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Abstract. We prove a version of Bourgain’s projection theorem for parametrized families of C 2

maps, which refines the original statement even in the linear case by requiring non-concentration
only at a single natural scale. As one application, we show that if A is a Borel set of Hausdorff
dimension close to 1 in R2 or close to 3=2 in R3, then for y 2 A outside of a very sparse set,
the pinned distance set ¹jx � yj W x 2 Aº has Hausdorff dimension at least 1=2 C c, where c is
universal. Furthermore, the same holds if the distances are taken with respect to a C 2 norm of
positive Gaussian curvature. As further applications, we obtain new bounds on the dimensions of
spherical projections, and an improvement over the trivial estimate for incidences between ı-balls
and ı-neighborhoods of curves in the plane, under fairly general assumptions. The proofs depend
on a new multiscale decomposition of measures into “Frostman pieces” that may be of independent
interest.
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1. Introduction and statement of results

1.1. Distance sets

The Falconer distance set conjecture, originating in [8], asserts that if A � Rd , d � 2, is
a Borel set of Hausdorff dimension d=2, then the distance set

�.A/ D ¹jx � yj W x; y 2 Aº � Œ0;1/

has Hausdorff dimension 1. Despite efforts by many mathematicians, the conjecture
remains open in all dimensions. A variant of this problem has also received much atten-
tion. From now on, all sets are assumed to be Borel. Given y 2 Rd and A � Rd , denote
the pinned distance set by

�y.A/ D ¹jx � yj W x 2 Aº:

Let dimH denote Hausdorff dimension. It is possible that the pinned version of Fal-
coner’s conjecture holds, that is, if dimH.A/ � d=2, then there is y 2 A such that
dimH.�

y.A// D 1.
Recent deep results [6, 9, 19] imply that if dimH.A/ > ˛.d/, then there is y 2 A such

that �y.A/ has positive Lebesgue measure, where

˛.d/ D

8<: 5
4

if d D 2;
d2

2d�1
if d � 3:

(1.1)

In recent years, substantial progress has been achieved in the plane under the assump-
tion dimH.A/ > 1 [9, 18, 20, 23, 26–28]. For example, it is known [27] that if A is a
planar set of equal Hausdorff and packing dimension, and this common value is > 1,
then there is y 2 A such that dimH.�

y.A// D 1. For general planar sets of Hausdorff
dimension > 1, it is known that there is y 2 A such that dimH.�

y.A// � 29=42 [28]
and dimP.�

y.A// > 0:933 [18], where dimP denotes packing dimension. In all these
works it is crucial that dimH.A/ > 1; the methods break down if one only assumes that
dimH.A/ D 1.
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For general ambient dimension, under the hypothesis dimH.A/ D d=2, Falconer
proved in his original paper [8] that dimH.�.A//� 1=2. This bound turned out to be quite
hard to improve upon. By combining results of N. Katz–T. Tao [15] and J. Bourgain [3],
it follows that if A is a Borel planar set with dimH.A/ � 1, then

dimH.�.A// � 1=2C c; (1.2)

where c is a small universal constant. We discuss the result of Katz–Tao and Bourgain in
more detail below.

Less attention has been given to the problem of obtaining lower bounds for the dimen-
sion of distance sets when dimH.A/ < d=2. To our knowledge, the best such bound
appearing in the literature was proved in Falconer’s paper [8]: if dimH.A/ � d=2, then

dimH.�.A// � dimH.A/ �
d � 1

2
: (1.3)

Note that this is vacuous if dimH.A/ � .d � 1/=2.
In this paper we improve upon several of the previously mentioned results, particularly

in dimensions 2 and 3.

Theorem 1.1. Let d � 2. Given d � 2 < �; ˛ < d , there is a number c D cd .˛; �/ > 0,
depending continuously on ˛; �, such that the following holds.

Let A � Rd be a Borel set with dimH.A/ � ˛. Then

dimH.¹y 2 Rd W dimH.�
y.A// < ˛=d C cº/ � �:

Moreover, the same holds if the pinned distance set is defined with respect to any C 2 norm
whose unit ball has everywhere positive Gaussian curvature .with c independent of the
choice of norm/.

In the plane, this result improves upon the bound (1.2) of Katz–Tao and Bourgain in
several ways: (a) it provides a pinned version, (b) furthermore, not only does the pinned
version hold for some y 2A, but in fact it holds for y outside of a set of dimension �, arbi-
trarily small (with the gain c depending on �) – this is new even when dimH.A/ > 1, (c) it
works for more general smooth, curved norms, (d) it extends to values of dimH.A/2 .0;1/.
Moreover, Theorem 1.1 provides an improvement over the bound dimH.�.A// � 1=2 for
Borel sets of dimension 3=2 in R3, and also for Borel sets of dimension > 2 in R4.
In dimensions � 5, the value ˛.d/ from (1.1) is smaller than d � 2, so Theorem 1.1
becomes far less interesting. We note that a careful inspection of the proofs in [15], com-
bined with the discretized sum-product theorem of [3], might lead to the analogue of (1.2)
also for sets of dimension in .0; 1/ and perhaps also in higher dimensions. We believe that
the improvements (a)–(c) noted above do not follow in any direct way from previous
approaches.

Remark 1.2. In dimensions d � 3, at least one of the assumptions � >d � 2, ˛ >d � 2 in
Theorem 1.1 is necessary, as can be seen from the examples X D S1 � ¹0º � R2 �Rd�2

and X D Sd�2 � ¹0º � Rd�1 �R. However, such assumptions may not be necessary if
one only considers y 2 X .
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1.2. A non-linear version of Bourgain’s projection theorem

There are well known connections between many important problems at the interface of
analysis and geometric measure theory, such as the Kakeya, Furstenberg set, discretized
sum-product, discretized projection and Falconer distance set problems. Indeed, all of
these problems to some extent deal with incidences between tubes. However, the con-
nections, even when they are explicit, are rarely straightforward. In [15], Katz and Tao
introduced discretized versions of three conjectures which were at the time open. Two
of the conjectures were: (a) dimH.�.A// � 1=2 C c if A is a planar Borel set with
dimH.A/ D 1, (b) there is no Borel subring of the reals of Hausdorff dimension 1=2.
Note that (a))(b): if R is a ring of dimension 1=2, then �.R � R/ �

p
R�0. Among

other things, Katz and Tao proved that certain discretized versions of these conjectures
are equivalent, and that the discretized version of (1.2) (which is rather involved) implies
the actual bound (1.2).

In [3], Bourgain proved the discretized version of the ring conjecture, which is nowa-
days known as the discretized sum-product theorem. Hence, in combination with [15],
this established the bound (1.2). A few years later, in [4], Bourgain refined the discretized
sum-product theorem to obtain what is now known as Bourgain’s (discretized) projection
theorem. We recall this theorem below. (In fact, many of the ideas to go from sum-product
to projections are already implicit in [3,15].) Thus, there is a known path from Bourgain’s
projection theorem to the estimate (1.2). In this article, we take a rather different path
that we believe is more flexible, and can be used to make progress on other problems in
combinatorial fractal geometry. We view the maps �y.x/ D jx � yj as a family of maps
from Rd to R, parametrized by the point y. These maps are smooth if we are careful to
separate the domains of the x and the y, but they are non-linear. In [15], an important step
in the overall argument is applying a projective transformation that linearizes a family of
projections. This argument seems to be rather constrained. The approach of this paper is
to develop a non-linear version of Bourgain’s projection theorem. In doing so, we also
obtain some new insights even in the linear case.

We state first a continuous (as opposed to single-scale) version of our main result.
We denote the open r-neighborhood of H by H .r/. If � is a Borel measure on a metric
space X and g W X ! Y is a Borel map, then we denote the push-forward measure to Y
by g�, that is, g�.�/ D �.g�1�/. If �.A/ > 0, then �A denotes the normalized restriction
�.A/�1�jA. Given x 2 Rd ; x ¤ 0, we let dir.x/D x=jxj 2 Sd�1. Finally, we denote the
Grassmannian of linear k-planes in Rd by G.d; k/.

Theorem 1.3. Given � > 0 and 0 < ˛ < d there is � D �d .�; ˛/ > 0 .that can be taken
continuous in �; ˛/ such that the following holds.

Let .ƒ; �/ be a Borel probability space and let U � Rd be an open domain. Let
F Wƒ�U !R be a Borel function such that, for each � 2ƒ, the map F�.x/D F.�;x/ W
U ! R is C 2 without singular points. For each x 2 Rd define the map

�x.�/ D dir.rF�.x// 2 Sd�1:
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Let A� U be a Borel set of dimension� ˛ such that for all x 2 A there are a setƒx with
�.ƒx/ > 0 and a number Cx > 0 satisfying

�x�ƒx .H
.r// � Cxr

� for all H 2 G.d; d � 1/; r 2 .0; 1�: (1.4)

Then there is � 2 supp.�/ such that

dimH.F�A/ � ˛=d C �:

We make some remarks on this statement.

Remark 1.4. Bourgain’s (continuous) projection theorem corresponds precisely to the
special case in which ƒ D ƒx D Sd�1 and F�.x/ D h�; xi is orthogonal projection in
direction �. In this case, �x is the identity map for all x, and so the decay condition (1.4)
has to be satisfied by the measure � on Sd�1.

Remark 1.5. Allowing the set ƒx to depend on x is important in our applications, such
as Theorem 1.1. By a formal argument, in the caseƒx �ƒ for all x, the conclusion holds
for �-almost all �.

Remark 1.6. It is enough that (1.4) holds for all x 2 A outside of a set E of dimension
< ˛, since we can then apply the theorem to A nE.

Bourgain’s projection theorem described above is deduced from a discretized version,
which is fully stated as Theorem 3.1 below. It is often this discretized version that gets
used in applications, such as [5, 16]. Correspondingly, we have the following discretized
version of Theorem 1.3. The number of dyadic cubes of side length 2�m hitting a set X
is denoted by N .X;m/, and j � j refers to Lebesgue measure.

Theorem 1.7. Fix d � 2. Given � > 0, there is � D �d .�/ > 0 such that the following
holds for " < "d .�/.

Let X � Œ0; 1�d be a union of 2�m-dyadic cubes. Let U be a neighborhood of X and
let .ƒ; �/ be a Borel probability space. Let F Wƒ�U ! R be a Borel function such that,
for each � 2 ƒ, the map x 7! F�.x/ D F.�; x/ W U ! R is C 2 without singular points.
For each x 2 Rd define the map

�x.�/ D dir.rF�.x// 2 Sd�1:

Assume that Cƒ D sup� kF�kC2 <1 and cƒ D inf� infx2X jrF�.x/j > 0.
Let m be large enough in terms of cƒ; Cƒ and all the previous parameters. Suppose

X satisfies the single-scale non-concentration condition

jX \ B.x; jX j1=d /j � 2��mjX j for all x: (1.5)

Suppose that for every x 2 X there is a set ƒx � ƒ with �.ƒx/ � 2�"m such that

�x�ƒx .H
.r// � 2"mr� (1.6)

for all hyperplanes H 2 G.d; d � 1/ and all r 2 Œ2�m; 1�.
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Then there exist � 2 supp.�/ and a set X 0 � X with jX 0j � 2�2"mjX j such that

N .F�X
00; m/ � 2�mN .X;m/1=d

for all sets X 00 � X 0 with jX 00j � 2�"mjX 0j.
If ƒx D ƒ for all x, then one can take X 0 D X , and the conclusion holds for all �

outside of a set of �-measure � 2�"m.

Some remarks are in order.

Remark 1.8. Again, Bourgain’s original theorem corresponds to F�.x/ D h�; xi and
ƒx � ƒ; see Theorem 3.1 below. However, hypothesis (1.5) is weaker than the non-
concentration assumption in Theorem 3.1, since it is required at the single scale jX j1=d .
Furthermore, this is the natural scale that makes this assumption sharp: if X is a cube of
side length jX j1=d (or dense in such a cube, or the union of very few such cubes), then
jF.X/j � jX j1=d for all smooth maps F W Rd ! R without singular points (including
projections). In short, (1.5) is saying that X is not concentrated in a few cubes, with the
“measure gain” exponent � depending on the quality of this non-concentration, given by �.
We remark that the theorem clearly fails if X has measure close either to 1 or to 2�dm;
however, in both these cases X is highly concentrated in a cube (of size 1 or 2�m) and
therefore these extremes are ruled out by (1.5).

Remark 1.9. In the case d D 2, the non-concentration assumption (1.6) is a standard
Frostman (power law) assumption on the �x�ƒx measures of balls. For d � 3, the inter-
section Sd�1 \ H is a maximal .d � 2/-sphere in Sd�1, and (1.6) says that �x�ƒx is
not concentrated near such subspheres. The example of a segment shows that, already for
linear projections, such a condition is necessary.

Remark 1.10. The “gain” � in Bourgain’s theorem is effective in principle, but extremely
small. The value of � in Theorem 1.7 is even smaller than that of Bourgain’s projection
theorem (as a matter of fact, it is equal for sets with some uniform decay such as Ahlfors-
regular sets). We do not make the connection explicit, although it is not hard to extract
it from the proofs, and we make no attempt at optimization since the values involved are
in any event tiny. In the work in progress [13], the authors provide explicit estimates for
a closely related result involving entropy gain. Even though this does not automatically
translate into an explicit value in the context of Theorem 3.1, it is plausible that with some
additional work this will yield explicit estimates in Theorem 1.7.

1.3. Strategy of proof and a multiscale decomposition into Frostman pieces

We now explain the overall strategy of the proof of Theorems 1.3 and 1.7, and discuss
informally a new multiscale decomposition of measures that is at the heart of the proof
(see Section 4 and in particular Theorem 4.1 for precise statements).

Bourgain’s original proof of Theorem 3.1 appears to be intrinsically restricted to the
linear setting. Rather than modifying the proof, we perform a regularization and multi-
scale decomposition of a Frostman measure � on the given set X , and then linearize F
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at every scale in the multiscale decomposition. We then apply Bourgain’s theorem (as a
black box) to every small piece of � and every scale in the multiscale decomposition.

The overall strategy is not new. In particular, we make use of a variant of a formula
for estimating the entropy of smooth projections in terms of multiscale decompositions
that goes back, in various forms, to [12, 14, 18, 23]. See Proposition 5.1. Because the
precise formulation we need does not appear in the literature, we include a full proof in
Appendix A. Our approach is closest to that of [18] which, in addition to a multiscale
decomposition, required an initial decomposition of the measure � into “regular Moran
constructions”. The same decomposition plays a key role in this paper.

In order to apply Bourgain’s projection theorem to small pieces of the measure, we
need to verify that these small pieces satisfy the required non-concentration assumption.
The main technical innovation of this paper is a new multiscale decomposition of a “reg-
ular Moran measure” so that the conditional measures on small cubes of certain sizes
are Frostman measures up to a small exponential error (so they satisfy essentially the
strongest possible non-concentration decay). By itself, this is not enough to deduce any
useful consequences, because it may well happen that nearly all of these conditional mea-
sures look like either Lebesgue measure or an atom so that, even though they are trivially
Frostman measures, there is no gain to be achieved. To deal with this, we show that if
the original measure satisfies the (minimal) non-concentration assumption (1.5), then the
scales in the multiscale decomposition can be chosen so that, for a “positive density” set
of scales, the conditional measures have “intermediate size”, i.e. they are quantitatively
separated from both Lebesgue and atomic measures. See Theorem 4.1 for details. We
hope this new multiscale decomposition of measures (and related ones) will have further
applications.

Even with Theorem 4.1 in hand, it is still possible that for many scales the conditional
measures do look close to Lebesgue or atomic. In this setting, Bourgain’s projection the-
orem does not apply. For such scales, we rely on quantitative versions of more classical
projection theorems, essentially going back to R. Kaufman [17] and to K. Falconer [7].
See Section 3.

Incidentally, as the above sketch indicates, we only need to apply Theorem 3.1 when �
(nearly) matches the size of the set being projected, i.e. when there is (near) optimal
non-concentration. Potentially it may be easier to obtain quantitative estimates under this
stronger assumption, which would then translate into quantitative estimates under the
weaker assumptions of Theorem 1.7.

To deduce Theorem 1.1 from Theorem 1.3, we appeal to a result of T. Orponen [24]
on spherical projections. In fact, we need a quantitative version and an extension to higher
dimensions of Orponen’s argument. Since we follow Orponen’s ideas quite closely, the
proofs of these facts are deferred to Appendix B.

1.4. Structure of the paper and further results

In Section 2 we introduce some general notation, and some preliminary lemmas. In par-
ticular, in §2.2 we review the important concept of regular measures, and their properties,
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and in §2.3 we introduce the convenient notions of robust measures and robust entropy,
and relate them to Hausdorff dimension.

Section 3 deals with discretized projection theorems. The main result of this section is
Theorem 3.4 which, in the language of robust measures, combines and unifies Bourgain’s
discretized projection theorem with quantitative versions of more classical projection the-
orems going back to R. Kaufman and K. Falconer.

Section 4 contains two new multiscale decompositions of (regular) measures, The-
orems 4.1 and 4.9. The proofs are reduced to combinatorial statements about Lipschitz
functions, which take up most of the section.

Theorems 1.3 and 1.7 are proved in Section 5.
In Section 6 we derive several applications and generalizations of Theorems 1.3

and 1.7. We begin in §6.1 with a straightforward application to one-parameter real-
analytic families. In §6.2, we complete the proof of Theorem 1.1. In §6.3, we apply
Theorem 1.7 to obtain incidence bounds for discretized families of curves; see Theo-
rem 6.5. This result is new even for lines; in this particular case, it complements results
of M. Bateman and V. Lie [1], and of L. Guth, N. Solomon and H. Wang [10]. Note that
Theorem 1.3 only applies to projections onto the real line. In §6.4, we indicate how to use
W. He’s extension of Bourgain’s projection theorem to higher rank projections in order
to derive a higher rank extension of Theorem 1.3; see Theorem 6.13. Finally, we use this
higher rank version to study spherical projections in §6.5, in particular extending recent
results of T. Orponen, and of B. Liu and C.-Y. Shen.

As indicated earlier, Appendix A contains the proof of Proposition 5.1, a crucial esti-
mate of the entropy of a smooth image of a measure in terms of linearized images of
small pieces of the measure in a multiscale decomposition. These are a key ingredient in
the proofs of Theorems 1.3 and 1.7. The ideas in this appendix are not new, but the state-
ments differ enough from existing ones in the literature that we have chosen to include
a complete proof. Likewise, Appendix B contains the proof of Theorem 6.3, a higher-
dimensional variant of a spherical projection result of T. Orponen [24]. The results in this
appendix are used in the proofs of Theorem 1.1 in §6.2 and of Theorem 6.15 in §6.5.
Although we follow Orponen’s ideas closely, there are several changes in the details, so
again we include full details for completeness.

2. Notation and preliminary results

2.1. Notation

Closed balls in Rd will be denoted by B.x; r/, or by Bd .x; r/ when the ambient dimen-
sion is not clear from context.

We use Landau’s O.�/ notation: given X > 0, O.X/ denotes a positive quantity
bounded above by CX for some constant C > 0. If C is allowed to depend on some
other parameters, these are denoted by subscripts. We sometimes write X . Y in place
of X D O.Y / and likewise with subscripts. We write X & Y , X � Y to denote Y . X ,
X . Y . X respectively.
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The family of Borel probability measures on a metric space X is denoted by P .X/,
and the family of Borel finite measures by M.X/.

Logarithms are always to base 2.
We let Dj be the family of half-open 2�j -dyadic cubes in Rd (where d is understood

from context), and let Dj .x/ be the only cube in Dj containing x 2 Rd . Given a mea-
sure � 2 P .Rd /, we also let Dj .�/ be the cubes in Dj with positive �-measure. We
recall that, given A � Rd , we also denote by N .A; j / the number of cubes in Dj that
intersect A.

A 2�m-measure is a measure � in P .Œ0; 1/d / such that �Q is a multiple of Lebesgue
measure on Q for Q 2 Dm. Hence, 2�m-measures are defined down to resolution 2�m.
The set of 2�m-measures on Rd will be denoted P d

m . Likewise, a 2�m-set is a union of
cubes in Dm.

Lebesgue measure on Rd will be denoted by either j � j or L; the ambient dimension d
will be clear from context.

Due to our use of dyadic cubes, sometimes we will need to deal with supports in the
dyadic metric, i.e. given � 2 P .Œ0; 1/d / we let

suppd.�/ D ¹x W �.Dj .x// > 0 for all j 2 Nº:

Note that �.suppd.�// D 1 and suppd.�/ � supp.�/.
If a measure � 2 P .Rd / has a density in Lp , then the density is sometimes also

denoted by �, and in particular k�kp stands for the Lp norm of the density.
Let � 2 P .Œ0; 1/d /. Recall that if �.A/ > 0, then �A D 1

�.A/
�jA is the normal-

ized restriction of � to A. If Q is a dyadic cube and �.Q/ > 0, then we denote �Q D
HomQ �Q, where HomQ is the homothety renormalizing Q to Œ0; 1/d . Thus, �Q is a
magnified and renormalized copy of the restriction of � toQ; we sometimes refer to such
measures as conditional measures on Q.

Recall that the Grassmannian of linear k-planes in Rd is denoted by G.d; k/. When
k D 1, we often identify G.d; 1/ with Sd�1; the fact that the identification is two-to-one
does not cause any issues in practice. We denote the manifold of affine k-planes in Rd

by A.d; k/.

2.2. Regular measures

A key role in the paper is played by measures with a uniform tree (or Moran) structure
when represented in base 2T . This notion is made precise in the next definition. Recall
that P d

m stands for the family of 2�m-measures in Rd .

Definition 2.1. Given a sequence � D .�1; : : : ; �`/ 2 Œ0; d �
` and T 2 N, we say that

� 2 P d
T `

is .� IT /-regular if for any Q 2 DjT .�/, 1 � j � `, we have

�.Q/ � 2�T�j�.bQ/ � 2�.Q/;
where bQ is the only cube in D.j�1/T containing Q. When T is understood from context
we will simply write that � is � -regular.
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We note that the same notion appears in [18], but with a different normalization for
the parameters �j .

Lemma 2.2. Let � 2 P .Œ0; 1/d / be .� I T /-regular for some � 2 Œ0; d �`, T 2 N. Write
m D T ` and X D suppd.�/.

(i) 2�j 2�T.�1C���C�j / � �.Q/ � 2�T.�1C���C�j / for all Q 2 DjT .X/.

(ii) 2T.�1C���C�`/ � N .X;m/ � 2T.�1C���C�`/C`.

(iii) 2�`� � 1X=jX j � 2`�.

Proof. From the definition it is clear that if Q 2 DjT .�/ D DjT .X/, then

2�j 2�T�1 � � � 2�T�j � �.Q/ � 2�T�1 � � � 2�T�j ; (2.1)

which is (i). Claim (ii) follows easily from (2.1) applied with j D `. For the final claim,
it is enough to establish the inequality for Q 2 Dm, and this follows from (2.1) (which
implies �.Q/ � 2m=T �.Q0/ for Q;Q0 2 Dm) and (ii).

Starting with an arbitrary 2�m-measure, a pigeonholing argument (which we learned
from Bourgain’s work) allows us to find a set X with “large” measure such that �X is
regular:

Lemma 2.3. Fix T; ` � 1. Write m D T `, and let � 2 P d
m . Then there is a set X �

suppd.�/ with �.X/ � .2dT C 2/�` such that �X is .� IT /-regular for some � 2 Œ0; d �`.

See [18, Lemma 3.4] for the proof of this particular statement. Iterating the above
lemma, we can decompose an arbitrary measure � 2 P d

m into regular measures, plus a
negligible error. This is the content of the next crucial lemma whose proof can be found
in [18, Corollary 3.5].

Lemma 2.4. Fix T;`� 1 and " > 0. WritemD T `, and let � 2P d
m . There exists a family

of pairwise disjoint 2�m-sets X1; : : : ; XN with Xk � suppd.�/ such that:

(i) �.
SN
kD1 Xk/ � 1 � 2

�"m. In particular, if �.A/ > 2�"m, then there exists k such
that �Xk .A/ � �.A/ � 2

�"m.

(ii) �.Xk/ � 2�ım, where ı D "C log.2dT C 2/=T .

(iii) Each �Xk is .�.k/IT /-regular for some �.k/ 2 Œ0; d �`.

2.3. Robust measures and robust entropy

We will need to deal with various different notions of “largeness” of a measure. The next
definition captures the core property shared by all of these notions.

Definition 2.5. A a measure � 2 P .Rd / is called .˛; ı; m/-robust if, for any set A with
�.A/ > 2�ım, one has N .A;m/ > 2˛m.

Lemma 2.6. If � 2 P .Rd / is .˛; ı;m/-robust for all m � m0, then dimH.A/ � ˛ for all
Borel setsA with�.A/ > 0. Furthermore, if ¹Bj º is a union of disjoint balls of radius 2�m
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for some m � m0 such that �.Bj / � 2�˛m, then

�
�[
j

Bj

�
� 2�ım:

Proof. Since there can be at most 2˛m disjoint balls of measure� 2�˛m, the second claim
is immediate from the definition of robustness. It follows by a standard covering lemma
argument and Borel–Cantelli that for �-almost all x, �.B.x; r// � r˛ for all sufficiently
small r (depending on x). The first claim is now a consequence of the mass distribution
principle.

Recall that the entropy of � 2 P .X/ with respect to a finite partition A of X (or of a
set of full �-measure in X ) is defined by

H.�;A/ D
X
A2A

�.A/ log.1=�.A//:

We will sometimes write Hm.�/ in place of H.�;Dm/. Note that this quantity is not
normalized. For more about entropy, see Appendix A.

Given two measures �;� on the same spaceX and a number�> 0, we write � ���
if �.A/ � ��.A/ for all Borel sets A. In particular, �B � �.B/�1�.

Definition 2.7. Let � 2 P .Rd /, fix� � 1, and let A be a finite partition of supp.�/. We
define the �-robust entropy H�.�;A/ as

inf ¹H.�;A/ W � 2 P .Rd /; � � ��º:

In the case A D Dm, we sometimes write H�
m .�/ in place of H�.�;Dm/.

The next lemma asserts that robust measures have large robust entropy.

Lemma 2.8. Given ˛; ı; " > 0, the following holds for all m � m0.ı; "/: if � 2 P .Rd /
is .˛; ı;m/-robust, then

H 2ım=2

m .�/ � .˛ � "/m:

Proof. It follows from the definition that if � � 2ım=2�, then � is .˛; ı=2;m/-robust. So
it is enough to show that if � is .˛; ı0;m/-robust andm is sufficiently large (depending on
˛; ı0; "), then

H.�;Dm/ � .˛ � "/m:

Now, if � is .˛; ı0; m/-robust, then the �-mass of the union of all the cubes in Dm of
�-measure > 2�˛m is � 2�ı

0m � 1=2 (as there are < 2˛m such cubes). If A denotes the
union of all the cubes in Dm of �-mass � 2�˛m, then �A.Q/ � 21�˛m for Q 2 Dm, and
therefore, by the concavity of entropy,

H.�;Dm/ � �.A/H.�A;Dm/ � .1 � 2
�ı0m/.˛m � 1/ � .˛ � "/m;

provided m is large enough in terms of ı0; ".
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3. Discretized projection theorems

Given � 2 Sd�1, we denote the orthogonal projection x 7! h�; xi, Rd ! R, by P� . If �
is a measure on Rd , we also write �� D P��.

We begin by recalling Bourgain’s discretized projection theorem. There are several
equivalent variants of the statement; the one we state is the special case m D 1 from
[11, Theorem 1].

Theorem 3.1. Given 0 < ˛ < d and 0 < � < 1 there exist ı; � > 0 such that the following
holds for all sufficiently large m. Let X � Bd .0; 1/, and let � 2 P .Sd�1/ satisfy

N .X;m/ � 2m.˛�ı/;

N .X \ B.x; r/;m/ � 2ımr�N .X;m/ for all r 2 Œ2�m; 1�; x 2 Bd .0; 1/;

�.H .r/
\ Sd�1/ � 2ımr� for all r 2 Œ2�m; 1�; H 2 G.d; d � 1/:

Then there is a set E � Sd�1 with �.E/ � 2�ım such that if � 2 Sd�1 nE and X 0 � X
satisfies N .X 0; m/ � 2�ımN .X;m/, then

log N .P�X
0; m/ � m.˛=d C �/:

Note that if we make � and ı slightly smaller, then they also work for nearby values
of � and ˛. Hence there is no loss of generality in assuming that � and ı are continuous
functions of .�; ˛/.

While Bourgain’s projection theorem will be our main tool, we will also need to con-
sider the case in which logN .A;m/=m is close to either 0 or d . Crucially, we need ı to be
independent of log N .A;m/ in the estimates; clearly, in Theorem 3.1 the value of ı must
depend on ˛ if we allow values of ˛ close to 0 or d . Hence we need to revisit other (more
classical) projection theorems, and combine them into a single result that deals with the
three regimes which log N .A; m/=m is close to 0, close to d or far from both 0 and d .
We start with a result that essentially goes back to R. Kaufman [17] in the 1960s. Before
stating it, recall that the � -energy of � 2M.Rd / is defined as

E� .�/ D

“
jx � yj�� d�.x/ d�.y/ 2 .0;1�:

Theorem 3.2. Fix 0 < � < � < 1. Let � 2 P .Sd�1/ satisfy

�.H .r/
\ Sd�1/ � Cr� .H 2 G.d; d � 1/; r > 0/;

and fix � 2 P .Rd /. ThenZ
Sd�1

E� .�� / d�.�/ �

�
1C

C�

� � �

�
E� .�/:

Proof. The claim is implicit in the proof of [22, Theorem 5.1]; since it is not explicitly
stated in this form, we repeat the short argument for completeness. Fix x 2 Rd n ¹0º, and
note that

¹� 2 Rd W jP� .x/j < ıº D x
?
C B.0; ı=jxj/;
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and hence, using the assumption on �,

�¹� 2 Sd�1 W jP� .x/j < ıº � C.ı=jxj/
� :

Using this and Fubini, we estimateZ
Sd�1

jP� .x/j
�� d�.�/ D

Z 1
0

�¹� W jP� .x/j
�� > rº dr

D

Z jxj��
0

1 dr C

Z 1
jxj��

�¹� W jP� .x/j < r
�1=�
º dr

�

�
1C

C�

� � �

�
jxj�� :

Using Fubini, we concludeZ
Sd�1

E� .�� / d�.�/ D

Z
Sd�1

“
Rd�Rd

jP� .x � y/j
�� d�.x/ d�.y/ d�.�/

�

�
1C

C�

� � �

�“
Rd�Rd

jx � yj�� d�.x/ d�.y/;

as claimed.

The following is a quantitative form of K. Falconer’s classical bound on the dimension
of exceptional projections [7].

Theorem 3.3. Let � 2M.Sd�1/ satisfy

�.B.�; r// � r� .� 2 Sd�1; r > 0/;

and fix � 2 P .Rd / such that Ed��.�/ <1. Then �� 2 L2 for �-almost all � , andZ
Sd�1

k��k
2
2 d�.�/ .d Ed��.�/:

Proof. In the course of the proof of [22, Theorem 5.6] it is shown thatZ
Sd�1

Z
Rd
jb�� .x/j2 dx d�.�/ .d

Z
Rd
jb�.x/j2.1C jxj/�� dx:

Note that our � corresponds to � in [22, Theorem 5.6], and t D 1 in our setting. The well-
known expression of the energy in terms of the Fourier transform (see e.g. [22, Theorem
3.10]) together with Plancherel yields the result.

To conclude this section, we combine Theorems 3.1, 3.2 and 3.3 in the language of
robust measures.
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Theorem 3.4. Given 0 < � < 1 there exists � D �.�/ > 0 such that the following holds
for all sufficiently small ı � ı0.�/ and all sufficiently large m � m0.ı/. Fix ˛ 2 Œ0; d �.
Let � 2 P d

m , and let � 2 P .Sd�1/ satisfy

�.B.x; r// � 2ımr˛ for all r 2 Œ2�m; 1�; x 2 Œ0; 1/d ;

�.H .r/
\ Sd�1/ � 2ımr� for all r 2 Œ2�m; 1�; H 2 G.d; d � 1/:

Then there is a set E � Sd�1 with �.E/ � 2�ım such that �� is .
.˛/; ı; m/-robust for
all � 2 Sd�1 nE, where


.˛/ D

8̂̂<̂
:̂
˛ � 6ı if ˛ < �=2;

˛=d C � if �=2 � ˛ � d � �=2;

1 � 6ı if ˛ > d � �=2:

Proof. First case: ˛ 2 Œ�=2; d � �=2�. As already noted, we may assume that in Theo-
rem 3.1 the same values of ı and � work for all ˛ 2 Œ�=2; d � �=2� (hence ı; � depend
on � only). We will in fact assume that ı D ı.�/ is small enough that the conclusion of
Theorem 3.1 holds for 4ı in place of ı.

Theorem 3.1 applies to sets rather than measures, as in our current context. We will
use a fairly standard argument to deal with this. For an integer j � 0, let

Xj D
[
¹Q 2 Dm W 2

�j�1 < �.Q/ � 2�j º;

and set J D ¹j W �.Xj / � 2�2ımº. Note that

�
� 1[
jD2dm

Xj

�
� 2dm2�2dm D 2�dm < 2�2ım:

In particular, J � ¹0; : : : ; 2dm � 1º, and if we set Z D Œ0; 1/d n
S
j2J Xj , then

�.Z/ � 2dm2�2ım C 2�dm � 3dm2�2ım: (3.1)

Now the non-concentration condition on � implies that, for j 2 J ,

�Xj .B.x; r// � �.Xj /
�1�.B.x; r// � 23ımr˛ .x 2 Œ0; 1/d ; r 2 Œ2�m; 1�/:

In particular,
�Xj .Q/ . 2.3ı�˛/m for all Q 2 Dm;

so that N .Xj ; m/ & 2.˛�3ı/m. Also, by definition, 1Xj =jXj j � 2�Xj . Hence

jXj \ B.x; r/j . 23ımjXj jr
˛ .x 2 Œ0; 1/d ; r 2 Œ2�m; 1�/;

and since Xj is a union of 2�m-cubes, this translates into a corresponding bound for the
counting numbers N .Xj \ B.x; r/;m/.
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We have checked that the hypotheses of Theorem 3.1 hold for Xj , j 2 J (with 4ı in
place of ı). LetEj be the exceptional set given by the theorem, and defineE D

S
j2J Ej .

Note that
�.E/ � jJ j2�4ım � 2dm2�4ım < 2�ım:

Fix � 2 Sd�1 nE, and let A be a set with P��.A/ � 2�ım. It follows from (3.1) and the
decomposition

� D �.Z/�Z C
X
j2J

�.Xj /�Xj

that there is j 2 J such that

�Xj .P
�1
� A/ � �.P�1� A/ � �.Z/ � 1

2
2�ım;

and hence jXj \ P�1� Aj � 1
4
2�ımjXj j. Again using the fact that Xj is a union of cubes

in Dm, we get a corresponding estimate for counting numbers. Since � …Ej , Theorem 3.1
implies that

log N .A;m/ � .˛=d C �/m;

and thus we have verified that P�� is .˛=d C �; ı;m/-robust, as desired.

Second case: ˛ < �=2. It follows from the non-concentration assumption on � that

E˛.�/ .
m�1X
pD0

2p˛.� � �/¹.x; y/ W jx � yj � 21�pº

�

m�1X
pD0

2p˛ max
x
�.B.x; 21�p// . m2ım:

Hence we deduce from Theorem 3.2 (applied with C D 2ım and ˛ in place of � ) thatZ
Sd�1

E˛.�� / d�.�/ .� m22ım;

and therefore �.E/ � 2�ım, where

E D ¹� 2 Sd�1 W E˛.�� / � C�m2
3ım
º;

for a suitable C� > 0. Fix � 2 Sd�1 n E and suppose �� .A/ � 2�ım. Then, writing
� D .�� /A,

E˛.�/ . �� .A/
�2E˛.�� / � C�m2

5ım:

On the other hand, it follows e.g. from [18, Lemma 3.1] and Cauchy–Schwarz that

E˛.�/ &˛ 2˛m
X
I2Dm

�.I /2 � 2˛mN .A;m/�1:

Combining the last two displayed equations we see that �� is .˛ � 6ı; ı; m/-robust if m
is large enough, as claimed.



P. Shmerkin 16

Third case: ˛ > d � �=2. To begin, we note that, arguing as above and using the non-
concentration assumption on �, we get

Ed��.�/ .
m�1X
pD0

2p.d��/ max
x
�.B.x; 21�p// .� 2ım:

Applying Theorem 3.3 to 2�ım�, we deduce that, provided m is large enough,Z
Sd�1

k��k
2
2 d�.�/ . 22ım:

Let E D ¹� W k��k22 � Cd2
3ımº, where Cd is large enough, so that �.E/ � 2�ım. Fix

� 2 Sd�1 nE and A such that �� .A/� 2�ım. Writing again � D .�� /A, we have k�k22 �
�� .A/

�2k��k
2
2 � Cd2

5ım, and by a well-known application of Cauchy–Schwarz (see
e.g. [18, Lemma 6.5]) we conclude that N .A; m/ � 2mk�k�22 � 2

.1�6ı/m, confirming
that �� is .1 � 6ı; ı;m/-robust.

4. Multiscale decompositions of regular measures

4.1. A new multiscale decomposition

The goal of this section is to establish Theorem 4.1, providing a new kind of multiscale
decomposition of a regular measure �. Recall that, by Lemma 2.4, one can decompose
an arbitrary 2�m-measure into regular pieces plus an error term so, as we will see, this
decomposition is also useful to study general measures.

Roughly speaking, the conclusion of the theorem says that given a regular measure �,
one can find a sequence of scales 2�mj such that for Q 2 Dmj , the conditional mea-
sures �Q satisfy a near-Frostman decay condition. Moreover, and crucially, for a positive
density of scales (weighted according to the measure), the Frostman exponent is bounded
away from 0 and 1. This last claim fails if � is the uniform measure on a square, and the
assumptions of the theorem are meant precisely to avoid this counterexample. Moreover,
the scales Bj can be chosen to satisfy BjC1 � 2Bj , which is critical for linearization
arguments.

Theorem 4.1. For every u > 0 and " > 0 there are � D �.u/ > 0 and � D �."/ > 0 such
that the following holds for all sufficiently large T � T0."/ and ` � `0.T; "/.

Let � be a .� I T /-regular measure on Œ0; 1/d with .dyadic/ support X , and write
m D `T . Suppose

�.B.x; jX j1=d // � 2�um for all x: (4.1)

Then there are a collection ¹ŒAj ; Bj /º of pairwise disjoint intervals contained in Œ0; `/
and numbers j̨ 2 Œ0; d � such that the following hold:

(i) �` � Bj � Aj � Aj for all j .



A non-linear version of Bourgain’s projection theorem 17

(ii) Write mj D T .Bj � Aj /. For each Q 2 DTAj ,

�Q.B.x; r// � 2"mj r j̨ for all r 2 Œ2�mj ; 1�:

(iii)
P
j j̨mj � log N .X;m/ � 2"m.

(iv)
P
¹mj W j̨ 2 Œ�; d � ��º � �m.

Theorem 4.1 will be proved in the rest of the section. Following [18], the problem
is translated into one about Lipschitz functions on the line, but both the statement of the
problem and the solution differ substantially from [18].

4.2. Decompositions of Lipschitz functions into almost linear/superlinear pieces

In this section we deal with the following kind of problem: given a Lipschitz function
f W Œa; b�! R, we aim to find non-overlapping intervals Ij such that f jIj is close to
linear/bounded below by a linear function, and the union of the Ij exhausts most of the
original interval Œa; b�. We start by making some of these concepts precise.

Definition 4.2. Given a function f W Œa; b�! R, we let

sf .a; b/ D
f .b/ � f .a/

b � a

be the slope of the linear function that agrees with f on a and b. We also write

Lf;a;b.x/ D f .a/C sf .a; b/.x � a/

for the linear function that agrees with f at a and b. We say that .f; a; b/ is "-linear if

jf .x/ � Lf;a;b.x/j � "jb � aj for all x 2 Œa; b�:

Likewise, we say that .f; a; b/ is "-superlinear if

f .x/ � Lf;a;b.x/ � "jb � aj for all x 2 Œa; b�:

Sometimes we say that f is linear/superlinear on Œa; b� to mean that .f; a; b/ is lin-
ear/superlinear.

The following is our basic lemma for finding intervals on which f is "-linear. A small
variant of the lemma was posed as a problem on the 20-th Annual Vojtěch Jarník Interna-
tional Mathematical Competition; I thank K. Héra for pointing this out. The proof below
is repeated from [25].

Lemma 4.3. For every " > 0 there is ı D ı."/ > 0 such that the following holds: for
any 1-Lipschitz function f W Œa; b� ! R there exists a subinterval Œc; d � � Œa; b� with
d � c � ı.b � a/ such that .f; c; d/ is "-linear. In fact, ı D "b1="c works.
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Proof. By replacing f with �f if needed, we may assume that f .b/ � f .a/. We claim
that if .f; a; b/ is not "-linear, then there exists an interval Œa0; b0� � Œa; b� with b0 � a0 �
".b � a/ such that sf .a0; b0/ � sf .a; b/C ". Suppose, then, that .f; a; b/ is not "-linear,
which by definition means that there is x 2 Œa; b� such that

jf .x/ � Lf;a;b.x/j > ".b � a/:

Replacing, if needed, f by the flip zf .x/ D �f .aC b � x/ and x by aC b � x, we may
assume that f .x/ � Lf;a;b.x/ > ".b � a/. We have

sf .a; x/ D
f .x/ � f .a/

x � a
�
sf .a; b/.x � a/C ".b � a/

x � a
� sf .a; b/C ":

On the other hand,

x � a � f .x/ � f .a/ � sf .a; b/.x � a/C ".b � a/ � ".b � a/;

so Œa; x� is the claimed interval.
Now let Œa0; b0� D Œa; b�, and inductively apply the claim and set ŒajC1; bjC1� D

Œa0j ; b
0
j � so long as .f; aj ; bj / is not "-linear. Since sf .a0; b0/ � 0 and sf .aj ; bj / � 1, the

process must stop in j � b1="c steps. Then Œaj ; bj � is the desired interval.

By iterating the above lemma, we can cover most of Œa; b� by intervals on which f is
"-linear. We use L to denote Lebesgue measure.

Lemma 4.4. For every " > 0 there is � > 0 such that the following holds. For any 1-
Lipschitz function f W Œa; b�! R there exists a family ¹Œcj ; dj �ºMjD1 of non-overlapping
intervals such that:

(i) .f; cj ; dj / is "-linear for all j .

(ii) dj � cj � �.b � a/ for all j .

(iii) L.Œa; b� n
S
j Œcj ; dj �/ � ".b � a/.

Proof. Apply Lemma 4.3 to the interval Œa; b� to obtain an interval Œx1; y1�� Œa; b�. Next,
apply Lemma 4.3 to the intervals Œa;x1� and Œy1; b� to obtain intervals Œx2; y2� and Œx3; y3�
(we allow for degenerate intervals). Continue inductively. In each step, a proportion at
least ı D ı."/ is removed from the length of the set Œa; b� n

S2`�1
kD1 Œxk ; yk �, so after a

number N."/ of steps the remaining length is at most ."=2/jb � aj. The total number
of intervals is 2N."/ � 1. Hence, if � D "2�.N."/C1/, the intervals of length < � jb � aj

contribute length at most ."=2/jb � aj. Removing them from the collection of all Œxk ; yk �
we obtain the desired collection of intervals Œcj ; dj �.

Corollary 4.5. For every " > 0 there is � D �."/ > 0 such that the following holds. For
any 1-Lipschitz function f W Œa; b�! R there exists a family of non-overlapping intervals
¹Œcj ; dj �ºj such that:

(i) .f; cj ; dj / is "-linear for all j .

(ii) �.b � a/ � dj � cj � cj for all j .

(iii) L.Œa; b� n
S
j Œcj ; dj �/ � "jb � aj.



A non-linear version of Bourgain’s projection theorem 19

Proof. Let � D �."/ be the number given by Lemma 4.4. Let k0 be the largest (negative)
integer such that 2k0C1 � ". Apply Lemma 4.4 to the intervals

Ik D ŒaC 2
k.b � a/; aC 2kC1.b � a/�; k D k0; : : : ;�2;�1;

and collect all resulting intervals. It is easy to check that the conclusion holds with 2" in
place of " and "� in place of � , which is a formally equivalent statement.

The next lemma is similar to Lemma 4.4, but we deduce the additional information
that the slopes of f on the subintervals are increasing; the price to pay is that f becomes
"-superlinear on the subintervals (instead of "-linear).

Lemma 4.6. Given " > 0 there is � D �."/ > 0 such that the following holds. Let f W
Œa; b�! R be a 1-Lipschitz function. Then there exists a collection ¹Œak ; bk �ºk of non-
overlapping intervals such that bkC1 � ak and:

(i) .f; ak ; bk/ is "-superlinear for all k.

(ii) bk � ak � �.b � a/ for all k.

(iii) L.Œa; b� n
S
k Œak ; bk �/ � "jb � aj.

(iv) The sequence sf .ak ; bk/ is increasing.

Proof. The idea (once bk is given) is to define ak as the number a < bk that maximizes
sf .a; bk/. Unfortunately, for a general Lipschitz function such a number may not exist
and, more importantly, it can be too close to bk . We deal with this issue by restricting a
to the set of endpoints of intervals given by Lemma 4.4. We proceed to the details.

Without loss of generality, f .a/ D 0. Let � D �."2=4/ be the number given by Lem-
ma 4.4 applied with "2=4 in place of ", and let ¹Œci ; di �ºi be the intervals given by the
lemma. Write E D Œa; b� n

S
i .ci ; di /, so that L.E/ � "2.b � a/=4. Let C D ¹ciº [

¹diº [ ¹aº. For each y 2 .a; b� let x D P.y/ be the element of C \ Œa; y/ that maximizes
sf .x; y/ (if there are several such elements, pick the largest one). Let y0 D b and so long
as yj > a inductively set yjC1 D P.yj /. By construction, the sequence sf .yjC1; yj / is
increasing. Let

J1 D ¹j W jŒyjC1; yj � \Ej � ."=2/.yj � yjC1/º;

J2 D ¹j W yj � yjC1 < �.b � a/º:

We let ¹Œak ; bk �º be the collection ¹ŒyjC1; yj � W j … J1 [ J2º, ordered so that bk � akC1.
The claims that sf .ak ; bk/ is increasing and bk � ak � �.b � a/ are clear. Also, since
L.E/ � "2.b � a/=4,X

j2J1

.yj � yjC1/ � 2L.E/=" � ."=2/.b � a/:

Likewise, any interval ŒyjC1; yj � with yj � yjC1 < �.b � a/ is contained inE, and there-
fore X

j2J2

.yj � yjC1/ � L.E/ � ."=2/.b � a/:
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It follows that
L
�
Œa; b� n

[
k

Œak ; bk �
�
� ".b � a/:

It remains to prove that if j … J1 [ J2, then .f; yjC1; yj / is "-superlinear. For simplicity,
we write y D yjC1; y

0 D yj . By the definition of J1, the interval Œy; y0� can be split
into the union of some intervals .Œci ; di �/i2I plus a remainder set of measure at most
."=2/.y0 � y/. Since y D P.y0/, we know that

sf .x; y
0/ � sf .y; y

0/ .x 2 ¹ci ; diº; i 2 I /;

which in turn implies that

Lf;ci ;di .x/ � Lf;y;y0.x/ .x 2 Œci ; di �; i 2 I /:

Since f is ."2=4/-linear on Œci ; di �, we deduce that, for x 2 Œci ; di �,

f .x/ � Lf;ci ;di .x/ � ."
2=4/.di � ci / � Lf;y;y0.x/ � ."

2=4/.y0 � y/:

Finally, if x 2 Œy; y0�\E, we can find x0 D ci or x0 D di with jx0 � xj � ."=2/.y0 � y/.
Applying what we already know to x0 and the 1-Lipschitz property of f , we conclude

f .x/ � f .x0/ � ."=2/.y0 � y/ � Lf;y;y0.x/ � ."
2=4C "=2/.y0 � y/;

completing the proof.

We are now able to prove the main result of this section. The statement is similar to
that of the previous lemmas, but the crucial new element is that the slopes of f W Œ0;1�!R
on many of the subintervals are bounded away from 0 and 1. Note that this cannot hold
for the function f that has slope 0 on Œ0; 1� s� and slope 1 on Œ1� s; 1�, where s D f .1/.
In other words, we must have f .1 � s/ > f .0/. It turns out that this assumption is also
sufficient, with the parameters measuring “many” and “bounded away” unsurprisingly
depending on the difference f .1 � s/ � f .0/.

Proposition 4.7. Given s; t 2 .0; 1/ there is � D �.s; t/ > 0 such that the following holds
for all sufficiently small " � "1.s; t/ and � D �."/ > 0.

Let f W Œ0; B�! R be a non-decreasing, 1-Lipschitz function with

f .0/ D 0; f ..1 � s/B/ � tB; f .B/ D sB:

Then there is a collection ¹Œaj ; bj �ºj of intervals such that bjC1 � aj and:

(i) .f; aj ; bj / is "-superlinear for all j .

(ii) �B � bj � aj � aj for all j .

(iii) L.Œ0; B� n
S
j Œaj ; bj �/ � "B .

(iv)
P
¹bj � aj W sf .aj ; bj / 2 Œ�; 1 � ��º � �B .

Moreover, the values of � and "1 can be chosen to be uniform over s; t varying in any
compact subset of .0; 1/.
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Proof. Replacing f .x/ by g.x/ D f .Bx/=B W Œ0; 1�! R we may and do assume that
B D 1.

Let � D �.s; t/ > 0 be a small enough number to be chosen later. We split Œ0; 1� as a
union of non-overlapping intervals ¹In D Œcn; cnC1�ºNnD0 with cn increasing such that:

(1) jI0j D 4� .

(2) For each n 2 Œ1; N �, � � jInj � 2� .

(3) There is n0 2 Œ1; N � such that 1 � s D cn0 .

This can be easily arranged if � is small enough in terms of s. For example, we can take
I0 D Œ0; 4��, and then split each of Œ4�; 1� s� and Œ1� s; 1� into intervals of length equal
to or slightly larger than � . We note the following consequence of (1) and (2) that will be
used later: for each n 2 Œ1; N �,

jInj C jInC1j � c1 � cn:

Fix "0; we will later require it to be small enough in terms of � . We will eventually
choose " D 4"0=� . Let �0 D �0."0/ be the smaller of the values of � arising from Corol-
lary 4.5 and Lemma 4.6. We apply Corollary 4.5 to the interval I0, and Lemma 4.6 to
the intervals In for each n 2 Œ1; N �, in both cases with "0 in place of ", to obtain inter-
vals ¹Œan;k ; bn;k �ºk . We write sn;k D sf .an;k ; bn;k/ for simplicity (the function f is fixed
throughout the proof).

We let � 2 .0; �/ be a small parameter that will ultimately be chosen small enough in
terms of � (hence in terms of s; t only); in fact, � D �=11 works. We subdivide the indices
n 2 Œ1; N � into various disjoint classes:

I1 D
°
n 2 Œ1; N � W

X
k

¹bn;k � an;k W sn;k � �º � .1 � �/jInj
±
;

I2 D
°
n 2 Œ1; N � W

X
k

¹bn;k � an;k W sn;k � 1 � �º � .1 � �/jInj
±
;

I3 D
°
n 2 Œ1; N � n .I1 [ I2/ W

X
k

¹bn;k � an;k W sn;k … Œ�; 1 � ��º � .1 � �=2/jInj
±
;

I4 D Œ1; N � n .I1 [ I2 [ I3/:

Roughly speaking, if n 2 I1 then f .cnC1/ � f .cn/ (so that f must be roughly constant
on In); if n 2 I2, then f is close to a linear function with slope 1 on In; if n 2 I3, then
f is close to a piecewise linear function that has slope 0 in an initial interval Œcn; zn� and
then slope 1 on Œzn; cnC1� (with zn not too close to either cn or cnC1).

Assume first that I4 ¤ ;. Note that, for any n 2 Œ1; N �,X
k

bn;k � an;k � .1 � "0/jInj � .1 � �=4/jInj;

provided "0 � �=4. If n 2 I4, thenX
k

¹bn;k � an;k W sn;k … Œ�; 1 � ��º � .1 � �=2/jInj;



P. Shmerkin 22

and hence X
¹bn;k � an;k W sn;k 2 Œ�; 1 � ��º �

�

4
jInj �

�2

4
:

On the other hand, for each n 2 Œ0; N �,

bn;k � an;k � jInj � cn � an;k ; bn;k � an;k � �0jInj � ��0;

so the collection ¹Œan;k ; bn;k �ºn;k already works (we take " D "0 in this case). We hence
assume that I4 is empty from now on.

Claim 1. There is n 2 Œn0; N � such that n … I2, provided � is chosen small enough in
terms of s; t; in fact, � < 1 �

p
1 � t=s is enough .any value of � works if t=s > 1/.

Indeed, suppose n 2 I2 for all n 2 Œn0; N �. Since

f .bn;k/ D f .an;k/C sn;k.bn;k � an;k/;

and f is non-decreasing, it easily follows from the definition of I2 and the inequality
� � � that

f .cnC1/ � f .cn/C .1 � �/
2.cnC1 � cn/

for all n 2 I2. Adding from n0 to N , and using f .cn0/ D f .1 � s/ � t , we get

s D f .1/ � t C .1 � �/2 � s;

which contradicts the choice of � .

Claim 2. There is n 2 Œ1; n0� such that n … I1, provided � < t=6.

To see this, assume on the contrary that n 2 I1 for all n 2 Œ0; n0� and note that since
f is 1-Lipschitz and � � � ,

f .c1/ � jI0j D 4�;

f .cnC1/ � f .cn/C 2� jInj for all n 2 Œ1; n0�;

and hence, telescoping,

f .1 � s/ D f .cn0/ � f .c1/C 2� � 6�:

This contradicts the assumption f .1 � s/ > t if � < t=6.
In conclusion, since we are assuming that I4 D ;, there must exist n 2 Œ2; N � such

that n � 1 2 I2 [ I3 and n 2 I1 [ I3. We work with this fixed value of n for the rest of
the proof. Unpacking the definitions, this implies thatX

¹bn�1;k � an�1;k W sn�1;k � 1 � �º �
�

2
jIn�1j;X

¹bn;k � an;k W sn;k � �º �
�

2
jInj:

Let
k0 D min ¹k W sn�1;k � 1 � �º:
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Write za D an�1;k0 , and note that za � cn � �
2
jIn�1j. Recall that sn�1;k is increasing in k,

f is "0-superlinear on Œan�1;k ; bn�1;k �, and
P
k bn�1;k � an�1;k � .1� "0/jIn�1j. It then

follows that

f .x/ � f .za/C .1 � �/.x � za/ � 2"0jIn�1j for all x 2 Œza; cn�: (4.2)

Likewise, if we set
k00 D max ¹k W sn;k � �º;

and write zb D bn;k00 , then zb � cn C �
2
jInj and

f .cn/ � f .x/ � f .zb/ � f .x/C �.zb � x/C "0jInj for all x 2 Œcn; zb�: (4.3)

We will show that
� � sf .za; zb/ � 1 � �: (4.4)

provided � � �=11 and "0 � �. Indeed,

sf .za; zb/ �
.cn � za/C .� C "0/jInj

zb � za
.(4.3) for x D cn/

� 1 �
jInj.�=2 � 2�/

zb � za
.zb � cn C

�
2
jInj/

� 1 � 1
3
.�=2 � 2�/ � 1 � � .(2); � � �=10/:

On the other hand,

sf .za; zb/ �
f .cn/ � f .za/

zb � za
.f non-decreasing/

�
.cn � za/.1 � �/ � 2"0jIn�1j

zb � za
.(4.2) for x D cn/

�
.�=2/jIn�1j.1 � �/ � 2"0jIn�1j

jIn�1j C jInj
.za � cn �

�
2
jIn�1j/

�
1
3
.�=2.1 � �/ � 2�/ � � .(2); � � �=11; � � 1/:

We have verified that (4.4) holds. We will now use this to show that .f; za; zb/ is "-
superlinear, where we define " D 4"0=� . It follows from (4.2) and the right-hand side
inequality in (4.4) that, for x in the interval Œza; cn�,

f .x/ � L
f;za;zb

.x/ � 2"0jIn�1j:

Now, for x 2 Œcn; zb� we know from (4.3) that

f .x/ � f .zb/ � �.zb � x/ � "0jInj

D f .za/C sf .za; zb/.zb � za/ � �.zb � x/ � "0jInj

� f .za/C sf .za; zb/.x � za/ � "0jInj D Lf;za;zb.x/ � "0jInj;
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using sf .za; zb/ � � in the last line. Since max.jIn�1j; jInj/ � .�=2/�1.zb � za/, we have
shown that .f; za; zb/ is .4"0=�/-superlinear, as claimed.

Now the collection consisting of Œza; zb� together with all the intervals ¹Œazn;k ; bzn;k �ºNznD0
disjoint from Œza; zb� is easily seen to satisfy the claims in the proposition: the intervals
Œazn;k ; bzn;k � satisfy (i)–(ii) by the same reasoning as in the case I4 ¤ ;, while we have
verified that .f; za; zb/ is "-superlinear,

�2=2 � � jIn�1j=2 � jzb � zaj � jIn�1j C jInj � cn�1 � za;

and (iv) follows with � D min.�2=2; �/ from jzb � zaj � �2=2 and (4.4). Finally, (iii)
also follows since the total length of the intervals is at least the sum of the lengths of
Œazn;k ; bzn;k �, which is at least 1 � "0 � 1 � " by construction.

Finally, it is clear that all the parameters appearing in the proof can be taken to work
in a neighborhood of s and t , and this completes the proof of the proposition.

4.3. The proof of Theorem 4.1, and a variant

We now convert the combinatorial decompositions from the previous section into suitable
multiscale decompositions of regular measures, in particular proving Theorem 4.1. We
start with a variant of Proposition 4.7 in which the endpoints of the intervals Œaj ; bj � lie
on a lattice.

Corollary 4.8. Let f W Œ0; B�! R be a 1-Lipschitz function satisfying the assumptions
of Proposition 4.7. Then in Proposition 4.7 we may further require that the numbers aj
and bj lie in .B=`/N0 provided ` � `0."/ is sufficiently large .after changing the values
of � and � slightly/.

Proof. We may assume B D 1. Let ¹Œaj ; bj �º be the intervals given by Proposition 4.7,
and set

zaj D d`aj e=`; zbj D b`aj c=`:

Then aj � zaj � aj C 1=` and bj � 1=` � zbj � bj . Since f is 1-Lipschitz and non-
decreasing, the same inequalities are preserved when applying f . If ` is taken large
enough in terms of � (hence in terms of "), then zbj � zaj � bj � aj � �2 (say) so that
(ii) and (iii) continue to hold with �=2 in place of � . Likewise, a short calculation shows
that if ` is large enough then

js
f;zaj ;

zbj
� sf;aj ;bj j � ";

and if .f; aj ; bj / is "-superlinear, then .f; zaj ; zbj / is .2"/-superlinear. Using these facts it
is easy to check that (i) and (iv) continue to hold for the intervals Œzaj ; zbj �, with 2" in place
of " and, say, �=2 in place of �.

We can now complete the proof of Theorem 4.1.
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Proof of Theorem 4.1. Let

� D inf
s2Œu=4;1�u=2�

�.s; u=.2d// > 0; "1 D inf
s2Œu=4;1�u=2�

"1.s; u=.2d// > 0

be the values given by Proposition 4.7, and note that they depend only on u and d . Fix
" 2 .0; "1/, and let �."/; `0."/ be the numbers given by Proposition 4.7. Take ` � `0."/.

Let f W Œ0; `�! Œ0; `� be the function such that f .0/ D 0,

f .j / D
1

d
.�1 C � � � C �j / .j D 1; : : : ; `/;

and interpolates linearly between j and j C 1. Since �i 2 Œ0; d �, the function f is 1-
Lipschitz and non-decreasing. Let ¹ŒAj ; Bj �ºMjD1 be the intervals provided by Proposition
4.7. In light of Corollary 4.8, we may and do assume that Aj ; Bj 2 N0.

Let

s D
f .`/

`
D
�1 C � � � C �`

`
:

Since jX j � 2�dm, it follows from (4.1) that �.Q/. 2�um for allQ 2Dm, and therefore
N .X; m/ & 2um. On the other hand, we may cover Œ0; 1�d by . jX j�1 balls of radius
jX j1=d , whence 1 . jX j�12�um. Hence, if T is large enough in terms of u, we may
assume

2.u=2�d/m � jX j � 2�um=2: (4.5)

Now, from this and Lemma 2.2 (ii), we deduce that, provided 1=T � " � u=2,

1 � s � " �
log jX j
�md

� 1 � s H) s 2 Œu=4; 1 � u=2�:

Let j D b.1 � s/`c, and note that any cube Q of side length 2�jT can be covered by
Cd;T D Od;T .1/ balls of radius 2�.1�s/m � jX j1=d . It follows from our assumption (4.1)
that

log�.Q/ � logCd;T � um � ." � u/m;

provided ` is large enough in terms of "; d; T . On the other hand, we see from Lem-
ma 2.2 (i) that for all 2�jT -dyadic cubes Q hitting X , we have the lower bound

log�.Q/ � �"m � .m=`/.�1 C � � � C �b.1�s/`c/;

provided T is large enough in terms of ". Comparing the upper and lower bounds on
log�.Q/, we conclude

f ..1 � s/`/ �
1

d
.�1 C � � � C �b.1�s/`c/ �

1

d
.u � 2"/` �

u`

2d
;

provided " is small enough in terms of u. We have therefore checked that the hypotheses
of Proposition 4.7 are satisfied with our choice of parameters.

Claim (i) is clear. Let j̨ D dsf .Aj ; Bj /. By the definition of f ,

sf .Aj ; Bj / D
�AjC1 C � � � C �Bj

d.Bj � Aj /
:
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Since .f; Aj ; Bj / is "-superlinear,

d.f .Aj C k/ � f .Aj // D �AjC1 C � � � C �AjCk � k j̨ � d".Bj � Aj /

for any k 2 Œ0; Bj � Aj �. Fix Q 2 DTAj . It follows from Lemma 2.2 (i) that

�Q.R/ � 2d"T .Bj�Aj /2�kT j̨

for all R 2 DkT .suppd.�
Q//. Any ball B D B.x; r/ with x 2 supp.�Q/, r 2 Œ2�mj ; 1�

can be covered by OT .1/ 2T -adic cubes of side length 2�kT � r . Therefore, provided `
is taken large enough in terms of "; T ,

�Q.B.x; r// � 22d"mj r j̨

for all r 2 Œ2�mj ; 1� and all x 2 supp.�Q/. This gives (ii), with 2d" in place of ".
For the third claim, write Œ0; `� n

S
j ŒAj ;Bj �D

S
i ŒCi ;Di � with the intervals ŒCi ;Di �

non-overlapping. We know from Corollary 4.5 that
P
i .Di �Ci /�"`, and sf .Ci ;Di /�1

simply because f is 1-Lipschitz. On the other hand, telescoping,

`sf .0; `/ D
X
j

.Bj � Aj /sf .Aj ; Bj /C
X
i

.Di � Ci /sf .Ci ;Di /:

Recalling that j̨ D dsf .Aj ; Bj /, we deduce thatX
j

j̨mj �

�
1

`
.�1 C � � � C �`/ � "

�
m:

Applying Lemma 2.2 (i) and taking T � 1=�, we obtain (iii).
Finally, from the last part of Proposition 4.7 we obtainX
¹mj W j̨ 2 Œ�; d � ��º � T

X
¹Bj � Aj W sf .Aj ; Bj / 2 Œ�=d; 1 � �=d �º � �m:

Hence (iv) holds, and this completes the proof.

In a very similar (but simpler) way, we obtain the following:

Theorem 4.9. For every " > 0 there is � D �."/ > 0 such that the following holds for all
sufficiently large T � T0."/ and for all large enough ` � `0.T; "/.

Let � be a ..�1; : : : ; �`/I T /-regular measure on Œ0; 1/d with support X , and write
mD `T . Then there are a collection ¹ŒAj ;BjC1/º of pairwise disjoint intervals contained
in Œ0; `/ and numbers j̨ such that the following hold:

(i) �` � Bj � Aj � Aj for all j .

(ii) Write mj D T .Bj � Aj /. For each Q 2 DTAj ,

2�"mj r j̨ � �Q.B.x; r// � 2"mj r j̨ for all r 2 Œ2�mj ; 1�; x 2 supp.�Q/:

(iii)
P
j j̨mj � .

�1C���C�`
`

� "/m.

The proof is the same as that of Theorem 4.1, except that we rely on Corollary 4.5
(providing a decomposition into "-linear, rather than superlinear, pieces) instead of Propo-
sition 4.7.
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5. Proof of main results

5.1. A multiscale lower bound for entropy

In this section we prove Theorems 1.3 and 1.7. The proofs rely on a multiscale bound for
the entropy of (non-linear) projections that goes back in various forms to [12, 18, 23, 27].
We denote the orthogonal projection onto a plane V 2 G.d; k/ by PV .

Proposition 5.1. Fix 1 � k < d . Let �; � 2 P .Œ0; 1/d / and let ŒAi ; Bi /
q
iD1 be disjoint

subintervals of .0; m� such that Bi � 2Ai . Let F W U ! Rk be a C 2 map defined in a
neighborhood of supp.�/ such that DF.x/ has full rank k for all x 2 supp.�/. Denote

V.x/ D ker.DF.x//? 2 G.d; k/:

Assume furthermore that � � ��. Then

Hm.F �/ � �OF;d .q/C

q�1X
iD0

X
Q2DAi

�.Q/Hm�
Bi�Ai

.PV.xQ/�
Q/;

where xQ is an arbitrary point in Q. The constant implicit in OF;d .q/ depends in a
continuous manner on the C 2 norm of F .

Since this particular statement does not appear in the literature, but the proof is a
minor modification of arguments in [12, 18, 23], we defer the proof to Appendix A.

Note that, in the case k D 1, V.x/ is the line generated by dirF 0.x/, and PV.x/.�/ D
hdirF 0.x/; �i. This is the only case needed for the proofs of Theorems 1.3 and 1.7.

A key feature of Proposition 5.1 is that even though the map F is (possibly) non-
linear, the lower bound on Hm.F �/ involves only linear projections. This is why we will
ultimately be able to deduce statements about families of smooth maps from the (linear)
projection theorems discussed in Section 3.

5.2. Proof of Theorem 1.7

The number � and the family F D¹F� W�2ƒº are given. The proof will involve a number
of other small parameters, whose dependencies are as follows: "1 D "1.�/, � D �.�/,
�D �.�; �/, �0 D �0.�; �/, ı0 D ı0.�/, � D �.�; �; �; "1; ı0/, � D �.�/. All the parameters
are also allowed to depend on the ambient dimension d .

We will show that the claim holds with �0=2 in place of �, provided " D ".�; �; �; �0/
is taken small enough, and m D T `, where T D T ."; �/, ` D `.�; T;F / are sufficiently
large integers. If m is not of the form T `, we consider instead m0 D T bm=T c.

Let
� D 1X=jX j;

and let Y be the 2�m-set given by Lemma 2.3 applied to �. Taking T large enough in
terms of ", we may assume

jY j � 2�."=2/mjX j: (5.1)



P. Shmerkin 28

The non-concentration hypothesis (1.5) yields

�Y .B.x; jY j
1=d // � �.Y /�1�.B.x; jX j1=d // � 2."=2��/m � 2��m=2;

taking " small enough in terms of �. We can therefore apply Theorem 4.1 to the measure
�Y , with uD �=2. Let "1D "1.�=2/ and �D �.�=2/ be the numbers given by the theorem.
Pick 0 < � < "1, let � D �.�/, and suppose that T is chosen large enough in terms of �,
and ` is chosen large enough in terms of � and T , that the conclusions of Theorem 4.1
hold (with � in place of ").

Let ¹ŒAj ; Bj /ºj and ¹ j̨ ºj be the intervals and exponents obtained from Theorem 4.1
applied to �Y . Write

mj D T .Bj � Aj /:

Let � D �.�/; ı0 D ı0.�/ be the numbers provided by Theorem 3.4. Our aim is to apply
Theorem 3.4 to the measures �QY , Q 2 DTAj and �x WD �x�ƒx , and the scales 2�mj .
Since mj � �m by the first part of Theorem 4.1, the non-concentration assumption (1.6)
on �x implies that

�x.H
.r// � 2."=�/mj r� .H 2 G.d; d � 1/; r 2 Œ2�mj ; 1�/: (5.2)

Given Q 2 DTAj , we know from Theorem 4.1 (ii) that

�
Q
Y .B.x; r// � 2

�mj r j̨ .r 2 Œ2�mj ; 1�/:

Thus, if � and then " are chosen so that "=� � � < ı0.�/, the hypotheses of Theorem 3.4
are met with � in place of ı. Note that by making ` large enough in terms of all other
parameters, we can make �mj large so that the theorem is applicable.

Recall that given x 2 Œ0; 1/d , the only element of DTAj containing x is denoted by

QTAj .x/. We apply Theorem 3.4 to the measures �
QTAj .x/

Y and �x , to obtain setsE.x;j /
with

�x.E.x; j // � 2
��mj � 2���m

such that
e … E.x; j / H) Pe�

QTAj .x/

Y is .
. j̨ /; �;mj /-robust;

where 
 is the function from Theorem 3.4. Note that 
.a/ � a=d � 6� for all a 2 Œ0; d �.
A little algebra shows that, provided � < �=.2d/ (which we may assume) and � is small
enough in terms of �, then


.a/ � a=d C � if a 2 Œ.�C 6�/d=.d � 1/; d � d� � 6d��:

Making � and � smaller in terms of � and d only, we may further assume that


.a/ �

´
a=d � 6� if a … Œ�; d � ��;

a=d C � if a 2 Œ�; d � ��:
(5.3)
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Let E.x/ D
S
j E.x; j /. Then

�x.E.x// � .`=�/2
���m

� 1=2; (5.4)

assuming ` is large enough in terms of �. Recalling that �x D �x�ƒx and that
�.ƒx/ � 2

�"m by assumption, this shows that there exists a set Gx � ƒ such that
�.Gx/ � 2

�"m=2 and �x.�/ … E.x/ for all � 2 Gx . A standard argument shows that
the set ¹.�; x/ W �x.�/ … E.x/º is Borel. By Fubini, we can find � 2 supp.�/ and a set
Z � Y with

jZj � 1
2
2�"mjY j � 2�2"mjX j; (5.5)

and such that � 2 Gx for all x 2 Z. We work with this value of � for the rest of the proof,
and note that

P�x.�/�
QTAj .x/

Y is .
. j̨ /; �;mj /-robust for all j and x 2 Z: (5.6)

On the other hand, we estimateX
j


. j̨ /mj �
X

j W j̨…Œ�;d���

. j̨ =d � 6�/mj C
X

j W j̨2Œ�;d���

. j̨ =d C �/mj .Eq. (5.3)/

� �6�mC
1

d

X
j

j̨mj C �
X

j W j̨2Œ�;d���

mj

� �6�mC .log N .Y;m/ � 2�/=d C ��m .Thm. 4.1 (iii)–(iv)/

� .log N .X;m//=d C .�� � 9�/m .Eq. (5.1); " � �/:

Hence, making � small enough in terms of � and �, and writing �0 D ��=2, we get

1

m

X
j


. j̨ /mj �
log N .X;m/

dm
C �0: (5.7)

Note that the number q of intervals ŒAj ; Bj � is at most 1=� . For each Q 2 DTAj such
that Q \ Z ¤ ;, pick some xQ 2 Q \ Z. We are now ready to apply Proposition 5.1.
Suppose Z0 � Z, jZ0j � 2�"mjZj. Recalling (5.5), we get jZ0j � 2�2"m�1jY j. Applying
Proposition 5.1 to � D �Z0 , � D �Y , � D 22"mC1, and the sequence .ŒTAj ; TBj �/

q
jD1,

we get

Hm.F��Z0/ � �OF .1=�/C

qX
jD1

X
Q2DTAj WQ\Z

0¤;

�Z0.Q/H
m22"mC1

mj
.P�xQ .�/�

Q
Y /:

(5.8)

Recall from (5.6) that P�xQ .�/�
Q
Y is .
. j̨ /; �; mj /-robust. Lemma 2.8 then yields (pro-

vided ` is large enough in terms of �, " and � , which makes mj large enough in terms
of �, ")

H 2
�mj =2

mj
.P�xQ .�/�

Q
Y / � .
. j̨ / � "/mj :
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If " is small enough in terms of � of � , then

2�mj =2 � 2��m=2 � m22"mC1:

Recalling (5.7) and (5.8), we conclude that, provided m is large enough in terms of � , "
and F ,

Hm.F��Z0/ � �"mC

qX
jD1

X
Q2DTAj WQ\Z

0¤;

�Z0.Q/.
. j̨ / � "/mj

� .log N .X;m//=d C .�0 � 2"/m:

Thus, assuming " < �0=4,

log N .F�.Z
0/;m/ � .log N .X;m//=d C �0=2;

giving the claim with �0=2 in place of � and Z in place of X 0.

5.3. The case ƒx D ƒ for all x

We indicate what changes are needed in the proof to obtain the stronger conclusions when
ƒx D ƒ. As before, let �D 1X=jX j. We need to apply Lemma 2.4 to � (with the param-
eter 1:5" in place of ") instead of Lemma 2.3, to obtain the sets .Xi /i . Taking T large
enough in terms of ", we have �.Xi / � 2�2"m. Other than the Xi having slightly smaller
measure, depending on ", the analysis we did for the set Y in the proof of Theorem 1.7
carries over to each of theXi verbatim. In particular, the bound (5.4) holds for anyXi and
x 2 Xi . We take " small enough in terms of �; � so that

�x.E.x// D �¹� W �x.�/ 2 E.x/º � 2
�5"m:

Write zX D
S
i Xi . By Fubini, denoting Lebesgue measure by L,

.� �L/¹.�; x/ 2 ƒ � zX W �x.�/ 2 E.x/º � 2
�5"m
j zX j:

It follows that the set

ƒ0 D ¹� 2 ƒ W jx 2 zX W �x.�/ 2 E.x/j � 2
�4"m
j zX jº

has �-measure at most 2�"m.
Fix � 2 ƒ n ƒ0 and X 0 � X with jX 0j � 2�"mjX j. By the first part of Lemma 2.4

(which we are applying with 1:5" in place of "), we can find i with

jX 0 \Xi j

jXi j
�
jX 0j

jX j
� 2�1:5"m � 2�"m=2:

Since � … ƒ0,

jx 2 zX W �x.�/ 2 E.x/j < 2
�4"m
jX j < 1

2
jX 0 \Xi j:
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LetZ D ¹x 2X 0 \Xi W �x.�/ …E.x/º �X 0. We have seen that �Xi .Z/� 2
�"m=4. Now

starting with (5.6), the argument from the previous section (with Xi in place of Y ) yields
the desired conclusion

N .F�.X
0/;m/ � N .F�.Z/;m/ � 2

m�0=2N .X;m/1=d :

5.4. Proof of Theorem 1.3

Our next goal is to prove Theorem 1.3. We will in fact establish the following stronger
fact.

Theorem 5.2. Given � > 0; 0 < ˛ < d there is � D �d .�; ˛/ > 0 .that can be taken
continuous in �; ˛/ such that the following holds.

Let .ƒ; �/ be a Borel probability space, let U � Rd be an open domain, and let � be
a Borel probability measure on U such that

�.B.x; r// � Cr˛ .x 2 U; r > 0/:

Let F Wƒ�U !R be a Borel function such that, for each � 2ƒ, the map x 7! F�.x/D

F.�; x/ W U ! R is C 2 without singular points. For each x 2 Rd define

�x.�/ D dir.rF�.x// 2 Sd�1:

Suppose further that for �-almost all x there are a set ƒx with �.ƒx/ � c and a number
Cx > 0 satisfying the decay condition (1.4).

Then there are a constant c0 D c0.c/ > 0 and a set ƒ0 with �.ƒ0/ � c0 such that
the following holds. For all � 2 ƒ0 there is a set A� with �.A�/ � c0 such that, for all
sufficiently large m, the measure F�.�A�/ is .˛=d C �; �;m/-robust.

Moreover, c0 ! 1 as c ! 1.

Note that Theorem 1.3 follows by considering a Frostman measure� onA of exponent
arbitrarily close to ˛, and applying Lemma 2.6. The proof of Theorem 5.2 is very similar
to that of Theorem 1.7. We indicate the required changes.

By passing to a subset of nearly full �-measure, we may assume that Cx � C for
all x. Denote �x D �x�ƒx . We have the following (stronger) analog of (5.2):

�x.H
.r// � Cr� .r 2 .0; 1�;H 2 G.d; d � 1//: (5.9)

Unlike the proof of Theorem 1.7, we need to consider all small scales at once. We can
define the parameters �; �; �; �; ı0 arising from Theorems 4.1 and 3.4; these are indepen-
dent of the scale. Fix a small parameter ", a large integer T and an even larger integer `.
We continue to writemD T `. As before, ";T;` can depend on all the previous parameters,
T can depend on ", and ` can depend on T and ".

For each large `, we apply Lemma 2.4 to �;T and ", to obtain a family of sets .X`;i /i .
For each i and x 2

S
i X`;i , we define the set E.x/ as in the proof of Theorem 1.7, but
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now denote it by E.x; `/. For completeness, we define E.x; `/ D ; if x …
S
i X`;i . As

before, for each x 2 X we have

�x.E.x; `// � .m=�/2
���m:

Hence, provided `1 is large enough in terms of �; T; " only, we can ensure �x.E.x// � "
for all x 2 X , where

E.x/ D

1[
`D`1

E.x; `/:

Unwrapping the definitions, this means that

�¹� 2 ƒx W �x.�/ … E.x/º � �.ƒx/.1 � "/ � c.1 � "/:

By Fubini, if we let c0 D 1 �
p
1 � c.1 � "/, there is a set ƒ0 with �.ƒ0/ � c0 such that

if � 2 ƒ0 then

�.Z�/ � c
0; where Z� D ¹x W �x.�/ … E.x/º: (5.10)

We fix � 2 ƒ0 from now on and write Z D Z�.
Let " D ".�; ˛/ > 0, �0 D �0.�; ˛/ > 0 be numbers to be determined. Suppose that

F��Z.A/ � 2
�"m=2; our goal is to show that, provided m is large enough,

log N .A;m/ � m.˛=d C �0/: (5.11)

It is enough to consider the case m D `T with ` � `1 sufficiently large.
Let Y D F �1

�
A. Since �.Y / � 2�"m=2, the first part of Lemma 2.4 guarantees that

there is a set X`;i with �.Y / � 2�"m, where � D �X`;i . At this point we are working at
a fixed (small) scale, with a regular measure � and a set Y of sufficiently large measure,
which is a subset of Z given in (5.10). Then essentially the argument from the proof of
Theorem 1.7 shows that

Hm.F��Y / � m.˛=d C �
0/;

which, since F��Y is supported on A, gives (5.11). The only difference is that � might be
very uniform, so that the upper bound in (4.5) need not hold. However, this case is even
better for us. Formally, let ˛D .1C ˛/=2. Then we consider the cases �1C � � � C �` � ˛`
and �1 C � � � C �` > ˛` separately. In the first case, (4.5) does hold, with u D u.˛/, so
we can proceed exactly as in the proof of Theorem 1.7. Otherwise, we apply Theorem 4.9
in place of Theorem 4.1, and use the fact that the function 
 from Theorem 3.4 satisfies

.˛/ � ˛=d � 7ı. In the end, the lower estimate we get onHm.�Y / in this case ism.˛ �
error term/, where we can make the error term arbitrarily small, completing the proof.

6. Applications and generalizations

6.1. Real-analytic families

In this section we derive several applications and generalizations of Theorems 1.3 and
1.7. We start with a statement about one-parameter real-analytic families.
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Theorem 6.1. Given d � 2, ˛ 2 .0; d/ and � 2 .d � 2; 2/ there is � D �d .˛; �/ > 0

.depending continuously on the parameters/ such that the following holds.
Let Fy.x/ D F.x; y/ W Rd � R! R be a real-analytic function. Let X � Rd be a

Borel set of Hausdorff dimension > ˛, and suppose y 7! dirF 0y.x/ is non-constant for all
x 2 X outside of a set of dimension < dimH.X/. Then

dimH¹y W dimH.FyX/ � ˛=d C �º � �:

Proof. Let �.�; ˛; d/ be the number provided by Theorem 1.3. Let � be a Frostman
measure of exponent ˛ supported on the x 2 X for which y 7! �x.y/ WD dir F 0y.x/ is
non-constant. It is enough to show that if Y is a compact set with dimH.Y / > � then there
is y 2 Y such that dimH.FyX/ > ˛=d C �.

Let � be a �-Frostman measure on Y . By analyticity and the fact that �x.y/ is non-
constant, we can find open balls U � Rd and V � R meeting supp.�/ and supp.�/
respectively, and an index j 2 ¹1; : : : ; d � 1º such thatˇ̌̌̌

d

dy
�x;j .y/

ˇ̌̌̌
� c > 0 .x 2 U; y 2 V /;

where �x;j is the j -th coordinate of �x . (To be more precise, this holds in a local chart
of Sd�1.) Then �x�V satisfies a Frostman condition of exponent �, uniformly in x 2 U .
Indeed, it is enough to prove this for the projection �x;j �V of �x�V to its j -th coordinate,
but this holds since �x;j is bi-Lipschitz on V , uniformly in x 2 U .

Since � > d � 2, the assumptions of Theorem 1.3 are satisfied withƒD U \ supp.�/
and V \ supp.�/ in place of X (andƒx � ƒ). The conclusion of Theorem 1.3 is exactly
what we were trying to prove.

Remark 6.2. The proof shows that, instead of analyticity, it is enough to assume that F
is C 2 and the set of zeros of d

dy
�x.y/ has Hausdorff dimension < � for all x outside of a

set of Hausdorff dimension < dimH.X/.

6.2. Distance sets

In this section we apply Theorem 1.3 to prove Theorem 1.1. In order to verify that the
assumptions of Theorem 1.3, we rely on the following spherical projection estimate. Let

e.x; y/ D
y � x

jy � xj

be the direction spanned by two different points in Rd , and write ex.y/ D e.x; y/ for the
spherical projection with center x.

Theorem 6.3. Fix 1 � k < d . Given �; ˛ > 0 there are c; � > 0 .depending continuously
on ˛; �/ such that the following holds.

Let �; � 2 P .Bd .0; 1// be measures satisfying the decay conditions

�.V .r// � C�r
� ; �.V .r// � C�r

˛;
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for all V 2 A.d; k � 1/ and 0 < r � 1. .If k D 1, V .r/ is a ball of radius r ./ Suppose
� gives zero mass to every affine k-plane. Then for all x in a set E of �-measure � 1=2
there is a set K D K.x/ with �.K.x// � 1=2 such that

ex.�K.x//.W
.r// � r� .r 2 .0; r0�; W 2 G.d; k//; (6.1)

where r0 > 0 depends only on d; �; C� ; ˛.
Finally, the set ¹.x; y/ W x 2 E; y 2 K.x/º is compact.

In dimension d D 2, this is due to T. Orponen [24] . The argument in higher dimen-
sions is similar; for completeness, we include the details of the proof in Appendix B.

Proof of Theorem 1.1. We first prove the theorem for the Euclidean metric, and comment
on the changes required to handle other norms at the end.

We may assume that dimH.X/ > ˛, provided we can show the value of � is continuous
in the parameters (we can then apply the claim to ˛ � " in place of ˛ for a suitably small "
to deduce that the statement also holds for dimH.X/ D ˛). It is enough to show that there
is � D �d .˛; �/ > 0 such that, for all compact sets Y with dimH.Y / > �, there is y 2 Y
satisfying dimH.�

yX/ � ˛=d C �. We may assume that Y is disjoint from X and both
X and Y are contained in the unit ball. Let � be an ˛-Frostman measure on X .

Let � be a Frostman measure on Y with exponent �. Our goal is to apply Theorem 1.3
with ƒ D Y and Fy.x/ D jx � yj. Note that

F 0y.x/ D y � x=jy � xj D e.x; y/ 2 S
d�1:

Thus the maps �x from Theorem 1.3 are the spherical projections ex.y/ D e.x; y/.
Suppose first that there is a hyperplane P with �.P / > 0; we can then assume that

Y D P . We consider two subcases. If dimH.X \ P / � ˛, then we are in the .d � 1/-
dimensional setting and we can argue by induction to get an even better estimate (note
that the base case d D 1 is trivial). Otherwise, dimH.X n P / D dimH.X/, so we may
assume that X \ P D ;.

Now, for x … P , the map y 7! ex.y/ W P \ B.0; 1/! Sd�1 is bi-Lipschitz onto its
image, with a constant that depends on dist.x; P /. Hence ex�.Br / .x r� for all r-balls
Br and x 2 X . For every linear hyperplane H 2 G.d; d � 1/ we can cover Sd�1 \H .r/

by . r�.d�2/ balls of radius r . Since � > d � 2, this shows that the assumptions of
Theorem 1.3 hold (with � � .d � 2/ in place of �). Theorem 1.3 then gives the desired
conclusion.

Suppose now that � gives zero mass to all hyperplanes. In this case we apply The-
orem 6.3 with k D d � 1. As before, the hypotheses hold because �; ˛ > d � 2. Let
�0 D �0.˛; �/ > 0 be the value given by Theorem 6.3. The theorem provides us with a set
X 0 with �.X 0/� 1=2, and setsK.x/ for each x 2X 0 with �.K.x//� 1=2, such that (6.1)
holds. The claim now follows from Theorem 1.3 applied to the set X 0 (with parameters ˛
and �0).

We now consider the case of a C 2 norm N with unit ball of everywhere positive
Gaussian curvature. Note that N 0.x/ D N 0.x=jxj/ for all non-zero x. Hence, defining



A non-linear version of Bourgain’s projection theorem 35

'.e/ D N 0.e/ W Sd�1 ! Rd and  D dir ı' W Sd�1 ! Sd�1, we have

�x.y/ D dir
d

dx
N.x � y/ D dir'.ex.y// D  .ex.y//;

whence �x D  ı ex . Now the hypothesis of everywhere positive Gaussian curvature
translates to the map  .e/ having non-vanishing Jacobian (this can be seen e.g. by
expressing the unit sphere of N as a graph y D f .x/ in local coordinates, and noting
that the Jacobian of  is essentially the Hessian of f ). Therefore we can cover Sd�1

by finitely many patches on which  is a diffeomorphism (onto its image) and hence bi-
Lipschitz. It follows that any decay condition enjoyed by ex� is still valid for ex�D �x�,
with different constants but the same exponent. With this observation, the proof in the
Euclidean case goes through unchanged.

Remark 6.4. The hypotheses on the norm N can be substantially weakened. What the
argument above actually uses is that the Gauss map of the unit ball of N locally has a
Lipschitz inverse. This can be relaxed further; for example, if the Gauss map locally has
a Hölder inverse, then the argument still goes through, except that the dimension gain c
will depend also on the Hölder exponent of these local inverses. In particular, Theorem 1.1
extends, for example, to all `p norms for p 2 .1;1/.

6.3. Discretized incidences

As noted in the introduction, the circle of problems studied in this paper are related to
incidence counting in the discretized setting. In this section we show how Theorem 1.7
can be used to deduce non-trivial incidence counting bounds, under suitable assumptions.
Let ¹Ca W a 2 B2.0; 1/º be a parametrized family of planar curves. Fix ı-separated sets
E;A � B2.0; 1/. We are interested in bounding the size of the (discretized) incidence set

I.E;A/ D ¹.p; a/ 2 E � A W dist.p; Ca/ < ıº:

Let us make the further assumptions thatE �X �R for some ı-separated setX � Œ�1;1�,
and that each curve meets vertical lines in a uniformly bounded number of points. In this
case, we have the trivial bound

jI.E;A/j . jX j jAj:

In general, this bound is sharp, for example if E.2ı/ is a small square and all curves
parametrized by A cross this square from side to side. It is also sharp in cases where both
E and A satisfy strong non-concentration assumptions. The examples are given by “train
tracks”, a well known object that many problems in discretized geometry have to grapple
with (see, for example, [15, Figure 1]). For concreteness, let X � Œ�1; 1� be a well sepa-
rated set of size� ı�1=2 (for example, it could be an arithmetic progression of gap ı�1=2),
and let E be a maximal ı-separated subset of X � Œ0; ı1=2� (so E.2ı/ resembles a train
track). Then if A is any set of ı-separated lines that cross the rectangle Œ0; 1� � Œ0; ı1=2�
from side to side, the incidence count jI.E; A/j equals jX j jAj. The family of all such
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lines is essentially (parametrized by) a ball of radius ı1=2, and is therefore maximally
concentrated, but if we take a spread-out subset, such as horizontal lines y D ıj with
j 2 Œ0; ı�1=2�, then A is highly non-concentrated, and we still have jI.E;A/j � jX j jAj.
The next theorem shows that, under non-concentration assumptions on X and A, and a
further hypothesis that rules out train-track examples, an improvement over the trivial
bound can be achieved.

Theorem 6.5. Given � 2 .0; 1/ and c > 0 there is ".�/ > 0 such that the following holds
for all ı small enough in terms of �; c.

Let G W B2.0; 1/ � Œ�1; 1�! R be a C 2 map of C 2 norm � c�1, and such that

j@G=@a.�/j � c on B2.0; 1/ � Œ�1; 1�:

Assume further that ˇ̌̌̌
d

dx
dir
�
@G

@a
.�/

�ˇ̌̌̌
� c on B2.0; 1/ � Œ�1; 1�: (6.2)

Let E;A � B2.0; 1/, X � Œ�1; 1� be ı-separated sets such that E � X �R. Further,
assume that

jEj � ı�"jX j jAj1=2;

jA \ B.a; ıjAj1=2/j � ı� jAj .a 2 B2.0; 1//;

jX \ B.x; r/j � ı�"r� jX j .x 2 Œ�1; 1�; r 2 Œı; 1�/:

(6.3)

Then
j¹.p; a/ 2 E � A W dist.p;Graph.Ga// < ıºj � ı"jX j jAj:

Before presenting the deduction of this theorem from Theorem 1.7, we make some
remarks and then give some examples.

Remark 6.6. The assumption (6.3) rules out train-track examples. Consider again lines
yD axCb parametrized by .a;b/. LetX � Œ�1;1� be a well separated set with jX j D ı�t ,
let E D X � ¹jıºı

�t

jD0, and let A0 D ¹jıºı
�t

jD0 � ¹jıº
ı�t

jD0. Then jEj � jX j jA0j1=2 and
jI.E; A0/j � jX j jA0j. Of course, in this case A0 is maximally concentrated. But if
we allowed jEj to be much larger than jX j jAj1=2, we could take A to be a large non-
concentrated subset of A0. Then all the hypotheses of the theorem would hold, except
for (6.3), and the conclusion would clearly fail. There is nothing special about lines
here – for more general graphs, one has to consider “curved train tracks” of the form
C .ı

s/ \ .X �R/ for a fixed graph C in the family.

Remark 6.7. In the case of lines, Theorem 6.5 follows from Bourgain’s discretized pro-
jection theorem, except that our non-concentration requirement on the lines is weaker
(and in some sense the weakest possible one). We note that (for lines), M. Bateman
and V. Lie [1] have previously obtained a related result, but under different assump-
tions. Roughly speaking, they assume more on the family of lines, and on the structure
of the set E, but on the other hand, they have a single-scale non-concentration hypothesis
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on X (while we have a single-scale non-concentration hypothesis on the set A of lines).
Recently, L. Guth, N. Solomon and H. Wang [10] studied incidences between tubes satis-
fying the strongest possible non-concentration assumption, and obtained sharp incidence
bounds in that regime.

Remark 6.8. We have tried to give an indication of the relationship between our results
and incidence counting, but Theorem 6.5 is not the strongest or most general formulation
possible. The hypothesis (6.2) can be weakened, although of course some non-degeneracy
condition on the family of curves is needed. Concretely, the number on the left-hand side
of (6.2) can be allowed to be zero on a set small enough that, if we remove a suitable neigh-
borhood of it, the incidence counting does not change. Using the results in §6.4 below,
one can also deduce versions in higher dimensions, and for higher-dimensional families
of curves, although the required assumptions become more restrictive and cumbersome
to verify.

We now give some examples of families of curves to which Theorem 6.5 applies. The
verifications are straightforward calculations.

Corollary 6.9. Let �; "; E; A and X be as in Theorem 6.5. For each of the following
families of curves, provided ı is small enough in terms of � and the family, we have

jI.E;A/j � ı"jX j jAj:

(i) The family of lines y D ax C b with .a; b/ in some fixed bounded set.

(ii) The family of parabolas y D ax2 C bx with .a; b/ in some fixed bounded set.

(iii) The family of circles with center .a; 0/ and radius r , with .a; r/ in some bounded set.

(iv) The family of circles of unit radius and center in a bounded set S , provided the
projection of S onto the x-axis is separated from .X � 1/ [ .X C 1/.

Proof of Theorem 6.5. Suppose ı D 2�m. Assume on the contrary that

j¹.p; a/ 2 E � A W dist.p;Graph.Ga// < 2�mºj > 2�"mjX j jAj:

Let Ex D ¹y W .x; y/ 2 Eº. ThenX
x2X

j¹a 2 A W dist.Ga.x/; Ex/ < 2�mºj > 2�"mjX j jAj:

Hence, if we set Ax D ¹a 2 A W dist.Ga.x/; Ex/ < 2�mº, we haveˇ̌®
x 2 X W jAxj �

1
2
2�"mjAj

¯ˇ̌
�

1
2
2�"mjX j:

LetX0 �X .2
�m/ be the 2�m-neighborhood of the set appearing on the left-hand side, and

write � D 1X0=jX0j. Using jX0j & 2�"mjX .2
�m/j and the non-concentration assumption

on X , we see that
�.B.x; r// . 22"mr� .r 2 Œ2�m; 1�/:
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Our goal is to apply Theorem 1.7 to the family ¹a 7! Ga.x/º and the set A.2
�m/. Note

that X plays the role of ƒ. Using (6.2), the same argument in the proof of Theorem 6.1
shows that

�a�.B.y; r// .c 22"mr� ;

uniformly over a 2 A. Using the assumptions, we see that if " is small enough in terms
of �, then the hypotheses of Theorem 1.7 are met (with A.2

�m/ in place of X ). By defi-
nition of X0, we have jAxj & 2�"mjAj for x 2 X0, so again assuming " is small enough
only in terms of �, Theorem 1.7 (applied to the 2�m-neighborhoods of A;Ax) guarantees
that, provided m is large enough in terms of c and �,

jExj & N .¹Ga.x/ W a 2 Axº; m/ & 2�mjAj1=2 for all x 2 X0;

where � D �.�/ > 0 is the value provided by Theorem 1.7. We conclude

jEj & 2�mjX0j jAj
1=2 & 2.��"/mjX j jAj1=2:

This contradicts (6.3) if " is small enough compared to � (hence in terms of � only),
finishing the proof.

6.4. A higher rank non-linear projection theorem

W. He [11, Theorem 1] extended Bourgain’s discretized projection theorem to higher
rank projections. Using his result, we can obtain a corresponding higher rank version of
Theorems 1.3 and 1.7. The proofs are nearly the same; we only need to take a little care
in extending Theorem 3.4 properly.

Following [11], given V 2 G.d; k/ and W 2 G.d; d � k/, we define

d.V;W / D det.PW?jV /;

where PW?jV denotes the restriction of PW? to V . See [11, (13)] for this characterization
of d.V; W /. We remark that d is not a metric; to begin with, V and W live in different
spaces. Also, d.V;W /D 0 if and only if dim.V \W /� 1. However, d is symmetric. For
W 2 G.d; d � k/, we will denote

V.W; r/ D ¹V 2 G.d; k/ W d.V;W / < rº:

Given W 2 G.d; d � k/, the set ¹V 2 G.d; k/ W d.V;W / D 0º is a smooth hypersurface
in G.d; k/. Hence, V.W; r/ can be seen as a neighborhood of this hypersurface.

Later we will need to deal with the case k D d � 1, which is particularly simple. If
H 2 G.d; d � 1/ and ` 2 G.d; 1/, then

d.H; `/ D jdet.PH?j`/j D jcos.†.H?; `//j: (6.4)

The following lemma will help us achieve the correct generalization of Theorem 3.4.



A non-linear version of Bourgain’s projection theorem 39

Lemma 6.10. Fix 1 � k � d � 1.

(i) Given x 2 Sd�1 \W with W 2 G.d; d � k/,

d.W; V / � dist.x; V /:

(ii) Given x 2 Sd�1 \W ? with W 2 G.d; d � k/,

d.W; V / � jPV .x/j:

Proof. (i) Note that dist.x;V /D jPV?.x/j. Hence if we extend x to an orthonormal basis
of W , pick an orthonormal basis for V ?, and write the matrix of PV?jW in these bases,
the first row has norm dist.x; V /, while all the rows have norm at most 1. Hence

d.W; V / D jdet.PV?jW /j � dist.x; V /:

(ii) Since jPV .x/j D dist.x; V ?/, the claim follows from the first one and the identity
d.W; V / D d.V ?; W ?/ (see [11, (14)]).

Corollary 6.11. Fix 1 � k � d � 1. Let � 2 P .G.d; k// be a measure satisfying the
decay condition

�.V.W; r// � Cr� for all 0 < r � 1;W 2 G.d; d � k/: (6.5)

Then for every x 2 Rd n ¹0º,

�¹V W dist.x; V / � rº � C.r=jxj/� ; (6.6)

�¹V W jPV .x/j � rº � C.r=jxj/
� : (6.7)

Proof. By rescaling, we may assume x has unit norm. Choosing W such that x 2 W
(resp. x 2 W ?), the claim is immediate from Lemma 6.10.

The non-concentration condition (6.5) is the one appearing in He’s projection theorem
[11, Theorem 1]. On the other hand, (6.6) is the required decay in order to get the higher
rank version of Theorem 3.2, and (6.7) is the decay needed to obtain the higher rank
version of Theorem 3.3. The proofs are very similar to the rank 1 case; see [22, §5.3] for
details. Note that even though in [22, §5.3] there is a Frostman condition (on balls) for �,
the exponents are chosen large enough so that (6.6)–(6.7) hold; see in particular [22, (5.11)
and (5.12)]. Thus Corollary 6.11 shows that (6.5) is enough to obtain the decay required
in all three projection regimes. As a consequence, the same proof of Theorem 3.4 yields

Theorem 6.12. Fix 1� k � d � 1. Given 0< � < 1 there exists �D �.�/ > 0 such that the
following holds for all sufficiently small ı � ı0.�/ and all sufficiently large m � m0.ı/.
Fix ˛ 2 Œ0; d �. Let � 2 P d

m , and let � 2 P .G.d; k// satisfy

�.B.x; r// � 2ımr˛ for all r 2 Œ2�m; 1�; x 2 Œ0; 1/d ;

�.V.W; r// � 2ımr� for all r 2 Œ2�m; 1�; W 2 G.d; d � k/:
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Then there is a set E � G.d; k/ with �.E/ � 2�ım such that PV� is .
.˛/; ı;m/-robust
for all V 2 G.d; k/ nE, where


.˛/ D

8̂̂<̂
:̂
˛ � 6ı if ˛ < �=2;
k
d
˛ C � if �=2 � ˛ � d � �=2;

k � 6ı if ˛ > d � �=2:

In turn, the proofs of Theorems 1.3 and 1.7 carry over to the higher rank setting with
only notation changes. Of course the decay assumption on � must be of the form (6.5),
and the dimension/exponent of the “good” projections becomes k

d
˛C �. For example, the

following is the higher rank analog of Theorem 1.3.

Theorem 6.13. Fix 1� k � d � 1. Given � > 0 and 0 < ˛ < d there is �D �d;k.�;˛/ > 0
.that can be taken continuous in �; ˛/ such that the following holds.

Let .ƒ; �/ be a Borel probability space and let U � Rd be an open domain. Let
F W ƒ � U ! Rk be a Borel map such that x 7! F�.x/ D F.�; x/ is C 2 for all � 2 ƒ,
and DF�.x/ has full rank k for all .�; x/ 2 ƒ � U . For each x 2 U define the map

Vx.�/ D ker.DF�.x//? 2 G.d; k/:

Let A � U be a Borel set of Hausdorff dimension � ˛ such that for all x 2 A there are a
set ƒx with �.ƒx/ > 0 and a number Cx > 0 satisfying

Vx�ƒx .V.W; r// � Cxr
� for all W 2 G.d; d � k/; r 2 .0; 1�: (6.8)

Then there is � 2 supp.�/ such that

dimH.F�A/ �
k

d
˛ C �:

6.5. Dimension of spherical projections

It is well known that if A � Rd is a Borel set of Hausdorff dimension > d � 1, then
the set of directions spanned by A has full measure in Sd�1 (this follows e.g. from the
Marstrand–Mattila Intersection Theorem). This clearly fails if dimH.A/ D d � 1, as A
can then be contained in a hyperplane. But what if A is not contained in a hyperplane?
One might conjecture that then the set of directions spanned by A has full dimension
d � 1, and maybe even there is x 2 A such that the spherical projection ex.A/ has full
dimension (recall that ex.y/D x � y=jx � yj). This is wide open in all dimensions d � 2,
but Orponen [24, Theorem 1.5] proved the following partial result.

Theorem 6.14. Let A;E � R2 be Borel sets such that dimH.E/ > 0 and E is not con-
tained in a line. Then there is y 2 E such that

dimH.ey.A n ¹yº// � dimH.A/=2:

In particular, if A� R2 is not contained in a line, it spans a set of directions of dimension
� dimH.A/=2.
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Very recently, B. Liu and C.-Y. Shen [21, Theorem 1.3] combined Orponen’s approach
with Bourgain discretized sum-product theorem to improve this, by showing that ifA�R2

has Hausdorff dimension ˛ 2 .0; 2/ and is not contained in a line, then it spans a set of
directions of dimension � ˛=2C c.˛/, where c.˛/ > 0. They also obtained a “pinned”
version [21, Theorem 1.4]. See also [2, Theorem 1.6] for an earlier, closely related “single-
scale” result. As a corollary of our framework, we obtain a pinned version that is slightly
different from that of Liu and Shen, and partially extend it to higher dimensions. We note
that Orponen’s proof of Theorem 6.14 features heavily in our argument via Theorem 6.14
(see Appendix B for more details).

Theorem 6.15. Fix d � 2. Given ˛; � 2 .d � 2; d/, there is � D �d .˛; �/ > 0 such that
the following holds.

Let A; E � Rd be Borel sets such that dimH.A/ D ˛, dimH.E/ D � and E is not
contained in a hyperplane. Then there is y 2 E such that

dimH.eyA/ �
.d � 1/˛

d
C �:

Remark 6.16. Compared to [21, Theorem 1.4] (which only considers the planar case),
the case d D 2 of the theorem has the natural hypothesis that E, rather than A as in [21],
is not contained in a line; this allows us to avoid the dichotomy in [21, Theorem 1.4]. On
the other hand, unlike in [21, Theorem 1.4], the gain � depends on the dimensions of both
A and E.

Proof of Theorem 6.15. The proof is similar to that of Theorem 1.1, but (in dimension
d > 2) we need to appeal to Theorem 6.13 instead.

As usual we may assume that A and E are disjoint compact subsets of the unit ball
of positive Hausdorff measure in their dimensions. We consider the parametrized family
of smooth maps ¹ey.x/ W y 2 Eº defined on A. The range of these maps is Sd�1, but we
can identify it with Rd�1 in local coordinates. For example, by restricting and rotating A
and E, we may assume that yd � xd ¤ 0 for all x 2 A; y 2 E, and work with the map
zey.x/ D .yi � xi=.yd � xd //

d�1
iD1 instead.

Our aim is to apply Theorem 6.13 (in the case d D 2, we can apply Theorem 1.3). It
is easy to see that the map Vx featuring in Theorem 6.13 is given by

Vx.y/ D ex.y/
?:

Recalling (6.4), this implies that, for � 2 Sd�1,

d.Vx.y/; h�i/ D jhex.y/; �ij < r ” ex.y/ 2 .�
?/.r/: (6.9)

Let �; � be Frostman measures on A;E of exponents ˛; �. Then

�.V .r// . r˛�.d�2/; �.V .r// . r��.d�2/ (6.10)
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for all V 2A.d;d � 2/ and r 2 .0;1�. We may assume that� assigns zero mass to all affine
hyperplanes, for otherwise there is a hyperplane P such that dimH.A \ P / D dimH.A/

and, by assumption, there is a point y 2 E n P . It is then clear that

dimH.ey.A \ P // D dimH.A \ P / D dimH.A/;

and we are done.
Suppose first that � assigns positive mass to a hyperplane P . Then we can assume that

E � P , and because �.P / D 0, we may also assume that A is disjoint from P . Using
this and (6.9), it follows that, for x 2 A,

Vx�.V.h�i; r// D �¹e
�1
x ..�?/.r//º � �.V

.Cxr/

�
/;

where V� D e�1x .�?/ \ P 2 A.d; d � 2/, and the constant Cx depends on the distance
from x to P . According to (6.10), the hypotheses of Theorem 6.13 are met, and we find
that there is y 2 E such that

dimH.eyA/ �
.d � 1/ dimH.A/

d
C �;

where � D �.� � .d � 2/; ˛/ is the number given by Theorem 6.13.
Suppose now that � gives zero mass to every hyperplane. We can then apply The-

orem 6.3 with k D d � 1 to obtain a parameter �0 D �0
d
.�; ˛/ > 0 and a set L with

�.L/ � 1=2 such that for each x 2 L there is a set K.x/ � A with �.K.x// � 1=2 such
that

ex�K.x/.H
.r// � O�;�.1/r

�0 for all H 2 G.d; d � 1/; 0 < r � 1: (6.11)

Using (6.9), we deduce that

Vx�K.x/.V.h�i; r// D ex�K.x/..�
?/.r//:

Recalling (6.11), this shows that the hypotheses of Theorem 6.13 are satisfied with �0 in
place of �. Hence, if �D �d .�0; ˛/ > 0 is the value provided by Theorem 6.13, then there
is y 2 supp.�/ � E such that

dimH.ey.A// �
.d � 1/˛

d
C �:

This is what we wanted to prove.

Appendix A. Entropy of projections

A.1. Entropy basics

In this section we prove Proposition 5.1. We start by reviewing some basic facts about
(Shannon) entropy. Recall that if � 2 P .Rd ) and A is a finite partition of Rd , up to a
�-null set, then the entropy of � with respect to A is given by

H.�;A/ D �
X
A2A

�.A/ log.�.A//;
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with the usual convention 0 � log 0 D 0, and in the case A D Dm, we write Hm.�/ D
H.�;Dm/. Likewise, we define the conditional entropy with respect to the finite measur-
able partition G by

H.�;A jG / D
X

G2G W�.G/>0

�.G/H.�G ;A/:

It follows from the concavity of the logarithm that one always has

H.�;A jG / � log jAj: (A.1)

The following are some further elementary properties of entropy that we will need to
call upon:

(A) If F ;G have the property that each element of F hits at most N elements of G and
vice versa, then

jH.�;F / �H.�;G /j � logN:

(B) If G refines F (that is, each element of F is a union of elements in G ), then

H.�;F jG / D H.�;G / �H.�;F /:

(C) Conditional entropy is concave as a function of the measure: for t 2 Œ0; 1�,

H.t�C .1 � t /�;F jG / � tH.�;F jG /C .1 � t /H.�;F jG /:

A.2. Multiscale estimates for the entropy of projections

The following proposition provides a lower bound for the entropy of a smooth image in
terms of entropies of linear images of conditional measures at certain scales. Recall that
we denote orthogonal projection onto V 2 G.d; k/ by PV . Furthermore, if A W Rd ! Rk

is a linear map of rank k, we denote by Jk.A/ the absolute value of the determinant of
Ajker.A/? W ker.A/? ! Rk .

Proposition A.1. Fix 1 � k < d . Let � 2 P .Œ0; 1/d / and let ŒAi ; Bi /
q
iD1 be disjoint

subintervals of .0; m� such that Bi � 2Ai . Let F W U ! Rk be a C 2 map defined in a
neighborhood of supp.�/ such that DF.x/ has full rank k for all x 2 supp.�/. Denote

V.x/ D ker.DF.x//?:

Then

H.F�;Dm/ � �OF;d;k.q/C

qX
iD1

X
Q2DAi

�.Q/H.PV.xQ/�
Q;DBi�Ai /; (A.2)

where xQ is an arbitrary point in Q. The constant implicit in OF;d;k.q/ depends only on
d , k, kF kC2 and infx2supp.�/ Jk.F

0.x//; in particular, it can be taken uniform in a C 2

neighborhood of F .
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The proof of the proposition depends on a linearization argument, which helps explain
the assumption that F is C 2 and has no singular points. The hypothesis Bj � 2Aj comes
from linearization, and can be dropped if F is already linear.

Lemma A.2. Under the assumptions of Proposition A.1, if Q 2 DAj has positive �-
measure and x 2 Q, then

jH.F.�Q/;DBj / �H.PV.x/.�Q/;DBj /j .F;d 1: (A.3)

Proof. All implicit constants are allowed to depend on d . The claim can be rewritten as

jH.�Q; F
�1.DBj // �H.�Q; P

�1
V.x/.DBj //j .F 1:

Let Lx.z/ D F.x/ CDF.x/ � .z � x/ be the affine approximation to F centered at x.
Note that

DF.x/jV.x/PV.x/ D DF.x/;

and DF.x/jV.x/ is an isomorphism from V.x/ to Rk . By the assumption that F has no
singular points, the determinant of this isomorphism (given by Jk.DF.x// in absolute
value) is bounded away from 0 and1 for x 2 supp.�/. Hence it follows from property
(A) that

jH.�Q; L
�1
x .DBj // �H.�Q; P

�1
V.x/.DBj //j .F 1:

So it is enough to show that

jH.�Q; F
�1.DBj // �H.�Q; L

�1
x .DBj //j .F 1: (A.4)

This is just a consequence of Taylor’s formula. Indeed, since F is C 2,

jF.z/ � Lx.z/j � OkF k
C2
.jz � xj2/ � OkF k

C2
.2�Bj / for z 2 Q;

using the assumption Bj � 2Aj . This implies that each element of F �1.DBj / hitting Q
intersects .F 1 elements of L�1x .DBj /, and vice versa. Property (A) above implies that
(A.4) is satisfied, and this establishes the claim (A.3).

We can now conclude the proof of Proposition A.1.

Proof of Proposition A.1.

H.F�;Dm/
(B)
� �H.F�;D0/C

qX
iD1

H.F�;DBi jDAi /

(A.1)
� �OF;d .1/C

qX
iD1

H
� X
Q2DAi

�.Q/F.�Q/;DBi

ˇ̌̌
DAi

�
(C)
� �OF;d .1/C

qX
iD1

X
Q2DAi

�.Q/H.F.�Q/;DBi jDAi /
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(B);(A.1)
� �OF;d .q/C

qX
iD1

X
Q2DAi

�.Q/H.F.�Q/;DBi /

(A.3)
� �OF;d .q/C

qX
iD1

X
Q2DAi

�.Q/
�
H.PV.xQ/�Q;DBi / �OF .1/

�
PV.xQ/ linear
D �OF;d .q/C

qX
iD1

X
Q2DAi

�.Q/H.…V.xQ/�
Q;DBi�Ai /:

An inspection of the proof shows that the constants depending on F do so in the way
described in the statement.

We can now complete the proof of Proposition 5.1, which can be seen as a “robust”
version of Proposition A.1; we repeat the statement for the reader’s convenience.

Proposition A.3. Under the same assumptions and notation of Proposition A.1, if
� 2 P .Rd / satisfies � � ��, then

Hm.F �/ � �OF;d .q/C

q�1X
iD0

X
Q2DAi

�.Q/Hm�
Bi�Ai

.PV.xQ/�
Q/:

Proof. Fix i 2 ¹0; : : : ; q � 1º, and note thatX²
�.Q/ W Q 2 DAi ; �.Q/ <

1

m
�.Q/

³
<
1

m
: (A.5)

Suppose �.Q/ � 1
m
�.Q/ > 0 for a given Q 2 DAi . Then

�Q.S/ D
�.Q \ S/

�.Q/
�
��.Q \ S/

1
m
�.Q/

D m��Q.S/

for any Borel set S � Œ0; 1/2. We deduce that …�Q � m�…�Q for any linear map …,
and hence

HBi�Ai .PV.xQ/�
Q/ � Hm�

Bi�Ai
.PV.xQ/�

Q/;

always assuming that �.Q/ � 1
m
�.Q/ > 0 and Q 2 DAi .

On the other hand, for fixed i , from (A.5) and the trivial boundHp.�/ � k.pCO.1//
for measures supported on a ball of radius O.1/ in Rk , we getX

Q2DAi W �.Q/<
1
m�.Q/

�.Q/Hm�
Bi�Ai

.PV.xQ/�
Q/ � k.Bi � Ai COd .1//=m:

Splitting (for each i ) the sum
P
Q2DAi

in Proposition A.1 into the cubes with �.Q/ �
1
m
�.Q/ and �.Q/ < 1

m
�.Q/, we get the desired result.
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Appendix B. Spherical projections

In this section we prove Theorem 6.3. In fact, we will prove the following more quantita-
tive statement:

Theorem B.1. Fix 1 � k < d . Given �;˛ > 0 there are c; � > 0 .depending continuously
on ˛; �/ such that the following holds.

Let �; � 2 P .Bd .0; 1// be measures satisfying the decay conditions

�.V .r// � C�r
� ; �.V .r// � C�r

˛

for all V 2 A.d; k � 1/ and 0 < r � 1. .If k D 1, V .r/ is a ball of radius r ./ Fix " 2 .0; 1/
and suppose there is Qı > 0 such that

�.V .
Qı// � c" .V 2 A.d; k//: (B.1)

Then for all x in a set E of �-measure � 1 � " there is a set K.x/ with �.K.x// � 1 � "
such that

ex.�K.x//.W
.r// � r� .r 2 .0; r0�; W 2 G.d; k//; (B.2)

where r0 > 0 depends only on d; C�; C� ; ˛; Qı; ".
Finally, the set ¹.x; y/ W x 2 E; y 2 K.x/º is compact.

Theorem 6.3 follows by taking "D 1=2 and observing that, by compactness, if � gives
zero mass to all affine k-planes, then there is ı0 such that (B.1) holds. We follow closely
the ideas from [24, Section 2], although there are some differences: we work in arbitrary
dimension, while Orponen works only in the plane. Also, Orponen obtains a single x such
that (B.2) holds. On the other hand, some aspects of the proof are simplified; in particular,
we avoid having to argue by induction in the scale, which reduces the number of param-
eters to keep track of in the proof (I thank Hong Wang for suggesting this simplification
and allowing me to include it in this article).

The proof of the theorem depends on a single-scale variant that we state and prove
first. By a k-plate in Rd we mean a set of the form

W .ı/
\ Bd .0; 1/

withW 2 A.d; k/. In particular, 0-plates are balls and 1-plates are tubes (intersected with
Bd .0; 1/). We refer to ı as the width of the plate, and denote the family of all k-plates of
width ı intersecting a set E by Tk.E; ı/.

Proposition B.2. Given �; ˛ > 0 and 1 � k � d � 1, the following holds if � � �0.�; ˛/,
and ı is small enough depending onC�;C� appearing below and all the other parameters.

Let �; � 2 P .Bd .0; 1// be measures satisfying the decay conditions

�.V .r// � C�r
˛ .V 2 A.d; k � 1/; 0 < r � 1/;

�.V .ı// � C�ı
� .V 2 A.d; k � 1//:

Then there exist:
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� a set E � supp.�/ with �.Rd nE/ � ı�˛=2,

� for each x 2 E, a set P.x/, which is either empty or a k-plate in Tk.x; ı
�=2/,

such that ¹.x; y/ W x 2 E; y 2 supp � n P.x/º is compact, and

�.W / � ı� for all W 2 Tk.x; ı/ \ Tk.supp.�/ n P.x/; ı/:

In turn, the proposition relies on the following lemma stating that all ı-plates of too
large measure are contained in a relatively small number of relatively thin plates.

Lemma B.3. Let � 2 P .Bd .0; 1// satisfy �.W / � C�ı� for all .k � 1/-plates W of
width ı. Fix � > 0. Then there exists a family of .d C�ı�� k-plates Tj of width ı��2�

such that any k-plate W of width ı with �.W / � ı� is contained in one of the plates Tj .

Proof. We construct a sequence Y1; : : : ; YM of k-plates of width ı as follows. To begin,
pick (if it exists) a k-plate Y1 of width ı such that �.Y1/ � ı� . Now suppose Y1; : : : ; Ym
are k-plates of width ı such that:

(1) �.Yi / � ı� .

(2) �.Yi \ Yj / � ı2�=2 for 1 � i < j � m.

If there exists YmC1 such that the collection .Y1; : : : ; YmC1/ still satisfies properties
(1)–(2), we add it to the list; otherwise we stop. A standard L2 argument implies that
we have to stop after � 2ı�� steps. Indeed, if f D

Pm
iD1 1Yi , then�X

i

�.Yi /
�2
D

�Z
f d�

�2
�

Z
f 2 d�

D

X
1�i;j�m

�.Yi \ Yj / <
�X
i

�.Yi /
�
Cm2ı2�=2:

Let S D
Pm
iD1 �.Yi / � mı

� . We have seen that S2 � S < m2ı2�=2. If m > 2ı�� , then
S2 � S � S2=2, and we deduce that

m2
1

2
ı2� >

1

2

�X
i

�.Yi /
�2
�
1

2
m2ı2�;

which is a contradiction. Let, then, .Yi /MiD1 be the final family so obtained, withM�2ı�� .
Now fix a k-plate W of width ı such that �.W / � ı� . Hence

�.W \ Yj / � ı
2�=2 for some Yj ;

for otherwise we could add W to the list of Yi . On the other hand, W \ Yj is contained
in a box of size at most a constant Cd times

1 � � � � � 1„ ƒ‚ …
k�1 times

� ı=†.W; Yj / � ı � � � � � ı„ ƒ‚ …
d�k times

;
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where †.�; �/ denotes the largest principal angle between the k-planes determining the
corresponding plates. Hence the assumption on � yields

�.W \ Yj / .d
C�ı

�

†.W; Yj /
:

Comparing the upper and lower bounds on �.W \ Yj /, we deduce that †.W; Yj / .d
C�ı

��2� , and therefore W is contained in the plate Tj centered at (the plane defining) Yj
but of width .d C�ı��2� . This is what we wanted to prove.

Proof of Proposition B.2. Let

Bad D ¹x 2 Bd .0; 1/ W �.W / � ı� for some W 2 Tk.x; ı/º:

Let Tj be the plates provided by Lemma B.3, and define

Bad Bad D ¹x 2 Bad W x 2 Ti \ Tj for some i; j such that †.Ti ; Tj / � ı�º:

Let r D ık�2� . As before, Ti \ Tj is contained in the union of .d 1 boxes of size

1 � � � � � 1„ ƒ‚ …
k�1 times

� r=†.Ti ; Tj / � r � � � � � r„ ƒ‚ …
d�k times

;

and hence, now using the non-concentration assumption on �,

�.Bad Bad/ �
X
¹�.Ti \ Tj / W †.Ti ; Tj / � ı

�
º

.d C�C�ı�3�ı.��2�/˛ D C�C�ı�˛��.3C2�/:

Hence, if � is small enough in terms of �; ˛, and ı is small enough in terms of C�; C�
and d , then

�.Bad Bad/ � ı�˛=2=2:

Let E D supp.�/ n Bad Bad, and fix x 2 E. If x … Bad, we can just take P.x/ D ;,
so assume that x 2 Bad. By Lemma B.3, Bad is covered by the 2ı�� plates Tj 2
Tk.E; O.C�/ı

��2�/. Let Ej D E \ Tj n
Sj�1
iD1 Ti , and for x 2 Ej let P.x/ be the

ı�=2-plate centered at Tj . By passing to a subset of E, we can ensure that E \ Bad and
the Ej are compact, and still �.Rd nE/ � ı�˛=2. This ensures that ¹.x; y/ W x 2 E; y …
P.x/º is compact.

Now fix x 2 Ej and suppose W 2 Tk.x; ı/ \ Tk.supp.�/ n P.x/; ı/. Then, provided
� is taken small enough that � � 2�� � and ı is small, the plateW cannot be contained in
any of the plates Ti making an angle smaller than ı� with Tj . Since x 2 Tj nBad Bad, we
conclude that the plate W cannot be contained in any of the Ti . Lemma B.3 now implies
that �.W / � ı� , completing the proof.

We can now complete the proof of Theorem B.1.

Proof of Theorem B.1. Let � > 0 be the number given by Proposition B.2. Making �
slightly smaller if needed, we may assume that �=2 D 2�N for some integer N . We will
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prove the claim with �=2 in place of �. We take c D 1=.2N /, so by assumption there is
ı0 > 0 such that �.W / � "=.2N / for all k-plates W of width ı�=20 . Making ı0 smaller if
needed, we can also ensure that

1X
nD1

ı
2n��
0 < "=2: (B.3)

Finally, we also take ı0 small enough that Proposition B.2 applies to all ı � ı0.
Write ın D ı2

n

0 . For each n, let En and Pn.x/; x 2 En be the sets provided by Propo-
sition B.2 for the scales ın. Let

E D

1\
nD0

En; K.x/ D supp.�/ n
1[
nD0

Pn.x/:

Then ¹.x; y/ W x 2 E; y 2 K.x/º is compact as an intersection of compact sets, and
�.E/ � 1 � " by (B.3), taking � < ˛�=2. Fix x 2 E for the rest of the proof.

By Proposition B.2, and choosing for each r < ı1 the n such that ı2n D ın�1 < r � ın,
we get �.K.x/ \W / � r�=2. This yields (B.2).

It remains to show that �.K.x// � 1� ". By construction, �.Pn.x// � "=.2N / for all
n � N . Recall that �=2 D 2�N , and hence ı�=2n D ın�N � ı1 for all n > N . Applying
Proposition B.2 at scale ın�N with Pn.x/ in place of W , we get

�.Pn.x/ n

n�1[
jD1

Pj .x// � �.Pn.x/ n Pn�N .x// � ı
�
n�N for all n > N:

Adding up and recalling (B.3), we see that indeed �.K.x// � 1 � ", and this completes
the proof.
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