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Abstract. One of our results is a transfer principle between ultrapowers and reduced powers asso-
ciated with the Fréchet ideal. Although motivated by the Elliott classification programme, this result
applies to any axiomatizable category. We also show that there exists a nonprincipal ultrafilter U on
N such that for every countable (or separable metric) structure B in a countable language the quo-
tient map from the reduced power associated with the Fréchet ideal onto an ultrapower has a right
inverse. While the transfer principle is proved without appealing to additional set-theoretic axioms,
the conclusion of the latter theorem relies on the Continuum Hypothesis and it is independent of the
standard axioms of set theory. We also prove that in the category of C�-algebras, tensoring with the
C�-algebra of all continuous functions on the Cantor space preserves elementary equivalence. As a
side note, neither the Jiang–Su algebra Z nor any UHF algebra share this property.

Keywords. Ultrapowers, reduced powers, functorial classification, saturated models, P-points,
Continuum Hypothesis

Ultrapowers (see §1.1 for the definitions) have been a part of the standard toolbox in logic,
combinatorics, functional analysis, and algebra for decades. It should be remarked that in
this paper, U is a nonprincipal ultrafilter on N. A typical application of ultrapowers in set
theory is concerned with ultrapowers of transitive models of (a large enough fragment of)
ZFC, and it is desirable that these ultrapowers be well-founded. This requires U to be � -
closed, hence excluding nonprincipal ultrafilters on N and other small sets. Ultrapowers
are frequently used as a ‘magnifying glass’ focused on a countable (or separable met-
ric) structure A. Taking the ultrapower of A results in a saturated (see §1.2) elementary
extension AU of A. Various asymptotic phenomena of sequences in A propagate to AU,
where they are witnessed by its elements. This often makes the arguments more succinct
and (to those familiar with the method) transparent. This method is a textbook example
of Shelah’s Mountain Air Thesis [42, 6.4(b)].

Ultrapowers were introduced independently to operator algebras, shortly before Łoś’s
introduction of ultrapowers to logic (see the first page of [43]). The method of classi-
fying separable operator algebras by studying their position inside an ultrapower dates
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back to the seminal [30] and [11]. McDuff’s results were adapted to C�-algebras in [12],
with a small twist. Instead of ultrapowers, Effros and Rosenberg used the asymptotic
sequence algebra `1.A/=c0.A/ (known to logicians as the reduced power associated
with the Fréchet ideal). This algebra is at some level easier to grasp: Unlike ultrapowers,
it is canonical and its construction does not require any form of the Axiom of Choice.
Although reduced powers (and reduced products) have been studied by logicians for
decades, the absence of Łoś’s Theorem renders them not as effective as the ultrapowers
(see however footnote 2).

The fact that ultrapowers are often interchangeable with asymptotic sequence algebras
within the theory of C�-algebras is quite puzzling. One of the objectives of this paper is to
establish a relation between ultrapowers and reduced powers associated with the Fréchet
ideal of countable (and separable metric) structures that explains this phenomenon. Our
main result transcends the category of C�-algebras and is applicable to the category of
structures in any countable language (discrete or metric). The direct motivation for this
work stems from a concrete problem encountered in Elliott’s classification programme
for nuclear C�-algebras.

In 1989, Elliott conjectured that a certain functor F (presently known as Elliott’s
invariant) classifies a large and important class of C�-algebras (see [36], [44], and also
[13] for a direct approach without using ultrapowers or reduced powers).1 Ultrapowers
are used in the classification programme of C�-algebras in situations where the simplicity
of a massive quotient algebra is desirable (as in the Kirchberg–Phillips classification of
Kirchberg algebras [34]) and in the stably finite case, when one takes direct advantage of
the tracial ultrapower whose fibres are ultrapowers of II1 factors (for an excellent example
of this technique see [39]). With the increased sophistication, one feature of the asymp-
totic sequence algebras not shared by the ultrapowers came to be seen as indispensable;
we will return to this in a moment.

A distinguishing requirement of the Elliott classification is its functoriality: The func-
tor F is required to have two properties, existence and uniqueness, that we now describe
in a greater generality needed later on.

Definition 0.1. If F WK! L is a functor, a morphism ˛WF.A/! F.B/ is realized by a
morphismˆWA! B if F.ˆ/D ˛. More generally, given an arrow �WB! C into another
object C , it is said that ˛ is realized by a morphismˆWA!C if F.�/ ı ˛ is realized byˆ.

The functor F satisfies existence if for all separable C�-algebras A and B , every mor-
phism ˛WF.A/! F.B/ is realized by a morphism ˆWA! B .

The statement of uniqueness involves a notion of equivalence between morphisms.
Two �-homomorphisms,‰1 and‰2, from A into C are (approximately) unitarily equiva-
lent if there is a net of unitaries u� such that Adu� ı‰2 converges to‰1 in the point-norm
topology.

1For a curious reader, this is the class of nuclear, separable, unital, simple, C�-algebras that
satisfy the Universal Coefficient Theorem (UCT) and tensorially absorb the Jiang–Su algebra Z;
but this is beside the point.
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The functor F satisfies uniqueness if all morphisms that realize the same ˛ are approx-
imately unitarily equivalent. Since approximately unitarily equivalent morphisms share
their Elliott invariant, functorial classification requires F to be an isomorphism of cate-
gories, with the appropriately identified arrows in the domain.

An intermediate step in proving that a morphism ˛WF.A/!F.B/ is realized by some
ˆWA! B often involves a massive extension (an ultrapower or an asymptotic sequence
algebra) C of B , with the diagonal embedding �WB ! C . In this step, one proves that
˛ is realized (in the sense of the second part of Definition 0.1) by ˆWA ! C . If C is
the asymptotic sequence algebra B1 WD `1.B/=c0.B/, finding such ˆ is, together with
uniqueness, all that it takes to prove the existence. We take a moment to briefly describe
the reason for this. Suppose B is a metric structure. Every injection f WN ! N defines
an endomorphism f̂ of B1, by its action on the representing sequences (see §1.1):

f̂ ..ai /i2N/ D .af .i//i2N : (0.1)

The following is [23, Theorem 4.3] and (essentially) [34, Proposition 1.37] (it is proven
using a variant of the approximate intertwining technique).2

Theorem. If A and B are C �-algebras and A is separable, then a �-homomorphism
‰WA ! B1 is unitarily equivalent to a �-homomorphism whose range is included in
.the diagonal copy of / B if and only if it is approximately unitarily equivalent to f̂ ı‰

for every increasing f WN ! N.

As an immediate corollary, if F is a functor whose domain is the category of C�-
algebras that satisfies uniqueness and A and B are separable, then (using the terminology
from the second sentence of Definition 0.1) a morphism ˛W F.A/ ! F.B/ is realized
by a �-homomorphism ˆW A ! B if and only if it is realized by a �-homomorphism
ˆWA! B1.

If U is an ultrafilter and f is a function from the index set of U into itself, then
f is either constant on a set of U or it sends a set in U to a set that does not belong
to U (e.g., [15, Lemma 9.4.5]). Because of this, a map of the form f̂ as in (0.1) is an
endomorphism of an ultrapower if and only if it is the identity map, hence there is no
analog of the reindexing technique for ultrapowers in place of the asymptotic sequence
algebras. Ironically, it is often easier to findˆ that realizes a morphism ˛WF.A/! F.B/

in an ultrapower of B .
To recapitulate: For C�-algebras A and B , a morphism ˛WF.A/! F.B/ can be real-

ized by a �-homomorphism from A into BU, but this is not quite as helpful as realizing
˛ by a �-homomorphism from A into B1. This ‘gap’ begs a question, asked by Chris
Schafhauser and Aaron Tikuisis and answered by the following (for an arbitrary metric
structure B , by B1 we denote the reduced power

Q
FinB; in the case of C�-algebras, this

reduces to `1.B/=c0.B/ as used above).

2This result comes across as a special instance of a general model-theoretic result that can
be applied to metric structures with an appropriately defined and well-behaved notion of an inner
automorphism, waiting to be isolated.
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Theorem A. Suppose F is a functor whose domain is a category K of structures in some
countable language. For separable A and B in K, a nonprincipal ultrafilter U on N, and
a morphism ˛WF.A/! F.B/ the following are equivalent:

(1) The morphism ˛ is realized by a morphism ˆWA! BU for some .or any/ nonprin-
cipal ultrafilter U on N.

(2) The morphism ˛ is realized by a morphism ˆWA! B1.

Theorem A and our other results are stated and proved for structures in any countable
language (discrete or metric). This theorem is really a corollary of a more fundamental
result, Theorem 5.2. As the latter result’s statement is unsuitable for inclusion in a short
introduction, instead we state its consequence that uses the Continuum Hypothesis.

For a nonprincipal ultrafilter U on N, by �UWB
1!BU we denote the quotient map.

A right inverse to �U is a homomorphism ‚WBU ! B1 such that �U ı‚U D idBU .

Theorem B. The Continuum Hypothesis implies that there exists a nonprincipal ultrafil-
ter U on N such that for every separable metric structure B in a separable language the
quotient map �UWB

1 ! BU has a right inverse.

If the Continuum Hypothesis holds, then Theorem A is a consequence of Theorem B.
Fortunately, the contentious issue of the true cardinality of the continuum (and a possi-
bly even more contentious issue whether there is such a thing as a true cardinality of the
continuum) can be ignored in the present context because Theorem 5.2 suffices for all
practical purposes. Suffice it to say that a metamathematical detour involving the Contin-
uum Hypothesis was instrumental in finding a ZFC-result to which the (very interesting,
in the author’s opinion) question of the cardinality of the continuum is completely irrele-
vant.

In the case when B belongs to an abelian category, the conclusion of Theorem B
asserts that the exact sequence (with cU.B/ D ker.�U/)

0! cU.B/! B1
�U
��! BU

! 0

splits. Unlike �U, its right inverse is not canonical and does not necessarily exist. A more
precise version of Theorem B involves one of the most common types of special ultrafil-
ters on N (see Definition 1.1).

Theorem C. Suppose that the Continuum Hypothesis holds. For a nonprincipal ultrafil-
ter U on N the following are equivalent:

(1) For every separable metric structure B in a countable language the quotient map
�UWB

1 ! BU has a right inverse.

(2) U is a P-point.

The salient feature of both �U and its right inverse, that each one of them is equal
to the identity on the diagonal copies of B in B1 and BU, is essential for the applica-
tions. It is preserved in the following poor man’s version of Theorem B that applies to all
nonprincipal ultrafilters on N.
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Theorem D. Suppose that the Continuum Hypothesis holds, U is an ultrafilter on N,
and B is a separable metric structure. Then there exists a surjective homomorphism
ˆUWB

1 ! BU that is equal to the identity on the diagonal copy of B in B1 and has a
right inverse.

Theorem 5.2 is a variant of Theorem D proved without any additional set-theoretic
axioms, yet sufficiently strong to imply Theorem A. Since our main results depend on
both the choice of an ultrafilter and the model of ZFC, it is unlikely that they, or even
Theorem A, could have been discovered without a nontrivial use of logic.

The following (motivated by the observations given in §3) was pivotal in discovering
our main results.

Theorem E. There is a covariant functor K from the category of metric structures into
itself such that for every B there is an embedding �B;K W B ! KB with the following
property. If the Continuum Hypothesis holds and if B is a separable metric structure in
a separable language, then there is an isomorphism ƒW .KB/U ! B1 such that �B;1 D
ƒ ı �B;K .

A proof of Theorem E is given at the end of §3.
In the case of C�-algebras, the list of equivalences in Theorem C can be expanded

by adding analogs to an influential result due to Sato and Kirchberg–Rørdam (see [28,
Theorem 3.3], [38, Lemma 2.1]). If B is a C�-subalgebra of a C�-algebra C , then the
relative commutant of B inside C is

C \ B 0 D ¹c 2 C j bc D cb for all b 2 Bº:

Following Kirchberg, we say that an ideal J in a C�-algebra is a � -ideal if for every
countable subset J0 of J there exists a positive contraction e 2 J such that ea D a for all
a 2 J0 [27, 28].

Theorem F. For a P-point U on N and a separable C �-algebra B the following state-
ments hold:3

(1) �UŒB
1 \ B 0� D BU \ �UŒB�

0.

(2) Every separable C �-subalgebra A of B1 satisfies

�UŒB
1
\ A0� D BU

\ �UŒA�
0:

(3) The kernel of �U, cU.B/, is a � -ideal in B1.

If B is a UHF algebra and the Continuum Hypothesis holds, and U is any nonprincipal
ultrafilter on N, then (1) is equivalent to each of the following:

3Operator algebraists should take a note that in this theorem, and elsewhere in this note, BU

denotes the ultrapower of a metric structure, in particular the norm ultrapower of B if B is a C�-
algebra, and not the tracial ultrapower (except in Example 8.1, where the metric structure is the
hyperfinite II1 factor). This choice of notation was made for consistency, and it hopefully does not
lead to confusion or alienation.
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(4) U is a P-point.

(5) The exact sequence 0! cU.B/! B1 ! BU ! 0 splits.

Can any of Theorems B–F be proven without appealing to an additional set-theoretic
assumption? This depends on the theory of the structures in question (see Example 5.1).
In [21, Corollary D] it was proven that in a forcing extension of the set-theoretic uni-
verse introduced in [14], for every separable C�-algebra A and every ultrafilter U on N,
.A˝C.K//U is not isomorphic A1 or even to a C�-subalgebra of B1 for any separable
C�-algebraB . In [21, Theorem C] the analogous result, in the same forcing extension, was
proven for models that satisfy the order property as witnessed by a quantifier-free formula
(this includes C�-algebras and II1 factors). Thus in this forcing extension the conclusion
of each of Theorems B, D, and E fails for models of many unstable theories. In this model
the real line cannot be covered by fewer than 2@0 meager sets, and therefore in it P-points,
and even selective ultrafilters, exist (this is well-known; see, e.g., [15, Proposition 8.5.7]).
This implies that the conclusion of Theorem C and the equivalence of (4) and (5) in The-
orem F also fail in this model.

One more thing. The question which C�-algebras have the property that taking the
minimal tensor product with them preserves elementary equivalence was raised in [17,
Question 3.10.5]. In §6 we give a positive answer for C.K/ (K denotes the Cantor space)
and a negative answer for Z (the Jiang–Su algebra) and all UHF algebras.

Our results are proved by model-theoretic and set-theoretic analysis of the struc-
ture .B1; BU; �U/ (see §1). In §2 we compute the theory of a structure of this sort
(a ‘Feferman–Vaught-type’ result). In §3 we define a functor K such that B1 is elemen-
tarily equivalent to KB for every metric structure B . In §4 we prove that .B1; BU; �U/

is countably saturated when U is a P-point. The proofs of Theorems A–D can be found
in §5. In §6 we prove that in the category of C�-algebras, tensoring with C.K/ preserves
elementarity and tensoring with the Jiang–Su algebra or a UHF algebra does not. The-
orem F is proved in §7, and we conclude with a few general remarks in §8. All proofs
are given in the case of metric structures but they yield proofs in the case of classical,
discrete, structures—simply ignore the epsilons and the deltas.

1. Preliminaries

We follow the standard model-theoretic terminology, as presented in [29] or [9]. For
model theory of metric structures and C�-algebras see [2] and [17], respectively, as well
as [15, §16]. In this logic, the interpretations of formulas are R-valued and the analog of
the Lindenbaum boolean algebra of a theory is a real Banach algebra. All of our results are
stated in model theory of metric structures. They specialize to classical model theory by
considering discrete structures as structures in ¹0; 1º-metric. The special discrete variants
of our results, although novel, nontrivial, and with a potential for applications, will not be
stated explicitly. Readers not interested in continuous logic can omit all arguments that
involve approximating elements of a model up to some " > 0 and still obtain complete
proofs.
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We denote by 'A. Na/ the interpretation of a formula '. Nx/ at a tuple Na of the same sort
as Nx in the structure A.

1.1. Reduced powers

Given a metric language L, an infinite indexed family of L-structures Cj , for j 2 J ,4

and an ideal J on J , the reduced product is the quotient of
Q
j Cj corresponding to the

pseudometric
d.a; b/ D inf

X2J
sup
j2JnX

d.aj ; bj /:

If L is a discrete language, then the domain of the reduced product associated with J is
the set of equivalence classes on

Q
j2J Cj where a and b are identified if and only if the

set ¹j 2 J j aj ¤ bj º belongs to J.
In the case when L is a multisorted language, this is used to define every sort of the

reduced product. All function symbols are interpreted in the natural way, pointwise, and
the relation symbols R are interpreted by ( Na denotes a tuple of the appropriate sort)

R
Q

J Cj . Na/ WD inf
X2J

sup
j2JnX

RMj . Naj /

in the metric case. In the classical, discrete case, we define the interpretation of R by
setting R

Q
J Cj . Na/ to hold if and only if ¹j 2 J j R. Naj / failsº 2 J.

The reduced product associated to J is denoted
Q

J Cj . In the case when all Cj are
equal to B we write BJ for

Q
J B . The two extremal cases are most important. If J is the

Fréchet ideal, denoted Fin, then BJ is denoted B1, and if J is a maximal ideal then BJ

is denoted BU (where U is the complement of J) and called ultrapower. If U is disjoint
from J, then we have a natural quotient map �UWB

J ! BU.
An element b of BJ is determined by a representing sequence .bi /i2J . We routinely

commit the crime of identifying the elements of BJ with the corresponding representing
sequences in

Q
i2J Bi (the latter is considered as a sorted product, where sort S is inter-

preted as
Q
i2J S.Bi /, where S.Bi / is the interpretation of sort S in Bi ). This practice is

similar to the analogous well-established practice in the case of Lp spaces: It is innocu-
ous, as long as one knows what they are doing. For an ideal J we define the diagonal
embedding

�B;J WB ! BJ (1.1)

by sending b to the constant representing the sequence .b; b; : : : / and identify B with its
diagonal image in BJ . We write �B;1 for �B;Fin. We denote by Na a tuple .a0; : : : ; an�1/
of an unspecified length (but ‘of the appropriate sort’, which depends on the context).
The arity of Na will be routinely suppressed, and we will write Na 2 B for Na 2 Bn where
n is the arity of Na. For the sake of brevity, variables are sometimes omitted and a formula

4The only index set used in our main results is J D N, but some of the intermediate (yet
quotable) results hold in larger generality.
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'. Nx/ is written as '. When dealing with tuples of representing sequences, in order to
avoid confusion the entries of Na will be denoted a.0/; : : : ; a.n � 1/. If Na is an n-tuple of
elements of BJ , then aj .i/, for j 2 J , is a representing sequence of the i -th entry of Na.

1.2. Types and saturation

We recall the definitions of a condition and a type. Fix a metric language L. A condition
is an expression '. Nx/ D r , where '. Nx/ is an L-formula and r is a real number. It is
satisfied by a tuple Na of an appropriate sort in an L-structure A if 'A. Na/ D r . An n-
type is a set of conditions in variables xi , for i < n. A type is an n-type for some n.
(Types in variables Nx can be construed as functionals on the Lindenbaum algebra of all L-
formulas all of whose free variables are among Nx, see [17, §4.7] or [15, §16.1]; although
very intuitive, this formulation will not be used explicitly.) A type t. Nx/ is realized by a
tuple Na in an L-structure A if each of its conditions is satisfied by Na. It is satisfiable in an
L-structure A if for every finite list of conditions 'i . Nx/ D ri , for i < n, in t. Nx/ and every
" > 0 some Na in A satisfies maxi<n j'Ai . Na/ � ri j < ".

A type is countable if it is countable as a set of conditions. An L-structure A is count-
ably saturated if every countable, satisfiable type in the language obtained by expand-
ing L by adding constants for the elements of A is realized in the expansion of A to this
language obtained by interpreting these constants in the natural way.5 Both ultrapowers
and reduced products associated with the Fréchet ideal are countably saturated (see [9]
for the discrete logic, in the metric case see [2] for ultrapowers and [20] for the reduced
powers associated with the Fréchet ideal, or see [15, §16] for both).

1.3. P-points

The space of ultrafilters on N is naturally identified with the Čech–Stone compactification
ˇN of N. Then the space of nonprincipal ultrafilters is identified with the remainder
(corona) ˇN nN.

Definition 1.1. An ultrafilter U on N is a P-point if for every sequence Xn 2 U, for
n 2 N, there exists X 2 U such that X nXn is finite for all n.

Equivalently, U is a P-point if the intersection of every countable family of open
neighbourhoods of U includes an open neighbourhood of U. Not every ultrafilter on N
is a P-point: By compactness, any countable subset X of ˇN nN has a nonempty set of
accumulation points, and none of its members is a P-point. By a classical result of W.
Rudin, the Continuum Hypothesis implies that P-points exist [37]. It is relatively consis-
tent with ZFC that there are no P-points in ˇN nN at all (see [41, §6.4] and [10]).

5In [40], such models are called countably compact. However, for countable (or separable)
languages our definition of countable saturation coincides with Shelah’s.
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2. Theories of reduced powers

In this section we compute the theory of the structure .B1; BU; �U/ from the theory
of B . Towards this goal, we prove a strengthening of Ghasemi’s Feferman–Vaught theo-
rem [24]. It applies to structures of the form

.BI; BJ ; �J/

where B is an L-structure, I and J are ideals on the index set J such that I � J, and
�J WB

I ! BJ is the quotient map. Let L2 denote the language of this structure. It has
two ‘meta-sorts’ corresponding to BI and BJ , and each L-sort corresponds to one sort in
each of the two meta-sorts. It also has the function symbol �I interpreted as the quotient
map.

In order to state our main result, let LBA;U be the language of Boolean algebras with
the Boolean operations ^;_; {; 0, and 1, also equipped with constants Z�t for every L2-
formula � and every t 2Q, and with an additional predicate U . The following is modelled
on the eponymous notion from [24] and [15, Definition 16.3.2].

Definition 2.1. For k � 2 and language L, an L2-formula '. Nx/ is k-determined6 if
objects with the following properties exist:

(1) A finite set F Œ'; k� of L-formulas whose free variables are included in the free vari-
ables of '. Nx/,

(2) LBA;U -sentences �';k
l

, for 0 � l � k, such that the following conditions hold:

(a) All constants appearing in �';k
l

are among Z�t , for � 2 F Œ'; k�, t 2 Q \ Œ0; 1�.

(b) Each �';k
l

is increasing, i.e., if NX D .Xi / are its free variables and Ai � A0i for
all i are elements of a Boolean algebra B, then .�';k

l
/B. NA/ implies .�';k

l
/B. NA0/.

These objects are required to satisfy the following. Given L-structures .Mj /j2J and ideals
I � J on J , for �. Nx/ 2 F Œ'; k�, we write �';k

l
Œ Na� for the value of �';k

l
in the quotient

Boolean algebra P .J/=I with (ŒX�I denotes the equivalence class of X modulo I)7

Z
�

l=k
WD Œ¹j j .�. Naj //

Mj > l=kº�I

and with U.Z�
l=k
/ true if and only if Z�

l=k
… J. Then the following holds (writing M for

the structure .
Q
Mj =I;

Q
j Mj =J; �J/):

(3) 'M . Na/ > .l C 1/=k implies �';k
l
Œ Na� and

(4) �';k
l
Œ Na� implies 'M . Na/ > .l � 1/=k.

6In [24] the definition of ‘k-determined’ is different, but in both cases this notion is used only
within the proof of a theorem.

7Note that the value of Z�
l=k

depends on Na.
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Definition 2.1 asserts that the value of 'M . Na/ is determined up to 2=k by a finite set
of formulas �';k

l
for 0 � l � k, which are in turn determined by the evaluations of the

formulas in the finite set F Œ'; k� in every Mj .

Theorem 2.2. For every metric language L and every k � 2, every L2-formula is k-
determined.

Proof. The proof is analogous to the proofs of [24, Theorem 3.1] and [15, Theo-
rem 16.3.3], where it was proven that the formulas in a reduced product of metric
structures are k-determined (with an appropriate definition). We will follow the template
of the latter proof and indicate only the necessary changes. The proof proceeds by finding
the required objects and demonstrating that they are as required in the case of an arbitrary
.Mj /j2J , ideals I and J on J such that I � J, with

QM WD .
Q
j Mj =I;

Q
j Mj =J; �J/;

and Na 2 QM of the same sort as Nx in the formula '. Nx/ being considered.
By induction on complexity of the formula ', it suffices to prove that the set of all

k-determined formulas satisfies the following closure properties:

(1) All atomic formulas are k-determined.

(2) If ' is k-determined, so is 1
2
'.

(3) If ' and  are 2k-determined, then ' P�  is k-determined.

(4) If ' is k-determined, so are supx ' and infx ' for every variable x.

Only the treatment of case (1) is different from that in [15, Theorem 16.3.3], and it splits
into two cases.

In the first case, the terms of the atomic formula ' are evaluated in the meta-sort
corresponding to

Q
jMj =I. Then let F Œ';k� WD ¹'º and let �';k

l
be the formulaZ'

l=k
¤ 0.

This formula is clearly increasing. Since

'. Na/M D lim sup
j!I

'Mj . Naj /;

we see that '. Na/M > .l C 1/=k implies �';k
l
Œ Na�. Similarly, �';k

l
Œ Na� implies '. Na/M >

.l � 1/=k, as required.
In the second case, the terms of the atomic formula ' are evaluated in the meta-sort

corresponding to
Q
jMJ =J. Then let F Œ';k� WD ¹'º and let �';k

l
be the formula U.Z'

l=k
/.

This formula is clearly increasing. Also,

'. Na/M D lim sup
j!J

'Mj . Naj /;

and since U.Z/ if and only if ŒZ�J ¤ 0, the proof proceeds as in the first case.
The treatment of (2)–(4) is identical to that in [15, Theorem 16.3.3], and therefore

omitted. This completes the inductive proof.
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In the proof of countable saturation (Theorem 4.2) we will need the following theorem
that applies to an arbitrary language L and is stated in the terminology introduced at the
beginning of Section 2.

Corollary 2.3. For every finite set G of L2-formulas8 and every "> 0 there are a finite set
F ŒG; "� of L-formulas and ı > 0 with the following property. If .Mj /j2J are L-structures
and I and J are ideals on J such that I � J, then withM D .

Q
j Mj =I;

Q
j Mj =J; �J/

for all Naj 2Mj and Nbj 2Mj of the appropriate sort,

max
�2FŒ';"�

lim sup
j!I

j�Mj . Naj / � �
Mj . Nbj /j < ı

implies max'2G j'
M . Na/ � 'M . Nb/j < ".

The displayed formula does not refer to J, but since J � I no information is lost and
this is not a problem.

Proof of Corollary 2.3. Choose k > 2=" and ı D 1=k. Then the conclusion follows from
the fact that each ' 2 G is k-determined and the finiteness of G.

3. The functor K and elementary embeddings

For the definitions of conditions, types, and saturation see §1.2. The structure B1 is
countably saturated ([20], see also [15, §16.5]). If B is separable and the Continuum
Hypothesis holds, then B1 has both cardinality and density character equal to @1, and
it is therefore saturated. Since any two elementarily equivalent saturated structures are
isomorphic (this is a classical result of Keisler; see, e.g., [2] or [15, §16] for the continu-
ous variant), B1 is isomorphic to the ultrapower of any one of its separable elementary
submodels C , via an isomorphism that extends the identity map on C . This observation
begs the following question (�B;1WB ! B1 is the diagonal embedding):

Question 3.1. Given a countable language L, is there a functor K from the category
of separable L-structures into itself such that for every B there exist an embedding
�B;K WB!KB and an elementary embedding‰WKB!B1 such that �B;1 D‰ ı �B;K?

A positive answer is given in §3.1, giving a satisfactory explanation to the fact thatB1

behaves as an ultrapower. It involves a canonical construction of a separable substructure
KB of B1 for every separable B such that the ultrapower of KB is isomorphic to B1

via an isomorphism that commutes with the diagonal embeddings of B if the Continuum
Hypothesis holds (Theorem E).9

8By adding dummy variables, we may assume that all formulas in G have the same tuple of free
variables Nx.

9Caveat: the embedding ‰ is, unlike �B;1 and �B;K , not canonical.
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3.1. The functor K

Given a metric structure A and a compact Hausdorff space X , let

C.X;A/ D ¹f WX ! A j f is continuousº:

This construction is functorial, because a morphism f WA! B defines a morphism from
C.X;A/ to C.X;B/ that sends g to f ı g. Let �B;K WB!KB be the diagonal embedding
that sends b 2 B to the corresponding constant function. We will identify B with its
diagonal image inKB . In the case when X is the Cantor space,K, we denote this functor
by K and in particular write KA for C.K;A/.

If X is a topological space and A is a metric structure, then a function f WK ! A is
locally constant if there exists a partition of K into clopen sets, K D

F
i<m Ui , such that

the restriction of f to Ui is constant for every i .

Example 3.2. (1) For every structure A define an inductive system of structures An, for
n 2 N, by A0 D A and AnC1 D An ˚ An for all n, with the connecting maps a 7!
.a;a/. The inductive limit limnAn is isomorphic to the substructure ofKA consisting
of locally constant functions.

(2) If A is discrete then KA consists of locally constant functions as described in (1).

(3) If A is a metric structure, then KA is the completion of the structure of all locally
constant functions from K into A with respect to the uniform metric, d1.f; g/ WD
maxx2K d.f .x/; g.x//.

(4) If A is a C�-algebra then KA Š A ˝ C.K/, where the isomorphism respects the
diagonal copies of A and C.K/. This is a well-known general fact about C�-algebras.
One way to see it is to note that the algebraic tensor product,AˇC.K/, is isomorphic
to the structure whose elements are locally constant functions as described in (1).
Since C.K/ is abelian, the algebraic tensor product has the unique C�-norm, with the
completion isomorphic to A˝ C.K/.

Lemma 3.3 below provides a template for the conclusion of Theorem D. The condition
that both maps be 1-Lipschitz is important because in logic of metric structures every
function symbol is equipped with a modulus of uniform continuity (1-Lipschitz maps are
also known as contractions in the theory of operator algebras).

Lemma 3.3. For any structure B there is a surjective homomorphism �0WKB ! B such
that �B;K WB ! KB is the right inverse of �0, �0 is equal to the identity on the diagonal
copy of B in KB , and both �0 and �B;K are 1-Lipschitz.

Proof. Fix a point in K, denoted 0, and let �0 be the evaluation map at 0. Then �0 and
�B;K clearly have the required properties.

The fact that the right inverse �0 depends on the choice of a point in K will come
back to haunt us. This lack of canonicity of �0 is one of the reasons why the proof of
Theorem B uses the Continuum Hypothesis.
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Proposition 3.4. If B is a metric structure and I is an ideal on N such that the Boolean
algebra P .N/=I is atomless then there is an embedding ‰WKB ! BI such that �B;I D
‰ ı �B;K .

Proof. A subset of N is called I-positive if it does not belong to I. Since P .N/=I is an
atomless Boolean algebra, we can recursively find I-positive sets Xs , for s 2 ¹0; 1º<N ,
with the following properties for all s:

(1) Xhi D N.

(2) Each Xs is equal to the disjoint union Xs_0 tXs_1.

We continue the proof by elaborating Example 3.2 (1). For n � 1 let

(3) KnB WD ¹a 2 B1 j .8s 2 ¹0; 1ºn/.9a.s/ 2 A/.8j 2 Xs/ aj D a.s/º.

Then KnB Š B2
n

and KnB � KnC1B for all n.
A well-known back-and-forth argument shows that all countable atomless Boolean

algebras are isomorphic (e.g., [8, Proposition 1.4.5]). Since the Boolean algebra Clop.K/
of clopen subsets of K is countable and atomless, it is isomorphic to the subalgebra of
P .N/=I generated by Xs , for s 2 ¹0; 1º<N . By fixing an isomorphism, we can identify
KnB as defined in (3) with a substructure of B1. These identifications are isometric
and compatible with one another. By Example 3.2 (3),

S
nKnB is dense in KB , and we

have an isometric isomorphism betweenKB and the closure of
S
nKnB inside BJ . This

isometric isomorphism is the required embedding ‰.

Proposition 3.5. Suppose that L, B , I, and ‰ are as in Proposition 3.4.

(1) The embedding ‰WKB ! BI is elementary and �B;I D ‰ ı �B;K .

(2) If U is an ultrafilter disjoint from I, �UW B
I ! BU is the quotient map, and

�0WKA ! A is the evaluation map as in Lemma 3.3, then the embedding ‰ can
be chosen so that the embedding

.‰; �B;I/W .KB;B; �0/! .BI; BU; �U/

is elementary.

Proof. (1) We will identify KB with its image under ‰. By the Tarski–Vaught test [17,
Theorem 2.6.1] it suffices to prove that if '. Nx; y/ is a formula and Na in KB is a tuple of
the appropriate sorts, then10

inf
y2S.KB/

'B
1

. Na; y/ D inf
y2S.B1/

'B
1

. Na; y/:

This is equivalent to asserting that for every " > 0 and every d 2 B1 there exists c 2KB
such that 'B

1

. Na; c/ < 'KB. Na; d/C ".

10All variables are sorted, thus in infy the variable y ranges over the appropriate sort S . In the
case of C�-algebras, each sort is an n-ball of the C�-algebra for some fixed n, hence y 2 S.KB/ is
equivalent to ‘y 2 KB and kyk � n.’
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Since the locally constant functions are dense in KB (Example 3.2 (3)), by possibly
changing " we can assume that every entry of Na is locally constant (i.e., a step function
from K into B). Let Xs , for s 2 ¹0; 1º<N , be the subsets of N constructed in the proof
of Proposition 3.4 used to define ‰. Fix an m large enough so that every entry of Na is
constant on Xs for every s 2 ¹0; 1ºm.

By Corollary 2.3 there are n � 1, ı > 0, and L-formulas �i . Nx; y/, for i < n, with the
same free variables as ', such that for all Nb; Nb0; c, and c0 in B1 of the appropriate sorts,
lim supj maxi<n j�

QB
i .
Nbj ; cj / � �

QB
i .
Nb0j ; c

0
j /j � ı implies j'B

1

. Nb; c/ � 'B
1

. Nb0; c0/j < ".
For j 2 N define an element of Rn by

Nr.j / D ..�B0 . Naj ;
Ndj /; : : : ; �

B
n�1. Naj ;

Ndj ///:

Since every formula has bounded codomain, the set of all Nr.j / is included in a sufficiently
large open neighbourhood of 0 in Rn with a compact closure. We can therefore find a par-
tition

F
i<m0 Yi refining

F
s2¹0;1ºm Xs such that for every i < m0 and all j and j 0 in Yi we

have maxi<m j Nr.j /i � Nr.j 0/i j < ı. For every j < m0 there exists a unique s.j / 2 ¹0; 1ºm

such that Yj � Xs.j /. Also, Xs D
S
s.j /Ds Yj for all s 2 ¹0; 1ºm.

Let l be such that 2l > m0. The sets Xt , for t 2 ¹0; 1ºmCl , form a partition of N into
infinite sets that refines the partition Xt , for t 2 ¹0; 1ºm. For every s 2 ¹0; 1ºm, the set
¹j < m0 j Yj � Xsº has fewer elements than the set ¹t 2 ¹0; 1ºmCl j Xt � Xsº. Therefore
there is a surjection ¹0; 1ºmCl ! m0, t 7! j.t/, such that s.j.t// is an initial segment of t
for every t .

We can therefore choose a permutation � of N with the following properties:

(a) �ŒXs� D Xs for all s 2 ¹0; 1ºm.

(b) �ŒYj � D
F
¹Xt j t 2 ¹0; 1ºmCl ; j.t/ D j º.

Every permutation of N naturally acts on BN , by sending .bj / to .b�.j //. Since the
Fréchet ideal is invariant under permutations, � defines an automorphism, denoted ˆ�,
of B1. Clearly such ‘permutation automorphism’ fixes the diagonal copy of B point-
wise. Since ˆ�ŒXs� D Xs for all s 2 ¹0; 1ºm, we have ˆ�. Na/ D Na.

For each j < m0 choose k.j / 2 Yj . Define c 2 B1 by its representing sequence,

(c) ci WD dk.j.t// if t 2 ¹0; 1ºmCl is such that i 2 Xt .

Then d.d�.i/; ci / < ı for all i 2N, hence d.ˆ�.d/; c/� ı. Also, c is constant on each Xt ,
for t 2 ¹0; 1ºmCl , and it therefore belongs to‰ŒKB�. By the choice of the sets Yj we have

max
k<m
j�Bk . Na; c/ � �

B
k . Na; d/j � ı;

and the choice of ı implies 'B
1

. Na; c/ < 'B
1

. Na; d/C " as required.
(2) Unlike the proof of (1), in this proof we revisit the construction of ‰ from Propo-

sition 3.4 and choose the sets Xs for s 2 ¹0; 1º<N with additional care. Since U is an
ultrafilter, for every partition of a U-positive set into two pieces exactly one of the pieces
is U-positive. Since N D Xhi is U-positive, in the construction of ‰ we can choose the
sets Xs so that Xs 2U implies Xs_0 2U for all s 2 ¹0; 1º<N , hence Xs 2U if and only



Between reduced powers and ultrapowers 4383

if s.i/ D 0 for all i 2 dom.s/. Therefore ‰.�0.f // D �U.‰.f // for all f 2 KB , and
.‰; �B;I/ is an embedding of .KB;B/ into .BI; BU/

The proof that this embedding is elementary is virtually identical to the proof of (1).
The only extra care needs to be taken in the choice of the permutation �. Since U is an
ultrafilter and the sets Yi , for i < m0, form a partition of N, there is a unique i < m0 such
that Yi 2 U. The permutation � needs to satisfy �ŒYi � 2 U. In other words, with l and
j.t/ <m0 as in the proof of (1), � is chosen so that �ŒYi �� Xt for the unique t 2 ¹0;1ºmCl

such that Xt 2U and j.t/D i . Thereforeˆ� defines an automorphism of .B1;BU; �U/

and the proof proceeds as in (1). The other details are omitted.

The following application will be reformulated in §6.

Corollary 3.6. Suppose that B and C are structures in the same language.

(1) If B and C are elementarily equivalent, then so are KB and KC .

(2) If ‰WB ! C is elementary, then K‰WKB ! KC is elementary.

Proof. By Proposition 3.5, KB is isomorphic to an elementary submodel of B1 and
KC is isomorphic to an elementary submodel of C1. By [24, Proposition 3.6] (or the
results of §2), the operation of taking reduced product over Fin preserves elementary
equivalence, and therefore B1 and C1 are elementarily equivalent and so are KB and
KC by transitivity. This proves (1). To prove (2), note that if ‰WB ! C is an elementary
embedding then‰1WB1!C1 is an elementary embedding by Theorem 2.2. Therefore
K‰ is an elementary embedding of KB into KC .

Proof of Theorem E. Suppose the Continuum Hypothesis holds and fix a separable metric
structure B in a separable language. We need to find an isomorphism between .KB/U

and B1 that commutes with the diagonal embeddings of B . By Proposition 3.5, there
is an elementary embedding ‰WKB ! B1 such that �B;1 D ‰ ı �B;K . Since .KB/U

and B1 are both countably saturated ([15, Proposition 16.4.2] and [15, Theorem 16.5.1],
respectively) and of cardinality @1 D 2@0 , they are both saturated. Since B is separable,
‰ can be extended to an isomorphism ƒW .KB/U ! B1 [15, Theorem 16.7.5].

4. Countable saturation of composite quotients

Theorem 4.2 is the main technical result of this section (see §1.2 for the explanation of
the terminology). Its proof uses Proposition 4.1 which must have been known to Tarski.
Since I could not find a reference to this result, a sketch of its proof is included.

Proposition 4.1. The theory TU of atomless Boolean algebras with an additional unary
predicate U for an ultrafilter admits elimination of quantifiers.

Proof. The easiest way to prove this may be to show that ifA andB are countable models
of TU and ˆ0WA0 ! B0 is an isomorphism between finitely generated submodels of A
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and B , then ˆ0 extends to an isomorphism between A and B . Fix such A and B and an
isomorphism ˆ0WA0 ! B0.

To find ˆ, note that a finitely generated submodel of a model of TU is a finite Boolean
algebra with a distinguished ultrafilter. This ultrafilter is uniquely determined by the atom
that belongs to it. Write A and B as increasing unions of finite Boolean algebras, A DS
j Aj and B D

S
j Bj such that jAj j D jBj j for all j . By recursion find isomorphisms

ĵ WAj ! Bj such that ĵC1 extends ĵ for all j . This sequence uniquely determines an
isomorphism ˆWA! B that extends ˆ0.

This shows that in a countable model of TU the type of a finite subset is uniquely
determined by its quantifier-free type. Since the language is countable this holds in an
arbitrary model of TU and completes the proof.

Theorem 4.2. For every structure B , if U is a P-point ultrafilter on N then the structure
.B1; BU; �U/ is countably saturated.

Proof. Fix B , U, and a countable satisfiable type t. Nx/ over

QB WD .B1; BU; �U/:

Enumerate t. Nx/ as a sequence of conditions 'i . Nx/D si , for i 2N. By composing 'i with
a piecewise linear function we may assume that its range is included in Œ0; 1� for all i . By
Corollary 2.3, for each k � 1 there exist a finite set of formulas F.k/ and d.k/ � 1 such
that for all Na and Nb in QB of the appropriate sort,

max
�2F.k/

lim sup
j

j�B. Naj / � �
B. Nbj /j < 1=d.k/

implies maxj�k j'
QB
j . Na/ � '

QB
j .
Nb/j < 1=k.

We may assume that the codomain of every � 2 F is Œ0; 1� and that F.k/ � F.k C 1/
for all k. Let F WD

S
k F.k/. For � 2 F and Na in QB of the appropriate sort let

Z
�
t . Na/ WD ¹n j �

QB. Nan/ > tº:

For k 2 N and S � d.k/ � F.k/, let (we declare hitherto undefined sets to be empty):

ˆS;k. Na/ WD
\

.j;�/2S

.Z
�

j=d.k/
. Na/ nZ

�

.jC1/=d.k/
. Na//:

Also let

‡k. Na/ WD ¹S � d.k/ � F.k/ j ˆS;k. Na/ is finiteº;

‡k;U. Na/ WD ¹S � d.k/ � F.k/ j ˆS;k. Na/ … Uº:

From the choice of F.k/ and d.k/, we have the following.

Claim 4.3. For Na 2 B , the sets ‡k. Na/ and ‡k;U. Na/ determine the value of ' QBj . Na/ up
to 1=k.
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Proof. If the codomain of � is Œ0; 1�, then the sets Z�
j=d.k/

n Z
�

.jC1/=d.k/
, for j � d.k/,

form a partition of N. Therefore ‡k. Na/ and ‡k;U. Na/, for k 2 N, together determine the
isomorphism type of the finite Boolean algebra generated by Z�

j=d.k/
, for � 2 F.k/ and

0 � j � d.k/ with a distinguished ultrafilter U. By Proposition 4.1, the theory of atom-
less Boolean algebras with a distinguished ultrafilter admits elimination of quantifiers.
Therefore the type of the tuple Z�

j=d.k/
, for j � d.k/, in the Boolean algebra P .N/=Fin

with the distinguished ultrafilter U is determined by its quantifier-free type. By the choice
of F.k/, this determines the value of ' QBj . Na/ for all j .

Since the type t. Nx/ is satisfiable, for every k there exists Nb.k/ of the appropriate sort
in B such that maxi<k j'

QB
i .
Nb.k// � si j < 1=k. Let V be a nonprincipal ultrafilter on N

(we could use U, but we want to emphasize that the role of V is different from that
of U). Since for a fixed k there are only finitely many possibilities for the sets ‡k. Na/ and
‡k;U. Na/, there exist ‡�

k
and ‡�

k;U
such that

¹n 2 N j ‡k. Nb.n// D ‡
�
k and ‡k. Nb.n// D ‡�k º 2 V :

Claim 4.4. If ‡k. Nb/ D ‡�k and ‡k;U. Nb/ D ‡�k;U for all k then ' QBi . Nb/ D si for all i and
Nb satisfies the type t. Nx/.

Proof. Fix j . By Claim 4.3, we have ' QBj . Nb/ D limk!V '
QB
j .
Nb.k//, and the latter limit is

equal to sj .

Since V is an ultrafilter, we have

(1) ‡�
k
D ‡�

k0 \ .d.k/ � F.k// for all k < k0, and

(2) ‡�
k;U
D ‡�

k0;U
\ .d.k/ � F.k// for all k < k0.

By refining the sequence ¹ Nb.k/º, we may assume that‡k. Nb.k//D‡�k and‡k;U. Nb.k//D
‡�
k;U

for all k. We do not need V anymore. (Clearly we did not really need an ultrafilter,
but as we have already assumed that a nonprincipal ultrafilter on N existed, this was
an easy route towards a proof of the simultaneous variant of the Bolzano–Weierstrass
theorem for countably many bounded sequences.)

The set F WD
S
k F.k/ is countable, and

S WD ¹ˆS;k. Nb.j // j j 2 N; k 2 N; S … ‡k;U. Nb.j //º

is a countable subset of U. Since U is a P-point, we can fix X 2U such that X n Y is finite
for all Y 2 S. We will choose a finite Yk � N, for 2 � k, such that for all k the following
conditions hold:

(3) j 2
S
i�j Yi and Yi \ Yj D ; if i ¤ j .

(4) jˆS;k. Nb.k// \ Ykj � k for all S � d.k/ � F.k/ such that S … ‡�
k

.

(5) ˆS;k. Nb.k C 1// �
S
j�k Yj for all S � d.k/ � F.k/ such that S 2 ‡�

k
.

(6) ˆS;k. Nb.k C 1// \ X �
S
j�k Yj for all S � d.k/ � F.k/ such that S 2 ‡�

k;U
.
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We proceed to describe the recursive construction of the sequence .Yk/. It is analogous to
the corresponding construction in the proof that the reduced product of metric structures
associated to the Fréchet filter is countably saturated [15, Theorem 16.4]. For S … ‡�2 the
setˆS;2. Nb.2// is infinite and we have jˆS;2. Nb.2//\m.S/j � 2 for a large enoughm.S/.
Also, if S 2‡�

2;U
thenˆ2;U. Nb.2// … S, henceˆS;U. Nb.2//\ X is finite. We can therefore

choose m > 2 large enough so that the set (identifying m with ¹0; : : : ; m � 1º)

Y2 WD m [
[
¹ˆS;3. Nb.n.3/// j S � d.3/ � F.3/; S 2 ‡�3 º

[

[
¹ˆS;3. Nb.n.3/// \ X j S � d.3/ � F.3/; S 2 ‡�3;Uº

satisfies (3)–(6) with k D 2.
Suppose that k � 2 and the sets Y2; : : : ; Yk have been chosen to satisfy (3)–(6).

The set ˆS;kC1. Nb.k C 1// is infinite for every S … ‡�
kC1

, and any large enough m sat-
isfies jm \ .ˆS;kC1. Nb.k C 1// n

S
j�k Yj /j � k C 1 for all S … ‡�

kC1
. Also, the set

ˆS;kC2. Nb.k C 2// is finite for every S 2 ‡�
kC1

, and the set ˆS;kC2. Nb.k C 2// \ X is
finite for every S 2 ‡�

kC1;U
. Let m � k C 1 be sufficiently large. Then the set

YkC1 WD
�
m n

[
j�k

Yj
�

[

[
¹ˆS;kC2. Nb.k C 2// j S � d.k C 2/ � F.k C 2/; S 2 ‡�kC2º

[

[
¹ˆS;kC2. Nb.k C 2// \ X j S � d.k C 2/ � F.k C 2/; S 2 ‡�kC2;Uº

is finite and it satisfies (3)–(6) with k C 1 replacing k.
This describes the recursive construction. The sets Yk , for k 2 N, are disjoint and

by (5) their union includes N, hence they form a partition of N into finite sets. Define
Na 2M by its representing sequence

Naj WD Nb.n.k//j if j 2 Yk :

Then ˆS;k. Na/ \ Yk D ˆS;k. Nb.n.k// for all k. To prove that Na realizes t. Nx/, it suffices to
prove ‡k. Na/ D ‡�k and ‡k;U. Na/ D ‡�k;U for all k. Fix k and S � d.k/2 � Nm.k/.

If S … ‡�
k

, then (4) implies jˆS;k. Na/j � j for all j � k. ThereforeˆS;k. Na/ is infinite,
hence S is an infinite set in ‡k. Na/.

Now suppose S 2 ‡�
k

. Then S 2 ‡�j for all j � k. Fix any l � k. Then (5) and (1)
together imply ˆS;l . Na/ \ Yj D ; for all j � l C 1. Hence ˆS;l . Na/ is finite, and since
l � k was arbitrary, S … ‡k. Na/.

If S 2 ‡�
k;U

, then S 2 ‡�
j;U

for all j � k. Then ˆS;k. Na/\ X\ Yj D ; for all j � k,
and since X 2 U we have ‰S;k. Na/ … U.

If S … ‡�
k;U

, then S … ‡�
j;U

for all j � k and Yj \ X � ˆS;k. Na/ for all j � k. Since
X 2 U and the set X n

S
j�k Yj is finite, X nˆS;k. Na/ is also finite and ˆS;k. Na/ 2 U.

This implies that Na satisfies the type t in B .

If U is not a P-point and B contains an infinite linear order definable by a quantifier-
free formula, then .B1; BU; �U/ is not countably saturated. This simple observation is
a basis for the proofs of Theorem C (1))(2) and Theorem F (1))(4).
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5. Proofs of Theorems C, B, 5.2, D, and A (in this order)

The proofs referred to in the title amount to little more than putting together the results of
the previous sections.

Proof of Theorem C. We first prove that ifB is a separable metric structure in a separable
language and U is a P-point then the quotient map �UWB

1 ! BU has a right inverse.
By Proposition 3.5 (2), the structure QB0 WD .KB;B; �0/ is isomorphic to an elemen-

tary submodel of QB WD .B1; BU; �U/. By Theorem 4.2 and the Continuum Hypothesis,
QB is saturated. Since QB0 is separable, there is an isomorphismˆ between the ultrapower11

. QB0/
U and QB that extends the identity map on QB0. The isomorphism ˆ sends the ultra-

power of the right inverse,‚, of �0 (Lemma 3.3) to a map‚UWB
U! B1. Since all the

properties required from ‚—being a homomorphism, right inverse to �U, and extending
idB—are elementary, Łoś’s Theorem implies that ‚ is as required.

For the converse, suppose that U is not a P-point, and fix Xn 2U for n 2 N such that
for every X 2 U the set X n Xn is infinite for some n 2 N. Let B be .N;min/ where
min is the obvious binary function. Define b 2 B1 by its representing sequence, bj D n
if j 2 XnC1 nXn (taking X�1 D N).

Assume for the sake of obtaining a contradiction that‚WBU! B1 is a right inverse
to �U and let c D ‚.b/. The set X D ¹j j cj D bj º belongs to U because �U.c/ D b.
Fix the least n such thatX nXn is infinite. Identifying nC 1 2 B with its diagonal image,
we have min.b; nC 1/ D nC 1, but min.‚.b/; nC 1/ D min.c; nC 1/ ¤ nC 1; con-
tradiction.

Proof of Theorem B. Since the Continuum Hypothesis implies that a P-point exists ([37])
this is an immediate consequence of Theorem C.

Even if U is not a P-point and the Continuum Hypothesis fails, �U may have a right
inverse and the exact sequence 0! cU.B/!B1!BU! 0may split for some choices
of B . If the structure B is finite then B Š BU, and if the language of B has no function
symbols then any selector for �U splits the exact sequence as in Theorem B. The follow-
ing example is more interesting.

Example 5.1. Let U be any nonprincipal ultrafilter on U. Let B be
L

N Z=2Z, con-
sidered as a vector space over Z=2Z. It is a structure in the language equipped with the
symbol for addition and symbols for multiplication by scalars in Z=2Z. Model-theorists
will notice that the theory of B is stable, equal to the theory of KB , and that it admits
the elimination of quantifiers. Even without using this observation, one sees that both B1

and BU are Z=2Z-vector spaces of dimension 2@0 , and transfinite recursion shows that
the exact sequence 0! cU.B/! B1 ! BU ! 0 splits.

11The fact that we use the same ultrafilter U is unimportant.
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The instances of Theorem A when K is the category of C�-algebras andF is any of the
standard K-theoretic functors (in addition to K0 and K1, this includes the algebraic K-
theory,K-theory with coefficients, KK, and KL; see, e.g., [3,36]) follow from Theorem D
(proved below) by the standard metamathematical absoluteness arguments (similar to,
e.g., [1, Appendix 2]). The following variant of Theorem D is strong enough to imply the
conclusion of Theorem A for any functor F as well as Theorem D itself.

Theorem 5.2. Suppose B is a separable metric structure in a separable language L.
Then there exists a family F of quadruples .C;D; �;‚/ with the following properties:

(1) C is a separable substructure of B1.

(2) D is a separable substructure of BU.

(3) � WC ! D is a surjective homomorphism.

(4) ‚WD ! C is a homomorphism such that � ı‚ D idD .

(5) .F is � -closed/ In the ordering on F defined by .C1;D1;�1;‚1/�.C2;D2;�2;‚2/
if C1 � C2, D1 � D2, �2 extends �1, and ‚2 extends ‚1, for every countable
increasing sequence .Cn;Dn; �n; ‚n/ with n 2 N in F we have�[

n

Cn;
[
n

Dn;
[
n

�n;
[
n

‚n

�
2 F :12

(6) .F is dense/ For every .C;D; �;‚/ 2 F , every c 2 B1, and every d 2 BU some
.C1;D1; �1; ‚1/ 2 F such that c 2 C1 and d 2 D1 extends .C;D; �;‚/.

Also, for any separable substructures C0 of B1 and D0 of BU, there exists a quadruple
.C;D; �;‚/ such that C0 � C and D � D.

A family F with the properties (1)–(5) is called a � -complete back-and-forth system
in [15, Definition 8.2.8].

Proof of Theorem 5.2. Fix a separable metric structure B in a separable language L. The
structure .KB;B/ is by Proposition 3.5 elementarily equivalent to .B1; BU/. The latter
structure is countably saturated since both of its components B1 and BU are count-
ably saturated and there is no relation between them. Therefore for any V 2 ˇN n N
the structures B1 WD .KB; B/

V and B2 WD .B
1; BU/ are countably saturated and ele-

mentarily equivalent, and there exists a � -complete back-and-forth system E of partial
isomorphisms between separable substructures of B1 and B2 (see, e.g., [15, Proposi-
tion 16.6.4]). By Lemma 3.3, there is a surjective homomorphism �0WKB ! B such that
�B;K WB ! KB is the right inverse of �0, �0 is equal to the identity on the diagonal copy
of B in KB , and both �0 and �B;K are 1-Lipschitz. Consider the expansion of .KB; B/
to .KB; B; �0; �B;K/ (this is a metric structure because both maps are 1-Lipschitz). Its
ultrapower is an expansion of B1, .KB;B;�0; �B;K/V . The properties required in (3) and
(4) of � and ‚ are first-order and satisfied by �0 and �B;K . By Łoś’s Theorem, they are

12Functions are identified with their graphs, giving a meaning to the formulas
S
n�n and

S
n‚n.
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shared by �U
0 and �UB;K . The partial isomorphisms in E transfer these maps to maps with

the required properties.
The last sentence is an easy consequence of (5) and (6).

Proof of Theorem D. This is an immediate consequence of Theorem 5.2 and a standard
back-and-forth construction of length @1 using the Continuum Hypothesis (use, e.g., [15,
Proposition 16.6.1]).

Proof of Theorem A. Fix separable metric structures A and B and a morphism
˛WF.A/! F.B/. If ‰WA! B1 realizes �B;1 ı ˛, then �U ı‰ realizes �B;U ı ˛. Now
assume ‰WA! BU realizes �B;U ı ˛. Since ‰ is continuous, ‰ŒA� is separable and by
Theorem 5.2, there is a quadruple .C; D; �; ‚/ such that C is a separable substructure
of B1 that includes B , D is a separable substructure of BU that includes B [ ‰ŒA�,
� W C ! D is a surjective homomorphism, ‚WD ! C is a homomorphism such that
� ı ‚ D idD , and � and ‚ commute with the diagonal embeddings of B . Then ‚ ı ‰
realizes �B;1 ı ˛.

6. Preservation of elementarity by tensor products of C�-algebras

Some familiarity with the basic theory of C�-algebras is required in this section (obvi-
ously). The question which operations on structures preserve elementarity was raised
in [22], where preservation results for generalized products were proven. Reduced prod-
ucts of metric structures preserve elementarity by [24] and §2. Tensor products of
modules do not preserve elementarity ([31]). The question whether tensoring with any
infinite-dimensional C�-algebra preserves elementary equivalence was asked in [17,
Question 3.10.5].13 In addition to the intrinsic interest in preservation results, this was
motivated by the general problem of the extent of definability ofK-groups in C�-algebras
(see [17, §3.11 and §3.12] for some specific results). In the unital case the first step
towards constructing K0 and K1 is tensoring with the algebra K.H/ of compact opera-
tors, and it is not known whether tensoring with K.H/ preserves elementarity. Tensoring
with C.Œ0; 1�/ does not necessarily preserve elementary equivalence. This was proved in
[17, Proposition 3.10.3] as an application of [33, Theorem 3.1] and the ‘range of invari-
ant’ results from Elliott’s classification programme. Since C.X/ ˝ A is isomorphic to
C.X;A/ and (K denotes the Cantor space) K‰ is ‰ ˝ 1C.K/, Corollary 3.6 has the fol-
lowing consequence.

Corollary 6.1. (1) If B and C are elementarily equivalent C �-algebras, then so are
B ˝ C.K/ and C ˝ C.K/.

(2) If ‰WB ! C is an elementary embedding, then ‰ ı idC.K/ is an elementary embed-
ding of B ˝ C.K/ into C ˝ C.K/.

13This question was asked for the minimal (spatial) tensor product, but since in every example
considered in [17] and in this section at least one of the factors is nuclear, in all examples under
consideration A˝ B is necessarily the minimal tensor product.
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The following result, all but proven in [17, §3.5], transpired during a conversation
with Chris Schafhauser at the Fields Institute in 2019, and it is included with his kind
permission (Z denotes the Jiang–Su algebra [26]).

Proposition 6.2. There are elementarily equivalent C�-algebras A and B such that
A˝D and B ˝D are not elementarily equivalent if D is Z or any UHF algebra D.

Proof. The reader is assumed to be familiar with [17]. Let A be the unital, monotracial
C�-algebra constructed in [35, Theorem 1.4] such that AU does not have a unique trace
and let B D AU. Then A and B are elementarily equivalent, A˝ Z is monotracial, and
B ˝ Z is not. As the Cuntz–Pedersen nullset in A˝ Z is definable (this was essentially
proved in [32], see [17, Theorem 3.5.5 (3)] for a reformulation of Robert’s result), for
every " > 0 there exists m."/ such that every positive contraction a in A˝ Z can be "-
approximated by a sum of m."/ commutators of elements of norm � 1. For a fixed " > 0
this property can be expressed as a statement in the theory of A˝ Z. Since B ˝ Z does
not have a unique trace, for a small enough " the corresponding assertion fails in B ˝ Z

and therefore A˝Z and B ˝Z are not elementarily equivalent.
If D is a UHF algebra then A˝D is monotracial and since D absorbs Z tensorially,

so does A ˝ D. Therefore the Cuntz–Pedersen nullset of A ˝ D is definable, and the
proof proceeds as in the case of Z.

A C�-algebraA is Z-absorbing ifA˝ZŠA. This is a remarkably strong and impor-
tant regularity property of nuclear C�-algebras (see [44]). Also, Z itself is Z-absorbing
([26]), and being Z-absorbing is (among separable C�-algebras) axiomatizable [17, Theo-
rem 2.5.2 (21)]. I am inclined to conjecture that tensoring with a fixed UHF algebra (or any
nuclear C�-algebra) preserves elementary equivalence among Z-absorbing C�-algebras,
and that tensoring with the Cuntz algebra O2 preserves elementary equivalence of arbi-
trary C�-algebras.

7. Applications to C�-algebras

Proof of Theorem F. Fix a P-point U and a separable C�-algebra B .
(1) It suffices to prove �UŒB

1 \ B 0� � BU \ �UŒB�
0, since the other inclusion is

automatic. Fix c 2 BU \ �UŒB�
0. In the structure .B1; BU; �U/ consider the 1-type of

an element of B1 consisting of the conditions �U.x/ D c and kŒx; bn�k D 0, for a fixed
dense subset ¹bn j n 2 Nº of the unit ball of B . In order to see that this type is satisfiable,
fixm� 1. Then the setX D¹j jmaxn�m kŒcj ; bn�k� 1=mº belongs to U. Define d 2B1

by its representing sequence, dj D cj if j 2X and dj D 0 if j …X . Then �U.d/D c and
maxn�m kŒd; bn�k � 2=m. Sincem was arbitrary, the type is satisfiable. By the countable
saturation of .B1; BU; �U/ (Theorem 4.2), it is realized by some c0 2 B1. Clearly
c0 2 B1 \ B 0 and �U.c

0/ D c. Since c was an arbitrary element of BU \ �UŒB�
0, this

completes the proof.
The proof of (2), that �UŒB

1 \ A0� D BU \ �UŒA�
0 for every separable C�-subal-

gebra A of B1, is analogous to that of (1) and therefore omitted.
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(3) Recall that an ideal I in a C�-algebra is a � -ideal if for every countable X � J
there exists a positive contraction a 2 J such that ab D baD b for all b 2X . Fix a count-
able subset ¹an j n2Nº of cU.B/. Consider the type of an element ofB1 with conditions
x � 0, kxk D 1, kxan � ank D 0, and �U.x/ D 0. Since cU.B/ has an approximate unit
(every C�-algebra does; see, e.g., [15, §1.8]), this type is satisfiable. By countable satura-
tion of .B1; BU; �U/ it is realized by some c in B1. Then c is as required.

For the remainder of the proof, we do not assume that U is a P-point.
(1) implies (4): We need to prove that if U is not a P-point and B is a UHF algebra

then �UŒB
1 \ B 0� 6� BU \ �UŒB�

0. This is similar to the proof of the analogous part of
Theorem C. Suppose that U is not a P-point and fixXn 2U for n 2N such that for every
X 2 U the set X n Xn is infinite for some n 2 N. In B , identified with

N
N M2.C/, we

can choose unitaries uj and vj for all j such that limj!1 kŒa; uj �k D 0 for all a 2 B but
kŒuj ; vn�k D 2 if n� j (the construction is similar to that in the proof of [18, Lemma 3.2],
where the analogous statement for the tracial norm was proven). Define c 2 BU by its
representing sequence cj D un if j 2 Xn n XnC1 (with X�1 D N). Then c 2 BU \ B 0.
If b 2 B1 is such that �U.b/ D c, then X D ¹n j kbn � cnk < 1=4º belongs to U. Let
n be large enough to have X nXn infinite. Then kŒvn; b�k � kŒvn; c�k � kvnk=2 > 0, and
therefore b … B1 \ B 0. Since b was an arbitrary �U-preimage of c, this completes the
proof.

(5) clearly implies (1), and we have already proved that (4) implies (5). This completes
the proof.

8. Concluding remarks

Our main goal was to prove Theorems A–F and 5.2. Theorems 2.2 and 4.2 were therefore
stated and proved in what appear to be special cases of more general results on multi-
sorted structures consisting of various reduced powers of a single structure and quotient
maps between them. This line of research may merit further attention.

Continuous fields of C�-algebras are well-studied objects (see [4, §IV.1.6]), and a
theory of continuous fields of metric structures will inevitably be developed. Can the
conclusion of Corollary 6.1 be extended to the assertion that taking continuous fields
of metric structures over the Cantor space preserves elementary equivalence? Or, what
sort of a Feferman–Vaught–Ghasemi-style theorem holds for continuous fields of metric
structures? (See, e.g., [5, Theorem 2.1] for a discrete version of the desired results.) It
should be noted that [17, Proposition 3.10.3] implies that A � B (this stands for ‘A is
an elementary submodel of B’) does not imply C.Œ0; 1�; A/ � C.Œ0; 1�; B/, and therefore
even taking trivial continuous fields of metric structures does not necessarily preserve
elementary equivalence.

Another class of massive (albeit typically not countably saturated—see [15, Exer-
cise 16.8.36], but note the typo in its statement: ‘degree-1’ should be ‘quantifier-free’,
since these C�-algebras are countably degree-1 saturated by [15, Theorem 15.1.5]) quo-
tient C�-algebras derived from continuous fields deserves attention of model-theorists,
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and I will use this opportunity to mention them. If B is a separable C�-algebra, con-
sider the algebra of all bounded continuous functions from Œ0;1/ into B , Cb.Œ0;1/; B/.
The quotient of this algebra over the ideal C0.Œ0;1/; B/ provides the setting for the
E-theory [3, §25].

Tracial von Neumann algebras give an example of an axiomatizable category not
closed under the operation of taking the reduced power. This is because the asymptotic
sequence algebra B1 is infinite-dimensional and countably saturated, and therefore not a
von Neumann algebra. Therefore the following quotient merits our attention.

Example 8.1. Let R denote the hyperfinite II1 factor and let � denote its unique tracial
state. Then .R; �/ is naturally construed as a metric structure with respect to the `2-norm,
kak2 WD

p
�.a�a/ (see [19, §3.2]). Since the category of II1 factors is axiomatizable,

the ultrapower of R in this language (also known as the tracial ultrapower), RU, is a
II1 factor.14 The reduced power R1 is however not a II1 factor, or even a von Neumann
algebra. One reason for this is that in a von Neumann algebra every directed family of
positive contractions has a supremum, and this is not the case with the reduced powers
associated with the Fréchet ideal. This reduced power belongs to the class of C�-algebras
extensively studied in recent years (see [7], and [25] for their model-theoretic analysis).

The structure R1 was recently used in [6]. By the following, R1 is for all practical
purposes isomorphic to an ultrapower of KR (where K is the functor defined in §3.1 and
KR is embedded into R1 by using Proposition 3.4).

Proposition 8.2. Consider R, KR, and R1 as metric structures with respect to the `2-
norm. Then R1 is a countably saturated elementary extension of KR.

Proof. The first part follows from the first part of Proposition 3.5 and the second part is a
consequence of [20, Theorem 2.1] (see also [15, Theorem 16.5.1]).
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