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Abstract. A well known result in the theory of uniform distribution modulo 1 (which goes back
to Fejér and Csillag) states that the fractional parts ¹n˛º of the sequence .n˛/n�1 are uniformly
distributed in the unit interval whenever ˛ > 0 is not an integer. For sharpening this knowledge
to local statistics, the k-level correlation functions of the sequence .¹n˛º/n�1 are of fundamental
importance. We prove that for each k � 2; the k-level correlation function Rk is Poissonian for
almost every ˛ > 4k2 � 4k � 1.
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1. Introduction

A real-valued sequence .#n/n�1 is called equidistributed or uniformly distributed mod-
ulo 1 if each subinterval Œa; b� � Œ0; 1� gets its fair share of fractional parts ¹#nº in the
sense that

1

N
# ¹n � N W ¹#nº 2 Œa; b�º ����!

N!1
b � a:

The notion of uniform distribution modulo 1 has been studied intensively since the begin-
ning of the twentieth century, originating in Weyl’s seminal paper Über die Gleichver-
teilung von Zahlen mod. Eins [25]. Notable instances of such sequences, as Weyl proved,
are #n D ˛nd where d � 1 is an integer and ˛ is irrational.

In this paper we study another natural family of sequences whose fractional parts are
equidistributed, namely

#n D n
˛; (1.1)

where ˛ > 0 is non-integer. The equidistribution modulo 1 of these sequences (and more
generally sequences of the form #n D ˇn

˛ with ˇ ¤ 0 and non-integer ˛ > 0/ is a corol-
lary of Fejér’s Theorem (see, e.g., [14, Cor. 2.1]) in the regime 0 < ˛ < 1, which was
extended to ˛ > 1 by Csillag [9].
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In the last couple of decades the theory of equidistribution modulo 1 acquired a new
facet which has developed into a highly active area of research: local (or fine-scale) stat-
istics, which measure the behaviour of a sequence on the scale of the mean gap 1=N .
These statistics are able to distinguish between different equidistributed sequences, and
are designed to quantify the randomness of a sequence; they are determined (see, e.g.,
[15, Appendix A]) by the the k-level correlation functions, which are therefore funda-
mental objects in this context. We first introduce the simplest correlation function, namely
the pair correlation function.

1.1. The pair correlation function

The pair correlation function R2.x/, defined as the limit distribution (if it exists)

lim
N!1

1

N
#
²
1 � m¤ n � N W #n � #m 2

1

N
I CZ

³
D

Z
I

R2.x/dx .I � R/; (1.2)

measures the distribution of spacings between pairs of elements modulo 1 (not necessarily
consecutive) on the scale of 1=N . In particular, we say that the pair correlation function is
Poissonian if R2 � 1, which is the pair correlation function of a sequence of independent
random variables drawn uniformly in the unit interval (Poisson process). Since Poissonian
pair correlation implies equidistribution modulo 1 (see [12]), studying the pair correlation
function can also be viewed as a natural sharpening of the theory of uniform distribution
modulo 1.

Being the most analytically accessible local statistic, the pair correlation of sequences
modulo 1 has attracted considerable attention starting with the work of Rudnick and
Sarnak [18], who showed that for any d � 2, the sequence .¹˛nd º/n�1 has Poissonian pair
correlation for almost all ˛ 2 R. Let us stress that often parametric families of sequences
are investigated, as results for individual sequences are rarities. Indeed, even in the quad-
ratic case of .¹˛n2º/n�1, showing Poissonian pair correlation even for simple choices
of ˛, say ˛ D

p
2, is an open problem.

Rudnick and Sarnak’s result is an instance of a more general metric theory of the pair
correlation of sequences of the form

#n.˛/ D ˛an; (1.3)

where .an/n�1 is a strictly increasing sequence of positive integers. The interest in a
systematic metric theory of the pair correlation property have recently gained momentum,
following the work of Aistleitner, Larcher and Lewko [5]. A crucial observation for this
development was the central role of the additive energy E.AN / of the truncation AN WD
¹an W n � N º, that is,

E.AN / D #¹.a; b; c; d/ 2 A4N W aC b D c C dº:

With the observation N 2 � E.AN / � N
3 in mind, it was proved in [5] that if there is

some � > 0 such that
E.AN / D O.N

3��/;
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then the fractional parts of the sequence (1.3) have metric Poissonian pair correlation, i.e.,
Poissonian pair correlation for almost all ˛ 2 R. The previous assumption for identifying
metric Poissonian pair correlation was slackened considerably by Bloom and Walker [7],
requiring only

E.AN / D O.N
3.logN/�C /

with a universal constant C > 0. For further results on the additive energy E.AN / and
applications, see [4, 6, 16, 24].

Until recently, there were only a few results about the pair correlation of sequences
which are not dilated integer sequences as in (1.3). Metric Poissonian pair correlation
was recently established by Rudnick and the first author [20] for dilations of non-integer,
lacunary sequences (i.e., sequences satisfying lim infn!1 anC1=an > 1). Another family
of non-integer lacunary sequences are the sequences #n.˛/D ˛n where ˛ > 1; these were
studied by Aistleitner and Baker [1] who showed Poissonian pair correlation for almost
all ˛ > 1. As for sequences of the form (1.1), El-Baz, Marklof and Vinogradov [10]
showed that the pair correlation of the sequence .¹

p
nº/n�1;

p
n…Z is Poissonian – this may

come as a surprise in light of the non-Poissonian nearest neighbour spacing distribution
established by Elkies and McMullen [11] (see §1.4 below). Lutsko, Sourmelidis and the
first named author [17] recently showed that .¹ˇn˛º/n�1 has Poissonian pair correlation
for any ˛ 2 .0;14=41/ and any ˇ > 0. Metric Poissonian pair correlation was also recently
established for sequences of the form (1.1) (see [3, 21]).

1.2. Higher order correlation functions

The definition of the pair correlation function naturally extends to higher correlation func-
tions Rk.x/ (k � 2/ which detect the distribution of scaled spacings between k-tuples of
elements modulo 1. Rather than working with boxes in Rk�1, it will be technically more
convenient (and equivalent) to define Rk.x/ via functions in C1c .R

k�1/, the class of
C1-functions from Rk�1 to R with compact support. Let Xk D Xk.N / denote the set
of distinct integer k-tuples .x1; : : : ; xk/ satisfying 1 � xi � N , and for x 2 Xk denote

�.x; .#n// WD .#x1 � #x2 ; : : : ; #xk�1 � #xk / 2 Rk�1:

Definition 1.1. Given a compactly supported function f W Rk�1 ! R, we define the
k-level correlation sum by

Rk.f; .#n/; N / WD
1

N

X
x2Xk

X
m2Zk�1

f
�
N.�.x; .#n// �m/

�
: (1.4)

The (limiting) k-level correlation function Rk.x/ is defined as the limit distribution (if it
exists)

lim
N!1

Rk.f; .#n/; N / D

Z
Rk�1

f .x/Rk.x/ dx .f 2 C1c .R
k�1//: (1.5)

In particular, we say that the k-level correlation function is Poissonian if Rk � 1,
which is the k-level correlation function of independent uniform random variables.
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In contrast to the well-developed metric theory of the pair correlation property for
sequences of the shape (1.3), much less is known about the triple and higher order cor-
relation functions whose analysis is much more involved. To the best of our knowledge,
only for rapidly growing sequences are there fully satisfactory results – Rudnick and
Zaharescu [22] proved metric Poissonian k-level correlation for any k � 2 when .an/n�1
is a lacunary sequence of integers; this was recently extended by Chaubey and the second
author [8] to real-valued lacunary sequences. Furthermore, it is shown in [2] that for
almost all ˛ > 1, the sequence .˛n/n�1 has Poissonian k-level correlation for any k � 2.

The study of higher correlation functions of polynomially growing sequences, even
in the presence of strong arithmetic structure, consists of only a handful of partial results.
A notable example is due to Rudnick, Sarnak and Zaharescu [19, Thm. 1], who showed
Poissonian k-level correlation for any k � 2 for .¹˛n2º/n�1 along special subsequences
of N when ˛ is well approximable by rationals. Indeed, the polynomial growth of the
sequence (1.1) is a main challenge in the present work.

1.3. Main results

We study the correlation functions of the sequences (1.1). To simplify the notation, we
write Rk.f; ˛;N / instead of Rk.f; .n˛/; N /.

Theorem 1.2. Let k � 2. The k-level correlation function of .¹n˛º/n�1 is Poissonian
for almost every ˛ > 4k2 � 4k � 1. In particular, the pair correlation is Poissonian for
almost every ˛ > 7.

In order to prove Theorem 1.2, we will take anL2 approach. The expected value of the
k-level correlation sum (when averaging over ˛) is asymptotic to

R
Rk�1 f .x/ dx as will

be shown in Proposition 5.1 (for k D 2) and Proposition 6.8 (for k > 2). For technical
reasons that will become apparent below, it is convenient to multiply

R
Rk�1 f .x/ dx by

the harmless combinatorial factor

Ck.N / WD

�
1 �

1

N

�
� � �

�
1 �

k � 1

N

�
; (1.6)

which is exactly the number of elements of Xk divided by N k . The following definition
for the variance is therefore natural.

Definition 1.3. Let I � R>0 be an interval. The variance of the k-level correlation sum
Rk.f; ˛;N / with respect to I is defined as

Var.Rk.f; �; N /; I/ WD
Z

I

�
Rk.f; ˛;N / � Ck.N /

Z
Rk�1

f .x/ dx
�2

d˛:

We will deduce Theorem 1.2 from the following variance bound.

Theorem 1.4. Let k � 2, A > 4k2 � 4k � 1 and J D ŒA; A C 1�. There exists � D
�.A/ > 0 such that

Var.Rk.f; �; N /;J/ D O.N��/ as N !1. (1.7)
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The (largest admissible) �.A/ in (1.7) that our method delivers increases in A > 0; the
condition A > 4k2 � 4k � 1 is required to ensure that � > 0.

Remark 1.5. Fix any ˇ ¤ 0; the generalization of the above theorems to the sequences
.¹ˇn˛º/n�1 is straightforward.

1.4. Application: nearest neighbour spacing distribution

We may use Theorem 1.2 to obtain information about various local statistics which are
determined by the k-level correlation functionsRk.x/. A natural statistic to consider is the
nearest neighbour spacing distribution (also called the gap distribution), which is the lim-
iting distribution P.s/ (if it exists) of the gaps between consecutive elements (modulo 1)
of the sequence scaled to have a unit mean. More precisely, if we let

#N.1/ � #
N
.2/ � � � � � #

N
.N/ � #

N
.NC1/

denote the first N C 1 ordered elements of ¹#nº, then P.s/ is defined as the limit distri-
bution (if it exists)

lim
N!1

g.x; .#n/; N / D

Z x

0

P.s/ ds (1.8)

where
g.x; .#n/; N / WD

1

N
#¹n � N W N.#N.nC1/ � #

N
.n// � xº:

A strong indication for randomness of a sequence .¹#nº/n�1 is a Poissonian nearest
neighbour distribution, that is, P.s/ D e�s , which is the nearest neighbour distribution
of independent uniform random variables.

There are only a few examples in which one can determine the gap distribution (1.8).
For dilations of lacunary sequences, metric Poissonian gap distribution follows from the
aforementioned metric Poissonian k-level correlations established in [8,22], and similarly
the gap distribution of .¹˛nº/n�1 is Poissonian for almost all ˛ > 1. Another (determin-
istic) example is the work of Elkies and McMullen [11] on the fractional parts of the
sequence .

p
n/n�1. The gap distribution turns out to be non-standard (in particular not

Poissonian) in this case, and is intimately related to the Haar measure on the space of
translates of unimodular lattices in the plane. For the fractional parts of .n˛/n�1 with
˛ 2 .0; 1/ n ¹1=2º, Elkies and McMullen [11, Sec. 1] conjectured that the gap distribution
is Poissonian. In fact, numerical experiments suggest that this may hold for most, and per-
haps all, non-integer ˛ 2R>0 n ¹1=2º. In this regard, while Theorem 1.2 does not allow us
to capture the gap distribution of .¹n˛º/n�1 completely, it ensures that for almost all large
values of ˛, the distribution functions g.x; .n˛/; N / can be approximated by truncations
of the Taylor series of 1 � e�x as N !1, so that the distribution of the gaps becomes
approximately Poissonian.
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Corollary 1.6. Let K � 1. For almost all ˛ > 16K2 C 8K � 1, we have the inequalitiesX
1�k�2K

.�1/kC1
xk

kŠ
� lim inf

N!1
g.x; .n˛/; N /

� lim sup
N!1

g.x; .n˛/; N / �
X

1�k�2K�1

.�1/kC1
xk

kŠ

holding for all x � 0.

Remark 1.7. The above approximation is meaningful (and rather efficient) when x is
small relative to K. In particular, if x lies in a fixed interval and K is large, then the left-
and right-hand sides are equal up to an error decaying superexponentially in K.

2. Outline of the argument

The analysis of each correlation sum Rk follows a general pattern. First, let us remark
that we seek to show three intermediate objectives:

(1) Show that the expectation of Rk.f; �; N / is asymptotic to
R

Rk�1 f .x/ dx.

(2) The variance of Rk.f; �; N / is O.N��/ for some � > 0.

(3) Using the previous steps, deduce that Rk.f; �; N / converges almost surely toR
Rk�1 f .x/ dx.

In other words, we set out to show that Rk concentrates around its mean value, which we
demonstrate to be the desired limit, by taking an L2 approach.

As usual, the crux of the matter is to establish the variance bound. The third step is
fairly routine requiring only minor adaptations from the standard arguments. For the sake
of completeness, we decided to detail them.

Now let us explain how we bound the variance of the pair correlation sum

R2.f; ˛;N / D
1

N

X
1�x1¤x2�N

X
m2Z

f .N.x˛1 � x
˛
2 �m//; (2.1)

for which the technical aspects of the analysis, which get more intricate as k increases, are
still relatively simple. By using Poisson summation and a common truncation argument,
the variance can be bounded by a sum of oscillatory integrals:

Var.R2.f; �;N /;J/�
1

N 4

X
n;m

X
xj ;yj

ˇ̌̌̌Z
J

e.n.x˛1 � x
˛
2 /�m.y

˛
1 � y

˛
2 //d˛

ˇ̌̌̌
CN�t ; (2.2)

where the constant t > 0 can be chosen arbitrarily large, and the summation constraints
are given by

xj ; yj 2 Œ1; N � .j D 1; 2/; x1 > x2; y1 > y2;

n;m 2 Œ�N 1C�; N 1C��; n ¤ 0; m ¤ 0:
(2.3)
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Fig. 2.1. Plot of the first four derivatives of the phase function �.˛/ D n.x˛1 � x
˛
2 /�m.y

˛
1 � y

˛
2 /;

where the blue curve is �0, the orange curve is �00, the green curve is �.3/ and the red curve is
�.4/: Here we use the following specifications for the plot: nD 5135;mD 10000, and x1 D 10000,
x2 D 1000, y1 D 9500, y2 D 7890 in the range ˛ 2 Œ7:5; 8:5�.

To establish the desired variance bound, we need to demonstrate that the right-hand side
of (2.2) is, up to a constant, smaller than some fixed negative power of N .

In order to bound the above sum, we will establish a bound for each individual term
with good dependence on the n; m; xj ; yj parameters. To this end, we use an estimate
derived from a suitable modification of van der Corput’s lemma for oscillatory integrals.
This provides us with a sharp bound for the individual terms and, furthermore, with the
necessary uniformity in the parameters. For that estimate to be applicable, we need to
ensure that at any point in J at least one of the first four1 derivatives of the phase function
is large. To demonstrate this largeness property is the crux of the matter. To verify it, we
use a “repulsion principle” that quantifies how the smallness of the first three derivatives
repels the fourth derivative from being small as well (see Figure 2.1 illustrating the first
four derivatives of a phase function that we encounter).2

3. Preliminaries

Before proceeding, we will introduce some notation.

3.1. Notation

� The Bachmann–Landau big O notation is used in the usual sense, i.e., f D O.g/ as
x !1 means that there exists a constant c > 0 such that jf .x/=g.x/j � c for all x

1For the k-level correlation sum we shall consider 2k derivatives.
2In the case of the k-level correlation sum we show that at least one of the first 2k derivatives

is large.
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sufficiently large. In order to simplify the notation, usually we will not keep track of the
dependence of the implied constant c on other parameters. In particular, the dependence
on a (fixed) test function f will not be explicitly mentioned.

� We will also use the Vinogradov symbols� (and�) in their usual meaning in analytic
number theory, that is, the statement f � g denotes that f D O.g/.

� We will use the standard notation e.z/ D e2�iz :

� We denote by Œk� WD ¹1; : : : ; kº the set of the first k natural numbers.

� We denote the shifted unit interval with left end point A > 0 by

J D J.A/ WD ŒA;AC 1�: (3.1)

3.2. Tools from harmonic analysis

The bulk of our work is concerned with estimating one-dimensional oscillatory integrals

I.�;J/ WD

Z
J

e.�.˛// d˛

where � W J! R is a C1-function (a so called phase function). The phase functions that
we encounter are of the shape

�.˛/ D �.u; x; ˛/ D
X
i�d

uix
˛
i ; u D .u1; : : : ; ud /; x D .x1; : : : ; xd /: (3.2)

We wish to establish a bound with good dependence on the parameters u;x – most import-
antly on the maximum norm kxk1 D maxi�d jxi j. To this end, the following well-known
lemma is useful.

Lemma 3.1 (Van der Corput’s lemma). Let � W J ! R be a C1-function. Fix d � 1,
and suppose that j�.d/.˛/j � � > 0 for all ˛ 2 J. If d D 1, suppose in addition that �0

is monotone on J. Then there exists a constant Cd > 0 depending only on d such that

jI.�;J/j � Cd�
�1=d :

Proof. This classical bound follows by partial integration for d D 1, and then by induction
on d ; see Stein [23, Ch. VIII, Prop. 2].

Remark 3.2. A drawback of van der Corput’s lemma is that the more complicated the
phase function � is (bearing the shape (3.2) of � in mind), the more difficult it is to get
acceptable lower bounds on the size of the minimum of the derivative �.d/ for a given d .
To remedy this, we use the following variant of van der Corput’s lemma. The key feature
is that for a non-trivial estimation of I.�;J/, we only require that at every point ˛ 2 J

at least one of the first d derivatives of � is large, rather than requiring that one specific
derivative is large throughout J (note that for � as in (3.2), all the derivatives are on the
same scale up to logarithmic factors). This amounts to estimating the function

Md�.˛/ WD max
1�i�d

j�.i/.˛/j: (3.3)
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For phrasing this variant of van der Corput’s lemma, there is a small price to pay: we need
to control the number of zeros of �.d/ on J.

Lemma 3.3. Let � W J ! R be a C1-function, and let d � 1. Suppose that �.d/ has at
most k zeros, and that

Md�.˛/ � � > 0 (3.4)

for all ˛ 2 J. If d D 1, suppose in addition that �0 is monotone on J. Then there exists a
constant Cd;k > 0 depending only on d and k such that

jI.�;J/j � Cd;k�
�1=d :

Proof. Since �.d/ has at most k zeros, Rolle’s theorem implies that the number of zeros
of any lower derivative �.i/, 1 � i � d � 1, is at most k C d � i � k C d � 1. Hence,
by splitting the integral I.�; J/ into Od;k.1/ integrals, we can assume without loss of
generality that for any 1 � i � d � 1 the function �.i/ is monotone.

We will now prove by induction on d that

jI.�;J/j �d �
�1=d (3.5)

where the implied constant in (3.5) depends only on d . The case d D 1 follows directly
from Lemma 3.1. Assume now this claim holds for d � 1 where d � 2. Let .a; b/ be the
(possibly empty) interval of ˛ 2 J satisfying

Md�1�.˛/ D max
1�i�d�1

j�.i/.˛/j < �:

We have

jI.�;J/j �

ˇ̌̌̌Z a

A

e.�.˛// d˛
ˇ̌̌̌
C

ˇ̌̌̌Z b

a

e.�.˛// d˛
ˇ̌̌̌
C

ˇ̌̌̌Z AC1

b

e.�.˛// d˛
ˇ̌̌̌
: (3.6)

By the assumption (3.4), the lower bound j�.d/.˛/j � � holds for all ˛ 2 .a; b/. Therefore
Lemma 3.1 implies that ˇ̌̌̌Z b

a

e.�.˛// d˛
ˇ̌̌̌
�d �

�1=d : (3.7)

Outside .a; b/; we have Md�1�.˛/ � �. Thus, by the induction hypothesis,ˇ̌̌̌Z a

A

e.�.˛// d˛
ˇ̌̌̌
C

ˇ̌̌̌Z AC1

b

e.�.˛// d˛
ˇ̌̌̌
�d �

�1=.d�1/: (3.8)

Note that we may suppose that � � 1, since jI.�; J/j � 1, and for � < 1 the desired
bound plainly follows from 1 < ��1=d . Now inserting the bounds (3.7) and (3.8) into
(3.6) (the former dominates the latter due to our assumption � � 1) gives the claimed
bound (3.5).
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The following lemma indicates how oscillatory integrals arise in our analysis. For
its proof, and later reference, we recall that for any smooth compactly supported function
g WR!R, the Fourier transformbg of g decays rapidly in the sense that for any arbitrarily
large t > 0 we have bg.�/ D O.��t / as j�j ! 1. (3.9)

Lemma 3.4. Let f 2 C1c .R/, and let � > 0. Then for all t > 0 we have

R2.f; ˛;N / D
1

N 2

X
jnj�N1C�

yf

�
n

N

� X
1�x1¤x2�N

e.n.x˛1 � x
˛
2 //CO.N

�t / (3.10)

as N !1.

Proof. The Poisson summation formula applied to (2.1) yields the identity

R2.f; ˛;N / D
1

N 2

X
n2Z

yf

�
n

N

� X
1�x1¤x2�N

e.n.x˛1 � x
˛
2 //; (3.11)

and we want to truncate the right-hand side.
Due to (3.9) and the trivial boundˇ̌̌ X

1�x1¤x2�N

e.n.x˛1 � x
˛
2 //
ˇ̌̌
� N 2;

we have X
jnj>N1C�

yf

�
n

N

� X
1�x1¤x2�N

e.n.x˛1 � x
˛
2 //� N 2Cs

X
n>N1C�

n�s

� N 2Cs�.1C�/.s�1/: (3.12)

Taking s so large that

s � .1C �/.s � 1/ D 1C � � �s < �t;

the right-hand side of (3.12) is < N 2�t : This implies (3.10), concluding the proof.

4. Repulsion principles

In order to make Lemma 3.3 usable for computing the pair and higher order correlations,
we need to control the M -function (3.3) of functions as in (3.2). In the present section,
we show that irrespective of the choice of ˛ some derivative of such a function is large.

Recall that if

Vd D

26664
L1 L2 : : : Ld
L21 L22 : : : L2

d
:::

:::
: : :

:::

Ld1 Ld2 : : : Ld
d

37775 (4.1)
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is the Vandermonde matrix corresponding to distinct nonzero numbers L1; : : : : ; Ld , then
the inverse Vandermonde matrix is given by V �1

d
D Œaij �, where

aij D
.�1/j�1

P
1�m1<���<md�j�d;m1;:::;md�j¤i

Lm1 � � �Lmd�j

Li
Q
1�m�d;m¤i .Lm � Li /

(4.2)

(see, e.g., [13, Ex. 40]).
We require the following lemma.

Lemma 4.1. Let d � 2 be an integer, let

2 � x1 < � � � < xd � N

be real numbers, and denote Li D logxi .1 � i � d/. Let Vd be the Vandermonde matrix
(4.1) corresponding to the numbersL1; : : : : ;Ld . Letw 2Rd , and denote y D Vdw. Then
for all � > 0, there exists a constant Cd;� > 0 depending only on d and � such that

kyk1 � Cd;�kwk1x
1�d
d N��

d�1Y
mD1

hm;

where hm D xmC1 � xm for 1 � m � d � 1.

Proof. Let V �1
d
D Œaij �, where aij is given by (4.2). For every 1 � i; j � d we have

aij �d;� N
� 1Q

1�m�d;m¤i jLm � Li j
; (4.3)

where the implied constant in (4.3) depends only on d and �.
For all t > �1, we have log.1C t / � t . So, for m D 1; : : : ; i � 1,

jLm � Li j D � log
xm

xi
D � log

�
1C

xm � xi

xi

�
�
xi � xm

xi
�
hm

xd
;

and for m D i C 1; : : : ; d ,

jLm � Li j D � log
xi

xm
D � log

�
1C

xi � xm

xm

�
�
xm � xi

xm
�
hm�1

xd
:

Hence,

aij �d;�

xd�1
d

N �Qd�1
mD1 hm

:

Thus, we have found a uniform bound for the elements of V �1
d

, and since all matrix norms
are equivalent, we conclude that

kwk1 D kV
�1
d yk1 � kV

�1
d k1kyk1 �d;�

xd�1
d

N �Qd�1
mD1 hm

kyk1:
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We can now bound the M -function (3.3) from below for functions of the form (3.2).

Lemma 4.2. Let d � 2 be an integer, and let u1; : : : ; ud be non-zero real numbers. Given
real numbers 2 � x1 < x2 < � � � < xd � N , we define

�.˛/ WD
X
r�d

urx
˛
r .˛ 2 J D ŒA;AC 1�/:

Furthermore, let � > 0 and define

� D N��jud jx
AC1�d
d

d�1Y
mD1

hm;

where hm D xmC1 � xm .1�m� d � 1/. Then there exists a constant Cd;� > 0, depend-
ing only on d and �, such that

Md�.˛/ � Cd;�� > 0 for all ˛ 2 J. (4.4)

Proof. Denote w D .u1x˛1 ; : : : ; udx
˛
d
/, and let Li D log xi (1 � i � d/. Then

.�.1/.˛/; : : : ; �.d/.˛//T D Vdw
T ;

where Vd is the Vandermonde matrix (4.1) corresponding to the numbers L1; : : : ; Ld .
By Lemma 4.1, we infer that

Md�.˛/ � Cd;�kwk1x
1�d
d N��

d�1Y
mD1

hm � Cd;�N
��
jud jx

AC1�d
d

d�1Y
mD1

hm;

where Cd;� > 0 is a constant, depending only on d and �. This is exactly (4.4).

We require the following simple bound on the number of zeros of functions � as
in (3.2).

Lemma 4.3. Let d � 1 be an integer, let u1; : : : ; ud be non-zero real numbers, and let
x1; : : : ; xd be distinct .strictly/ positive numbers. Then the function

�.˛/ D
X
r�d

urx
˛
r .˛ 2 R/

has at most d � 1 zeros.

Proof. The proof is by induction on d . For d D 1 the statement is clear. Assume that it is
true for d � 1 (d � 2/, and let

�.˛/ D
X
r�d

urx
˛
r :

The zeros of � are exactly the zeros of the function

Q�.˛/ D
X
r�d�1

Qur Qx
˛
r C 1
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where Qur D ur
ud

and Qxr D xr
xd
.1 � r � d � 1/, since �.˛/ D udx˛d Q�.˛/. Moreover,

Q�0.˛/ D
X
r�d�1

vr Qx
˛
r ; where vr D Qur log Qxr .1 � i � d � 1/:

Clearly, the numbers v1; : : : ; vd�1 are non-zero and Qx1; : : : ; Qxd�1 are distinct. There-
fore, by the induction hypothesis, Q�0 has at most d � 2 zeros. Hence, by Rolle’s theorem,
Q� has at most d � 1 zeros, completing the proof.

We are ready to prove the main lemma of this section, obtaining an upper bound for
integrals with phase functions of the form (3.2).

Lemma 4.4. Let d � 2 be an integer, let u1; : : : ; ud be non-zero real numbers, and let

2 � x1 < x2 < � � � < xd � N

be real numbers. Denote

�.˛/ WD
X
r�d

urx
˛
r .˛ 2 J D ŒA;AC 1�/:

Then for all � > 0, there exists a constant Cd;� > 0, depending only on d and on �, such
that

jI.�;J/j � Cd;��
�1=d ; (4.5)

where

� D N��jud jx
AC1�d
d

d�1Y
mD1

hm; (4.6)

and hm D xmC1 � xm .1 � m � d � 1/.

Remark 4.5. For d D 1, we clearly have the (sharper) bound

jI.�;J/j � C
1

ju1jx
A
1 log x1

;

where C > 0 is an absolute constant, which follows directly from Lemma 3.1.

Proof of Lemma 4.4. For any k � 0; we have

�.k/.˛/ D
X
r�d

vrx
˛
r where vr D ur .log xr /k :

Hence, by Lemma 4.3, for any k the function �.k/ has at most d � 1 zeros, and in partic-
ular this is true for �.d/.

By Lemma 4.2, we have

Md�.x/�d;� � > 0 for all ˛ 2 J, (4.7)

where � is as in (4.6), and the implied constant in (4.7) depends only on d and �. Hence,
the bound (4.5) follows from Lemma 3.3.
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5. The pair correlation

The goal of this section is to prove the variance bound (1.7) for the pair correlation sum,
i.e., for k D 2. This will outline the strategy for bounding the variance in the more tech-
nically involved case k > 2, which will be treated in the next section.

5.1. Computing the expectation

First, we show that the expectation of R2.f; �; N / is asymptotic to the average of f .

Proposition 5.1. Let f 2 C1c .R/ and let J be as in (3.1). Then for all � > 0,Z
J

R2.f; ˛;N / d˛ D
�
1 �

1

N

�Z 1
�1

f .x/ dx CO.N�min.2;A/C�/ (5.1)

as N !1.

For the proof of Proposition 5.1 and for later reference, we require the subsequent
lemma.

Lemma 5.2. If n ¤ 0 is a real number, then for all � > 0,

1

N 2

X
1�x1¤x2�N

ˇ̌̌̌Z
J

e.n.x˛1 � x
˛
2 // d˛

ˇ̌̌̌
D O�

�
N�min.2;A/C�

jnj

�
(5.2)

as N !1, where the implied constant depends only on �.

Proof. By relabelling if needed, we can assume that the summation in (5.2) is over
x1 > x2. Consider the phase function

�.˛/ D �.n; x1; x2; ˛/ WD n.x
˛
1 � x

˛
2 /:

Note that the first derivative

�0.˛/ D n.x˛1 log x1 � x˛2 log x2/

is monotone and non-zero on J. Hence, Lemma 3.1 yields

I.�;J/�
1

min˛2J j�0.˛/j
D

1

jnj

1

xA1 log x1 � xA2 log x2
; (5.3)

where the implied constant in (5.3) is absolute.
Let h WD x1 � x2. By the bound log.1C t / � t , we have

xA1 log x1 � xA2 log x2 � xA1 .log x1 � log x2/ D �xA1 log
�
1 �

h

x1

�
� xA�11 h:

Therefore,X
1�x2<x1�N

1

xA1 log x1 � xA2 log x2
�

X
1<x1�N

1

xA�11

X
1�h<x1

1

h
D O�.N

�min.0;A�2/C�/;

(5.4)

where the implied constant depends only on �. Thus, (5.2) follows from (5.3) and (5.4).
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Proof of Proposition 5.1. Recall that by Lemma 3.4, for all t > 0 we have

R2.f; ˛;N / D
1

N 2

X
jnj�N1C�

yf

�
n

N

� X
1�x1¤x2�N

e.n.x˛1 � x
˛
2 //CO.N

�t /

D

�
1 �

1

N

�Z 1
�1

f .x/ dx C
1

N 2

X
1�jnj�N1C�

yf

�
n

N

� X
1�x1¤x2�N

e.n.x˛1 � x
˛
2 //

CO.N�t /:

Integrating over ˛, we have a bound ready for the summation over x1; x2 thanks to (5.2).
Using yf � 1, this yieldsZ

J

R2.f; ˛;N / d˛ �
�
1�

1

N

�Z 1
�1

f .x/ dx� N�min.2;A/C�=2
X

1�jnj�N1C�

1

jnj
CN�t :

Choosing t large enough will give our claim.

5.2. Proof of Theorem 1.4 for k D 2

We can now proceed with the proof of the bound (1.7) for the pair correlation sum R2,
obtaining Theorem 1.4 in the particular case k D 2.

Proof of Theorem 1.4 for k D 2. Let � > 0. We denote by � D �.N; �/ the set of
tuples z D .n; x/ with n D .n;�n; m;�m/ 2 Z4

¤0
satisfying knk1 � N 1C� , and x D

.x1; x2; y1; y2/ 2 Z4>0 satisfying kxk1 � N and

x1 > x2; y1 > y2; x1 D kxk1: (5.5)

From (3.10), the fact that yf � 1, and relabelling, we deduce that for all t > 0,

Var.R2.f; �; N /;J/ D
Z

J

�
R2.f; ˛;N / �

�
1 �

1

N

�Z 1
�1

f .x/ dx
�2

d˛

�
1

N 4

X
z2�

jI.�.z; �/;J/j CN�t (5.6)

with the phase function

�.z; ˛/ D n.x˛1 � x
˛
2 / �m.y

˛
1 � y

˛
2 /:

To proceed further, we split the parameter set � into three different regimes depending
on several degeneracy conditions. Let

�1 WD
®
z 2 � W n D m; # ¹x1; x2; y1; y2º < 4

¯
;

�2 WD ¹z 2 � n �1 W x1 ¤ y1º; �3 WD ¹z 2 � n �1 W x1 D y1º;
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so that
� D

G
i�3

� i :

Further, we associate to each � i , i � 3, the term

Ti WD
X
z2�i

jI.�.z; �/;J/j:

Inserting the definition of Ti into (5.6) yields

Var.R2.f; �; N /;J/� N�4
X
r�3

Tr CN
�t ; (5.7)

and to verify (1.7) (when k D 2) it is enough to establish that for each r we have
Tr � N 4�� for some � > 0. We estimate the terms Tr in order of their index r .

Bounding T1. Let

�1;1 WD ¹z 2 �1 W # ¹x1; x2; y1; y2º D 2º;

�1;2 WD ¹z 2 �1 W # ¹x1; x2; y1; y2º D 3º;

so that
T1 D

X
z2�1;1

jI.�.z; �/;J/j C
X

z2�1;2

jI.�.z; �/;J/j:

For z 2 �1;1, we have x1 D y1 and x2 D y2, and the phase function vanishes. Hence,X
z2�1;1

jI.�.z; �/;J/j D
X

1�jnj�N1C�

X
1�x2<x1�N

1� N 3C�:

For z 2 �1;2, we can assume without loss of generality that x1 D y1 and x2 ¤ y2. The
phase function then simplifies to ˛ 7! n.y˛2 � x

˛
2 /. Therefore,X

z2�1;2

jI.�.z; �/;J/j �
X

1�jnj�N1C�

X
1�x1�N

X
1�x2¤y2�N

jI.˛ 7! n.y˛2 � x
˛
2 /;J/j

D N
X

1�jnj�N1C�

X
1�x2¤y2�N

jI.˛ 7! n.y˛2 � x
˛
2 /;J/j:

We apply Lemma 5.2 to deduce thatX
1�jnj�N1C�

X
1�x2¤y2�N

jI.˛ 7! n.y˛2 � x
˛
2 /;J/j � N 2�min.2;A/C�:

Hence,
T1 � N 3C�

CN 3�min.2;A/C�
� N 3C�: (5.8)

Bounding T2. For 2 � d � 4, let

�2;d WD
®
z 2 �2 W #.¹x1; x2; y1; y2º n ¹1º/ D d

¯
;
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so that
T2 D

X
2�d�4

X
z2�2;d

jI.�.z; �/;J/j: (5.9)

For z 2 �2;d , the phase function � consists of d non-constant terms with non-vanishing
coefficients. Since x1 ¤ y1; the leading coefficient of x˛1 is n. Invoking Lemma 4.4 (recall
that x1 D kxk1/, we obtainX
z2�2;d

jI.�.z; �/;J/j

� N �=d
X

1�jnj;jmj�N1C�

jnj�1=d
X
x1�N

x
1�A=d�1=d
1

X
h1;:::;hd�1�x1

h
�1=d
1 � � � h

�1=d

d�1

� N 1C�C�=d
X

1�jnj�N1C�

jnj�1=d
X
x1�N

x
1�A=d�1=d
1

X
h1;:::;hd�1�x1

h
�1=d
1 � � � h

�1=d

d�1
:

The innermost summation over the hi � x1 variables equals�X
h�x1

h�1=d
�d�1

� x
d�2C1=d
1 :

Since the sum over n is� N .1�1=d/.1C�/, we deduce thatX
z2�2;d

jI.�.z; �/;J/j � N 2�1=dC2�
X
x1�N

x
d�1�A=d
1

� N 2�1=d�min.0;A=d�d/C3�: (5.10)

Substituting (5.10) back into (5.9), we obtain

T2 �
X
2�d�4

N 2�1=d�min.0;A=d�d/C3�
� N 4�� (5.11)

for some � > 0 as long as �2 � 1=d � A=d C d < 0, or equivalently A > d2 � 2d � 1,
for all 2 � d � 4 , which is equivalent to A > 7.

Bounding T3. For 1 � d � 3, let

�3;d WD
®
z 2 �3 W #.¹x1; x2; y2º n ¹1º/ D d

¯
;

so that
T3 D

X
d�3

X
z2�3;d

jI.�.z; �/;J/j:

For z 2 �3;d , the phase function � consists of d non-constant terms with non-vanishing
coefficients. Now we have x1 D y1; and therefore the leading coefficient of x˛1 is

l WD n �m ¤ 0:
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Hence, Lemma 4.4 yieldsX
z2�3;d

jI.�.z; �/;J/j

� N �=d
X

1�jmj�N1C�

1�jlj�2N1C�

jl j�1=d
X
x1�N

x
1�A=d�1=d
1

X
h1;:::;hd�1�x1

h
�1=d
1 � � � h

�1=d

d�1

� N 2�1=d�min.0;A=d�d/C3�:

Therefore,
T3 �

X
d�3

N 2�1=d�min.0;A=d�d/C3�
� N 4�� (5.12)

for some � > 0 as long as A > d2 � 2d � 1 for all 1 � d � 3, which is equivalent to
A > 2.

To summarize, if A > 7, then inserting into (5.7) the estimates of the Ti from (5.8),
(5.11), and (5.12), we find that

Var.R2.f; �; N /;J/� N�� for some � > 0.

6. Higher order correlations

6.1. Expectation and variance in terms of oscillatory integrals

For k � 2 and � > 0, let N �
k�1
D N �

k�1
.N / denote the set of integer .k � 1/-tuples

.n1; : : : ; nk�1/ satisfying jni j � N 1C� .
Recall that we denoted by Xk the set of k-tuples .x1; : : : ; xk/ of distinct integers

satisfying 1 � xi � N . For x D .x1; : : : ; xk/ 2 Xk , denote

�.x; ˛/ WD .x˛1 � x
˛
2 ; x

˛
2 � x

˛
3 ; : : : ; x

˛
k�1 � x

˛
k /;

so that
Rk.f; ˛;N / D

1

N

X
m2Zk�1

X
x2Xk

f
�
N.�.x; ˛/ �m/

�
:

The following lemma generalizes Lemma 3.4.

Lemma 6.1 (Truncated Poisson summation). Let k � 2; f 2 C1c .R
k�1/, and � > 0.

Then for all t > 0 we have

Rk.f; ˛;N / D
1

N k

X
n2N �

k�1

X
x2Xk

yf

�
n
N

�
e.h�.x; ˛/;ni/CO.N�t / (6.1)

as N !1.
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Proof. By Poisson summation,

Rk.f; ˛;N / D
1

N k

X
n2Zk�1

X
x2Xk

yf

�
n
N

�
e.h�.x; ˛/;ni/:

Bounding the summation over x 2 Xk trivially yieldsX
n2Zk�1

knk1>N1C�

X
x2Xk

yf

�
n
N

�
e.h�.x; ˛/;ni/ � N k

X
n2Zk�1

knk1>N1C�

ˇ̌̌̌
yf

�
n
N

�ˇ̌̌̌
:

By the rapid decay of yf , for u D .u1; : : : ; uk�1/ 2 Rk�1 we have

yf .u/ D O
�

1

.1C ju1j/s1 � � � .1C juk�1j/sk�1

�
(6.2)

for any s1; : : : ; sk�1 > 0. In particular, for any s > 0 we haveX
n2Zk�1

knk1>N1C�

ˇ̌̌̌
yf

�
n
N

�ˇ̌̌̌
� N sC2.k�2/

X
n2Zk�1

n1>N
1C�

n�s1 .1C jn2j/
�2
� � � .1C jnk�1j/

�2

� N 2k�4Cs
X

n>N1C�

n�s � N 2k�4Cs�.1C�/.s�1/: (6.3)

Taking s so large that

2k � 4C s � .1C �/.s � 1/ D 2k � 3C � � �s < �t;

we find that the right-hand side of (6.3) is < N�t , which gives our claim.

Given n 2 Zk�1, we define the vector u.n/ D .u1.n/; : : : ; uk.n// 2 Zk by

ui .n/ WD

8̂̂<̂
:̂
n1 if i D 1;

ni � ni�1 if 2 � i � k � 1

�nk�1 if i D k:

;

Note that the linear map n 7! u.n/ is injective. Moreover,

ku.n/k1 � 2knk1 (6.4)

and
kX
iD1

ui .n/ D 0: (6.5)

Let

U�
k D U�

k.N / D ¹u D .u1; : : : ; uk/ 2 Zk W 1 � kuk1 � 2N 1C�; u1 C � � � C uk D 0º;

and note that the relations (6.4), (6.5) imply that u.n/ 2U�
k

whenever 0k�1 ¤ n 2 N �
k�1

.
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6.2. Degenerate regimes

Let K > 0 (below we will take either K D k or K D 2k), let u D .u1; : : : ; uK/ 2 ZK ,
x D .x1; : : : ; xK/ 2 ZK>0, and let �.˛/ be a function of the form

�.˛/ D �.z; ˛/ D
X
i�K

uix
˛
i ; z D .u; x/: (6.6)

To utilize the repulsion principle, we require the derivative of the phase function � to
genuinely depend on all the xi variables. While this is true throughout most of the
regime, there are certain constellations of parameters where this basic property fails. To
illustrate this phenomenon, let us consider the oscillatory integrals that we have already
encountered when analysing the variance of the pair correlation sum,Z

J

e.n.x˛1 � x
˛
2 / �m.y

˛
1 � y

˛
2 // d˛;

1 � x2 < x1 � N;

1 � y2 < y1 � N;
1 � jnj; jmj � N 1C�:

(6.7)
Already here (different kinds of) degeneracy issues arose, yet the combinatorics was

still simple. Note that this integral can degenerate in essentially three different ways:

(1) Some of the variables xi ; yi can be equal to 1, e.g., x2 D 1 (in fact there can be at
most two such variables).

(2) Some of the variables xi ; yi could be identical, e.g., we may have x1 D y1; in fact,
there can be at most two pairs of identical variables in (6.7).

(3) The variables n; m can be chosen in such a manner that the coefficients of some
terms vanish. For instance, we may have n D m and x1 D y1. Moreover, a particular
scenario is that the variables are arranged in such a way that the phase function �
vanishes identically3 when

x1 D y1; x2 D y2; n D m:

Fortunately, this is the only configuration for this scenario to happen, and there are
only O.N 3C�/ such parameters. Since the variance estimate is equipped with a nor-
malization factor of N�4, the contribution from this regime is negligible.

Each of these possible degeneracies will also occur when dealing with the expectation
and the variance of higher correlation sums, and will need to be accounted for.

Given � of the form (6.6), we define a measurement of how many variables xi genu-
inely occur in the derivative �0.˛/. We can clearly write

�0.˛/ D
X
i�d

wiz
˛
i (6.8)

3It turns out that � can vanish identically only in the kind of integrals like (6.7) appearing in the
variance bounds, but not in the kind of integrals involved in the expectation.
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where 0� d �K, ¹z1; : : : ; zd º� ¹x1; : : : ;xKº, z1; : : : ; zd � 2 are distinct, andw1; : : : ;wd
¤ 0. Moreover, by the independence of the functions ˛ 7! z˛i , the representation (6.8) is
unique, and we say that � is .K � d/-degenerate. Instead of 0-degenerate (corresponding
to d D K) we say that � is non-degenerate.

Let E�
k;d
DE�

k;d
.N / (resp. V�

k;d
DV�

k;d
.N /) denote the set of all zD .u;x/2U�

k
�Xk

(resp. z D .u; v; x; y/ 2 .U�
k
/2 � X2

k
) such that �.z; ˛/ is .k � d/-degenerate (resp.

.2k � d/-degenerate). Our main goal will be to bound the sums

S.E�k;d ;J/ WD
X

z2E�
k;d

jI.�.z; �/;J/j; S.V�
k;d ;J/ WD

X
z2V�

k;d

jI.�.z; �/;J/j:

As we shall show, these quantities control the expectation and variance of Rk .

Lemma 6.2. Let k � 2; f 2 C1c .R
k�1/, � > 0, Ck.N / be as in (1.6), and

Ek.N;J; �/ WD
1

N k

X
0<d�k

S.E�k;d ;J/:

Then for all t > 0, as N !1, we haveZ
J

Rk.f; ˛;N / d˛ � Ck.N /
Z

Rk�1
f .x/ dx� Ek.N;J; �/CN

�t : (6.9)

Proof. By Lemma 6.1,Z
J

Rk.f; ˛;N / d˛ D
1

N k

X
x2Xk

n2N �
k�1

yf

�
n
N

�Z
J

e.h�.x; ˛/;ni/ d˛ CO.N�t /:

We observe that for n D 0k�1, the number of corresponding x 2 Xk to choose from is

#Xk D N � .N � 1/ � � � .N � k C 1/:

HenceZ
J

Rk.f; ˛;N / d˛ � Ck.N /
Z

Rk�1
f .x/ dx

D
1

N k

X
x2Xk

0k�1¤n2N �
k�1

yf

�
n
N

�Z
J

e.h�.x; ˛/;ni/ d˛ CO.N�t /: (6.10)

Clearly,

h�.x; ˛/;ni D
X

1�i�k�1

ni .x
˛
i � x

˛
iC1/ D n1x

˛
1 � nk�1x

˛
k C

X
2�i�k�1

.ni � ni�1/x
˛
i

D �.u.n/; x; ˛/:
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Thus, Z
J

e.h�.x; ˛/;ni/ d˛ D I.�.u.n/; x; �/;J/:

Summing over the different .k � d/-degenerate regimes (and noting that k-degeneracy,
corresponding to d D 0, cannot occur for n ¤ 0k�1) impliesX

x2Xk
0k�1¤n2N �

k�1

yf

�
n
N

�Z
J

e.h�.x; ˛/;ni/ d˛ �
X

0<d�k

X
x2Xk

0k�1¤n2N �
k�1

zD.u.n/;x/2E�
k;d

jI.�.z; �/;J/j:

Finally, by the injectivity of the map n 7! u.n/ we haveX
x2Xk

0k�1¤n2N �
k�1

zD.u.n/;x/2E�
k;d

jI.�.z; �/;J/j � S.E�k;d ;J/;

which implies (6.9).

The derivation of a bound for the variance of Rk in terms of oscillatory integrals is
similar:

Lemma 6.3. Let k � 2; f 2 C1c .R
k�1/, and � > 0. Then, for all t > 0, we have

Var.Rk.f; �; N /;J/� Vk.N;J; �/CN
�t (6.11)

as N !1, where

Vk.N;J; �/ WD
1

N 2k

X
0�d�2k

S.V�
k;d ;J/:

Proof. By Lemma 6.1, for all s > 0 we have

Var.Rk.f; �; N /;J/ D
Z

J

�
N�k

X
x2Xk

0k�1¤n2N �
k�1

yf

�
n
N

�
e.h�.x; ˛/;ni/CO.N�s/

�2
d˛:

Expanding the square and taking s sufficiently large, we find that for all t > 0,

Var.Rk.f; �; N /;J/ D N�2k
X

x;y2Xk
0k�1¤n;m2N �

k�1

yf

�
n
N

�
yf

�
m
N

�

�

Z
J

e.h�.x; ˛/;ni C h�.y; ˛/;mi/ d˛ CO.N�t /:

Repeating the arguments of Lemma 6.2 yields the claim.
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6.3. Proof of Theorem 1.4: the general case

As outlined above, we wish to relate the sums S.E�
k;d
; J/ and S.V�

k;d
; J/ to quantities

that only involve those z for which �.z; ˛/ is non-degenerate.
Fix d; j � 1, and for each 1 � i � d , let Li W Zj ! Z denote a non-zero linear map.

Let L D .L1; : : : ; Ld /, and consider the sums

Q.d; j;L; N;J; �/ WD
X

m2Zj

1�kmk1�2N1C�
Li .m/¤0 .1�i�d/

X
tD.t1;:::;td /2Zd

2�ti�N distinct

jI.�.L.m/; t; �/;J/j: (6.12)

Here � is as in (6.6) with K D d .
Surely bounding S.E�

k;d
; J/; S.V�

k;d
; J/ in terms of Q requires weight factors

accounting for the number of variables that jI.�.z; �/; J/j does not effectively depend
upon – see the proofs of Propositions 6.5 and 6.6 below. But first, we deduce an appropri-
ate bound for Q.

Lemma 6.4. Fix d; j � 1. For 1� i � d , let Li W Zj ! Z denote a non-zero linear map.
Further, let L D .L1; : : : ; Ld /. For every � > 0, we have the bound

Q.d; j;L; N;J; �/ D O.N j�1=d�min.A=d�d;0/C�/ as N !1. (6.13)

Proof. Let m; t be arbitrary elements in the summation of Q, and assume without loss of
generality that t1 < � � � < td . By Lemma 4.4,

jI.�.L.m/; t; �/;J/j �d;� jLd .m/j�1=d t
�A=dC1�1=d

d
.h1 � � � hd�1/

�1=dN �=d ;

where hi D tiC1 � ti for i D 1; : : : ; d � 1.
Since Ld is not the zero map, we can express one of the variables comprising m in

terms of the other j � 1 variables and l D Ld .m/. Thus, the bound

Q.d; j;L; N;J; �/

� N .j�1/.1C�/C�=d
X

1�jlj�LN1C�

jl j�1=d
X
t�N

t�A=dC1�1=d
X
hi�t
i�d�1

.h1 � � � hd�1/
�1=d

� N j�1=d�min.A=d�d;0/C.jC1/�

produces the required estimate.

Proposition 6.5. Let k � 2 and � > 0. If 0 < d � k, then

S.E�k;d ;J/ D O.N
k�1�1=d�min.A=d�d;0/C�/ as N !1. (6.14)

Proof. For (possibly empty) index sets I1; I2 � Œk�, denote by E�
k;d
.I1; I2/ the set of

z D .u; x/ 2 E�
k;d

such that

¹i 2 Œk� W xi D 1º D I1; ¹i 2 Œk� n I1 W ui D 0º D I2:
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Assume that the set E�
k;d
.I1; I2/ is nonempty. Then d D k � #.I1 [ I2/, and since xi

are distinct we have #I1 � 1.
Consider the sum

S.E�k;d .I1; I2/;J/ WD
X

z2E�
k;d

.I1;I2/

jI.�.z; �/;J/j (6.15)

and recall that the summation in (6.15) is over z D .u; x/ belonging to a subset of
U�
k
�Xk . We first determine the constraints on u. By the conditions ui D 0 (i 2 I2/

and u1 C � � � C uk D 0, the summation is restricted to u whose entries linearly depend on
k � 1 � #I2 of the variables u1; : : : ; uk ; i.e., there exists a set

¹j1; : : : ; jk�1�#I2º � Œk�

such that each ui is a linear combination of uj1 ; : : : ; ujk�1�#I2
(since u ¤ 0k , we have

#I2 < k � 1). For each z 2 E�
k;d
.I1; I2/, we can then write

�.z; ˛/ D
X

i2Œk�nI2

Li .uj1 ; : : : ; ujk�1�#I2
/x˛i (6.16)

whereLi are non-zero linear combinations of the variables uj1 ; : : : ;ujk�1�#I2
(determined

only by I2).
There are d non-constant terms in the sum (6.16) corresponding to the indices i 2

Œk� n .I1 [ I2/ (note that if I1 is non-empty, then one of the terms in the sum (6.16)
is constant). Moreover, for each i 2 I2, the value of xi does not affect �.z; ˛/, and xi
ranges between 2 and N , so that the function (6.16) appears O.N #I2/ times in (6.15)
upon summing over z. Hence, letting L D .Li /i2Œk�n.I1[I2/, we have

S.E�k;d .I1; I2/;J/� N #I2Q.d; k � 1 � #I2;L; N;J; �/:

By Lemma 6.4, we have

N #I2Q.d; k � 1 � #I2;L; N;J; �/� N k�1�1=d�min.A=d�d;0/C�:

Summing over all configurations E�
k;d
.I1; I2/ completes the proof.

The argument for majorizing S.V�
k;d
;J/ by a weighted sum Q.d; j;L; N;J; �/ for

some d; j;L is similar but the combinatorics is somewhat more technical.

Proposition 6.6. Let k � 2 and � > 0. If d D 0 then

S.V�
k;0;J/ D O.N

2k�1C�/ as N !1, (6.17)

and if 0 < d � 2k then

S.V�
k;d ;J/ D O.N

2k�2�1=d�min.A=d�d;0/C�/ as N !1. (6.18)
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Proof. Let 0 � d � 2k, and let I1; I
0
1; I2; I

0
2; I3; I

0
3; I4; I

0
4 � Œk� be (possibly empty)

sets of indices. Fixing � WD .I1; I01; I2; I
0
2; I3; I

0
3; I4; I

0
4/, we denote by V�

k;d
.�/ the set

of vectors z D .u; v; x; y/ 2 V�
k;d

for which

¹i 2 Œk� W xi D 1º D I1; ¹j 2 Œk� W yj D 1º D I01;

¹i 2 Œk� n I1 W 9j.i/2Œk� xi D yj.i/º D I2;

¹j 2 Œk� n I01 W 9i.j /2Œk� xi.j / D yiº D I02;

¹i 2 I2 W ui C vj.i/ D 0;where j.i/ is such that xi D yj.i/º D I3;

¹j 2 I02 W ui.j / C vj D 0;where i.j / is such that xi.j / D yj º D I03;

and

¹i 2 Œk� n .I1 [ I2/ W ui D 0º D I4

¹j 2 Œk� n .I01 [ I02/ W vj D 0º D I04:

Assume that the set V�
k;d
.�/ is non-empty. Then #I2 D #I02, #I3 D #I03 and

d D 2k � .#I1 C #I01 C #I2 C #I3 C #I4 C #I04/: (6.19)

Consider the sum

S.V�
k;d .�/;J/ WD

X
z2V�

k;d
.�/

jI.�.z; �/;J/j: (6.20)

We first consider the constraints on u; v when summing in (6.20) over z D .u; v; x; y/
2 V�

k;d
.�/:

(i) The conditions ui D 0 (i 2 I4/ and u1 C � � � C uk D 0 determine #I4 C 1 of the
variables ui in terms of the other k � 1� #I4 variables ui . Note that u ¤ 0k , so that
#I4 < k � 1.

(ii) The conditions vj D 0 (j 2 I04/, ui.j / C vj D 0, j 2 I03, determine #I04 C #I03 of
the variables vj in terms of the variables ui :

(iii) The condition v1 C � � � C vk D 0 trivializes if I3 [ I4 D I03 [ I04 D Œk�. Otherwise,
if I03 [ I04 ¤ Œk�, it determines another variable vj (j … I03 [ I04/ in terms of the rest
of the variables. If I03 [ I04=Œk� and I3 [ I4 ¤ Œk�, it determines another variable ui
in terms of the rest of the variables.

To conclude, we have found that there exist sets

¹i1; : : : ; ilº � Œk�; ¹j1; : : : ; jmº � Œk�

such that the variables u1; : : : ; uk ; v1; : : : ; vk linearly depend on ui1 ; : : : uil ; vj1 ; : : : vjm ,
and

l Cm D .k � 1 � #I4/C .k � #I03 � #I04/ � 1 D 2k � 2 � #I03 � #I4 � #I04 (6.21)
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unless I3 [ I4 D I03 [ I04 D Œk�, in which case we have

l Cm D .k � 1 � #I4/C .k � #I03 � #I04/ D 2k � 1 � #I03 � #I4 � #I04: (6.22)

For each z 2 V�
k;d
.�/, we can then write

�.z; ˛/ D
X

i2Œk�n.I3[I4/

Li .ui1 ; : : : uil ; vj1 ; : : : vjm/x
˛
i

C

X
j2Œk�n.I0

2
[I0
4
/

Lj .ui1 ; : : : uil ; vj1 ; : : : vjm/y
˛
i ; (6.23)

where Li are non-zero linear combinations of the variables ui1 ; : : : uil ; vj1 ; : : : vjm
(determined by�).

The total number of non-constant terms in (6.23) is d (see (6.19); note that if at
least one of the sets I1 or I01 is non-empty, then one or two terms in the sum (6.16)
are constant). For each i 2 I3 [ I4, the value of xi does not affect �.z; ˛/, and xi ranges
between 2 and N . Likewise, for each j 2 I04, the value of yj does not affect �.z; ˛/, and
yj ranges between 2 and N . Hence, the function (6.23) appears O.N #I3C#I4C#I0

4/ times
in (6.20) upon summing over z.

If d D 0; then the phase function is constant (in fact, it must vanish), and therefore

S.V�
k;0.�/;J/� N #I3C#I4C#I0

4N .1C�/.lCm/
� N .2k�1/.1C�/

in either of the cases (6.21), (6.22). If d > 0, we can choose

L D .Li ; Lj /i2Œk�n.I1[I3[I4/; j2Œk�n.I
0
1
[I0
2
[I0
4
/

and get
S.V�

k;d .�/;J/� N #I3C#I4C#I0
4Q.d; l Cm;L; N;J; �/:

Clearly, either I3 [ I4 ¤ Œk� or I03 [ I04 ¤ Œk�, so that by (6.21) we have

Q.d; l Cm;L; N;J; �/ D Q.d; 2k � 2 � #I3 � #I4 � #I04;L; N;J; �/:

By Lemma 6.4, we establish the bound

N #I3C#I4C#I0
4Q.d; 2k � 2 � #I3 � #I4 � #I04;L; N;J; �/

� N 2k�2�1=d�min.A=d�d;0/C�:

As there are�k 1 sets V�
k;d
.�/, summing over � concludes the proof.

Corollary 6.7. For each A > k2 � k � 1 there exists � D �.A/ > 0 such that for any
0 < d � k,

S.E�k;d ;J/ D O.N
k��/ as N !1. (6.24)

Further, for each A > 4k2 � 4k � 1 there exists � D �.A/ > 0 such that for any 0 �
d � 2k,

S.V�
k;d ;J/ D O.N

2k��/ as N !1. (6.25)
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Proof. Recall that by Proposition 6.5 we have

S.E�k;d ;J/ D O.N
k�1�1=d�min.A=d�d;0/C�/:

Hence, we obtain (6.24) when �1 � 1=d � A=d C d < 0, or equivalently A >

d.d � 1/ � 1 for all 0 < d � k. Since d 7! d.d � 1/ � 1 is increasing on the inter-
val Œ1; k�, it attains its maximum value at d D k, which is equal to k2 � k � 1. Hence,
(6.24) holds whenever A > k2 � k � 1.

Now recall that Proposition 6.6 yields S.V�
k;0
;J/ D O.N 2k�1C�/ for d D 0 and

S.V�
k;d ;J/ D O.N

2k�2�1=d�min.A=d�d;0/C�/

for 0 < d � 2k. Thus, (6.25) holds when�2�1=d �A=d Cd < 0, i.e.,A>d.d �2/�1,
for all 0 < d � 2k. Since d.d � 2/ � 1 is increasing as a function of d 2 Œ1; 2k�, the
maximum is attained at d D 2k and is equal to 4k2 � 4k � 1. Therefore, (6.25) holds
whenever A > 4k2 � 4k � 1.

Substituting the bound (6.24) in (6.9), we can now find a regime in which the expect-
ation of Rk.f; �; N / is asymptotic to the average of f . We formulate the next proposition
for k > 2, since for k D 2 Proposition 5.1 yielded a stronger result (holding for A > 0).

Proposition 6.8. Let k > 2, A > k2 � k � 1 and let J be given by (3.1). Then there exists
� D �.A/ > 0 such thatZ

J

Rk.f; ˛;N / d˛ D
Z

Rk�1
f .x/ dxCO.N��/ as N !1.

Finally, Theorem 1.4 also follows from Corollary 6.7:

Proof of Theorem 1.4. The bound (1.7), k � 2, follows by substituting (6.25) in (6.11).

7. Proofs of Theorem 1.2 and Corollary 1.6

With the variance bound from Theorem 1.4 at hand, we can deduce Theorem 1.2 by rather
soft arguments from a general principle. Although the argument is fairly standard, we have
not found it stated explicitly in the literature in a form that readily applies to our case, so
we decided to give the details in full. The following proposition allows one to deduce
Theorem 1.2 from the variance bound, recorded in Theorem 1.4, at once.

Proposition 7.1. Let k � 2; let I � R be a bounded interval, and let ck.N / be a
sequence satisfying ck.N /! 1 asN !1. Suppose we are given a real-valued sequence
.#n.˛//n�1 for each ˛ 2 I so that I 3 ˛ 7! #n.˛/ is a continuous map for each fixed
n � 1. Assume that there exists � > 0 such that for all f 2 C1c .R

k�1/,Z
I

�
Rk.f; .#n.˛//; N / � ck.N /

Z
Rk�1

f .x/ dx
�2

d˛ D O.N��/ (7.1)
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as N !1, then the sequence .#n.˛//n�1 has Poissonian k-level correlation for almost
every ˛ 2 I.

First we record a useful lemma that allows us to pass from the convergence of a sub-
sequence to the convergence of the entire sequence (extending [20, Lemma 3.1] which
was established for k D 2).

Lemma 7.2. Let .#n/n�1 be a real-valued sequence. If there is an increasing sequence
.Nm/m�1 of positive integers such that

lim
m!1

NmC1

Nm
D 1 (7.2)

and
lim
m!1

Rk.f; .#n/; Nm/ D

Z
Rk�1

f .x/ dx (7.3)

for all f 2 C1c .R
k�1/, then

lim
N!1

Rk.f; .#n/; N / D

Z
Rk�1

f .x/ dx (7.4)

for all f 2 C1c .R
k�1/. Moreover, (7.4) holds for all indicator functions f D 1… of boxes

… � Rk�1.

Proof. First we argue that if the assumption (7.3) is true for all f 2 C1c .R
k�1/ then it

also holds for all indicator functions 1… of boxes … D Œa1; b1� � � � � � Œak�1; bk�1�. Fix
ı > 0 and choose f�; fC 2 C1c .R

k�1/ such that f� � 1… � fC andZ
Rk�1

.fC.x/ � f�.x// dx < ı:

Then by the definition of the correlation sum (1.4) we have

Rk.f�; .#n/; N / � Rk.1…; .#n/; N / � Rk.fC; .#n/; N /:

Thus

lim sup
m!1

Rk.1…; .#n/; Nm/ � lim sup
m!1

Rk.fC; .#n/; Nm/ D

Z
Rk�1

fC.x/ dx;

lim inf
m!1

Rk.1…; .#n/; Nm/ � lim inf
m!1

Rk.f�; .#n/; Nm/ D

Z
Rk�1

f�.x/ dx:

Therefore,

0 � lim sup
m!1

Rk.1…; .#n/; Nm/ � lim inf
m!1

Rk.1…; .#n/; Nm/

�

Z
Rk�1

.fC.x/ � f�.x// dx < ı:
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Since ı > 0 was arbitrary, we conclude that

lim
m!1

Rk.1…; .#n/; Nm/ D

Z
Rk�1

1….x/ dx; (7.5)

which proves (7.3) for f D 1….
Given a positive integerN , we can findm� 1 such thatNm �N <NmC1. Moreover,

Rk.1…; .#n/;N /D
1

N
#
²

x 2Xk.N / W #xi � #xiC1 2

�
ai

N
;
bi

N

�
CZ; i D 1; : : : ; k � 1

³
:

The limit (7.2) implies that when N is sufficiently large we have Nm=N D NmC1=N D
1C o.1/. Given ı > 0; we therefore let

…0 D Œa1 � ı; b1 C ı� � � � � � Œak�1 � ı; bk�1 C ı�

and see that for sufficiently large N

Rk.1…; .#n/; N /

D

NmC1
N

NmC1
#
²

x 2 Xk.N / W #xi�#xiC1 2

�
ai �

NmC1
N

NmC1
;
bi �

NmC1
N

NmC1

�
CZ; i D 1; : : : ; k�1

³
�

1Cı

NmC1
#
²

x 2 Xk.NmC1/ W #xi�#xiC1 2

�
ai�ı

NmC1
;
biCı

NmC1

�
CZ; i D 1; : : : ; k�1

³
;

where the right-hand side is .1C ı/Rk.1…0 ; .#n/; NmC1/. Thus, we conclude that

lim sup
N!1

Rk.1…; .#n/; N / � .1C ı/ lim sup
m!1

Rk.1…0 ; .#n/; NmC1/

D .1C ı/

Z
Rk�1

1…0.x/ dx:

Recalling the definition of …0, we clearly haveZ
Rk�1

1…0.x/ dx D
Z

Rk�1
1….x/ dxCO.ı/:

Since ı was arbitrary, we infer that

lim sup
N!1

Rk.1…; .#n/; N / �

Z
Rk�1

1….x/ dx

and a similar argument shows that

lim inf
N!1

Rk.1…; .#n/; N / �

Z
Rk�1

1….x/ dx:

This establishes (7.4) for all functions f D 1…: Since every f 2 C1c .R
k�1/ can be

approximated from below and from above by a linear combination of indicator functions
of boxes, (7.4) holds for smooth compactly supported functions as well (by the same
argument we detailed above to prove (7.5)).
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Proof of Proposition 7.1. For eachm�1, letNmDbm2=�c. For each fixed f 2C1c .R
k�1/

define

Xm.˛/ D

ˇ̌̌̌
Rk.f; .#n.˛//; Nm/ � ck.Nm/

Z
Rk�1

f .x/ dx
ˇ̌̌̌2
:

By (7.1), the L1-norms of Xm � 0 on I are summable. Changing the order of summation
and integration yields Z

I

X
m�1

Xm.˛/d˛ <1;

and therefore for almost all ˛ 2 I we haveX
m�1

Xm.˛/ <1:

In particular, Xm.˛/! 0 for almost all ˛ 2 I, and hence (7.3) is satisfied for almost all
˛ 2 I for our fixed f ; by a standard diagonal argument (approximating from above and
below by functions fi belonging to a countable dense set in C1c .R

k�1)), we conclude
that for almost all ˛ 2 I, (7.3) holds for all f 2 C1c .R

k�1/. Hence by Lemma 7.2, the
limit (7.4) holds for almost every ˛ 2 I, completing the proof.

To prove Corollary 1.6, we require a well-known relation between the gap distribution
and the correlation functions. Let

�k�1 D
°
.x1; : : : ; xk�1/ 2 Rk�1>0 W

X
1�i�k�1

xi < 1
±

denote the standard open k � 1-simplex. For x > 0, let 1x�k�1 be the indicator function
of the dilation x�k�1.

Lemma 7.3. Let .#n/n�1 be a real-valued sequence, and let K � 1. For all x > 0, we
have X

2�k�2KC1

.�1/kRk.1x�k�1 ; .#n/; N / � g.x; .#n/; N /

�

X
2�k�2K

.�1/kRk.1x�k�1 ; .#n/; N /:

Proof. The claim follows from [15, Lemma 11 and (A.2)].

Proof of Corollary 1.6. By Theorem 1.2, for almost all

˛ > 4.2K C 1/2 � 4.2K C 1/ � 1 D 16K2 C 8K � 1;

the k-level correlation functions Rk are Poissonian for all 2 � k � 2K C 1, so that as
N ! 1, Rk.1x�k�1 ; .#n/; N / converges to the volume of x�k�1 which is equal to
xk�1=.k � 1/Š. The claimed inequalities now follow from Lemma 7.3.
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