 7.1.7. The functor TW.R/ induces an equivalence of categories

Mod';GK
S;W.R/

�! Repst;�0
Zp

.GK/: (7.1.10)

Proof. Part 1. We first show that ifcM 2Mod';GK
S;W.R/

, then V WD TW.R/.cM/Œ1=p� is semi-
stable, and hence TW.R/ indeed induces a functor as in (7.1.10). Note that V is of finite
E.u/-height. Let E;SE ;ME etc. be as in the proof of Thm. 7.1.5. Similar to the bottom
row of (7.1.5), we have isomorphisms (where E0 D W.k/Œ1=p�)

DE
st .V /˝E0

zBŒ0;r0=p�Œ`u� 'ME ˝SE
zBŒ0;r0=p�Œ`u� 'M˝S

zBŒ0;r0=p�Œ`u�; (7.1.11)

using Cor. 5.3.2 and (7.1.4) respectively; again, they are GE -equivariant a priori, but
are indeed GK-equivariant since DE

st .V / ˝E0
zBŒ0;r0=p�Œ`u� � DE

st .V / ˝E0
zB�logŒ1=t � is

GK-stable. Applying the GK-equivariant map � to (7.1.11), we get GK-equivariant iso-
morphisms

DE
st .V / 'ME=uEME ˝W.k/ W.k/Œ1=p� 'M=uM˝W.k/ W.k/Œ1=p�: (7.1.12)

Hence DE
st .V / is fixed by GKur , and hence V is a semi-stable representation of GK .

Part 2. Note that TW.R/ is fully faithful by Prop. 7.1.4. We now show that TW.R/ is
essentially surjective. Let T 2 Repst;�0

Zp
.GK/; it is of finite height by [32]. Hence by Thm.

7.1.5, we can get a unique .M; '; GK/ 2 wMod';GK
S;W.R/

. It suffices to show that M=uM

is fixed by GK . By (5.3.6), we have a GK-equivariant isomorphism

Dst.T Œ1=p�/˝K0
zBŒ0;r0=p�Œ`u� 'M˝S

zBŒ0;r0=p�Œ`u�:

Applying the �-map shows that M=uM ˝W.k/ W.k/Œ1=p� is fixed by GKur , hence we
can conclude the proof using Lem. 7.1.2.

Remark 7.1.8. By Prop. 7.1.4, the functor TW.R/ is exact. However, its quasi-inverse in
Thm. 7.1.7 is in general only left exact; see the discussions in [38, Lem. 2.19, Ex. 2.21].

We now give some results related to the theory of Breuil–Kisin GK-modules. In Prop.
7.1.10, we give a crystallinity criterion; in Prop. 7.1.11, we prove the “algebraic avatar”
of the de Rham comparison (1.1.5) (see Rem. 1.1.12). We start with a lemma.

Lemma 7.1.9. We have .'.t/ � zBŒ0;r0�/ \W.R/ D '.t/ �W.R/.

Proof. Let I Œ1�W.R/ WD ¹a 2W.R/ W 'n.a/ 2 Ker �;8n � 0º: By the proof of [37, Lem.
3.2.2] (using a result of Fontaine), we have

I Œ1�W.R/ D '.t/ �W.R/: (7.1.13)

Note that the map � ı �0 W zBŒ0;r0�!BCdR!Cp (see [1] for �0) induces the � map onW.R/.
Thus one easily checks that .'.t/ � zBŒ0;r0�/ \W.R/ � I Œ1�W.R/:
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Proposition 7.1.10. Let cM 2 Mod';GK
S;W.R/

. Then V D TW.R/.cM/Œ1=p� is a crystalline
representation if and only if

.� � 1/.M/ � tW.mR/˝S M: (7.1.14)

Proof. Step 1. We first show that for any cM 2 Mod';GK
S;W.R/

,

.� � 1/.M/ � tW.R/˝S M: (7.1.15)

Indeed, by (5.3.1),

M˝S OŒ`u; 1=�� D D ˝K0 OŒ`u; 1=�� � D ˝K0
zBŒ0;r0=p�Œ`u�: (7.1.16)

Note that by Thm. 2.5.1 (1),

OŒ1=�� � BŒ0;r0=p�K1
D .zBŒ0;r0=p�L /� -an;D1

I

also by Lem. 2.7.7, `ku are � -analytic vectors. Hence for some k � 0,

M � D ˝K0

� kM
iD0

OŒ1=�� � `iu

�
�

�
DK0 ˝

� kM
iD0

zBŒ0;r0=p�L � `iu

��� -an;D1

D .D ˝Q/� -an;D1 (7.1.17)

where for brevity we denote

Q WD

kM
iD0

zBŒ0;r0=p�L � `iu:

This means that over M, we have

� D

1X
iD0

ri�

i Š
;

where r� equals ptNr or p2tNr . Since Nr.M/ �M˝S O, the map r� induces

r� WM!M˝S t �O:

One easily checks that r� .tk/ 2 tkC1 �O; also note r� .O/ 2 t �O. Hence inductively, we
can show that for all i � 1,

r
i
� WM!M˝S ti �O: (7.1.18)

Hence if we choose a basis of M, then for any m 2M, the coefficient of .� � 1/.m/ in
M˝Q, expressed using that basis, lies in t � zBŒ0;r0=p� \W.R/ D tW.R/ by Lem. 7.1.9.
This finishes the proof of (7.1.15).



H. Gao 46

Step 2. Suppose now V is crystalline. To show (7.1.14), it suffices to show that

�

�
� � 1

t
.M/

�
D 0: (7.1.19)

Here, the expression (7.1.19) (and similar expressions below) means that the image of
��1

t
.M/ is zero under the map

� WM˝S
zBŒ0;r0=p�Œ`u�!M˝S W.k/Œ1=p�:

Note that
� � 1

t
D
r�

t
C

X
i�2

1

t
�
ri�

i Š
:

Note that �.Nr.M// D 0 (since Nr=uNr D NDst.V / D 0 as V is crystalline), hence

�.r�
t
.M// D 0. For each i � 2, �.1

t
�
ri�
iŠ
.M// D 0 by (7.1.18) since �.t/ D 0. This

concludes the proof of (7.1.19).

Step 3. Conversely, suppose now (7.1.14) is satisfied. Note that (7.1.13) implies that
tW.R/ and hence tW.mR/ is GK-stable. Hence for any a � 0, we also have

.�p
a

� 1/.M/ � tW.mR/˝S M:

Using the definition Nr D r�pt
(or r�

p2t
), one can easily show �.Nr.M// D 0 and hence

NDst.V / D 0.

Proposition 7.1.11. Let cM be an object in Mod';GK
S;W.R/

. Let '�M WD S ˝';S M and

'�cM WD W.R/˝';W.R/cM. Then

'�M=E.u/'�M � .'�cM=E.u/'�cM/GK : (7.1.20)

Proof. By (7.1.15), '�M=E.u/'�M is fixed by � since '.t/ � W.R/ � E.u/ � W.R/.
This proves (7.1.20) whenK1 \Kp1 DK. In Thm. 7.3.4, we will show (no circular rea-
soning here) that the subset '�M=E.u/'�M is indeed independent of the choice ofK1,
and hence (7.1.20) holds in general (as there exists some choice such that K1 \ Kp1
D K; see Notation 1.4.3).

7.2. Specialization to Liu’s .'; yG/-modules

In [26], we will show that using some “specialization” maps, our argument and results
recover the results of Liu’s theory of .'; yG/-modules. (We only give a quick review of
the .'; yG/-modules later in Appendix B, as we do not really use them here.) The proof
in [26] makes systematic use of locally analytic vectors, and makes the link between the
different theories completely transparent. Here, let us give some hint about what we mean
by “specialization”; see [26] for more details.
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Recall that if rn 2 I , then there are continuous embeddings (see [1])

�n W zBI ,! BCdR;

which we call the de Rham specialization maps. One easily checks that the image of the
embedding �0 W zBŒ0;r1� ,! BCdR lands inside BCcris. Furthermore, the induced embedding

�0 W zBŒ0;r1� ,! BCcris (7.2.1)

is continuous. The map (7.2.1) also induces the continuous composites

' W zBŒ0;r0�
'
�! zBŒ0;r1�

�0
�! BCcris: (7.2.2)

We call the maps in (7.2.1) and (7.2.2) the crystalline specialization maps. By adjoin-
ing `u, we also get the continuous semi-stable specialization maps

�0 W zBŒ0;r1�Œ`u� ,! BCst ; (7.2.3)

' W zBŒ0;r0�Œ`u� ,! BCst : (7.2.4)

Note that in (5.3.6), we have (for a semi-stable representation)

M˝S
zBŒ0;r0=p�Œ`u� D D ˝K0 zB

Œ0;r0=p�Œ`u�I

we are using zBŒ0;r0=p� because it has the advantage that � is a unit in it, and indeed 1=� is
an � -analytic vector in it. But from (5.3.1), we also have

M˝S
zBŒ0;r0�Œ1=�; `u� D D ˝K0 zB

Œ0;r0�Œ1=�; `u�I (7.2.5)

note that these modules are not GK-stable! However, using the semi-stable specialization
map (note that here '.�/ is a unit in BCcris, but � is not)

' W zBŒ0;r0�Œ1=�; `u�! BCst ;

we get a GK-equivariant identification

M˝';S BCst D D ˝';K0 BCst : (7.2.6)

Let

S WD

² 1X
nD0

an
E.u/n

nŠ
W an 2 S; an ! 0 p-adically

³
� Acris: (7.2.7)

Then it is easy to check that elements of S are all � -analytic vectors in BCcris;L WD .B
C
cris/

GL .
Hence by (7.2.6) and (7.1.17) we have, for k � 0,

M˝';S S �
�
D ˝K0

� kM
iD0

BCcris;L � `
i
u

��� -an;D1
: (7.2.8)

Hence � D
P1
iD0

ri�
iŠ

again holds over M ˝';S S . Using some results about filtered
.'; N /-modules over S in [9], this easily recovers the Galois action on M ˝';S BCcris
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as in [36, §5.1]. In particular, rather than “defining” the Galois action in an ad hoc fashion
as in loc. cit. and then showing it is compatible with Galois representations (cf. [36, Lem.
5.2.1], our specialization obviously implies the compatibility. Let us mention that this
Galois action is indeed one of the key features in Liu’s theory of .'; yG/-modules.

7.3. Relation to some results of Gee and Liu

In this subsection, we discuss the relation between our results and some recent results of
Toby Gee and Tong Liu.

The statement and idea of the proof of Thm. 7.3.1 below is due to Toby Gee. As
we learnt from Gee, this result was inspired by Caruso’s result, and was originally used
to construct the semi-stable substack inside the stack of étale .'; �/-modules (see [21,
Appendix F]). We thank Toby Gee for allowing us to include it here.

Theorem 7.3.1 (Gee). Let T 2 RepZp .GK/. Then T 2 Repst;�0
Zp

.GK/ if and only if T is
of finite height with respect to all choices of E� .

We first introduce an elementary lemma.

Lemma 7.3.2. LetK �M1;M2 be finite extensions, and letM DM1M2. SupposeM=K
is Galois and totally ramified, and supposeM1 \M2 DK. Let V be aGK-representation
and suppose it is semi-stable over both M1 and M2. Then V is semi-stable over K.

Proof. It is easy to see that Gal.M=K/ acts trivially on DM
st .V / D .V ˝Qp Bst/

GM , and
hence DM

st .V / D D
K
st .V /.

Proof of Theorem 7.3.1. Necessity is proved in [32]. We prove sufficiency. Let V WD
T Œ1=p�, letU WD V jGKur , and let yKur denote the completion ofKur. It suffices to show that
theG yKur -representationU is semi-stable. First fix one E� . Choose another unifomizer � 0 of
K such that �=� 0 2O�

yKur
n.O�

yKur
/p , and choose any compatible system E� 0 D ¹� 0nºn�0. By

Kummer theory, for each i � 1, the fields yKur.�i / and yKur.� 0i / are different. Combining
this with [37, Lem. 4.1.3], it is easy to show that

yKur.�i / \ yKur.� 0i / D
yKur; 8i � 1:

Let m WD m.Kur/. Consider the 3-step extensions

yKur � yKur.�m�1/; yKur.� 0m�1/ �M D
yKur.�m�1; �

0
m�1/:

Since �m�1 2 yKur,M= yKur is Galois and totally ramified. By Thm. 6.2.4, V is semi-stable
over K.�m�1/, hence U is semi-stable over yKur.�m�1/; similarly U is semi-stable over
yKur.� 0m�1/. Thus U is semi-stable over yKur by Lem. 7.3.2.

Before the author proved Thm. 6.2.4 which makes Thm. 7.3.1 possible, Gee and Liu
proved a weaker result (Thm. 7.3.4 below) which is sufficient for the construction of the
semi-stable substack mentioned above. In Def. 7.3.3 below, the notation Css comes from
“Cd;ss;h” in [21, Def. 4.5.1]; here, we omit the rank d and the height h. For each choice
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E� D ¹�nºn�0, we let KE� WD
S
n�0K.�n/. We can regard E� as an element in R, and let

ŒE�� 2W.R/ be its Teichmüller lift. Let SE� be the image ofW.k/JXK ,!W.R/;X 7! ŒE��.
Let E.X/ be the minimal polynomial of �0 over K0, and let EE� WD E.ŒE��/ 2 SE� .

Definition 7.3.3 ([21, Def. F.7]). Let Css.Zp/ be the category consisting of the following
data, which are called Breuil–Kisin–Fargues GK-modules admitting all descents:

(1) Minf is a finite free Breuil–Kisin–Fargues module with W.R/-semilinear '-commut-
ing GK-action.

(2) For each E� , ME� 2 .M
inf/Gal.K=KE� / is a finite free Breuil–Kisin module over SE� such

that the induced morphism ME� ˝SE�
W.R/!Minf is a '-equivariant isomorphism.

(3) W.k/-mod ME�=ŒE��M � W.k/˝W.R/ Minf is independent of E� .

(4) OK-mod '�ME�=EE�'
�ME� � OC ˝W.R/ '

�Minfs is independent of E� .

Theorem 7.3.4 (Gee–Liu, [21, Thm. F.11]). The functor TW.R/.Minf/ WD .Minf ˝

W.FrR//'D1 induces an equivalence between Css.Zp/ and Repst;�0
Zp

.GK/.

The proof of Gee–Liu makes use of a result of Heng Du (see [21, Prop. F.13]), which
shows that conditions (1), (2), and (4) are enough to guarantee that the attached repre-
sentation is de Rham; then they use condition (3) to show semistability. Here, we give a
very brief sketch of proof using our results in order to illustrate the relation between the
different approaches.

Proof of Theorem 7.3.4. Apparently, given a module in Css.Zp/, the associated repre-
sentation is semi-stable by Thm. 7.3.1. Conversely, give a semi-stable representation,
the ME� ’s have been constructed by Kisin. To verify condition (2) (in Def. 7.3.3), it
suffices to check that the various tensor products ME� ˝SE�

W.R/ can all be identified
inside V ˝ zB�logŒ1=t �. Note ME� ˝SE�

zBClogŒ1=t � can be identified with D ˝ zBClogŒ1=t �, and

ME� ˝
zB� can be identified with V ˝ zB�; hence by (7.1.6), ME� ˝W.R/Œ1=p�Œ1=t � can all

be identified with each other. Then one can follow a strategy as below (7.1.6) to show that
ME� ˝W.R/ can all be identified. (We leave the details to the readers.) For condition (3):
note that the independence of ME� ˝W.R/ implies the independence of ME�=ŒE��ME� ˝

W.k/, and hence it suffices to show the independence of ME�=ŒE��ME� Œ1=p�DME�=ŒE��ME�
where ME� are the OE� -modules as constructed in §5.2. Then Lem. 5.3.1 implies that
ME�=ŒE��ME� can all be identified with D (which is well-known to be independent of E�).
The verification of condition (4) is similar, by using the '-twist of (5.3.6).

7.4. Independence from Caruso’s work

Remark 7.4.1. (1) The only place in the current paper where we actually use results
from [12] is in Thm. 3.1.4 (also Def. 3.1.2) which is [12, Thm. 1]. (Lem. 6.2.2 is also
from [12], but it is completely elementary.)

(2) Besides those in §1 and in Thm. 3.1.4, the only places where we make references to
[12] is in Rem. 6.1.7, where we mention some argument from [12].
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(3) The results in [12] are not used in any of the cited papers in our bibliography, except
[12, Thm. 1], which is used in [27, 28].

(4) Hence, the current paper is independent of [12] (except [12, Thm. 1]).

Yoshiyasu Ozeki
Appendix A. A gap in Caruso’s work

The statement of [12, Prop. 3.7] is false. Here is a counter-example:

� Let A D Qp with p D 3, let m D 4 and let ƒ D p�4 � Zp . Let a D b D 0.

The mistake in the proof of [12, Prop. 3.7] is rather hidden. Indeed, on [12, p. 2580],
Caruso states the formula

logm.ab/ � .logm aC logm b/ 2
pm�1X
jD1

p`.p
m�j /C`.j /

j
�ƒ:

As far as we understand, Caruso is implicitly using thatƒ is a ring (that is, a Zp-algebra).
But in fact, ƒ is only a Zp-module.

Prop. 3.7 of [12] is a key proposition in that paper. Indeed, it is used to prove Prop.
3.8 and Prop. 3.9 there. These propositions are then repeatedly used in later arguments of
that paper.

Hui Gao, Tong Liu
Appendix B. Errata for [35] and [25]

In this appendix, using Breuil–Kisin GK-modules, we fix a gap in the proof of the main
theorems in [35] and [25] where we studied the limit of torsion semi-stable representa-
tions. Let us point out at the start that the gap arises because we only recently realized that
we do not know if the ring yR (recalled below) is p-adically complete or not. (The gap is
discussed in detail in Step 2 of §B.0.4.)

We first recall the main results of [35] and [25]. Recall that a (finite) p-power torsion
representation T of GK is called torsion semi-stable (resp. crystalline/ of weight r if
there exists a GK-stable Zp-lattice zL in a semi-stable (resp. crystalline) representation
with Hodge–Tate weights in Œ0; r�, and such that there exists a GK-equivariant surjection
zL� T (which is called a loose semi-stable (resp. crystalline/ lift). The following is the
main theorem of [25]:

Theorem B.0.1. Let T be a finite free Zp-representation of GK of rank d . For each
n � 1, suppose Tn WD T=pnT is torsion semi-stable .resp. crystalline/ of weight h.n/. If

h.n/ <
1

2d
log16 n; 8n� 0;

then T ˝Zp Qp is semi-stable .resp. crystalline/.

When h.n/ is a constant, this is precisely the main theorem of [35], which confirms a
conjecture of Fontaine.
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Unfortunately, there is a gap in the proof of Thm. B.0.1; there is a (practically the
same) gap in [35] as well (see Rem. B.0.5 below). We now focus on discussing and fixing
the gap in the proof of Thm. B.0.1 (which utilizes a strategy very similar to [35]).

B.0.2. First, we quickly recall the theory of .'; yG/-modules; see [37] for more details.
Define a subring inside BCcris:

RK0 WD

°
x D

1X
iD0

fi t
¹iº
W fi 2 SK0 and fi ! 0 as i !C1

±
;

where t ¹iº D t i

p Qq.i/ Qq.i/Š
and Qq.i/ satisfies i D Qq.i/.p � 1/C r.i/ with 0 � r.i/ < p � 1.

Define
yR WD W.R/ \RK0 :

The rings RK0 and yR are stable under the GK-action, and the GK-action factors
through yG. Let IC yR D W.mR/ \ yR. Then yR=IC yR ' S=uS D W.k/.

Definition B.0.3. Let Mod';
yG

S; yR
be the category of triples .M; 'M; yG/, which are called

.'; yG/-modules, where

(1) .M; 'M/ 2 Mod'S;

(2) yG is a continuous yR-semilinear yG-action on cM WD yR˝';S M;

(3) yG commutes with 'bM on cM;

(4) regarding M as a '.S/-submodule in cM, we have M �cMGal.L=K1/;

(5) yG acts on the W.k/-module cM=IC yRcM trivially.

Then (the covariant version of) the main theorem of [37] says that the functor

TW.R/.cM/ WD .cM ˝ yR
W.Fr R//'D1 induces an equivalence between Mod';

yG

S; yR
and

Repst;�0
Zp

.GK/.

B.0.4. We now sketch the proof of Thm. B.0.1 given in [25] in two steps; it is in Step 2
that the gap arises.

Step 1. We first show that T is of finiteE.u/-height. As we need the constructions in our
Step 2 (where the gap arises), let us sketch the argument.

Since Tn is torsion semi-stable, one can construct a (not necessarily unique) p-power
torsion .'; yG/-module (the definition of which is obvious) cMn, simply by projecting
down the finite free .'; yG/-module associated to some loose semi-stable lift of Tn.

Note that a priori, these cMn’s for different n have no direct relations. The technical
heart in the proof of [25, Thm. 3.1] is that we can modify the torsion Breuil–Kisin modules
inside these torsion .'; yG/-modules so that in the end we can obtain a compatible system
of M0

n for n� 0 such that

� M0
n is finite free over Sn WD S=pnS;
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� letting OEn WD OE=p
nOE , and letting Mn be the torsion étale '-module associated to

TnjG1 , which is a finite free OEn-module, we have M0
n ˝Sn OEn 'Mn, i.e., M0

n is a
“Breuil–Kisin model” of Mn;

� M0
nC1=p

n DM0
n.

Hence we can form the inverse limit zM WD lim
 �n�0

M0
n, which is a finite free S-module.

Using some techniques related to the Weierstrass preparation theorem, we can in fact
show that zM is of finite height (this is easy when h.n/ is constant, but more difficult in
the general case). Furthermore, we obviously have TS.M/ ' T jG1 .

Step 2. Now it remains to show that the yG-action on zM˝';S yR is stable, and hence T
indeed comes from a .'; yG/-module and hence is semi-stable.

This is where the gap arises. Indeed, we know that the yG-action on M0
n ˝';S

yR is
stable, because it comes from projection of the yG-action of a finite free .'; yG/-module.
However, unfortunately, we only recently realized that we do not know whether yR is
p-adically complete or not! Hence we cannot directly conclude that zM ˝';S yR is yG-
stable! Indeed, recall that yR D W.R/ \RK0 . In fact, it is not even clear which “p-adic
topology” we should use here: should it be the one induced from BCcris, or the one induced
fromW.R/? For either of these choices, it is very difficult to actually compute the p-adic
valuations of elements in yR.

Remark B.0.5. Note that in the proof of [35, Prop. 6.1.1], it is implicitly assumed that
RK0 \ Acris is p-adically complete; again, it is not clear how to actually prove this: the
difficulty is the same as for yR.

B.0.6. Fixing the gap using Breuil–Kisin GK-modules. To fix the gap, we can simply
replace all the mentions of “.'; yG/-modules” above by “Breuil–Kisin GK-modules”, all
the yR by W.R/, and all the yG by GK . Since W.R/ is p-adically complete, we readily
conclude that zM˝S W.R/ is GK-stable! Furthermore, in each torsion level for n� 0,
we know M0

n=uM0
n is fixed by GK (again because the GK-action comes from that on a

finite free Breuil–Kisin GK-module); hence zM=u zM is also fixed by GK , simply because
W.k/ is p-adically complete. Hence we have shown that T indeed comes from a finite free
Breuil–Kisin GK-module, and hence is semi-stable. If all the Tn are furthermore torsion
crystalline, then the torsion version of the condition in Prop. 7.1.10 holds, and hence the
condition also holds for zM, again because all the rings (and ideals) in Prop. 7.1.10 are
p-adically complete.

Remark B.0.7. As we can observe from the above paragraph, in order to fix the gap in
[25, 35], it suffices to use some “integral p-adic linear-algebra category” where all the
rings involved are p-adic complete. Thus, one can also fix the gap in [25, 35] using Thm.
7.3.1 or Thm. 7.3.4; we leave the details to the reader.
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