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Abstract. Let A be a rational function of degree at least 2 on the Riemann sphere. We say that A
is tame if the algebraic curve A.x/ � A.y/ D 0 has no factors of genus 0 or 1 distinct from the
diagonal. In this paper, we show that if tame rational functions A and B have some orbits with
infinite intersection, then A and B have a common iterate. We also show that for a tame rational
function A decompositions of its iterates Aıd ; d � 1; into compositions of rational functions can
be obtained from decompositions of a single iterate AıN for N large enough.
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1. Introduction

Let A be a rational function of degree at least 2 on the Riemann sphere. For a point
z1 2 CP1 we denote by OA.z1/ the A-forward orbit of z1, that is, the set ¹z1; A.z1/;
Aı2.z1/; : : : º: In this paper, we address the following problem: given two rational func-
tions A and B of degree at least 2, under what conditions do there exist orbits OA.z1/
and OB.z2/ having an infinite intersection? We show that under a mild restriction on A
and B this happens if and only if A and B have an iterate in common, that is, if and only
if

Aık D Bıl (1)

for some k; l � 1: Put another way, unless rational functions A and B have the same
global dynamics, an orbit of Amay intersect an orbit of B at most in finitely many places.

In the particular case whereA andB are polynomials, the problem under consideration
was completely settled in [7, 8], where it was shown that the above condition on orbits is
equivalent to (1). An essential ingredient of the proof was a result of [32], concerning
functional decompositions of iterates of polynomials, which can be described as follows.
Let

Aıd D X ı Y (2)

Fedor Pakovich: Department of Mathematics, Ben Gurion University of the Negev, Beer Sheva,
Israel; pakovich@math.bgu.ac.il

Mathematics Subject Classification (2020): Primary 37F10; Secondary 14G99

https://creativecommons.org/licenses/by/4.0/
mailto:pakovich@math.bgu.ac.il


F. Pakovich 3954

be a decomposition of an iterate Aıd of a rational function A into a composition of ratio-
nal functions X and Y . We say that this decomposition is induced by a decomposition
Aıd

0

D X 0 ı Y 0, where d 0 < d; if there exist k1; k2 � 0 such that

X D Aık1 ıX 0; Y D Y 0 ı Aık2 :

In general, decompositions of Aıd are not exhausted by decompositions induced by
decompositions of smaller iterates. However, the main result of [32] states that if A is
a polynomial of degree n � 2 not conjugate to zn or to ˙Tn, where Tn stands for the
Chebyshev polynomial, then there exists an integer N � 1 such that every decomposition
of Aıd with d � N is induced by a decomposition of AıN . Moreover, the number N
depends on n only.

It seems highly likely that the result of [7, 8] about orbit intersections of polynomials
remains true for all rational functions, while the result of [32] about decompositions of
iterates of polynomials not conjugate to zn or to ˙Tn remains true for all non-special
rational functions, where by a special function we mean a rational function A that is
either a Lattès map or is conjugate to z˙n or ˙Tn. However, the approach of the papers
[7, 8, 32] cannot be extended to the general case, since it crucially depends on results of
the Ritt theory of functional decompositions of polynomials [27], some of which have no
analogues in the rational case while others are known not to be true. The result of [32] was
proved by a different method in [16]. Nevertheless, the method of [16] does not extend to
rational functions either.

A partial generalization of the result of [32] to rational functions was obtained in [25].
Namely, it was shown that there exists a function with integer arguments N D N.n; l/

such that for every rational function A of degree n� 2 decompositions (2) with degX � l
and d � N are induced by decompositions of AıN . Other related results in the rational
case were obtained in [2, 3]. Specifically, it was shown in [2] that decompositions of iter-
ates of a rational function A correspond to equivalence classes of certain analytic spaces
defined in dynamical terms. On the other hand, in [3], an analogue of the problem about
orbits was considered for semigroups of rational functions, and the results obtained were
formulated in terms of the amenability of the corresponding semigroups. Giving a new
look at the problems considered, the papers [2, 3], however, do not provide handy condi-
tions on rational functions A and B under which the results of [7, 8, 32] remain true.

To formulate our results explicitly, we introduce the following definition. Let A be a
rational function of degree at least 2. We say that A is tame if the algebraic curve

A.x/ � A.y/ D 0

has no factors of genus 0 or 1 distinct from the diagonal. Otherwise, we say that A is wild.
By the Picard theorem, the condition that A is tame is equivalent to the condition that for
any functions f and g meromorphic on C the equality

A ı f D A ı g (3)

implies that f � g: The problem of describing tame rational functions appears in holo-
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morphic dynamics [10]. It is also closely related to the problem of describing rational
functions sharing the measure of maximal entropy [23, 31].

It is easy to see that every rational function of degree 2 is wild. Consequently, a tame
rational function has degree at least 3. On the other hand, a generic rational function of
degree at least 4 is tame. Specifically, a rational function of degree at least 4 is tame when-
ever it has only simple critical values [15]. A comprehensive classification of wild rational
functions is not known. The most complete result in this direction, obtained in [1], is the
classification of solutions of equation (3) under the assumption that A is a polynomial and
f , g are rational functions. For an account of recent progress in the general case we refer
the reader to [29].

Our first main result is a generalization of the result of [32] to tame rational functions.

Theorem 1.1. Let A be a tame rational function of degree n. Then there exists an inte-
gerN , depending on n only, such that every decomposition of Aıd with d �N is induced
by a decomposition of AıN .

Our second main result is a similar generalization of the result of [7, 8].

Theorem 1.2. Let A and B be tame rational functions such that an orbit of A has an
infinite intersection with an orbit of B . Then A and B have a common iterate.

Our proof of Theorem 1.1 is based on the result of [25] about decompositions of
iterates cited above and the following statement of independent interest, providing lower
bounds for genera of irreducible components of algebraic curves of the form

CA;B W A.x/ � B.y/ D 0;

where A and B are rational functions.

Theorem 1.3. Let A be a tame rational function of degree n, B a rational function of
degree m, and C an irreducible component of the curve CA;B . Then

g.C / �
m=nŠ � 84nC 168

84
; (4)

unless B D A ı S for some rational function S , and C is the graph x � S.y/ D 0:

Since equality (2) implies that the curve CA;X has a factor of genus 0, it follows from
Theorem 1.3 that if degX is large enough, then X D A ı S for some S 2 C.z/, and
further analysis combined with the result of [25] permits us to prove Theorem 1.1.

In turn, the proof of Theorem 1.2 goes as follows. First, using the theorem of Faltings,
we conclude that if OA.z1/ \ OB.z2/ is infinite, then for every pair .d; i/ 2 N �N the
algebraic curve

Aıd .x/ � Bıi .y/ D 0 (5)

has a factor of genus 0 or 1. Then, using Theorem 1.3, we prove that each iterate of B is
a compositional left factor of some iterate of A, where by a compositional left factor of
a rational function f we mean any rational function g such that f D g ı h for some ratio-
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nal function h: Finally, we deduce Theorem 1.2 from the following result of independent
interest.

Theorem 1.4. Let A and B be tame rational functions. Then the following conditions are
equivalent:

(i) Each iterate of B is a compositional left factor of some iterate of A.

(ii) Each iterate of B is a compositional right factor of some iterate of A.

(iii) The functions A and B have a common iterate.

In addition to Theorem 1.2, we prove two other results supporting the conjecture that
existence of orbits with an infinite intersection is equivalent to (1). The first result states
that for arbitrary rational functions A and B the existence of such orbits imposes strong
restrictions on their degrees consistent with condition (1). Specifically, letting P.n/ denote
the set of prime divisors of a natural number n, we prove the following statement.

Theorem 1.5. Let A and B be rational functions of degree at least 2 such that an orbit
of A has an infinite intersection with an orbit of B . Then P.degA/ D P.degB/:

The second result states that special rational functions, which are the simplest ex-
amples of wild rational functions and for which Theorem 1.1 is not true, cannot serve as
counterexamples to Theorem 1.2.

Theorem 1.6. Let A and B be rational functions of degree at least 2 such that an orbit
of A has an infinite intersection with an orbit of B . Assume that at least one of these
functions is special. Then A and B have a common iterate.

Besides the above results, we give new proofs of the main results of [7, 8, 32], using
instead of Ritt theory the results of [19, 20] and the classification of commuting polyno-
mials.

The rest of the paper is organized as follows. In the second section, we discuss tame
and wild rational functions, and provide a sufficient condition for a rational function to be
wild. In the third section, we prove Theorem 1.3. In the fourth section, we prove Theorems
1.1, 1.2, and 1.4. In the fifth section, we deduce Theorems 1.5 and 1.6 from the results
of [20]. Specifically, we use a description of pairs of rational functions A and U such that
for every d � 1 the algebraic curve

Aıd .x/ � U.y/ D 0 (6)

has a factor of genus 0 or 1. Finally, in the sixth section, we reconsider the polynomial
case and give new proofs of the main results of [7, 8, 32].

2. Tameness and normalization

Let f W S ! CP1 be a holomorphic function on a compact Riemann surface S . Let us
recall that the normalization of f is defined as a holomorphic function of the lowest
possible degree between compact Riemann surfaces zf W zSf ! CP1 such that zf is a
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Galois covering and
zf D f ı h (7)

for some holomorphic map h W zSf ! S . Equivalently, zf can be defined as a Galois cov-
ering zf W zSf ! CP1 of the form (7) such that

deg zf D jMon.f /j; (8)

where Mon.f / is the monodromy group of f (see e.g. [9, Proposition 2.72]). We
will denote by †.f / the subgroup of Aut.S/ consisting of automorphisms � such that
f ı � D f:

Theorem 2.1. Let A be a rational function of degree at least 2. Assume that there exist a
compact Riemann surface S of genus 0 or 1, a holomorphic function U W S ! CP1; and
a Galois covering ‰ W S ! CP1 such that A ıU is a rational function in ‰, but U is not
a rational function in ‰. Then A is wild.

Proof. Since the assumptions of the theorem imply that

A ı U D A ı .U ı ˛/

for every ˛ 2 †.‰/, to prove that the algebraic curve

CA W
A.x/ � A.y/

x � y
D 0 (9)

has a factor of genus 0 or 1, it is enough to show that there exists ˛ 2 †.‰/ such that
U ı ˛ 6� U: Assume to the contrary that U ı ˛ � U for any ˛ 2 †.‰/: Since the equality
‰.x/ D ‰.y/ holds for x; y 2 S if and only if y D �.x/ for some � 2 †.‰/; in this
case the algebraic function S D U ı ‰�1 is single-valued and therefore rational. Thus,
U D S ı‰, in contradiction with the assumption.

Remark 2.2. We do not know whether all wild rational functions A can be obtained in
the way described in Theorem 2.1. Nevertheless, the result of [23, Theorem 3.1] implies
that this is true if the curve CA is irreducible. Moreover, in this case we can assume that
‰ has degree 2.

Corollary 2.3. Let A be a rational function of degree at least 2. Assume that there exist a
compact Riemann surface R and holomorphic functions X W R! CP1; Y W R! CP1;
B W CP1 ! CP1 such that

(1) the diagram
R

Y //

X
��

CP1

B
��

CP1
A // CP1

commutes,

(2) X is not a rational function of Y ,

(3) the normalization zY W zSY ! CP1 satisfies g. zSY / � 1.

Then A is wild.
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Proof. Let H W zSY ! R be a holomorphic map such that zY D Y ıH . Then

A ı .X ıH/ D B ı zY :

On the other hand, X ı H is not a rational function of zY for otherwise X would be a
rational function of Y . Thus, the assumptions of Theorem 2.1 are satisfied for S D zSY ;
U D X ıH , and ‰ D zY :

Let f W R1 ! R2 be a holomorphic map between Riemann surfaces. We say that a
holomorphic map h W R1! R0 is a compositional right factor of f if f D g ı h for some
holomorphic map g W R0 ! R2. Compositional left factors are defined similarly.

Corollary 2.4. Every rational function A that has a compositional right factor Y of
degree at least 2 with g. zSY / � 1 is wild. In particular, a rational function A of degree at
least 2 is wild whenever g. zSA/ � 1.

Proof. Let B be a rational function such that A D B ı Y . Then the assumptions of Corol-
lary 2.3 are satisfied for B; Y; and X D z:

Notice that rational functions A with g. zSA/ D 0 can be listed explicitly as com-
positional left factors of rational Galois coverings. On the other hand, functions with
g. zSA/ D 1 admit a simple geometric description (see [18]).

Corollary 2.5. Any special rational function is wild.

Proof. The function z˙n itself is a Galois covering. On the other hand, ˙Tn is a compo-
sitional left factor of the Galois covering zn C 1

zn , implying that g. zS˙Tn
/ D 0. Finally,

every Lattès map A satisfies g. zSA/ � 1 (see [18]).

For a holomorphic function f W S ! CP1 the condition g. zSf / � 1 can be expressed
merely in terms of the ramification of f . The easiest way to formulate the corresponding
criterion is to use the notion of Riemann surface orbifold (see e.g. [20, Section 2.1] for
basic definitions). Specifically, with each holomorphic function f W S ! CP1 one can
associate in a natural way two orbifolds O

f
1 D .S; �

f
1 / and O

f
2 D .CP1; �f2 /, setting

�
f
2 .z/ equal to the least common multiple of the local degrees of f at the points of the

preimage f �1¹zº, and

�
f
1 .z/ D

�
f
2 .f .z//

degz f
:

In these terms, the following statement holds.

Lemma 2.6. Let S be a compact Riemann surface and f WS!CP1 a holomorphic func-
tion. Then g. zSf / D 0 if and only if �.Of2 / > 0, and g. zSf / D 1 if and only if �.Of2 / D 0.

Proof. For S D CP1 the proof can be found in [18, Lemma 2.1], and this proof carries
over verbatim to the case of arbitrary compact Riemann surface S .
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By Corollary 2.4, any rational function A with g. zSA/ � 1 gives rise to the family
of wild rational functions f ı A; f 2 C.z/: However, other examples of wild rational
functions also exist.

Example 2.7. Let us consider the family of polynomials

Al;m D z
l .z C 1/m;

where l; m are coprime and l Cm � 3; found in [1]. It was shown in [1] that the corre-
sponding curve CAl;m

defined by (9) is irreducible and has the rational parametrization
z 7! .X.z/;Z.z//; where

X D
1 � zl

zlCm � 1
; Z D zmX:

Moreover, Al;m is an indecomposable rational function, that is, Al;m has no decomposi-
tions into a composition of rational functions of degree at least 2. Thus, any compositional
right factor of Al;m of degree at least 2 has the form � ı Al;m for some � 2 Aut.CP1/:

On the other hand, it is easy to see that if l Cm > 4, then �.O�ıAl;m

2 / < 0, implying that

g. zSf / > 1. Indeed, Al;m has three critical values1; 0; .�l/
lmm

.lCm/m
, and the signature of the

orbifold O
�ıAl;m

2 is .l Cm; lcm.l; m/; 2/: Thus, for l Cm > 4, we have

�.O
�ıAl;m

2 / D 2C

�
1

l Cm
� 1

�
C

�
1

lcm.l; m/
� 1

�
C

�
1

2
� 1

�
D �

1

2
C

1

l Cm
C

1

lcm.l; m/
< �

1

2
C
1

4
C
1

4
D 0:

Let us notice however that although the family Al;m for l C m > 4 does not satisfy
the assumption of Corollary 2.4, it does satisfy the assumptions of Theorem 2.1. Indeed,
one can check that Z D X ı 1

z
; implying that the function

Al;m ıX D Al;m ıZ

is invariant with respect to the transformation z 7! 1=z: Therefore,

Al;m ıX D B ı

�
z C

1

z

�
for some rational function B and the Galois covering Y D z C 1=z. On the other hand,
X is not a rational function of Y , since X is not invariant with respect to z 7! 1=z:

3. Bounds for genera of components of A.x/ �B.y/ D 0

3.1. Fiber products

Let f W C1 ! C and g W C2 ! C be holomorphic maps between compact Riemann sur-
faces. The collection

.C1; f / �C .C2; g/ D

n.f;g/[
jD1

¹Rj ; pj ; qj º;
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where n.f; g/ is a positive integer and Rj are compact Riemann surfaces provided with
holomorphic maps

pj W Rj ! C1; qj W Rj ! C2; 1 � j � n.f; g/;

is called the fiber product of f and g if

f ı pj D g ı qj ; 1 � j � n.f; g/;

and for any holomorphic maps p W R ! C1; q W R ! C2 between compact Riemann
surfaces satisfying

f ı p D g ı q

there exist a unique index j and a holomorphic map w W R! Rj such that

p D pj ı w; q D qj ı w:

The fiber product exists and is defined in a unique way up to natural isomorphisms.
Notice that the universality property implies that the holomorphic maps pj and qj ,

1 � j � n.f; g/; have no non-trivial compositional common right factor in the following
sense: the equalities

pj D zp ı w; qj D zq ı w;

where
w W Rj ! zR; zp W zR! C1; zq W zR! C2

are holomorphic maps between compact Riemann surfaces, imply that degw D 1: In
particular, this implies that

deg qj � degf; degpj � degg; 1 � j � n.f; g/:

Another corollary is that pj , 1 � j � n.f; g/; is a rational function of qj if and only if
deg qj D 1:

In practical terms, the fiber product is described by the following algebro-geometric
construction. Let us consider the algebraic curve

L D ¹.x; y/ 2 C1 � C2 jf .x/ D g.y/º:

Let us denote by Lj ; 1 � j � n.f; g/, the irreducible components of L and by Rj ,
1 � j � n.f; g/, their desingularizations; let

�j W Rj ! Lj ; 1 � j � n.f; g/;

be the desingularization maps. Then the compositions

x ı �j W Lj ! C1; y ı �j W Lj ! C2; 1 � j � n.f; g/;

extend to holomorphic maps

pj W Rj ! C1; qj W Rj ! C2; 1 � j � n.f; g/;
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and the collection
Sn.f;g/
jD1 ¹Rj ; pj ; qj º is the fiber product of f and g. Abusing notation

we call the Riemann surfacesRj , 1� j � n.f;g/; the irreducible components of the fiber
product of f and g.

Below we will use the following results, describing the fiber product of f and g ı u
through the fiber product of f and g (see [20, Theorem 2.8 and Corollary 2.9]). For better
understanding, see diagram (10).

Rij
pij
//

qij

��

Rj
pj
//

qj

��

C1

f

��

C3
u // C2

g
// C

(10)

Theorem 3.1. Let f W C1 ! C , g W C2 ! C , and u W C3 ! C2 be holomorphic maps
between compact Riemann surfaces. Assume that

.C1; f / �C .C2; g/ D

n.f;g/[
jD1

¹Rj ; pj ; qj º

and

.Rj ; qj / �C2
.C3; u/ D

n.u;qj /[
iD1

¹Rij ; pij ; qij º; 1 � j � n.f; g/:

Then

.C1; f / �C .C3; g ı u/ D

n.f;g/[
jD1

n.u;qj /[
iD1

¹Rij ; pj ı pij ; qij º:

Corollary 3.2. In the above notation, the fiber products .C1; f / �C .C2; g/ and
.C1; f /�C .C3; g ı u/ have the same number of irreducible components if and only if for
every j; 1 � j � n.f; g/; the fiber product .Rj ; qj / �C2

.C3; u/ has a unique irreducible
component.

3.2. Proof of Theorem 1.3

The proof of Theorem 1.3 uses two results. The first result is the following statement (see
[20, Theorem 3.1]), generalizing an earlier result from [17].

Theorem 3.3. Let T;R be compact Riemann surfaces andW W T ! CP1 a holomorphic
map of degree n. Then for any holomorphic map P W R! CP1 of degreem such that the
fiber product of P and W consists of a unique component E, we have

�.E/ � �.R/.n � 1/ �
m

42
; (11)

unless g. zSW / � 1.1

Since �.E/ D 2 � 2g.E/ and �.R/ D 2 � 2g.R/ � 2; inequality (11) implies

g.E/ �
m � 84nC 168

84
: (12)

1In [20], instead of g. zSW / � 1 the equivalent condition �.OW2 / � 0 is used.
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In particular, Theorem 3.3 implies the following result proved in [17]: ifA andB are ratio-
nal functions of degrees n and m such that g. zSA/ > 1 and the curve CA;B is irreducible,
then g.CA;B/ satisfies inequality (12). Theorem 1.3 can be considered as an analogue of
the last result for reducible curves CA;B , with g. zSA/ > 1 replaced by the stronger condi-
tion that A is tame.

The second result we need is the following result of Fried (see [6, Proposition 2], or
[14, Theorem 3.5]).

Theorem 3.4. Let A and B be rational functions such that n.A;B/ > 1: Then there exist
rational functions A1; B1; U; V such that

A D A1 ı U; B D B1 ı V;

and the equalities zA1 D zB1 and n.A;B/ D n.A1; B1/ hold.

Proof of Theorem 1.3. Let E be the desingularization of C , and ¹E; X; Y º the corre-
sponding component of .CP1;A/� .CP1;B/. Assume first that n.A;B/D 1, and hence
C D CA;B . Since A is tame, g. zSA/ > 1 by Corollary 2.4. Therefore, by Theorem 3.3,
inequality (12) holds, implying that (4) also holds. Thus, in this case the conclusion holds.

Assume now that n.A; B/ > 1, and let A1; B1; U; V be the rational functions pro-
vided by Theorem 3.4. By Theorem 3.1, the component ¹E; X; Y º of the fiber product
.CP1; A/ � .CP1; B/ factors through some component of .CP1; A/ � .CP1; B1/, that
is, there exist a compact Riemann surface R and holomorphic maps between compact
Riemann surfaces X1; F;H such that X D X1 ıH and the diagram

E
Y //

H

��

CP1

V
��

R
F //

X1

��

CP1

B1

��

CP1
A // CP1

(13)

commutes. Moreover, the maps X1 and F have no common non-trivial compositional
right factor, and

degX1 � degB1; degF � degA: (14)

Finally, since
n.A;B/ � n.A;B1/ � n.A1; B1/;

it follows from n.A;B/ D n.A1; B1/ that n.A;B/ D n.A;B1/: Therefore, n.F; V / D 1
by Corollary 3.2.

Now we consider the cases g. zSF / > 1 and g. zSF / � 1 separately. In the first case,
applying Theorem 3.3 to the fiber product of F and V , we see that

g.E/ �
degV � 84 degF C 168

84
:
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Since the order of the monodromy group of a rational functionA does not exceed the order
of the full symmetric group on n D degA symbols, it follows from (8) and zA1 D zB1 that

degB1 � deg zB1 D deg zA1 � .degA1/Š � .degA/Š D nŠ;

implying that

degV D
degB
degB1

� m=nŠ:

Taking into account the second equality in (14), we conclude that if g. zSF / > 1, then

g.E/ �
degV � 84 degF C 168

84
�
m=nŠ � 84 nC 168

84
:

Assume now that g. zSF / � 1: Since X1 and F have no common non-trivial compo-
sitional right factor, X1 is not a rational function in F , unless degF D 1. Therefore, if
degF > 1, we can apply Corollary 2.3 to the bottom square in diagram (13), conclud-
ing that A is wild, in contradiction with the assumption. Thus, degF D 1; implying that
R D CP1 and

B D B1 ı V D A ıX1 ı F
�1
ı V; X D X1 ıH D X1 ı F

�1
ı V ı Y:

Thus, if g. zSF / � 1; then
B D A ı S; X D S ı Y (15)

for
S D X1 ı F

�1
ı V:

Since X and Y have no non-trivial compositional common right factor, the second equal-
ity in (15) implies that deg Y D 1 and E D CP1. Finally, C is the graph x � S.y/ D 0:
Indeed, C is the image of CP1 under the map t 7! .X.t/; Y.t//. On the other hand, since
X D S ı Y , this image coincides with the image of CP1 under the map t 7! .S.t/; t/,
which is equal to x � S.y/ D 0:

Theorem 1.3 implies two important corollaries. The first concerns compositional left
factors of iterates of a tame rational function A. We recall that a tame rational function
has degree at least 3.

Corollary 3.5. Let A be a tame rational function, and X and Y rational functions such
that

Aıs D X ı Y (16)

for some s � 1: Then there exists a rational function X0 such that

degX0 � 84.degA � 2/.degA/Š

and
X D Aıl ıX0; Aı.s�l/ D X0 ı Y for some l � 1:
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Proof. Equality (16) implies that the curve CA;X has a factor C of genus 0, parametrized
by the map

t 7! .Aı.s�1/.t/; Y.t//: (17)

On the other hand, if
degX > 84.degA � 2/.degA/Š;

then
.degX/=.degA/Š � 84 degAC 168

84
>
84.degA � 2/ � 84 degAC 168

84
D 0;

implying by Theorem 1.3 that X D A ı X 0 and C is the graph x � X 0.y/ D 0 for some
rational function X 0. Since C is parametrized by the map (17), this implies that

Aı.s�1/ D X 0 ı Y:

Applying this reasoning recursively, we obtain the required statement.

The second corollary is the following.

Corollary 3.6. Let A and B be rational functions such that the curve CAıs ;B , s � 1, has
an irreducible factor C of genus 0 or 1. Assume in addition that B is tame, degA � 2;
and

s > log2Œ84.degB � 1/.degB/Š�: (18)

Then Aıs D B ıQ for some rational function Q, and C is the graph Q.x/ � y D 0:

Proof. Inequality (18) implies that

degAıs D .degA/s � 2s > 84.degB � 1/.degB/Š:

Thus,

.degAıs/=.degB/Š � 84 degB C 168
84

>
84.degB � 1/ � 84 degB C 168

84
D 1;

and the corollary follows from Theorem 1.3.

4. Proofs of Theorems 1.1, 1.2, and 1.4

Theorem 1.1 follows from Theorem 1.3 combined with the following result proved in [25].

Theorem 4.1. There exists a function ' W N �N ! R with the following property. For
any rational functions A and X such that

Aıd D X ıR (19)

for some rational function R and some d � 1, there exists N � '.degA; degX/ and a
rational function R0 such that

AıN D X ıR0

and R D R0 ı Aı.d�N/ if d > N .
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Proof of Theorem 1.1. By Corollary 3.5, for any decomposition

Aıd D X ı Y (20)

we can find X 0 and l � 0 such that

degX 0 � 84.n � 2/nŠ; (21)

and we have X D Aıl ıX 0 and

Aı.d�l/ D X 0 ı Y: (22)

On the other hand, it follows from Theorem 4.1 that there exists N , which depends on
n only, such that for any decomposition (22) with d � l > N satisfying (21), (22) there
exists a rational function Y 0 such that

AıN D X 0 ı Y 0; Y D Y 0 ı Aı.d�l�N/:

The above implies that any decomposition of Aıd with d �N is induced by a decom-
position of AıN . Indeed, if d � l � N; then decomposition (20) is induced by the decom-
position

AıN D .Aı.N�dCl/ ıX 0/ ı Y;

while if d � l > N; it is induced by AıN D X 0 ı Y 0:

Let F be a rational function of degree at least 2. We define G.F / as the group of
Möbius transformations � such that

F ı � D �� ı F

for some Möbius transformation �� . Below we need the following result (see [21, Theo-
rem 4.2]).

Theorem 4.2. Let F be a rational function of degree d � 2. Then the group G.F /
is one of the five finite rotation groups of the sphere, A4; S4; A5; Cn, D2n, unless
F D �1 ı z

d ı �2 for some Möbius transformations �1 and �2:

Proof of Theorem 1.4. We recall that functional decompositions F D U ı V of a ratio-
nal function F into compositions of rational functions U and V , considered up to the
equivalence

U 7! U ı �; V 7! ��1 ı V; � 2 Aut.CP1/; (23)

are in a one-to-one correspondence with imprimitivity systems of the monodromy group
of F . In particular, the number of such classes is finite. Therefore, if for every i � 1 there
exist si � 1 and Ri 2 C.z/ such that

Aısi D Bıi ıRi ; (24)

then Theorem 1.1 implies that there exist a rational function U and increasing sequences
of non-negative integers fk , k � 0; and vk , k � 0; such that

Bıfk D Aıvk ı U ı �k ; k � 0;
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for some �k 2 Aut.CP1/. In turn, this implies that there exists an increasing sequence of
non-negative integers rk , k � 1; such that

Bıfk D Aırk ı Bıf0 ı �k ; k � 1; (25)

for some �k 2 Aut.CP1/. Furthermore, since (25) implies that for every k � 1 the func-
tion Bıf0 ı �k is a compositional right factor of an iterate of B , there exist a rational
function V and an increasing sequence of non-negative integers kl ; l � 0; such that

Bıf0 ı �kl
D �l ı V; l � 0;

for some �l 2 Aut.CP1/; implying that

Bıf0 ı �kl
D ıl ı B

ıf0 ı �k0
; l � 1;

for some ıl 2 Aut.CP1/:
Clearly, the Möbius transformations �kl

ı ��1
k0
; l � 1; belong to the group G.Bıf0/.

On the other hand, since the function B is tame, the function Bıf0 is also tame and hence,
by Corollary 2.4, it is not of the form Bıf0 D �1 ı z

d ı �2, where �1; �2 2 Aut.CP1/:
Therefore, by Theorem 4.2,

�kl2
ı ��1k0

D �kl1
ı ��1k0

for some l2 > l1, implying that �kl2
D �kl1

: It now follows from (25) that

B
ıfkl2 D A

ı.rkl2
�rkl1

/
ı B
ıfkl1 ;

implying that
B
ı.fkl2

�fkl1
/
D A

ı.rkl2
�rkl1

/
: (26)

Since l2 > l1 and the sequences kl , l � 1; and fk ; k � 1; are increasing, we know that
fkl2

> fkl1
, and therefore A and B have a common iterate. This proves (i))(iii).

Similarly, if for every i � 1 there exist si � 1 and Ri 2 C.z/ such that

Aısi D Ri ı B
ıi ;

we conclude that there exist increasing sequences fk , k � 0; and rk , k � 1; such that

Bıfk D �k ı B
ıf0 ı Aırk ; k � 1; (27)

for some �k 2 Aut.CP1/. Moreover, there exists an increasing sequence kl ; l � 0; such
that

�kl
ı Bıf0 D �k0

ı Bıf0 ı ıl ; l � 1;

for some ıl 2Aut.CP1/: Finally, for some l2>l1 we have ıl2Dıl1 , implying�kl2
D�kl1

:

Now (27) yields
B
ıfkl2 D B

ıfkl1 ı A
ı.rkl2

�rkl1
/
:
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Since B is tame, the last equality in turn implies (26). This proves (ii))(iii). Finally, it is
clear that (iii) implies (i) and (ii).

Remark 4.3. It is not the case that Theorem 1.4 is true for all rational functions. For
example, it is easy see that for the functions z6 and z12 conditions (i) and (ii) are sat-
isfied, while (iii) is not. Nevertheless, one can expect that (i) and (iii) are equivalent for
non-special functions. On the other hand, there exist non-special rational functions for
which (ii) and (iii) are not equivalent. Specifically, using wild rational functions one can
construct A and B such that

Aı2 D A ı B; (28)

but A and B have no common iterate (see [23, 31]). Since (28) implies that

Aı2k D Aık ı Bık ;

for such A and B any iterate of B is a compositional right factor of an iterate of A.

Our starting point in the proofs of Theorems 1.2, 1.5, and 1.6 is the following lemma.

Lemma 4.4. Let A and B be rational functions of degree at least 2 such that an orbit
of A has an infinite intersection with an orbit of B . Then for every pair .d; i/ 2 N �N
the algebraic curve Aıd .x/ � Bıi .y/ D 0 has a factor of genus 0 or 1.

Proof. Recall that by the theorem of Faltings [5], if an irreducible algebraic curve C
defined over a finitely generated field K of characteristic 0 has infinitely many K-points,
then g.C / � 1: On the other hand, it is easy to see that if OA.z1/ \ OB.z2/ is infinite,
then for every pair .d; i/ 2 N � N the algebraic curve (5) has infinitely many points
.x; y/ 2 OA.z1/ �OB.z2/. Defining now K as the field generated over Q by z1, z2, and
the coefficients of A, B , and observing that the orbits OA.z1/ and OB.z2/ belong to K,
we conclude that for every pair .d; i/ 2 N � N the curve (5) has a factor of genus 0
or 1.

Proof of Theorem 1.2. Since Bıi , i � 1; is tame whenever B is tame, it follows from
Lemma 4.4 and Corollary 3.6 that for every i � 1 there exist si � 1 and Ri 2 C.z/ such
that equality (24) holds. Therefore, by Theorem 1.4, A and B have a common iterate.

5. Proofs of Theorems 1.5 and 1.6

5.1. Proof of Theorem 1.5

We start by recalling the results of [20], describing pairs of rational functions A and U of
degree at least 2 such that for every d � 1 the algebraic curve (6) has an irreducible factor
of genus 0 or 1. In case A is non-special, the main result of [20] in a slightly simplified
form can be formulated as follows (see [20, Theorem 1.2]).
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Theorem 5.1. Let A be a non-special rational function of degree at least 2. Then there
exist a rational Galois covering XA and a rational function F such that the diagram

CP1
F //

XA

��

CP1

XA

��

CP1
A // CP1

(29)

commutes, and for a rational function U of degree at least 2 the algebraic curve CAıd ;U
has a factor of genus 0 or 1 for every d � 1 if and only if U is a compositional left factor
of Aıl ıXA for some l � 0:

The Galois covering XA in Theorem 5.1 can be described explicitly (see [20, Theo-
rem 3.4]). However, we do not need this more explicit description to prove Theorem 1.5
in the case where both functionsA andB are non-special. Indeed, since by Lemma 4.4 for
every pair .d; i/ 2 N �N the algebraic curve (5) has a factor of genus 0 or 1, it follows
from Theorem 5.1 that for every i � 1 there exist di � 1 and Si 2 C.z/ such that

Aıdi ıXA D B
ıi
ı Si : (30)

Therefore, if
ordp.degB/ > 0 (31)

for some prime number p, then for every i � 1 there exists di � 1 such that

di ordp.degA/C ordp.degXA/ � i ordp.degB/;

implying that
ordp.degA/ > 0: (32)

By symmetry, inequality (32) implies (31). Therefore,

P.degA/ D P.degB/:

This proves Theorem 1.5 when A and B are non-special. On the other hand, if A or B is
special, then Theorem 1.5 obviously follows from Theorem 1.6 proved below.

5.2. Proof of Theorem 1.6 for A conjugate to z˙n or˙Tn

For s � 1, we set

Ds D
1

2

�
zs C

1

zs

�
:

To prove Theorem 1.6 when A is conjugate to z˙n or ˙Tn, we use the following result
(see [20, Theorem 3.6]).

Theorem 5.2. Let A and U be rational functions of degree at least 2.

(i) If A D zn; then the algebraic curve CAıd ;U has a factor of genus 0 or 1 for every
d � 1 if and only if U D zs ı �; s � 2; where � is a Möbius transformation.
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(ii) If A D Tn; then the algebraic curve CAıd ;U has a factor of genus 0 or 1 for every
d � 1 if and only if either U D ˙Ts ı �; s � 2; or U D Ds ı �; s � 1; where � is
a Möbius transformation.

Let us prove Theorem 1.6 when A is conjugate to˙Tn. Clearly, without loss of gener-
ality we may assume thatAD Tn if n is even, orAD˙Tn if n is odd. Since by Lemma 4.4
for every pair .d; i/ 2N �N the algebraic curve (5) has a factor of genus 0 or 1, it follows
from Theorem 5.2 (ii) that if A D Tn; then for any i � 1 either

Bıi D ˙Ts ı �; s � 2; � 2 Aut.CP1/; (33)

or
Bıi D Ds ı �; s � 1; � 2 Aut.CP1/: (34)

The same is true if A D �Tn; since we can apply Theorem 5.2 to iterates of Aı2. Setting
mD degB , we show first that conditions (33), (34) imply B D˙Tm: Since an iterate of a
rational function f of degree at least 2 equals ˙Ts if and only if f equals ˙Ts0 (see e.g.
[22, Lemma 6.3]), it is enough to show that Bı2 D ˙Tm2 : Therefore, considering only
even iterates of B , without loss of generality we may assume that the degree of B in (33),
(34) is greater than 2, implying that degTs > 2 and degDs > 2:

Let us observe first that equality (34) is actually impossible for any i � 1. Indeed,
otherwise considering the iterate Bı2i we conclude that there exists � 2 Aut.CP1/ such
that either

Ds ı � ıDs ı � D ˙T4s2 ı �; (35)

or
Ds ı � ıDs ı � D D2s2 ı �: (36)

Equality (35) is impossible since the function on the left hand side has more than one
pole. Moreover, since any decomposition Dl D U ı V of Dl , up to the equivalence (23),
reduces either to the decomposition

Dl D Dl=d ı z
d ;

or to
Dl D "

lTl=d ıDd ."z/;

where d j l and "2l D 1 (see e.g. [18, Section 4.2]), it is easy to see comparing the ram-
ification of the functions zs; ˙Ts; and Ds that if degDs > 2 then (36) is impossible
too.

Since (34) is impossible, B D ˙Tm ı � for some � 2 Aut.CP1/ and

.˙Tm ı �/ ı .˙Tm ı �/ D ˙Tm2 ı � (37)

for some � 2 Aut.CP1/. Furthermore, since finite critical values of Chebyshev poly-
nomials are ˙1, and the local multiplicity of ˙Ts at each of the points in T �1s ¹�1; 1º
distinct from �1 and 1 is 2, equality (37) implies by the chain rule that whenever m > 2
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the equalities �.1/ D .1/ and �¹�1; 1º D ¹�1; 1º hold. Thus, � D ˙z and hence
B D ˙Tm:

Let nowOA.z1/ andOB.z2/ be orbits having an infinite intersection. Evidently, with-
out loss of generality we may assume that z1 D z2 D z0, and it is clear that z0 ¤ 1.
The equalities A D ˙Tn and B D ˙Tm imply that there exist a linear function ˛A of the
form nz or nz C 1=2 and a linear function ˛B of the form mz or mz C 1=2 such that the
diagrams

C
˛A //

cos2�z
��

C

cos2�z
��

CP1
A // CP1

C
˛B //

cos2�z
��

C

cos2�z
��

CP1
B // CP1

commute. If z00 is a point of C such that cos.2�z00/ D z0 and k; l � 1 are integers such
that

Aık.z0/ D B
ıl .z0/; (38)

then .˛ıkA ˙ ˛
ıl
B /.z

0
0/ is an integer. Taking into account the form of ˛A and ˛B , this implies

that either z00 is a rational number, or ˛ıkA D ˙˛
ıl
B . In the first case, however, z00 is a

preperiodic point both for ˛A modulo 1 and for ˛B modulo 1, implying that the orbits
OA.z1/ and OB.z2/ are finite, and therefore cannot have an infinite intersection. Thus,
˛ıkA D ˙˛

ıl
B , implying that Aık D Bıl . This finishes the proof of Theorem 1.6 when A

is conjugate to˙Tn.
In case A is conjugate to z˙n, the proof can be done in a similar way using Theo-

rem 5.2 (i) and the family of semiconjugacies

C
˙nz //

exp z
��

C

exp z
��

CP1
z˙n
// CP1

where n 2 N.

5.3. Proof of Theorem 1.6 when A is a Lattès map

In this section, we need some further definitions and results concerning Riemann surface
orbifolds; in particular, the definition of the orbifold OA0 associated with a rational function
A, and the description of Lattès maps as self-covering maps of orbifolds of zero Euler
characteristic. All the necessary information can be found in [20, Sections 2.1 and 2.4].

The first result we need is the following (see [20, Theorem 3.5]).

Theorem 5.3. Let A and U be rational functions of degree at least 2. If A is a Lattès
map, then the algebraic curve Aıd .x/ � U.y/ D 0 has a factor of genus 0 or 1 for every
d � 1 if and only if U is a compositional left factor of �OA

0
:

In addition, we need the following two facts (see [20, Theorem 2.4] and [21, Lem-
ma 3.5]).
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Theorem 5.4. Let U be a rational function and O D .CP1; �/ an orbifold. Then U is a
compositional left factor of �O if and only if OU2 � O.

Lemma 5.5. Let A be a rational function such that �.OA2 / D 0, and U; V rational func-
tions of degree at least 2 such that A D U ı V and

degU; degV 62 ¹2; 3; 4; 6; 8; 12º:

Then OV2 D OU1 .

Finally, we recall that if O D .CP1; �/ is an orbifold distinct from the non-ramified
sphere, then �.O/ D 0 if and only if the signature of O belongs to the list

¹2; 2; 2; 2º; ¹3; 3; 3º; ¹2; 4; 4º; ¹2; 3; 6º; (39)

while �.O/ > 0 if and only if the signature of O belongs to the list

¹n; nº; n � 2; ¹2; 2; nº; n � 2; ¹2; 3; 3º; ¹2; 3; 4º; ¹2; 3; 5º:

To prove Theorem 1.6 when A is a Lattès map we show first that if O D OA0 is the
orbifold such that A W O! O is a covering map, then B W O! O is also a covering map.
Assume, say, that �.O/ D ¹2; 3; 6º: Since for every pair of integers d � 1; i � 1 the
algebraic curve (5) has a factor of genus 0 or 1, it follows from Theorems 5.3 and 5.4
that for every d � 1 we have �.OB

ıd

2 / � O, implying that the signature �.OB
ıd

2 / is either
¹2; 3; 6º, or one of the signatures

¹2; 2; 3º; ¹2; 3; 3º; ¹2; 2º; ¹3; 3º: (40)

However, rational functions f such that Of2 belongs to the list (40) have bounded degrees
(see e.g. [18]). Thus, for d large enough, �.OB

ıd

2 / D ¹2; 3; 6º: Furthermore, for d large
enough, degBıd > 12. Therefore, applying Lemma 5.5 to the decomposition

Bıd
2

D Bıd ı Bıd ;

we conclude that
OB
ıd

1 D OB
ıd

2 D O:

Thus, Bıd W O! O is a covering map. Finally, the fact that Bıd W O! O is a covering
map implies that B W O! O is a covering map (see [22, Corollary 4.6]). The proof for
the other signatures from the list (39) is similar.

Let nowOA.z0/ andOB.z0/ be orbits having an infinite intersection. SinceA WO!O

and B W O! O are both covering maps, there exist an elliptic curve C and holomorphic
maps

˛A W C! C; ˛B W C! C; � W C! CP1

such that the diagrams

C
˛A //

�
��

C

�
��

CP1
A // CP1

C
˛B //

�
��

C

�
��

CP1
B // CP1
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commute. Moreover,
˛A D  A C TA; ˛B D  B C TB ; (41)

where  A;  B 2 End.C/ and TA; TB are points of finite order (see e.g. [13, Lemma 5.1]).
If z00 is a point of C such that �.z00/D z0 and k; l � 1 are integers such that (38) holds,

then
.˛ıkA � ˛

ıl
B /.z

0
0/ D 0:

On the other hand, it follows from (41) that

˛ıkA � ˛
ıl
B D  C T;

where  2 End.C/ and T is a point of finite order d . Moreover, since . C T /.z00/ D 0
implies d. C T /.z00/ D 0, we see that  .dz00/ D 0. Therefore, either  D 0, or dz00
belongs to the group Ker of finite order, implying that z00 itself has finite order. Since
points of finite order of C are mapped to preperiodic points of A and B (see e.g. [30,
Proposition 6.44]), in the second case the orbits OA.z0/ and OB.z0/ cannot have an
infinite intersection. Therefore,  D 0, implying T D 0. Thus, ˛ıkA D ˛ılB , implying
Aık D Bıl .

6. The polynomial case

6.1. Polynomial decompositions

First of all, we recall that if A is a polynomial, and A D U ı V is a decomposition into a
composition of rational functions, then there exists a Möbius transformation � such that
U ı� and ��1 ı V are polynomials. Thus, when studying decompositions of Aıd we can
restrict ourselves to considering decompositions into compositions of polynomials. We
also mention that since a polynomial cannot be a Lattès map, a polynomial is special if
and only if it is conjugate to zn or˙Tn:

The following result follows easily from the fact that the monodromy group of a poly-
nomial of degree n contains a cycle of length n:

Theorem 6.1 ([4]). Let A;C;D;B be polynomials such that

A ı C D D ı B: (42)

Then there exist polynomials U; V; zA; zC ; zD; zB; where

degU D GCD.degA; degD/; degV D GCD.degC; degB/;

such that
A D U ı zA; D D U ı zD; C D zC ı V; B D zB ı V;

and
zA ı zC D zD ı zB:
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Notice that Theorem 6.1 implies that if degD j degA in (42), then

A D D ıR; B D R ı C

for some polynomialR. In particular, if (3) holds for polynomials A;f;g, then f D � ı g
for some polynomial � of degree 1 such that A ı � D A:Moreover, Theorem 6.1 implies
Theorem 4.1 when A is a polynomial. Indeed, since (19) implies that P.X/ � P.A/; we
have

degX D
Y

p2P.A/

p˛p ;

where obviously p̨ � log2 degX . Therefore,

degX j deg.AıN /

for N D log2 degX , and applying Theorem 6.1 to the equality

Aıd D AıN ı Aı.d�N/ D X ıR;

where d > N; we conclude that

AıN D X ıR0; R D R0 ı Aı.d�N/

for some polynomial R0.
For a polynomial T we denote by Aut.T / the set of polynomial Möbius transforma-

tions commuting with T . The following result classifies polynomials commuting with a
given non-special polynomial (see [28] and [24, Section 6.2]).

Theorem 6.2. Let A be a polynomial of degree at least 2, not conjugate to zn or ˙Tn:
Then there exists a polynomial T such that A D � ı T ık ; where � 2 Aut.A/ and k � 1;
and any polynomial B commuting with A has the form B D � ı T ıl ; where � 2 Aut.A/
and l � 1:

Corollary 6.3. Let A be a polynomial of degree at least 2, not conjugate to zn or ˙Tn:
Assume that B is a polynomial commuting with A such that degB � degA: Then B D
A ı S for some polynomial S .

Proof. Applying Theorem 6.2 and taking into account that �; � 2 Aut.A/; we see that
B D A ı S for the polynomial

S D � ı ��1 ı T ı.l�k/:

6.2. Equivalence relation

Let A be a rational function. Following [19], we say that a rational function yA is an
elementary transformation of A if there exist rational functions U and V such that A D
V ı U and yA D U ı V . We say that A and B are equivalent and write A � B if there
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exists a chain of elementary transformations between A and B . Notice that any pair A, yA
as above gives rise to the semiconjugacies

CP1
yA //

V
��

CP1

V
��

CP1
A // CP1

CP1
A //

U
��

CP1

U
��

CP1
yA // CP1

implying inductively that whenever A � B , the function A is semiconjugate to B , and B
is semiconjugate to A.

Since for any Möbius transformation � we have

A D .A ı ��1/ ı �;

the equivalence class ŒA� of a rational function A is a union of conjugacy classes. We
denote the number of conjugacy classes in ŒA� by d.A/: In this notation, the following
statement holds.

Theorem 6.4. Let A be a rational function of degree n. Then its equivalence class ŒA�
contains infinitely many conjugacy classes if and only if A is a flexible Lattès map. Fur-
thermore, if A is not a flexible Lattès map, then d.A/ can be bounded in terms of n
only.

The first part of Theorem 6.4 was proved in [19], using the McMullen theorem about
isospectral rational functions [11]. This approach however provides no bound for d.A/.
The fact that d.A/ can be bounded in terms of n was proved in [21, Theorem 1.1 and
Remark 5.2]).

Lemma 6.5. Let A be a special function, and A0 � A: Then A0 is special.

In full generality Lemma 6.5 is proved in [21, Lemma 2.11]. Below we use this lemma
only in the polynomial case, in which it follows from the well known description of
decompositions of zn and˙Tn.

6.3. Polynomial orbits and iterates

We start by re-proving the main result of [32], basing merely on the results of Sections
6.1–6.2.2

Theorem 6.6. Let A be a polynomial of degree n � 2 not conjugate to zn or ˙Tn: Then
there exists an integer N , depending on n only, such that any decomposition of Aıd with
d � N is induced by a decomposition of AıN .

2Unlike [32], we do not provide an explicit bound for N . However, for applications similar to
Theorem 6.7 the actual form of this bound is not really important.
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Proof. It is enough to show that if a polynomial A is not conjugate to zd or ˙Td , then
equality (16) for some polynomials X and Y with degX large enough with respect to
degA implies that

X D A ıR (43)

for some polynomial R. Indeed, in this case without loss of generality we may assume
that Aı.s�1/ D R ı Y by Theorem 6.1, and applying this argument inductively, we obtain
an analogue of Corollary 3.5, which holds for any non-special polynomial A. The rest of
the proof is similar to the proof of Theorem 1.1.

Since (16) implies that P.X/ � P.A/, we have gcd.degX; degA/ > 1. Therefore, by
Theorem 6.1, there exists a polynomial V1 of degree at least 2 such that

A D V1 ı U1; X D V1 ıX1;

and
U1 ı A

ı.s�1/
D X1 ı Y (44)

for some polynomials U1 and X1: In turn, (44) implies

Aıs1 D X1 ı Y1; (45)

where
A1 D U1 ı V1; Y1 D Y ı V1:

Applying now the same reasoning to (45) we can find polynomialsU2;V2;X2, degV2 � 2;
such that

A1 D V2 ı U2; X1 D V2 ıX2;

and
Aıs2 D X2 ı Y2

for
A2 D U2 ı V2; Y2 D Y1 ı V2:

Continuing in the same way and taking into account that degVi � 2; we see that there
exist an integer p � 1 and a sequence of elementary transformations

L W A0 D A! A1 ! A2 ! � � � ! Ap

such that

A0 D V1 ı U1; Ai D Ui ı Vi ; 1 � i � p;

Ui ı Vi D ViC1 ı UiC1; 1 � i � p � 1;

X D V1 ı V2 ı � � � ı Vp:

Since a polynomial cannot be a Lattès map, the equivalence class ŒA� contains at most
finitely many conjugacy classes by Theorem 6.4. Setting

M D nd.A/K ;



F. Pakovich 3976

whereK is a natural number to be defined later, assume that degX >M: Since degVi � n;
this implies that p � d.A/K C 1. Therefore, there exist indices

0 � s0 < s1 < � � � < sK � p

such that As0 , As1 ; : : : ; AsK are conjugate to each other. We now consider the commuta-
tive diagram

CP1
Ap
//

WKC1

��

CP1

WKC1

��

CP1

��

AsK // CP1

��

CP1
As1 //

W1

��

CP1

W1

��

CP1
As0 //

W0

��

CP1

W0

��

CP1
A // CP1

where
W0 D V1 ı V2 ı � � � ı Vs0 ; WKC1 D VsKC1 ı Vs2C2 ı � � � ı Vp;

and
Wi D Vsi�1C1 ı Vsi�1C2 ı � � � ı Vsi ; 1 � i � K:

Since
AsK D �

�1
ı As0 ı � for some � 2 Aut.CP1/;

the polynomial
W D W1 ıW2 ı � � � ıWK ı �

�1

commutes with As0 : Moreover, since A is non-special, so is As0 by Lemma 6.5.
Assume now that K � log2 n. Since deg Vi � 2; in this case degW � n, and hence

W D As0 ı S for some polynomial S , by Corollary 6.3. Therefore,

X D W0 ıW ı � ıWKC1 D W0 ı As0 ı S ı � ıWKC1 D A ıW0 ı S ı � ıWKC1:

Summarizing, we see that the condition

degX > nd.A/ log2 n

implies (43) for some polynomial R:

Now we re-prove the main result of [7, 8], relying on Theorems 5.1 and 6.6.

Theorem 6.7. Let A and B be polynomials of degree at least 2 such that an orbit of A
has an infinite intersection with an orbit of B . Then A and B have a common iterate.
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Proof. By Theorem 1.6, we may assume that A and B are not special. Arguing as in
Section 5.1, we see that there exist a Galois covering XA and a rational function F such
that diagram (29) commutes and for every i � 1 there exist di � 1 and Si 2 C.z/ such
that equality (30) holds. Moreover, P.B/ � P.A/; implying that for every i � 1 there
exist si � di such that

deg.Bıi / j deg.Aısi /: (46)

Equality (30) implies

Aıdi ıXA ı F
ı.si�di / D Bıi ı Si ı F

ı.si�di /;

which in turn implies
Aısi ıXA D B

ıi
ı Si ı F

ı.si�di /: (47)

Applying now Theorem 6.1 to (47) and taking into account (46), we conclude that for
every i � 1 there exist Ri 2 CŒz� such that (24) holds. Finally, arguing as in the proof of
Theorem 1.4, but using Theorem 6.6 instead of Theorem 1.1, we conclude that A and B
have a common iterate.
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