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Abstract. In this paper, we study the functorial descent from self-contragredient cuspidal automor-
phic representations � of GL7.A/ with LS .s; �;^3/ having a pole at s D 1 to the split exceptional
group G2.A/, using Fourier coefficients associated to two nilpotent orbits of E7. We show that one
descent module is generic, and under suitable local conditions, it is cuspidal and � is a weak func-
torial lift of each of its irreducible summands. This establishes the first functorial descent involving
the exotic exterior cube L-function. However, we show that the other descent module supports not
only the nondegenerate Whittaker–Fourier integral on G2.A/ but also every degenerate Whittaker–
Fourier integral. Thus it is generic, but not cuspidal.

Keywords. Fourier coefficients of automorphic forms, functorial descent, exterior cube
L-function, split exceptional group G2

1. Introduction

In the theory of automorphic forms one of the major open problems is to construct func-
torial correspondences between automorphic forms on different groups. This has been
accomplished in particular cases by various methods, including the converse theorem, the
theta correspondence, the trace formula, and the theory of functorial descent.

The theory of functorial descent was pioneered by Ginzburg, Rallis, and Soudry. It
serves as a complement to the constructions of functorial liftings, and can be used to
characterize the image of a functorial lifting.

We briefly recall these notions. Let F be a number field, A its adele ring, and H
a connected reductive F -group. Given an irreducible automorphic representation � DN
v �v ofH.A/ we obtain a finite set S of places of F and a semisimple conjugacy class

¹t�v º in LH for each v … S . We say that two automorphic representations � and � 0 are
nearly equivalent if ¹t�v º D ¹t� 0v º for all v outside a finite set. Given anL-homomorphism
' W LH ! LG we say that an irreducible automorphic representation… ofG.A/ is a weak
functorial lift, relative to ', of an irreducible automorphic representation � of H.A/ if
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¹t…v º D ¹'.t�v /º for all v outside a finite set. Clearly, in this situation, every element
of the near equivalence class of … is also a weak functorial lift of every element of the
near equivalence class of � . We also say that � is a weak functorial descent of …. The
Langlands functoriality conjecture then predicts that the set of weak functorial lifts is
nonempty for all � and all ': This has been proved in a number of cases, though the
general case is still very much open.

Supposing that a lifting exists, one may ask what its image is. Here again, the general
case is open but the problem has been solved in some cases. For example, Ginzburg,
Rallis and Soudry showed, using descent together with the lifting results of Cogdell, Kim,
Piatetski-Shapiro, and Shahidi, that an automorphic representation of GL2n.A/ is a weak
functorial lift from a generic cuspidal representation of SO2nC1.A/ (for the inclusion
Sp2n.C/ ,! GL2n.C/) if and only if it is an isobaric sum �1 � � � � � �r of distinct cuspidal
representations �i of GL2ni .A/ for 1� i � r; such thatLS .s; �i ;^2/ has a pole at sD 1 for
each i . In particular, a cuspidal representation of GL2n.A/ has a weak functorial descent
to SO2nC1.A/ if and only if its exterior squareL-function has a pole. Notice that Sp2n.C/
is embedded into GL2n.C/ as the stabilizer of a point in general position in the exterior
square representation. Ginzburg, Rallis and Soudry also obtained similar results for other
classical groups, as well as metaplectic groups.

The connection between the exterior square L-function and the lifting is clear. It was
an earlier result of Ginzburg, Rallis, and Soudry that LS .s; �;^2/ has a pole at s D 1

whenever � is a weak functorial lift relative to the above inclusion. Moreover, this result
was predicted by the functoriality and generalized Ramanujan conjectures, before it was
proved. If a cuspidal representation � of GL2n.A/ is the weak functorial lift of a cuspi-
dal representation � of SO2nC1.A/ relative to the inclusion Sp2n.C/ ,! GL2n.C/, then
LS .s; �;^2/ D LS .s; �;^20/�

S .s/; where ^20 is the second fundamental representation
of Sp2n.C/; which satisfies ^2 D ^20 ˚ 1; where 1 is the trivial representation. Clearly
�S .s/ has a pole at s D 1 for all finite sets S: Further, the functoriality conjecture predicts
that LS .s; �;^20/ should be the standard L-function of the weak functorial lift of � to
GLdim^2

0
, relative to ^20. This lift may not be cuspidal, but the generalized Ramanujan

conjecture predicts that � will be tempered at all places, in which case its lift will be as
well. This forces the cuspidal support of any weak functorial lift to be unitary, which is
sufficient to ensure nonvanishing of its L-function on the line Re.s/ D 1.

In general, by the same reasoning, if r is a finite-dimensional representation of LG
and the image of ' W LH ! LG is contained in the stabilizer of some nonzero point in
the space of r; and if � is an irreducible globally generic cuspidal representation ofH.A/
then LS .s;…; r/ is expected to have a pole at s D 1 for any weak functorial lift … of �
to G relative to '.

The descent results of Ginzburg, Rallis, and Soudry point to a converse result: if
LS .s; …; r/ has a pole at s D 1, then … should be a weak functorial lift relative to the
inclusion of a reductive group which stabilizes a nonzero point in the space of r . (A more
refined conjecture is given in [28].)

The descent method of Ginzburg, Rallis, and Soudry has been extended to GSpin
groups (which are not classical, but have classical L-groups) in [20]. The paper [12]
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investigates the extension of the method of descent into exceptional groups. Ginzburg
has also investigated descent from E6 to F4, together with the first named author, in an
unpublished preprint. In this paper, we investigate an interesting case in the exceptional
group GE7:

The method may be described as follows. Suppose that there is a reductive group A
such that

� G is a Levi subgroup of A,

� r appears in the restriction to LG of the adjoint representation of LA,

� H is the stabilizer in A of some sl2-triple in the Lie algebra a of A:

Then the descent method proceeds by the following steps:

(1) Take an irreducible cuspidal automorphic representation � of G.A/.

(2) Consider Eisenstein series on A.A/ induced from � . The L-function LS .s; �; r/
appears in the constant term of these Eisenstein series. Consider the corresponding
residual representation.

(3) Consider a Fourier coefficient attached to the sl2-triple with stabilizer H . This
Fourier coefficient will map automorphic forms on A.A/ to smooth automorphic
functions of uniformly moderate growth on H.A/ (or in some cases the metaplectic
double cover of H.A/). Applying this Fourier coefficient to our residual representa-
tion, we obtain a space of functions on H.A/ (or its double cover) which we call the
descent module.

For example, in the classical work of Ginzburg, Rallis and Soudry, the group GL2n
appears as a Levi of SO4n, and for suitable sl2-triples in so4n the stabilizer in SO4n
is isomorphic to SO2nC1. We remark that in some cases LS .s; �; r/ will appear in the
constant term along with other L-functions, and it will be necessary to add some assump-
tion above and beyond LS .s; �; r/ having a pole. For example, in the descent from GL2n
to eSp2n one must assume that the exterior square L-function has a pole at 1, and that the
standard L-function is nonvanishing at 1=2:

As mentioned, in some cases the descent module consists of genuine functions on a
metaplectic double cover. Since this does not apply to the case we consider in this paper,
we will not go further into this. We remark that while the functions in the descent module
are easily seen to be smooth, invariant byH.F / on the left, of uniformly moderate growth,
and finite under translations of a maximal compact subgroup of H.A/, it is not easy to
see whether or not they are finite under the action of the center of the universal enveloping
algebra. So, they are not necessarily automorphic forms.

In the classical work of Ginzburg, Rallis, and Soudry, it is possible to show that
descent module is cuspidal (hence L2, so that its closure is a Hilbert space direct sum of
irreducibles), and that every summand is a weak descent of the original representation on
GL2n.A/. Moreover, it is orthogonal to the kernel of the nondegenerate Whittaker–Fourier
integral on H.A/, which implies that it is multiplicity free and that every summand is
globally generic. In some cases, it can even be shown that the descent module is irre-
ducible. In [20], it is shown that the descent module is cuspidal, that every summand is
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a weak descent, and that the nondegenerate Whittaker–Fourier integral does not vanish
on the descent module (so at least one summand is globally generic). The stronger result
– that the descent module is orthogonal to the kernel of the nondegenerate Whittaker–
Fourier integral – should follow from work in progress of Asgari, Cogdell, and Shahidi.

There are a number of cases where the conditions above are satisfied with A being
one of the exceptional groups. In this paper we consider the case when A D GE7; and
G D GL7 � GL1. The embedding of GL7 � GL1 into GE7 can be chosen so that r is
the product of the ^3 representation of GL7 and the standard representation of GL1: We
show that it suffices to consider the case when the automorphic representation of GL7 is
self-contragredient and the character of GL1 is trivial. The group GL7 � GL1 acts on our
space with a Zariski open orbit and the stabilizer of any point in this orbit is the product
of the center of GE7 and a subgroup of GL7 of G2 type. (See [11, pp. 356–357], and
Lemma 6.2.1 below.) The stabilizer of any nonzero point which is not in the Zariski open
orbit is not reductive. Thus we consider irreducible self-contragredient cuspidal automor-
phic representations � of GL7.A/ such that the ^3 L-function has a pole at s D 1, i.e., of
G2 type by Definition 4.2.10. The philosophy discussed above predicts that such cuspidal
representations should be weak functorial lifts from G2. We first construct square inte-
grable residual representations of GE7.A/: At this point, an interesting feature emerges:
it turns out that there are two orbits of sl2-triples in e7 with stabilizers of G2 type. Thus,
we have two different Fourier coefficients which we can apply to obtain two descent mod-
ules on the exceptional group G2.A/. In this paper we study both descent modules.

A similar situation was considered previously in [14], where the authors consider
three different orbits of a group of type D4, all of which have a stabilizer of type A1.
However, the two orbits considered in our paper are not related to one another by the
automorphism group of e7, whereas the three orbits considered in [14] are permuted by
the automorphism group of d4:

The functorial lifting corresponding to this case is known, at least for generic cuspidal
representations. By [15] generic cuspidal representations ofG2.A/ can be lifted to Sp6.A/
using the minimal representation of E7: It can then be lifted to GL7 using the work of
Cogdell–Kim–Piatetski-Shapiro–Shahidi [6], Arthur [1], and Cai–Friedberg–Kaplan [4].
It is very natural to ask whether the descent from GL7 to G2 could be constructed by
combining the descent from GL7 to Sp6 from [16] with the theta-type correspondence
from Sp6 to G2 in [15]. To the best of our understanding, this should be possible, but
would require proving the following conjecture.

Conjecture 1.0.1. Let � be an irreducible self-contragredient cuspidal automorphic rep-
resentation of GL7.A/ such that LS .s; �;^3/ has a pole at s D 1, and let � denote the
irreducible descent of � to Sp6.A/. Then � has trivial central character and satisfies the
three equivalent conditions of [13, Theorem 1.1].

An analogy with the earlier work of Ginzburg–Rallis–Soudry, as well as [20], would
predict that the descent module should be cuspidal, support the nondegenerate Whittaker–
Fourier integral, and be a direct sum of weak descents of our original cuspidal represen-
tation of GL7. In this respect, the two descent modules behave totally differently.
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In one case we prove that the descent module is generic, and under suitable local
conditions, it is cuspidal and � is a weak functorial lift of each irreducible summand.
One piece that is missing, in comparison to [16, 20], is a means of showing that when
� is self-contragredient and LS .s; �;^3/ has a pole at s D 1, the Satake parameters of
the components of � at unramified places must contain conjugacy classes of G2.C/. We
show cuspidality under the assumption that at least one of them does, and weak functorial
lifting under the assumption that all but finitely many of them do. In particular, we prove
the following theorem (see Theorem 7.0.1).

Theorem 1.0.2. Let F be a number field and let � be an irreducible cuspidal automor-
phic representation of GL7.AF /. Suppose that the following conditions hold:

(1) The partial L-function LS .s; �;^3/ has a pole at s D 1 for some finite set S .

(2) For almost all places v of F at which �v is unramified, the Satake parameter of the
local component �v is conjugate in GL7.C/ to an element of r7.G2.C//, where r7 is
the standard representation of G2.

Then there exists a globally generic cuspidal automorphic representation � of G2.AF /
such that for almost all places v of F at which �v is unramified, the Satake parameter of
�v is conjugate in GL7.C/ to the Satake parameter of �v .

We believe that it should be possible to replace the second condition with the weaker
condition that � is self-contragredient or has trivial central character. That is, we have the
following conjecture.

Conjecture 1.0.3. Let � be an irreducible self-contragredient cuspidal automorphic rep-
resentation of GL7.A/ such that LS .s; �;^3/ has a pole at s D 1. Then for almost all
places v of F at which �v is unramified, the Satake parameter of the local component �v
is conjugate in GL7.C/ to an element of r7.G2.C//, where r7 is the standard representa-
tion of G2.

This conjecture turns out to be equivalent to Conjecture 1.0.1. More generally, if �
satisfies conditions (1) and (2) of Theorem 1.0.2, then its descent to G2 contains an irre-
ducible generic cuspidal automorphic representation of G2.A/, which we may theta-lift
to Sp6.A/ using the lifting from [15]. By a result of Savin, [35, Appendix A], the lifting is
generic, and lifts weakly to � (which forces it to be cuspidal due to the Strong Multiplicity
One Theorem for GL7), and so, by Strong Multiplicity One Theorem for Sp6, it contains
the descent of �; which therefore satisfies the equivalent conditions of [13]. Conversely,
if the descent of � to Sp6 satisfies the equivalent conditions of [13], then it is the theta lift
of a generic cuspidal representation of G2.A/, and this lifting is functorial. It follows that
� itself is a functorial lift from G2 and condition (2) of Theorem 1.0.2 is satisfied.

The descent method is constructive and makes use of an Eisenstein series on the simil-
itude exceptional group GE7. We prove that this Eisenstein series has a pole whenever
condition (1) of Theorem 1.0.2 is satisfied. In fact, we could replace condition (1) with
the hypothesis that the Eisenstein series has a pole. Indeed, for any cuspidal automorphic



J. Hundley, B. Liu 4400

representation of GL7 such that the Eisenstein series has a pole, the descent method pro-
duces a space of functions onG2 which is globally generic in the sense that the Whittaker
integral does not vanish identically on it; see Remark 7.1.18. Under condition (2) we are
able to prove that it is cuspidal and that all of its irreducible components lift weakly to � ,
but in each of these proofs, condition (2) can be replaced by a weaker hypothesis applied
to the residue of the Eisenstein series; see Remarks 7.4.33 and 7.5.7.

The result above establishes the first functorial descent which involves the exotic exte-
rior cube L-function. This is an important step towards fully understanding the Langlands
functoriality from G2 to GL7 which is not an endoscopic type. As pointed out to us by
Michael Harris, Theorem 1.0.2 has interesting applications already, for example, to [3,
Conjecture 11.6] and the surjectivity of local Langlands correspondence [35].

The other descent module behaves totally differently. It supports not only the non-
degenerate Whittaker–Fourier integral on G2.A/, but also every degenerate Whittaker–
Fourier integral. Thus it is generic, but not cuspidal. It has a nontrivial constant term for
each proper parabolic of G2, and its constant terms for the two maximal parabolics are
generic representations of GL2.A/: And this holds for every cuspidal representation of
GL7.A/ such that the ^3 L-function has a pole! See Theorem 8.0.1.

This outcome is not entirely without precedent. Descent constructions in the excep-
tional group F4 were previously studied in [12] from a different point of view. In [12],
Ginzburg introduces a general family of lifting integrals which interpolates between theta-
type liftings at one end of the spectrum and descent constructions at the other end. He also
introduces a “dimension equation” which is said to hold in every known case where an
integral of his type gives a functorial correspondence. He then uses the dimension equa-
tion to decide which automorphic representations to apply a Fourier coefficient to (instead
of using a residual representation obtained from a pole of LS .s; �; r/).

This approach makes sense from the perspective of the techniques which are used to
prove genericity and cuspidality, namely identities of unipotent periods. The approach
taken in [12] is to take the unipotent period obtained by composing the descent Fourier
coefficient with either a Whittaker integral or a constant term on the stabilizer H , and
relate this period to some combination of coefficients attached to sl2-triples and constant
terms.

One case of particular interest is when A D F4; G D GSp6; r is the spin representa-
tion of LG D GSpin7.C/; and H D G2. In this case, it is shown in [12] that

(1) the nondegenerate Whittaker–Fourier integral of the descent module of any represen-
tation E can be expressed in terms of coefficients attached to the orbits F4; F4.a1/,
and F4.a2/, as well as the constant term along the C3 parabolic, and

(2) the constant terms of the descent module can be expressed in terms of exactly the
same four unipotent periods!

This is very similar to our result, which relates both the nondegenerate Whittaker–Fourier
integral and all degenerate Whittaker–Fourier integrals of the descent to the same unipo-
tent period on GE7: This period is not one of the types considered by Ginzburg, but it is
in a more general family, introduced by Gomez, Gourevitch and Sahi [17].
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Another case which has been studied somewhat is when A D E8, G D GE6 � GL1,
r is 27-dimensional, andH DF4. This case is considered in work in progress of Ginzburg
and the first named author. In that case, also, it appears that the descent module is generic,
but not cuspidal.

Having established that the descent is not cuspidal, it is no longer clear that it has
a decomposition into irreducibles, or even a spectral decomposition in terms of cusp-
idal data. Moreover, there would seem to be little reason to think that its irreducible
subquotients – should they exist – will be weak descents of the original cuspidal rep-
resentation of GL7.A/. Indeed, if our representation of GL7.A/ was a weak functorial lift
of a cuspidal representation of G2.A/ which is not CAP, then no weak descent of it has a
constant term – and the descent module does. If one is still optimistic enough to believe
that the descent module contains a generic weak descent of our cuspidal representation of
GL7.A/, then one is led to the questions of what else it contains, and whether this “extra”
depends on the choice of the representation.

Another natural question is the following: what other automorphic representations
of GL7.A/ should descend to G2.A/? And can our construction generalize to construct
their descents? For example, there is a lifting, constructed in [15] and shown to be func-
torial in [13], attached to the embedding SL3.C/ ,! G2.C/. If we compose this with an
embedding G2.C/ ,! GL7.C/ the result is conjugate to the map

g 7!

0@g 1
tg�1

1A :
Thus, if an irreducible cuspidal automorphic representation � of G2.A/ is the lift of a
cuspidal representation � of PGL3.A/ then the lift of � to GL7.A/ is the isobaric sum
� � 1 � z�; where 1 is the one-dimensional trivial representation of GL1.A/. Thus, it is
very natural to ask whether � can be recovered from � � 1 � z�; by some generalization of
our construction. (Note that this would then give an alternative construction of the lifting
from [15].) We hope to return to this and related questions in the future.

The organization of the paper is as follows: We introduce some notation in Section 2,
preliminaries and some general results in Section 3, the A6 Levi and the residual repre-
sentation of the similitude exceptional group GE7.A/ in Section 4, and the nilpotent orbit
A6 of E7 in Section 5. Then we introduce in Section 6 the two descent Fourier coeffi-
cients attached to the two nilpotent orbits, from which we obtain two descent modules. In
Section 7, we show that one descent module is generic, and under suitable local condi-
tions, it is cuspidal and having � as a weak functorial lift of each irreducible summand.
In Section 8, we show that the other descent module supports not only the nondegen-
erate Whittaker–Fourier integral on G2.A/ but also every degenerate Whittaker–Fourier
integral. Thus it is generic, but not cuspidal.

We used three software packages for computations: LiE [7], GAP [34], and Sage [33].
LiE was used for computations involving the action of the Weyl group on the root and
weight lattices and their duals. GAP, and the packages QuaGroup [9], SLA 0.14 [10],
and UNIPOT 1.2 [18], were used for many computations involving nilpotent elements of
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the Lie algebra e7 and their adjoint orbits. Sage was used for symbolic manipulation of
multivariate polynomials – especially for performing computations using matrices over
multivariate polynomial rings. These matrices were formed by loading integer matrices
obtained from GAP into Sage and then forming linear combinations with coefficients in
the polynomial ring. Our code is available at [19].

2. Notation

Let F be a number field, A its adele ring, and Afin its ring of finite adeles. (Our results are
restricted to number fields because we make use of [17]. We expect that both the results
of [17] and our results should extend to function fields, except possibly for a few small
primes. For a discussion of the relevant issues, see [17, Remark 5.1.4].)

We shall consider automorphic representations of the similitude exceptional
group GE7. This group can be realized as the maximal Levi subgroup of split E8 whose
derived group is of type E7. For us, this will be the definition. The derived group is in fact
the unique split connected simply connected quasi-simple group of type E7. For the split
group E8, we label the simple roots as follows:

˛1 ˛3 ˛4 ˛5 ˛6 ˛7 ˛8
0 �� 0 �� 0 �� 0 �� 0 �� 0 �� 0

j

0

˛2

We assume that GE7 is equipped with a choice of split maximal torus T and Borel
subgroup B: We write ˆ for the set of roots of T in GE7; ˆC for the set of positive
roots determined by the choice of B , and � for the set of simple roots. If H is a T -stable
subgroup of GE7; we denote the set of roots of T inH byˆ.H;T /. For ˛ 2ˆ we denote
the corresponding root subgroup by U˛ and the corresponding coroot Gm! T by ˛_: Let
t and u˛ be the Lie algebras of T and U˛ , respectively. We use exponential notation for
rational characters and cocharacters: t 7! t˛ , t 2 T , and a 7! a˛

_

, a 2Gm. We sometimes
also use the notation h.t1; : : : ; t8/ D

Q8
iD1 t

˛_
i

i : We also equip GE7 with a realization in
the sense of [32], i.e. a family ¹x˛ W Ga ! U˛º of parametrizations of the root subgroups
(subject to some compatibility relations). This determines a basis of the Lie algebra ge7.
Indeed, for each root ˛ the differential Dx˛ of x˛ is an isomorphism Ga ! u˛ and we
denoteDx˛.1/ byX˛: The differential of ˛_ WGm!T is an injective mapD˛_ WGa! t;

and we denoteD˛_.1/ byH˛ . Then ¹X˛ W ˛ 2ˆ.GE7; T /º [ ¹H˛i W 1� i � 8º is a basis
for ge7, and by taking a suitable realization, we can arrange for it to be a Chevalley basis.
We choose the Chevalley basis so that the structure constants match those employed by
GAP [34]. As mentioned previously, we used LiE and SageMath, in addition to GAP, for
computations. Structure constants are not involved in the type of computations for which
LiE was used, and SageMath was used to manipulate polynomial-linear combinations of
integer matrices obtained from GAP, which ensures compatibility of structure constants
between the computations done using GAP and Sage. We also fix a GE7-invariant bilinear
form � on ge7 such that �.X˛; X�˛/ D 1 for each root ˛:
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We denote the Weyl group of GE7 relative to T byW . We denote the simple reflection
attached to the simple root ˛i bywŒi�, and the productwŒi1� : : :wŒil � bywŒi1 : : : il �: There
is a standard representative for wŒi�, namely PwŒi� WD x˛i .1/x�˛i .�1/x˛i .1/. This then
gives rise to a standard representative PwŒi1 : : : il � WD PwŒi1� : : : PwŒil � for wŒi1 : : : il �. But
note that PwŒi1 : : : il � depends on the expression for wŒi1 : : : il � as a word in the simple
reflections and not only on the Weyl group element.

Let P D MU be the standard parabolic subgroup of GE7 whose unipotent radical
contains U˛i if and only if i D 2, with Levi subgroup M and unipotent radical U . Then
M is isomorphic to GL7 � GL1 (see Lemma 4.1.1 for details). Let Q be the standard
parabolic subgroup of GE7 whose unipotent radical contains U˛i if and only if i D 4

or 6: More generally, for S � ¹1; 2; 3; 4; 5; 6; 7º; let PS D MSUS denote the standard
parabolic subgroup whose Levi subgroup MS contains the root subgroups attached to the
simple roots ¹˛i W i 2 Sº and whose unipotent radical US contains the root subgroups
attached to the simple roots ¹˛i W i … Sº. Hence, P D P¹1;3;4;5;6;7º and Q D P¹1;2;3;5;7º.
We also fix once and for all a maximal compact subgroup K of GE7.A/:

We shall also consider automorphic representations of the split exceptional group G2.
We denote the long simple root of G2 by ˇ and the short one by ˛. For 
 2 ¹ˇ; ˛º we
let P
 denote the maximal parabolic subgroup of G2 whose Levi M
 contains the root
subgroup U
 attached to 
 . We let N
 denote the unipotent radical of P
 :

Let g2 and gl7 be the Lie algebras of G2 and GL7, respectively. Following [11] we
embed g2 into gl7 by letting it act on a seven-dimensional vector space. We order the
basis vectors as follows: v4; v3; v1; u; w1; w3; w4. Then it follows from the formulae in
[11, p. 354] that the matrices of Y1 and Y2 (using notation [11, p. 340]) are0BBBBBBBBB@

0

1 0

0 0

1 0

2 0

0 0

�1 0

1CCCCCCCCCA
and

0BBBBBBBBB@

0

0 0

�1 0

0 0

0 0

1 0

0 0

1CCCCCCCCCA
;

respectively. The matrices attached to H1 and H2 are easily computed by looking at the
images of H1 and H2 under the weights.

Weight H1 H2
˛ 2 �1

ˇ �3 2

!1 D 2˛ C ˇ 1 0

!1 � ˛ �1 1

!1 � ˛ � ˇ 2 �1

!1 � 2˛ � ˇ 0 0

!1 � 3˛ � ˇ �2 1

!1 � 3˛ � 2ˇ 1 �1

!1 � 4˛ � 2ˇ �1 0
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The matrices are0BBBBBBBBB@

1

�1

2

0

�2

1

�1

1CCCCCCCCCA
and

0BBBBBBBBB@

0

1

�1

0

1

�1

0

1CCCCCCCCCA
;

respectively. Finding the action of X1 and X2 takes a little work. In some cases, we use
our knowledge about the set of weights. For example X1w3 must be zero because w3 is
weight !1 � 3˛ � 2ˇ and !1 � 2˛ � 2ˇ is not a weight of this representation. For the
others we use our knowledge of the action of Y1; Y2; H1; H2; and bracket relations. For
example, since X1v4 D 0, it follows that

X1v3 D X1Y1v4 D .H1 C Y1X1/v4 D H1v4 D v4:

After similar computations we find that the matrices of X1 and X2 are0BBBBBBBBB@

0 1

0 0

0 2

0 1

0 0

0 �1

0

1CCCCCCCCCA
and

0BBBBBBBBB@

0 0

0 �1

0 0

0 0

0 1

0 0

0

1CCCCCCCCCA
;

respectively. Finally, for a matrix g we denote the transpose by tg. When g is a square
matrix, we also denote by tg the transpose about the second diagonal, which may be

obtained by conjugating tg by the matrix
�

1

::
:

1

�
, i.e., with ones from lower left corner

to upper right corner and zeros elsewhere.

3. Preliminaries and some general results

3.1. Fourier coefficients attached to nilpotent orbits

In this section, we recall Fourier coefficients of automorphic forms attached to nilpotent
orbits, following the formulation in [17]. Let G be a reductive group defined over F , or
a central extension of finite degree. Fix a nontrivial additive character  of F nA. Let g

be the Lie algebra of G.F / and u be a nilpotent element in g. The element u defines a
function on g.A/:

 u W g.A/! C�
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by  u.x/D  .�.u;x//, where � is aG-invariant symmetric bilinear form on g.A/which
is nondegenerate on every simple summand of g (such as the Killing form, or a convenient
scalar multiple).

Given any semisimple element s 2 g, under the adjoint action, g is decomposed into
a direct sum of eigenspaces gsi of h corresponding to eigenvalues i . For any r 2 Q, let
gs�r D

L
r 0�r gsr 0 . The element s is called rational semisimple if all its eigenvalues are

in Q. Given a nilpotent element u, a Whittaker pair is a pair .s; u/ with s 2 g being a
rational semisimple element, and u 2 gs�2. The element s in a Whittaker pair .s; u/ is
called a neutral element for u if there is a nilpotent element v 2 g such that .v; s; u/ is an
sl2-triple in this case we call .s;u/ a neutral pair. For anyX 2 g, let gX be the centralizer
of X in g.

Given any Whittaker pair .s; u/, define an anti-symmetric form !u on g by !u.X; Y /
WD �.u; ŒX; Y �/. Let us D gs�1 and let ns;u D ker.!u/ be the radical of !ujus . Then
Œus; us� � gs�2 � ns;u. By [17, Lemma 3.2.6], ns;u D gs�2 C gs1 \ gu. Note that if the
Whittaker pair .s; u/ comes from an sl2-triple .v; s; u/, then ns;u D gs�2. Let Us D
exp.us/ and Ns;u D exp.ns;u/ be the corresponding unipotent subgroups of G. Abus-
ing notation, we define a character of Ns;u by  u.n/ D  .�.u; log.n///. Let N 0s;u D
Ns;u \ ker. u/. Then Us=N 0s;u is a Heisenberg group with center Ns=N 0s;u. It follows
that for each Whittaker pair .s; u/,  u defines a character of Ns;u.A/ which is trivial
on Ns;u.F /. Let ms D gs0 andMs D exp.ms/. Then Ps DMsUs is a parabolic subgroup
of G with Levi subgroup Ms and unipotent radical Us .

Assume that � is an automorphic representation of G.A/. Define a degenerate
Whittaker–Fourier coefficient of ' 2 � by

Fs;u.'/.g/ D

Z
Ns;u.F /nNs;u.A/

'.ng/ u.n/ dn; g 2 G.A/: (3.1.1)

Let Fs;u.�/ D ¹Fs;u.'/ W ' 2 �º. If s is a neutral element for u, then Fs;u.'/ is also
called a generalized Whittaker–Fourier coefficient of '. We are interested in the collection
of neutral pairs .s; u/ such that Fs;u.'/ ¤ 0. It is easy to see that this set is preserved by
the natural action of G.F / on g � g. We shall refer to an orbit for the action of G.F / on
the nilpotent subvariety of g as a rational nilpotent orbit. By a stable nilpotent orbit we
shall mean the intersection of g with a G.F /-orbit in g˝F F , where F is the algebraic
closure of F . The (global) wave-front set n.�/ of � is defined to be the set of rational
nilpotent orbits O such that Fs;u.�/ is nonzero for some Whittaker pair .s; u/ with u 2 O

and s being a neutral element for u. Note that if Fs;u.�/ is nonzero for some Whittaker
pair .s; u/ with f 2 O and s being a neutral element for u, then it is nonzero for any
such Whittaker pair .s; u/, since the non-vanishing property of such Fourier coefficients
does not depend on the choice of representatives of O. Let nm.�/ be the set of maximal
elements in n.�/ under the natural order of nilpotent orbits.

Assume that � is an admissible representation of G.Fv/, where v is a finite place
of F . Then similarly we can define a twisted Jacquet module of � by JNs;u; u.�/ and
consider the (local) wave-front set n.�/ and the subset nm.�/.

The following theorem is one of the main results in [17].
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Theorem 3.1.2 ([17, Theorem C]). Let � be an automorphic representation of G.A/.
Given two Whittaker pairs .s; u/ and .s0; u/, with s being a neutral element for u, if
Fs0;u.�/ is nonzero, then Fs;u.�/ is also nonzero.

In the following, we prove a slightly generalized version of Theorem 3.1.2 using sim-
ilar arguments.

Assume that .s; u/ and .s0; u/ are two Whittaker pairs with the same u such that
gu \ gs�1 � gs

0

�1. Let z D s0 � s 2 gu. And for any rational number 0 � t � 1, let st D
s C tz, ut D gst�1, vt D gst>1, and wt D gst1 . The number t is called regular if ut D utC�
for any small enough � 2 Q; and t is called critical if it is not regular. For convenience,
we say that 0 is critical and 1 is regular. Fix a Lagrangian m � gz0 \ gs1 and let

lt D mC .wt \ gz<0/C vt C .wt \ gu/;

rt D mC .wt \ gz>0/C vt C .wt \ gu/:

Note that lt and rt defined here agree with those in [17] by applying [17, Lemma 3.2.6].
For i; j 2 Q, let

gi;j D ¹X 2 g W Œs; X� D iX; Œz; X� D jXº:

Then one can see that wt D
L
iCtjD1 gi;j , vt D

L
iCtj>1 gi;j , t is a critical number if

and only if there exists .i; j / such that i C tj D 1 and j ¤ 0, and t is a regular number if
and only if wt D g1;0 D gz0 \ gs1. And we can rewrite lt and rt as follows:

lt D mC
L

iCtjD1; j<0

gi;j C vt C
� L
iCtjD1; j>0

gi;j

�
\ gu C g1;0 \ gu; (3.1.3)

rt D mC
L

iCtjD1; j>0

gi;j C vt C
� L
iCtjD1; j<0

gi;j

�
\ gu C g1;0 \ gu: (3.1.4)

We summarize the results in [17, Lemma 3.2.7] in the following lemma.

Lemma 3.1.5 ([17, Lemma 3.2.7]). Assume that .s;u/ and .s0;u/ are two Whittaker pairs
with the same u such that gu \ gs�1 � gs

0

�1. Then the following properties hold.

(1) For any t � 0, lt and rt are maximal isotropic subspaces of ut and Œlt ; rt � � lt \ rt .
And

ut=ker.!ujut / D wt=.wt \ gz0 Cwt \ gu/

defines a symplectic structure, with the image of lt and rt being two complementary
Lagrangians.

(2) Suppose that 0 � t < t 0, and that all the elements in the open interval .t; t 0/ are
regular. Then rt � lt 0 .

In the following lemma, we analyze the precise structure of lt 0=rt , in the situation of
Lemma 3.1.5 (2).

Lemma 3.1.6. Assume that .s; u/ and .s0; u/ are two Whittaker pairs with the same u
such that gu \ gs�1 � gs

0

�1. Suppose that 0 � t < t 0, and that all the elements in the open
interval .t; t 0/ are regular. Then, lt 0=rt D .

L
iCt 0jD1; j>0 gi;j / \ gu, preserving  u.
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Proof. By (3.1.3) and (3.1.4),

lt 0 D mC
L

iCt 0jD1; j<0

gi;j C vt 0 C
� L
iCt 0jD1; j>0

gi;j

�
\ gu C g1;0 \ gu: (3.1.7)

rt D mC
L

iCtjD1; j>0

gi;j C vt C
� L
iCtjD1; j<0

gi;j

�
\ gu C g1;0 \ gu: (3.1.8)

Since 0 � t < t 0, and all the elements in the open interval .t; t 0/ are regular, one can
see that L

iCtjD1; j>0

gi;j C vt D
L

iCt 0jD1; j<0

gi;j C vt 0 :

Therefore,

lt 0 C
� L
iCtjD1; j<0

gi;j

�
\ gu D rt C

� L
iCt 0jD1; j>0

gi;j

�
\ gu:

Note that if i C tj D 1 and j < 0, then i C j < 1. Hence,
L
iCtjD1; j<0 gi;j �

gs
0

<1, Since gu \ gs�1 � gs
0

�1, .
L
iCtjD1; j<0 gi;j / \ gu D ¹0º. Therefore, lt 0=rt D

.
L
iCt 0jD1; j>0 gi;j / \ gu, preserving  u.
This completes the proof of the lemma.

For a Whittaker pair .s; u/, let ls � us be any maximal isotropic subalgebra with
respect to the form !u. And let Ls D exp.ls/. Then  u can be extended trivially to a
character of Ls.k/nLs.A/. Let � be an automorphic representation of G.A/. Define the
following Fourier coefficient of f 2 � :

F Ls
s;u .f /.g/ D

Z
Ls.k/nLs.A/

f .ng/ u.n/ dn; g 2 G.A/: (3.1.9)

Let F Ls
s;u .�/ D ¹F

Ls
s;u .f / W f 2 �º.

Next, we recall a lemma.

Lemma 3.1.10 ([17, Lemma 6.0.2]). Let � be an automorphic representation of G.A/.
Then Fs;u.�/ ¤ 0 if and only if F Ls

s;u .�/ ¤ 0.

The next theorem is the global analogue of [17, Corollary 3.0.3] with essentially the
same proof. To be complete, we sketch it in the following.

Theorem 3.1.11. Let � be an automorphic representation of G.A/. Assume that .s; u/
and .s0; u/ are two Whittaker pairs with the same u such that gu \ gs�1 � gs

0

�1. If Fs0;u.�/

is nonzero, then Fs;u.�/ is also nonzero.

Proof. Let .s; u/ and .s0; u/ be two Whittaker pairs as in the statement. Then it is clear
that s0 � s 2 gu.

Let t0 D 0 < t1 < � � � < tk be all the critical numbers. Let tkC1 D 1. Then, for
0 � i � k, all the rational numbers in the open interval .ti ; tiC1/ are regular. Let

Rti D exp.rti / and LtiC1 D exp.ltiC1/. Assume that F
RtiC1
stiC1 ;u

.�/ ¤ 0; then we have

F
LtiC1
stiC1 ;u

.�/ ¤ 0 by Lemma 3.1.10. By Lemma 3.1.5, rti � ltiC1 , and by Lemma 3.1.6,
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ltiC1=rti D .
L
`CtiC1jD1; j>0

g`;j / \ gu � wtiC1 \ gu, which is abelian and normal-

izes  u. Then it is clear that F
Rti
sti ;u

.�/ ¤ 0.

Note that F
RtkC1
stkC1 ;u

.�/DFs0;u.�/¤ 0. Therefore, by the above discussion, Fs;u.�/D

Fst0 ;u.�/ D F
Rt0
st0 ;u

.�/ ¤ 0. This completes the proof of the theorem.

3.2. A few general results

Before we turn to matters that are specific to the problem of descent from GL7 to G2 by
way of GE7, we would like to present some results in a general setting. These are related
to the general problem of computing the twisted Jacquet module

JU; U .IndGQ �/;

where G is a reductive p-adic group, Q is a parabolic subgroup of G, U is a subgroup
of the unipotent radical of a second parabolic subgroup, P , of G, U is normalized by P ,
� is a character ofQ, and  U is a character of U: In this direction, the most general result
of which we are aware is [2, Theorem 5.2]. This result considers a set-up which is more
general than the one we shall consider here, but it has the defect that one must check a
certain finiteness condition which, for many applications, is unnecessary.

The group P acts on the space of characters of U by p �  U .u/ D  U .p�1up/. In
fact, this action may be realized as the rational representation of P dual to its action on
U=.U; U /. Let R U denote the stabilizer of  U in P . Then for any admissible represen-
tation � ofG, the twisted Jacquet module JU; U .�/ has the structure of anR U -module.

We assume that G is equipped with a choice of minimal parabolic subgroup P0 and
that P and Q are both standard, i.e., both contain P0: We also choose a maximal split
torus T0 contained in P0: The space IndGQ � has a filtration by P -modules Iw indexed
by the elements of QnG=P . As representatives, we choose minimal-length elements
of the relative Weyl group. The P -module Iw corresponding to w may be realized as
c-indP

P\w�1Qw
�ı
1=2
Q ı Ad. Pw/; where Pw is any representative for w in G and c-ind is the

compact induction.
We say that p 2 P is w-admissible if p �  U is trivial on U \ w�1Qw. (Clearly this

is relative to  U and Q:)

Lemma 3.2.1. For each w, the set of w-admissible elements is a subvariety of P:

Proof. Write ŒU=.U; U /�� for the rational representation of P that is dual to U=.U; U /.
Then  U corresponds to an element X of ŒU=.U; U /��.F /. Let V denote the image of
U \ w�1Qw in U=.U; U /. Then p is w-admissible if and only if hAd.p/:X; vi D 0 for
all v 2 V . Here h ; i is the canonical pairing between U=.U;U / and ŒU=.U;U /��: Taking
a basis of V we obtain a finite number of polynomial conditions in p which define the
w-admissible subvariety.

Now fix w and let Xw denote the open subset of w-inadmissible elements in P . Let
I ow denote ¹f 2 Iw W supp.f / � Xwº. Then I ow is an R U -submodule of Iw . Let Iw
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denote the quotient, so we have a short exact sequence of R U -modules

0! I ow ! Iw ! Iw ! 0:

Lemma 3.2.2.

JU; U .I
o
w/ D 0; hence JU; U .Iw/ Š JU; U .Iw/:

Proof. In general, for an admissible representation .�; V / of P the kernel of the map
V ! JU; U .V / is the subspace of elements v such thatZ

N

 U .n/�.n/:v dn D 0

for some compact subgroup N of U: In the case of an induced representation, this is
equivalent to Z

N

f .pn/ U .n/ dn D 0 8p 2 P:

For each fixed p; Z
N

f .pn/ U .n/ dn D

Z
N

f .np/p �  U .n/ dn;

where p �  U .u/ D  U .p�1up/: It is clear that if p �  U is nontrivial on U \ w�1Qw;
then this integral will be zero for all sufficiently large N , and if f 2 I ow , then this holds
for all p in the support of f: We need to show that N can be chosen independently of p.
This follows because p �  U depends continuously on p and the support of f is compact
modulo P \ w�1Qw:

For each w in our set of representatives for QnG=P let Pw D P \ w�1Qw. Note
that the w-admissible subvariety of P is a union of Pw ; R U -double cosets.

Lemma 3.2.3. Assume that w-admissible subvariety of P is a single Pw ; R U -double

cosetPwxR U : Then, as anR U -module, Iw Š c-ind
R U
R U \x

�1w�1Qwx
�ı
1=2
Q ıAd. Pwx/:

Proof. Recall that I ow is the subset of elements of Iw whose support is in the open set Xw
of inadmissible elements. So, the canonical quotient map Iw ! Iw=I

o
w D Iw may be

realized as restriction to the admissible subvariety. Write I
.1/

w for this realization of Iw as
a subspace of C1.PwxR U /:

Clearly, each element f 2 I
.1/

w is determined by the function hf .r/ D f .xr/ 2

C1.R U /. Thus we obtain a second realization of Iw as a subspace of C1.R U / which

we denote I
.2/

w : We claim that NI .2/w is precisely c-ind
R U
R U \x

�1w�1Qwx
�ı
1=2
Q ı Ad. Pwx/:

It is clear that hf .pr/D�ı
1=2
Q . Pwxpx�1 Pw�1/hf .r/ for each p2R U \x

�1w�1Qwx,
and r 2 R U . Moreover, since R U \ x

�1w�1QwxnR U maps injectively into P \

w�1Qw, the support of hf will be compact modulo x�1w�1Qwx. Thus I
.2/

w is contained
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in c-ind
R U
R U \x

�1w�1Qwx
�ı
1=2
Q ı Ad. Pwx/: What remains is to show that this map from

I
.2/

w to c-ind
R U
R U \x

�1w�1Qwx
�ı
1=2
Q ı Ad. Pwx/ is surjective.

Given h 2 c-ind
R U
R U \x

�1w�1Qwx
�ı
1=2
Q ı Ad. Pwx/, we can choose a compact open

set� such that h is supported on .R U \ x
�1w�1Qwx/�; a compact open subgroupK1

ofR U such that that h is right-K1-invariant, and a compact open subgroupK2 of P such
that K2 \R U D K1. Then we can define

f .g/ D

´
�ı
1=2
Q . Pwq Pw�1/h.r/; g D qxrk; q 2 Pw ; r 2 R U ; k 2 K2;

0; g … PwxR UK2:

Using the form �, the space ŒU=.U; U /�� may be identified with a subspace
ŒU=.U; U /�� of the Lie algebra u�P of the unipotent radical U�P of the parabolic that is
opposed to P . It is important to keep in mind that this identification is an isomorphism of
MP -modules, whereMP is the Levi ofP , but that it is not an isomorphism ofP -modules.
More precisely, the form � gives us a linear isomorphism gder ! g�der that sends X 2 gder

to the linear form Y 7! �.X;Y /. Here, gder is the derived subalgebra of g. We can decom-
pose g into irreducible MP -submodules and those that are not contained in mP come in
dual pairs. More precisely, each irreducible in uP is paired with an irreducible in u�P . The
Lie algebra of U is a direct sum of irreducible components in uP so its dual is identified
with a subspace of u�P . Then the dual of the quotient U=.U; U / is a subspace of the dual
of U . Since .U; U / is MP -invariant, ŒU=.U; U /�� is again a direct sum of irreducible
MP -submodules of u�P . Notice that X 2 ŒU=.U; U /�� implies Ad.m/X 2 ŒU=.U; U /��

for all m in M but not Ad.p/X 2 ŒU=.U;U /�� for p in P but not in M .
The Lie algebra g decomposes as q� ˚ uQ where q� is the Lie algebra of the

parabolic q� opposed to Q and uQ is the Lie algebra of the unipotent radical of Q.
Conjugating by w we have also g D Ad.w�1/q� ˚ Ad.w�1/uQ:

Lemma 3.2.4.

ŒU=.U;U /�� D .ŒU=.U;U /�� \ Ad.w�1/q�/˚ .ŒU=.U;U /�� \ Ad.w�1/uQ/:

Proof. LetMQ be the standard Levi factor ofQ (containing T0). LetZMQ denote its cen-
ter, and AMQ D ZMQ \ T0. Because the space ŒU=.U;U /�� is preserved by w�1AMQw,
we can decompose ŒU=.U;U /�� into eigenspaces of w�1AMQw: If � is one of the eigen-
characters, then � ı Ad.w/ is either trivial or a relative root for the torus AMQ . If it is
trivial or negative then the �-eigenspace lies in Ad.w�1/q� and if it is positive then the
�-eigenspace lies in Ad.w�1/uQ:

Take X 2 ŒU=.U;U /��: Then using this eigenspace decomposition we can write X D
X1CX2 whereX12ŒU=.U;U /��\Ad.w�1/q�/ andX22.ŒU=.U;U /��\Ad.w�1/uQ/:

Notice that p is w-admissible if and only if the projection of Ad.p/X onto
ŒU=.U;U /�� is in ŒU=.U;U /�� \ Ad.w�1/uQ.
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Now write UP for the unipotent radical of the parabolic P . Inside ŒU=.U; U /�� we
have the subspace of ŒU=.U; UP /�� of linear forms which corresponds to the space of
characters of U that are trivial on .U; UP /. This is an MP -invariant subspace which we
can identify with a subspace ŒU=.U;UP /�� of ŒU=.U;U /��:

If X 2 ŒU=.U; UP /�� and p D mu with m 2MP and u 2 UP then the projection of
Ad.p/:X onto ŒU=.U;U /�� is Ad.m/:X . Put differently, if  U is trivial on .U; UP / then
UP fixes  U , and hence p �  U D m �  U :

Assume now that U is trivial on .U;UP /: Then pDmu isw-admissible if and only if
Ad.m/:X is in ŒU=.U;U /�� \Ad.w�1/uQ; or, equivalently, if Ad.wm/X 2 uQ: In par-
ticular, X must be conjugate to an element of the subspace ŒU=.U;U /�� \ Ad.w�1/uQ:

Corollary 3.2.5. If  U is trivial on .U; UP / and the space ŒU=.U; U /�� \ Ad.w�1/uQ
does not contain any elements of the orbit of X , then the w-admissible subvariety of P is
empty.

Corollary 3.2.6. Suppose that  U is trivial on .U;UP / and the w-admissible subvariety
of P is nonzero. Then the nilpotent element X attached to  U is conjugate to an element
of uQ:

Corollary 3.2.7. If  U is trivial on .U; UP / and the space uQ does not contain any
elements of the orbit of X , then the w-admissible subvariety of P is empty for all w, and

J.U; U /.IndGQ.�// D 0:

Corollary 3.2.8. Let O be the Richardson orbit of Q .the largest stable orbit that inter-
sects uQ/. Let O0 be a stable orbit that is greater than or not related to O: Let .s; u/ be
any Whittaker pair with u 2 O0: Let U D exp.gs�2/: Then

J.U; u/.IndGQ.�// D 0:

Proof. Let P D exp.gs�0/; then UP D exp.gs�1/: The previous corollary applies to this
situation, since .U; UP / D exp.gs�3/ and  u is trivial on it.

Corollary 3.2.9. Let O be the Richardson orbit of Q. Let O0 be a stable orbit that is
greater than or not related to O: Let .s; u/ be any Whittaker pair with u 2 O0. Then
JNs;u; u.IndGQ �/ D 0:

Proof. Define U as in the previous corollary. Then the conclusion follows from the defi-
nition of JNs;u; u , because JNs;u; u.�/ is a quotient of J.U; u/.�/ for any � .

Remark 3.2.10. (1) Suppose that the weighted Dynkin diagram of O consists of 0’s
and 2’s (namely O is even) and let Q be the parabolic whose Levi contains the simple
roots labeled 0 and whose unipotent radical contains the simple roots labeled 2. Then O

is the Richardson orbit of Q (see [8, Theorem 7.1.1, Theorem 7.1.6, Corollary 7.1.7]).
(2) Corollary 3.2.9 can also be deduced from the argument in [29, Section II.1.3].
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4. The A6 Levi of GE7 and Eisenstein series

Recall that P D MU is the standard parabolic subgroup of GE7 whose unipotent rad-
ical contains U˛i if and only if i D 2, with Levi subgroup M and unipotent radical U .
In this section, we show that this Levi subgroup M which is of type A6 is isomorphic to
GL7 � GL1. Then we introduce the Eisentein series associated to P whose residues at
s D 1 generate a residual representation. This residual representation serves as automor-
phic kernel of our descent construction.

4.1. The A6 Levi

Lemma 4.1.1. The group M is isomorphic to GL7 � GL1:

Proof. Recall that the derived group of a Levi subgroup of a simply connected group
is simply connected. In particular, the derived group Mder of M is simply connected,
semisimple, of type A6: This means that it is isomorphic to SL7. To pin down a partic-
ular isomorphism we first require that T \Mder is mapped to the standard torus of SL7
(the diagonal elements), and B \Mder is mapped to the standard Borel of SL7 (the upper
triangular elements). Any isomorphism satisfying these requirements induces a bijection
on the set of simple roots which respects the structure of the root system. There are only
two such bijections. For reasons which will become apparent, we choose to map ˛7 to
the first simple root of SL7 and ˛1 to the last. These conditions determine the isomor-
phism up to conjugation by an element of T \Mder. To make it unique, we can use the
parametrizations x˛: there is a unique isomorphism �0 WMder ! SL7 such that

x˛1.r/ 7!

0B@ 1
1
1
1
1
1 r
1

1CA; x˛3.r/ 7!
0B@ 1

1
1
1
1 r
1
1

1CA; : : : ; x˛7.r/ 7!
0B@ 1 r

1
1
1
1
1
1

1CA:
Now M is the product of its derived group and the maximal torus T . A general element

of T is of the form
Q8
iD1 t

˛_
i

i . Of course
Q
i¤2;8 t

˛_
i

i lies in M which is mapped to
(under �0) 0BBBBBBBBB@

t7
t�17 t6

t�16 t5
t�15 t4

t�14 t3
t�13 t1

t�11

1CCCCCCCCCA
:

Since

.t
˛_
2

2 t
˛_
8

8 / j̨ D

8̂̂<̂
:̂
t�12 ; j D 4;

t�18 ; j D 7;

1; otherwise,

we can extend �0 to a homomorphism �1 WM ! GL7 such that
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�1.t
˛_
2

2 / D

0BBBBBBBBB@

1

1

1

1

t2
t2

t2

1CCCCCCCCCA
; �1.t

˛_
8

8 / D

0BBBBBBBBB@

t�18
1

1

1

1

1

1

1CCCCCCCCCA
:

For any m 2M , assume that m D m0t2.m/˛
_
2 t8.m/

˛_
8 , where m0 2Mder. Define the

map
� WM ! GL7 � GL1; m 7! .�1.m/; t2.m//;

which is a group homomorphism. We claim that � is an isomorphism between M

and GL7 � GL1. Indeed, assume that �.m/ D .I7; 1/. Then t2.m/ D 1. Consequently,
det.�1.m//D t�18 .m/, which is equal to det.I7/D 1. Hence, �1.m/D �0.m0/D I7. Since
�0 is an isomorphism, we see thatm0 is the identity ofM . HencemDm0t2.m/˛

_
2 t8.m/

˛_
8

is the identity of M . Therefore, � is an isomorphism. This completes the proof of the
lemma.

Remark 4.1.2. The inverse of � can be described explicitly as follows: for g 2 GL7 write
g D g1

�
a�1

I6

�
, with g1 2 SL7; then

��1.g; b/ D ��10 .g1/a
˛_
8 b˛

_
2
�˛_
5
�2˛_

6
�3˛_

7
�4˛_

8 :

Remark 4.1.3. The center of GE7 is the image of 2˛_1 C 3˛
_
2 C 4˛

_
3 C 6˛

_
4 C 5˛

_
5 C

4˛_6 C 3˛
_
7 C 2˛

_
8 :

Remark 4.1.4. Recall that there is a notion of duality on split algebraic groups (by means
of their root data) which underlies the definition of the L-group. By this duality, the iso-
morphism � WM ! GL7 � GL1 induces a dual isomorphism �_ W GL7 � GL1 !M .

Remark 4.1.5. For 1 � i � 7 let ei denote the rational character of the standard maximal
torus of GL7 which maps a matrix to its i th diagonal entry. Treat ei also as a rational
character of GL7 � GL1 which is trivial on the second factor and let e8 denote projection
onto the second factor, so that e1; : : : ; e8 is a Z-basis for the lattice of rational characters
of the standard maximal torus of GL7 � GL1. Let e�1 ; : : : ; e

�
8 be the dual basis for the

lattice of cocharacters. Then we see at once that

˛_7 D e
�
1 � e

�
2 ; ˛_6 D e

�
2 � e

�
3 ; ˛_5 D e

�
3 � e

�
4 ; ˛_4 D e

�
4 � e

�
5 ; ˛_3 D e

�
5 � e

�
6 ;

˛_1 D e
�
6 � e

�
7 ; ˛_2 D e

�
5 C e

�
6 C e

�
7 C e

�
8 ; ˛_8 D �e

�
1 :

4.2. Eisenstein series

Let � be an irreducible cuspidal automorphic representation of GL7.A/ and � WA�!C�

a Hecke character. Having fixed above an isomorpism � WM !GL7 �GL1, we may regard
� ˝ � as an irreducible cuspidal automorphic representation of M.A/. Restriction maps
the lattice X.M/ of rational characters of M isomorphically onto a subgroup of the lat-
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ticeX.T / of rational characters of T . This sublattice is generated by the second and eighth
fundamental weights $2 and $8. We denote their preimages in X.M/ by z$2 and z$8.
Then z$8 extends to a generator for the lattice of rational characters of GE7 itself. Abus-
ing notation, we still denote this extension by z$8: Let P be the standard parabolic whose
Levi is M: We consider the family of induced representations IndGE7.A/

P.A/ .� ˝ �/ � j z$2j
s ,

s 2 C (normalized induction), and the corresponding space of Eisenstein series.

Lemma 4.2.1. The ratio of products of partial L-functions appearing in the constant
term of these Eisenstein series is

LS .s; � ˝ �;^3 � St/LS .2s; z� ˝ �2!� ;St�St/
LS .s C 1; � ˝ �;^3 � St/LS .2s C 1; z� ˝ �2!� ;St�St/

(4.2.2)

Proof. This is standard from the Gindikin–Karpalevic formula and the L-group formal-
ism. The Lie algebra of the unipotent radical of the parabolic P_ is a direct sum of two
irreducible M_-submodules. The highest weights correspond to the coroots ˛_1 C ˛

_
2 C

2˛_3 C 3˛
_
4 C 3˛

_
5 C 2˛

_
6 C ˛

_
7 , and 2˛_1 C 2˛

_
2 C 3˛

_
3 C 4˛

_
4 C 3˛

_
5 C 2˛

_
6 C ˛

_
7 .

We must view the corresponding coroots as weights on the maximal torus of GL7.C/ �
GL1.C/. In terms of the basis e�1 ; : : : ; e

�
8 these two cocharacters are e�1 C e

�
2 C e

�
3 C e

�
8

and e�1 C e
�
2 C e

�
3 C e

�
4 C e

�
5 C e

�
6 C 2e

�
8 ; respectively. The highest weight of ^3 is

e�1 C e
�
2 C e

�
3 , and projection to the GL1 factor is e�8 and determinant of the GL7 factor.

The weight e�1 C e
�
2 C e

�
3 C e

�
4 C e

�
5 C e

�
6 is the highest weight of the ^6 representa-

tion, which can also be regarded as the dual to the standard representation twisted by the
determinant.

Let w0 D wŒ243154234565423143542765423143542654376542�; which is the
longest Weyl word which is reduced by the Weyl group of GL7 on both the left and the
right. By [30, II.1.7] the constant term of the Eisenstein series applied to a section f of
the induced space is given by f CM.w0/:f , where M.w0/ is the standard intertwining
operator as in [30, II.1.6]. By [30, IV.1.11], M.w0/:f can have at most a simple pole at
s D 1. By [26, (3.1) and (3.5, c)], it follows that (4.2.2) can have at most a simple pole at
s D 1:

Since the standard L-functions of cuspidal representations of GL.n/ are nonzero on
the half-plane Re.s/ > 1 (see [24, Theorem 5.3]) and are entire on the whole complex
plane, LS .2s;z�˝�2!� ;St�St/

LS .2sC1;z�˝�2!� ;St�St/
has no pole and no zero at s D 1. So, LS .s;�˝�;^3�St/

LS .sC1;�˝�;^3�St/
has at most a simple pole at s D 1. Moreover, from [26, (3.5, b)] a pole of the intertwining
operator in the half-plane Re.s/ � 1 must come from LS .s;�˝�;^3�St/

LS .sC1;�˝�;^3�St/
:

Proposition 4.2.3. If the Eisenstein series has a pole in the half-plane Re.s/ > 0; then
the residual representation is square integrable.

Proof. This is an easy application of the square integrability in [30, I.4.11].

According to [27, Lemma 7.5], the Eisenstein series can have a square integrable
residue only if � ˝ � ıAd. Pw0/Š � ˝ �:We investigate what this condition says explic-
itly about � and �:
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Lemma 4.2.4. There is a representative Pw0 for w0 such that the automorphism of
GL7 � GL1 induced by Ad. Pw0/ and our choice of isomorphism M ! GL7 � GL1 is

.g; a/ 7!

�
tg
�1 a3

detg
;

a8

.detg/3

�
;

where tg is defined at the end of Section 2.

Proof. For any choice of representative, Ad. Pw0/ induces an automorphism of GL7 �GL1
which preserves the chosen torus and Borel. When such an automorphism is restricted to
SL7 there are two possibilities: either it is given by conjugation by an element of the torus
of GL7 (in which case we can adjust the representative Pw0 to make it trivial), or else it
is given by g 7! tg

�1 composed with conjugation by an element of the torus of GL7 (in
which case we can adjust the representative Pw0 to make it g 7! tg

�1).
By inspecting the action of w0 on the simple coroots, one can see that Ad. Pw0/ maps

h.t1; : : : ; t8/ to

h

�
t7t8

t2
;
t38
t2
;
t6t

3
8

t32
;
t5t

5
8

t32
;
t4t

4
8

t32
;
t3t

3
8

t22
;
t1t

2
8

t2
; t8

�
:

If we push this through the isomorphism with GL7 � GL1, it becomes0BBBBBBBBBB@

0BBBBBBBBBB@

t7
t8

t6
t7

t5
t6

t4
t5

t2t3
t4

t1t2
t3

t2
t1

1CCCCCCCCCCA
; t2

1CCCCCCCCCCA
7!

0BBBBBBBBBB@

0BBBBBBBBBB@

t1t8
t2

t3t8
t1t2

t4t8
t3t2

t5t8
t4

t6t8
t5

t7t8
t6

t2
8

t7

1CCCCCCCCCCA
;
t38
t2

1CCCCCCCCCCA
:

We see that on the torus of SL7 (obtained by setting t2 D t8 D 1) this agrees with g 7!
tg
�1: In general, it can be expressed as .t; t2/ 7! .t t

�1t8; t
3
8=t2/; and t8 can be expressed

as t32=detg:

Corollary 4.2.5. If � is a character, write � � � for the twist of � by � ı det. Then for any
�; � we have

� ˝ � ı Ad. Pw0/ Š .!�1� ��3 � z�/˝ .!3��
8/:

Corollary 4.2.6. If
� ˝ � ı Ad. Pw0/ Š � ˝ �;

then there is a self-contragredient cuspidal representation �0 with trivial central charac-
ter, and a character � such that � Š ��1�0 and � D �3:

Proof. If � D !3��
8 then !3� D �

�7; so � D .!��2/�3. Setting � D !�1� ��2, we have
� D �3 and !� D ��2��1 D ��7. Then !�1� ��3 � z� D ��2z�: If this is isomorphic to �
then �0 WD � ˝ � is self-contragredient with trivial central character.
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Remark 4.2.7. LS .s; ��1�0 ˝ �3;^3 ˝ St/ D LS .s; �0;^3/:

Remark 4.2.8. If a representation � of GL7 is self-contragredient, then LS .s; �; sym2/

has a simple pole at s D 1: Indeed, each self-contragredient representation of GLn is of
either orthogonal type (LS .s; �0; sym2/ has a pole) or symplectic type (LS .s; �0;^2/
has a pole). When n is odd, �0 must be of orthogonal type, because LS .s; �0;^2/ has no
poles in the odd case (see [23, 25, 31]).

Corollary 4.2.6 implies that a cuspidal representation whose twisted ^3 L-function
has a pole is simply a twist of a representation whose untwisted ^3 L-function has a pole.
Since there is no essential loss of generality, we shall henceforth restrict our attention to
untwisted ^3 L-function, i.e., we shall assume that � is trivial. In this case we get the
following simplification of Corollary 4.2.6.

Lemma 4.2.9. If LS .s; �;^3/ has a pole, then � D � � �0 where � is cubic, �0 is self-
contragredient with trivial central character and LS .s; �0; sym2/ has a pole at s D 1:

Definition 4.2.10. An irreducible cuspidal automorphic representation � of GL7.A/ is
said to be of G2 type if it is self-contragredient and LS .s; �;^3/ has a pole at s D 1.

Remark 4.2.11. By [26, Theorem 1], ifLS .s;�;^3/ has a pole at sD 1; then it is simple.
By Lemma 4.2.9, if an irreducible cuspidal automorphic representation � of GL7.A/ is of
G2 type, then the central character of � is trivial and LS .s; �; sym2/ has a pole at s D 1.

Proposition 4.2.12. If � is of G2 type then the Eisenstein series has a simple pole at
s D 1:

Proof. We have already explained that the Eisenstein series has the same poles as
LS .s;�;^3/

LS .sC1;�;^3/
in Re.s/ � 1.

The exterior cube L-function is holomorphic at 2 by [26, Lemma 5.1], so a pole at 1
will be inherited by the ratio and hence the Eisenstein series.

Definition 4.2.13. When � is of G2 type, we can see that the Eisenstein series above has
a simple pole at s D 1. Denote the residual representation by E� .

Remark 4.2.14. (1) It is possible for the Eisenstein series to have a pole at 1 even if
LS .s; �;^3/ has no pole, namely, if L.s; �;^3/ vanishes at s D 2: One expects that this
does not occur. For example, if Langlands functoriality holds, then LS .s;�;^3/ is simply
the standard L-function of the ^3 lift of � . This lift does not need to be cuspidal, but if
the Ramanujan conjecture also holds, then both � and its lift will be tempered at every
place, so that the lift will be an isobaric sum of unitary cuspidal representations. In this
case its standard L-function is holomorphic and nonvanishing in Re.s/ > 1:

(2) For similar reasons, one expects that LS .s; �;^3/ will have no poles other than
possibly at 0 and 1 with poles at 0 and 1 arising when the trivial character is an isobaric
summand of the ^3 lift.

(3) If � is of G2 type, then LS .s; �;^3/ must be nonvanishing at s D 2, since the
intertwining operator can have at most a simple pole.
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(4) If � is not of G2 type but LS .s; �;^3/ has a pole at s D 1, then we can still obtain
a residual representation E� .

Lemma 4.2.15. If an irreducible automorphic representation � of GL7.A/ is the weak
functorial lift of an irreducible automorphic representation � of G2.A/; then

(1) � is nearly equivalent to its contragredient z� ,

(2) LS .s; �;^3/ D LS .s; �; sym2/LS .s; �/:

Proof. The embedding of G2 into GL7 factors through an embedding of the special
orthogonal group SO7 ,! GL7, it follows that if � is a weak functorial lift associated
with this embedding, then �v Š z�v at every unramified place v.

Write �a;b for the irreducible representation of G2.C/ with highest weight a$G2
1 C

b$
G2
2 . (Here$G2

1 ;$
G2
2 are the fundamental weights ofG2.C/:) The seven-dimensional

“standard” representation of G2.C/ is �1;0: Then ^3�1;0 Š �0;0 ˚ �1;0 ˚ �2;0; while
sym2 �1;0 Š �0;0 ˚ �2;0; so ^3�1;0 Š sym2 �1;0 ˚ �1;0: It follows that for � the weak
functorial lift of � we have

LS .s; �;^3/ D LS .s; �;^3�1;0/ D L
S .s; �; sym2 �1;0/L

S .s; �; �1;0/

D LS .s; �; sym2/LS .s; �/:

Lemma 4.2.16. If an irreducible cuspidal representation � of GL7.A/ is the weak functo-
rial lift of an irreducible cuspidal representation � ofG2.A/; then � is self-contragredient
and LS .s; �;^3/ has a simple pole at s D 1:

Proof. From Lemma 4.2.15 (1), and strong multiplicity 1 for GL7, it follows that � D z�:
From Lemma 4.2.15 (2), we have

LS .s; �;^3/ D LS .s; �; sym2/LS .s; �/:

Now, LS .s; �/ is holomorphic and nonvanishing in Re.s/ � 1; while LS .s; �; sym2/ has
a simple pole at s D 1; because � is self-contragredient. Note that self-contragredient rep-
resentations of GL7.A/ are automatically of orthogonal type. It follows that LS .s; �;^3/
has a simple pole at s D 1:

5. The nilpotent orbit A6 of E7

In this section we consider the rational orbit structure for the nilpotent orbit of E7 whose
Bala–Carter label is A6 and whose weighted Dynkin diagram is

0 �� 0 �� 2 �� 0 �� 2 �� 0

j

0

We will show that this nilpotent orbit consists of a single rational orbit, and the residual
representation E� has a nonzero generalized Whittaker–Fourier coefficient attached to it.
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First, we introduce some notation related to nilpotent orbits. One of the most con-
venient ways to specify a nilpotent orbit O in a reductive Lie algebra is by a weighted
Dynkin diagram. This method of specifying nilpotent elements relies on two facts:

(1) Orbits of nilpotent elements are in bijection with orbits of sl2-triples [5, Theorem
5.5.11].

(2) Once a split maximal torus T and a base � of simple roots (relative to T ) have been
fixed, each sl2-triple is conjugate to a triple .v; s; u/ such that s 2 t, and ˛.s/ � 0
for all ˛ 2 �: (Since each torus is contained in a maximal one, all maximal tori are
conjugate, and every weight is in the Weyl orbit of a dominant one.)

Definition 5.0.1. The semisimple element s D sO as above is called the standard semi-
simple element attached to the orbit O in question. Let PO D MOUO be the parabolic
subgroupPs DMsUs defined in Section 3.1, with Levi subgroupMO DMs and unipotent
radical UO D Us .

Each element s of t determines a weighted Dynkin diagram

˛1.s/ ˛3.s/ ˛4.s/ ˛5.s/ ˛6.s/ ˛7.s/

˛2.s/

The weighted Dynkin diagram of a nilpotent orbit is then the weighted Dynkin diagram
of its standard semisimple element.

The map from t to weighted Dynkin diagrams is not injective, but each fiber has a
unique element which is contained in the span of the coroots of G. For any nilpotent
orbit, the standard semisimple element is contained in this subspace of t. In addition, if
the weights of the Dynkin diagram are integral, then the diagram canonically determines
a homomorphism from the root lattice into Z, i.e., a coweight. Whenever convenient, we
will use integrally weighted Dynkin diagrams to specify coweights, nilpotent orbits, and
elements of t:

To study the nilpotent orbit A6, we consider the parabolic subgroup Q D LV whose
Levi L contains the root subgroups attached to ˛1; ˛2; ˛3; ˛5 and ˛7 and whose unipo-
tent radical V contains the root subgroups attached to the other simple roots. The
derived group of L is isomorphic to SL3 � SL2 � SL2 � SL2, and we can map L into
GL3 � GL2 � GL2 � GL2 so that the induced map on Lie algebras maps

P8
iD1 tiH˛i CP

iD1;2;3;5;7 xiX˛i C yiX�˛i to0@0@t3 � t4 x3
y3 t1 � t3 x1

y1 �t1

1A ; �t2 � t4 x2
y2 �t2

�
;

�
t5 � t6 x5
y5 t4 � t5

�
;

�
t7 � t8 x7
y7 t6 � t7

�1A:
The image is

¹.g1; g2; g3; g4/ 2 GL3 � GL2 � GL2 � GL2 W detg1 D detg2º: (5.0.2)

Denote the isomorphism from L to (5.0.2) by �L: Denote the projection of GL3 � GL2 �
GL2 � GL2 onto the i th factor by pi for i D 1; 2; 3; 4: We write D for the differential,
i.e., the induced map on Lie algebras. Thus, for example Dp2 ıD�L maps l! gl2:
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The space of characters of V is identified with the sum of the root spaces g�˛ attached
to roots ˛ such that ˛ D

P7
iD1 ci˛i and 2c4 C 2c6 D 2. Clearly, this is the direct sum of

two subspaces

v�1 WD
L

˛Wc4D1; c6D0

g�˛ and v�2 WD
L

˛Wc4D0; c6D1

g�˛:

Lemma 5.0.3. Write GSO4 for the usual split similitude orthogonal group in four vari-
ables. In other words, let

J4 D

0BB@
1

1

1

1

1CCA ; GSO4 WD
®
g 2 GL4 W gJ4 tg D �.g/J4; �.g/ 2 GL1

¯
:

There is a surjective homomorphism of algebraic groups pr W GL2 � GL2 ! GSO4,

pr
��
a1 b1
c1 d1

�
;

�
a2 b2
c2 d2

��
D

0BB@
a1 b1
c1 d1

a1 �b1
�c1 d1

1CCA
0BB@
a2 �b2

a2 b2
�c2 d2

c2 d2

1CCA ;
which satisfies �.pr.g1; g2// D detg1 detg2:

Proof. Write Eij for the 2 � 2 matrix with a 1 at the i; j entry and zeros elsewhere.
Then pr sends .g1; g2/ to the matrix of the linear operator X 7! g1X

tg2 relative to the
ordered basis .E1;1; E2;1;�E1;2; E2;2/ of Mat2�2 : Notice that the coordinate vector for
the matrix

�
a b
c d

�
relative to this ordered basis is t Œa c �b d�. Thus the quadratic

form determined by the matrix J4 corresponds to twice the determinant form on Mat2�2,
from which it easily follows that GL2 �GL2 maps into GSO4 (which can also be checked
by hand on the matrices above). The formula for � ı pr also follows easily.

It remains to show that the map is surjective. It suffices to show that the image contains
all four root subgroups and the full torus, and this is straightforward.

Lemma 5.0.4. There is an isomorphism of vector groups �v�
2
W v�2 ! Mat2�2 which is

compatible with �L in the sense that

�v�
2
.Ad.��1L .g1; g2; g3; g4//:X/ D g3�v�

2
.X/g�14 :

Proof. We consider the action of SL3 � SL2 � SL2 � SL2 on v�2 , and easily see that the
copies of SL2 attached to the roots ˛5 and ˛7 act nontrivially, while the copy of SL2
attached to ˛2 and the SL3 factor act trivially. There is a unique four-dimensional rep-
resentation of SL2 � SL2 on which both factors act trivially. Hence, the given action on
Mat2�2 is one realization of it, while inclusion into SL3 � SL2 � SL2 � SL2 at the third
and fourth positions composed with Ad ı ��1L is another.

To construct a specific isomorphism we start by matching our preferred highest weight
vectors and generating the correspondence on the complete bases of weight vectors.
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Thus, we map X�0000010 (a highest weight vector in v�2 ) to E12 (a highest weight
vector in Mat2�2). Then, since the differential of �L maps X�0000100 to .E21; 0/, it
follows that ad.X�0000100/X�0000010 must be mapped to E21 � E12 D E22. Of course
ad.X�0000100/X�0000010 is a scalar multiple of X�0000110. The scalar depends on the
structure constants of our realization (or equivalently of the corresponding Chevalley
basis). Using GAP, we find ŒX�0000100;X�0000010�DX�0000110. Continuing in this fash-
ion, we compute1

�v�
2
.x0000010X�0000010Cx0000011X�0000011Cx0000110X�0000110Cx0000111X�0000111/

D

�
x0000011 x0000010
x0000111 x0000110

�
:

What remains is to check that the action of t
˛_
4

4 t
˛_
6

6 t
˛_
8

8 is the same on both sides. And
this is easy, since�
t�16

t4

��
x0000011 x0000010
x0000111 x0000110

��
t�18

t6

��1
D

0@ t8
t6
x0000011

1

t2
6

x0000010

t4t8x0000111
t4
t6
x0000110

1A
D

 �
t
˛_
4

4 t
˛_
6

6 t
˛_
8

8

��0000011
x0000011

�
t
˛_
4

4 t
˛_
6

6 t
˛_
8

8

��0000010
x0000010�

t
˛_
4

4 t
˛_
6

6 t
˛_
8

8

��0000111
x0000111

�
t
˛_
4

4 t
˛_
6

6 t
˛_
8

8

��0000110
x0000110

!
:

Lemma 5.0.5. There is an isomorphism of vector groups �v�
1
W v�1 ! Mat3�4 which is

compatible with �L in the sense that

�v�
1
.Ad.��1L .g1; g2; g3; g4//:X/ D g1�v�

1
.X/ pr.g2; g3/�1:

Proof. This is proved by the same method. We record only the essential information. The
correspondence between roots ˛ such that X˛ lies in v�1 and entries in an element of
Mat3�4 is succinctly expressed by the following matrix:0@�0101100 �0001100 �0101000 �0001000

�0111100 �0011100 �0111000 �0011000

�1111100 �1011100 �1111000 �1011000

1A :
In the next matrix we record the image of t

˛_
4

4 t
˛_
6

6 t
˛_
8

8 under these twelve roots:0@ t6 t6=t4 1=t4 1=t24
t6t4 t6 1 1=t4
t6t4 t6 1 1=t4

1A :
Each entry matches exactly the effect of multiplying by diag.t�14 ; 1; 1/ on the left and
diag.t6t4; t6; 1; t�14 / on the right. Finally, one has to check that diag.t6t4; t6; 1; t�14 /�1 D

pr
��
t�1
4

1

�
;
�
t�1
6

t4

��
:

1We remark that the scalars are not important for the present argument – only the correspon-
dence between roots and entries is really needed.
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Next we compute the rational orbit structure for the action of GL3 �GSO4 on Mat3�4
by .g1; g2/:Y D g1Yg�12 . Write Matsym

3�3 for the space of 3 � 3 symmetric matrices. The
group GL3 � GL1 acts by .g; a/:Z D agZ tg. We have a map Mat3�4 ! Matsym

3�3 given
by Y 7! YJ4

tY . Clearly

.g1Yg
�1
2 /J4

t.g1Yg
�1
2 / D �.g�12 /g1YJ4

tY:

Thus Y1 and Y2 lie in the same GL3 � GSO4-orbit if and only if Y1tY1 lies in the same
GL3 � GL1-orbit as Y2tY2: It is clear that Rank Y and Rank Y tY are both invariants
of a GL3 � GSO4-orbit, and that the latter is bounded by the former. It is relatively
easy to show that ¹Y 2 Mat3�4 W RankY D i;RankY tY D j º is nonempty and a single
GL3 �GSO4-orbit for .i; j / D .0; 0/; .1; 0/; .1; 1/; .2; 0/, and .2; 1/: Also, one can easily
find a matrix Y of rank 2 such that Y tY D diag.a; b; 0/ for any a; b.

Lemma 5.0.6. Take F a field and Y 2 Mat3�4.F / of rank 3. Then there exists g 2 GL3
such that .gY tY tg/ is of the form 0@ 1

a

1

1A :
Proof. Write V for the span of the rows of Y . We choose a suitable basis for V such that
the quadratic form attached to J4, when written in terms of the new basis, has a matrix of
the specified form.

We may write Mat1�4 D W1 ˚W2 where W1;W2 are two-dimensional isotropic sub-
spaces. Since dim V > dimW1, there exist nontrivial elements of v which project to 0
inW1. That is, V \W1¤ 0. Likewise V \W2¤ 0. Select v1 2 V \W1 and v2 2 V \W2.

First suppose that v1 is orthogonal to v2. Then the span of v1 and v2 is a maximal
isotropic subspace W 01. Select v3 in the orthogonal complement of W 01 and then replace
v1; v2 by a new basis v01; v

0
2 forW 01 such that v02J4v3 D 0 and v01J4v3 D 1: Then the basis

v01; v
0
2; v3 fits the bill.

Now suppose that v1 is not orthogonal to v2, and let v3 be any element of V which
is linearly independent of v1 and v2. Then there exist a; b such that v3 � bv1 � cv2 is
orthogonal to both v1 and v2; and the basis v1; v3; v2 fits the bill.

Corollary 5.0.7.
¹Y 2 Mat3�4.F / W RankY tY D 3º

is a Zariski open GL3.F / � GSO4.F /-orbit over any field F .

Proof. The set is clearly Zariski open. We have shown that each orbit with RankY tY D 3
contains an element with

Y tY D

0@ 1

a

1

1A :
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If the rank is 3 then a is nonzero and we can scale by a�1 in GL1 and then act by
diag.a; 1; 1/ in GL3 to get

�
1

1
1

�
; which completes the proof that our set is a single

orbit.

Corollary 5.0.8. The nilpotent orbit A6 consists of a single rational orbit.

Proof. We know that each rational orbit in A6 has a representative that lies in
v�1 .F / ˚ v�2 .F /, and that two elements of this space lie in the same G.F /-orbit if
and only if they lie in the same L.F /-orbit. We can identify v�1 .F / ˚ v�2 .F / with
Mat3�4.F /˚Mat2�2.F /. It is clear that the action of L.F / preserves the Zariski open
subset ¹.Y;X/ 2Mat3�4.F /�Mat2�2.F / W RankY tY D 3, RankX D 2º:We show that
this set is a single L.F /-orbit. Take two elements .Y1; X1/ and .Y2; X2/. Recall that L is
identified with ¹.g1; g2; g3; g4/ 2 GL3 � GL2 � GL2 � GL2 W detg1 D detg2º; and note
that .g1; g2; g3; g4/ 7! .g1; pr.g2; g3// gives a surjective mapping onto GL3 � GSO4.
Thus, there exists .g1; g2; g3/ such that Ad.g1; g2; g3; I2/:.Y1; X1/ D .Y2; X

0
2/. Then

Ad.I3; I2; I2; X�12 .X 02//:.Y2; X
0
2/ D .Y2; X2/:

It will be convenient to select a representative for our open orbit. A representative in
Mat3�4 �Mat2�2 would be0@0@1 1 1

1

1A ; �
1

1

�1A :
A convenient representative in v�1 ˚ v�2 would be X�0101100 C X�0111000 C X�0011100
CX�1011000 CX�0000110 CX�0000011: This will correspond to the above pair of matri-
ces up to some signs. In particular, it will be an element of the correct orbit. Let w0 D
wŒ243154234654237654�. (This notation for an element of the Weyl group was intro-
duced in Section 2.) Then there is a representative Pw0 for w0 such that

Ad. Pw0/:.X�0101100CX�0111000CX�0011100CX�1011000CX�0000110CX�0000011/

D X�˛4 CX�˛7 CX�˛1 CX�˛5 CX�˛6 CX�˛3 :

This nilpotent element corresponds to the regular orbit of the A6 Levi. We remark that if
a standard representative Rw0 is used then

Ad. Rw0/:.X�0101100CX�0111000CX�0011100CX�1011000CX�0000110CX�0000011/

D �X�˛4 CX�˛7 �X�˛1 CX�˛5 CX�˛6 �X�˛3 :

For the sake of completeness, we record our findings regarding the rational orbit
decomposition of Mat3�4.

Proposition 5.0.9. The set

¹Y 2 Mat3�4 W RankY D i; RankYJ4 tY D j º
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is nonempty if and only if either 0 � j � i � 2, or i D 3 and 2 � j � 3. It is a single
GL3 � GSO4-orbit unless i D j D 2, in which case it is a union of orbits which are in
one-to-one correspondence with the action of GL2 � GL1 on Matsym

2�2 :

Theorem 5.0.10. E� has a nonzero generalized Fourier coefficient attached to the ratio-
nal nilpotent orbit labeled by A6.

Proof. Take uDX�˛4 CX�˛7 CX�˛1 CX�˛5 CX�˛6 CX�˛3 and a rational semisim-
ple s0 element which acts by 2 on each simple root space. Then Fs0;u maps an automorphic
form to the GL7 nondegenerate Whittaker–Fourier integral of its constant term along
theA6 parabolic. It is clear that the residual representation supports this coefficient. There-
fore, by Theorem 3.1.2, it also supports Fs;u, where s is a neutral element for u:

Remark 5.0.11. We expect that in fact nm.E�/D ¹A6º. Indeed, we expect that if � is of
G2 type then at each unramified place v; �v is attached to a semisimple conjugacy class
of GL7.C/ which intersects the subgroup G2.C/: By Corollary 3.2.8 and Remark 3.2.10,
it follows from the discussion in §7.3.2 below that if there is even one unramified finite
place where this condition holds, then nm.E�/ D ¹A6º.

6. Descent Fourier coefficients and descent modules

From the table [5, pp. 403–404], we learn that there are two conjugacy classes of sl2-
triples in GE7 such that the stabilizer is ofG2 type. They are known as A005 and A2C 3A1.
For the sake of completeness, we consider Fourier coefficients and associated descent
modules attached to each of them.

6.1. A005

The weighted Dynkin diagram of this orbit is 2 0 0 0 2 2
0 . Let s be the standard semi-

simple element attached to the orbit. Then the Levi subgroup whose Lie algebra is gs0 is
the semidirect product of a derived group isomorphic to Spin8 and a four-dimensional
torus, while the space g�2 is the direct sum of two nonisomorphic irreducible eight-
dimensional representations of this Levi and one one-dimensional representation. On
each eight-dimensional representation we have a Spin8-invariant quadratic form, which

is unique up to scalar (see [11, Exercise 20.38]). The Levi acts on g
s
A00
5

�2 with an open
orbit. It is not hard to check that in this case the open orbit consists of triples such that
each eight-dimensional component is anisotropic relative to the Spin8-invariant form and
the one-dimensional component is nonzero (see [22]). The stabilizer of any point in this
open orbit is the product of the center of GE7 and a group isomorphic to G2. It is not hard
to check that

f0 WD X�0000001 CX�1111000 CX�1011100 CX�0101110 CX�0011110
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is in this open orbit. The corresponding copy of g2 is generated by

X˙0001000; X˙0100000 �X˙0010000 CX˙0000100;

and we embed G2 into GE7 so that X˙˛ D X˙0100000 � X˙0010000 C X˙0000100 and
X˙ˇ D X˙0001000: Recall that PA00

5
DMA00

5
UA00

5
D Ps DMsUs is the parabolic subgroup

defined as in Section 3.1, where s is the standard semisimple element (see Definition
5.0.1) attached to A005; MA005 D Ms is the Levi subgroup, and UA00

5
D Us is the unipotent

radical. Then UA00
5

contains U˛i if and only if i ¤ 2; 3; 4; 5: Let  f0U
A00
5

be the character of

UA00
5
.F /nUA00

5
.A/ attached to f0:

Definition 6.1.1. Let � be an irreducible cuspidal automorphic representation of GL7.A/
which is of G2 type (as in Definition 4.2.10). Let E� be the residual representation as in

Definition 4.2.13. We define the corresponding descent module D� D D
A00
5

� to be

D� WD ¹'
.U
A00
5
; 
f0
U
A00
5

/

jG2.A/ W ' 2 E�º;

where

'
.U
A00
5
; 
f0
U
A00
5

/

.g/ WD

Z
U
A00
5
.F /nU

A00
5
.A/
'.ug/ 

f0
U
A00
5

.u/ du; g 2 GE7.A/:

6.2. A2 C 3A1

The weighted Dynkin diagram of this orbit is 0 0 0 0 0 0
2 . Recall that M is the standard

Levi subgroup isomorphic to GL7 � GL1, P is the standard parabolic which contains it,
and U is the unipotent radical of P . Then P D MU D PA2C3A1 D MA2C3A1UA2C3A1
as in Definition 5.0.1, M DMA2C3A1 , U D UA2C3A1 .

Let e0 D X�1122100 CX�1112110 CX�1111111 CX�0112210 CX�0112111 and

 
e0
U .u/ D  .u1122100 C u1112110 C u1111111 C u0112210 C u0112111/

be the corresponding character of U.F /nU.A/: We write u 2 U as
Q
˛ x˛.u˛/ with the

roots taken in some fixed order. The coordinate u˛ is independent of the choice of order
provided the second coordinate of ˛ is 1.

Lemma 6.2.1. The stabilizer of  e0U in M is the product of the center and a group iso-
morphic to G2.

Proof. We can identify the space of characters of U.F /nU.A/ with the space

u
.�1/
2 D

L
h˛;$_

2
iD�1

u˛:

As representation of gl7, this representation is isomorphic to the exterior cube representa-
tion of GL7. It is well known (see [11, pp. 356–357]) that GL7 acts on this representation
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with an open orbit, and that the stabilizer of any point in this open orbit is of G2 type.
Using SageMath, with adjoint matrices from GAP, we verified that  e0U is fixed by

x1000000.a/x0001100.�a
2/x0000100.2a/x0001000.a/x0000001.�a/;

x0010000.b/x0000010.b/; x�0010000.b/x�0000010.b/;

x�1000000.a/x�0001100.a
2/x�0000100.a/x�0001000.2a/x�0000001.�a/:

These subgroups generate a split subgroup of GL7 ofG2 type. The stabilizer also contains
the center of GE7. It remains to prove that the stabilizer is no larger. For this purpose it
suffices to prove that our character corresponds to a point in the open orbit. In [11, p. 357]
a specific point in the open orbit is written down; it is a sum of five weight vectors. We
easily check that these five weights correspond to the five roots which appear in e0U . Over
an algebraically closed field, the torus acts transitively on the set of linear combinations
of these five weight vectors so that all five coefficients are nonzero. Therefore the point
corresponding to  e0U is also in the open orbit.

We remark that the embedding of G2 into GL7 obtained in this way agrees with the
one from [11].

It is convenient to know that the roots in supp. e0U / can be simultaneously conjugated
to simple roots. Let R1 D ¹1122100; 1112110; 1111111; 0112210; 0112111º; and w6 D
wŒ423546542314376542�: Then w6 �R1 D ¹˛1; ˛2; ˛3; ˛5; ˛7º:

Definition 6.2.2. Let � be an irreducible cuspidal automorphic representation of GL7.A/
which is of G2 type (as in Definition 4.2.10). Let E� be the residual representation as in
Definition 4.2.13. We define the corresponding descent module D� D D

A2C3A1
� to be

D� WD ¹'
.U; 

e0
U
/
jG2.A/ W ' 2 E�º;

where
'.U; 

e0
U
/.g/ WD

Z
U.F /nU.A/

'.ug/ 
e0
U .u/ du; g 2 GE7.A/:

Remark 6.2.3. The embedding of G2 which comes from the orbit A2 C 3A1 is closely
related to the appearance of ^3 in the constant term. Indeed, LS .s; �; r/ appears in the
constant term of an Eisenstein series of a group G if and only if r appears in the action of
the relevant Levi of LG on the nilpotent radical of the Lie algebra of the corresponding
parabolic. That is, r appears equipped with a realization as a space of nilpotent elements.
In fact, the realization of^3 is precisely as the space gs2 where s is the standard semisimple
element attached to A2 C 3A1: That is, the embedding of G2.C/ into GE7.C/ on the L-
group side as the stabilizer of a point in the representation obtained from an L-function,
and the embedding of G2 into GE7 as the stabilizer of a Fourier coefficient are essentially
the same embedding. This phenomenon does not occur in the classical situation of [16],
as it requires self-contragredientity of both the group denoted by H and the one denoted
by A in our discussion of the general set-up in the introduction.

In the introduction we remarked on prior work of Ginzburg where H D G2 and
A D F4, as well as prior work of Ginzburg–Hundley where H D F4 and A D E8, where
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the descent modules fail to be cuspidal. It is noteworthy that in both of those cases,H and
A are self-contragredient and the embedding of H into A obtained from the L-function
is the only embedding of H into A:

7. The A00
5

case

Recall from Definition 6.1.1 that in the A005 case the descent module D� is defined by
applying the Fourier coefficient .UA00

5
;  

f0
U
A00
5

/ from Section 6.1 to the residual representa-

tion E� , where � is an irreducible cuspidal automorphic representation of GL7.A/ which
is of G2 type. In this section, we prove the following theorem.

Theorem 7.0.1. Assume that � is an irreducible cuspidal automorphic representation of
GL7.A/ which is of G2 type, and D� is defined as in Definition 6.1.1. Then

(1) D� is generic.

(2) Suppose that there exists a finite place v0 such that �v0 is a principal series repre-
sentation of GL7.Fv0/ which is attached to a semisimple conjugacy class of GL7.C/,
and intersects the subgroup G2.C/. Then D� is cuspidal.

(3) Suppose that for almost all finite places v, �v is a principal series representation of
GL7.Fv/which is attached to a semisimple conjugacy class of GL7.C/, and intersects
the subgroup G2.C/. Then � is a weak functorial lift of each irreducible summand
of D� .

7.1. Genericity of the A005 descent module

The purpose of this section is to prove that the descent module D� is generic. The proof
can be explained using the language of “unipotent periods” introduced in [20]. Let UG2max

be the standard maximal unipotent subgroup of G2: Let  G2 be any character of UG2max.
Then the composite .UG2max;  

G2/ ı .UA00
5
;  

f0
U
A00
5

/ makes sense as a unipotent period on

C1.GE7.F /nGE7.A//: Explicitly, it maps ' 2 C1.GE7.F /nGE7.A// toZ
U
G2
max .F /nU

G2
max .A/

Z
U.F /nU.A/

'.u1u2g/ 
f0
U
A00
5

.u1/ G2.u2/ du1 du2:

In our discussion of unipotent periods it is helpful to note that

S  !
Y
˛2S

U˛

is a bijection

¹S � ˆ W ˛; ˇ 2 S; ˛ C ˇ 2 ˆ [ ¹0º ) ˛ C ˇ 2 Sº

 ! ¹T -stable unipotent subgroups of GE7º:
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Thus, it is often convenient to specify a unipotent subgroup V of GE7 by identifying
ˆ.V; T /: We adopt a convenient abuse of notation. Let V be a T -stable unipotent sub-
group of GE7 and let  V be a character of it. We shall call ¹˛ 2ˆ.V;T / W  V jU˛.A/ 6� 1º
the “support” of  V and denote it supp V . We denote by .V; V / or '.V; V / the follow-
ing attached unipotent period:Z

V.F /nV.A/
'.vg/ V .v/ dv; g 2 GE7.A/:

Given two unipotent periods .V;  V / and .U;  U /, if '.V; V / is left-invariant by U.F /,
then we denote the composed period by .U;  U / ı .V;  V /.

We recall the concept of equivalence of unipotent periods. Write P1 jP2 if P2 van-
ishes identically on any automorphic representation on which P1 vanishes identically.
Two periods P1 and P2 are said to be equivalent (denoted P1�P2) if P1 jP2 and P2 jP1.

In the study of Fourier coefficients of automorphic forms, in particular concerning the
global nonvanishing property, a technical lemma from [16] has been very useful in the
theory. We recall it as follows. Let G be any connected reductive group defined over F .
Let C be an F -subgroup of a maximal unipotent subgroup of G, and let  C be a non-
trivial character of ŒC � D C.F /nC.A/. Suppose X; Y are two unipotent F -subgroups
satisfying the following conditions:

(1) X and Y normalize C ;

(2) X \ C and Y \ C are normal in X and Y , respectively, and both .X \ C/nX and
.Y \ C/nY are abelian;

(3) X.A/ and Y.A/ preserve  C ;

(4)  C is trivial on .X \ C/.A/ and .Y \ C/.A/;

(5) ŒX; Y � � C ;

(6) there is a nondegenerate pairing .X \ C/.A/nX.A/ � .Y \ C/.A/nY.A/ ! C�,
given by .x; y/ 7!  C .Œx; y�/, which is multiplicative in each coordinate, and iden-
tifies the set .Y \ C/.F /nY.F / with the dual of X.F /.X \ C/.A/nX.A/; and
.X \ C/.F /nX.F / with the dual of Y.F /.Y \ C/.A/nY.A/:

LetBDCX andDDCY , and extend C trivially to characters of ŒB�DB.F /nB.A/
and ŒD� D D.F /nD.A/, which will be denoted by  B and  D respectively. When there
is no confusion, we will denote both  B and  D by  C .

Lemma 7.1.1 ([16, Lemma 7.1 and Corollary 7.1]). Assume that .C;  C ; X; Y / satisfies
all the above conditions. Let f be an automorphic function of uniformly moderate growth
on G.A/. ThenZ

ŒB�

f .vg/ B.v/ dv D

Z
.X\C/.A/nX.A/

Z
ŒD�

f .uxg/ D.u/ du dx; 8g 2 G.A/:

The right hand side of the above equality is convergent in the senseZ
.X\C/.A/nX.A/

ˇ̌̌̌Z
ŒD�

f .uxg/ D.u/ du

ˇ̌̌̌
dx <1;
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and this convergence is uniform as g varies in compact subsets of G.A/. Moreover,
.B; B/ � .D; D/:

We consider the unipotent period .U1; 
a

U1
/ where U1 is the T -stable unipotent group

attached to the set of positive roots whose complement is ¹1011000; 0001110; 1010000;
0000110; 1000000; 0000010º: Also  

a

U1
.u/ D  .u0000001 C u1111000 C u1011100 C

u0101110C u0011110C a1u˛2 C a2u˛3 C a3u˛5 C a4u˛4/. For aD .a1; a2; a3; a4/ 2F 4,
we define a character  a

U
G2
max

of UG2max by  a
U
G2
max
.u/ D  .a4uˇ C .a1 � a2 C a3/u˛/:

Lemma 7.1.2. The period .U1;  
a

U1
/ is equivalent to the composed period .UG2max;  

a

U
G2
max
/

ı .UA00
5
;  

f0
U
A00
5

/:

Proof. The proof consists of three applications of the “exchange lemma”, Lemma 7.1.1.
Each time, the group X is a product of two commuting root subgroups U
1 ; U
2 of GE7,
and there are three roots ˇ1; ˇ2; ˇ3 of GE7 and a root ı of G2 such that g2 \

L3
iD1 uˇi

D uı . For the group Y we may use any complement to Uı in Uˇ1Uˇ2Uˇ3 : The roots
which determine the groups X and Y in the successive applications of Lemma 7.1.1 are
given in the table below.

X Y ı

1000000; 0000010 0111000; 0101100; 0011100 2˛ C ˇ

1010000; 0000110 0101000; 0011000; 0001100 ˛ C ˇ

1011000; 0001110 0100000; 0010000; 0000100 ˛

Checking conditions (1) to (6) for Lemma 7.1.1 is similar to the proof of Lemma 8.1.3.

Note that the character  aU1 is attached to

fa WD f0 C a1X�˛2 C a2X�˛3 C a3X�˛5 C a4X�˛4 :

Lemma 7.1.3. (1) Let X be a nilpotent element of e7. Then X is in the closure of A6 if
and only if ad.X/14 D 0. In this case ad.X/13 is also 0:

(2) Let X be in the closure of A6. Then X is in A6 itself if and only if ad.X/12 ¤ 0.

Proof. To any nilpotent element X 2 e7 we may associate the rank sequence
.rank ad.X/k/1

kD0
. (All but finitely many entries are zero.) It is clear that the rank

sequence is an invariant of the stable orbit of X . In general the map from stable orbits
to rank sequences is not injective, but one can check (using GAP, for example) that for
e7 it is. This lemma can then be proved by inspecting the rank sequences for all nilpotent
orbits in e7, obtained from GAP, while using the chart in [5, p. 442] to see which orbits
are in the closure of A6:

Lemma 7.1.4. (1) For a in general position, fa is in the orbit E7.a4/:

(2) The orbit of fa is in the closure of A6 if and only if at least one of the following
conditions holds:
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(a) a4 D 0;

(b) a3 D 0 and a1 D a2;

(c) a1 D a3c1.c1 C 2/ and a2 D a3c1.c1 C 1/ for some c1:

(3) If a4 D 0, or a3 D 0 and a1 D a2, then the orbit of fa is strictly less than A6:

(4) If a1 D a3c1.c1 C 2/ and a2 D a3c1.c1 C 1/, then fa is in A6 if and only if a4 and
a1 � a2 C a3 are both nonzero, i.e., the character  a

U
G2
max

is generic.

Proof. Using GAP and SageMath, we compute that for a in general position,
Rank ad.fa/14 D 1;Rank ad.fa/13 D 2;Rank ad.fa/12 D 4: It follows that for a in gen-
eral position, fa is an element of the orbit E7.a4/. An element f of e7 lies in the closure
of A6 if and only if ad.f /13 D 0: It lies in A6 itself if and only if Rank ad.f /12 D 3:

Further, Rank ad.fa/14 D 0 if and only if a4 D 0 or

.a1 � a2/
2
C a3.a1 � 2 a2/ D 0: (7.1.5)

If a4 D 0, then Rank ad.fa/11 D 0, and fa is in an orbit which is less than A6: If a3 D 0
and a2 D a1, the same is true.

If a3¤ 0 then we may let b1D a1 � a2, and (7.1.5) becomes b1 � a2D�b21=a3. Then
letting c1 D b1=a3; this becomes a2 D c1a3 C c21a3. Also a1 D c1a3 C a2 D 2c1a3 C
c21a3: We may compute ad.fa/, with a1; a2 defined by these formulas, using SageMath.
After dropping all rows and columns that consist entirely of zeros, we obtain a 9 � 9
matrix, all of whose entries are divisible by 462a23a4.c1 C 1/

2, which is easily seen to be
rank 3 if this expression is nonzero. Further, when a1; a2 are defined by these formulas,
we have a1 � a2 C a3 D .c1 C 1/a3. From this we conclude that for any a such that
fa 2 A6; the character  a

U
G2
max

is generic.

Remark 7.1.6. Note that the character a
U
G2
max

is trivial if and only if a4 D a1 � a2C a3 D

0. We found that in this case fa is always in the orbit A005:

Lemma 7.1.7. Let U2 be the T -stable unipotent subgroup such that

ˆ.T;U2/ D ˆ
C
X ¹0000100; 0000110; 0001100; 0010000; 0011000; 1010000º;

and let  aU2 W U2.A/! C� be the character of U2.F /nU2.A/ given by

 
a

U2
.u/ D  .u0000111 C u0101100 C u0001110 C u0111000 C u1011000

C a3u0000010 C a4u0011100 C a1u0100000 C a2u1000000/:

Let � denote entrywise multiplication in F 4:

.c1; c2; c3; c4/ � .a1; a2; a3; a4/ D .c1a1; c2a2; c3a3; c4a4/:

Then there exists c D .c1; c2; c3; c4/ 2 ¹˙1º4 such that .U1;  
a

U1
/ � .U2;  

c�a

U2
/ for all

a 2 F 4:
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Proof. Conjugate by a suitable representative of wŒ5631�: For any representative,
PwŒ5631�, we have PwŒ5631�x˛.r/ PwŒ5631��1 D xwŒ5631�˛.c PwŒ5631�;˛r/; for some constant
c PwŒ5631�;˛ which depends on ˛, the choice of representative PwŒ5631�, and the struc-
ture constants of the Chevalley basis. Moreover, there exist representatives such that
c PwŒ5631�;˛ 2 ¹˙1º for all ˛: Since the five roots from the original A005 character can be
simultaneously conjugated to simple roots, it follows that we can adjust our representa-
tive by an element of the torus to make these five coefficients 1.

The character  aU2 is attached to Ad. PwŒ5631�/fc�a, which is, of course, in the same
orbit as fc�a. We have seen in Lemma 7.1.4 that if this orbit is greater than or equal
to A6, then  c�a

U
G2
max

will be a generic character of UG2max. But the set of such characters is

permuted transitively by the torus of G2. Hence, all such characters are equivalent. That
is, .U2;  

a

U2
/ � .U2;  

b

U2
/ whenever the nilpotent elements attached to  aU2 and  bU2 are

both attached to orbits that are greater than or equal to A6:

Lemma 7.1.8. Let U3 be the T -stable unipotent subgroup such that

ˆ.T;U2/ D ˆ
C
X ¹0000001; 0000100; 0001000; 0001100; 0010000; 0011000º;

and let aU3 WU3.A/!C� be the character given by aU3.u/D .u0001110Cu0101100C
u0000111Cu0111000Cu1010000Ca3u0000011Ca4u0011100Ca1u0101000Ca2u1000000/:

Then there exists d 2 ¹˙1º4 such that .U2;  
a

U2
/ � .U3;  

d�a

U3
/ for all a 2 F 4.

Proof. Exchange ˛7 for 0000110 and ˛4 for 1010000, applying Lemma 7.1.1, and then
conjugate by a suitable representative for wŒ47�:

Lemma 7.1.9. Let U5 be the unipotent subgroup attached to E7.a4/. Thus U˛i is in U5
for i D 1; 4 and 7. Let U4 be the subgroup of U5 defined by the condition u˛4 D 0: And
 
a

U4
be the character of this group defined by the same formula as aU3 . Then .U3; 

a

U3
/�

.U4;  
a

U4
/:

Proof. We exchange 0100000 for 0011000, 0000010 for 0001100, and then 0000110 for
0000001, applying Lemma 7.1.1.

Proposition 7.1.10. For a 2 F 4 and b 2 F , let  a;bU5 be the character given by

 
a;b

U5
.ux˛4.r// D  

a

U4
.u/ .br/ for u 2 U4.A/ and r 2 A: Then an automorphic rep-

resentation supports the period .U4; 
a

U4
/ if and only if it supports .U5; 

a;b

U5
/ for some b:

Proof. Given an automorphic form ' we perform Fourier expansion of '.U4; 
a

U4
/ along

the one-dimensional unipotent group U˛4.F /nU˛4.A/:

Let M¹2;3;5;6º be the standard Levi subgroup of GE7 which contains U˛i if and only
if i D 2; 3; 5, or 6. (Thus, M¹2;3;5;6º is the standard Levi factor of a standard parabolic
whose unipotent radical is the group U5:)
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Proposition 7.1.11. Let ya D X�0001110 C X�0101100 C X�0000111 C X�0111000 C

X�1010000 C a3X�0000011 C a4X�0011100 C a1X�0101000 C a2X�1000000, which is the
nilpotent element associated to  

a

U4
and  

a;0

U5
: Let e00 D X�1010000 C X�0000011 C

X�0111000 C X�0101100 C X�0011100 C X�0001110: If ya is in the orbit A6 then there

exists m in M¹2;3;5;6º such that Ad.m/:ya D e00. In particular, if  
e0
0

U5
is the character

of U5.A/ attached to e00, then the periods .U5;  
a;0

U5
/ and .U5;  

e0
0

U5
/ are equivalent.

Proof. Computations very similar to those in the proof of Lemma 7.1.4 show that ya is
inA6 if and only if a4; a3 ¤ 0, a1 D 2c1a3C c21a3; a2 D�.c

2
1a3C c1a3/, with c1 ¤�1:

Let

u1.b1; b2; b3; b4; b5/Dx0100000.b1/x0010000.b2/x0000100.b3/x0000010.b4/x0000110.b5/;

l1.b1; b2; b3; b4; b5/Dx�0100000.b1/x�0010000.b2/x�0000100.b3/x�0000010.b4/

� x�0000110.b5/:

Then u1.a3a4c1;�.a3c
2
1 C a3c1/; c1a3;�a3a4c

2
1 ; a

2
3a4c

2
1/ maps ya to

X�0001110 CX�0101100 CX�0000111 CX�0111000 CX�1010000

C .a3 C a3c1/X�0000011 C a4X�0011100:

Then acting on this by

l1

�
1

2a3a4.c1 C 1/
;�

1

2a3.c1 C 1/
;�

1

a3.c1 C 1/
;�

1

2a3a4.c1 C 1/
;�

1

4a23a4.c1 C 1/
2

�
produces

X�0001110 CX�0101100 CX�0111000 CX�1010000

C .a3 C a3c1/X�0000011 C a4X�0011100:

Then acting by a suitable torus element produces e00:

Lemma 7.1.12. Letw3 D wŒ24315423465423765�: Then there is a representative Pw3 for
w3 in GE7.F / such that Pw3e00 D X�˛1 CX�˛3 CX�˛4 CX�˛5 CX�˛6 CX�˛7 :

Proof. One may check (using LiE for example) thatw3 maps the six roots which appear in
the expression for e00 to the six negative simple roots in the GL7 subgroup. It follows that
the identity holds up to nonzero scalars for any representative PwŒ24315423465423765�.
We may then adjust by an element of T .F / to make all the scalars 1.

Remark 7.1.13. Let s D 2 0 2 0 0 2
0 be the standard semisimple element attached to the

orbit E7.a4/. Then .U5;  
e0
0

U5
/ D Fs;e0

0
:

Lemma 7.1.14. Let s0 D w�13 : 2 2 2 2 2 22 . Then Fs0;e0
0
.E�/ ¤ 0:
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Proof. Let e2 D w3e
0
0 D X�˛1 C X�˛3 C X�˛4 C X�˛5 C X�˛6 C X�˛7 and s00 D

2 2 2 2 2 2
2 . Then as in the proof of Theorem 5.0.10, Fs00;e2 maps an automorphic form

to the GL7 nondegenerate Whittaker–Fourier integral of its constant term along the
A6 parabolic. Therefore, Fs00;e2.E�/ ¤ 0. Since for ' 2 E� we have Fs0;e0

0
.'/.g/ D

Fs00;e2.'/.w3g/, it follows that Fs0;e0
0
.E�/ ¤ 0:

Lemma 7.1.15. Fs;e0
0
jFs0;e0

0
. Hence, Fs;e0

0
.E�/ ¤ 0:

Proof. By Theorem 3.1.11, we only need to check that

gu \ gs�1 � gs
0

�1:

Here u D e00; s D
2 0 2 0 0 2

0 . In order to check this condition, it is convenient to embed
u into a neutral pair. The element u is in the orbit A6 and it is not hard to check that
wŒ4�:u lies in the unipotent radical determined by 0 0 2 0 2 0

0 . It follows that wŒ4�:u forms
a neutral pair with 0 0 2 0 2 0

0 , and thence u forms a neutral pair with

wŒ4�: 0 0 2 0 2 00 D 0 2 �2 2 2 0
2 DW s0:

Now, we know that gu � g
s0
�0. Hence gu \ gs�1 � g

s0
�0 \ gs�1: It is not hard to check

that g
s0
�0 \ gs�1 is the sum of the root subgroups attached to the following roots:

¹1011000; 0001000; 0101000; 0011000; 0001100; 1000000; 0000001º

and from there its not hard to check that g
s0
�0 \ gs�1 � gs

0

�1:

In fact, it turns out that s0 D 7s � 6s0. It immediately follows that if s acts on X with
a positive eigenvalue, and s0 acts on X with a nonpositive eigenvalue, then s0 acts on X
with a positive eigenvalue, which is what we wanted.

Corollary 7.1.16. If  a
U
G2
max

is generic, then E� supports .UG2max;  
a

U
G2
max
/ ı .UA00

5
;  

f0
U
A00
5

/:

Proof. If  a
U
G2
max

is generic, then – since  a
U
G2
max

depends only on a1 � a2 C a3 – we may

assume that a1 D a2 D 0. In this case, by Lemma 7.1.4, the element fa is in A6: Hence,
if c and d are as in Lemmas 7.1.7 and 7.1.8 respectively, then yc�d�a, which is conjugate
to fa, is also in A6. From Proposition 7.1.11, Lemmas 7.1.12 and 7.1.15, and Remark
7.1.13, it follows that E� supports .U5;  

a;0

U5
/. Then, by Proposition 7.1.10 and Lemmas

7.1.9, 7.1.8, 7.1.7, and 7.1.2, it supports .UG2max;  
a

U
G2
max
/ ı .UA00

5
;  

f0
U
A00
5

/ as well.

Reformulating Corollary 7.1.16 gives the main theorem of this section.

Theorem 7.1.17. D� is generic.

Remark 7.1.18. (1) It can be shown that for each a 2 F 4 there is a unique b 2 F such
that the nilpotent element attached to the character  c�d�a;bU5

is in the closure of A6, and
that this element is in A6 if and only if  a

U
G2
max

is a generic character.
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(2) If � is not of G2 type but LS .s; �;^3/ has a pole at s D 1, then Theorem 7.1.17
is still valid for the residual representation E� with exactly the same proof.

(3) It follows from the proof above that given any irreducible automorphic represen-
tation … of GE7.A/, if Fs;e0

0
.…/ ¤ 0 then the .UA00

5
;  

f0
U
A00
5

/-Fourier coefficients of … are

generic. In particular, this applies to the residue of our Eisenstein series at 1, whenever it
exists.

7.2. Local descent

Since the results of [17] hold in both the local and global settings, the same set of argu-
ments given in the global setting above also provides a local analogue.

Theorem 7.2.1. Let Fv be a nonarchimedean local field. Suppose that an irreducible
admissible representation …v of GE7.Fv/ supports the twisted Jacquet module attached
to .U5;  

a;0

U5
/ with ya .see Proposition 7.1.11/ in the orbit A6. Then the .UA00

5
;  

f0
U
A00
5

/-

twisted Jacquet module of …v supports twisted Jacquet modules attached to UG2max and all
generic characters of UG2max: In particular, this holds when …v is the local component of
any irreducible summand of E� where � has the property that LS .s; �;^3/ has a pole at
s D 1.

7.3. Unramified constituents of E�

7.3.1. Unramified lifting. Let � be an unramified character of GL7.Fv/ where Fv is
nonarchimedean. Recall that our isomorphism of the Levi M of GE7 with GL7 � GL1
maps h.t1; : : : ; t8/ to0BBBBBBBBB@

t�18 t7
t�17 t6

t�16 t5
t�15 t4

t�14 t2t3
t�13 t2t1

t�11 t2

1CCCCCCCCCA
:

Thus, it identifies � with a matrix zt D diag.zt1; : : : ; zt7/ in GL7.C/ such that

�.h.t1; : : : ; t8// D zt
n7�n8
1

zt
n6�n7
2

zt
n5�n6
3

zt
n4�n5
4

zt
n2Cn3�n4
5

zt
n1Cn2�n3
6

zt
n2�n1
7 ;

where ni D ord.ti / for i D 1; : : : ; 8.
If zt 2 G2.C/ then zt3 D zt1=zt2, zt4 D 1, zt5 D zt2=zt1, zt6 D zt �12 , and zt7 D zt �11 , hence

�.h.t1; : : : ; t8// D zt
n1�2n2�n3Cn4Cn5�n6Cn7�n8
1

zt
�n1C2n3�n4�n5C2n6�n7
2 :
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We can rephrase this as follows. Let �1 D $1 � 2$2 �$3 C$4 C$5 �$6 C$7

�$8, and �2 D �$1 C 2$3 �$4 �$5 C 2$6 �$7, and let �i be the unramified
character of GL1.Fv/ attached to zti for i D 1; 2: Then

�.t/ D �1.t
�1/�2.t

�2/ for t D h.t1; : : : ; t8/ 2M: (7.3.1)

This element zt 2G2.C/�GL7.C/ also determines a character� of the standard torus
of G2. If ˛ is the short simple root of G2 and ˇ is the long simple root, then ˛_ is the
long simple coroot and is identified with the long simple root of the dual group, while ˇ_

is identified with the short simple root of the dual. Then

�.t˛
_

1 t
ˇ_

2 / D

�
zt1

zt2

�n2�zt 22
zt1

�n1
D zt

�n1Cn2
1

zt
2n1�n2
2 ;

where ni D ord.ti / for i D 1; 2:

7.3.2. Degeneration. Recall that P is the standard parabolic subgroup of GE7 whose
unipotent radical contains U˛i if and only if i D 2, and Q is the standard parabolic sub-
group of GE7 whose unipotent radical contains U˛i if and only if i D 4 or 6:

Suppose now that �v is a principal series representation of GL7.Fv/ which is attached
to a character of the form (7.3.1). We consider the representation IndGE7.Fv/

P.Fv/
�v � j z$2j.

If �v is the local component of a cuspidal representation � of G2 type, then the resid-
ual representation E� is a quotient of IndGE7.A/

P.A/ � � j z$2j. It may be reducible, but it is
in the discrete spectrum, and if … is any irreducible summand, then …v is a quotient
of IndGE7.Fv/

P.Fv/
�v � j z$2j. Moreover, if …v is unramified, then it is the unique unramified

constituent of IndGE7.Fv/
P.Fv/

�v � j z$2j:

Lemma 7.3.2. Letw6 bewŒ423546542314376542� as in Section 6.2, so w6 maps the five
roots in the character  e0U to ¹˛i W i D 1; 2; 3; 5; 7º: Let w0 denote the longest element of
the Weyl group of GE7 which is reduced by P on the left and right. Then w6w0 maps �1
to $4 �$6 �$8, �2 to �$4 C 2$6 �$8; and $2 to �Q � �B C .3=2/$8:

Proof. This can be checked using a computer software package such as LiE.

Since w6w0�1 pairs trivially with all coroots in the Levi of Q, it induces a rational
character �1 of this Levi. Similarly, w6w0�2 induces a rational character �2.

Corollary 7.3.3. The unramified constituent of IndGE7.Fv/
P.Fv/

�vj z$2j is equal to that of

IndGE7.Fv/
Q.Fv/

.�1 ı �1/.�2 ı �2/ z$
3=2
8 : (7.3.4)

Proposition 7.3.5. Let .s; u/ be a Whittaker pair such that u is contained in an orbit
which is greater than or not related to A6. Let U D exp.gs�2/: Then both J.U; u/ and
JNs;u; u kill the representation (7.3.4).

Proof. This follows from Corollary 3.2.8 (cf. Remark 3.2.10).
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7.4. Cuspidality of the A005 descent module

The purpose of this section is to show that D� is cuspidal, provided that there exists a
finite place v0 such that �v0 is a principal series representation of GL7.Fv0/ which is
attached to a character of the form (7.3.1). There are two maximal parabolic subgroups
of G2. Recall that ˇ denotes the long simple root of G2 and ˛ denotes the short one,
and for 
 2 ¹ˇ; ˛º, P
 denotes the maximal parabolic subgroup of G2 whose Levi M


contains the root subgroup U
 attached to 
 . Finally, N
 denotes the unipotent radical
of P
 :

7.4.1. Constant term along N˛ .

Lemma 7.4.1. Let hP˛ D 2˛_ C 4ˇ_: This is the standard semisimple element of G2
which is attached to the parabolic P˛ .

(1) The embedding of G2 into GE7 identifies hP˛ with 2˛_2 C 2˛
_
3 C 4˛

_
4 C 2˛

_
5 .

(2) The weight attached to this semisimple element is �2 0 2 0 �2 00 :

(3) The Weyl element wP˛ D wŒ134567245631� maps this weight to the dominant weight
2 0 0 0 0 0

0 :

(4) Let

f1 D X�0100000 CX�0011000 CX�0001100 CX�0000110 CX�0000011:

Then there exists a representative PwP˛ for wP˛ which maps f0 to f1:

Proof. The embedding fixed in Section 6.1 maps ˛_ to ˛_2 C ˛
_
4 C ˛

_
5 and ˇ_ to ˛_4 so

(1) is clear. Parts (2) and (3) can be checked using LiE. As for part (4), let

Sf1 D ¹�0100000;�0011000;�0001100;�0000110;�0000011º:

Then we can first check using LiE that wP˛ maps the five roots 
 such that X
 appears
in f0 to the five roots of Sf1 . This ensures that any representative PwP˛ maps f0 toP

2Sf1

c
X
 for some quintuple .c
 /
2Sf1 of elements of F �. Since PwP˛ is unique
up to an arbitrary element of the torus T .F /, it suffices to show that for any such quin-
tuple .c
 /
2Sf1 , there is an element t 2 T .F / which acts on X
 by c
 for each 
 2 Sf1 .
Since E8 is of adjoint type and GE7 contains the full torus of E8, the elements of F � by
which t acts on X˛1 ; : : : ; X˛7 can be chosen arbitrarily. Since Sf1 is a subset of a basis of
the root lattice, it follows that the scalars by which t acts on ¹X
 W 
 2 Sf1º can be chosen
arbitrarily as well.

Lemma 7.4.2. Let U1 be the unipotent subgroup of GE7 such that ˆ.U1; T / D
ˆC.GE7; T / X ¹˛1; ˛2; ˛3; ˛5; ˛6; 1010000; 0000110º: Let  f0U1 be the character of U1
determined by f0, and let tri denote the trivial character ofN˛ . Then the composed period
.N˛; tri/ ı .UA00

5
;  

f0
U
A00
5

/ is equivalent to .U1;  
f0
U1
/:

Proof. This follows from the exchange lemma (Lemma 7.1.1). (Cf. Lemma 7.1.2.)
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Now let U2 D wP˛U1w
�1
P˛
: Then it follows from Lemma 7.4.1 (4) that .U1;  

f0
U1
/ is

equivalent to .U2;  
f1
U2
/:

Lemma 7.4.3. Let S3 be the set which consists of all positive roots of E7 except

0000001; 0000100; 0010000; 1000000; 1010000; 1011000; 1011100; 1011110; 1011111;

and in addition contains �1000000;�1010000. This set is closed under addition, and
hence determines a unipotent subgroup U3. The nilpotent element f1 determines a char-
acter of U3.A/ which we denote by  f1U3 . Then .U2;  

f1
U2
/ is equivalent to .U3;  

f1
U3
/:

Proof. We apply the exchange lemma (Lemma 7.1.1) six times, exchanging �1111100
for 1122100, �1111000 for 1112100, �1011111 for 1111111, �1011110 for 1111110,
�1011100 for 1111100, and �1011000 for 1111000:

Lemma 7.4.4. For a; b 2 F , let f2.a; b/ D f1 C aX�1011110 C bX�1011111: Let U4 be
the product of U3 and the two-dimensional unipotent group corresponding to 1011110
and 1011111. Then �

U3;  
f1
U3

�
D

X
a;b2F

�
U4;  

f2.a;b/
U4

�
:

Proof. This follows from taking the Fourier expansion on the two-dimensional unipotent
group corresponding to 1011110 and 1011111.

Lemma 7.4.5. The element f2.a; b/ lies in the orbit D6.a1/ unless a D b D 0:

Proof. This was checked using GAP and SageMath. An element X of e7 is in D6.a1/ if
and only if Rank ad.X/k is given as in the table for the listed values of k.

k 10 11 12 13 14

Rank ad.X/k 11 6 3 2 1

GAP was used to obtain adjoint matrices for a Chevalley basis of e7: These were then
loaded into SageMath, in order to work in the polynomial ring ZŒa; b�. The matrices
ad.f .a;b//k were then computed, starting with kD 1 and continuing until the zero matrix
was obtained. Next, we deleted any rows and columns consisting entirely of zeros to
obtain a sequence of smaller matrices, which we refer to as the nonzero parts of the
matrices ad.f .a; b//k : Clearly, each matrix has the same rank as its nonzero part. Next,
we computed the ranks of the matrices ad.f .a; b//k , deducing that as an element of
e7.ZŒa; b�/, f2.a; b/ lies in the orbit D6.a1/. This implies that for any specific scalars a
and b, f2.a; b/ lies in the Zariski closure of D6.a1/.

Now, each stable orbit which is less than D6.a1/ is contained in the closure of either
E7.a5/ or D5. (See, for example, the diagram in [5, p. 442].)

IfX lies in the closure ofE7.a5/ then ad.X/14D 0. The nonzero part of ad.f .a;b//14

is �
�1716a2 �1716ab

�1716ab �1716b2

�
:

We deduce that if f .a; b/ is in the closure of E7.a5/ then a D b D 0:



Descent from GL7 to G2 4437

If X lies in the closure of D5, then rank ad.X/11 � 4. A suitable permutation of the
rows and columns of the nonzero part of ad.f .a; b//11 puts it into the form0BB@

0 0 0 A

0 0 B 0

0 � tB 0 0

� tA 0 0 0

1CCA
where

A D

�
0 264a �330a �66b �528a2 �330a2 �528ab 330ab

66a 330b �264b 0 �528ab �330ab �528b2 330b2

�
;

B D

�
�594a �528a2 �528ab 1188a2 1188ab

�594b �528ab �528b2 1188ab 1188b2

�
:

It is fairly easy to see that if .a; b/¤ .0; 0/, then A and � tA are of rank 2, B and � tB are
of rank 1, and ad.f .a; b//11 is of rank 6:

Lemma 7.4.6. Let U 04 D wŒ31�U4wŒ13�, which is the unipotent radical of a parabolic
subgroup and contains the root subgroup U˛i attached to the simple root ˛i if i D 2; 3,
or 6: Let PwŒ31� be a representative for wŒ31� and f 02.a; b/ D Ad. PwŒ31�/f2.a; b/. Then
for any smooth automorphic function ',

'
.U4; 

f2.a;b/

U4
/
.g/ D '

.U 0
4
; 
f 0
2
.a;b/

U 0
4

/
. PwŒ31�g/:

In particular, the periods .U4;  
f2.a;b/
U4

/ and .U 04;  
f 0
2
.a;b/

U 0
4

/ are equivalent.

Proposition 7.4.7. Let E D
N
v Ev be an irreducible automorphic representation of

GE7.A/ and assume that there is a finite place v0 such that Ev0 is induced from a
character of the group Q from Section 7.3.2. Then E does not support the coefficient

.U 04;  
f 0
2
.a;b/

U 0
4

/ for .a; b/ ¤ .0; 0/:

Proof. This follows from Corollary 3.2.7, since the Richardson orbit of Q is A6 (cf.
Remark 3.2.10) and f 02.a; b/ is in D6.a1/ by Lemma 7.4.5.

Proposition 7.4.8. Let S5 be the set which consists of all positive roots of E7 except

0000001; 0000100; 0010000; 1000000; 1010000:

Then for any smooth automorphic function ';

'
.U4; 

f1
U4
/
.g/ D

Z
A

Z
A
'
.U5; 

f1
U5
/
.x�1000000.r1/x�1010000.r2/g/ dr1 dr2:

In particular, .U4;  
f2.0;0/
U4

/ is equivalent to .U5;  
f2.0;0/
U5

/:

Proof. This is another application of the exchange lemma (Lemma 7.1.1).
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Lemma 7.4.9. Let U6 be the product of U5 and the two-dimensional unipotent group
U˛1U˛1C˛3 : For a;b 2 F , let f3.a;b/D f1C aX�˛1 C bX�1010000. Then .U5; 

f2.0;0/
U5

/

D
P
a;b2F .U6;  

f3.a;b/
U6

/:

Proof. This is again just a Fourier expansion.

Lemma 7.4.10. The residual representation E� does not support the period
.U6;  

f3.0;0/
U6

/:

Proof. This holds because U6 contains the full unipotent radical of the standard maximal
parabolic subgroup of E7 whose Levi is of type D6, and the character  f3.0;0/U6

is trivial

on this subgroup. Thus .U6;  
f3.0;0/
U6

/ factors through the constant term attached to this
maximal parabolic. But that parabolic is not associate to the one used in constructing our
Eisenstein series, so neither the Eisenstein series nor its residue will support this constant
term.

Lemma 7.4.11. If .a; b/ ¤ .0; 0/ then f3.a; b/ lies in the orbit D6:

Proof. We use the same method which we used above to find the orbit of f2.a; b/:

Proposition 7.4.12. Let E D
N
v Ev be an irreducible automorphic representation of

GE7.A/ and assume that there is a finite place v0 such that Ev0 is induced from a
character of the group Q from Section 7.3.2. Then E does not support the coefficient
.U6;  

f3.a;b/
U6

/ for .a; b/ ¤ .0; 0/:

Proof. This follows from Corollary 3.2.7 and Lemma 7.4.11, because the Richardson
orbit of Q is A6 (cf. Remark 3.2.10).

Hence, we have the following theorem.

Theorem 7.4.13. Let � be an irreducible cuspidal automorphic representation of
GL7.A/ which is of G2 type, such that �v0 is induced from a character of the form (7.3.1)

at some finite place v0: Then the constant term of E

.U
A00
5
; 
f0
U
A00
5

/

� along N˛ is zero.

7.4.2. Constant term along Nˇ . Let hPˇ D 4˛
_ C 6ˇ_: This is the standard semisimple

element ofG2 which is attached to the parabolicPˇ . The embedding ofG2 into GE7 iden-
tifies hPˇ with 4˛_2 C 4˛

_
3 C 6˛

_
4 C 4˛

_
5 . The weight attached to this semisimple element

is �4 2 0 2 �4 02 . The Weyl element wPˇ D wŒ3; 4; 1; 3; 2; 4; 5; 6; 7; 4; 3; 2; 4; 5; 6; 4; 3; 1�
maps this to the dominant weight 0 2 0 0 0 00 :

Lemma 7.4.14. Let U1 be the unipotent subgroup of GE7 such that ˆ.U1; T / D
ˆC.GE7; T / X ¹0001000; 1011000; 0001110; 1010000; 0000110; 1000000; 0000010º:
Let  f0U1 be the character of U1 determined by f0, and let tri denote the trivial character

of Nˇ .A/. Then the composed period .Nˇ ; tri/ ı .UA00
5
;  

f0
U
A00
5

/ is equivalent to .U1;  
f0
U1
/:
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Proof. This follows from the exchange lemma (Lemma 7.1.1). (Cf. Lemma 7.1.2.)

Now let U2 D wPˇU1w
�1
Pˇ

and

f1 D X�0100000 CX�0001000 CX�0000100 CX�0000010 CX�0000001:

Then there exists a representative PwPˇ for wPˇ which maps f0 to f1; so .U1;  
f0
U1
/ is

equivalent to .U2;  
f1
U2
/.

Lemma 7.4.15. Let S3 be the set which consists of all positive roots of E7 except

0010000; 0011000; 0011100; 0111000; 1000000; 1010000; 1011000;

1011100; 1011110; 1111000; 1111100; 1122100; 1122110; 1122210;

and in addition contains

�1111000;�1011100;�1011000;�0011000;�1122100;�1010000;�0010000:

This set is closed under addition, and hence determines a unipotent subgroup U3. The
nilpotent element f1 determines a character of U3.A/ which we denote  f1U3 . Then

.U2;  
f1
U2
/ is equivalent to .U3;  

f1
U3
/:

Proof. We apply the exchange lemma (Lemma 7.1.1) five times, exchanging �1122210
for 1123210, �1122111 for 1122211, �0011100 for 0011110, �0111000 for 0111100,
�1122110 for 1122111.

Lemma 7.4.16. For a 2 F , let f2.a/ D f1 C aX�1122210: Let U4 be the product of U3
and the one-dimensional unipotent group corresponding to 1122210. Then

.U3;  
f1
U3
/ D

X
a2F

.U4;  
f2.a/
U4

/:

Proof. This follows from taking the Fourier expansion on the one-dimensional unipotent
group corresponding to 1122210.

Lemma 7.4.17. The element f2.a/ lies in the orbit D6.a1/ unless a D 0:

Proof. The method is similar to that of Lemma 7.4.5.

Proposition 7.4.18. Let E D
N
v Ev be an irreducible automorphic representation of

GE7.A/ and assume that there is a finite place v0 such that Ev0 is induced from a charac-
ter of the groupQ from Section 7.3.2. Then E does not support the coefficient .U4; 

f2.a/
U4

/

for a ¤ 0:

Proof. Recall that for S � ¹1; 2; 3; 4; 5; 6; 7º; PS denotes the standard parabolic subgroup
whose Levi contains the root subgroups attached to the simple roots ¹˛i W i 2Sº and whose
unipotent radical contains the root subgroups attached to the simple roots ¹˛i W i … Sº. Let
w D wŒ425423413�. Let U 04 D wU4w

�1, which is contained in the unipotent radical of
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P¹2;3;5;6º: Let Pw be a representative forw and f 02.a/DAd. Pw/f2.a/. Then for any smooth
automorphic function ',

'
.U4; 

f2.a/

U4
/
.g/ D '

.U 0
4
; 
f 0
2
.a/

U 0
4

/
. Pwg/:

In particular, the periods .U4;  
f2.a/
U4

/ and .U 04;  
f 0
2
.a/

U 0
4

/ are equivalent.
Hence, it suffices to show that E does not support the coefficient .U 04;  

f 0
2
.a/

U 0
4

/ for
a ¤ 0: This follows from Corollary 3.2.7 and Lemma 7.4.17, because the Richardson
orbit of Q is A6 (see Remark 3.2.10).

Proposition 7.4.19. Let S5 be the set which consists of all positive roots of E7 except

0010000; 0011000; 0111000; 1000000; 1010000; 1011000; 1111000; 1122100;

and in addition contains �1010000; �0010000: Then .U4;  
f2.0/
U4

/ is equivalent to

.U5;  
f2.0/
U5

/:

Proof. This is another application of the exchange lemma (Lemma 7.1.1) five times:
exchanging �1011100 for 1011110, �1111000 for 1111100, �1122100 for 1122110,
�0011000 for 0011100, �1011000 for 1011100.

Lemma 7.4.20. Let U6 be the product of U5 and the one-dimensional unipotent group
U1122100. For a 2 F , let f3.a/ D f1 C aX�1122100. Then

.U5;  
f2.0/
U5

/ D
X
a2F

.U6;  
f3.a/
U6

/:

Proof. This is again just a Fourier expansion.

Lemma 7.4.21. If a ¤ 0 then f3.a/ lies in the orbit D6.

Proof. The method is similar to that of Lemma 7.4.5.

Proposition 7.4.22. Let E D
N
v Ev be an irreducible automorphic representation of

GE7.A/ and assume that there is a finite place v0 such that Ev0 is induced from a charac-
ter of the groupQ from Section 7.3.2. Then E does not support the coefficient .U6; 

f3.a/
U6

/

for a ¤ 0:

Proof. Let U 06 D wŒ3; 4; 1; 3�U6wŒ3; 4; 1; 3�. Let PwŒ3; 4; 1; 3� be a representative for
wŒ3; 4; 1; 3� and f 03.a/ D Ad. PwŒ3; 4; 1; 3�/f3.a/. Then for any ',

'
.U6; 

f3.a/

U6
/
.g/ D '

.U 0
6
; 
f 0
3
.a/

U 0
6

/
. PwŒ3; 4; 1; 3�g/:

In particular, the periods .U6;  
f3.a/
U6

/ and .U 06;  
f 0
3
.a/

U 0
6

/ are equivalent.
Hence, it suffices to show that E does not support the coefficient .U 06;  

f 0
3
.a/

U 0
6

/ for
a ¤ 0:
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Now, write sD6 for the standard semisimple element attached to the orbitD6. Let VD6
be the unipotent group whose Lie algebra is g

sD6
�2 : Then U 06 D VD6U0000100U0001100,

and  
f 0
3
.a/

U 0
6

is trivial on U0000100U0001100. So '
.U 0
6
; 
f 0
3
.a/

U 0
6

/
may be written as a double

integral with the inner integral being '
.VD6 ; 

f 0
3
.a/

VD6
/
: So, it suffices to show that the coeffi-

cient .VD6 ;  
f 0
3
.a/

VD6
/ vanishes on E: This follows from Corollary 3.2.7 and Lemma 7.4.21,

because the Richardson orbit of Q is A6 (see Remark 3.2.10), and D6 is greater than A6:
The role of “P ” in Corollary 3.2.7 is played by P¹4º:

Lemma 7.4.23. Let U7 be the product of U6 and the two-dimensional unipotent group
U0111000U1111000. For a; b 2 F , let f4.a; b/ D f1 C aX�0111000 C bX�1111000. Then

.U6;  
f3.0/
U6

/ D
X
a;b2F

.U7;  
f4.a;b/
U7

/:

Proof. This is again just a Fourier expansion.

Lemma 7.4.24. If .a; b/ ¤ .0; 0/ then f4.a; b/ lies in the orbit D6.a1/.

Proof. The method is similar to that of Lemma 7.4.5.

Proposition 7.4.25. Let E D
N
v Ev be an irreducible automorphic representation of

GE7.A/ and assume that there is a finite place v0 such that Ev0 is induced from a
character of the group Q from Section 7.3.2. Then E does not support the coefficient
.U7;  

f4.a;b/
U7

/ for .a; b/ ¤ .0; 0/:

Proof. Let U 07 D wŒ13�U7wŒ31� and f 04.a; b/ D Ad. PwŒ13�/:f4.a; b/. Then U 07 D U¹3;4º:
We apply Corollary 3.2.7 with P D P¹3;4º. Since the Richardson orbit of Q is A6 (see
Remark 3.2.10), it follows from Lemma 7.4.24 that Ev0 does not support the coefficient

.U 07;  
f 0
4
.a;b/

U 0
7

/, which is clearly equivalent to .U7;  
f4.a;b/
U7

/:

Proposition 7.4.26. Let S8 be the set which consists of all positive roots of E7 except
0010000; 1010000. Then .U7;  

f4.0;0/
U7

/ is equivalent to .U8;  
f4.0;0/
U8

/:

Proof. This is another application of the exchange lemma (Lemma 7.1.1) twice: exchang-
ing �1010000 for 1011000, �0010000 for 0011000.

Lemma 7.4.27. Let U9 be the product of U8 and the two-dimensional unipotent group
U0010000U1010000: For a; b 2 F , let f5.a; b/ D f1 C aX�0010000 C bX�1010000. Then

.U8;  
f4.0;0/
U8

/ D
X
a;b2F

.U9;  
f5.a;b/
U9

/:

Proof. This is again just a Fourier expansion.

Lemma 7.4.28. If .a; b/ ¤ .0; 0/ then f5.a; b/ lies in the orbit D6:

Proof. The method is similar to that of Lemma 7.4.5.
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Proposition 7.4.29. Let E D
N
v Ev be an irreducible automorphic representation of

GE7.A/ and assume that there is a finite place v0 such that Ev0 is induced from a
character of the group Q from Section 7.3.2. Then E does not support the coefficient
.U9;  

f5.a;b/
U9

/ for .a; b/ ¤ .0; 0/:

Proof. Note that U9 is the full unipotent radical of the parabolic P¹1º. We apply Corollary
3.2.7 withP DP¹1º: The result follows from Lemma 7.4.28, because the Richardson orbit
of Q is A6 (see Remark 3.2.10).

Lemma 7.4.30. The residual representation E� does not support the period
.U9;  

f5.0;0/
U9

/:

Proof. This holds because U9 contains the full unipotent radical of the standard maximal
parabolic subgroup P¹1;2;4;5;6;7º; and the character  f5.0;0/U9

is trivial on this subgroup.

Thus .U9;  
f5.0;0/
U9

/ factors through the constant term attached to this maximal parabolic.
But that parabolic is not associate to the one used in constructing our Eisenstein series, so
neither the Eisenstein series nor its residue will support this constant term.

Hence, we have the following theorem.

Theorem 7.4.31. Let � be an irreducible cuspidal automorphic representation of
GL7.A/ which is of G2 type, such that �v0 is induced from a character of the form (7.3.1)

at some finite place v0: Then the constant term of E

.U
A00
5
; 
f0
U
A00
5

/

� along Nˇ is zero.

Therefore, Theorems 7.4.13 and 7.4.31 together imply the following theorem on the

cuspidality of our descent module E

.U
A00
5
; 
f0
U
A00
5

/

� .

Theorem 7.4.32. Let � be an irreducible cuspidal automorphic representation of
GL7.A/ which is of G2 type, such that �v0 is induced from a character of the form (7.3.1)

at some finite place v0: Then E

.U
A00
5
; 
f0
U
A00
5

/

� is a cuspidal automorphic representation of
G2.A/.

Remark 7.4.33. It follows from the proof above that given any irreducible automorphic
representation … of GE7.A/, if D6.a1/; D6 … n.…/ and the constant terms of … along
P¹2;3;4;5;6;7º and P¹1;2;4;5;6;7º are identically zero, then the .UA00

5
;  

f0
U
A00
5

/-Fourier coeffi-

cients of … are cuspidal.

7.5. Unramified local descent

The purpose of this section is to show that � is a weak functorial lift of each irreducible
summand of D� , provided that for almost all finite places v, �v is a principal series
representation of GL7.Fv/ which is attached to a character of the form (7.3.1).
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Recall that PA00
5
D MA00

5
UA00

5
D Ps D MsUs is the parabolic subgroup defined as in

Section 3.1, where s D sA00
5

is the standard semisimple element (see Definition 5.0.1)
attached to A005; MA005 DMs is the Levi subgroup, and UA00

5
D Us is the unipotent radical.

We consider the twisted Jacquet module

J
U
A00
5
; 
f0
U
A00
5

�
IndGE7.Fv/

Q.Fv/
.�1 ı �1/.�2 ı �2/e$3=2

8

�
:

For �i and �i , see §7.3. To that end we study the spaceQ.Fv/nGE7.Fv/=G2.Fv/UA00
5
.Fv/

of double cosets, where G2 is embedded into MA00
5

as the stabilizer of f0.
For 
 2 Q.Fv/nGE7.Fv/=G2.Fv/UA00

5
.Fv/ we say that 
 is admissible if we have

 
f0
U
A00
5

jU
A00
5
\.
�1Q
/ � 1: Each double coset contains elements of the form w� with w

in the Weyl group of minimal length in its .Q; PA00
5
/-double coset, and � 2 MA00

5
.Fv/:

Indeed, � may be taken modulo G2.Fv/ on the right and MA00
5
\ w�1Qw – which is a

standard parabolic subgroup of MA00
5
– on the left. Then

 
f0
U
A00
5

jU
A00
5
\.
�1Q
/ � 1 ” � �  

f0
U
A00
5

ˇ̌̌
U
A00
5
\.w�1Qw/

� 1:

Note also that � �  f0U
A00
5

D  
Ad.�/:f0
U
A00
5

. Clearly Ad.�/:f0 is in the open orbit for the action

of MA00
5

on g
s
A00
5

�2 :

Lemma 7.5.1. Let
ˆA00

5
.2/ D ¹˛ 2 ˆ W h˛; sA00

5
i D 2º:

Then
P
˛2ˆ

A00
5
.2/ a˛X�˛ is in A005 if and only if

.a0011110a0101110 � a0001110a0111110 � a0000110a0112110 � a0000010a0112210/
2

�.a1011100a1111000�a1011000a1111100Ca1010000a1112100Ca1000000a1122100/
2a20000001

¤ 0:

Proof. Direct computation using SageMath, with adjoint matrices obtained using GAP.

Proposition 7.5.2. The set of reduced representatives w for QnGE7=PA00
5

such that

 
f
U
A00
5

jU
A00
5
\w�1Qw � 1 for some f in the open MA00

5
-orbit of g

s
A00
5

�2 has only one element,

namely,

w0 WD wŒ4231435423165423143542654317654231435426543176�:

Proof. If  fU
A00
5

jU
A00
5
\w�1Qw � 1 with f D

P
˛2ˆ

A00
5
.2/ a˛X�˛; then

¹˛ 2 ˆA00
5
.2/ W w˛ < 0º

contains ¹˛ 2 ˆA00
5
.2/ W a˛ ¤ 0º: If f is in the open orbit, then it follows from Lemma

7.5.1 that ¹˛ 2 ˆA00
5
.2/ W a˛ ¤ 0º contains
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(1) the root 0000001,

(2) two roots of the form 1 � � � �00 that add up to 2122100,

(3) two roots of the form 0 � � � �10 that add up to 0112220:

One can check using LiE that QnGE7=PA00
5

has 786 elements. Of these, only 342 map
0000001 to a negative root. Of these 342 only 120 map two roots of the form 1 � � � �00

that add up to 2122100 to negative roots, and of these 120 only one maps two roots of the
form 0 � � � �10 that add up to 0112220 to negative roots. Thus there is only one element
of QnGE7=PA00

5
such that the set

¹f 2 g
s
A00
5

�2 W  
f
U
A00
5

jU
A00
5
\w�1Qw � 1º

contains elements of the orbit A005. This element is w0:

Lemma 7.5.3. The orbit A005 is a single rational orbit.

Proof. The space g
s
A00
5

�2 decomposes as a direct sum of three irreducible MA00
5
-modules:

hX0000001i and

v010

WD hX0000010; X0000110; X0001110; X0101110; X0011110; X0111110; X0112110; X0112210i;

v100

WD hX1000000; X1010000; X1011000; X1111000; X1011100; X1111100; X1112100; X1122100i:

We identify an element of g
s
A00
5

�2 with a triple .x; y; z/ where x and y are column vectors

of size 8 and z is a scalar. The action of MA00
5

on g
s
A00
5

�2 then induces a rational homomor-
phism MA00

5
! GL8 � GL8 � GL1: From Lemma 7.5.1, the triple .x; y; z/ corresponds

to an element of A005 if q1.x/q2.y/z ¤ 0, where q1 and q2 are two quadratic forms.
The derived group of MA00

5
is isomorphic to Spin8, and its image in GL8 � GL8 � GL1

preserves the forms q1 and q2. That is, the image the derived group is contained in
SO8.q1/ � SO8.q2/ � ¹1º. By [21, Propositions 1 and 4], we can map any triple which
corresponds to an element of A005 to one of the form0BBBBBBBBBB@

266666666664

0

0

0

a

1

0

0

0

377777777775
;

266666666664

0

0

0

b

1

0

0

0

377777777775
; z

1CCCCCCCCCCA
using an element of the derived group of MA00

5
: It then suffices to show that the torus of

GE7 contains an element t which acts by a�1 on X�1111000, by b�1 on X�0101110, by
z�1 on X�0000001 and by 1 on X�1011100 and X�0011110: Since the images of t under the
seven simple roots of E7 can be chosen arbitrarily, this is easy.
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Proposition 7.5.4. Let P1;w0 WDMA005 \ w
�1
0 Qw0: Then P1;w0 acts transitively on

¹f 2 g
s
A00
5

�2 .F / \ A
00
5 W  

f
U
A00
5

jU
A00
5
\w�1

0
Qw0
� 1º:

In the language of §3.2, the w0-admissible subvariety of PA00
5

is equal to P1;w0 �G2UA005 :

Proof. Write f 2 g
s
A00
5

�2 as
P
˛ a˛X�˛ , and identify it with a triple .x; y; z/ as above,

given by

tx D Œa1000000 a1010000 a1011000 a1111000 a1011100 a1111100 a1112100 a1122100�;

ty D Œa0000010 a0000110 a0001110 a0101110 a0011110 a0111110 a0112110 a0112210�:

The group P1;w0 is the standard parabolic subgroup of MA00
5

whose Levi contains U˙˛2
and U˙˛3 , and whose unipotent radical contains U˛4 and U˛5 . This parabolic preserves a
flag in each of the spaces v100 and v010 which is compatible with the order placed on the
roots above. Specifically, write

x D

2664
x1
x2
x3
x4

3775 ; y D

2666664
y1
y2
y
3

y4
y5

3777775 ;
where xi is a column vector of size 2 for each i , y

3
is a column vector of size 4, and yi is

a scalar for i D 1; 2; 4; 5. Then the standard Levi subgroup of P1;w0 respects this decom-
position. The condition  fU

A00
5

jU
A00
5
\w�1

0
Qw0
� 1 is equivalent to a0112110 D a0112210 D

a1112100 D a1122100 D 0; i.e., to x4 D 0; y4 D y5 D 0:
The triple .x; y; z/ corresponds to an element of A005 if z ¤ 0 and x and y are each

anisotropic relative to a certain quadratic form (cf. Lemma 7.5.1). When x4; y4 and y5
are trivial, this forces y

3
and

� x2
x3

�
to be anisotropic.

The derived group of the Levi of P1;w0 is isomorphic to SL2 � SL2; its action on the
y
3

component of v010 can be identified with the action of SL2 � SL2 on 2� 2matrices by
.g1; g2/ � Y D g1Yg

�1
2 : Anisotropic elements correspond to matrices Y with detY ¤ 0:

Clearly, each such matrix is in the same orbit as a diag.a; 1/ for some a. It follows that
each f is in the same orbit as one with a0011110 D a0101110 D 0; a0111110 D 1. The
condition f 2A005 forces a0001110¤ 0:Once y

3
is of this form, the subgroup of SL2 � SL2

which preserves it is isomorphic to SL2. The four-dimensional space corresponding to x2
and x3 can then be identified with 2 � 2 matrices with this SL2 acting by g � X D gX

(matrix multiplication). Once again, detX ¤ 0 for
� x2
x3

�
anisotropic. Hence we can choose

a suitable element of SL2 so that gX D diag.b; 1/. Hence we can arrange a1111100 D 1,
a1011100 D a1111000 D 0. The condition f 2 A005 then forces a1011000 ¤ 0: Now, acting
by a suitable element of the torus, we can arrange a1011000 D a0001110 D a0000001 D 1
without changing the existing conditions a0111110 D a1111100 D 1: Finally, we can act by
an element x0011000.a/x0101100.b/x0001100.c/x0111000.d/ to make x1; y1 and y2 trivial.
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Proposition 7.5.5. The twisted Jacquet module

J
U
A00
5
; 
f0
U
A00
5

�
IndGE7

Q

�
.�1 ı �1/.�2 ı �2/ z$

3=2
8

��
is isomorphic as a representation of G2 to IndG2BG2

�, where � is given in Section 7.3.1
and BG2 is the Borel subgroup ofG2 obtained by intersectingG2 with our standard Borel
of GE7:

Proof. It now follows from the results of §3.2 that

J
U
A00
5
; 
f0
U
A00
5

�
IndGE7

Q

�
.�1 ı �1/.�2 ı �2/ z$

3=2
8

��
D J

U
A00
5
; 
f0
U
A00
5

.Iw0/;

where

Iw0 Š c-ind
G2UA00

5

G2UA00
5
\w�1

0
Qw0

�
.�1 ı �1/.�2 ı �2/ z$

3=2
8

�
ı
1=2
Q ı Ad.w0/:

The group G2 \ w
�1
0 Qw0 is the standard Borel subgroup of G2, while UA00

5
\

w�10 Qw0 is the product of the root subgroups attached to the following five roots:

¹0112110; 0112210; 0112211; 1112100; 1122100º:

Let J denote the sum of these five roots.
We compute

J D �2$1 C 2$4 C$5 � 2$6 �$7 �$8;

�1 ı Ad.w0/ D �$1 C$4 �$5 �$6 C$7 C$8;

�2 ı Ad.w0/ D �$4 C 2$5 � 2$7 C$8;

z$8 ı Ad.w0/ D z$8;

ı
1=2
Q D 3$4 C 2$6 � 13$8;

ı
1=2
Q ı Ad.w0/ D �8$1 C 3$4 C 2$5 � 8$6 � 2$7 C 13$8:

Each of these induces a rational character of the standard torus TG2 of the embedded G2.
If the fundamental weights are denoted $G2

1 and $G2
2 , then

J D $
G2
1 C 2$

G2
2 ;

�1 ı Ad.w0/jTG2 D �$
G2
1 C$

G2
2 ;

�2 ı Ad.w0/jTG2 D 2$
G2
1 �$

G2
2 ;

z$8 ı Ad.w0/jTG2 D 0;

ı
1=2
Q ı Ad.w0/jTG2 D 2$

G2
1 C 3$

G2
2 :

Thus .�1 ı �1/.�2 ı �2/ z$
3=2
8 ı Ad.w0/jTG2 is precisely the character � given in Section

7.3.1, and an element h of Iw0 satisfies h.utg/ D �.t/ı
1=2
Q .w0tw

�1
0 /h.g/ for u in the

standard maximal unipotent of G2 and t 2 TG2 :
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Now, for h 2 Iw0 let

W:h.g/ WD

Z
.U
A00
5
\w�1

0
Qw0/nUA00

5

h.ug/ 
f0
U
A00
5

.u/ du:

(This is convergent, since the support of h is compact modulo .UA00
5
G2 \ w

�1
0 Qw0/:)

Then the kernel of W is the kernel of the canonical map Iw0 ! J
U
A00
5
; 
f0
U
A00
5

.Iw0/. That

is, the image ofW is a concrete realization of J
U
A00
5
; 
f0
U
A00
5

.Iw0/. (The proof is the same as

in [20, Section 10].) Further, direct computation shows that

W:h.u1u2tg/

D 
f0
U
A00
5

.u1/�.t/ı
1=2
Q ıAd.w0/.t/jt j�JW:h.g/; u1 2UA00

5
; u2 2U

G2
max; t 2 TG2 ; g 2G2:

But
.ı
1=2
Q ı Ad.w0/ � J /jTG2 D $

G2
1 C$

G2
2 D ı

1=2
BG2

:

Hence restriction from G2UA00
5

to G2 is a linear isomorphism from the image of W onto

IndG2BG2
.�/:

Hence, we have proved the following theorem.

Theorem 7.5.6. Assume that for almost all finite places v, �v is a principal series rep-
resentation of GL7.Fv/ which is attached to a character of the form (7.3.1). Then every
irreducible summand of D� weakly functorially lifts to � .

Remark 7.5.7. It follows from the proof above that given any irreducible automorphic
representation … of GE7.A/ and any finite local place v, if …v has the form as in (7.3.4),
then the .UA00

5
;  

f0
U
A00
5

/-twisted Jacquet module of …v has the form IndG2BG2
�, where � is

given in Section 7.3.1.

8. The A2 C 3A1 case

Recall from Definition 6.2.2 that in the A2 C 3A1 case the descent module D� is defined
by applying the Fourier coefficient .U;  e0U / from Section 6.2 to the residual representa-
tion E� , where � is an irreducible cuspidal automorphic representation of GL7.A/ which
is of G2 type. In this section, we prove the following theorem.

Theorem 8.0.1. Assume that � is an irreducible cuspidal automorphic representation of
GL7.A/ which is of G2 type, and D� is defined as in Definition 6.2.2. Then

(1) D� is generic.

(2) D� is not cuspidal. Actually, D� supports all degenerate Whittaker–Fourier coeffi-
cients of G2.
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We also study the unramified local descent as in Section 7.5, which is motivated by
the question of whether irreducible subquotients of D� would lift functorially back to � ,
and provides evidence that they might well not.

8.1. Nonvanishing Fourier coefficients of the descent module

The main goal of this subsection is to prove (in the following theorem) that the descent
module supports the Whittaker–Fourier integral along the maximal unipotent of G2
against any character of this group. In particular, it is globally generic, but not cuspidal,
and its constant term along the Borel is nontrivial.

Theorem 8.1.1. Recall that UG2max is the standard maximal unipotent subgroup of G2,
and let  G2 be any character of UG2max.F /nU

G2
max.A/: Write .UG2max;  

G2/ for the cor-
responding .possibly/ degenerate Whittaker–Fourier integral. That is, for any f 2

C1.G2.F /nG2.A//,

f .U
G2
max ; 

G2 /.g/ WD

Z
U
G2
max .F /nU

G2
max .A/

f .ug/ G2.u/ du:

Then .UG2max;  
G2/ does not vanish identically on the descent module D� . That is, there is

some D 2 D� such that D.U
G2
max ; 

G2 / ¤ 0:

Define V1 WD UU
G2
max and define  V1 W V1.F /nV1.A/ ! C� by  V1.u1u2/ D

 
e0
U .u1/ 

G2.u2/ for u1 2 U and u2 2 U
G2
max (this is a well-defined character of

V1.F /nV1.A/). Then the composed period .UG2max;  
G2/ ı .U;  

e0
U / is .V1;  V1/: Theo-

rem 8.1.1 is therefore an immediate consequence of the following theorem.

Theorem 8.1.2. The period .V1;  V1/ does not vanish identically on E� .

Lemma 8.1.3. Let

S02 D

²
0100000; 0101000; 0111000; 0101100; 1111000; 0111100; 0101110; 1111100;

0112100; 0111110; 0101111; 1112100; 1111110; 0112110; 0111111

³
:

Let S2 D ˆC X S02 and S 02 D S
0
2 [ ¹1223210; 1223211º. Let V2 and V 02 be the T -stable

unipotent subgroups of GE7 corresponding to S2 and S 02:
Let  V2 denote a character of V2 such that supp V2 is contained in

¹1000000; 0010000; 0001000; 0000100; 0000010; 0000001;

1111111; 1122100; 1112110; 0112210; 0112111º;

and  V2 jV1.A/\V2.A/ D  V1 jV1.A/\V2.A/: Then for any automorphic function f W

GE7.F /nGE7.A/! C of uniformly moderate growth, and any g 2 GE7.A/;

f .V1; V1 /.g/ D

Z
.V2\V

0
2
.A//nV 0

2
.A/
f .V2; V2 /.v02g/ dv

0
2:

Moreover, .V1;  V1/ � .V2;  V2/:
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Proof. The proof is by nine successive applications of Lemma 7.1.1. The applications
come in three basic types. In the first type there are two roots ˇ1 2ˆ.M;T /, 
1 2ˆ.U;T /
such that X D U
1 and Y D Uˇ1 : In these cases g2 \ u
1 D ¹0º; and the roots ˇ1; 
1 are
given in the table below. Recall that g2 is the Lie algebra of G2.

In the second type, there are two roots ˇ1; ˇ2 2 ˆ.M;T / and ı 2 ˆlg;C
G2

(positive long
roots of G2) such that g2 \ uˇ1 ˚ uˇ2 D uı : In these cases, there is a root 
 2 ˆ.U; T /
such that X D U
 which has a pairing with Uˇ1Uˇ2 as in Lemma 7.1.1, and Uı is the
right kernel of this pairing. We may take Y to be any complement of Uı in Uˇ1Uˇ2 so
that the group D in Lemma 7.1.1 contains the whole group Uˇ1Uˇ2 . For these cases, the
roots ˇ1; ˇ2 and 
 are given in the table below.

The third type is similar to the second, except that ı is a short root of G2. In this
case (see proof of Lemma 6.2.1), there are four roots ˇ1; ˇ2; ˇ3; ˇ4 2 ˆ.M; T / such
that g2 \

L4
iD1 uˇi D uı . Moreover, there is a unique pair of them such that the sum

is another root ˇ5 2 ˆ.M; T /: The product
Q5
iD1 Uˇi is a T -stable subgroup. In fact, it

is the smallest T -stable subgroup of GE7 which contains Uı : We denote it Vı : It is two-
step nilpotent with center Uˇ5 : In these cases the group X is a product

Q3
iD1 U
i which

has a pairing with Vı as in Lemma 7.1.1, and UıUˇ5 , is the right kernel of this pairing.
For Y , we may select any subgroup of Vı which contains Uˇ5 such that the image in the
abelian quotient Vı=Uˇ5 is complementary to the image of Uı : In the table below we give

1; 
2; 
3 and ˇ1; : : : ; ˇ5 with ˇ5 in parentheses.

X Y ı

0100000 1011111

0101000 0011111; 1011110 3˛ C 2ˇ

0111000 0001111; 1011100 3˛ C ˇ

0101100 0011110

1111000; 0111100; 0101110 0000111; 0001110; 0011100; 1011000; .1011111/ 2˛ C ˇ

1111100; 0112100; 0101111 0000011; 0011000; 0000110; 1010000; .0011110/ ˛ C ˇ

0111110 0001100

1112100 0000010; 0010000 ˇ

1111110; 0112110; 0111111 0000001; 0001000; 0000100; 1000000; .0001100/ ˛

At the first stage, the group B is just V1. At each later stage it is the group D obtained
from the previous stage. At each stage the group C may be thought of as the subgroup
of B obtained by deleting the roots listed under “X” in the table. More precisely, the Lie
algebra c of C is the largest subalgebra of the Lie algebra b of B whose projection onto
u
i is trivial for each i . The group D is the product of C and the root subgroups attached
to the roots listed under “Y ” in the table.

Checking conditions (1) to (6) for Lemma 7.1.1 is fairly routine. The order in which
the nine applications of Lemma 7.1.1 are carried out is important. It is useful to con-
sider the bigrading in which the root subgroup U
 , where 
 D

P7
iD1 ci˛i , gets grading

.c2;
P7
iD1 ci � c2/: Notice that as the table is read top-to-bottom, the second component

of this grading is nondecreasing in the column labeled “X” and nonincreasing in the col-
umn labeled “Y ”. This determines a partial ordering on the nine rows. It is fairly easy to
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check most of the conditions of Lemma 7.1.1 provided this partial ordering is respected,
but (3) and (6) require some care, particularly for applications of the third type. We dis-
cuss the first application of the third type in some detail and leave all the remaining details
to the reader.

For the first application of the third type,X D U1111000U0111100U0101110 Š u1111000
˚ u0111100 ˚ u0101110; while Vı D U0000111U0001110U0011100U1011000U1011111: The
center of Vı is Uˇ5 D U1011111. The quotient Vı.A/=U1011111.A/may be identified with
u0000111 ˚ u0001110 ˚ u0011100 ˚ u1011000: The character of C.A/ which we consider
is given by

 
e0
C .exp c/ D  .�.e0; c// .c 2 c.A//:

In order to check conditions (3) and (6) we must consider the pairing

‡.x; y/ WD  
e0
C .Œx; y�/;

where
Œx; y� D xyx�1y�1; x 2 X.A/; y 2 Vı.A/:

(It is trivial on X.A/ � Uˇ5.A/ and hence may be regarded as a pairing on the set
X.A/ � Vı=Uˇ5.A/:) The pairing ‡ satisfies

‡.exp a; exp b/ D  .�.e0; Œa; b�// D  .!e0.a; b//; (8.1.4)

where

Œa; b� D ab � ba; a 2 u1111000 ˚ u0111100 ˚ u0101110;

b 2 u0000111 ˚ u0001110 ˚ u0011100 ˚ u1011000:

To check condition (3), we have to check that X.A/ and Y.A/ preserve  C . This
amounts to checking that‡ is trivial onX.A/�Uı=Uˇ5.A/ and on Y.A/�Uı=Uˇ5.A/:
The former is obvious, since uı D g2 \

L4
iD1 uˇi . The latter is also obvious, since

Y � Vı and Vı=Uˇ5 is abelian. To check condition (6), we have to check that ‡ is non-
degenerate on X.A/ � Y.A/=Uˇ5.A/ for any Y such that Y=Uˇ5 is complementary to
Uı=Uˇ5 . In other words, we have to show that

¹y 2 Vı.A/ W ‡.x; y/ D 1 8x 2 X.A/º D Uı.A/:

By (8.1.4), this reduces to showing that

¹b 2 u0000111 ˚ u0001110 ˚ u0011100 ˚ u1011000 W

�.e0; Œa; b�/ D 0 8a 2 u1111000 ˚ u0111100 ˚ u0101110º D uı :

Now �.e0; Œa; b�/D��.Œb; e0�; a/, which is certainly trivial if b 2 uı , since Œb; e0�D 0 for
all b 2 g2: On the other hand, if b … uı D g2 \

L4
iD1 uˇi , then Œb; e0� is nonzero, hence

�.Œb; e0�; a/¤ 0 for some a 2 e7 because � is nondegenerate, and hence �.Œb; e0�; a/¤ 0
for some a 2 u1111000 ˚ u0111100 ˚ u0101110 because � respects the bigrading.
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Remark 8.1.5. As noted, for applications of Lemma 7.1.1 of the second and third types,
the group Y is not uniquely determined, but can be taken to be any complement to a given
subgroup. This is the reason that  V2 may be chosen with some degree of freedom. In
addition we have a degree of freedom in the choice of  G2 :

In order to proceed further, it will be convenient to write  V2 and  G2 explicitly in
coordinates. There exist a1; a3; a4; a5; a6; a7 2 F such that

 V2.v/ D  .v1122100 C v1112110 C v1111111 C v0112210 C v0112111

C a1v˛1 C a3v˛3 C a4v˛4 C a5v˛5 C a6v˛6 C a7v˛7/

for all v 2 V2: Then G2.u/D ..a1Ca4Ca5Ca6/u˛C .a3Ca6/uˇ / for all u2UG2max.
Rewrite  V2 as  aV2 with a D ¹a1; a3; a4; a5; a6; a7º.

Lemma 8.1.6. Let

S3 D ˆ
C
[¹�˛4ºn¹0000001; 0001000; 0001100; 0001111; 0011000; 0101000; 0112100;

0112111; 1011000; 1112100; 1112111; 1123211; 0100000; 0010000; 0000100; 0000010º;

and let V3 be the corresponding T -stable unipotent subgroup. Let  a
0

V3
W V3.A/! C� be

given by

 .v0000111 C v0111100 C v0101110 C v1010000 C v0011110

C a01v0101100 C a
0
3v0000011 C a

0
4v0011100 C a

0
5v˛1 C a

0
6v0111000 C a

0
7v0001110/:

Let w4 D wŒ745632451342�: Then there is a representative Pw4 for w4 such that for

each a there exists a0 with a0i being a nonzero scalar multiple of ai and f .V3; 
a0

V3
/
.g/ D

f
.V2; 

a

V2
/
. Pw4g/ for all f 2 C1.GE7.F /nGE7.A// and g 2 GE7.A/, whence .V2; 

a

V2
/

� .V3;  
a0

V3
/:

Proof. Let

R1 D ¹1122100; 1112110; 1111111; 0112210; 0112111º;

R2 D ¹˛i W 1 � i � 7; i ¤ 2º;

R01 D ¹0000111; 0111100; 0101110; 1010000; 0011110º;

R02 D ¹0101100; 0000011; 0011100; 1000000; 0111000; 0001110º:

Then w4R1 D R01 and w4R2 D R02:
For any representative Pw4 for w4, we have V3 D Pw4V2 Pw�14 , and

 
a

V2
. Pw�14 v Pw4/ D  

�X
˛2R1

c Pw4;˛vw4˛ C

7X
iD1
i¤2

aic Pw4;˛i vw4˛i

�
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for some nonzero constants c Pw4;˛ depending on the choice of the representative Pw4. The
point is to show that Pw4 may be chosen so that c Pw4;˛ D 1 for all ˛ 2 R1. Now, Pw4 is
unique up to an element of the maximal torus T of GE7; so it suffices to check that the
mapping T ! GL51 induced by the five elements of R1 is surjective. This follows from
the fact that these five elements can be simultaneously conjugated to simple roots, as seen
in Section 6.2.

Remark 8.1.7. Recall that the descent Fourier coefficient is attached to the standard
semisimple element 0 0 0 0 0 0

2 : The regular nilpotent orbit of g2 is attached to a stan-
dard semisimple element of g2, which may then be mapped to a semisimple element of
ge7, namely 2 2 2 2 2 2

�12 : The sum is 2 2 2 2 2 2
�10 : If we regard it as a coweight, it is

not dominant. The dominant element of its Weyl orbit is 2 0 2 0 0 2
0 ; which is the stan-

dard semisimple element attached to a nilpotent orbit of E7 whose Bala–Carter label is
E7.a4/. The element w4 maps 2 2 2 2 2 2

�10 to 2 0 2 0 0 2
0 . This was the original motiva-

tion for considering w4; V3, and  a
0

V3
:

Lemma 8.1.8. Let

S4 D ˆ
C
[ ¹�˛4º n ¹0000001; 0001000; 0001100; 0001111; 0011000; 0101000;

0112100; 1011000; 0100000; 0010000; 0000100; 0000010º;

and let V4 be the corresponding unipotent subgroup. Let  a
0

V4
be the character such that

 
a0

V4

ˇ̌
V3.A/

D 
a0

V3
and a

0

V4

ˇ̌
U

�1 for 
2ˆ.V4;T / nˆ.V3;T /: Then .V3; 

a0

V3
/ j .V4; 

a0

V4
/:

Proof. One may write .V4;  
a0

V4
/ as a double integral with .V3;  

a0

V3
/ as inner integral.

Lemma 8.1.9. Let S5 D S4 [ ¹0001111; 0000001º n ¹�˛4; 0000110º: Let V5 be the cor-
responding T -stable unipotent group. Let  a

0

V5
W V5.A/! C� be the character such that

 
a0

V5
jV4\V5.A/ D  

a0

V4
jV4\V5.A/ and  a

0

V5
jU˛7U0001111.A/

� 1: Then

f
.V4; 

a0

V4
/
.g/ D

Z
A

Z
A
f
.V5; 

a0

V5
/�
x�˛4.r1/x0000110.r2/g

�
dr1 dr2:

Moreover, .V5;  
a0

V5
/ � .V4;  

a0

V4
/:

Proof. This is another application of Lemma 7.1.1.

The key feature of V5 is that it is contained in the unipotent subgroup attached to the
weighted Dynkin diagram 2 0 2 0 0 2

0 for the orbit E7.a4/. Further supp a
0

V5
is contained

in

¹˛7; 0001110; 0011100; 0101100; 0111000; 0000011;

0011110; 1010000; 0101110; 0111100; 0000111º;

which is contained in the two-graded piece for this weighting.
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Let V6 be the full unipotent group for 2 0 2 0 0 2
0 (that is, all root subgroups with

weights bigger than or equal to 2) and  a
0

V6
be the character of it with  a

0

V6

ˇ̌
V5
D  

a0

V5

and supp a
0

V6
D supp a

0

V5
: Then for any automorphic function f of uniformly moderate

growth, f .V6; 
a0

V6
/ can be written as a double integral with inner integral f .V5; 

a0

V5
/
:Hence

.V5;  
a0

V5
/ j .V6;  

a0

V6
/: Notice that .V6;  

a0

V6
/ is a unipotent period of the type considered

in Section 3.1.

Lemma 8.1.10. Let

Xa0 D X�1010000 CX�0000111 CX�0011110 CX�0101110 CX�0111100

C a07X�0001110 C a
0
4X�0011100 C a

0
1X�0101100 C a

0
6X�0111000

C a03X�0000011 C a
0
5X�1000000;

and

e00 D X�1010000 CX�0000011 CX�0111000 CX�0101100 CX�0011100 CX�0001110:

Then

(1) Xa0 is an element of the closure of the orbit A6 if and only if

�1716.a01a
0
3a
0
5Ca

0
3a
0
4a
0
5�2a

0
1a
0
3a
0
7�a

0
3a
0
5a
0
7�a

0
5a
0
6a
0
7/
2a024 a

02
5 a
02
6 D 0: (8.1.11)

(2) When a05 D 0, the element Xa0 lies in A6 if and only if a01a
0
3a
0
4a
0
6a
0
7 ¤ 0:

(3) If Xa0 is in A6 then it is conjugate to e00.

Proof. We may regard Xa0 first as an element of the Lie algebra e7 over a polynomial
ring in six indeterminates and compute its rank sequence as such. This can be done, for
example, by obtaining 133 � 133 matrices for ad.X
 / for the relevant roots 
 from GAP
and then loading them into SageMath. This tells us what orbit Xa0 lies in for a0 in general
position, and allows us to obtain polynomial conditions for Xa0 to lie in a smaller orbit.

It turns out that for a0 in general position, Xa0 lies in the orbit E7.a4/. The largest
value of k such that Xka0 ¤ 0 is 14, and X14a0 is rank 1, with only one nonzero entry. This
nonzero entry is the left hand side of (8.1.11). As mentioned in Lemma 7.1.3, Xa0 is in
A6 if and only if its 14th power is 0:

From the diagram in [5, p. 442], we see that there are three stable orbits which are less
than E7.a4/ but not less than A6: Their Bala–Carter labels are D5 C A1; D6.a1/, and
D5. For X in any of these orbits we have rank ad.X/14 D 1. This proves the first part.

It is then clear that a05 D 0 implies Xa0 is in the closure of A6. Referring again to
the diagram in [5, p. 442], we see that O < A6 , O � E7.a5/. By inspecting the rank
sequences of these two orbits, we can see that if X 2 A6, then rank ad.X/12 D 3, while if
X 2 E7.a5/, then rank ad.X/12 D 0. When a05 D 0, if we calculate the matrix ad.Xa0/12

(as an element of e7 over a polynomial ring) and then discard all rows and columns which
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consist entirely of zeros, we obtain the following 3 � 3 matrix:0@ 0 0 �462a031 a
02
2 a
0
4a
0
6a
02
7

0 924a021 a
02
2 a
02
4 a
02
6 a
02
7 0

�462a031 a
02
2 a
0
4a
0
6a
02
7 0 0

1A :
This completes the proof of the second part.

To prove the third part we consider

X 0a0 D X�1010000 C a
0
3X�0000011 C a

0
6X�0111000 C a

0
1X�0101100 C a

0
4X�0011100

C a07X�0001110;

and
u.b1; : : : ; b5/ WD x�˛2.b1/x�˛3.b2/x�˛5.b3/x�˛5�˛6.b4/x�˛6.b5/:

Using SageMath, one can check that for each a01; a
0
3; a
0
4; a
0
6; a
0
7 (all nonzero) there exist

unique b1; : : : ; b5 such that

Ad.u.b1; : : : ; b5//:Xa0 D X 0a0 :

These six roots which appear in X 0a0 may be simultaneously conjugated to simple
roots (cf. Lemma 7.1.12). Hence we can conjugate X 0a0 to e00 using a suitable element of
the torus.

Corollary 8.1.12. Let  0V6 W V6 ! C� be given by

 0V6.v/ D  .v0001110 C v0011100 C v0101100 C v0111000 C v0000011 C v1010000/:

Then for each a0 D .a01; a
0
3; a
0
4; 0; a

0
6; a
0
7/ with a0i ¤ 0 for i D 1; 3; 4; 6; 7, there

exists �a0 2 GE6.F / such that �a0V6��1a0 D V6 and  0V6.�a
0v��1a0 / D  V6.v/ for all

v 2 V6.A/:Hence f .V6; V6 /.g/D f .V6; 
0
V6
/
.�a0g/ for all smooth automorphic functions

f WGE7.F /nGE7.A/!C and all g 2GE7.A/; and in particular .V6;  
a0

V6
/� .V6; 

0
V6
/:

This completes the proof of Theorem 8.1.1, since .V6;  0V6/ has appeared previously

as .U5;  
e0
0

U5
/, and it was already shown in Lemma 7.1.15 that E� supports this period.

8.1.1. Remarks. The proof of Theorem 8.1.1 can be summarized as follows. For c D
.c1; c2/, let  G2c .u/ D  .c1u˛ C c2uˇ / for u 2 UG2max. Then .UG2max;  

G2
c / ı .U;  

e0
U /

divides .V6;  
a0

V6
/ whenever c is the image of a0 under a certain linear map. In this sit-

uation, every representation which supports .V6;  
a0

V6
/ must also support .UG2max;  

G2
c / ı

.U;  
e0
U /. For any c, we can choose a0 which maps to c and corresponds to an element of

the orbit A6. The residual representation E� supports the Fourier coefficient .V6;  
a0

V6
/

whenever a0 corresponds to an element of A6. Therefore it supports .UG2max;  
G2
c / ı

.U;  
e0
U / for all c:

In particular, the conclusion applies not only to E� , but to any automorphic repre-
sentation … which supports the Fourier coefficient .V6;  

a0

V6
/ whenever a0 corresponds
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to an element of A6. Moreover, it is reasonable to ask whether A6 can be replaced by a
smaller orbit. In this connection we note that taking a03 D a05 D 1 and the rest zero, or
a05 D a

0
6 D 1 and the rest zero, gives an element Xa0 in the orbit 2A2 C A1, which lies

immediately above the orbit A2 C 3A1 attached to  e0U .
If � is not of G2 type but LS .s; �;^3/ has a pole at s D 1, then Theorem 8.1.1 is still

valid for the residual representation E� with exactly the same proof.

8.2. Local descent

Since the results of [17] hold in both the local and global settings, the same set of argu-
ments given in the global setting above also provides a local analogue.

Theorem 8.2.1. Let Fv be a nonarchimedean local field. Suppose that an irreducible
admissible representation …v of GE7.Fv/ supports the twisted Jacquet module attached
to .V6;  

a0

V6
/ with a0 now in F 6v corresponding to an element of A6. Then the .U;  e0U /-

twisted Jacquet module of…v supports .twisted and untwisted/ Jacquet modules attached
to UG2max and all characters of UG2max: In particular, this holds when …v is the local compo-
nent of any irreducible subquotient … of E� where � has the property that LS .s; �;^3/
has a pole at s D 1.

8.3. Unramified local descent

One may now consider the twisted Jacquet module

J
U; 

e0
U

�
IndGE7.Fv/

Q.Fv/
.�1 ı �1/.�2 ı �2/ z$

3=2
8

�
:

If � is an irreducible cuspidal automorphic representation of GL7 with �v being induced
from a character of the form (7.3.1) and � is an irreducible quotient of E� , then �v will
be a quotient of this twisted Jacquet module.

The study of such a twisted Jacquet module is closely connected with the structure of
the double coset spaceQ.Fv/nGE7.Fv/=G2.Fv/U.Fv/: Notice that this space is infinite,
since

dim GE7 D 134; dimQC dimG2 C dimU D 133:

This stands in contrast to the situation encountered in [16, 20], where [2, Theorem 5.2]
could be applied.

Moreover, suppose we say that a double coset is admissible if its elements 
 satisfy
 
e0
U jU\.
�1Q
/ � 1. Then we have

Lemma 8.3.1. The set of admissible double cosets inQ.Fv/nGE7.Fv/=G2.Fv/U.Fv/ is
infinite.

Proof. We can sort the elements ofQ.Fv/nGE7.Fv/=G2.Fv/U.Fv/ according to the ele-
ments of Q.Fv/nGE7.Fv/=P.Fv/. Of course this latter double coset space is finite and
represented by elements of the Weyl group. We use elements w of the Weyl group that
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are of minimal length in their double coset. For each such w,

ı 7! Q.Fv/wıG2.Fv/U.Fv/

induces a bijection between the set of Q.Fv/; G2.Fv/U.Fv/-double cosets in
Q.Fv/wP.Fv/ and .M.Fv/\w�1Q.Fv/w/nM.Fv/=G2.Fv/:Moreover, for ı2M.Fv/;

 
e0
U jU\ı�1w�1Qwı � 1 ” Œı �  

e0
U �jU\w�1Qw � 1:

We consider the longest element w0 of Q.Fv/nGE7.Fv/=P.Fv/; and show that

¹ı 2 .M.Fv/ \ w
�1
0 Q.Fv/w0/nM.Fv/=G2.Fv/ W ı �  

e0
U jU\w�10 Qw0

� 1º

is infinite.
To do this we first compute M \ w�10 Qw0 and find that it is the product of the GL1

factor of M and the parabolic of type .2; 2; 3/ in the Levi factor. Note that the dimension
of this parabolic is 33:

If we let GL7.Fv/ act on e0U , then the stabilizer isG2.Fv/, and so the orbit is a variety
of dimension 35: Recall that  e0U is identified with a nilpotent element X of ge7, lying
in gs�2 for the semisimple element 0 0 0 0 0 02 , and our variety is then identified with the
GL7-orbit of X in gs�2:

Finally, we compute that ¹˛ 2 ˆ.U; T / W w0˛ > 0º D ¹1123321º. Because w0 is of
shortest length in Qw0P , this implies that U \ w�10 Qw0 D U1123321: This means that
the condition ı �  e0U jU\w�10 Qw0

� 1 amounts to a single polynomial equation on the
entries of ı, so we get a 34-dimensional subvariety. Clearly, our 33-dimensional parabolic
cannot act transitively on this subvariety.

Lemma 8.3.2. At least eight different Q.Fv/; P.Fv/-double cosets contain admissible
Q.Fv/, G2.Fv/U.Fv/-double cosets.

Proof. Indeed, there are eight distinct Kostant representatives w for elements of
QnGE7=P such that  e0U jU\w�1Qw � 1: That is, there are eight Kostant representatives
such that

¹ı 2 .M.Fv/ \ w
�1Q.Fv/w/nM.Fv/=G2.Fv/ W ı �  

e0
U jU\w�1Qw � 1º

contains the identity. (And possibly other representatives such that it is nonempty but does
not contain the identity.)

Remark 8.3.3. We expect that if � is of G2 type then the local components of � at
unramified places will be induced from characters of the form (7.3.1), with �1; �2 being
unitary characters. However, we would expect that in general �1; �2 would not satisfy
any special condition that would permit (7.3.4) to be reducible. The representation (7.3.4)
has a P -module filtration parametrized by the elements of QnGE7=P , and Lemma 8.3.2
suggests that at least eight of the P -modules in this filtration will have nontrivial twisted
Jacquet modules. Thus the local unramified descent appears to be highly reducible.

This is consistent with our global results. We would expect an irreducible cuspi-
dal automorphic representation � of G2 type to be a weak functorial lift attached to
the embedding G2.C/ ,! GL7.C/ of some generic cuspidal automorphic representation
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of G2.A/. In the classical cases considered in [16, 20], the descent recovers the original
cuspidal representation that was lifted (up to near equivalence). In our case, our global
results let us know that the descent module also contains noncuspidal functions. In gen-
eral, we would not expect any noncuspidal automorphic forms to lift weakly to � . Hence
our noncuspidality result predicts that the descent module will not consist solely of auto-
morphic forms which lift weakly to � .
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