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Abstract. Let G be the topological fundamental group of a given nonsingular complex projective
surface. We prove that the Chern slopes c21.S/=c2.S/ of minimal nonsingular surfaces of general
type S with �1.S/ ' G are dense in the interval Œ1; 3�.
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1. Introduction

By the Lefschetz hyperplane theorem, we know that the fundamental group of any nonsin-
gular projective variety is the fundamental group of some nonsingular projective sur-
face. There are lots of groups that are fundamental groups of varieties. Serre proved,
for example, that any finite group is realizable [32]. For singular surfaces we know that
every finitely presented group is possible as fundamental group by [21] (reducible sur-
faces) and [20] (irreducible surfaces), but there are of course various restrictions in the
case of nonsingular projective surfaces. (See the survey [3] for more on that topic, and
see the book [1] for Kähler manifolds.) A natural geographical question is: Are there any
constraints on the Chern slope of surfaces of general type after we fix the fundamental
group? In more generality, this question has been studied for 4-manifolds (see [22]) with a
particular focus on symplectic 4-manifolds (see e.g. [4,5,16,28]). For example, Park [28]
showed that the set of Chern slopes c21=c2 of minimal symplectic 4-manifolds S with
�1.S/ ' G is dense in the interval Œ0; 3�, for any fixed finitely presented group G.

For complex surfaces, we know that simply connected surfaces of general type have
Chern slopes dense in Œ1=5; 3� (see [9,29–31,35]), which is the largest possible interval by
the Noether inequality 1=5.c2 � 36/ � c21 and the Bogomolov–Miyaoka–Yau inequality
c21 � 3c2 (cf. [6]). (See [36] for an analogous geographical result for surfaces in positive
characteristic.) In general, however, it is known that for low slopes we do have some
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constraints on the possible fundamental groups. For instance, from [24] we deduce that
if S is a surface of general type with c21.S/ <

1
3
c2.S/ and �1.S/ finite, then the order

of �1.S/ is at most 9. We would also like to mention Reid’s conjecture: The fundamental
group of a surface with c21 <

1
2
c2 is either finite or commensurable with the fundamental

group of a compact Riemann surface (see [6, p. 294] for details). Pardini’s proof [27]
of the Severi inequality together with Xiao’s result [37, Thm. 1] give evidence for this
conjecture at the level of étale fundamental groups.

On the other hand, we remark that a similar question for pairs .c21 ; c2/ has much
stronger constraints. By Gieseker [15], there are only finitely many possibilities of �1 for
a given pair. A concrete example: It is expected that for numerical Godeaux surfaces (i.e.,
c21 D 1, pg D q D 0) the fundamental group belongs to the set ¹1;Z=2;Z=3;Z=4;Z=5º.
Also, on the Bogomolov–Miyaoka–Yau line �1.S/ is an infinite group (since those sur-
faces are ball quotients by results of Miyaoka [26, Prop. 2.1.1] and Yau [38]), and, on
the opposite side, on the Noether line we have only simply connected surfaces by the
classification of Horikawa [18, 19].

In this article we prove the following.

Theorem 1.1. Let G be the .topological/ fundamental group of a nonsingular complex
projective surface. Then the Chern slopes c21.S/=c2.S/ of minimal nonsingular surfaces
S of general type with �1.S/ isomorphic to G are dense in the interval Œ1; 3�.

In this way, any finite group G densely populates the wide zone Œ1; 3�. At the other
extreme, the same happens when G is the �1 of a smooth compact ball quotient. To put
our theorem in perspective with this particular case, we point out that recently Stover
and Toledo have constructed an explicit surface whose fundamental group is isomorphic
to the �1 of a fake projective plane, but the surface is not a fake projective plane [34,
Theorem 1.4].1 In complete generality, it has already been known that the isomorphism
class of the fundamental group does not determine the biholomorphic class of the surface
(see e.g. [8, Cor. 1.3]).2 Theorem 1.1 goes beyond, proving density of Chern slopes in
Œ1; 3� for any fixed fundamental group.

The method of proving the theorem is very different from the one used in [31,
Thm. 6.3] for trivial �1, but we do consider as key input the extremal simply connec-
ted surfaces constructed in that paper. An observation here is that the �1 trivial surfaces
constructed by Persson [29] do not work for our method, and they cannot work since, if
they do, then some of them would violate Mendes-Lopes–Pardini’s theorem mentioned
above for low Chern slopes. Chen surfaces in [9, Thm. 1] do not work for our method
either.

1In the literature, one can find the misconception [39, Thm. 4 (b)] about Siu’s rigidity theorem
of [33]. The problem is that two surfaces with the same �1 need not have the same homotopy type,
even in the case of ball quotients (e.g. the surface in [34, Thm. 1.4] has �2 ¤ ¹0º). Stover and
Toledo go further on this issue, showing that if, in addition, �2 D ¹0º, then such a surface must be
biholomorphic to a ball quotient [34, Thm. 6.1].

2One could also construct plenty of such situations via cyclic covers of surfaces branched along
ample divisors by using the main result of [10].
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We now explain roughly the idea of the proof together with the central ingredi-
ents. Let Y be a minimal nonsingular projective surface with �1.Y / ' G, let r 2 Œ1; 3�,
and let ¹Xpº be a sequence of simply connected surfaces as in [31, Thm. 6.3], so that
c21.Xp/=c2.Xp/ approaches r as p !1. Let �p; B be very ample divisors in Xp and Y
respectively, and consider the very ample divisor �p CB in Xp � Y . As in [8, Section 1],
one obtains a surface Sp from the intersection of two general sections in j�p CBj so that
�1.Sp/ ' G (Lefschetz hyperplane theorem), but it is not possible to have the result for
c21.Sp/=c2.Sp/ since we have no control on �p . On the other hand, an appropriate �p
to control c21.Sp/=c2.Sp/ might not even be ample, so we may not have �1.Sp/ ' G,
or even an Sp to start with. To overcome both difficulties, we consider a convenient �p
which works for c21.Sp/=c2.Sp/ and it is also a lef (Lefschetz effettivamente funziona)
line bundle, as introduced by de Cataldo and Migliorini [12]. It turns out that such a �p
allows us to prove existence of Sp as above which, by a generalization of the Lefschetz
hyperplane theorem due to Goresky and MacPherson [17, Part II, Theorem 1.1], satisfy
�1.Sp/ ' G. These surfaces are used to prove the claim on density of Chern slopes
in Œ1; 3�. We also show that it is not possible to improve the lower bound 1 by using
modifications of the surfaces Xp .

We finish the paper with two conjectures in relation to geography of Chern slopes for
surfaces with ample canonical class, and for Brody hyperbolic surfaces, which might be
proved by using the same techniques as in this paper.

2. Semi-small morphisms, lef line bundles, Bertini and Lefschetz type theorems

Throughout this paper the ground field is C. For a given line bundle M and integer n, the
line bundle M˝n will be denoted by either nM or M n. The following definition can be
found in several places, e.g. [17, p. 151], [25, Def. 4.1] or [12, Def. 2.1.1].

Definition 2.1. Let X; Y be irreducible varieties. For a proper surjective morphism
f WX ! Y , we define

Y kf D ¹y 2 Y j dimf �1.y/ D kº:

We say that f is semi-small if dim.Y k
f
/ C 2k � dim.X/ for every k � 0. (Note that

dim.;/ D �1:) If no confusion can arise, the subscript f will be suppressed.

We note that for a semi-small morphism we have dim.X/ D dim.Y /.

Lemma 2.2. Let X;Y be surfaces. If f WX ! Y is a proper surjective morphism, then f
is semi-small.

Proof. It is clear that dim.Y 1/ D 0 and dim.Y 0/ D 2; since f is surjective. Then the
inequality dim.Y k/C 2k � dim.X/ holds for any k � 0:

Proposition 2.3. Let f WX ! Y and gWZ ! W be two semi-small morphisms. Then the
product morphism f � gWX �Z ! Y �W is semi-small.
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Proof. Let n D dim.X/ and m D dim.Z/. Since f and g are semi-small, we have
dim.Y k/ � n � 2k for any k � 0, dim.Zl / � m � 2l for any l � 0, and dim.Y 0/ D n,
dim.W 0/ D m. We also have .Y �W /q D

S
iCjDq Y

i �W j , and so

dim .Y �W /q � max
iCjDq

dim.Y i �W j / � nCm � 2i � 2j D nCm � 2q:

Hence f � g is semi-small.

Proposition 2.4. LetX;Y;Z be nonsingular projective varieties. Assume that f WX ! Y

is semi-small, and that gW Y ! Z is finite morphism. Then h D g ı f WX ! Z is semi-
small.

Proof. Since g is a finite, we have Zk
h
D g.Y k

f
/ for each k � 0, and so dim.Zk

h
/ D

dim.Y k
f
/. Thus dim.Zk

h
/C 2k � dim.X/, and so h is semi-small.

Definition 2.5 ([12, Def. 2.3]). Let X be a nonsingular projective variety, and let M be a
line bundle on X . We say that M is lef if there exists n > 0 such that jnM j is generated
by global sections, and the morphism  jnM j associated to jnM j is semi-small onto its
image. The exponent of M is the smallest n such that M is lef. We denote it by exp.M/.

If L is an ample line bundle, then L is lef. If L is very ample, then exp.L/ D 1. Next
we record a corollary of Proposition 2.4 which will be used later.

Proposition 2.6. Let f WX ! Y be semi-small between nonsingular projective varieties,
and let L be very ample on Y . Then f �.L/ is lef with exp.f �.L// D 1.

A useful Bertini type theorem for lef line bundles is the following (see [12, Prop.
2.1.7] or [25, Lemma 4.3]).

Proposition 2.7. Let X be a nonsingular projective variety of dimension at least 2. Let
M be a lef line bundle on X: Assume thatM is globally generated and with exp.M/D e.
Then any generic member Y 2 jM j is a nonsingular projective variety, and the restriction
M jY is lef on Y with exp.M jY / � e.

We now state a Lefschetz type theorem relevant for the computation of the funda-
mental group, which is due to Goresky and MacPherson [17], and was conjectured by
Deligne [13]. For comparison, we mention the usual Lefschetz theorem for ample line
bundles (see e.g. [23, Thm. 3.1.21]).

Theorem 2.8 (Lefschetz theorem for homotopy groups). LetX be a nonsingular project-
ive variety of dimension n. Let �WA! X be the inclusion of an effective ample divisor A.
Then the induced homomorphism

��W�i .A/! �i .X/

is bijective if i � n � 2, and surjective if i D n � 1.
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Theorem 2.9. Let X be a nonsingular projective variety of dimension n. Suppose that
f WX ! PN is a proper morphism, and let H be a linear subspace of codimension c.
Define �.k/ WD dim..PN nH/k

f
/. Then the induced homorphism

�i .f
�1.H//! �i .X/

is an isomorphism if i < On, and it is surjective if i D On, where

On D n � 1 � sup
k

�
2k � nC �.k/C inf

k
.�.k/; c � 1/

�
:

Proof. This is [17, Part II, Thm. 1.1, pp. 150–151], under the hypothesis that f is proper.

Corollary 2.10. IfH in Theorem 2.9 is a hyperplane and f WX ! PN is semi-small into
its image, then

�i .f
�1.H// ' �i .X/ for i < n � 1.

Proof. The case f .X/ � H is trivial. In the computation of On we can ignore the values
�.k/ D �1. Then we compute On D n� 1 since dim.f .X// D n, the codimension of H
is c D 1, and we have the inequality �.k/� dim..f .X//k

f
/. The last inequality is because

.PN nH/k
f
D .f .X/ n .f .X/ \H//k

f
� .f .X//k

f
.

Corollary 2.11. Let X be a nonsingular projective variety with dim.X/ � 3. LetM be a
lef line bundle on X with exp.M/ D 1. If E 2 jM j, then �1.E/ ' �1.X/.

Corollary 2.12. Let X be a nonsingular projective variety with dim.X/ � 4. Let M be
a lef line bundle with exp.M/ D 1. Then a generic member E 2 jM j is a nonsingular
projective variety, andME WDM jE is lef. Moreover, if F 2 jME j, then �1.F /' �1.X/.

Proof. The first part is just Proposition 2.7. If F 2 ME , then by Corollary 2.11 we find
that �1.F / ' �1.E/ ' �1.X/.

3. RU surfaces

In this section we recall the construction and certain properties of some surfaces Xp of
general type from [31, Section 6]. These surfaces are key in the main result of this paper.
We will follow the conventions in [31]. In particular, an arrangement of curves is a col-
lection ¹C1; : : : ; Crº of curves on a nonsingular surface. A k-point of an arrangement of
curves is a point of it locally of the form .0; 0/ 2 ¹.x � �1y/ � � � .x � �ky/ D 0º � C2

x;y

for some �i ¤ �j .
Let p � 5 be a prime number, and let ˛; ˇ > 0 be integers. Let n D 3˛p. Let

� WH ! P2 be the blow-up at the twelve 3-points of the dual Hesse arrangement of nine
lines .x3 � y3/.y3 � z3/.x3 � z3/ D 0 in P2. As in [31, Sections 3 and 5], we will
consider the following diagram of varieties and morphisms (here i 2 ¹0; 1;1; �º):
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Yn
�n // Zn

'n // H
� //

� 0
i

��

P2

P1

where �n and 'n are further blow-ups at special points of an arrangement of curves H 0n
(see below for precise definitions), and the four � 0i are the four elliptic fibrations defined
through the four choices of triples of three concurrent lines from the dual Hesse arrange-
ment. Hence each � 0i has precisely three singular fibers, which correspond to the three
sets of three concurrent lines.

The three singular fibers of � 0i are denoted by Fi;1; Fi;2; Fi;3. Each Fi;j consists of
four P1’s: one central curveNi;j with multiplicity 3, and three reduced curves transversal
to Ni;j at one point each. We write Ni D Ni;1 C Ni;2 C Ni;3. Let M be the nine P1’s
from the lines of the dual Hesse arrangement, and let N be the twelve exceptional P1’s
from its twelve 3-points. We have N D

P
iD0;1;�;1Ni , and

Fi;1 C Fi;2 C Fi;3 DM C 3Ni :

We now consider the very special arrangement of 4n
2�12
3

elliptic curves

H 0n WD E0 C E1 C E1 C E�

in H , where each Ei is the special arrangement of n2�3
3

elliptic curves defined in [31,
Section 3]. All curves in Ei are fibers of � 0i .

For i 2 ¹0; 1;1; �º, let E 0i be ˇ2p2 general fibers of � 0i (defined also in [31, Sec-
tion 3]), and let A2d D L1 C � � � C L2d be the strict transform in H of an arrangement
of 2d general lines in P2, where 3 � 2d � p.

We define a0 D a1 D bi D 1 for 1 � i � d , and a1 D a� D bi D p � 1 for d C 1 �
i � 2d . Then

OH

� X
iD0;1;�;1

3aiEi C
X

iD0;1;�;1

3aiE
0
i C

X
iD0;1;�;1

ai .Fi;1 C Fi;2 C Fi;3/C

2dX
iD1

3biLi

�
is isomorphic to L

p
0 , where

L0 WD OH

�
3p.3˛2 C ˇ2/

� X
iD0;1;�;1

aiFi

�
C 3dL

�
;

and all symbols have been defined in [31, Section 5].
Let 'nWZn ! H be the blow-up of H at all the .n2�3/.n2�9/

3
4-points in H 0n. For

each i , we denote the strict transforms of Ei , E 0i , Lj , Fi;j in Zn by the same symbols.
Then

OZn

� X
iD0;1;�;1

3aiEi C
X

iD0;1;�;1

3aiE
0
i C

X
iD0;1;�;1

ai .Fi;1 C Fi;2 C Fi;3/C

2dX
iD1

3biLi

�
is L

p
1 where L1 WD '

�
n .L0/˝OZn

.�6E/, and E is the exceptional divisor of 'n.
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Finally, let �nW Yn ! Zn be the blow-up at all the 4.n2 � 3/ 3-points in H 0n. Again,
we denote the strict transforms of Ei , E 0i , Lj , Fi;j , M , Ni , N in Yn by the same symbols.
Then

OYn

� X
iD0;1;�;1

3aiEi C
X

iD0;1;�;1

3aiE
0
i C

X
iD0;1;�;1

3aiNi C

2dX
iD1

3biLi

�
' Lp;

where L WD ��n .L1/˝OYn
.�2M � 6G/.

With this data, we construct a p-th root cover Xp of Yn branch along

A WD
X

iD0;1;�;1

Ei C
X

iD0;1;�;1

E 0i C
X

iD0;1;�;1

Ni C

2dX
iD1

Li :

(See e.g. [35, Section 1] for details on p-th root covers.) Let

f WXp ! Yn

be the corresponding morphism for the p-th root cover, as in [31, Section 5]. The
nonsingular projective surface Xp is simply connected [31, Prop. 6.1], and minimal [31,
Prop. 6.2].

Let us write

A D
X
j

�jAj D
X

iD0;1;�;1

3aiEi C
X

iD0;1;�;1

3aiE
0
i C

X
iD0;1;�;1

3aiNi C

2dX
iD1

3biLi ;

where Aj are the irreducible curves in A. Hence �j is equal to either 3ai or 3bk for
some i; k. The arrangement A has only 2-points, and the number of these points is (see
[31, Section 6])

t2 D 108˛
2ˇ2p4 C 18ˇ4p4 C 72d˛2p2 � 25d C 24dˇ2p2 C 2d2:

By [31, Prop. 4.1], the log Chern numbers of A are

Nc21 D n
4
C 2t2 � 10d � 48 and Nc2 D

n4

3
C t2 � 4d � 12:

We recall that the log Chern numbers of A are the Chern numbers of the rank 2 locally
free sheaf �1Yn

.log.A//_. As in [31, Section 5], the Chern numbers of Xp are

c21.Xp/ D p Nc
2
1 � 2

�
t2 C 2

X
j

.g.Aj / � 1/
�
C
1

p

X
j

A2j �
X
i<j

c.qi;j ; p/Ai � Aj ;

c2.Xp/ D p Nc2 �
�
t2 C 2

X
j

.g.Aj / � 1/
�
C

X
i<j

l.qi;j ; p/Ai � Aj ;

where 0 < qi;j < p with �i C qi;j �j � 0 (mod p),

c.qi;j ; p/ WD 12s.qi;j ; p/C l.qi;j ; p/;
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and s.qi;j ; p/ and l.qi;j ; p/ are the Dedekind sum and the length of the Hirzebruch–Jung
continued fraction associated to the pair .qi;j ; p/ respectively (see [31, Def. 5.2]).

For the particular multiplicities a0 D a1 D bi D 1 for 1� i � d and a1 D a� D bi D
p � 1 for d C 1 � i � 2d we chose, we have to consider only the numbers c.p � 1;p/D
2p�2
p

and c.1; p/ D p2�2pC2
p

, and l.p � 1; p/ D p � 1 and l.1; p/ D 1. Therefore,X
i<j

c.qi;j ; 4p/Ai � Aj D
2p � 2

p
t2;1 C

p2 � 2p C 2

p
t2;2;X

i<j

l.qi;j ; 4p/Ai � Aj D .p � 1/t2;1 C t2;2;

where t2;1 and t2;2 are the number of 2-points corresponding to the singularities
1
p
.1; p � 1/ and 1

p
.1; 1/ respectively. Hence

t2;1 D 6ˇ
4p4 C 36˛2ˇ2p4 C 36d˛2p2 � 13d C 12dˇ2p2 C d2;

t2;2 D 12ˇ
4p4 C 72˛2ˇ2p4 C 36d˛2p2 � 12d C 12dˇ2p2 C d2:

By plugging in the formulas for Chern numbers, we obtain

c21.Xp/ D .81˛
4
C 144˛2ˇ2 C 24ˇ4/p5 C l:o:t:;

c2.Xp/ D .27˛
4
C 144˛2ˇ2 C 24ˇ4/p5 C l:o:t:;

where l.o.t. (lower order terms) is a Laurent polynomial in p of degree less than 5. In this
way, we obtain

lim
p!1

c21.Xp/

c2.Xp/
D
27x4 C 48x2 C 8

9x4 C 48x2 C 8
DW �.x/;

where x WD ˛=ˇ. We note that �.Œ0;1C�/ D Œ1; 3�. This allows us to prove the following
theorem (see [31, Thm. 6.3]).

Theorem 3.1. For any number r 2 Œ1; 3�, there are simply connected minimal surfaces of
general type X with c21.X/=c2.X/ arbitrarily close to r .

Proposition 3.2. Let �p WD f �.L/, where L is the pull-back in Y of a general line in P2.
Then �2p D p and �p �KXp

D �3p C .p � 1/.2d C 36˛2p2 � 12C 12ˇ2p2/.

Proof. As f is a generically finite morphism of degree p, we have �2p D p. Let us
consider L generic, so that f �.L/ is a nonsingular projective curve. We note that
L � Ni D 0 for all i , L �

P2d
iD1 Li D 2d , L �

P
iD0;1;�;1 Ei D 36˛2p2 � 12, and

L �
P
iD0;1;�;1 E 0i D 12ˇ2p2. Therefore, the morphism f�p

W �p ! L D P1 is totally
ramified at 2d C 36˛2p2 � 12C 12ˇ2p2 points, and so, by the Riemann–Hurwitz for-
mula and adjunction, we obtain the desired equality for �p �KXp

.

We finish this section with a proof that the best lower bound for Chern slopes in this
construction is indeed 1. That is, we will prove that for any choice of the multiplicities
a0; a1; a� ; a1; bi , the limit of the Chern slopes of the surfaces Xp is always at least 1.
Hence the choice of multiplicities that we considered gives an optimal lower bound.
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As was shown above, we first note that the values of the bi ’s do not contribute to the
asymptotic final result. We also point out that it is enough to have either

P
iD0;1;�;1 aiDp

or
P
iD0;1;�;1 ai D 2p by considering 0 < ai < p and multiplying by units modulo p. In

fact, we can and do take a0 D 1, a1 D a, a� D b, and a1 D c with 1C aC b C c D mp
for m equal to either 1 or 2.

Through the formulas obtained above, we can compute

lim
x!0

c21.Xp/

c2.Xp/
D
12 � 1

p
C

6C 1
p
L
;

where

C WD c.�a; p/C c.�b; p/C c.�c; p/C c.�ba�1; p/C c.�ca�1; p/C c.�cb�1; p/;

L WD l.�a; p/C l.�b; p/C l.�c; p/C l.�ba�1; p/C l.�ca�1; p/C l.�cb�1; p/;

and all the q’s in these expressions are taken modulo p with 0 < q < p. For example, for
general a; b; c one can prove that C=p and L=p tend to 0 as p !1, and so the limit of
the Chern slopes is 2 (see [35] for this general behavior).

Since c.q; p/ D 12s.q; p/C l.q; p/, it is enough to show that

6S C L � 3p C 3 � 6=p for any p,

where

S WD s.�a; p/C s.�b; p/C s.�c; p/C s.�ba�1; p/C s.�ca�1; p/C s.�cb�1; p/:

Indeed, that inequality ensures that 3 � 12 � C=p, and the inequality is equivalent to

6C 1
p
L

12 � 1
p
C
�

6
p
�

12
p2

12 � 1
p
C
� 1;

and so we obtain 1 � limp!1
12� 1

pC

6C 1
pL

.

The proof of the inequality will use the following numerical lemma.

Lemma 3.3. Let 0 < q < p be coprime integers, and let p=q D Œe1; : : : ; el � be the asso-
ciated Hirzebruch–Jung continued fraction. Then

Pl
iD1.ei � 1/ � p � 1.

Proof. We use induction on p. Suppose the statement is true for all coprime pairs .q0; p0/
with p0 < p. We write p=q D Œe1; : : : ; el �. Then e1 D Œp=q�C 1, and q=r D Œe2; : : : ; el �
with .r; q/ coprime and q < p. Hence

lX
iD1

.ei � 1/ D Œp=q�C

lX
iD2

.ei � 1/ � Œp=q�C q � 1

by the induction hypothesis. Therefore, we should prove that Œp=q�C q � p. Let q ¤ 1
(otherwise we are done). Let 1 � r < q be the unique integer such that Œp=q�q C r D p.
Then Œp=q�C q � p is equivalent to q�r

q�1
C q � p. But q�r

q�1
� 1 if r � 1, and q C 1 � p.
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Proposition 3.4. We have 6S C L � 3p C 3 � 6=p.

Proof. Let 0 < q < p be integers where p is a prime number. Then (see e.g. [35,
Example 3.5])

12s.q; p/ D
q C q�1

p
C

lX
iD1

.ei � 3/

where p=q D Œe1; : : : ; el � and q�1 is the integer between 0 and p such that qq�1 � 1

(mod p). Hence 6s.q; p/C l D qCq�1

2p
C

1
2

Pl
iD1.ei � 1/. We note that always qCq�1

2p

�
p�1
p

. We now apply this equality for each of the six terms in S and in L, and use
Lemma 3.3 to conclude that

6S C L � 3p � 3C 6
p � 1

p
D 3p C 3 �

6

p
:

4. Key construction and density theorem

In this section, we generalize the construction used in [8, Section 1] in the context of lef
line bundles, which will be used for the main theorem.

Proposition 4.1. Let X and Y be nonsingular projective surfaces. Let pWX � Y ! X

and qWX � Y ! Y be the usual projections. Let � and B be lef line bundles on X and Y
respectively. Assume that exp.�/D exp.B/D 1. Then p�.�/˝ q�.B/ is a lef line bundle
on X � Y of exponent 1.

Proof. This is elementary; we sketch an argument. Let M WD p�.�/ ˝ q�.B/. Let
s0; : : : ; sl be a basis of H 0.X; �/, and t0; : : : ; tb a basis of H 0.Y;B/. Since H 0.X;�/˝

H 0.Y;B/'H 0.X � Y;M/ (see e.g. [7, Fact III.22, i]), thenM is generated by the global
sections si tj with 0 � i � l and 0 � j � b. The morphism  jM jWX � Y ! P .jM j/ is
†l;b ı . j�j �  jBj/, where †l;b is the Segre embedding. Therefore  jM j is semi-small
into its image as  j�j � jBj is semi-small by Proposition 2.3. It follows thatM is lef and
exp.M/ D 1.

Theorem 4.2. Let X and Y be nonsingular projective surfaces with nef canonical class,
andK2X > 0. Let B be a very ample line bundle on Y , and let � be a lef line bundle on X
with exp.�/ D 1. Then there exists a nonsingular projective surface S � X � Y with the
following properties:

(1) �1.S/ ' �1.X/ � �1.Y /.

(2) The morphisms pjS W S ! X and qjS W S ! Y have degrees deg.pjS / D B2 and
deg.qjS / D �2.

(3) We have

c21.S/ D c
2
1.X/B

2
C c21.Y /�

2
C 8c.�;B/ � 4�2B2;

c2.S/ D c2.X/B
2
C c2.Y /�

2
C 4c.�;B/C 4�2B2;
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where

c.�;B/ D 7
2
�2B2 C 3

2
.� �KX /B

2
C

3
2
.B �KY /�

2
C

1
2
.� �KX /.B �KY /:

(4) KS is big and nef.

Proof. We first construct a surface S � X � Y which satisfies (1) and (2). Let M WD
p�.�/ ˝ q�.B/. Then, by Proposition 4.1, M is lef with exp.M/ D 1. We take gen-
eral sections E; E 0 of M , and we define S WD E \ E 0. We note that this intersection
is nonempty and nonsingular by Bertini’s theorem since M is base point free and has
enough sections. By Proposition 2.7, E is a nonsingular projective variety and M jE is
lef with exp.M jE / D 1. Since S D E 0jE is smooth, we know by [12, Prop. 2.1.5] that
H 0.S;Z/ ' H 0.E;Z/ D Z, and so S is a nonsingular projective surface. Moreover, by
Corollary 2.12, we have �1.S/ ' �1.X/ � �1.Y /. We also see that the degree of pjS is
..p�.�/˝ q�.B//jY /

2 D B2. Similarly the morphism qjS has degree �2.
Now we prove (3). By the adjunction formula applied twice, and since KX�Y �

p�.KX /C q
�.KY /, we get

KS � pj
�
S .KX C 2�/C qj

�
S .KY C 2B/:

We note that given nonsingular curves C;C 0 in X; Y respectively, we have

pj�S .C / � qj
�
S .C

0/ D p�.C / � q�.C 0/ �E �E 0 D .C � C 0/ �M 2
DM j2C�C 0 ;

and therefore pj�S .C / � qj
�
S .C

0/ D 2.� � C/.B � C 0/. This extends to the intersection
pj�S .D/ � qj

�
S .D

0/ for any divisors D;D0 in X; Y respectively, and so

K2S D
�
pj�S .KX C 2�/C qj

�
S .KY C 2B/

�2
D B2.KX C 2�/

2
C �2.KY C 2B/

2

C 4..KX C 2�/ � �/..KY C 2B/ � B/

D K2XB
2
CK2Y �

2
C 24�2B2 C 12

�
.� �KX /B

2
C .B �KY /�

2
�

C 4.� �KX /.B �KY /:

To calculate �.S/, we use the following exact Koszul complex. Since S is a complete
intersection of two sections of M , and X � Y is nonsingular, we have an exact sequence
(see e.g. [14, pp. 76–77])

0! OX�Y .�2M/! O˚2X�Y .�M/! OX�Y ! OS ! 0:

By the additivity of the Euler characteristic and the Künneth formula (see e.g. [11,
Thm. 17.23])

Hn.X � Y;M/ D
M
iCjDn

H i .X; �/˝H j .Y; B/;

we obtain
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�.OS / D �.OX�Y /C �.OX�Y .�2� � 2B// � 2�.OX�Y .�� � B//

D �.OX /�.OY /C �.OX .�2�//�.OY .�2B// � 2�.OX .��//�.OY .�B//

D �.OX /�.OY /

C
�
�.OX /C

1
2
.4�2 C 2.� �KX //

��
�.OY /C

1
2
.4B2 C 2.B �KY //

�
� 2

�
�.OX /C

1
2
.�2 C � �KX /

��
�.OY /C

1
2
.B2 C B �KY /

�
D �.OX /B

2
C �.OY /�

2
C c.�;B/;

where

c.�;B/ D 7
2
�2B2 C 3

2
.� �KX /B

2
C

3
2
.B �KY /�

2
C

1
2
.� �KX /.B �KY /:

Finally, we show (4). Let C be an irreducible curve on S . Let a D degpjC D a and
b D deg qjC . Then, by the projection formula for generically finite morphisms, we have

C �KS D C � pj
�
S .KX C 2�/C C � qj

�
S .KY C 2B/

D ap.C / � .KX C 2�/C bq.C / � .KY C 2B/:

We note that KX , KY , and � are nef, and B is very ample, and so C �KS � 0. Using the
formula we just got for K2S to show part (3), we obtain K2S > 0.

We now present our main result, which puts together all the ingredients elaborated
until now.

Theorem 4.3. Let Y be a nonsingular projective surface with KY nef, and let r 2 Œ1; 3�
be a real number. Then there are minimal nonsingular projective surfaces S with
c21.S/=c2.S/ arbitrarily close to r , and �1.S/ ' �1.Y /.

Proof. Let Xp be the collection of simply connected surfaces described in Section 3.
Let �p be the line bundle defined in Proposition 3.2. For any p the bundle �p is lef by
Proposition 2.6. (We note that �p is not ample because of the resolution of singularities
involved in the construction of the surfacesXp .) LetB be a very ample divisor on Y . Note
that we satisfy all the hypotheses in Theorem 4.2 with X WD Xp and � WD �p . Therefore,
there are surfaces Sp WD S such that all the conclusions in Theorem 4.2 hold. In particular,
�1.Sp/ ' �1.Y /.

The formulas in Theorem 4.2 (3) are

c21.Sp/ D c
2
1.Xp/B

2
C c21.Y /�

2
p C 8c.�p; B/ � 4�

2
pB

2;

c2.Sp/ D c2.Xp/B
2
C c2.Y /�

2
p C 4c.�p; B/C 4�

2
pB

2;

where c.�p; B/ is as in Theorem 4.2.
By Proposition 3.2 we find that �2p D p and �p:KXp

is a polynomial in p of degree 3.
Thus c.�p; B/ is a polynomial in p of degree 3. By Section 3, the invariants c21.Xp/ and
c2.Xp/ are Laurent polynomials in p of degree 5. Therefore, by the formulas above,

lim
p!1

c21.Sp/

c2.Sp/
D lim
p!1

c21.Xp/

c2.Xp/
D
27x4 C 48x2 C 8

9x4 C 48x2 C 8
DW �.x/
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where x WD ˛=ˇ, as in Section 3. In this way, just as in [31, Thm. 6.3], we obtain the
desired surfaces S D Sp with c21.S/=c2.S/ arbitrarily close to r .

Corollary 4.4. LetG be the fundamental group of a nonsingular projective surface. Then
the Chern slopes c21.S/=c2.S/ of nonsingular projective surfaces S with �1.S/ ' G are
dense in Œ1; 3�.

Proof. Since �1 is invariant under birational transformations between nonsingular pro-
jective surfaces, it is enough to consider surfaces with no .�1/-curves. If G is the funda-
mental group of P1 �C , where C is a nonsingular projective curve, then, for example, we
can take as Y a surface in [31, Corollary 6.4] to apply Theorem 4.3. Otherwise, we have
a nonruled surface with nef canonical class, and we can use Theorem 4.3 directly.

As remarked in the introduction, the previous corollary covers the fundamental group
G of any nonsingular projective variety by means of the usual Lefschetz hyperplane the-
orem.

One may be tempted to use the result of Persson [29] on density of Chern slopes of
simply connected minimal surfaces of general type in Œ1=5; 2� as an input in Theorem 4.3,
but the strategy does not work. It is not clear in that case how to find a suitable line
bundle �p which makes things work. On top of that, and as mentioned in the introduction,
this cannot work in full generality since, for example, from [24] one can deduce that if
S is a surface of general type with c21.S/ <

1
3
c2.S/ and �1.S/ finite, then the order of

�1.S/ is at most 9. In this way, the question of “freedom” of fundamental groups remains
open for the interval Œ1=3; 1�.

We finish with two conjectures in relation to geography of Chern slopes for surfaces
with ample canonical class, and for Brody hyperbolic surfaces. We could directly show
that these conjectures hold if we could prove that the projection

qjSp
WSp ! Y

is a finite morphism. In other words, we need to show that we can construct Sp such
that qjSp

does not contract any curve. This depends on the line bundles �p . Catanese
[8, Lemma 1.1] proves that qjSp

is a finite morphism if �p is very ample.
Before stating the conjectures, we note that in [31] it is proved that the Chern slopes

c21=c2 of simply connected minimal surfaces of general type are dense in Œ1; 3�, but the
canonical class for each of the constructed surfaces was not ample, because of the pres-
ence of arbitrarily many .�2/-curves.

Conjecture 4.5. Let G be the .topological/ fundamental group of a nonsingular com-
plex projective surface. Then the Chern slopes c21.S/=c2.S/ of minimal nonsingular sur-
faces S of general type with �1.S/ isomorphic to G and ample canonical class are dense
in Œ1; 3�.

Conjecture 4.6. Let Y be a Brody hyperbolic nonsingular projective surface. Then the
Chern slopes of hyperbolic nonsingular projective surfaces S with �1.S/ isomorphic
to �1.Y / are dense in Œ1; 3�.



S. Troncoso, G. Urzúa 4218

Acknowledgements. The authors thank Xavier Roulleau for the hospitality towards the first author
during his stay in Université d’Aix-Marseille. The authors have benefited from conversations with
Feng Hao, Margarida Mendes Lopes, Luca Migliorini, Rita Pardini, Jongil Park, Ulf Persson,
Francesco Polizzi, and Matthew Stover. We are grateful to all of them. We thank the referees for
useful comments.

Funding. The first author was partially funded by the Conicyt Doctorado Nacional grant 2017/
21170644. The second author was supported by the FONDECYT regular grant 1190066.

References

[1] Amorós, J., Burger, M., Corlette, K., Kotschick, D., Toledo, D.: Fundamental Groups of Com-
pact Kähler Manifolds. Math. Surveys Monogr. 44, Amer. Math. Soc., Providence, RI (1996)
Zbl 0849.32006 MR 1379330

[2] Aprodu, M., Nagel, J.: Koszul Cohomology and Algebraic Geometry. Univ. Lecture Ser. 52,
Amer. Math. Soc., Providence, RI (2010) Zbl 1189.14001 MR 2573635

[3] Arapura, D.: Fundamental groups of smooth projective varieties. In: Current Topics in Com-
plex Algebraic Geometry (Berkeley, CA, 1992/93), Math. Sci. Res. Inst. Publ. 28, Cambridge
Univ. Press, Cambridge, 1–16 (1995) Zbl 0873.14021 MR 1397055

[4] Baldridge, S., Kirk, P.: Symplectic 4-manifolds with arbitrary fundamental group near the
Bogomolov–Miyaoka–Yau line. J. Symplectic Geom. 4, 63–70 (2006) Zbl 1105.53067
MR 2240212

[5] Baldridge, S., Kirk, P.: On symplectic 4-manifolds with prescribed fundamental group. Com-
ment. Math. Helv. 82, 845–875 (2007) Zbl 1155.57024 MR 2341842

[6] Barth, W. P., Hulek, K., Peters, C. A. M., Van de Ven, A.: Compact Complex Surfaces. 2nd
ed., Ergeb. Math. Grenzgeb. (3) 4, Springer, Berlin (2004) Zbl 1036.14016

[7] Beauville, A.: Complex Algebraic Surfaces. 2nd ed., London Math. Soc. Student Texts 34,
Cambridge Univ. Press, Cambridge (1996) Zbl 0849.14014 MR 1406314

[8] Catanese, F.: Fibred surfaces, varieties isogenous to a product and related moduli spaces.
Amer. J. Math. 122, 1–44 (2000) Zbl 0983.14013 MR 1737256

[9] Chen, Z. J.: On the geography of surfaces. Simply connected minimal surfaces with positive
index. Math. Ann. 277, 141–164 (1987) Zbl 0595.14027 MR 884652

[10] Cornalba, M.: A remark on the topology of cyclic coverings of algebraic varieties. Boll. Un.
Mat. Ital. A (5) 18, 323–328 (1981) Zbl 0462.14007 MR 618353

[11] Cutkosky, S. D.: Introduction to Algebraic Geometry. Grad. Stud. Math. 188, Amer. Math.
Soc., Providence, RI (2018) Zbl 1396.14001 MR 3791837

[12] de Cataldo, M. A. A., Migliorini, L.: The hard Lefschetz theorem and the topology of semi-
small maps. Ann. Sci. École Norm. Sup. (4) 35, 759–772 (2002) Zbl 1021.14004
MR 1951443

[13] Deligne, P.: Le groupe fondamental du complément d’une courbe plane n’ayant que des points
doubles ordinaires est abélien (d’après W. Fulton). In: Séminaire Bourbaki, exp. 543 (1979),
Lecture Notes in Math. 842, Springer, 1–10 (1981) Zbl 0478.14008 MR 0429435

[14] Fulton, W., Lang, S.: Riemann–Roch Algebra. Grundlehren Math. Wiss. 277, Springer, New
York (1985) Zbl 0579.14011 MR 801033

[15] Gieseker, D.: Global moduli for surfaces of general type. Invent. Math. 43, 233–282 (1977)
Zbl 0389.14006 MR 498596

[16] Gompf, R. E.: A new construction of symplectic manifolds. Ann. of Math. (2) 142, 527–595
(1995) Zbl 0849.53027 MR 1356781

[17] Goresky, M., MacPherson, R.: Stratified Morse Theory. Ergeb. Math. Grenzgeb. (3) 14,
Springer, Berlin (1988) Zbl 0639.14012 MR 932724

https://zbmath.org/?q=an:0849.32006
https://mathscinet.ams.org/mathscinet-getitem?mr=1379330
https://zbmath.org/?q=an:1189.14001
https://mathscinet.ams.org/mathscinet-getitem?mr=2573635
https://zbmath.org/?q=an:0873.14021
https://mathscinet.ams.org/mathscinet-getitem?mr=1397055
https://zbmath.org/?q=an:1105.53067
https://mathscinet.ams.org/mathscinet-getitem?mr=2240212
https://zbmath.org/?q=an:1155.57024
https://mathscinet.ams.org/mathscinet-getitem?mr=2341842
https://zbmath.org/?q=an:1036.14016
https://zbmath.org/?q=an:0849.14014
https://mathscinet.ams.org/mathscinet-getitem?mr=1406314
https://zbmath.org/?q=an:0983.14013
https://mathscinet.ams.org/mathscinet-getitem?mr=1737256
https://zbmath.org/?q=an:0595.14027
https://mathscinet.ams.org/mathscinet-getitem?mr=884652
https://zbmath.org/?q=an:0462.14007
https://mathscinet.ams.org/mathscinet-getitem?mr=618353
https://zbmath.org/?q=an:1396.14001
https://mathscinet.ams.org/mathscinet-getitem?mr=3791837
https://zbmath.org/?q=an:1021.14004
https://mathscinet.ams.org/mathscinet-getitem?mr=1951443
https://zbmath.org/?q=an:0478.14008
https://mathscinet.ams.org/mathscinet-getitem?mr=0429435
https://zbmath.org/?q=an:0579.14011
https://mathscinet.ams.org/mathscinet-getitem?mr=801033
https://zbmath.org/?q=an:0389.14006
https://mathscinet.ams.org/mathscinet-getitem?mr=498596
https://zbmath.org/?q=an:0849.53027
https://mathscinet.ams.org/mathscinet-getitem?mr=1356781
https://zbmath.org/?q=an:0639.14012
https://mathscinet.ams.org/mathscinet-getitem?mr=932724


Savage surfaces 4219

[18] Horikawa, E.: On deformations of quintic surfaces. Invent. Math. 31, 43–85 (1975)
Zbl 0317.14018 MR 1573789

[19] Horikawa, E.: Algebraic surfaces of general type with small c21 . I: Ann. of Math. (2) 104, 357–
387 (1976); II: Invent. Math. 37, 121–155 (1976); III: Invent. Math. 47, 209–248 (1978); IV:
Invent. Math. 50, 103–128 (1978/79); V: J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, 745–755
(1981) Zbl 0339.14024(I) Zbl 0339.14025(II) Zbl 0409.14005(III) Zbl 0505.14028(IV)
Zbl 0505.14028(V) MR 0424831(I) MR 0460340(II) MR 0501370(III) MR 517773(IV)
MR 0656051(V)

[20] Kapovich, M.: Dirichlet fundamental domains and topology of projective varieties. Invent.
Math. 194, 631–672 (2013) Zbl 1348.20045 MR 3127064

[21] Kapovich, M., Kollár, J.: Fundamental groups of links of isolated singularities. J. Amer. Math.
Soc. 27, 929–952 (2014) Zbl 1307.14005 MR 3230815

[22] Kirk, P., Livingston, C.: The geography problem for 4-manifolds with specified fundamental
group. Trans. Amer. Math. Soc. 361, 4091–4124 (2009) Zbl 1177.57020 MR 2500880

[23] Lazarsfeld, R.: Positivity in Algebraic Geometry. I. Ergeb. Math. Grenzgeb. (3) 48, Springer,
Berlin (2004) Zbl 1093.14501 MR 2095471

[24] Mendes Lopes, M., Pardini, R.: On the algebraic fundamental group of surfaces withK2 � 3�.
J. Differential Geom. 77, 189–199 (2007) Zbl 1143.14032 MR 2355783

[25] Migliorini, L.: A smooth family of minimal surfaces of general type over a curve of genus at
most one is trivial. J. Algebraic Geom. 4, 353–361 (1995) Zbl 0834.14021 MR 1311355

[26] Miyaoka, Y.: The maximal number of quotient singularities on surfaces with given numerical
invariants. Math. Ann. 268, 159–171 (1984) Zbl 0521.14013 MR 744605

[27] Pardini, R.: The Severi inequality K2 � 4� for surfaces of maximal Albanese dimension.
Invent. Math. 159, 669–672 (2005) Zbl 1082.14041 MR 2125737

[28] Park, J.: The geography of symplectic 4-manifolds with an arbitrary fundamental group. Proc.
Amer. Math. Soc. 135, 2301–2307 (2007) Zbl 1116.57023 MR 2299508

[29] Persson, U.: Chern invariants of surfaces of general type. Compos. Math. 43, 3–58 (1981)
Zbl 0479.14018 MR 631426

[30] Persson, U., Peters, C., Xiao, G.: Geography of spin surfaces. Topology 35, 845–862 (1996)
Zbl 0874.14031 MR 1404912

[31] Roulleau, X., Urzúa, G.: Chern slopes of simply connected complex surfaces of general type
are dense in Œ2; 3�. Ann. of Math. (2) 182, 287–306 (2015) Zbl 1346.14097 MR 3374961

[32] Serre, J.-P.: Sur la topologie des variétés algébriques en caractéristique p. In: Symposium
internacional de topología algebraica, Univ. Nacional Autónoma de México and UNESCO,
Mexico City, 24–53 (1958) Zbl 0098.13103 MR 0098097

[33] Siu, Y. T.: The complex-analyticity of harmonic maps and the strong rigidity of compact
Kähler manifolds. Ann. of Math. (2) 112, 73–111 (1980) MR 584075

[34] Stover, M., Toledo, D.: Residually finite lattices in PU(2,1) and fundamental groups of smooth
projective surfaces. Michigan Math. J. 72, 559–597 (2022) MR 4460264

[35] Urzúa, G.: Arrangements of curves and algebraic surfaces. J. Algebraic Geom. 19, 335–365
(2010) Zbl 1192.14033 MR 2580678

[36] Urzúa, G.: Chern slopes of surfaces of general type in positive characteristic. Duke Math. J.
166, 975–1004 (2017) Zbl 1390.14105 MR 3626568

[37] Xiao, G.: Fibered algebraic surfaces with low slope. Math. Ann. 276, 449–466 (1987)
Zbl 0596.14028 MR 875340

[38] Yau, S. T.: Calabi’s conjecture and some new results in algebraic geometry. Proc. Nat. Acad.
Sci. U.S.A. 74, 1798–1799 (1977) Zbl 0355.32028 MR 451180

[39] Yeung, S.-K.: Classification of fake projective planes. In: Handbook of Geometric Analysis,
No. 2, Adv. Lect. Math. 13, Int. Press, Somerville, MA, 391–431 (2010) Zbl 1218.14025
MR 2761486

https://zbmath.org/?q=an:0317.14018
https://mathscinet.ams.org/mathscinet-getitem?mr=1573789
https://zbmath.org/?q=an:0339.14024
https://zbmath.org/?q=an:0339.14025
https://zbmath.org/?q=an:0409.14005
https://zbmath.org/?q=an:0505.14028
https://zbmath.org/?q=an:0505.14028
https://mathscinet.ams.org/mathscinet-getitem?mr=0424831
https://mathscinet.ams.org/mathscinet-getitem?mr=0460340
https://mathscinet.ams.org/mathscinet-getitem?mr=0501370
https://mathscinet.ams.org/mathscinet-getitem?mr=517773
https://mathscinet.ams.org/mathscinet-getitem?mr=0656051
https://zbmath.org/?q=an:1348.20045
https://mathscinet.ams.org/mathscinet-getitem?mr=3127064
https://zbmath.org/?q=an:1307.14005
https://mathscinet.ams.org/mathscinet-getitem?mr=3230815
https://zbmath.org/?q=an:1177.57020
https://mathscinet.ams.org/mathscinet-getitem?mr=2500880
https://zbmath.org/?q=an:1093.14501
https://mathscinet.ams.org/mathscinet-getitem?mr=2095471
https://zbmath.org/?q=an:1143.14032
https://mathscinet.ams.org/mathscinet-getitem?mr=2355783
https://zbmath.org/?q=an:0834.14021
https://mathscinet.ams.org/mathscinet-getitem?mr=1311355
https://zbmath.org/?q=an:0521.14013
https://mathscinet.ams.org/mathscinet-getitem?mr=744605
https://zbmath.org/?q=an:1082.14041
https://mathscinet.ams.org/mathscinet-getitem?mr=2125737
https://zbmath.org/?q=an:1116.57023
https://mathscinet.ams.org/mathscinet-getitem?mr=2299508
https://zbmath.org/?q=an:0479.14018
https://mathscinet.ams.org/mathscinet-getitem?mr=631426
https://zbmath.org/?q=an:0874.14031
https://mathscinet.ams.org/mathscinet-getitem?mr=1404912
https://zbmath.org/?q=an:1346.14097
https://mathscinet.ams.org/mathscinet-getitem?mr=3374961
https://zbmath.org/?q=an:0098.13103
https://mathscinet.ams.org/mathscinet-getitem?mr=0098097
https://mathscinet.ams.org/mathscinet-getitem?mr=584075
https://mathscinet.ams.org/mathscinet-getitem?mr=4460264
https://zbmath.org/?q=an:1192.14033
https://mathscinet.ams.org/mathscinet-getitem?mr=2580678
https://zbmath.org/?q=an:1390.14105
https://mathscinet.ams.org/mathscinet-getitem?mr=3626568
https://zbmath.org/?q=an:0596.14028
https://mathscinet.ams.org/mathscinet-getitem?mr=875340
https://zbmath.org/?q=an:0355.32028
https://mathscinet.ams.org/mathscinet-getitem?mr=451180
https://zbmath.org/?q=an:1218.14025
https://mathscinet.ams.org/mathscinet-getitem?mr=2761486

	1. Introduction
	2. Semi-small morphisms, lef line bundles, Bertini and Lefschetz type theorems
	3. RU surfaces
	4. Key construction and density theorem
	References

