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Abstract. For a smooth quasi-projective surface S over C we consider the Borel–Moore homology
of the stack of coherent sheaves on S with compact support and make this space into an associative
algebra by a version of the Hall multiplication. This multiplication involves data (virtual pullbacks)
governing the derived moduli stack, i.e., the perfect obstruction theory naturally existing on the non-
derived stack. By restricting to sheaves with support of given dimension, we obtain several types
of Hecke operators. In particular, we study R.S/, the Hecke algebra of 0-dimensional sheaves. For
the case S D A2, we show that R.S/ is an enveloping algebra and identify it, as a vector space,
with the symmetric algebra of an explicit graded vector space. For a general S , we find the graded
dimension of R.S/, using the techniques of factorization cohomology.
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0. Introduction

0.1. Motivation

A large part of the classical theory of automorphic forms for GLn over functional fields
can be interpreted in terms of Hall algebras of abelian categories [32, 33]. Relevant here
is Coh.C /, the category of coherent sheaves on a smooth projective curve C=Fq . Taking
the Hall algebra of Bun.C /, the subcategory of vector bundles, produces (unramified)
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automorphic forms, while Coh0.C /, the category of torsion sheaves, gives rise to the
Hecke algebra.

The classical Hall algebra of a category such as Coh.C / consists of functions on
(Fq-) points of the moduli stack of objects and so admits various modifications (cf. [14,
Ch. 8]). Most important is the cohomological Hall algebra (COHA) where we take the
cohomology of the stack instead of the space of functions on the set of its points [36]. This
allows us to work over more general fields such as C.

Study of Hall algebras (classical or cohomological) of the categories Coh.S/ for vari-
eties S of dimension d > 1 can therefore be considered as a higher-dimensional analog of
the theory of automorphic forms. In this paper we consider the case of surfaces (d D 2)
over C and study their COHA. In this case we have a whole new range of motivations
coming from gauge theory, where cohomology of the moduli spaces of instantons is an
object of longstanding interest [1, 8, 49].

0.2. Description of the results

The familiar 2-fold subdivision into automorphic forms vs. Hecke operators now becomes
3-fold: we have the categories Cohm.S/, m D 0; 1; 2, of purely m-dimensional sheaves
(see §4.1). Here, Coh2.S/ consists of vector bundles, while Coh0.S/ is the category of
punctual sheaves. An important feature is that the COHA of Cohm�1.S/ acts on that of
Cohm.S/ by Hecke operators.

We denote by R.S/ the COHA of the category Coh0.S/. It is the most immediate
analog of the unramified Hecke algebra of the classical theory and we relate it to objects
studied before.

In the flat case S D A2, the algebra R.A2/ is identified with the direct sum, over
n � 0, of the GLn-equivariant Borel–Moore homology of the commuting varieties of gln.

Our first main result, Theorem 6.1.4, shows that R.A2/ is an enveloping algebra and
is identified, as a graded vector space, with the symmetric algebra of an explicit graded
vector space ‚. It is convenient to write ‚ D HBM

� .A2/˝ ‚0, where the first factor is
1-dimensional, in homological degree 4.

For a general surface S , the algebra R.S/ is non-commutative. Our second main
result, Theorem 7.1.6, provides a version of the Poincaré–Birkhoff–Witt theorem
for R.S/. It exhibits a system of generators as well as determines the graded dimension
of R.S/. More precisely, it establishes an isomorphism of graded vector spaces

� W Sym.HBM
� .S/˝‚0/ ' R.S/: (0.2.1)

Like the classical PBW isomorphism for enveloping algebras, � is given by the sym-
metrized product map on the space of generators.

0.3. Role of factorization algebras

Our proof of Theorem 6.1.4 is based on the techniques of factorization homology [9, 18,
21, 44]. More precisely, we consider the cochain lift R.S/ of R.S/. This can be seen as
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a homotopy associative algebra whose cohomology is R.S/. For any open set U � S we
have a similarly defined algebra R.U /. Further, one can consider U to be any open set
in the complex analytic topology. In this case Coh0.U / can be considered as an analytic
stack and so its Borel–Moore homology and our entire construction of the COHA make
sense.

We prove in Theorem 7.5.4 that the assignment U 7!R.U / is a factorization coalge-
bra in the category of E1- .i.e., homotopy associative dg-/ algebras. This is a reflection
of a more fundamental fact: U 7! Coh0.U / is a factorization algebra in the category
of analytic stacks (see Proposition 7.4.3). These considerations allow us to lift � to a
morphism of factorization coalgebras in the category of dg-vector spaces and deduce the
global isomorphism from the local one, i.e., from the case when S is an open ball which
is equivalent to that of S D A2.

In fact, the identification (0.2.1) is suggestive of non-abelian Poincaré duality (NAPD)
(compare [44, Thm. 5.5.6.6]), although it does not seem to be a formal consequence of
it. NAPD can be extended to include, for instance, the classical Atiyah–Bott theorem on
the cohomology of BunG.†/, the moduli stack of holomorphic G-bundles on a compact
Riemann surface† (see [18]). In the latter setting, we haveH �.BG/D Sym.V / (with V
being the space of characteristic classes for G-bundles), and

H �.BunG.†// ' Sym.H�.†/˝ V /:

0.4. Derived nature of the COHA

As a vector space, our COHA is the Borel–Moore homology of the Artin stack Coh.S/
(the moduli stack of objects of Coh.S/), i.e., it is the cohomology of the dualizing com-
plex:

HBM
� .Coh.S// D H��.Coh.S/; !Coh.S//:

Since S is a surface, Coh.S/ is singular due to obstructions encoded by Ext2, so the
dualizing complex is highly non-trivial. However, Coh.S/ is in fact a truncation of a finer
object, the derived moduli stackRCoh.S/, smooth in the derived sense [62,63]. While the
vector space underlying our COHA depends on Coh.S/ alone, the multiplication makes
appeal to the derived structure: we use the refined pullbacks corresponding to the perfect
obstruction theories on Coh.S/ and on the related stack of short exact sequences. So
our construction has the appearance of applying some cohomology theory to the derived
stackRCoh.S/ itself and using its natural functorialities for morphisms of derived stacks.
More recently, this approach has been implemented by M. Porta and F. Sala [55] at the
K-theoretical level.

0.5. Relation to other work

The COHA of a surface that we consider here is a non-linear analog of the COHA asso-
ciated to the preprojective algebra of the Jordan quiver considered in [58]; see, e.g., [59]
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for the case of arbitrary quivers. M. Kontsevich and Y. Soibelman [36] introduced coho-
mological Hall algebras for 3-dimensional Calabi–Yau categories, by taking cohomology
of the moduli stack of objects with coefficients in the natural perverse sheaf of “vanishing
cycles” with respect to the Chern–Simons functional. Although the details of the approach
have been worked out only for quiver-type situations (see, e.g., [10] for a comparison with
[58]), it seems applicable, in principle, to the category of compactly supported coherent
sheaves on any 3-dimensional Calabi–Yau manifold M . In particular, our COHA for a
surface S should be related to the Kontsevich–Soibelman COHA forM the total space of
the anticanonical bundle on S .

Instead of Borel–Moore homology of the stack Coh.S/, one can take its Chow groups
or its algebraic K-theory, in particular one can study K-theoretic analogs of the Hecke
operators. This approach was developed by A. Negut [48] who studied the K-theoretic
effect of explicit Hecke correspondences on the moduli spaces, and very recently by
Y. Zhao [65] who defined independently the K-theoretic Hall algebra of 0-dimensional
sheaves by a method similar to ours. On the other hand, algebraic K-theory, being a more
rigid object than homology, does not easily localize on the complex analytic topology and
so determining the size of the resulting objects is more difficult.

In the particular case where S is the cotangent bundle of a smooth curve, other ver-
sions of the COHA (of 0-dimensional sheaves and of purely 1-dimensional sheaves) of S
appeared recently in [47, 57].

After this paper first appeared on arXiv, there have been some important new devel-
opments. Thus, M. Porta and F. Sala [55] have defined a categorical and a K-theoretical
version of the COHA for surfaces, using the derived enhancement of the stack of coherent
sheaves. Further, A. Khan [37] introduced a motivic framework for Borel–Moore coho-
mology for Artin stacks which could potentially simplify the treatment of some questions
considered in this paper.

0.6. Structure of the paper

In §1 we discuss the basic generalities on groupoids and stacks, including higher stacks
understood as homotopy sheaves of simplicial sets. We pay special attention to Dold–Kan
and Maurer–Cartan (Deligne) stacks associated to 3-term complexes and dg-Lie algebras.
These constructions are used in §2 to describe stacks of extensions (needed for defining
the Hall multiplication) and filtrations (needed to prove associativity).

In §3 we define and study the Borel–Moore homology of Artin stacks. This concept,
which is a topological analog of A. Kresch’s concept of Chow groups for Artin stacks [38],
can be easily defined once we have a good formalism of constructible derived categories
and their functorialities f �1; Rf�; Rfc ; f Š. While in the “classical” approach (sheaves
first, complexes later) this may present complications (cf. [39, 50] for a discussion), the
modern point of view of homotopy descent [19] allows a straightforward definition of
the enhanced derived category of a stack as the1-categorical limit of the corresponding
categories for schemes. The desired functorialities are also inherited from the case of
schemes. We study virtual pullback in this context.
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The COHA is defined in §4, first as a vector space, then as an associative algebra.
In §5 we consider subalgebras in the COHA corresponding to sheaves with vari-

ous conditions on the dimension of support. These subalgebras play the role of Hecke
algebras, since they act on other subspaces in COHA (corresponding to sheaves whose
dimension of support is bigger) by natural “Hecke operators” (operators formally dual to
those of the Hall multiplication).

In §6 we study the flat Hecke algebra R.A2/ by relating it to the earlier work on
commuting varieties in gln. Here we prove Theorem 6.1.4.

Finally, in §7 we globalize the considerations of §6 by describing the global Hecke
algebra R.S/ as the factorization (co)homology of an appropriate factorization (co)al-
gebra. This leads to the proof of Theorem 7.1.6 .

The paper has two appendices. Appendix A, logically preceding the entire paper, pro-
vides a reminder on1-categories and dg-categories. Appendix B spells out the homotopy
unique nature of Euler (top Chern) classes and orientation classes at the cochain level. It
logically depends on §§1–3 (i.e., assumes the formalism of stacks presented in these sec-
tions) but precedes §7 for which it provides necessary material.

1. Generalities on stacks

1.1. Groupoids and simplicial sets

A groupoid is a category G in which all morphisms are invertible. We write G D
¹G1 � G0º where G0 D Ob.G/ is the class of objects and G1 D Mor.G/ is the class
of morphisms. For an essentially small groupoid G let �0.G/ be the set of isomorphisms
classes of objects of G. For any object x 2 G0 let �1.G; x/ D AutG.x/ be the automor-
phism group of x. All groupoids in what follows will be assumed essentially small.

The small groupoids form a 2-category Gpd. For any groupoids G1; G2 we have a
groupoid whose objects are functorsG1!G2 and morphisms are natural transformations
of functors. We will refer to 1-morphisms of Gpd as simply morphisms of groupoids.
Considered with this notion of morphisms, the groupoids form a category which we
denote Gpd. Let Eq � Mor.Gpd/ be the class of equivalences of groupoids.

Proposition 1.1.1. Let f W G! G0 be a morphism of groupoids. Suppose that f induces
a bijection of sets �0.G/! �0.G

0/ and, for any x 2 Ob.G/, an isomorphism of groups
�.G; x/! �1.G

0; f .x//. Then f is an equivalence of groupoids.

Proof. The conditions just mean that f is essentially surjective and fully faithful hence
an equivalence.

For a category C let �ıC be the category of simplicial objects in C . In particular, we
will use the category�ıSet of simplicial sets and�ıAb of simplicial abelian groups. For a
simplicial setX let jX j be its geometric realization. A morphism f WX!X 0 of simplicial
sets is called a weak equivalence if it induces a homotopy equivalence jX j ! jX 0j. In this
case we write X � X 0. Let W be the class of weak equivalences.
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We also associate to any simplicial set X its fundamental groupoid …X . Objects of
…X are vertices of X , i.e., elements x 2 X0, and for x; y 2 X0, the set Hom…X .x; y/

consists of homotopy classes of paths in jX j joining x and y. Let �0.X/ be the set of con-
nected components of jX j, and for each i � 1 and x 2 X0 let �i .X; x/ be the topological
homotopy group of jX j at x.

Dually, the nerve NG of a groupoid G is a simplicial set with the set of m-simplices
being

NmG D G1 �G0
G1 �G0

� � � �G0
G1 (m times): (1.1.2)

The topological homotopy groups of NG match those defined above algebraically for G:

�0.NG/ D �0.G/; �1.NG; x/ D �i .G; x/; �i .NG; x/ D 0; i � 2:

A simplicial set is of groupoid type if it is weak equivalent to the nerve of some groupoid.
We denote by �ıSet�1 � �ıSet the full subcategory of simplicial sets of groupoid type.

Proposition 1.1.3. .a/ A simplicial set X is of groupoid type if and only if �i .X; x/ D 0
for each i � 2 and x 2 X0. In that case X ' N…X .

.b/ The functors … and N yield quasi-inverse equivalences of homotopy categories
�ıSet�1ŒW�1� ' GpdŒEq�1�:

Let A be an abelian category. We denote by C.A/ the category of cochain com-
plexes K D .Kn; dn W Kn�1 ! Kn/n2Z over A bounded below, with morphisms being
morphisms of complexes. For n 2 Z we denote by C�n.A/ the category of complexes
concentrated in degrees � n. For K 2 C.A/ we denote by

K�n D ¹� � �
dn�1

���! Kn�1
dn

��! Kn ! 0! � � � º 2 C�n.A/;

��nK D ¹� � �
dn�1

���! Kn�1
dn

��! Ker.dnC1/! 0! � � � º 2 C�n.A/

its stupid and cohomological truncation in degrees � n. Note that ��n sends quasi-iso-
morphisms of complexes to quasi-isomorphisms.

Examples 1.1.4 (Dold–Kan groupoids). Let Ab denote the category of abelian groups.

.a/ Given a 3-term complex over Ab

K D ¹K�1
d0

�! K0
d1

�! K1º;

we have the action groupoid

$K D Ker.d1/==K�1 WD ¹K�1 � Ker.d1/� Ker.d1/º

whose set of objects is Ker.d1/ and whose morphisms s ! t are given by ¹h 2
K�1 I s C d0.h/ D tº: Then we have

�0.$K/ D H
0.K/; �1.$K; s/ D H

�1.K/; 8s 2 Ob $K:
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.b/ The Dold–Kan correspondence DK W dg�0Ab! �ıAb associates to a Z�0-graded
complex K the simplicial abelian group DK.K/ such that

� DK.K/0 D K0,

� the set of edges joining s; t 2 K0 is ¹h 2 K�1 I s C d0.h/ D tº,

� 2-simplices with given 1-faces are in bijection with certain elements of K�2, and
so on; see, e.g., [64, §8.4.1].

For each i � 0, we have an isomorphism �i .DK.K// ' H�i .K/ which is indepen-
dent of the base point. In fact, the correspondence preserves the respective standard
model structures. In particular, for a 3-term complex K as in (a), we have

$K D …DK.��0K/: (1.1.5)

Examples 1.1.6 (Maurer–Cartan groupoids). We will use a non-abelian generalization
of Examples 1.1.4, due to Deligne; see [22, 23] and references therein, Hinich [27] and
Getzler [20].

.a/ Consider a (possibly infinite-dimensional) dg-Lie algebra g over C situated in degrees
Œ0; 2�:

g D ¹g0
d0

�! g1
d1

�! g2º:

Thus g0 is an ordinary complex Lie algebra. We assume that it is nilpotent, so we
have the nilpotent groupG0 D exp.g0/. By definition,G0 consists of formal symbols
ey ; y 2 g0 (so G0 is identified with g0 as a set), with the multiplication given by the
Campbell–Hausdorff formula. The set of Maurer–Cartan elements of g is

mc.g/ D
®
x 2 g1 I d1x C 1

2
Œx; x� D 0

¯
:

The group G0 acts on mc.g/ by the formula

ey � x D ead.y/.x/C
1 � ead.y/

ad.y/
.d1.y// (1.1.7)

(see [23, p. 45]). We define the Maurer–Cartan groupoid1 (or Deligne groupoid) of g

to be the action groupoid

MC.g/ D mc.g/==G0 WD ¹G0 �mc.g/� mc.g/º:

Note that if the dg-Lie algebra g is abelian, i.e., if it reduces to a 3-term cochain
complex, then G0 D g0 and it acts on mc.g/ D Ker.d1/ by translation, so we have
MC.g/ D $.gŒ1�/ where $ is as in Example 1.1.4 (a).

1In this paper we use the terms “Maurer–Cartan groupoid” and “Maurer–Cartan stack” in order
to avoid clashes with the algebro-geometric notion of Deligne–Mumford stacks.
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.b/ More generally, let g be any nilpotent dg-Lie algebra over C. The Maurer–Cartan
simplicial set mc�.g/ is defined by

mcn.g/ D mc.g˝C �
�
pol.�

n//;

where ��pol.�
n/ is the commutative dg-algebra of polynomial differential forms on

the standard n-simplex [20, 27]. Further, in [20] it is proved that if g is concentrated
in degrees Œ0; 2� then N�.MC.g// is weak equivalent to mc�.g/.

Proposition 1.1.8. A quasi-isomorphism � W g1 ! g2 of nilpotent dg-Lie algebras
induces a weak equivalence of simplicial sets mc�.g1/! mc�.g2/. In particular:

.a/ If g1, g2 are concentrated in degrees Œ0; 2�, then � induces an equivalence of
groupoids MC.g1/! MC.g2/.

.b/ A quasi-isomorphismK1!K2 of cochain complexes as in Example 1.1.4 .a/ induces
an equivalence of groupoids $K1 ! $K2.

Let now p W g ! h be a surjective morphism of dg-Lie algebras, both situated in
degrees Œ0;2�. Let n� g be the kernel of p and assume that there is an embedding i W h! g

with p ı i D 1 such that g D h Ë n is the semidirect product.
We have a functor of groupoids p� W MC.g/! MC.h/. Recall that for a functor � W

C !D and an object x 2Ob.D/, the fiber category �=x consists of pairs .y;h/with y 2
Ob.C / and h W �.y/! x a morphism inD, with the obvious notion of morphisms of such
pairs. IfC ,D are groupoids, so is �=x. We apply this whenC DMC.g/,DDMC.h/ and
� D p�. We get the fiber category p�=x. On the other hand, the object x 2 Ob.MC.h//
being an element of mc.h/, it gives a new differential dx D d � ad.x/ on n, where we
abbreviate x D i.x/. Let nx be the dg-Lie algebra with underlying Lie algebra n and
differential dx .

Proposition 1.1.9. The fiber category p�=x is equivalent to the groupoid MC.nx/.

1.2. Stacks and homotopy sheaves

Let S be a Grothendieck site. We recall that a stack (of essentially small groupoids) on
S is a presheaf of groupoids B W T 7! B.T /, T 2 Ob.S /, satisfying the 2-categorical
descent condition extending that for sheaves of sets (see [52] for background). The stacks
on S form a 2-category StS . We will refer to 1-morphisms of StS as morphisms of
stacks and will denote by StS the category of stacks on S with these morphisms. Let
Eq � Mor.StS / be the class of equivalences of stacks.

Remark 1.2.1. For most purposes, the above 1-categorical point of view on stacks will be
sufficient. However, in various constructions below such as gluing, the full 2-categorical
structure on StS becomes important. In particular, as with objects of any 2-category, to
define a stack “uniquely” (e.g., naively, in a way “independent” of some choices) means,
more formally, to define it uniquely up to an equivalence which is defined uniquely up to
a unique isomorphism.
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A stack of groupoidsB gives rise to a sheaf of sets �0.B/ on S , obtained by sheafify-
ing the presheaf T 7! �0.B.T //. Similarly, for any T 2 Ob.S / and any object x 2 B.T /
we have a sheaf of groups �1.B; x/ on T , i.e., on the site S =T , obtained by sheafifying
the presheaf T 0 7! �1.B.T

0/; xjT 0/, where xjT 0 is the pullback by the morphism T 0! T .

Proposition 1.2.2. Let f WB!B 0 be a morphism in StS which induces an isomorphism
of sheaves of sets �0.B/!�0.B

0/ and an isomorphism of sheaves of groups �1.B;x/!
�1.B

0; f .x// for any T 2 Ob.S /, x 2 Ob.B.T //. Then f is an equivalence of stacks.

Proof. Follows from Proposition 1.1.1 by sheafification.

Let �ıSetS be the category of presheaves of simplicial sets on S . Recall [63] that
such a presheaf X is called a homotopy sheaf or an 1-stack if it satisfies descent in
the homotopy sense. We denote by St1S the category of homotopy sheaves of simplicial
sets on S and by W � Mor.St1S / the class of weak equivalences (defined stalkwise).
A homotopy sheaf X gives rise to a sheaf of sets �0.X/ on S and, for any T 2 Ob.S /

and any vertex x 2 X.T /0, a sheaf of groups � i .X; x/ on S =T . We have:

Proposition 1.2.3. Let f W X ! X 0 be a morphism in St1S . Suppose f induces an iso-
morphism of sheaves of sets �0.X/! �0.X

0/ and, for each T 2Ob.S / and x 2X.T /0,
an isomorphism of sheaves of groups � i .X;x/! � i .X

0; f .x//. Then f is a weak equiv-
alence.

Proof. If S is a point, this is the standard: a map of simplicial sets is a weak equivalence
iff it induces an isomorphism of homotopy groups. The case of general S is obtained
from this by sheafification.

Any homotopy sheaf X gives a stack of groupoids …X on S , defined by taking
T 7! …X.T /. Any stack of groupoids B on S gives rise to a homotopy sheaf N.B/
taking T to the nerve of the groupoid B.T /. A homotopy sheaf X is called of groupoid
type if it is weak equivalent to N.B/ for some stack B . We denote by St1;�1S � St1S the
full category of homotopy sheaves of groupoid type.

Proposition 1.2.4. .a/ A homotopy sheaf X is of groupoid type if and only if � i .X; x/
D 0 for each T 2 Ob.S /, x 2 X.T /0 and i � 2.

.b/ The functors … and N induce mutually quasi-inverse equivalences of homotopy cat-
egories St1;�1S ŒW�1� ' StS ŒEq�1�:

1.3. Artin and f-Artin stacks

In this paper all schemes, algebras, etc., will be considered over the base field C of com-
plex numbers. Let eA f f be the category of affine schemes over C equipped with the
étale topology. We refer to [40, 52] for general background on Artin stacks, i.e., stacks
of groupoids on eA f f with a smooth atlas and a representable, quasi-compact, quasi-
separated diagonal.
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Examples 1.3.1. .a/ Let G D ¹G1
s

�
t
G0º be a groupoid in the category of schemes of

finite type such that the source and target maps s; t are smooth morphisms. It gives rise
to an Artin stack which we denote by kGk. By definition, kGk is the stack associated
with the prestack

T 7! ¹Hom.T;G1/� Hom.T;G0/º:

.b/ In particular, let G be an affine algebraic group acting on a scheme Z of finite type.
Then we have the action groupoid ¹G � Z � Zº in the category of schemes of
finite type. The corresponding Artin stack is denoted Z==G and is called the quotient
stack of Z by G. Explicitly, for T 2 eA f f the groupoid .Z==G/.T / is identified with
the category of pairs .P; u/, where P is a G-torsor over T (locally trivial in étale
topology) and u W P ! Z is a G-equivariant map.

Definition 1.3.2. An Artin stack B is called

.a/ of finite type if it is equivalent to the stack of the form kGk for a groupoid G as in
Example 1.3.1 .a/;

.b/ an f-Artin stack if it is locally of finite type;

.c/ a quotient (resp. locally quotient) stack if it is equivalent (resp. locally equivalent) to
the stack of the form Z==G where Z;G are as in Example 1.3.1 .b/:

All the stacks we will use will be f-Artin. Let the 2-category St and the category St
be the full 2-subcategory in StfA f f and the full subcategory in StfA f f formed by f-Artin
stacks.

Let A f f � eA f f be the category of affine schemes of finite type with its étale topology.
We note that f-Artin stacks are determined by their restrictions to A f f , and so we can and
will consider them as stacks of groupoids on A f f .

Given an f-Artin stack B , let StB be the 2-category of f-Artin stacks over B , i.e.,
of f-Artin stacks X together with a morphism of stacks X ! B . Objects of StB can,
equivalently, be seen as stacks of groupoids over the Grothendieck site A f fB formed by
affine schemes T of finite type together with a morphism of stacks f W T ! B . Thus, an
f-Artin stack X over B can be seen as associating to each T 2 A f fB a groupoid X.T /.

2. Stacks of extensions and filtrations

2.1. Cone stacks

We refer to [50,52] for general background on quasi-coherent sheaves on Artin stacks. For
an f-Artin stack B we denote by QCoh.B/ (resp. Coh.B/) the category of quasi-coherent
(resp. coherent) sheaves of OB -modules. By a vector bundle we mean a locally free sheaf
of finite rank.

Let B be an f-Artin stack and R D
L
i2N Ri be a graded quasi-coherent sheaf of

OB -algebras such thatR0 DOB ,R1 is coherent andR is generated byR1 locally over B .
The relative affine B-scheme C D Spec R is called a cone over B (see, e.g., [5, §1]).
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If E is a coherent sheaf over B , we get the associated cone C.E/D Spec.SymOB
.E//

which is an affine group scheme over B . Its value (the set of points) on .T
f
! B/ 2A f fB

is HomOT
.f �E;OT /. We call such a cone an abelian cone.

For instance, the total space of a vector bundle E over X is defined as

Tot.E/ D C.E_/ D Spec SymOB
.E_/

where E_ is the dual sheaf of OB -modules. For any affine B-scheme f W T ! B we have

Tot.E/.T / D H 0.T; f �E/: (2.1.1)

Thus, a section s 2H 0.B;E/ is the same as a morphism B! Tot.E/ of schemes over B .
Any cone C D Spec R is canonically a closed subcone of the abelian cone

Spec.SymOB
.R1//; called the abelian hull of C .

Example 2.1.2. Let d W E ! F be a morphism of vector bundles on B . We denote by
Ker.d/ � E the sheaf-theoretic kernel of d . On the other hand, let � W Tot.E/! B be the
projection. The morphism d determines a section s of the vector bundle ��F on Tot.E/,
and we define the abelian cone Ker.d/� Tot.E/ as the zero locus of this section. We note
thatH 0.B;Ker.d// �H 0.B;E/ consists precisely of those sections s which, considered
as morphisms B ! Tot.E/, factor through the substack Ker.d/.

A morphism of abelian cones over B is, by definition a morphism of group schemes
over B . Given a morphism of abelian conesE! F , we have an action of the affine group
scheme E over B on F . Hence, we can form the quotient Artin stack F==E. Stacks of
this form are called abelian cone stacks.

2.2. Total spaces of perfect complexes

Let B be an f-Artin stack. We denote by Cqcoh.B/ the category formed by complexes of
OB -modules with quasi-coherent cohomology. Let qis be the class of quasi-isomorphisms
in Cqcoh.B/ and Dqcoh.B/ D Cqcoh.b/Œqis�1� be the corresponding derived category. For
any integers p � q let C Œp;q�qcoh .B/�Cqcoh.B/ be the full subcategory formed by complexes
situated in degrees from p to q.

Definition 2.2.1. Let C 2 Cqcoh.B/ and p � q be integers.

.a/ C is strictly Œp; q�-perfect if C is quasi-isomorphic to a complex of vector bundles

¹Cp
dpC1

����! CpC1
dpC2

����! � � �
dq

��! Cqº

situated in degrees from p to q. This complex is called a presentation of C .

.b/ C is Œp; q�-perfect if, locally on B , it is strictly Œp; q�-perfect, and moreover the set of
open substacks U � B such that C jU is strictly Œp; q�-perfect is filtering with respect
to the partial order by inclusion.
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For a Œp; q�-perfect complex C and an open U � B as above we will refer to a quasi-
isomorphism C jU ! CU , with CU strictly Œp; q�-perfect, as a presentation of C over U .

A Œp; q�-perfect complex C has a virtual rank vrk.C/ which is a Z-valued locally
constant function on B , i.e., a function constant on each connected component of B . It is
defined in terms of a presentation of C as

vrk.C/ D
qX
iDp

.�1/i rk.C i /:

We will be interested in making sense of total spaces of perfect complexes using
(2.1.1) as a motivation (cf. [62, §3.3]).

Definition 2.2.2. .a/ Let C 2 C�0qcoh.B/. We define the simplicial presheaf Tot1.C/ on
A f fB by

Tot1.C/.T / D DK.H 0.T; f �C//; .T
f
! B/ 2 A f fB :

.b/ Let C 2 C
Œ�1;0�
qcoh .B/. We define the prestack of groupoids Tot.C/ on A f fB by

Tot.C/.T / D $.H 0.T; f �C//; .T
f
! B/ 2 A f fB :

We call Tot.C/ the total space of C .

Proposition 2.2.3. .a/ Let C 2 C�0qcoh.B/. The simplicial presheaf Tot1.C/ is a homo-
topy sheaf. For any x 2 Tot1.C/.T /0 we have .independently of the choice of base
points/

� i .Tot1.C// D H�i .C/; i � 0:

A morphism � W C1 ! C2 in C�0qcoh.B/ induces a morphism of homotopy sheaves
�[ W Tot1.C1/! Tot1.C2/, which is an equivalence if � is a quasi-isomorphism.

.b/ Let C 2 C
Œ�1;0�
qcoh .B/. The prestack Tot.C/ on A f fB is a stack. The homotopy sheaf

Tot1.C/ is of groupoid type and …Tot1.C/ D Tot.C/. In particular, the total space
is functorial and takes quasi-isomorphisms � to isomorphisms �[.

Proof. Part (a) follows from the fact that C is a sheaf and from the properties of the
Dold–Kan correspondence. Part (b) follows by Proposition 1.2.4.

Recall that a stack morphism f is called an l.c.i., i.e., a locally complete intersection
morphism, if it factorizes as f D p ı i where p is a smooth map and i is a regular
immersion.

Proposition 2.2.4. .a/ Let C 2 C
Œ�1;0�
qcoh .B/ be strictly Œ�1; 0�-perfect. Then we have

a canonical equivalence of stacks of groupoids u W Tot.C/ ! Tot.C0/==Tot.C�1/
on A f fB .

.b/ Let C 2 C
Œ�1;0�
qcoh .B/ be Œ�1; 0�-perfect. Then Tot.C/ is an Artin stack over B .

.c/ For any morphism � of Œ�1; 0�-perfect complexes, the induced morphism �[ of stacks
is an l.c.i.
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Proof. Part (a) is similar to the proof of [26, Lem. 0.1]. That is, look at any .T
f
�! B/

2 A f fB . By definition, the groupoid Tot.C/.T / is the category whose objects are ele-
ments x of H 0.T; f �C0/ and a morphism x ! x0 is an element of H 0.T; f �C�1/

mapped by d0 to x0 � x. At the same time, the groupoid .Tot.C1/==Tot.C0//.T / is the
category of pairs consisting of an f �C�1-torsor P over T and an f �C�1-equivariant
morphism P ! C0 of sheaves over T . We see that the former category is the full sub-
category of the second consisting of data with the torsor P being the standard trivial one,
P D f �C�1. This defines a fully faithful functor uT , and such functors for all T give the
sought-for morphism of stacks u. Now, since T is affine, H 1.T; f �C�1/ D 0 and so any
torsor P above is trivial. This means that the functor u is (locally) essentially surjective,
hence an equivalence of stacks. This proves (a). Parts (b) and (c) follow from (a).

Example 2.2.5. Now, let C be a strictly Œ�1; 1�-perfect complex

C D ¹C�1
d0

�! C0
d1

�! C1º: (2.2.6)

The stupid truncation C�0 D ¹C�1 ! C0º is strictly Œ�1; 0�-perfect. We denote by

� W Tot.C0/! B; � W Tot.C�0/ D Tot.C0/==Tot.C�1/! B

the projections. We recall from Example 2.1.2 (c) the abelian cone Ker.d1/ � Tot.C0/
given as the zero locus of the section s of ��C1 induced by d1.

Proposition 2.2.7. .a/ If C is strictly Œ�1; 1�-perfect, then we have a canonical equiva-
lence of stacks Ker.d1/==C�1 ! Tot.��0C/; i.e., the section s descends to a section
s of ��C1, and Tot.��0C/ is the zero locus of s.

.b/ If C is Œ�1; 1�-perfect, then Tot.��0C/ is an Artin stack over B .

Proof. The proof of (a) is completely analogous to the proof of Proposition 2.2.4 (a),
with C0 replaced by Ker.d1/. Part (b) follows from (a).

We call Tot.��0C/ the truncated total space of C .

Proposition 2.2.8. Let C be a Œ�1; 1�-perfect complex and .T
f
! B/ 2 A f fB .

.a/ For all s 2 Ob.Tot.��0C/.T // we have

�0.Tot.��0C// ' H 0.C/; �1.Tot.��0C/; s/ ' H�1.f �C/:

.b/ The truncated total space of Œ�1; 1�-perfect complexes is functorial and takes quasi-
isomorphisms � to isomorphisms �[.

Proof. Part (a) is a consequence of Proposition 2.2.7. Part (b) follows from (c). More pre-
cisely, a morphism (resp. quasi-isomorphism) � W C1 ! C2 of Œ�1; 1�-perfect complexes
yields a morphism (resp. quasi-isomorphism) ��0C1 ! ��0C2 and the statement follows
from Proposition 2.2.3 (b).
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2.3. Stacks of extensions

We now consider the following general situation. LetB be an f-Artin stack and p W Y !B

be a scheme of finite type over B . Let E , F be coherent sheaves over Y which are flat
over B . We can form the object C 2 Db

qcoh.B/ given by

C D Rp�RHomOY
.F ;E/Œ1�:

Let SES be the stack over B classifying short exact sequences 0! E ! G ! F ! 0 of
coherent sheaves over Y . That is, for anyB-scheme T 2A f fB the objects of the groupoid
SES.T / are short exact sequences

0! EjT ! G ! F jT ! 0 (2.3.1)

of coherent sheaves of OY�BT -modules, and the morphisms are the isomorphisms of such
sequences identical on the boundary terms. We then have

�0.SES.T // D Ext1OY�B T
.F jT ;EjT /; �1.SES.T /;G / D Ext0OY�B T

.F jT ;EjT /;

(2.3.2)

for any object G of SES.T /. This implies identifications of sheaves of sets on A f fB , and
of sheaves of groups on A f f T :

�0.SES/ D H 0.C/; �1.SES�BT;G / D H�1.C jT /: (2.3.3)

These identifications, together with those of Proposition 2.5.2 (b), suggest the following.

Proposition 2.3.4. Assume that the complex C is Œ�1; 1�-perfect. Then we have an equiv-
alence Tot.��0C/ D SES of cone stacks over B .

Proof. As aklready pointed out, the �0 and �1 of the two stacks Tot.��0C/ and SES are
isomorphic. So it remains to construct a morphism of stacks inducing these identifications.
For this, we first make some general discussion.

We recall [7, 35, 61] that for any Artin stack Z the category Db
qcoh.Z/ has a dg-

thickening, i.e., there is a pretriangulated dg-category Cqcoh.Z/ with the same objects
and spaces of morphisms being upgraded to complexes RHomCqcoh.Z/.K;L/ of C-vector
spaces such that

HomOZ
.K;L/ D H 0 RHomCqcoh.Z/.K;L/:

The complex RHom above can be explicitly found as

RHomCqcoh.Z/.K;L/ D Hom�OZ
.I.K/; I.L//; (2.3.5)

where I.K/ is a fixed injective resolution of K for each K .
We now specialize to the case

Z D Y �B T; K D F jT ; L D EjT Œ1�;

where T 2 A f fB is an affine B-scheme. The complex of C-vector spaces

��0 RHomCqcoh.Z/.F jT ;EjT Œ1�/
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has cohomology only in degrees 0 and�1, given by the Ext groups in (2.3.2). We consider
the simplicial set

X.T / D DK
�
��0 RHomCqcoh.Z/.F jT ;EjT Œ1�/

�
;

which is of groupoid type by Proposition 1.1.3 (a). Its vertices are morphisms of com-
plexes I.F jT / ! I.EjT Œ1�/. The cone of such a morphism is a complex of sheaves
which has only one cohomology sheaf, in degree �1, and this sheaf G fits into a short
exact sequence as in (2.3.1). In this way we get a morphism of groupoids

h.T / W …X.T /! SES.T /:

At the same time, by (1.1.5), the groupoid …X.T / is equivalent to the groupoid
�H 0.T; C jT / in Example 1.1.4 (a), hence to Tot.��0C/.T / by Proposition 2.2.8 (a).
Combining these constructions for all T 2 A f fB , we get a homotopy sheaf X of sim-
plicial sets on A f fB of groupoid type, together with an equivalence and a morphism of
stacks

Tot.��0C/ ' …X
h
! SES :

The morphism h induces the required identification on �0 and �1, so it is an equivalence
of stacks. Proposition 2.3.4 is proved.

2.4. Maurer–Cartan stacks

We now describe a non-abelian generalization of the construction of §2.2. Let B be
an f-Artin stack and .G ; d; Œ�;��/ be an OB -dg-Lie algebra with quasi-coherent coho-
mology. In other words, G is a Lie algebra object in the symmetric monoidal category
.Cqcoh.B/;˝B/. We will assume that G is nilpotent. We define the Maurer–Cartan 1-
stack of G to be the simplicial presheaf mc�.G / on A f fB defined by

mc�.G /.T / D mc�.H 0.T; f �G //:

Here .T
f
! B/ is an object of A f fB , and we apply the functor mc� to the dg-Lie algebra

H 0.T; f �G / over C.

Proposition 2.4.1. .a/ The simplicial presheaf mc�.G / is a homotopy sheaf.

.b/ A morphism .resp. quasi-isomorphism/ � W G1! G2 of nilpotent OB -dg-Lie algebras
induces a morphism .resp. weak equivalence/ of homotopy sheaves �[ W mc�.G1/!
mc�.G2/.

Proof. Part (b) follows from Proposition 1.1.8 by sheafification.

Assume that the dg-Lie algebra G is situated in degrees Œ0; 2�, i.e.,

G D ¹G 0
d0

�! G 1
d1

�! G 2º: (2.4.2)
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Then we define the stack MC.G / of groupoids on A f fB by

MC.G /.T / D MC.H 0.T;G jT //:

We call MC.G / the Maurer–Cartan stack associated to a 3-term OB -dg-Lie algebra G .

Proposition 2.4.3. If G is situated in degrees Œ0; 2�, then the simplicial sheaf mc�.G / is
of groupoid type and …mc�.G / D MC.G /.

Let G be any OB -dg-Lie algebra with quasi-coherent cohomology. As for complexes,
we call G strictly Œ0; 2�-perfect if it is quasi-isomorphic, as an OB -dg-Lie algebra, to a
3-term dg-Lie algebra (2.4.2) with each G i being a vector bundle on B . We say that G

is Œ0; 2�-perfect if, locally on B , it is strictly Œ0; 2�-perfect, and moreover the set of open
substacks U � B such that G jU is strictly Œ0; 2�-perfect, is filtering with respect to the
partial order by inclusion.

We now assume that G is a strictly Œ0; 2�-perfect dg-Lie algebra as in (2.4.2). Then we
have the closed substack mc.G / � Tot.G 1/ “given by the equation d1x C 1

2
Œx; x� D 0”,

with two equivalent definitions:

(mc1) For any affine B-scheme T
f
! B we have a dg-Lie algebra H 0.T; G jT /, and we

define
mc.G /.T / D mc.H 0.T;G jT //:

(mc2) The stack mc.G / is the zero locus of the section sG of ��G 2 given by the curvature

G 1 ! G 2; x 7! d1x C 1
2
Œx; x�: (2.4.4)

Since the Lie algebra G 0 is nilpotent, we have a sheaf of groups G0 D exp.G 0/ on B
by Malcev theory, which acts on the stack mc.G / as in (1.1.7), and we can consider the
quotient stack mc.G /==G0: Consider also the quotient stack

Tot.G�1/ D Tot.G 1/==G0

and denote its projection to B by � .

Proposition 2.4.5. .a/ Let G be a strictly Œ0; 2�-perfect dg-Lie algebra as in (2.4.2).

.a1/ We have an equivalence of stacks u W MC.G /! mc.G /==G0, so MC.G / is an
Artin stack.

.a2/ The section sG of the bundle ��G 2 on Tot.G 1/ descends to a section sG of the
bundle ��G 2 on Tot.G�1/, and the substack MC.G / � Tot.G�1/ is the zero
locus of sG .

.b/ If G is a Œ0; 2�-perfect OB -dg-Lie algebra, then the simplicial sheaf mc�.G / is of
groupoid type. The stack of groupoids MC.G / WD…mc�.G / is an Artin stack over B .

Proof. Part (a1) is proved similarly to Proposition 2.2.4 (a), using the fact that, G0 being
a unipotent sheaf of groups, any f �G0-torsor over any T 2 A f fB is trivial. Part (a2)
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follows from (a) and from the equivalence of the two definitions (mc1) and (mc2) of the
stack mc.G /. Part (b) follows because being of groupoid type and being an Artin stack
over B are properties local on B .

Example 2.4.6. If the dg-Lie algebra G is abelian, i.e., it reduces to a Œ0; 2�-perfect com-
plex on B , then MC.G / D Tot.��0.G Œ1�//.

Let us now globalize the considerations of Proposition 1.1.9 as follows. Let p W G D
H Ë N ! H be a split extension of strictly Œ0; 2�-perfect dg-Lie algebras on B . The
B-scheme �H W mc.H /! B carries a strictly Œ0; 2�-perfect dg-Lie algebra QN which is
equal to ��

H
N as a graded sheaf of Omc.H/-Lie algebras, with the differential dx at a point

x 2mc.H / defined as above. The action of the sheaf of groupsH 0 on mc.H / extends to
a compatible action on QN , so that QN descends to a strictly Œ0; 2�-perfect dg-Lie algebra on
the stack MC.H /. We denote this descended dg-Lie algebra by the same symbol QN . Note
that MC. QN / is a stack over MC.H /, hence over B . Now, we have the following global
analogue of Proposition 1.1.9.

Proposition 2.4.7. The stacks MC.G / and MC. QN / over B are isomorphic.

Proof. For each affine B-scheme T 2 A f fB , we have a split exact sequence of dg-Lie
algebras

0! H 0.T;N jT /! H 0.T;G jT /
p
�! H 0.T;H jT /! 0

which gives rise to a functor p� W MC.H 0.T;G jT //! MC.H 0.T;H jT // with the fiber
category over an object x equivalent to MC.H 0.T;H jT /x/. This yields the following
isomorphism of groupoids over MC.H 0.T;H jT //:

MC.H 0.T;G jT // D MC.H 0.T; QN jT //:

2.5. Stacks of filtrations

Let B be an f-Artin stack and p W Y ! B be a scheme over B , locally of finite type. Let
E01, E12, E23 be coherent sheaves over Y which are flat over B . We define FILT to be the
stack over B classifying filtered coherent sheaves E01 � E02 � E03 over Y , together with
identifications E0j =E0i ' Eij for ij D 12; 23. We have a sheaf of associative dg-algebras
over B defined by

G D
M
ij<kl

Rp�RHom.Ekl ;Eij /; 01 < 12 < 23: (2.5.1)

We will consider G as a sheaf of dg-Lie algebras using the supercommutator. Then we
have the following generalization of Proposition 2.3.4.

Proposition 2.5.2. Assume that G is a strictly Œ0; 2�-perfect dg-Lie algebra on B . Then
we have an equivalence MC.G / D FILT of stacks over B .

Proof. Let SES012 be the stack over B classifying short exact sequences

E012 D ¹0! E01 ! E02 ! E12 ! 0º (2.5.3)
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of coherent sheaves over Y . Then FILT is the stack over SES012 classifying short exact
sequences

E0123 D ¹0! E02 ! E03 ! E23 ! 0º; (2.5.4)

and G D H ËN where

N D Rp�Hom.E23;E01 ˚ E12/; H D Rp�Hom.E12;E01/:

Since the dg-Lie algebra H is abelian, by Example 2.4.6 and Proposition 2.3.4 the stacks
MC.H /, SES012 are equivalent, and N gives an abelian strictly Œ0; 2�-perfect dg-Lie alge-
bra QN over SES012. Further, by Proposition 2.4.7, we have MC.G / D MC. QN / as stacks
over SES012. So it remains to prove that MC. QN / is the stack over SES012 classifying
short exact sequences (2.5.4).

Let T
f
! B be an affine B-scheme. Suppose the object E012 of SES012.T / is the

cone of a morphism u012 in RHom1
Y�BT

.f �E12; f
�E01/: Thus, given injective reso-

lutions of f �Eij for each i; j , the complex E02 is quasi-isomorphic to the complex
C.u012/ D I12 ˚ I01 where the differential is the sum of the differentials of I12, I01 and
the composition with u012, viewed as a morphism of complexes of sheaves I12! I01Œ1�.

Next, we have QN D ��
H

N as a graded sheaf, and the differential d012 of zN at the
point E012 is given by

d012.u/ D d.u/ � ad.u012/.u/; 8u 2 HomY�BT .f
�E23; f

�E01 ˚ f
�E12/I

see Proposition 1.1.9 and the discussion before it. In our case ad.u012/.u/ reduces to
the composition u012u. Thus, the condition for u to satisfy the equation d012.u/ D 0 is
equivalent to saying that it lifts to a morphism of complexes f �E23 ! C.u012/, i.e., to a
dotted arrow u0123 in the diagram

E02

##

f �E01

;;

f �E12
C1

u012

oo f �E23u
oo

u0123

C1

ii

u

gg

The cone of such an arrow defines E03 with a short exact sequence (2.5.4). We have
thus constructed a morphism MC. QN /! FILT of stacks over SES012, and it is easy to
check that this morphism is an equivalence.

3. Borel–Moore homology of stacks and virtual pullbacks

3.1. BM homology and operations for schemes

We fix a field k of characteristic 0 which will serve as the field of coefficients for
(co)homology. The cases kDQ or kDQl will be the most important. For basics on sim-
plicial categories, 1-categories and dg-categories, see §A and the references there. By
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dgVect D dgVectk we denote the dg-category of cochain complexes over k. We recall the
standard formalism of constructible derived categories of complexes of k-vector spaces
and their functorialities [34], together with its1-categorical enhancement.

Let Sch denote the category of schemes of finite type over C. For a scheme T 2
Sch we denote by C.T / the category of constructible complexes of sheaves of k-vector
spaces on T .C/. Let D.T / D C.T /ŒQis�1� be the constructible derived category, i.e.,
the localization of C.T / by the class of quasi-isomorphisms. We denote by D.T /dg and
D.T /1 the dg- and1-categorical enhancements of D.T / defined as in §A.2. If k D Ql ,
we can use the étale l-adic version of the constructible derived category [50,51]. It admits
similar enhancements.

These categories carry the Verdier duality functor which we denote by D. For a mor-
phism f W S ! T in Sch we have the usual functorialities

D.S/
Rf�;fŠ // D.T /
f �1;f Š

oo

with their standard adjunctions; see [34] for the case of classical topology or [50, 51] for
the case of étale topology. They extend to the above enhancements and we will be using
these extensions.

We denote by !T D pŠ k, p W T ! pt, the dualizing complex of T . The Borel–Moore
homology of T and its complex of Borel–Moore chains are defined by

HBM
� .T / D H��.T; !T /; C BM

� .T / D R�.T; !T /: (3.1.1)

The Poincaré–Verdier duality implies that

HBM
� .T / D H �c .T /

�: (3.1.2)

A morphism f W S ! T in Sch is called strongly orientable of relative dimension
m 2 Z if there is an isomorphism kS ! f ŠkT Œm� in D.S/. A choice of such an isomor-
phism is called a strong orientation of f . For not necessarily connected S we can speak of
relative dimension being a locally constant function on S , with the obvious modifications
of the above.

Recall that HBM
� is covariantly functorial with respect to proper morphisms. By

(3.1.1), an oriented morphism f W S ! T of relative dimensionm gives rise to a pullback
map f � W HBM

� .T / ! HBM
�Cm.S/, and such maps are compatible with compositions of

oriented morphisms.

Examples 3.1.3. .a/ A smooth morphism f of dimension d is strongly oriented of rela-
tive dimension 2d .

.b/ An l.c.i. (locally complete intersection) morphism is a morphism f W S ! T repre-
sented as a composition f D p ı i where p is smooth and i is a regular embedding.
Thus an l.c.i. morphism f has a well-defined dimension d , which is a locally con-
stant Z-valued function on S . If the embedding i is strongly oriented, then f is
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also strongly oriented of relative dimension 2d , hence gives rise to a pullback mor-
phism f �. Note that the map f � still make sense for any l.c.i. morphism; see, e.g.,
[51, §2.17].

Example 3.1.4. Let E be a rank r vector bundle on T . We recall that the r th Chern class
cr .E/ 2 H

2r .T; k/ is the obstruction to the existence of a continuous section of E which
does not vanish anywhere. Let s be any section of E . We denote the zero locus of s with

its embedding into T by Ts
is
! T . In this situation we have the refined r th Chern class

cr .E; s/ 2 H
2r
Ts
.T;k/ D H 2r .Ts; i

Š
skT /

whose image in H 2r .T; k/ is cr .E/, yieldding a virtual pullback map sŠ W HBM
� .T /!

HBM
��2r .Ts/: More precisely, following [17, §7.3], we introduce the bivariant cohomology

of any morphism f W S ! T to be

H �.S
f
! T / D H �.S; f ŠkT /:

Recall that:

.a/ We have H �.S
Id
! S/ D H �.S;k/, while H �.S ! pt/ D HBM

�� .S/.

.b/ For a composable pair of maps S
f
! T

g
! U we have the product

H �.S
f
! T /˝H �.T

g
! U/! H �.S

gf
! U/:

So, taking U D pt, each h 2 Hd .S
f
! T / gives rise to a map uh W HBM

� .T / !

HBM
��d

.S/.

We deduce that cr .E; s/ 2 H 2r .Ts
is
! T / defines a map HBM

� .T /! HBM
��2r .Ts/:

The construction of cr .E; s/ is as follows. We consider the embedding T
0
! Tot.E/ as

the zero section. It is strongly oriented of relative dimension 2r [17, Props. 4.1.3, 7.3.2],
hence we get a class � 2H 2r

T .Tot.E//. Now Ts is the intersection of T with �s , the graph
of s inside Tot.E/, and cr .E; s/ is the image of � under the restriction map

H 2r
T .Tot.E/;k/! H 2r

T\�s
.�s;k/ D H 2r

Ts
.T;k/:

See also [51, §2.17] for a different approach.

Proposition 3.1.5. Let E be a vector bundle on T of rank r and let p W Tot.E/! B be
the projection. The pullback p� W HBM

� .T /! HBM
�Cr .Tot.E// is an isomorphism.

Remark 3.1.6. For T 2 Sch let Am.T / be the Chow group of m-dimensional cycles
in T . We have the canonical class map cl W Am.T /! HBM

2m .T /. All the above construc-
tions (proper pushforwards, l.c.i. pullbacks, virtual pullbacks) have natural analogs for the
Chow groups [16], which are compatible, via cl, with the sheaf-theoretical constructions
described above.
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3.2. BM homology and operations for stacks

The formalism of constructible derived categories and their functorialities extends to
f-Artin stacks. For the case k D Ql and étale topology this is done in [50, 51]. Another
approach using1-categorical limits, which we outline below, is applicable for the com-
plex analytic topology, any k, as well as for the case of analytic stacks in §7.3. It is
an adaptation of the approach used in [19, §3.1.1] for ind-coherent sheaves to the con-
structible case. All stacks in this sections will be f-Artin.

Let B be a stack. We denote by SchB the category formed by schemes T of finite type
over C together with a morphism of stacks T ! B . We define

D.B/1 D lim
 �
¹T!Bº

D.T /1; D.B/dg D lim
 �
¹T!Bº

D.T /dg; (3.2.1)

the1-categorical projective limit, resp. dg-categorical (homotopy) projective limit over
the category SchB , with respect to the pullback functors. Note that D.B/1, resp. D.B/dg

also carries the Verdier duality D induced by such dualities on the D.T /1, resp. D.T /dg

above.
We compare this with the following. Let Z be a scheme of finite type over C with an

action of an affine algebraic group G. Then we have action groupoid ¹G � Z � Zº in
the category of schemes, so its nerve N�¹G �Z � Zº is a simplicial scheme defined as
in (1.1.2). The Bernstein–Lunts equivariant derived constructible1-category of Z is

D.Z;G/1 D lim
 �
Œn�2�ı

D.Nn¹G �Z � Zº/1:

It is an1-categorical version of the definition from [6]. Just as in [6], if F �is a G.C/-
equivariant constructible complex on Z.C/, then

Ext�D.Z;G/1.kZ ;F
�/ D H �G.C/.Z.C/;F

�/

is the topological equivariant (hyper)cohomology.

Proposition 3.2.2. The1-category D.Z;G/1 is identified with D.Z==G/1.

Proof. Each Nn¹G �Z� Zº is an affine scheme over Z, therefore over Z==G. In fact,

Nn¹G �Z � Zº D Z �Z==G � � � �Z==G Z .n times/:

SoN�¹G �Z�Zº is the nerve of the (smooth) morphismZ!Z==G, which we can see
as a 1-element covering of Z==G in the smooth topology. Our statement therefore means
that D.�/1 satisfies (1-categorical) descent with respect to this covering. A more gen-
eral statement is true: D.�/1 as a functor from stacks to1-categories satisfies descent
(for any covering) in the smooth topology. This statement is a formal consequence of
the corresponding, obvious, statement for schemes: D.�/1 as a functor from Sch to
1-categories satisfies descent (for any covering) in the smooth topology.
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Given a morphism of stacks f W B ! C , the composition with f defines a functor
f� W SchB ! SchC , hence a functor which we denote

f �1 W D.C /1 D lim
 �

.U!C/

D.U /! lim
 �

.T!B
f
!C/

D.T / D D.B/1:

The right adjoint functor to f �1 is denoted by Rf� W D.C /1 ! D.B/1.
We further define the functors

f Š D D ı f �1 ıD W D.C /1 ! D.B/1; RfŠ D D ıRf� ıD W D.B/1 ! D.C /1:

In particular, we have the dualizing complex !B D D.kB/ D pŠ.k/, where p W B ! pt
(see [39]). Note that, for each affine algebraic group G over C, we have !BG '

kBG Œ�2 dim.G/�, while for each smooth complex variety S , !S ' kS Œ2 dim.S/�.
We define the Borel–Moore homology and cohomology with compact support of an

(f-Artin) stack B by

HBM
� .B/ D H��.B; !B/; H �c .B;kB/ D H

�.RpŠkB/: (3.2.3)

The Poincaré–Verdier duality extends from schemes of finite type to f-Artin stacks and
implies thatHBM

� .B/DH �c .B;kB/�: By gluing the corresponding properties of schemes,
we find that HBM

� is covariantly functorial for proper morphisms and has pullbacks with
respect to l.c.i. morphisms.

Remark 3.2.4. The BM homology for stacks is the topological analog of the Chow
groups for stacks as defined by Kresch [38].

We also note the following (see [38, Thm. 2.1.12]).

Proposition 3.2.5. Let C� D ¹C�1 ! C0º be a two-term strictly perfect complex on B
of virtual rank r , with the total space Tot.C�/ D C0==C�1

�
! B . Then � is a smooth

morphism, hence it is strongly oriented of relative dimension 2r , and �� W HBM
� .B/!

HBM
� .Tot.C// is an isomorphism if B admits a stratification by global quotients [38,

Def. 3.5.3], in particular if B is locally quotient.

3.3. Virtual pullback for a perfect complex

LetB be a stack and E be a vector bundle of rank r overB . Let s 2H 0.B;E/ be a section
of E and

i W Bs D ¹s D 0º ,! B

be the inclusion of the zero locus of s, which is a closed substack. The section s gives a
regular embedding in the total space of E , which we also denote by s W B ! Tot.E/. The
construction of Example 3.1.4 extends (by gluing) from schemes to stacks and gives the
refined pullback morphism, or refined Gysin morphism,

sŠ W HBM
� .B/! HBM

��2r .Bs/; (3.3.1)
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making the following diagram commute:

HBM
� .B/

s�

��

sŠ
// HBM
��2r .Bs/

i�

��

HBM
� .Tot.E// HBM

��2r .B/��

�oo

Remark 3.3.2. The map sŠ is the BM-homology analog of the refined pullback on Chow
groups for Artin stacks, which is a particular case of [45, Construction 3.6], or of [38,
§3.1] which uses deformation to the normal cone.

Now, let C be a strictly Œ�1; 1�-perfect complex on B and

� W Tot.C�0/! B; q W Tot.��0C/! B

be the obvious projections. The differential d1 of C gives a section sC of the vector bundle
��C1 on Tot.C�0/ whose zero locus is the cone stack Tot.��0C/, yielding the diagram

��C1 Tot.C�0/
sCoo

B Tot.C�0/�oo

0

OO

Tot.��0C/? _ioo
� ?

i

OO

such that q D � ı i . By Proposition 3.2.5 (see also [38, Thm. 2.1.12]), the pullback along
� defines a morphism

�� W HBM
� .B/

�
�! HBM

�C2 vrk.C�0/
.Tot.C�0//;

which is an isomorphism if B admits a stratification by global quotients. Further, we have
the refined pullback map on Borel–Moore homology

sŠC W H
BM
�C2 vrk.C�0/

.Tot.C�0//! HBM
�C2 vrk.C/.Tot.��0C//:

We define the virtual pullback associated with C to be the composite map

qŠC D s
Š
C ı �

�
W HBM
� .B/! HBM

�C2 vrk.C/.Tot.��0C//:

By Proposition 2.2.8, the stack Tot.��0C/ depends only on the isomorphism class of
the complex C in Db

coh.B/ and not on the choice of the presentation (2.2.6).

Proposition 3.3.3. Let C be a strictly Œ�1; 1�-perfect complex on B . The virtual pullback
qŠ

C
depends only on the isomorphism class of the strictly Œ�1; 1�-perfect complex C in

Db
coh.B/.

Proof. Fix two presentations C1, C2 of the complex C as in (2.2.6), with

Ck D ¹C
�1
k

d0
k
�! C0k

d1
k
�! C1k º; k D 1; 2;
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and fix a quasi-isomorphism � W C1 ! C2. By functoriality of the total space and the
truncated total space, we have the commutative diagram

Tot.��0C1/
�[

� _

i1
��

Tot.��0C2/
� _

i2
��

Tot.C�01 /
�[ //

�1

��

Tot.C�02 /

�2
ww

B

We claim that the following triangle commutes:

HBM
� .B/

qŠ
C1 //

qŠ
C2 ((

HBM
�C2 vrk.C1/

.Tot.��0C1//

.�[/�

HBM
�C2 vrk.C2/

.Tot.��0C2//:

To prove this, we must prove that

sŠC1
ı ��1 D �

�
[ ı s

Š
C2
ı ��2 :

By Proposition 2.2.4, the map �[ W Tot.C�01 /! Tot.C�02 / is an l.c.i. Hence there is a
Gysin map .�[/� and we have expressions through the local Chern classes associated to
the sections sCi

of ��i C1i , i D 1; 2:

sŠC1
ı ��1 D crk.C1

1
/.�
�
1C11 ; sC1

/ ı ��[ ı �
�
2 ;

��[ ı s
Š
C2
ı ��2 D �

�
[ ı crk.C1

2
/.�
�
2C12 ; sC2

/ ı ��2 :

The proposition is a consequence of the following version of the excess intersection for-
mula.

Lemma 3.3.4. Let f W B1 ! B2 be a morphism of stacks which is an l.c.i. of relative
dimension r2 � r1. Let E1, E2 be vector bundles on B1, B2 of ranks r1, r2 and sections s1,
s2 of E1, E2. Let h W E1 ! f �E2 be a vector bundle homomorphism such that h ı s1 D
s2 ı f , which yields a fiber diagram

.B2/s2
� � i2 // B2

s2 // Tot.E2/

.B1/s1

g

OO

� � i1 // B1
s1 //

f

OO

Tot.E1/

h

OO
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where g is an isomorphism. Then we have a commutative square

HBM
� .B1/

cr1
.E1;s1/

// HBM
��2r1

..B1/s1/

HBM
��2r1C2r2

.B2/
cr2

.E2;s2/
//

f �

OO

HBM
��2r1

..B2/s2/

g�

OO

Finally, let now B be an Artin stack and let C be any Œ�1; 1�-perfect complex on B .
Let U be a filtering open cover of B consisting of open substacks U such that C jU is
strictly Œ�1; 1�-perfect. We have

HBM
� .B/ D lim

 �
U2U

HBM
� .U /; HBM

� .Tot.��0C// D lim
 �
U2U

HBM
� .Tot.��0C jU //: (3.3.5)

Definition 3.3.6. A coherent perfect system on a Œ�1; 1�-perfect complex C on B is a
collection of quasi-isomorphisms �U W C jU ! CU and �V�U W CU jV ! CV for each
U; V 2 U with V � U such that CU is a strictly Œ�1; 1�-perfect complex on U with a
presentation as in (2.2.6), and �V D �V�U ı �U jV .

Given a coherent perfect system on C , we define the virtual pullback

qŠC W H
BM
� .B/! HBM

�C2 vrk.C/.Tot.��0C//

as the map

qŠC D lim
 �
U2U

..�U /
�
ı qŠCU

/: (3.3.7)

Remark 3.3.8. If C is a strictly Œ�1; 1�-perfect complex on the stack B , then its total
space has a dg-stack structure given by

Tot.C/ D
�
Tot.C�0/; .Sym.��.C1/_Œ1�/; @s/

�
; (3.3.9)

that is, the stack Tot.C�0/ equipped with the sheaf of commutative dg-algebras which is
the Koszul complex of the section s above. This dg-stack gives rise to a derived stack in
the sense of [62]. The derived stack Tot.C/ depends, up to a natural equivalence, only
on the isomorphism class of the complex C in Db

coh.B/. We expect a direct conceptual
interpretation of the virtual pullback qŠ

C
in terms of the derived stack Tot.C/. However,

this would require a well-behaved Borel–Moore homology theory for derived stacks and
we do not know how to do it.

3.4. Virtual pullback for Maurer–Cartan stacks

Let B be an Artin stack of finite type and G be a strictly Œ0; 2�-perfect dg-Lie algebra
over B as in (2.4.2). We now define a virtual pullback

qŠG W H
BM
� .B/! HBM

�C2 vrk.G /.MC.G //
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using the diagram

B Tot.G�1/�oo MC.G /:? _oo

q

ii ? _ioo

In order to define the map qŠ
G
D sŠ

G
ı �� as in §3.3, we must check that the pullback

morphism
�� W HBM

� .B/! HBM
�C2 vrk.G�1/

.Tot.G�1//

and the refined pullback

sŠG W H
BM
�C2 vrk.G�1/

.Tot.G�1//! HBM
�C2 vrk.G /.MC.G //

are well-defined. The refined pullback is defined as in the previous sections, using the fact
that MC.G / is the zero locus of the section s of the bundle ��G 2 on Tot.G�1/ associated
with the curvature (2.4.4). The pullback map �� is well-defined, because � is a vector
bundle stack, hence is smooth although non-representable.

Next, we study the behavior of the virtual pullback under extensions of dg-Lie alge-
bras. Let G D H ËN and QN D ��

H
N be as in §2.4. Note that Proposition 2.4.7 allows

us to write the commutative diagram

B Tot.H�1/
�Hoo MC.H /? _

iHoo

Tot.G�1/

�G

cc

Tot. QN �1/

� QN

OO

MC.G /
3 S

iG

ff

� ?

i QN

OO

The virtual pullback maps qŠ
G

, qŠ
QN

and qŠ
H

are defined as above.

Proposition 3.4.1. We have the equality qŠ
G
D qŠ

QN
ı qŠ

H
:

Proof. Let sG , s QN , sH be the sections of the bundles ��
G

G 2, ��
QN
QN 2, ��

H
H2 associated

with the curvature maps of G , QN , H respectively. We must prove that

sŠG ı �
�
G D s

Š
QN
ı ��

QN
ı sŠH ı �

�
H :

First, observe that we have the diagram whose square is a fiber square

B Tot.H�1/
�Hoo MC.H /? _

iHoo

Tot.G�1/

�G

cc

p[

OO

Tot. QN �1/

� QN

OO

? _
j[oo

MC.G /
3 S

iG

ff

� ?

i QN

OO
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and the maps p[, j[ are given by the functoriality of the total space of a Œ�1; 0�-complex.
Note further that we have vector bundle homomorphisms

��G G 2 ! .p[/
���H .H

2/; ��
QN
QN 2
! .j[/

���G G 2:

These vector bundle homomorphisms being compatible with the sections sG , s QN and sH ,
the claim follows from the functoriality of the refined pullback with respect to pullback
by smooth maps.

4. The COHA of a surface

4.1. The COHA as a vector space

Let S be a smooth connected quasi-projective surface over C. Let Coh.S/ be the stack
of coherent sheaves on S with proper support. It is not smooth because the deformation
theory can be obstructed due to Ext2.

Proposition 4.1.1. Coh.S/ is a locally quotient f-Artin stack.

Proof. This is standard [40, Thm. 4.6.2.1]. Here are the details for future use in Prop.
4.3.2. Let S be a smooth projective variety containing S an an open set. Then Coh.S/ is
an open substack in Coh.S/. So it is enough to assume that S is projective which we will.
Let O.1/ be the ample line bundle on S induced by a projective embedding. The stack
Coh.S/ splits into disjoint union

Coh.S/ D
G

h2kŒŒt��

Coh.h/.S/;

where Coh.h/.S/ consists of sheaves F with Hilbert polynomial h, i.e., such that

dimH 0.S;F .n// D h.n/; n� 0:

For any N 2 N, let Coh.h;N/.S/ � Coh.h/.S/ be the open substack formed by F such
that for each n � N two conditions hold:

.a/ H i .S;F .n// D 0; i > 0,

.b/ the canonical map H 0.S;F .n//˝O.�n/! F is surjective.

Now, for any coherent sheaf E on a scheme B , let QuotE be the scheme such that, for any
B-scheme T ! B , the set of T -points QuotE.T / is the set of surjective sheaf homomor-
phisms EjT ! F where F is flat over T , modulo the equivalence relation

.q W EjT ! F / � .q0 W EjT ! F 0/ ” Ker.q/ D Ker.q0/:

Let Quot.h;N/.S/ be the open subscheme of QuotO.�N/˚h.N / formed by the equivalence
classes of surjections � W O.�N/˚h.N/ ! F with F 2 Coh.h;N/.S/ such that �.N /
induces an isomorphism H 0.S;O/˚h.N/ ! H 0.S;F .N //. Then the stack Coh.h;N/.S/
is isomorphic to the quotient stack of Quot.h;N/.S/ by the obvious action of the group
GLh.N/. It is a stack of finite type and, as N !1, the substacks Coh.h;N/.S/ form an
open exhaustion of Coh.h/.S/.
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4.2. The induction diagram

Let SES be the Artin stack classifying short exact sequences

0! E ! G ! F ! 0 (4.2.1)

of coherent sheaves with proper support over S . Morphisms in SES are isomorphisms of
such sequences. We then have the induction diagram

Coh.S/ � Coh.S/
q
 � SES

p
�! Coh.S/; (4.2.2)

where the map p projects a sequence (4.2.1) to G , while q projects it to .E;F /.

Proposition 4.2.3. The morphism p is schematic .representable/ and proper.

Proof. For any coherent sheaf G on S with proper support, the Grothendieck Quot scheme
QuotG is proper.

4.3. The derived induction diagram

We have the projections

Coh.S/ � Coh.S/
p12
 �� Coh.S/ � Coh.S/ � S

p13; p23
�����! Coh.S/ � S:

Consider the tautological coherent sheaf U over Coh.S/� S and the complex of coherent
sheaves over Coh.S/ � Coh.S/ given by

C D R.p12/�RHom.p�23U; p
�
13U/Œ1�: (4.3.1)

Its fiber at a point .E; F / is the complex of vector spaces RHomS .F ; E/Œ1�. Given a
substack X � Coh.S/, let UX D UjX�S and CX D C jX�X be the restrictions of U

and C .

Proposition 4.3.2. .a/ The complex C is Œ�1; 1�-perfect and admits a perfect coherent
system.

.b/ The complex CX is strictly Œ�1; 1�-perfect if X D Coh0.S/.

Proof. As in the proof of Proposition 4.1.1, the statements reduce to the case when S is
projective, which we assume. We also keep the notation from that proof. Fix two poly-
nomials h; h0 2 kŒt � and let E 2 Coh.h/.S/ and F 2 Coh.h

0/.S/ be two fixed coherent
sheaves on S with Hilbert polynomials h; h0. Since S is smooth of dimension 2, we can
fix a locally free resolution P � D ¹P�2 ! P�1 ! P 0º of F . If we know that the P i

are “sufficiently negative” with respect to E , i.e., for each i 2 Œ�2; 0� and j > 0 the
space ExtjS .P

i ; E/ D H j .S; .P i /_ ˝ E/ vanishes, then the complex of vector spaces
RHomS .F ;E/Œ1� is represented by the complex

HomS .P
0;E/! HomS .P

�1;E/! HomS .P
�2;E/ (4.3.3)
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situated in degrees Œ�1; 1�. In order to achieve this, we define, in a standard way,

P 0
D H 0.S;F .N0//˝O.�N0/

ev0
��! F ; N0 � 0;

with ev0 being the evaluation map. Then we set K0 D Ker.ev0/
"1
,! P 0 and

P�1 D H 0.S;K0.N1//˝K.�N1/
ev1
��!K0; N1 � N0;

and P�2 D Ker.ev1/
"2
,! P�1. Then by Hilbert’s syzygy theorem, P�2 is locally free,

and

¹P�2
d�2D"2
�����! P�1

d�1D"1ıev1
��������! P 0

º
ev0
��! F

is a locally free resolution of F . Further, if N1 � N0 � 0 are sufficiently negative with
respect to E and F , then the dimensions (denoted by r�1; r0; r1) of the terms of the
complex (4.3.3) are determined by h;h0 andN0;N1. For fixedN1� N0� 0 the locus of
.E;F / for which it is true forms an open substackUN1;N0;h;h0 in Coh.h/.S/�Coh.h

0/.S/.
On UN1;N0;h;h0 , the complex C is then represented by a complex of vector bundles whose
ranks are r�1; r0; r1, so it is strictly perfect. Further, as N1; N0 ! �1, the substacks
UN1;N0;h;h0 form an open exhaustion of Coh.h/.S/ � Coh.h

0/.S/. This proves (a).
To see (b), we notice that for 0-dimensional E and F with given h and h0, i.e., with

given dimensions of H 0.S; E/ and H 0.S; F /, one can choose N0; N1 in a universal
way.

Let now X � Coh.S/ be a substack whose points are closed under extensions in
Coh.S/. Let SESX � SES be the substack which classifies all short exact sequences of
coherent sheaves over S which belong toX . We abbreviate UDUX , C D CX and SESD
SESX . Assume further that the complex C over X � X is strictly Œ�1; 1�-perfect. Fix a
presentation of C as in Example 2.2.5.

Proposition 4.3.4. The stack Tot.��0C/ is isomorphic to SES.

Proof. Apply Proposition 2.3.4 with Y D X �X � S and F D p�23U, E D p�13U.

Thus, for all X as above we have the following diagram of f-Artin stacks:

X �X
�
 � Tot.C�0/

i
 - SES

p
�! X (4.3.5)

with q D � ı i , which can be viewed as a refinement of the induction diagram (4.2.2). We
call this diagram the derived induction diagram.

4.4. The COHA as an algebra

We apply the analysis of §3.3 to all diagrams (5.2.1) as X runs over the set of open
substacks of finite type of Coh.S/ such that the complex C in (4.3.1) is strictly Œ�1; 1�-
perfect over X � X . Note that the stack Coh.S/ is covered by all such X ’s by the proof
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of Proposition 4.3.2. Since the map p is representable and proper, the pushforward p� in
Borel–Moore homology is well-defined. Hence, we have the maps

HBM
� .X �X/

qŠ
C
��! HBM

�C2 vrk.C/.SES/
p�
��! HBM

�C2 vrk.C/.X/;

which, by (3.3.5), give rise to the maps

HBM
� .Coh.S/ � Coh.S//

qŠ
C
��! HBM

�C2 vrk.C/.SES/
p�
��! HBM

�C2 vrk.C/.Coh.S//:

Composing the maps qŠ
C

, p� and the exterior product

HBM
� .X/˝HBM

� .X/! HBM
� .X �X/;

we get the map

m W HBM
� .X/˝HBM

� .X/! HBM
�C2 vrk.C/.X/; (4.4.1)

and, by (3.3.5), the map

m W HBM
� .Coh.S//˝HBM

� .Coh.S//! HBM
�C2 vrk.C/.Coh.S//:

The first main result of this paper is the following theorem. It is proved in the next section.

Theorem 4.4.2. The map m equips HBM
� .X/ and HBM

� .Coh.S// with an associative
k-algebra structure.

4.5. Proof of associativity

We must prove the associativity of the map m. It is enough to do it for HBM
� .X/. To

do that, we consider the Artin stack FILT classifying flags of coherent sheaves E01 �

E02 � E03 over S such that the sheaves E01; E12; E23 defined by Eij D E0j =E0i belong
to the substack X � Coh.S/. For any i < j we introduce a copy Xij of the stack X
parametrizing sheaves Eij . For any i < j < k we introduce a copy SESijk of the stack
SES parametrizing short exact sequences

0! Eij ! Eik ! Ejk ! 0:

Then we have the fiber diagrams of stacks

FILT x //

y

��

SES023

q

��

p
// X03

SES012 �X23
p�1

//

q�1

��

X02 �X23

X01 �X12 �X23

(4.5.1)
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and
FILT v //

w

��

SES013

q

��

p
// X03

X01 � SES123
1�p

//

1�q

��

X01 �X13

X01 �X12 �X23

(4.5.2)

given by

x.E01 � E02 � E03/ D .E02 � E03/; y.E01 � E02 � E03/ D .E01 � E02;E23/;

v.E01 � E02 � E03/ D .E01 � E03/; w.E01 � E02 � E03/ D .E01;E12 � E13/:

We must prove that

p� ı q
Š
C ı .p� � 1/ ı .q

Š
C � 1/ D p� ı q

Š
C ı .1 � p�/ ı .1 � q

Š
C /:

Note that the morphisms x, z are both proper and representable and that we have the
following equalities of stack homomorphisms:

.q � 1/ ı y D .1 � q/ ı w; p ı v D p ı x:

We claim that there are virtual pullback homomorphisms yŠ
C

and wŠ
C

such that

x� ı y
Š
C D q

Š
C ı .p� � 1/;

v� ı w
Š
C D q

Š
C ı .1 � p�/;

yŠC ı .q
Š
C � 1/ D w

Š
C � .1 � q

Š
C /:

(4.5.3)

The complex C023 D .p � 1/
�C on SES012�X23 and the complex C013 D .1� p/

�C on
X01 � SES123 are both strictly Œ�1; 1�-perfect. Since the squares in the diagrams (4.5.1),
(4.5.2) are Cartesian, by Proposition 2.3.4 we have stack isomorphisms

Tot.��0C023/ D SES012 �X02
SES023 D FILT;

Tot.��0C013/ D SES123 �X13
SES013 D FILT:

Therefore, we have virtual pullback maps

yŠC D y
Š
C023
W HBM
� .SES012 �X23/! HBM

�C2 vrk.C/.FILT/;

wŠC D w
Š
C013
W HBM
� .X01 � SES123/! HBM

�C2 vrk.C/.FILT/

associated with the complexes C023 and C013. Then the first two equations in (4.5.3)
follow from the following base change property of virtual pullbacks.
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Lemma 4.5.4. Let B; B 0 be Artin stacks of finite type, C be a strictly Œ�1; 1�-perfect
complex on B , and f W B 0 ! B be a representable and proper morphism of stacks. Then
the complex C 0 WD f �C on B 0 is strictly Œ�1; 1�-perfect and gives rise to the Cartesian
square

Tot.��0C 0/
g
//

q0

��

Tot.��0C/

q

��

B 0
f

// B

Further, we have the following equality of maps:

g� ı q
0Š
C 0 D q

Š
C ı f� W H

BM
� .B 0/! HBM

�C2 vrk.C/.Tot.��0C//:

Now, we concentrate on the third equation in (4.5.3). To do this, we first apply Propo-
sition 2.5.2 to the stack homomorphism

p W Y D X01 �X12 �X23 � S ! B D X01 �X12 �X23

and to the coherent sheaves Eij D p
�
ijU with ij D 01; 12; 23 given by the pullback of the

tautological sheaf U by the obvious projections Y ! X � S . The sheaf G of associative
dg-algebras in (2.5.1) is a strictly Œ0; 2�-perfect dg-Lie algebra on B . So, Proposition 2.5.2
yields an equivalence of stacks over B

MC.G / ' FILT:

More precisely, we realize G as a semidirect product in two ways, G DH ËN DH 0ËN 0,
where

N D Rp�Hom.E23;E01 ˚ E12/; H D Rp�Hom.E12;E01/;

N 0 D Rp�Hom.E12 ˚ E23;E01/; H 0 D Rp�Hom.E23;E12/:

Then the proof of Proposition 2.5.2 yields the following isomorphisms of stacks:

MC.H / D SES012 �X23;

MC.H 0/ D X01 � SES123;

MC.G / D MC. QN / D SES012 �X02
SES023 D FILT;

MC.G / D MC. QN 0/ D SES123 �X13
SES013 D FILT:

In particular, we can identify the diagram

��C1023 Tot.C�0023/
soo

SES012 �X23 Tot.C�0023/
�oo

� ?

OO

FILT? _ioo

y

ll

� ?

OO

with the diagram
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��
QN
QN 2 Tot. QN 1/== QN 0

s QNoo

MC.H / Tot. QN 1/== QN 0
� QNoo

� ?

OO

MC.G /? _
i QNoo

q QN

kk

� ?

OO

We deduce that yŠ
C
D qŠ

QN
. Similarly, we get

qŠC � 1 D q
Š
H ; wŠC D q

Š
QN 0
; 1 � qŠC D q

Š
H 0 :

So the third equation in (4.5.3) follows from Proposition 3.4.1. This finishes the proof of
Theorem 4.4.2.

4.6. Chow groups and K-theory versions of COHA

Given an f-Artin stack B , we denote by A�.B/ its rational Kresch–Chow groups, as
in [38]. We denote by K.B/ the Grothendieck group of the category of coherent sheaves
on B . The construction in §3.3 makes sense as well for A� and K-theory, yielding virtual
pullback morphisms

qŠC W A�.Coh.S/ � Coh.S//! A�Cvrk.C/.SES/;

qŠC W K.Coh.S/ � Coh.S//! K.SES/;

associated with the complex C in (4.3.1). Composing them with the pushforward p� W
A�.SES/! A�.Coh.S// and p� W K.SES/! K.Coh.S// by the map p in (4.2.2), we
get an associative ring structure on A�.Coh.S// and on K.Coh.S//.

A definition of the K-theoretic COHA of finite length coherent sheaves over S was
independently proposed along these lines in the recent paper of Zhao [65].

5. Hecke operators

5.1. Hecke patterns and Hecke diagrams

We continue to assume that S is a smooth quasi-projective surface over C. Recall that
Coh.S/ is the stack of coherent sheaves on S with proper support.

Definition 5.1.1. A Hecke pattern for S is a pair .X; Y / of substacks in Coh.S/ with the
following properties:

.H1/ X is open and Y is closed.

.H2/ For any short exact sequence

0! E ! G ! F ! 0 (5.1.2)

with G 2 X and F 2 Y , we have E 2 X .

.H3/ Y is closed under extensions, i.e., if in (5.1.2) we have E;F 2 Y , then G 2 Y .
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To a Hecke pattern .X; Y / we associate a version of the induction diagram (4.2.2)
which we call the Hecke diagram

X � Y
q
 � SESXXY

p
! X: (5.1.3)

Here SESXXY is the moduli stack of short exact sequences (5.1.2) with E; G 2 X and
F 2 Y , and the projections q W SESXXY ! X � Y; p W SESXXY ! Y associate to a
sequence (5.1.2) the pair of sheaves .E;F / and the sheaf G respectively. We note the
following analog of Propositions 4.2.3 and 4.3.4.

Proposition 5.1.4. .a/ The morphism p is schematic and proper.

.b/ The morphism q identifies SESXXY with an open substack in Tot.��0CXY /, where
CXY is the Œ0; 2�-perfect complex on X � Y defined as in (4.3.1).

Proof. The fiber of p over G consists of subsheaves E � G such that E 2X and G=E 2 Y .
Because of the property (H2) we can say that it consists of E � G such that G=E 2 Y .
Since Y is closed in Coh.S/, our fiber is a closed part of the Quot scheme of G , hence
proper. Part (a) is proved.

To prove (b), note that, similarly to Proposition 4.3.4, the full Tot.��0CXY / is the
stack SESX‹Y formed by short exact sequences (5.1.2) with E 2X , F 2 Y but G being an
arbitrary coherent sheaf. Now, SESXXY in the intersection of SESX‹Y with the preimage
of X � Coh.S/ under the projection to the middle term. Since X is open in Coh.S/, we
see that SESXXY is open in Tot.��0CXY /.

5.2. The derived Hecke action

Let .X; Y / be a Hecke pattern for S . Denote HX D H
BM
� .X/ and HY D H

BM
� .Y /. From

the property (H3) we see, as in Theorem 4.4.2, that the derived induction diagram (5.2.1)
for Y makes HY into an associative algebra. Further, similarly to (5.2.1), we have the
diagram of f-Artin stacks which we call the derived Hecke diagram:

X � Y
�
 � Tot.C�0XY /

i
 - SESXXY

p
�! X: (5.2.1)

Here i identifies SESXXY with an open subset of the zero locus of a section of the vector
bundle ��C1XY and so gives rise to the virtual pullback i Š. So as in §4.4, we define the
map

� W HX ˝HY D H
BM
� .X/˝HBM

� .Y /! HBM
�C2 vrk CXY

.X/ D HX :

Theorem 5.2.2. The map � makes HX into a right module over the algebra HY .

Proof. Completely similar to that of Theorem 4.4.2. It is based on considering FILTXYY ,
the stack of flags of coherent sheaves E01 � E02 � E03 with E01 2 X and E02=E01,
E03=E02 2 Y:
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5.3. Examples of Hecke patterns

It is a general phenomenon that sheaves with support of lower dimension act, by Hecke
operators, on sheaves with support of higher dimension. We consider several refinements
of the condition on the dimension of support.

Definition 5.3.1. Let 0 � m � 2.

.a/ A coherent sheaf F on S with proper support is called m-dimensional if
dim Supp.F / � m. We denote by Coh�m D Coh�m.S/ � Coh the substack formed
by m-dimensional sheaves.

.b/ We say that F is purely m-dimensional if any non-zero OS -submodule F 0 � F is
m-dimensional.

.c/ We further say that F is homologically m-dimensional if it is m-dimensional and for
any C-point x 2 S we have Extj

OS
.Ox ;F /D 0 for 0� j <m. We denote by CohmD

Cohm.S/ � Coh the substack formed by homologically m-dimensional sheaves.

Proposition 5.3.2. .a/ For m D 0, the conditions “0-dimensional”, “purely 0-dimen-
sional” and “homologically 0-dimensional” are the same.

.b/ For m D 1, the conditions “purely 1-dimensional” and “homologically 1-dimen-
sional” are the same.

.c/ FormD 2, the condition “purely 2-dimensional” is the same as “torsion free” while
“homologically 2-dimensional” is the same as “vector bundle”.

Proof. Parts (a) and (b) are obvious, as is the first statement in (c). Let us show the second
statement. Notice that condition of being homologically 2-dimensional, i.e., Extj .Ox ;F /
D 0 for j < 2 and all x, is nothing but the maximal Cohen–Macaulay condition. Since S
is assumed to be smooth, any maximal Cohen–Macaulay sheaf is locally free.

We denote by Cohm.S/ the moduli stack of homologically 2-dimensional sheaves
with proper support, and by Cohtf.S/ denote the moduli stack of torsion free (i.e., purely
2-dimensional) sheaves.

Proposition 5.3.3. The pairs of substacks .Coh1.S/; Coh0.S//, .Coh2.S/; Coh1.S//,
.Cohtf.S/;Coh0.S// and .Cohtf.S/;Coh1.S// are Hecke patterns.

To prove the proposition, we note that Coh1.S/ and Coh0.S/ are both open and closed
in Coh.S/. Further, Coh2.S/, the stack of vector bundles, is open, as is Cohtf.S/. Further,
all these stacks are closed under extensions. So it remains to prove the following.

Lemma 5.3.4. Suppose we have a short exact sequence as in (5.1.2).

.a/ If G 2 Cohm.S/ and F 2 Cohm�1.S/, then E 2 Cohm.S/.

.b/ If G 2 Cohtf.S/, then E 2 Cohtf.S/.

Proof. (a) Since E � G , it is clear that dim Supp.E/ � m. The vanishing of Extj .Ox ;E 0/
for j < m follows at once from the long exact sequence of Ext�.Ox ;�/ induced by the
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short exact sequence above. Part (b) is obvious: any subsheaf of a torsion free sheaf is
torsion free.

This ends the proof of Proposition 5.3.3.

Remark 5.3.5. The non-trivial part of the proposition says that homologically (or, what
is the same, purely) 1-dimensional sheaves govern Hecke modifications of vector bundles
on a surface.

5.4. Stable sheaves and Hilbert schemes

Let S be a smooth connected projective surface andmD 0; 1. We can apply the construc-
tion in §4.4 to the substack of m-dimensional sheaves X D Coh�m.S/ of Coh.S/. We
have the derived induction diagram (5.2.1), hence formula (4.4.1) yields an associative
multiplication on HBM

� .Coh�m.S//.
Now, let P.E/ W m 7! �.E.m// be the Hilbert polynomial of a coherent sheaf E on S ,

and p.E/ D P.E/=(leading coefficient) be the reduced Hilbert polynomial. The sheaf E

is stable if it is pure and p.F / < p.E/ for any proper subsheaf F � E . Let MS .r; d; n/

be the moduli space of rank r semistable sheaves with first Chern number d and second
Chern number n. See [30] for a general background on these moduli spaces.

Theorem 5.4.1. .a/ The direct image by the closed embeddings Coh0.S/�Coh�1.S/�
Coh.S/ gives algebra homomorphisms HBM

� .Coh0.S// ! HBM
� .Coh�1.S// !

HBM
� .Coh.S//:

.b/ The algebra HBM
� .Coh�1.S//op acts on

L
d;nH

BM
� .MS .1; d; n//.

.c/ The algebra HBM
� .Coh0.S//op acts on

L
nH

BM
� .MS .1; d; n// for each d .

Proof. Part (a) follows from base change. Parts (b), (c) are proved as in §5.2. Let us give
more details on (b) part (c) is proved in a similar way.

First, let us consider the following more general setting: Let X D Coh.S/ and Y �
Coh.S/ be the substack consisting of torsion free sheaves. Note that the substack Y �
X is both open and stable by subobjects. We claim that the algebra HBM

� .X/op acts on
HBM
� .Y /. To prove this, we consider the restrictions of Tot.C�0/ and SES to the stack

Y �X given by

Tot.C�0/jY�X D ��1.Y �X/; SESjY�X D q�1.Y �X/:

Then the derived induction diagram (5.2.1) gives rise to the commutative diagram

Coh.S/ � Coh.S/ Tot.C�0/�oo SES? _ioo SES
p
// Coh.S/

Y �X
� ?

OO

Tot.C�0/jY�X
N�oo

� ?

OO

SESjY�X? _N{oo

� ?

OO

SES? _
j
oo

Np
//

� ?

OO

Y

� ?

OO
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where SESDp�1.Y / and j is the obvious open immersion of stacks j W SES� SESjY�X :
Let NsC be the restriction of the section sC of ��C1 to Y �X . We define a map

Nm W HBM
� .Y /˝HBM

� .X/! HBM
�C2 vrk.C/.Y / (5.4.2)

as the composition of the exterior product and the composite map Np� ı Nj � ı NsŠC ı N�
�. We

claim that the map Nm above defines an action of the algebraHBM
� .X/op onHBM

� .Y /. Then
the diagrams (4.5.1), (4.5.2) yield the following fiber diagrams of stacks:

FILT x //

y

��

SES

q

��

p
// Y

SES �X
p�1

//

q�1

��

Y �X

Y �X �X

(5.4.3)

and
FILT v //

w

��

SES

q

��

p
// Y

Y � SES
1�p

//

1�q

��

Y �X

Y �X �X

(5.4.4)

where FILT� FILT is the open substack classifying flags of coherent sheaves E01�E02�

E03 over S such that E01;E02;E03 2 Y . Then the claim is proved as in §4.5, replacing the
diagrams (4.5.1), (4.5.2) by (5.4.3), (5.4.4).

Now, a rank 1 coherent sheaf is stable if and only if it is torsion free. Thus, setting
X D Coh�1.S/ and Y � Coh.S/ to be the substack consisting of rank 1 torsion free
sheaves, the argument above proves part (b).

Remark 5.4.5. .a/ The moduli space MS .1;OS ; n/ of rank 1 sheaves with trivial deter-
minant and second Chern number n is canonically isomorphic to the Hilbert scheme
Hilbn.S/. If S is a K3 surface, then Hilbn.S/ is further isomorphic to MS .1; 0; n/.

.b/ The rings A�.Coh�1.S//op and K.Coh�1.S//op act onM
d;n

A�.MS .1; d; n//;
M
d;n

K.MS .1; d; n//

respectively, as in Theorem 5.4.1. The proofs are analogous to the proof in Borel–
Moore homology.
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6. The flat COHA

6.1. R.A2/ and commuting varieties

In this section we assume S D A2 and denote by

R.A2/ D HBM
� .Coh0.A2//

the COHA of 0-dimensional coherent sheaves on A2. We note that

Coh0.A2/ D
G
n�0

Coh.n/0 .A2/;

where Cohn0.A
2/ is the stack of 0-dimensional sheaves F such that the length of F , i.e.,

dimH 0.F /, is equal to n. We further recall that

Coh.n/0 .A2/ ' Cn==GLn;

where Cn is the n � n commuting variety

Cn D ¹.A;B/ 2 gln.C/ � gln.C/ I ŒA; B� D 0º;

acted upon by GLn (simultaneous conjugation). Indeed, a 0-dimensional coherent sheaf F

on A2 of length n is the same as a CŒx;y�-moduleH 0.F /which has dimension n over C,
i.e., can be represented by the space Cn with two commuting operators A;B , the actions
of x and y. We recall

Proposition 6.1.1. Cn is an irreducible variety of dimension n2 C n. Therefore
Coh.n/0 .A2/ is an irreducible stack of dimension n.

Accordingly, we have a direct sum decomposition

R.A2/ D
M
n�0

Rn.A2/; Rn.A2/ D HBM
� .Coh.n/0 .A2// D HBM

� .Cn==GLn/;

where on the right we have the equivariant Borel–Moore homology of the topological
space Cn. The algebra R.A2/ has a Z2-grading (compatible with multiplication), consist-
ing of (in this order)

.a/ the length degree, by the decomposition into the H
.n/

¹xº
,

.b/ the homological degree, where we put HBM
i in degree i .

Define the Z2-graded vector space

‚ D q�1t � kŒq; t �; deg.q/ D .0;�2/; deg.t/ D .1; 0/: (6.1.2)

The following is well-known (see, e.g., [59, §5.3] and the references there) and goes back
to the Feit–Fine formula for the number of points in the commuting varieties over finite
fields [15, (2)] and the purity of the Borel–Moore homology of the commuting stack
Cn==GLn proved in [11].
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Proposition 6.1.3. As a Z2-graded vector space, R.A2/ ' Sym.‚/.

The goal of this section is to prove the following.

Theorem 6.1.4. .a/ ‚ has a natural structure of a graded Lie algebra.

.b/ R.A2/ is isomorphic to U.‚/ as a graded algebra.

.c/ The symmetrized product map yields a graded vector space isomorphism

Sym.‚/ ' R.A2/:

Before doing this, let us observe the following.

Proposition 6.1.5. The algebra R.A2/ is the same as the COHA considered in [58, §4.4]
in the case of the Jordan quiver.

Proof. To prove this, we abbreviate Xn D Cn==GLn, S D A2, and note that the tauto-
logical sheaf U over Xn � S is identified with the GLn-equivariant sheaf over Cn � S
given by U D Cn ˝ OCn

; with the OCn
-linear action of OS D CŒx; y� such that x; y

act as A˝ 1, B ˝ 1 respectively on the fiber Uj.A;B/. Let p be the Lie algebra consist-
ing of .n;m/-upper-triangular matrices in glnCm, and let u, l be its nilpotent radical and
its standard Levi subalgebra. Let P , U and L be the corresponding linear groups. Write
Xn;m DXn �Xm and Cn;m D Cn �Cm. We identify Cn;m with the commuting variety of
the Lie algebra l andXn;m with the moduli stackCn;m==L:We have uDHomC.Cn;Cm/,
and the perfect Œ�1;1�-complex C overXn;m in (4.3.1) is identified with theL-equivariant
Koszul complex of vector bundles over Cn;m given by

u˝OCn;m

d0

�! u2 ˝OCn;m

d1

�! u˝OCn;m
;

where the differentials over the C-point .A;B/ in Cn;m are given by

d0.u/ D .ŒA; u�; ŒB; u�/; d1.v; w/ D ŒA;w� � ŒB; v� D ŒA˚ v; B ˚ w�;

and the direct sum holds for the canonical isomorphism l�u! p. The total space Tot.C/
of this complex, defined in (3.3.9), is a smooth derived stack over Xn;m such that:

.a/ The underlying Artin stack is the vector bundle stack C0==C�1 over Xn;m such that

C�1 D .Cn;m � u/==L; C0 D .Cn;m � u2/==L:

It is isomorphic to the following quotient relative to the diagonal P -action:

Tot.C�0/ D .Cn;m � u2/==P:

.b/ The structural sheaf of derived algebras is the freeP -equivariant graded-commutative
OCn;m�u2 -algebra generated by the elements of u_ in degree �1. The differential is
given by the transpose of the Lie bracket u � u! u.
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Therefore, the derived induction diagram (5.2.1) is

Cn;m==L
�
�! .Cn;m � u2/==P

i
 - eC n;m==P p

�! CnCm==GLnCm; (6.1.6)

where eC n;m is the commuting variety of the Lie algebra p. We can now compare the
product

m W HBM
� .Xn/˝H

BM
� .Xm/! HBM

� .XnCm/

in (4.4.1) with the multiplication in [58, §4.4]. We have the fiber diagram of stacks

.Cn;m � u/==P .Cn;m � u3/==P
f
oo .Cn;m � u2/==P

soo

Cn;m==P
� ?

1�0

OO

.Cn;m � u2/==P
�oo

� ?

1�0

OO

eC n;m==P? _ioo

� ?

i

OO

where 1 is the identity, 0 is the zero section, f is the projection to the third component
of u3 (which is a local complete intersection morphism) and s D 1 � d1. Hence, the
composite map g D f ı s is the Lie bracket .A; BI v; w/ 7! ŒA ˚ v; B ˚ w� and the
composition rule of refined pullback morphisms implies that

gŠ.x/ D sŠf Š.x/ D sŠ��.x/

in HBM
� .eC n;m==P / for any class x 2 HBM

� .Xn �Xm/. We deduce that the multiplication
map m is the same as the multiplication considered in [58, §4.4].

6.2. R.A2/ as a Hopf algebra

As a first step in the proof of Theorem 6.1.4, we introduce onR.A2/ a compatible comul-
tiplication.

Let U �C2 be any open set in the complex analytic topology. We denote by Coh0.U /
the category of 0-dimensional coherent analytic sheaves on U . The corresponding moduli
stack Coh0.U / can be understood as a complex analytic stack in the sense of [54], i.e., a
stack of groupoids on the site of Stein complex analytic spaces. It can also be understood
in a more elementary way, as follows.

Let Cn.U / � Cn be the open subset (in the complex analytic topology) formed by
pairs .A; B/ of commuting matrices for which the joint spectrum (the support of the
corresponding coherent sheaf on C2) is contained inU . It is, therefore, a complex analytic
space. Then we can define

Coh.n/0 .U / D Cm.U /==GLn.C/;

as the quotient analytic stack, and put

Coh0.U / D
G
n�0

Coh.n/0 .U /:
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Using this interpretation, we define directly

R.U / D HBM
� .Coh0.U // D

M
n�0

HBM
� .Cn.U /==GLn.C// D

M
n�0

Rn.U /:

The same considerations as in §4 make R.U / into a graded associative algebra.
If U 0 � U � C2 are two open sets, then Cn.U 0/ ,! Cn.U / is an open embedding,

and we have maps of Z-graded, resp. Z2-graded vector spaces

�nU;U 0 W H
BM
� .Cn.U /==GLn.C//! HBM

� .Cn.U
0/==GLn.C//;

�U;U 0 D
M
n�0

�nU;U 0 W R.U /! R.U 0/:

Proposition 6.2.1. .a/ �U;U 0 is an algebra homomorphism.

.b/ If the embedding U 0 ,! U is a homotopy equivalence, then �U;U 0 is an isomorphism.

.c/ If U is a disjoint union of open subsets U1; : : : ; Um, then

R.U / ' R.U1/˝ � � � ˝R.Un/:

Proof. Part (a) is clear from definitions. To show (b), we note that Cn.U / and Cn.U 0/ are
naturally stratified (by singularities), and, under our assumption, the embedding Cn.U 0/
,! Cn.U / is a homotopy equivalence relative to the stratifications, i.e., it induces homo-
topy equivalences on all the strata. By dévissage (a spectral sequence argument) this
implies that the map

HBM;GLn.C/
� .Cn.U // D H

��
GLn.C/

.Cn.U /; !Cn.U //

! H��GLn.C/
.Cn.U

0/; !Cn.U 0// D H
BM;GLn.C/
� .Cn.U

0//

is an isomorphism.
We abbreviate GLn1;:::;nm

D GLn1
� � � � � GLnm

. Then part (c) follows from the
GLn.C/-equivariant identifications

Cn.U / D
G

n1C���CnmDn

�
GLn.C/ �GLn1;:::;nm .C/ Cn1

.U1/ � � � � � Cnm
.Um/

�
;

which reflect the fact that a length n sheaf F on U consists of sheaves Fi on Ui of lengths
ni summing to n.

Corollary 6.2.2. If an open U �C2 is homeomorphic to a 4-ball, then �C2;U WR.C
2/!

R.U / is an isomorphism.

Let us now choose, once and for all, two disjoint round balls U1; U2 � C2. Define a
morphism of Z2-graded vector spaces� W R.C2/! R.C2/˝R.C2/ as the composition

R.C2/
�C2; U1tU2
��������! R.U1 t U2/ ' R.U1/˝R.U2/

��1

C2;U1
˝��1

C2;U2
�����������! R.C2/˝R.C2/:

Proposition 6.2.3. .a/ � does not depend on the choice of the disjoint balls U1; U2.

.b/ � makes R.C2/ into a cocommutative Hopf algebra.



The COHA of a surface 43

Proof. Any two admissible choices of U1; U2 are connected by a path of admissible
choices, and� does not change along this path. This proves (a). To prove (b), note that all
the maps in the above chain are compatible with the Hall multiplication, so � is a homo-
morphism of algebras. Its cocommutativity follows from (a) by interchanging U1 and U2,
i.e., by connecting .U1;U2/ and .U2;U1/ by a path of admissible choices. Coassociativity
is proved similarly by considering triples of disjoint balls. This proves that R.C2/ is a
cocommutative bialgebra.

It remains to prove that R.C2/ has an antipode. This is a standard argument using
co-nilpotency (see, e.g., [42, §1.2]). That is, define

� W R.C2/! R.C2/˝R.C2/; �.x/ D �.x/ � .x ˝ 1C 1˝ x/;

and let�
n
W R.C2/! R.C2/˝n be the n-fold iteration of�. Then R.C2/ is conilpotent,

that is, for any x 2 R.C2/ there is n such that �
m
.x/ D 0 for m � n. Therefore the

antipode ˛ W R.C2/ ! R.C2/ is given by the following geometric series, terminating
upon evaluation on any x 2 R.C2/:

˛ D

1X
nD1

.�1/nmn ı�
n
;

where mn W R.C2/˝n ! R.C2/ is the n-fold multiplication.

LetR.C2/prim D ¹a 2R.C2/ I �.a/D a˝ 1C 1˝ aº be the Lie algebra of primitive
elements with the bracket Œa; b� D ab � ba.

Corollary 6.2.4. .a/ R.C2/ is isomorphic, as a Hopf algebra, to the universal envelop-
ing algebra of R.C2/prim.

.b/ R.C2/prim ' ‚ as a Z2-graded vector space.

Proof. Part (a) follows from the Milnor–Moore theorem. Part (b) follows from the
Poincaré–Birkhoff–Witt theorem and from Proposition 6.1.3.

6.3. Explicit primitive elements in R.A2/

For any open U �C2 let Coh.n/1 pt.U /� Coh.n/0 .U / be the closed analytic substack formed
by 1-point coherent sheaves, i.e., sheaves whose support consists of precisely one point.
In other words,

Coh.n/1 pt.C
2/ D Cn;1 pt.U /==GLn.C/;

where Cn;1 pt.U /�Cn.U / is the closed analytic subspace formed by pairs .A;B/ of com-
muting matrices whose joint spectrum reduces to one point in C2 (but can be degenerate).
Still more explicitly,

Cn;1 pt.U / D U � NCn;

where NCn is the n by n nilpotent commuting variety

NCn D ¹.A;B/ 2 gln.C/ � gln.C/ I ŒA; B� D A
n
D Bn D 0º:
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In particular, we have the closed subvariety

Cn;1 pt D Cn;1 pt.C
2/ D C2

� NCn � Cn; (6.3.1)

invariant under GLn.C/. We recall

Proposition 6.3.2 ([3]). NCn is an irreducible algebraic variety of dimension n2 � 1.

The proposition implies that Cn;1 pt is an irreducible variety of dimension n2 C 1. So
Coh.n/1 pt.C

2/, its image in Coh.n/0 .C2/, is an irreducible stack of dimension 1, and it has
the equivariant fundamental class

�n D ŒCn;1 pt� 2 H
BM
2 .Cn==GLn/:

Further, let En be the trivial vector bundle of rank n on the GLn-variety Cn, equipped
with the vectorial representation of GLn. We call En the tautological sheaf. Being an
equivariant vector bundle, it has the equivariant Chern characters

chi .En/ 2 H 2i .Cn==GLn/; i � 0;

and, for i � 0, n � 1, we define

�n;i D chi .En/ \ �n 2 HBM
2�2i .Cn==GLn/ D Rn;2�2i .C2/: (6.3.3)

Comparing the Z2-grading of ‚, we see that the map

˛ W ‚! R.C2/; tnqi�1 7! �n;i ; (6.3.4)

is a morphism of Z2-graded vector spaces.

Proposition 6.3.5. .a/ ˛ is injective, i.e., each �n;i is non-zero.

.b/ �n;i is primitive.

Proof. The claim (a) follows from [11, Thm. C] and the explicit computations in [11,
§5] in the case of the Jordan quiver. More precisely, let Qg be the quiver with one
vertex and g loops. For each integer n � 0, let M.Qg/n be the coarse moduli space
of semisimple n-dimensional representations of CQg , i.e., the categorical quotient of
.gln/

g by the adjoint action of GLn. We will abbreviate M.Qg/ D
F
n�0 M.Qg/n: The

direct sum of representations yields a finite morphism M.Qg/ �M.Qg/ ! M.Qg/,
hence a symmetric monoidal structure on the category Perv.M.Qg// of perverse sheaves
on M.Qg/, which allows one to consider the nth symmetric power Symn.E/ for any
object E in Perv.M.Qg//. Let Sym.E/ D

L
n�0 Symn.E/. Set g D 3 and fix an embed-

ding Q2 � Q3. By [11], we haveM
n�0

H �c .Cn==GLn/ D H �c
�
M.Q3/;Sym.BP � ˝H �c .BC�//

�
M
n�0

H �c .Cn;1 pt==GLn/ D H �c
�
M.Q3/1 pt;Sym.BP � ˝H �c .BC�//

�
(6.3.6)
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where BP � D
L
n>0 BP �n and BP �n is, up to some shift, the constant sheaf sup-

ported on the small diagonal C3 �M.Q3/n. For each n, the closed subset M.Q3/n;1 pt �

M.Q3/n is the coarse moduli space of semisimple representations of CQ3 for which the
underlying CQ2-module has a punctual support in C2. We have

C3
�M.Q3/n;1 pt �M.Q3/n:

Taking the direct summand in (6.3.6)

BP �n ˝H
�
c .BC�/ � Sym

�
BP � ˝H �c .BC�/

�
;

we get the commutative diagram

H �c
�
M.Q3/n;BP �n ˝H

�
c .BC�/

�� � � // HBM
� .Cn==GLn/

H �c
�
M.Q3/n;1 pt;BP �n ˝H

�
c .BC�/

�� � � //

f

OO

HBM
� .Cn;1 pt==GLn/

h

OO

The map f is invertible, and h is the pushforward by the closed embedding Cn;1 pt � Cn.
We deduce that the class chi .En/ \ ŒCn;1 pt� is non-zero in HBM

2�2i .Cn;1 pt==GLn/ and that
its image by h is non-zero. This image is equal to the class �n;i .

To prove (b), given an open U � C2, we define, in the same way as before, elements

�n;i .U / 2 R
n;2�2i .U / D HBM

2�2i .Cn.U /==GLn.C//:

For U 0 � U we have
�U;U 0.�i;n.U // D �n;i .U

0/:

For U D U1 t U2 being a disjoint union of two opens, a length n 0-dimensional sheaf F

on U consists of two sheaves Fi on Ui of lengths ni , i D 1; 2, such that n1 C n2 D n.
This can be expressed by saying that

Cn.U1 t U2/ D
G

n1Cn2Dn

�
GLn.C/ �GLn1;n2

.C/

�
Cn1

.U1/ � Cn2
.U2/

��
; (6.3.7)

from which we deduce the identification

Rn.U / D
M

n1Cn2Dn

Rn1.U1/˝R
n2.U2/: (6.3.8)

Let En;U be the tautological sheaf of Cn.U /, and similarly for U1, U2. With respect to the
identification (6.3.7), we have

En;U D
G

n1Cn2Dn

.En1;U1
� O ˚ O � En2;U2

/:

Thus, the additivity of the Chern character gives

chi .En;U / D
X

n1Cn2Dn

�
chi .En1;U1

/˝ 1 C 1˝ chi .En2;U2
/
�
; 8i � 0: (6.3.9)



M. Kapranov, E. Vasserot 46

Since, under the identification (6.3.8), we have

�n.U / D �n.U1/˝ 1C 1˝ �n.U2/;

we deduce that also

�n;i .U / D �n;i .U1/˝ 1C 1˝ �n;i .U2/; 8i � 0:

Our statement follows from this and from the definition of � via �.

Corollary 6.3.10. The space R.C2/prim of primitive elements of R.C2/ coincides with
the image ˛.‚/. It is closed under the commutator Œa; b� D ab � ba.

Theorem 6.1.4 is proved. The symmetrized product map � W Sym.‚/ ! R.A2/ is
considered in detail in (7.1.5) below.

7. The COHA of a surface S and factorization homology

7.1. Statement of results

Let S be an arbitrary smooth quasi-projective surface and R.S/ D HBM
� .Coh0.S// be

the corresponding cohomological Hall algebra. It is Z2-graded by (length, homological
degree). We introduce a global analog of the space ‚ generating the flat COHA R.A2/
from §6.3. Let

S
pn
 � Coh.n/1 pt.S/

in
! Coh.n/0 .S/ (7.1.1)

be the stack of 1-pointed, length n sheaves on S with its canonical closed embedding in
into Coh.n/0 .S/ and projection pn to S (so pn.F / is the unique support point of F ).
Proposition 6.3.2 implies that pn is a morphism with all fibers irreducible of relative
dimension �1 and therefore Coh.n/1 pt.S/ is irreducible of dimension C1. Moreover, we

have a natural fundamental class in HBM
2 .Coh.n/1 pt.S// constructed as follows.

We consider the open subscheme FCoh.n/0 .S/ WD Quot.n;0/.S/ of the quot-scheme
formed by the equivalence classes of surjections � W On ! F with F 2 Coh.n/0 .S/ such
that � induces an isomorphism Cn ! H 0.S;F /. Let FCoh.n/1 pt.S/ � FCoh.n/0 .S/ be the
closed subscheme formed by the equivalence classes of � such that F is a 1-pointed
sheaf. Then the stack Coh.n/0 .S/ is isomorphic to the quotient stack FCoh.n/0 .S/==GLn,
and Coh.n/1 pt.S/ is isomorphic to the quotient stack FCoh.n/1 pt.S/==GLn. Further, we have

the projection FCoh.n/1 pt.S/! S with fibers being identified with the variety NCn of pairs
of nilpotent commuting matrices (see §6.3). Since this variety is irreducible of dimension
n2 � 1, the scheme FCoh.n/1 pt.S/ is an irreducible variety of dimension n2 C 1 and has

the fundamental class in HBM
2.n2C1/

.FCoh.n/1 pt.S//. So the quotient stack by GLn has the

fundamental class in HBM
2 .Coh.n/1 pt.S//.
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Therefore we have the pullback map p�n given by the composition

HBM
� .S/ D H 4��.S/

p�n
! H 4��.Coh.n/1 pt.S//! HBM

��2.Coh.n/1 pt.S//; (7.1.2)

where the last arrow is the cap-product with the fundamental class of Coh.n/1 pt.S/.
Define the subspace

‚n.S/ D in�p
�
nH

BM
� .S/ � HBM

��2.Coh.n/0 .S// D Rn.S/:

Let En denote also the tautological sheaf on Coh.n/0 .S/ and further put, for i � 0,

‚n;i .S/ D ‚n.S/ \ chi .En/ � Rn.S/:

Proposition 7.1.3. The canonical map HBM
� .S/! ‚n;i .S/ is an isomorphism.

Proof. As before, we use the subscheme FCoh.n/0 .S/ whose quotient stack by GLn is
Coh.n/0 .S/. Let T � GLn be a maximal torus. Then the fixed points locus FCoh.n/0 .S/T is
isomorphic to FCoh.1/0 .S/n D Sn. Thus, we have a commutative diagram

HBM
� .S/

p�n //
� u

a
((

H
BM;GLn
� .FCoh.n/1 pt.S//loc

in� // H
BM;GLn
� .FCoh.n/0 .S//loc

HBM
� .S/˝H �GLn;loc

� � � //

b

OO

.HBM
� .Sn/˝H�T /

Sn

loc

c

OO

where H �G D H �.BG/ and the subscript “loc” means the tensor product by the frac-
tion field H �GLn;loc of H �GLn

over H �GLn
. The maps b, c are the pushforward by the closed

embeddings S � FCoh.n/1 pt.S/ and Sn � FCoh.n/0 .S/, which are invertible by the local-
ization theorem in equivariant cohomology. The map � is the diagonal embedding. It is
injective. The map a is equal to Id˝1, up to the cap-product by an invertible element in
H �.S/˝H �GLn;loc. It is injective. We deduce that the map

in�p
�
n W H

BM
� .S/! HBM;GLn

� .FCoh.n/1 pt.S//

is injective as well.

We define
‚.S/ D

M
n;i

‚n;i .S/ � R.S/:

Thus, for S D A2 we see that ‚.A2/ is identified with the graded space ‚ from (6.1.2),
embedded into R by the map ˛ as in (6.3.4). We recall that HBM

� .A2/ is 1-dimensional,
concentrated in homological degree 4. Thus shifting the grading by putting

‚0 D ‚Œ0;�4� D qt � kŒq; t �; (7.1.4)
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we have, by Proposition 7.1.3, an identification of Z2-graded vector spaces

‚.S/ ' HBM
� .S/˝‚0 ' HBM

� .S==C�/˝ tkŒt �:

We now consider the symmetrized product map � D � W Sym.‚.S//! R.S/ defined as

� D
X
n�0

�n; �n W Symn.‚.S//!R.S/; �n.v1 � � � � � vn/ D
1

nŠ

X
s2Sn

vs.1/ � � � � � vs.n/:

(7.1.5)

Here � is the product in the symmetric algebra and � is the Hall multiplication. The
second main result of this paper is a version of the Poincaré–Birkhoff–Witt theorem for
R.S/ which allows us to compute its graded dimension. It is proved in the next sections.

Theorem 7.1.6. The map � W Sym.‚.S//! R.S/ is an isomorphism of Z2-graded vec-
tor spaces.

7.2. Reminder on factorization algebras

We follow the approach of [9,21]. Let .C ;˝;1/ be a symmetric monoidal model category.
In particular, it has a class W of weak equivalences. We will consider three examples:

.a/ C D Top is the category of topological spaces (homotopy equivalent to a CW-com-
plex), ˝ is Cartesian product, and weak equivalences have the usual topological
meaning.

.b/ C is the category of Artin stacks, ˝ is the Cartesian product of stacks and weak
equivalences are equivalences of stacks.

.c/ C D dgVect is the category of cochain complexes, ˝ is the usual tensor product and
weak equivalences are quasi-isomorphisms.

Let M be a C1 manifold of dimension n.

Definition 7.2.1. A prefactorization algebra on M valued in C is a rule A which asso-
ciates

.a/ to any open set U �M an object A.U / 2 C , so that A.;/ D 1;

.b/ to any systemU1; : : : ;Up of disjoint open sets contained in an open setU0 a morphism
�
U0

U1;:::;Up
W A.U1/˝ � � � ˝A.Up/! A.U0/; such that the morphisms �U0

U1;:::;Up
sat-

isfy associativity.

A morphism of prefactorization algebras � W A ! A0 is a datum of morphisms �U W
A.U /! A0.U / compatible with the structures. It is a weak equivalence if each �U is a
weak equivalence.

A prefactorization algebra is, in particular, a precosheaf via the maps �U0

U1
, i.e., it is a

covariant functor from the category of open subsets in M to C .

Definition 7.2.2. An open covering of M is called a Weiss covering if any finite subset
of M is contained in an open set of the covering.
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Example 7.2.3. .a/ Let D � Rn be the standard unit disk kxk < 1. A disk in M is an
open subset which is homeomorphic toD. The open covering D.M/ ofM generated
by the disks of M is a Weiss covering. By definition, every open subset from D.M/

consists of a finite disjoint union of disks.

.b/ A prefactorization algebra is called locally constant if for any inclusion of disks U0 �
U1 the map �U0

U1
is a weak equivalence.

Definition 7.2.4. .a/ A prefactorization algebra A is called a .homotopy/ factorization
algebra if:

.a1/ For any Weiss covering U D ¹Uiºi2I of any open set U � M the natural mor-
phism

holim
���!

N�.U;A/! A.U /;

N�.U;A/ WD
°
� � �

//
//
//
//

a
i;j;k2I

A.Uijk/
//

//
//
a
i;j2I

A.Uij /
//
//

a
i2I

A.Ui /
±
;

with Uij D Ui \ Uj , etc., is a weak equivalence .codescent/.

.a2/ �U0

U1;:::;Up
is a weak equivalence for any system U0; : : : ; Up of open sets with

U0 D U1 t � � � t Up .multiplicativity/.

.b/ The factorization homology ofM with coefficients in a factorization algebra A is the
space of global cosections of A, viewed as an object of C , which we denoteZ

M

A D A.M/ 2 C :

Remark 7.2.5. .a/ A multiplicative prefactorization algebra A is a factorization algebra
if and only if for the particular Weiss covering D.U / of any open subset U �M , the
object A.U / is the homotopy colimit of the diagrama

U1;U22D.U /

A.U1 \ U2/�
a

U12D.U /

A.U1/:

In particular, we have Z
M

A D holim
���!
U2D.M/

A.U /:

See [9, §A.4.3] for details.

.b/ Any locally constant prefactorization algebra has a unique extension as a locally con-
stant factorization algebra taking the same value on any disk, but possibly different
values on other open sets [21, Rem. 24].

Sometimes it is convenient to use the dual language. By a (pre)factorization co-
algebra B in C we will mean a (pre)factorization algebra in Cop. Thus, we have maps

�
U1;:::;Up

U0
W B.U0/! B.U1/˝ � � � ˝B.Up/
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yielding a presheaf on M . For a factorization coalgebra B we have the factorization
cohomology which we denote asI

M

B D B.M/ D holim
 ���
U2D.M/

B.U /:

Let us record the following two statements for later use.

Proposition 7.2.6. If F is a locally constant sheaf of k-dg-vector spaces, then Sym.F / W
U 7! Symk.F .U // is a locally constant factorization coalgebra.

Note that Sym.F /, as we define it, is not the same as the symmetric algebra of F in
the symmetric monoidal category of sheaves of (dg-)vector spaces; in fact, it is not a sheaf
in the usual sense.

Proof of Proposition 7.2.6. This is an analog of [9, Thm. 5.2.1] which deals with sheaves
corresponding to C1 sections of vector bundles, and their symmetric products in the
sense of bornological vector spaces. In our case the proof is similar but easier due to the
absence of analytic difficulties. That is, call a covering U an n-Weiss covering if each
subset I � M of cardinality � n is contained in one of the opens of U. Then it suffices
to show that Symn.F / W U 7! Symn

k.F .U // satisfies descent for n-Weiss coverings. This
follows, as in the proof of [9, Thm. 5.2.1], from the fact that F �n is a sheaf of M n.

Proposition 7.2.7. Let � W B ! B 0 be a morphism of factorization coalgebras. Suppose
that for any disk U � M the morphism �U W B.U / ! B.U 0/ is a weak equivalence.
Then � is a weak equivalence of factorization coalgebras; in particular, � induces a
weak equivalence �M W

H
M

B !
H
M

B 0.

Proof. For any open U we realize �U by descent from the Weiss cover D.U /.

7.3. Analytic stacks

For the analytic version of the theory of algebraic stacks we follow [54] (where, in fact,
the case of higher and derived stacks is also considered).

An analytic stack is a stack of groupoids on the category of (possibly singular) Stein
analytic spaces over C, equipped with the Grothendieck topology consisting of open cov-
ers in the usual sense. The analytic stacks form a 2-category Stan as well as a model
category Stan where weak equivalences are equivalences of stacks.

For every scheme Y of finite type over C we have the analytic space Y an, the analyti-
fication of Y . Further, or any Artin stack X over C we have the analytic stack X an, the
analytificationX an defined as the Kan extension ofX from the category of affine schemes
of finite type to the category of Stein analytic spaces; see [54, §4] or [29, §3]. Note that
we have a canonical map

�X W R�.X;!X /! R�.X an; !Xan/: (7.3.1)
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If X D Y is a scheme of finite type considered as an Artin stack, then X an D Y an is the
corresponding analytic space considered as an analytic stack.

We will need only analytic stacks of a special form, namely the quotient analytic
stacks Z==K, where Z is an analytic space and K is a complex Lie group. For such
stacks various concepts such as Borel–Moore homology, etc., can be defined directly in
terms of equivariant homology of the topological spaces of C-points, that is,

H �.Z==K;!Z==K/ D H
BM;K
�� .Z.C/;C/ (7.3.2)

is the equivariant Borel–Moore homology in the topological sense.
If Y is a scheme of finite type over C andG is an algebraic group over C acting on Y ,

then Gan is a complex Lie group and we have the quotient analytic stack Y an==Gan. Note
that in this case we have

.Y==G/an
' Y an==Gan; (7.3.3)

and the map �Y==G is a quasi-isomorphism, so that

H �.R�..Y==G/an; !.Y==G/an// ' H �.R�.Y==G; !Y==G// ' H
BM;G.C/
�� .Y.C/;C/

(7.3.4)
is the equivariant Borel–Moore homology in the topological sense, as above.

7.4. The stack Coh0 and factorization algebras

Let † be a complex analytic surface. We view it as a C1 manifold of dimension 4 and
consider open subsets U � † in the complex analytic topology. For any such non-empty
U we have the category Coh0.U / of 0-dimensional coherent sheaves on U (with finite
support). We set Coh0.;/ D ¹�º. We also have the analytic moduli stack Coh0.U / DF
n�0 Coh.n/0 .U / parametrizing objects of Coh0.U /, with its components given by the

length, as in the algebraic case. Each component is explicitly realized as a quotient ana-
lytic stack

Coh.n/0 .U / D FCoh.n/0 .U /==GLn.C/;

where FCoh.n/0 .U / is the analytic space parametrizing pairs .F ; �/, where F is a 0-
dimensional coherent sheaf on U and � WCn!H 0.U;F / is an isomorphism. To see that
FCoh.n/0 .U / is well-defined as an analytic space, we note that the datum of � is equivalent
to the datum of the corresponding surjection � W O˚nU ! F . Thus FCoh.n/0 .U / is a locally

closed analytic subspace in Quot.n/.O˚nU /, the analytic analog of the Grothendieck Quot
scheme parametrizing all length n quotients of O˚nU . This makes the following fact clear.

Proposition 7.4.1. Let S be a smooth quasi-projective algebraic surface over C. Then
we have an equivalence of analytic stacks

Coh0.S an/ ' Coh0.S/an:

In particular, Coh0.C2/ is identified with the analytification of the Artin stack Coh0.A2/.
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If U1; : : : ; Un are disjoint open sets contained in the open subset U0 � †, then we
have an open embedding of analytic stacks

˛
U0

U1;:::;Un
W Coh0.U1/ � � � � � Coh0.Un/! Coh0.U0/: (7.4.2)

Proposition 7.4.3. Coh0 is a factorization algebra on† with values in the category Stan.

Proof. Let U D ¹Uiºi2I be a Weiss open cover of U . Let us understand more explic-
itly the analytic stack holim

���!
N�.U; Coh0/, a homotopy colimit in the model category

Stan, or equivalently the 2-categorical colimit of N�.U;Coh0/ in the 2-category Stan.
It is parametrized by pairs .i 2 I , F 2 Coh0.Ui //, the leftmost term in the diagram
N�.U;Coh0/, subject to coherent systems of identifications given by the rest of the dia-
gram. These identifications say that two pairs .i 2 I , F 2 Coh0.Ui // and .j 2 J , F 2

Coh0.Uj // are identified whenever in the second pair F is the same sheaf but living onUj .
This happens whenever F lives in fact on Uij D Ui \ Uj . Further terms in the diagram
N�.U;Coh0/ impose coherence conditions on such identifications. This means that this
homotopy colimit parametrizes 0-dimensional coherent sheaves which live on some Ui .
But U is a Weiss cover and every F 2 Coh0.U / has finite support, which therefore, must
lie in some Ui . Thus, our homotopy colimit is identified with Coh0.U /.

7.5. Chain-level COHA as a factorization coalgebra

For each open set U � † as above we consider the complex of Borel–Moore chains of
Coh0.U /

R.U / D C BM
� .Coh0.U // WD R�.Coh0.U /; !Coh0.U //:

Proposition 7.5.1. The assignment R W U 7! R.U / is a locally constant factorization
coalgebra on S in the category C.Vectk/ .complexes of k-vector spaces/.

Proof. The fact that R is a factorization algebra follows from Proposition 7.4.3. The fact
that R is locally constant is proved in the same way as Proposition 6.2.1 (b).

Next, we upgrade this statement to take into account the Hall multiplication. The
relevant concept here is that of a homotopy associative (E1-)algebra which we now recall.
We will use the language of operads; see, e.g., [9] for a brief background and additional
references.

Definition 7.5.2. Let .C ;˝; 1/ be a symmetric monoidal category.

(a) An operad P in C is a system of

.O1/ objects P .r/ 2 C with actions of Sr , given for r � 0,

.O2/ the unit morphism 1! P .1/,

.O3/ the operadic compositions for any k; r1; : : : ; rk ,

P .k/˝P .r1/˝ � � � ˝P .rk/! P .r1 C � � � C rk/:

These data must satisfy the axioms of equivariance, associativity and unit.



The COHA of a surface 53

(b) An algebra over an operad P is an object A 2 C together with Sr -equivariant mor-
phisms P .r/˝ A˝r ! A, r � 0, satisfying the axioms of unit and associativity.

We will use the case when C D �ıSet, C D Top or C D C.Vectk/. We will refer to
these cases as simplicial, topological and dg-operads. Any topological operad P gives
a simplicial operad Sing.P / by passing to the singular simplicial sets of the P .r/’s. It
further gives a dg-operad C�.P / formed by the singular chain complexes of the P .r/

(considered, as usual, as cochain complexes with reverse indexation).
A weak equivalence of simplicial operads is a morphism P !Q of such operads such

that for each r the morphism of simplicial sets P .r/! Q.r/ is a weak equivalence, i.e.,
it induces a homotopy equivalence on the realizations.

Recall (A.1.2) that the category C.Vectk/ is enriched in the category �ıSet of simpli-
cial sets. Thus, for any simplicial operad P we can speak about P -algebras in dgVect.
Such an algebra is a cochain complex A together with morphisms of simplicial sets

P .r/! Map.A˝r ; A/

compatible with the Sr -actions and operadic compositions. It sends the image of 1 D pt
to the identity map. Dually, a P -coalgebra in dgVect is a complex B with morphisms of
simplicial sets

P .r/! Map.B;B˝r /

satisfying similar compatibilities. If P is a topological operad, its (co)algebras in
C.Vectk/ are understood as (co)algebras over the simplicial operad Sing.P /.

Let m � 1. Let Dm be the topological operad of little m-disks. The space Dm.r/
parametrizes families .B1; : : : ; Br / of round m-dimensional open balls disjointly embed-
ded into the standard unit ball B D ¹jxj < 1º of Rm; see, e.g., [9] for more details
including the definition of the operadic compositions.

Definition 7.5.3. By an Em-operad we mean a topological operad weakly equivalent
to Dm. An Em-(co)algebra in dgVect is a (co)algebra over an Em-operad.

We can now formulate our upgrade of the chain level COHA.

Theorem 7.5.4. R is a locally constant factorization coalgebra on † in the category of
E1-algebras.

An E1-algebra can be seen as a weakly (homotopy) associative dg-algebra; see dis-
cussion below.

7.6. Proof of Theorem 7.5.4

We first note that D1.r/ is the union of rŠ contractible components which are per-
muted by Sr . This means that algebras over D1 (and so over any E1-operad) can be
described using the concept of a non-symmetric (non-†) operad [46, Def. 9]. A non-
symmetric operad in a monoidal (not necessarily symmetric) category C is a datum Q
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of objects Q.r/, r � 0 (no symmetric group action is required) together with a unit mor-
phism 1! Q.1/ and the compositions as in (O3) satisfying the axioms of associativity
and unit. Similarly, an algebra over a non-symmetric operad Q is an objectA 2 C together
with morphisms Q.r/˝ A˝r ! A satisfying the axioms of unit and associativity.

Let ND1.r/ � D1.r/ be the connected component formed by families .B1; : : : ; Br /
of disjoint 1-disks (i.e., open intervals) in B D .�1; 1/ such that the centers of the Bi are
positioned in the increasing order. Then ND1 D .ND1.r// is a non-symmetric operad
in Top with each ND1.r/ contractible. Let us define an NE1-operad to be any non-
symmetric operadQ in Top with each Q.r/ contractible. Given anNE1-operad Q, we can
“symmetrize” it, forming an E1-operad SQ with SQ.r/ D Q.r/ � Sr and the Sr acting
via the second factor. This establishes an equivalence between the categories of NE1-
operads and E1-operads, with the categories of algebras over the corresponding operads
being identified as well.

Let us now consider dg-versions of the topological operads above and use slightly
different notation for these versions. Let an ne1-operad be a non-symmetric dg-operad K

such that each cochain complex Q.r/ is situated in degrees � 0 and quasi-isomorphic
to k. Because of Dold–Kan equivalence between C�0.Vectk/ and �ıVectk (see Example
1.1.4 (b)), equipping a complex with a structure of an algebra over an NE1-operad is the
same as equipping it with the structure of an algebra over an ne1-operad.

An example of an ne1-operad is given by the non-symmetric associative operad Ass

with Ass.r/ D k for all r and all the compositions being the identities. Dg-algebras over
Ass are the same as associative dg-algebras.

So for the proof of Theorem 7.5.4 we exhibit an ne1-operad K and equip each R.U /

with the structure of a K-algebra in a way compatible with factorization coalgebra struc-
ture. The argument is an upgrade of the proof of Theorem 4.4.2 (associativity of COHA),
so parts of the treatment will be brief.

For r � 1 let FILT.r/D FILT.r/.U / be the stack FILT.r/ parametrizing flags of objects
of Coh0.U /,

E1 � E2 �� Er :

For r D 0 we put FILT.0/ D pt. The stack FILT.r/ comes with the projections

FILT.r/
�r //

qr

��

Coh0.U /

Coh0.U /r

�r .E1 � E2 � � � � � Er / D Er ;

qr .E1 � E2 � � � � � Er / D .E1; E2=E1; : : : ; Er=Er�1/:

For r D 0 we have Coh.U /0 D pt and we define q0 W pt! pt to be the identity map and
�0 W pt! Coh.U / to send pt to the zero sheaf.
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Let Ei , i D 1; : : : ; r , be the i th tautological sheaf on Coh0.U /r � U and pr W

Coh0.U / � U ! Coh0.U / be the projection.
Similarly to §2.5, we form the sheaf of associative dg-algebras (and, passing to the

super-commutator, of dg-Lie algebras) on Coh0.U /r ,

Gr D Gr .U / D
M

1�i<j�r

Rpr� RHom.Ej ;Ei /;

and find that FILT.r/ DMC.Gr / so that qr is identified with the projection of the Maurer–
Cartan stack. Therefore we have the diagram

Coh0.U /r
�r
 � Tot.G�1r /

ir
 � FILT.r/

�r
�! Coh0.U /; (7.6.1)

in which the map ir realizes FILT.r/ as the zero locus of the section sr of ��r G 2r given by
the curvature map. This gives a virtual pullback i Šr on Borel–Moore homology. We get, so
far at the level of BM-homology, the map

mr D �r� ı i
Š
r ı �

�
r W R.U /

˝r
! R.U /; R.U / D HBM

� .Coh0.U //: (7.6.2)

As in §4.5, we see that mr is the r-fold product in the (associative) COHA R.U /.
Next, we notice that the family .Gr /r�0 of dg-Lie algebras carries a kind of operadic

structure. For r1; : : : ; rn � 0 consider the summation map

�r1;:::;rn W Coh0.U /r1C���Crn ! Coh.U /n;

.F1; : : : ;Fr1C���Crn/ 7!
� r1M
iD1

Fi ;

r1Cr2M
iDr1C1

Fi ; : : : ;

r1C���CrnM
iDr1C���Crn�1C1

Fi

�
:

Proposition 7.6.3. We have a semidirect product decomposition, more precisely, an iso-
morphism

�r1;:::;rn W .�
�
r1;:::;rn

Gn/ Ì .Gr1 � � � � � Grn/
'
! Gr1C���Crn

of sheaves of dg-Lie algebras on Coh.U /r1C���Crn .

The proposition means that we have a split exact sequence

0! ��r1;:::;rnGn
a
�! Gr1C���Crn

b
�! Gr1 � � � � � Grn ! 0 (7.6.4)

in which ��r1;:::;rnGn is a dg-Lie ideal with quotient Gr1 � � � � � Grn .

Proof of Proposition 7.6.3. By construction, Gr1;:::;rn consists of upper-triangular square
matrices of size r1 C � � � C rn. We can decompose such a matrix into blocks of sizes
ri � rj , 1� i � j � n. Of these, the diagonal blocks (of sizes ri � ri ) are upper-triangular,
since the total matrix must be upper-triangular. These correspond to the Gri . So the
block-diagonal part is Gr1 � � � � � Grn . Similarly, the over-diagonal blocks are seen as
representing ��r1;:::;rnGn.
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Proposition 7.6.5. The isomorphisms �r1;:::;rn satisfy operadic associativity. That is, sup-
pose that each ri is decomposed as ri D ri;1 C � � � C ri;mi

. Then the isomorphisms

�ri;1;:::;ri;mi
W .��ri;1;:::;ri;mi

Gni
/ Ì .Gri;1

� � � � � Gri;mi
/
'
! Gri;1C���Cri;mi

D Gri ;

i D 1; : : : ; n;

together with �ri ;:::;rn , compose to �r1;1;:::;r1;m1
;r2;1;:::;r2;m2

;:::;rn;1;:::;rn;mn
.

Proof. Straightforward verification in terms of matrices whose blocks are decomposed
into further blocks.

Next, we study the compatibilty of the curvature sections sr on the ��r G 2r with the
semidirect product decompositions �r1;:::;rn . Let r D r1 C � � � C rn. On Tot.G�1r / the
sequence (7.6.4) gives a short exact sequence of vector bundles

0! ��r �
�
r1;:::;rn

G 2n
˛
! ��r G 2r

ˇ
! ��r .G

2
r1

� � � � � G 2rn/! 0 (7.6.6)

pulled back from Coh0.U /r . We apply to this situation the analysis of §B.4, taking
X D Tot.G�1r / and viewing (7.6.6) as an instance of the sequence (B.4.1). The cur-
vature section s D sr of the middle bundle gives rise to the section s00 D s00r D ˇ.s/

of ��r .G
2
r1

� � � � � G 2rn/ with zero locus Xs00 D Tot.G�1r /s00r and the section s0 D s0r of
��r �

�
r1;:::;rn

G 2n over Xs00 . To describe them we consider, for each i D 1; : : : ; n, the stack
FILT.ri / parametrizing flags Ei;1 � Ei;2 � � � � � Ei;ri D Ei of objects of Coh0.U /. Let

� W

nY
iD1

FILT.ri / ! Coh0.U /r D
rY
iD1

Coh0.U /

be the projection which sends a tuple of flags as above to the tuple .E1; : : : ; En/ of their
maximal elements. We also denote by

�r1;:::;rn W Tot.��G�1n /!

nY
iD1

FILT.ri /

the projection.

Proposition 7.6.7. (a) s00r is equal to .the pullback of / the tuple .sr1 ; : : : ; srn/ considered
as a section of the external direct sum.

(b) Xs00 is identified with Tot.��G�1n /.

(c) Under the identification of (b), the restriction of ��r �
�
r1;:::;rn

G 2n to Xs00 is identified
with ��r1;:::;rn�

�G 2n .

(d) Under the identification of (c), the section s0r is identified with the pullback of sn.

Proof. (a) As in the proof of Proposition 7.6.3, let us view sections of Gr as upper-
triangular r � r matrices subdivided into blocks of sizes ri � rj . The projection b

(whose pullback is ˇ) associates to such a matrix x its block-diagonal part which we
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denote x�. Thus ˇ.sr / associates to x the block-diagonal part of the curvature, i.e.,
.dx C .1=2/Œx; x�/�. Since the block-diagonal subspace is a dg-Lie subalgebra, this
equals d.x�/C .1=2/Œx�; x�� which corresponds to the pullback of .sr1 ; : : : ; srn/.

(b) Let us represent a point of Coh0.U /r , r D r1 C � � � C rn, as a sequence of sheaves

F1;1; : : : ;F1;r1 ;F2;1; : : : ;F2;r2 ; : : : ;Fn;1; : : : ;Fn;rn :

In terms of matrices x 2 G 1r , vanishing of the block-diagonal part of the curvature of x
means that the Ext-data for the Fi;j provided by x, integrate to n filtrations

Ei;1 � Ei;2 � � � � � Ei;ri D Ei ; Ei;j =Ei;j�1 ' Fi;j ; i D 1; : : : ; n; j D 1; : : : ; ri ;

i.e., we have a point of
Qn
iD1 FILT.ri /. Further, the summation map �r1;:::;rn on the

sequence of the Fi;j corresponds to the projection �. The over-diagonal blocks of x
assemble into a section of ��G�1n , whence the statement.

Part (c) is clear from the above. To see (d), notice that the pullback of sn represents
the over-diagonal blocks of the curvature of x.

We now apply the formalism of homotopy canonical Euler classes from Appendix B.
Let Kr .U / D K��r G 2

r
be the parameter complex for the homotopy canonical orienta-

tion class of the bundle ��r G 2r on Tot.G�1r / (see §B.3). Here Gr D Gr .U /, as above.
By construction, each Kr .U / maps quasi-isomorphically to k. The semidirect product
decomposition of Proposition 7.6.3 and the pairings (B.4.8) of the K-complexes give
morphisms of complexes

Kn.U /˝Kr1.U /˝ � � � ˝Krn.U /!Kr1C���Crn.U /:

The operadic associativity of the isomorphisms �r1;:::;rn and the associativity of the pair-
ings (B.4.8) imply that K.U /D .Kr .U //r�0 is a (non-symmetric) dg-operad. Since each
Kr .U / is quasi-isomorphic to k, we see that K.U / is an ne1-operad. Further, the corre-
spondence U 7! K.U / forms a presheaf (in fact, a sheaf up to homotopy, by the above)
of dg-operads on the analytic surface†. Let K DK.†/ be the operad of global sections.

Finally, let us upgrade the r-fold multiplication map (7.6.2) to the cochain level by
analyzing the ambiguity. This map involves the virtual pullback i Šr which is defined in
terms of the refined Chern class cd .��r G 2r /, d D rk.G 2r /. Using the homotopy canonical
cochain lifting zcd .��r G 2r /, d D rk.G 2r / (see (B.3.4)), we define a cochain level multipli-
cation

zmr;U WKr .U /˝R.U /˝r DKr .U /˝C
BM
� .Coh0.U //˝r ! C BM

� .Coh0.U //DR.U /:

(7.6.8)

The multiplicativity of the zcd in short exact sequences (B.4.10) implies that the�r;U make
R.U / into an algebra over the ne1-operad K.U / and therefore over K D K.†/. Fur-
ther, these K-algebra structures are clearly compatible with the factorization coalgebra
structure on the presheaf R D .R.U //. This finishes the proof of Theorem 7.5.4.
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7.7. Proof of Theorem 7.1.6

As before, let†D S an. For any open subset U �† (in the complex analytic topology) we
have the Z2-graded space ‚.U / and the symmetrized product map �U W Sym.‚.U //!
R.U /. Because of Proposition 7.4.1 and the identification (7.3.4), the map � of Theorem
7.1.6 is identified with the global map �†, corresponding to U D †. Now, if U is a disk,
then �U is an isomorphism by Theorem 6.1.4. We will deduce the global statement (for
U D †) from these local ones.

For this, we upgrade the correspondence U 7!‚.U / to a complex of sheaves V on†
so that ‚.U / DH��.U;V/ is the hypercohomology of U with coefficients in V . That is,
we define

V D !† ˝k ‚
0;

the tensor product of the dualizing complex!† and the graded vector space‚0D‚Œ0;�4�
(see (7.1.4)). Recall that ‚ and therefore ‚0 is spanned by the basis vectors tnqi�1, and
such a vector is identified with �n;i D chi .En/\ �n 2 Rn;2�2i .C2/ (see (6.3.3)). Here, as
we recall, En is the tautological rank n bundle on Coh.n/0 .C2/ whose fiber at a point rep-
resented by a coherent sheaf F isH 0.F / and �n is the fundamental class of Coh.n/1 pt.C

2/.
As before, we denote by the same symbol En the analogous tautological bundle on

Coh.n/0 .†/ and, if necessary, its restriction to Coh.n/1 pt.†/.
Extending the construction of (7.1.2), we choose a cocycle representing the funda-

mental class of Coh.n/1 pt.†/ in HBM
2 and define the morphism

p�n W p
�
n!† ! pŠn!†Œ2� D !Coh.n/

1 pt.†/
Œ2�

as the cup-product with this cocycle. Here pn W Coh.n/1 pt.S/! S is the projection defined
in (7.1.1). Further, for each i we fix a cocycle representative echi .En/ of chi .En/ 2
H 2i .Coh.n/1 pt.†/;k/.

The sheaf V and the factorization coalgebra R are both presheaves with values in the
category of cochain complexes. We define a morphism of presheaves z̨ W V ! R as the
composition of two morphisms: first, the morphism

R�.U; !†/˝ t
nqi�1 ! R�.Coh.n/1 pt.U /; !Coh.n/

1 pt.U /
/;

 ˝ tnqi�1 7! echi .En/ \ p�n.p
�
n.//;

(here p�n./ is an element of R�.Coh.n/1 pt.U //; p
�
n!U /) and, second, the direct image

morphism

"� W R�.Coh.n/1 pt.U /; !Coh.n/
1 pt.U /

/ ! R�.Coh.n/0 .U /; !Coh.n/
0
.U /
/ D R.U /.n/;

where " W Coh.n/1 pt.U /! Coh.n/0 .U / is the (closed) embedding.
Since V is a sheaf with values in the category of cochain complexes, its symmetric

algebra Sym.V/ is a factorization coalgebra with values in this category, by Proposi-
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tion 7.2.6. Since R is a factorization algebra in the category ofE1-algebras, we can define
the symmetrized product z� W Sym.V/! R by setting

z� D
X
n�0

z�n;

where

z�n W Symn.V/! R; z�n.v1 � � � � � vn/ D
1

nŠ

X
s2Sn

�n.z̨.vs.1//˝ � � � ˝ z̨.vs.n///;

(7.7.1)
lifting the map � from (7.1.5). In other words, z�n is the symmetrization of the map

�n ı .z̨ ˝ � � � ˝ z̨/ W V
˝n
! R:

The map z� is a morphism of factorization coalgebras in the category of Z2-graded
cochain complexes. Note that we do not claim (and it is not true) that z� is a morphism of
factorization coalgebras in the category of E1-algebras.

By the above, z�U is a weak equivalence (of Z2-graded cochain complexes) for any U
which is, topologically, a disk. Therefore z� is a weak equivalence (of factorization coal-
gebras in the category of Z2-graded cochain complexes) by Proposition 7.2.7. Taking
U D † we obtain Theorem 7.1.6.

7.8. E4-structure on the flat COHA

By [21, 44], locally constant factorization (co)algebras on Rm with values in C.Vectk/
can be identified with Em-(co) algebras in C.Vectk/, the identification associating to a
(co)algebra B the object B.B/ where B � Rm is the standard unit m-ball. Note that
B.B/ is weak equivalent to B.Rd /.

Let us specialize this to the case when B D R and m D 4, since C2 ' R4. In this
case we form the cochain complex R.B/ ' R.C2/ whose cohomology is the flat Hecke
algebra R.B/ ' R.C2/ studied in §6. The general results above, applied to the category
C of E1-algebras, imply

Corollary 7.8.1. R.C2/ is an E1-algebra in the category of E4-coalgebras.

Remarks 7.8.2. .a/ The E4-coalgebra structure on R.C2/ is a cochain level refinement
of the comultiplication� onR.C2/ (see §6.2). While� is cocommutative, because it
is independent of the choice of two distinct disksU1;U2 �C2, at the cochain level we
do not seem to have cocommutativity since the space of choices of such pairs of disks
is not contractible (it is precisely the space of binary operations in the operad D4).

.b/ By forming the Koszul dual to the E1-algebra structure on R.C2/, we obtain an
E1-coalgebra in the category of E4-coalgebras, i.e., an E5-coalgebra. Alternatively,
forming the Koszul dual to the E4-algebra structure, we obtain an E5-algebra. This
suggests that some 5-dimensional field theory may be relevant to this picture.
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Appendix A. Basics on 1-categories and dg-categories

A.1. 1-categories

Let k be a field of characteristic 0. By Vect D Vectk we denote the category of k-vector
spaces and by C.Vect/D C.Vectk/ the category of complexes of k-vector spaces bounded
below, with morphisms being morphisms of complexes. By�ıSet we denote the category
of simplicial sets. For a simplicial set Y we denote by jY j the geometric realization of Y .
We say that Y is contractible if jY j is a contractible topological space. For a topological
space T we denote by Sing.T / the singular simplicial set of T .

An 1-category C is a simplicial set .Cn/n�0 satisfying the partial Kan condition,
with elements of C0 called objects and elements of C1 called morphisms.

Every 1-category C gives rise to an ordinary category hC known as the homotopy
category of C. It has the same objects as C and its morphisms are certain equivalence
classes of morphisms in C. Further, C contains the maximal Kan simplicial subset CKan

with CKan
0 D C0, having the meaning of the subgroupoid of (weakly) invertible mor-

phisms. We refer to [43] for more details.
A simplicial category is a category C enriched in �ıSet, so that for any two objects

F ;G 2C we are given a simplicial set MapC .F ;G /with standard properties. A simplicial
category C gives an1-category N.C/ with the same objects, as explained in [43].

A dg-category is a category C enriched in C.Vect/, so that for any two objects F ; G

2 C we are given a cochain complex Hom�C .F ; G / with standard properties. Any dg-
category C gives rise to a k-linear category H 0C with the same objects as C and

HomH0C .F ;G / D H
0 Hom�C .F ;G /: (A.1.1)

Further, C can be made into a simplicial category (with the same objects) by

Map.F ;G / D DK.��0 Hom�C .F ;G //; (A.1.2)

where DK is the Dold–Kan simplicial set associated to a Z�0-graded complex (see [64,
§8.4.1] and a discussion in Example 1.1.4). So it gives rise to an 1-category denoted
N dg.C/ (see [44]).

A.2. Enhanced derived categories

Let A be a k-linear abelian category. We denote by C.A/ the category of complexes
over A with morphisms being morphisms of complexes. By C.A/dg we denote the dg-
category with the same objects as C.A/. For any two objects F ;G of C.A/dg, the complex
HomC.A/dg.F ;G / is the graded k-vector space HomA.F ;G /with the differential given by
the commutation with dF and dG . Thus C.A/ D H 0C.A/dg. By D.A/ D C.A/ŒQis�1�
we denote the derived category of A, i.e., the localization of C.A/ by the class Qis of
quasi-isomorphisms. There are three closely related enhancements of D.A/with the same
objects:



The COHA of a surface 61

(a) The derived dg-category D.A/dg with the property that D.A/ D H 0 D.A/dg. If A

has canonical injective resolutions A 7! I.A/, then we define (see [7])

HomD.A/dg.F ;G / D Hom�C.A/dg
.I.F /; I.G //:

The complex on the RHS is also denoted RHom�.F ;G /.

(b) The simplicial derived category D.A/� with the property that HomD.A/.F ; G / D

�0MapD.A/�.F ; G /. There are two homotopy equivalent ways of constructing
MapD.A/�.F ;G /:

(b1) Given the data in (a), we can define, as in (A.1.2),

MapD.A/�.F ;G / D DK.��0 RHom�.F ;G //:

(b2) The Dwyer–Kan simplicial localization procedure [12, 13] produces simplicial
sets Map.F ; G /, starting from the category C.A/ and the class Qis of mor-
phisms. We can take MapD.A/�.F ; G / to be the simplicial sets Map.F ; G /.
Further, we can use them to get an intrinsic definition of the RHom�.F ; G /
in (a) by taking the normalized chain complexes and stabilizing with respect to
the shift. This allows one to define D.A/dg even without the use of canonical
injective resolutions.

(c) The derived1-category D.A/1 with the property that hD.A/1DD.A/. As in (b2),
it can be defined intrinsically, as the1-categorical localization of C.A/ by Qis [44].

Appendix B. Homotopy canonical Euler classes

The concept of coherent homotopy uniqueness of objects, morphisms, cohomology
classes, etc., is implicit in the formalism of 1-categories, as well as in homotopical
algebra in general. In this appendix we spell out some instances of this concept in the
dg-context.

B.1. Cocycles defined up to a contractible choice

Let V be a cochain complex over k, and let a 2 Hd .V /. Viewing a as a morphism
a W k! V Œd � in D.Vectk/, we can represent a (non-uniquely) by a diagram of morphisms
of complexes k

q
 K

˛
! V Œd �, where q is a quasi-isomorphism. Such a diagram is just a

right fraction representing the morphism a in D.Vectk/ D C.Vectk/ŒQis�1� as a D ˛q�1.
We will refer to any such diagram as a d -cocycle defined up to a contractible choice and
say that it represents a up to a contractible choice.

Examples B.1.1. (a) Suppose that a ¤ 0 and H j .V / D 0 for j < d . Let Zd .V / � V d

be the space of d -cocycles and  W Zd .V /! Hd .V / be the projection. Let

V �da D ¹� � � ! V d�2 ! V d�1 ! �1.ka/º � V �d :
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Then the projection to ka ' k gives a quasi-isomorphism V �da Œd �
�
�! k and the diagram

k
�
 � V �da Œd � ,! V Œd �

represents a up to a contractible choice.
(b) In particular, let C be a dg-category and x; y 2 Ob.C/ be such that Hom�C .x; y/

has H j D 0 for j < 0. Then any non-zero morphism f W x ! y in H 0C is represented,
up to a contractible choice, by the diagram

k
�
 � Hom�0

C
.x; y/f ,! Hom�C .x; y/:

B.2. Homotopy canonical orientation classes

Let X
i
,! Y be a regular embedding of stacks of codimension d . We then have the

canonical orientation isomorphism �X=Y W kX
�
�! i ŠkY Œ2d � in the derived category D.X/.

If X
i
,! Y

j
,! Z are two composable regular embeddings, with i of codimension d

and j of codimension e, then j i is a regular embedding of codimension d C e and
�X=Z W kX ! .j i/ŠkZ Œ2.d C e/� is equal to the composition

kX
�X=Y

���! i ŠkY Œ2d �
i Š�Y=Z Œ2d�
�������! i Šj ŠkZ Œ2d C 2e�: (B.2.1)

Passing to the dg-enhancements, we notice that �X=Y connects two objects which are
quasi-isomorphic to single sheaves in degree 0 and so negative Ext’s between these objects
vanish. We are therefore in the situation of Example B.1.1 (b) and so the diagram

k
�
 KX=Y WD Hom�0D.X/dg

.kX ; i
ŠkY Œ2d �/�X=Y

,! Hom�D.X/dg
.kX ; i

ŠkY Œ2d �/ (B.2.2)

represents �X=Y up to a contractible choice. We can write it as a canonical closed mor-
phism in D.X/dg of degree 0,

z�X=Y W KX=Y ˝ kX ! i ŠkY Œ2d �: (B.2.3)

IfX
i
,! Y

j
,! Z are two composable regular embeddings as before, then the composition

of Hom-complexes in the dg-category D.X/dg induces a composition

mX;Y;Z W KY=Z ˝KX=Y ! KX=Z ; (B.2.4)

and such compositions are associative for any composable triple of regular embeddings.
The composition mX;Y;Z fits into the commutative square

KY=Z ˝KX=Y ˝ kX

mX;Y;Z˝kX

��

KY=Z˝z�X=Y
// KY=Z ˝ i

ŠkY Œ2d �

i Šz�Y=Z

��

KX=Z ˝ kX
z�X=Z

// i Šj ŠkZ Œ2d C 2e�

(B.2.5)

which underlies the identification of �X=Z with the composition (B.2.1).
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B.3. Homotopy canonical Euler classes

Let E be a rank d vector bundle over a stack X . Let s 2 H 0.X; E/ be a section. We
consider it as a morphism s W X ! Tot.E/. Let is W Xs ! X be the embedding of the zero
locus of s. We then have a Cartesian square of closed embeddings

Xs

is

��

is // X

0

��

X
s // Tot.E/

(B.3.1)

The zero section embedding 0 W X ,! Tot.E/ is regular of codimension d , so we have the
orientation isomorphism in D.X/

�E WD �X=Tot.E/ W kX ! 0ŠkTot.E/Œ2d �: (B.3.2)

Applying i�1s to �E , we get a morphism in D.Xs/

kXs
D i�1s kX

i�1
s �E
����! i�1s 0ŠkTot.E/Œ2d �

B.C.
��! i Šss

�1kTot.E/Œ2d � D i
Š
skX Œ2d �; (B.3.3)

where “B.C.” means the base change morphism for the square (B.3.1) [34,
Prop. III.1.9 (iii)]. The morphism (B.3.3) can be viewed as an element cd .E; s/ in
H 2d
Xs
.X; k/ which is known as the refined Euler .top Chern/ class of .E; s/. Its image

in H 2d .X;k/ is the usual Euler .top Chern/ class cd .E/.
Passing to dg-enhancements, we denote KE WD K

�
X=Tot.E/. We can think of objects of

the dg-categories D.Y /dg associated to various stacks Y as (systems of, see (3.2.1)) com-
plexes consisting of flabby sheaves. Now, for a flabby sheaf the Š-inverse image under a
closed embedding is given by the sheaf of sections with support. With this understand-
ing, the base change morphism in a Cartesian square of closed embeddings of topological
spaces is a canonical morphism of sheaves. Therefore our conventions imply that the base
change morphism in (B.3.3) is defined canonically (no choice needed). So lifting �E to
z�E WD z�X=Tot.E/ as defined in §B.2, we upgrade the composite morphism (B.3.3) to a
closed degree 0 morphism in D.X/dg

zcd .E; s/ W KE ˝ kXs
! i ŠskTot.E/Œ2d �; (B.3.4)

representing cd .E; s/ up to a contractible choice.

B.4. Multiplicativity of homotopy canonical Euler classes

Let
0! E 0

a
�! E

b
�! E 00 ! 0 (B.4.1)

be a short exact sequence of vector bundles on a stack X , of ranks d 0; d; d 00 respec-
tively, so d D d 0 C d 00. We explain how to upgrade the multiplicativity relation cd .E/ D
cd 0.E

0/cd 00.E
00/ in H �.X;k/ to the level of homotopy canonical refined classes.
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Let s 2 H 0.X;E/ be a section. Then s00 WD b.s/ is a section of E 00. Its zero locus is00 W
Xs00 ,!X can be described, informally, as the locus of points x!X such that s.x/ 2 E 0.
In particular, the bundle i�s00E

0 on Xs00 carries a section s0 given by the restriction of s.
The zero locus .Xs00/s0 of this latter section is nothing but Xs , so we have a commutative
triangle of closed embeddings

Xs D .Xs00/s0

is
&&

is0 // Xs00

is00

��

X

(B.4.2)

The multiplicativity of refined Euler classes at the cohomology level can be expressed as
the commutativity of the triangle in D.Xs/

kXs

cr0 .i
�
s00

E0;s0/
//

cd .E;s/ ))

i Šs0kXs00
Œ2d 0�

i Š
s0
cr00 .E

00;s00/Œ2d 0�

��

i Šs0 i
Š
s00kX Œ2d

0 C 2d 00�

(B.4.3)

To prove this commutativity and to lift it to the homotopy canonical level, we denote by

Tot.E 0/

� 0
%%

a // Tot.E/

�

��

b // Tot.E 00/

� 00

yy
X

(B.4.4)

the diagram of the total spaces induced by (B.4.1). We note that

Tot.E 0/ a //

� 0

��

Tot.E/

b

��

X
000

E // Tot.E 00/

(B.4.5)

is a Cartesian square. Therefore the same base change argument as used in (B.3.3) gives
a morphism of complexes

HomD.X/dg.kX ; 0
Š
E00kTot.E00/Œ2d

00�/! Hom�D.Tot.E0/dg
.kTot.E0/; a

ŠkTot.E/Œ2d
00�:

This morphism induces a morphism

KE00 D KX=Tot.E00/ ! KTot.E0/=Tot.E/: (B.4.6)

Also,

X
0E0

! Tot.E 0/
a
! Tot.E/ (B.4.7)
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is a composable pair of regular embeddings with composition 0E . Therefore composing
the pairing (B.2.4) of this composable pair with the morphism (B.4.6), we get a pairing

mE0;E;E00 W KE00 ˝KE0 ! KE : (B.4.8)

These pairings are associative for any admissible (locally split) filtration E1 � E2 � E of
vector bundles.

Further, (B.4.2) and (B.4.7) combine into a diagram

X
0E0 // Tot.E 0/ a // Tot.E/

Xs

is

OO

is0 // Xs00

s0

OO

is00 // X

s

OO

(B.4.9)

consisting of two Cartesian squares, whose concatenation (i.e., the outer perimeter dia-
gram with horizontal edges composed) is the Cartesian square (B.3.1). We now notice
that:

� The right square recovers zcd 00.E 00; s00/ by pullback, as in (B.3.3), from z�Tot.E0/=Tot.E/.
This follows from the square (B.4.5) which shows that z�Tot.E0/=Tot.E/ is the image of z�E

under (B.4.6).

� The left square recovers zcd 0.i�s00E
0; s0/ by pullback from z�E0 D z�X=Tot.E0/. This is

because we can subdivide the square into two Cartesian squares

X
0E0 // Tot.E 0/

Xs00

is00

OO

0
i�
s00

E0

// Tot.i�s00E
0/

OO

Xs

is0

OO

is0 // Xs00

s0

OO

which show that z�is00E0 is the pullback of z�E0

� The composite (outer) square (B.3.1) recovers zcd .E; s/ by pullback from z�E by defini-
tion.

So applying (B.2.5), we obtain a commutative square

KE00 ˝KE0 ˝ kXs

mE0;E;E00˝kXs

��

KE00˝zcd 0 .i
�
s00

E0;s0/
// i Šs0kXs00

Œ2d 0�

i Š
s0
zcd 00 .E

00;s00/Œ2d 0�

��

KE ˝ kXs

zcd .E;s/ // i Šs0 i
Š
s00kX Œ2d

0 C 2d 00�

(B.4.10)

which is a lift of (B.4.3) to the homotopy canonical level.
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