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Abstract. In this paper, we study the functorial descent from self-contragredient cuspidal automor-
phic representations 7 of GL7(A) with LS (s, 7, A3) having a pole at s = 1 to the split exceptional
group G2 (A), using Fourier coefficients associated to two nilpotent orbits of E7. We show that one
descent module is generic, and under suitable local conditions, it is cuspidal and = is a weak func-
torial lift of each of its irreducible summands. This establishes the first functorial descent involving
the exotic exterior cube L-function. However, we show that the other descent module supports not
only the nondegenerate Whittaker—Fourier integral on G5 (A) but also every degenerate Whittaker—
Fourier integral. Thus it is generic, but not cuspidal.

Keywords. Fourier coefficients of automorphic forms, functorial descent, exterior cube
L-function, split exceptional group G

1. Introduction

In the theory of automorphic forms one of the major open problems is to construct func-
torial correspondences between automorphic forms on different groups. This has been
accomplished in particular cases by various methods, including the converse theorem, the
theta correspondence, the trace formula, and the theory of functorial descent.

The theory of functorial descent was pioneered by Ginzburg, Rallis, and Soudry. It
serves as a complement to the constructions of functorial liftings, and can be used to
characterize the image of a functorial lifting.

We briefly recall these notions. Let F' be a number field, A its adele ring, and H
a connected reductive F-group. Given an irreducible automorphic representation = =
&), my of H(A) we obtain a finite set S of places of F and a semisimple conjugacy class
{tz,} in L H for each v ¢ S. We say that two automorphic representations 7 and 7’ are
nearly equivalent if {1, } = {1, } for all v outside a finite set. Given an L-homomorphism
¢ : L H — L G we say that an irreducible automorphic representation IT of G(A) is a weak
functorial lift, relative to ¢, of an irreducible automorphic representation  of H(A) if
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{tm,} = {¢(tz,)} for all v outside a finite set. Clearly, in this situation, every element
of the near equivalence class of II is also a weak functorial lift of every element of the
near equivalence class of . We also say that 7 is a weak functorial descent of T1. The
Langlands functoriality conjecture then predicts that the set of weak functorial lifts is
nonempty for all 7 and all ¢. This has been proved in a number of cases, though the
general case is still very much open.

Supposing that a lifting exists, one may ask what its image is. Here again, the general
case is open but the problem has been solved in some cases. For example, Ginzburg,
Rallis and Soudry showed, using descent together with the lifting results of Cogdell, Kim,
Piatetski-Shapiro, and Shahidi, that an automorphic representation of GL,,(A) is a weak
functorial lift from a generic cuspidal representation of SO,,41(A) (for the inclusion
Sp2, (C) — GL,,(C)) if and only if it is an isobaric sum 7 & - - - 8 7, of distinct cuspidal
representations 7; of GLa,; (A) for 1 <i <r, such that LS (s,7i,A?) hasa pole ats =1 for
each i. In particular, a cuspidal representation of GL,,(A) has a weak functorial descent
to SO2,+1(A) if and only if its exterior square L-function has a pole. Notice that Sp,,, (C)
is embedded into GL,,(C) as the stabilizer of a point in general position in the exterior
square representation. Ginzburg, Rallis and Soudry also obtained similar results for other
classical groups, as well as metaplectic groups.

The connection between the exterior square L-function and the lifting is clear. It was
an earlier result of Ginzburg, Rallis, and Soudry that L5 (s, 7, A?) has a pole at s = 1
whenever 7 is a weak functorial lift relative to the above inclusion. Moreover, this result
was predicted by the functoriality and generalized Ramanujan conjectures, before it was
proved. If a cuspidal representation t of GL,,(A) is the weak functorial lift of a cuspi-
dal representation o of SO5,+1(A) relative to the inclusion Sp,, (C) < GL,,(C), then
LS(s, 1, A%) = L5(s, 0, A2){5(s), where A2 is the second fundamental representation
of Sp,,(C), which satisfies A2 = A2 & 1, where 1 is the trivial representation. Clearly
¢S (s) has a pole at s = 1 for all finite sets S. Further, the functoriality conjecture predicts
that LS (s, o, /\3) should be the standard L-function of the weak functorial lift of o to
GLi. A2 relative to /\%. This lift may not be cuspidal, but the generalized Ramanujan
conjecture predicts that o will be tempered at all places, in which case its lift will be as
well. This forces the cuspidal support of any weak functorial lift to be unitary, which is
sufficient to ensure nonvanishing of its L-function on the line Re(s) = 1.

In general, by the same reasoning, if  is a finite-dimensional representation of =G
and the image of ¢ : ' H — LG is contained in the stabilizer of some nonzero point in
the space of r, and if 7 is an irreducible globally generic cuspidal representation of H(A)
then LS (s, 1, r) is expected to have a pole at s = 1 for any weak functorial lift IT of 7
to G relative to ¢.

The descent results of Ginzburg, Rallis, and Soudry point to a converse result: if
LS (s, I1, r) has a pole at s = 1, then IT should be a weak functorial lift relative to the
inclusion of a reductive group which stabilizes a nonzero point in the space of r. (A more
refined conjecture is given in [28].)

The descent method of Ginzburg, Rallis, and Soudry has been extended to GSpin
groups (which are not classical, but have classical L-groups) in [20]. The paper [12]
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investigates the extension of the method of descent into exceptional groups. Ginzburg
has also investigated descent from E¢ to F4, together with the first named author, in an
unpublished preprint. In this paper, we investigate an interesting case in the exceptional
group GE7.

The method may be described as follows. Suppose that there is a reductive group A
such that

e G is a Levi subgroup of 4,

e 7 appears in the restriction to £ G of the adjoint representation of £ A,
e H is the stabilizer in A of some sl,-triple in the Lie algebra a of A.
Then the descent method proceeds by the following steps:

(1) Take an irreducible cuspidal automorphic representation 7w of G(A).

(2) Consider Eisenstein series on A(A) induced from 7. The L-function L5 (s, 7, r)
appears in the constant term of these Eisenstein series. Consider the corresponding
residual representation.

(3) Consider a Fourier coefficient attached to the sl,-triple with stabilizer H. This
Fourier coefficient will map automorphic forms on A(A) to smooth automorphic
functions of uniformly moderate growth on H(A) (or in some cases the metaplectic
double cover of H(A)). Applying this Fourier coefficient to our residual representa-
tion, we obtain a space of functions on H(A) (or its double cover) which we call the
descent module.

For example, in the classical work of Ginzburg, Rallis and Soudry, the group GL,,
appears as a Levi of SOy, and for suitable sl,-triples in soy4, the stabilizer in SOy,
is isomorphic to SO, 1. We remark that in some cases L5 (s, 7, r) will appear in the
constant term along with other L-functions, and it will be necessary to add some assump-
tion above and beyond L° (s, 77, r) having a pole. For example, in the descent from GL,,
to .S?azn one must assume that the exterior square L-function has a pole at 1, and that the
standard L-function is nonvanishing at 1/2.

As mentioned, in some cases the descent module consists of genuine functions on a
metaplectic double cover. Since this does not apply to the case we consider in this paper,
we will not go further into this. We remark that while the functions in the descent module
are easily seen to be smooth, invariant by H (F') on the left, of uniformly moderate growth,
and finite under translations of a maximal compact subgroup of H(A), it is not easy to
see whether or not they are finite under the action of the center of the universal enveloping
algebra. So, they are not necessarily automorphic forms.

In the classical work of Ginzburg, Rallis, and Soudry, it is possible to show that
descent module is cuspidal (hence L2, so that its closure is a Hilbert space direct sum of
irreducibles), and that every summand is a weak descent of the original representation on
GL,, (A). Moreover, it is orthogonal to the kernel of the nondegenerate Whittaker—Fourier
integral on H(A), which implies that it is multiplicity free and that every summand is
globally generic. In some cases, it can even be shown that the descent module is irre-
ducible. In [20], it is shown that the descent module is cuspidal, that every summand is
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a weak descent, and that the nondegenerate Whittaker—Fourier integral does not vanish
on the descent module (so at least one summand is globally generic). The stronger result
— that the descent module is orthogonal to the kernel of the nondegenerate Whittaker—
Fourier integral — should follow from work in progress of Asgari, Cogdell, and Shahidi.

There are a number of cases where the conditions above are satisfied with A being
one of the exceptional groups. In this paper we consider the case when A = GE7, and
G = GL7 x GL,. The embedding of GL; x GL; into GE7 can be chosen so that r is
the product of the A3 representation of GL; and the standard representation of GL;. We
show that it suffices to consider the case when the automorphic representation of GL7 is
self-contragredient and the character of GL; is trivial. The group GL7 x GL; acts on our
space with a Zariski open orbit and the stabilizer of any point in this orbit is the product
of the center of GE7 and a subgroup of GL7 of G, type. (See [11, pp. 356-357], and
Lemma 6.2.1 below.) The stabilizer of any nonzero point which is not in the Zariski open
orbit is not reductive. Thus we consider irreducible self-contragredient cuspidal automor-
phic representations 7= of GL7(A) such that the A> L-function has a pole at s = 1, i.e., of
G, type by Definition 4.2.10. The philosophy discussed above predicts that such cuspidal
representations should be weak functorial lifts from G,. We first construct square inte-
grable residual representations of GE7(A). At this point, an interesting feature emerges:
it turns out that there are two orbits of sl,-triples in e; with stabilizers of G, type. Thus,
we have two different Fourier coefficients which we can apply to obtain two descent mod-
ules on the exceptional group G, (A). In this paper we study both descent modules.

A similar situation was considered previously in [14], where the authors consider
three different orbits of a group of type Dy, all of which have a stabilizer of type A;.
However, the two orbits considered in our paper are not related to one another by the
automorphism group of ey, whereas the three orbits considered in [14] are permuted by
the automorphism group of D4.

The functorial lifting corresponding to this case is known, at least for generic cuspidal
representations. By [15] generic cuspidal representations of G, (A) can be lifted to Spg(A)
using the minimal representation of E5. It can then be lifted to GL7 using the work of
Cogdell-Kim—Piatetski-Shapiro—Shahidi [6], Arthur [1], and Cai—Friedberg—Kaplan [4].
It is very natural to ask whether the descent from GL; to G, could be constructed by
combining the descent from GL7 to Spe from [16] with the theta-type correspondence
from Spg to Gy in [15]. To the best of our understanding, this should be possible, but
would require proving the following conjecture.

Conjecture 1.0.1. Let 7w be an irreducible self-contragredient cuspidal automorphic rep-
resentation of GL7(A) such that LS (s, v, A3) has a pole at s = 1, and let o denote the
irreducible descent of w to Spg(A). Then o has trivial central character and satisfies the
three equivalent conditions of [13, Theorem 1.1].

An analogy with the earlier work of Ginzburg—Rallis—Soudry, as well as [20], would
predict that the descent module should be cuspidal, support the nondegenerate Whittaker—
Fourier integral, and be a direct sum of weak descents of our original cuspidal represen-
tation of GL7. In this respect, the two descent modules behave totally differently.
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In one case we prove that the descent module is generic, and under suitable local
conditions, it is cuspidal and m is a weak functorial lift of each irreducible summand.
One piece that is missing, in comparison to [16,20], is a means of showing that when
7 is self-contragredient and LS (s, m, /\3) has a pole at s = 1, the Satake parameters of
the components of 7 at unramified places must contain conjugacy classes of G, (C). We
show cuspidality under the assumption that at least one of them does, and weak functorial
lifting under the assumption that all but finitely many of them do. In particular, we prove
the following theorem (see Theorem 7.0.1).

Theorem 1.0.2. Let F be a number field and let w be an irreducible cuspidal automor-
phic representation of GL7(A F). Suppose that the following conditions hold:

(1) The partial L-function LS (s, 7w, A%) has a pole at s = 1 for some finite set S.

(2) For almost all places v of F at which m, is unramified, the Satake parameter of the
local component 1, is conjugate in GL7(C) to an element of r7(G2(C)), where 7 is
the standard representation of G,.

Then there exists a globally generic cuspidal automorphic representation o of Go(AF)
such that for almost all places v of F at which oy, is unramified, the Satake parameter of
7Ty is conjugate in GL7(C) to the Satake parameter of .

We believe that it should be possible to replace the second condition with the weaker
condition that r is self-contragredient or has trivial central character. That is, we have the
following conjecture.

Conjecture 1.0.3. Let m be an irreducible self-contragredient cuspidal automorphic rep-
resentation of GL7(A) such that LS (s, w, A%) has a pole at s = 1. Then for almost all
places v of F at which m, is unramified, the Satake parameter of the local component 1,
is conjugate in GL7(C) to an element of r7(G,(C)), where r; is the standard representa-
tion of G,.

This conjecture turns out to be equivalent to Conjecture 1.0.1. More generally, if &
satisfies conditions (1) and (2) of Theorem 1.0.2, then its descent to G, contains an irre-
ducible generic cuspidal automorphic representation of G,(A), which we may theta-lift
to Spg(A) using the lifting from [15]. By a result of Savin, [35, Appendix A], the lifting is
generic, and lifts weakly to = (which forces it to be cuspidal due to the Strong Multiplicity
One Theorem for GL7), and so, by Strong Multiplicity One Theorem for Spg, it contains
the descent of 7, which therefore satisfies the equivalent conditions of [13]. Conversely,
if the descent of 7 to Spg satisfies the equivalent conditions of [13], then it is the theta lift
of a generic cuspidal representation of G, (A), and this lifting is functorial. It follows that
7 itself is a functorial lift from G, and condition (2) of Theorem 1.0.2 is satisfied.

The descent method is constructive and makes use of an Eisenstein series on the simil-
itude exceptional group GE. We prove that this Eisenstein series has a pole whenever
condition (1) of Theorem 1.0.2 is satisfied. In fact, we could replace condition (1) with
the hypothesis that the Eisenstein series has a pole. Indeed, for any cuspidal automorphic
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representation of GL7 such that the Eisenstein series has a pole, the descent method pro-
duces a space of functions on G, which is globally generic in the sense that the Whittaker
integral does not vanish identically on it; see Remark 7.1.18. Under condition (2) we are
able to prove that it is cuspidal and that all of its irreducible components lift weakly to 7,
but in each of these proofs, condition (2) can be replaced by a weaker hypothesis applied
to the residue of the Eisenstein series; see Remarks 7.4.33 and 7.5.7.

The result above establishes the first functorial descent which involves the exotic exte-
rior cube L-function. This is an important step towards fully understanding the Langlands
functoriality from G, to GL; which is not an endoscopic type. As pointed out to us by
Michael Harris, Theorem 1.0.2 has interesting applications already, for example, to [3,
Conjecture 11.6] and the surjectivity of local Langlands correspondence [35].

The other descent module behaves totally differently. It supports not only the non-
degenerate Whittaker—Fourier integral on G,(A), but also every degenerate Whittaker—
Fourier integral. Thus it is generic, but not cuspidal. It has a nontrivial constant term for
each proper parabolic of G,, and its constant terms for the two maximal parabolics are
generic representations of GL,(A). And this holds for every cuspidal representation of
GL7(A) such that the A L-function has a pole! See Theorem 8.0.1.

This outcome is not entirely without precedent. Descent constructions in the excep-
tional group F4 were previously studied in [12] from a different point of view. In [12],
Ginzburg introduces a general family of lifting integrals which interpolates between theta-
type liftings at one end of the spectrum and descent constructions at the other end. He also
introduces a “dimension equation” which is said to hold in every known case where an
integral of his type gives a functorial correspondence. He then uses the dimension equa-
tion to decide which automorphic representations to apply a Fourier coefficient to (instead
of using a residual representation obtained from a pole of L* (s, 7, r)).

This approach makes sense from the perspective of the techniques which are used to
prove genericity and cuspidality, namely identities of unipotent periods. The approach
taken in [12] is to take the unipotent period obtained by composing the descent Fourier
coefficient with either a Whittaker integral or a constant term on the stabilizer H, and
relate this period to some combination of coefficients attached to sl,-triples and constant
terms.

One case of particular interest is when A = F4, G = GSpg, r is the spin representa-
tion of G = GSpin,(C), and H = G,. In this case, it is shown in [12] that

(1) the nondegenerate Whittaker—Fourier integral of the descent module of any represen-
tation & can be expressed in terms of coefficients attached to the orbits Fy, F4(a;),
and Fy4(az), as well as the constant term along the C3 parabolic, and

(2) the constant terms of the descent module can be expressed in terms of exactly the
same four unipotent periods!

This is very similar to our result, which relates both the nondegenerate Whittaker—Fourier
integral and all degenerate Whittaker—Fourier integrals of the descent to the same unipo-
tent period on GE7. This period is not one of the types considered by Ginzburg, but it is
in a more general family, introduced by Gomez, Gourevitch and Sahi [17].
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Another case which has been studied somewhat is when A = Eg, G = GE¢ x GL4,
r is 27-dimensional, and H = Fy. This case is considered in work in progress of Ginzburg
and the first named author. In that case, also, it appears that the descent module is generic,
but not cuspidal.

Having established that the descent is not cuspidal, it is no longer clear that it has
a decomposition into irreducibles, or even a spectral decomposition in terms of cusp-
idal data. Moreover, there would seem to be little reason to think that its irreducible
subquotients — should they exist — will be weak descents of the original cuspidal rep-
resentation of GL7(A). Indeed, if our representation of GL7(A) was a weak functorial lift
of a cuspidal representation of G,(A) which is not CAP, then no weak descent of it has a
constant term — and the descent module does. If one is still optimistic enough to believe
that the descent module contains a generic weak descent of our cuspidal representation of
GL7(A), then one is led to the questions of what else it contains, and whether this “extra”
depends on the choice of the representation.

Another natural question is the following: what other automorphic representations
of GL7(A) should descend to G,(A)? And can our construction generalize to construct
their descents? For example, there is a lifting, constructed in [15] and shown to be func-
torial in [13], attached to the embedding SL3(C) — G,(C). If we compose this with an
embedding G, (C) — GL7(C) the result is conjugate to the map

g
g 1
t,—1

Thus, if an irreducible cuspidal automorphic representation 7 of G,(A) is the lift of a
cuspidal representation v of PGL3(A) then the lift of & to GL;(A) is the isobaric sum
t 8 187, where 1 is the one-dimensional trivial representation of GL;(A). Thus, it is
very natural to ask whether 7 can be recovered from r B 1 & T, by some generalization of
our construction. (Note that this would then give an alternative construction of the lifting
from [15].) We hope to return to this and related questions in the future.

The organization of the paper is as follows: We introduce some notation in Section 2,
preliminaries and some general results in Section 3, the A¢ Levi and the residual repre-
sentation of the similitude exceptional group GE7(A) in Section 4, and the nilpotent orbit
Ag of E7 in Section 5. Then we introduce in Section 6 the two descent Fourier coeffi-
cients attached to the two nilpotent orbits, from which we obtain two descent modules. In
Section 7, we show that one descent module is generic, and under suitable local condi-
tions, it is cuspidal and having 7 as a weak functorial lift of each irreducible summand.
In Section 8, we show that the other descent module supports not only the nondegen-
erate Whittaker—Fourier integral on G,(A) but also every degenerate Whittaker—Fourier
integral. Thus it is generic, but not cuspidal.

We used three software packages for computations: LiE [7], GAP [34], and Sage [33].
LiE was used for computations involving the action of the Weyl group on the root and
weight lattices and their duals. GAP, and the packages QuaGroup [9], SLA 0.14 [10],
and UNIPOT 1.2 [18], were used for many computations involving nilpotent elements of
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the Lie algebra e; and their adjoint orbits. Sage was used for symbolic manipulation of
multivariate polynomials — especially for performing computations using matrices over
multivariate polynomial rings. These matrices were formed by loading integer matrices
obtained from GAP into Sage and then forming linear combinations with coefficients in
the polynomial ring. Our code is available at [19].

2. Notation

Let F be a number field, A its adele ring, and Ay, its ring of finite adeles. (Our results are
restricted to number fields because we make use of [17]. We expect that both the results
of [17] and our results should extend to function fields, except possibly for a few small
primes. For a discussion of the relevant issues, see [17, Remark 5.1.4].)

We shall consider automorphic representations of the similitude exceptional
group GE~. This group can be realized as the maximal Levi subgroup of split Eg whose
derived group is of type E5. For us, this will be the definition. The derived group is in fact
the unique split connected simply connected quasi-simple group of type E5. For the split
group Eg, we label the simple roots as follows:

o o3 67} U5 Ug o7 og
0O — 0 — 0 — 0 — 0 — 0 — 0
|
0
(2%

We assume that GE7 is equipped with a choice of split maximal torus 7" and Borel
subgroup B. We write @ for the set of roots of 7 in GE7, ®™ for the set of positive
roots determined by the choice of B, and A for the set of simple roots. If H is a T-stable
subgroup of GE7, we denote the set of roots of T in H by ®(H, T'). For @ € ® we denote
the corresponding root subgroup by Uy, and the corresponding coroot G, — T by a". Let
t and u, be the Lie algebras of T and U,, respectively. We use exponential notation for
rational characters and cocharacters: ¢t — t%*,¢t € T, and a — a®” ,a € G,. We sometimes

also use the notation A(ty,...,15) = ]_[?:1 tia / . We also equip GE7 with a realization in
the sense of [32], i.e. a family {x4 : G, — U, } of parametrizations of the root subgroups
(subject to some compatibility relations). This determines a basis of the Lie algebra ge-.
Indeed, for each root « the differential Dx, of x4 is an isomorphism G, — 14 and we
denote D x4 (1) by X4 . The differential of @ : Gy, — T is an injective map Da¥ : G, — t,
and we denote DoV (1) by Hy. Then { X, : o € ®(GE7,T)} U{Hy,; : 1 <i <8} is abasis
for ge,, and by taking a suitable realization, we can arrange for it to be a Chevalley basis.
We choose the Chevalley basis so that the structure constants match those employed by
GAP [34]. As mentioned previously, we used LiE and SageMath, in addition to GAP, for
computations. Structure constants are not involved in the type of computations for which
LiE was used, and SageMath was used to manipulate polynomial-linear combinations of
integer matrices obtained from GAP, which ensures compatibility of structure constants
between the computations done using GAP and Sage. We also fix a GE7-invariant bilinear
form « on ge, such that k¥ (Xq, X—o) = 1 for each root «.
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We denote the Weyl group of GE5 relative to T by W. We denote the simple reflection
attached to the simple root o; by w[i], and the product w[i;]...w[i;] by w[iy ...i;]. There
is a standard representative for w[i], namely w[i] := xq, (1)X_q; (—1)Xq, (1). This then
gives rise to a standard representative wliy ... ;] := w[i1] ... w[i;] for w[iy ...i;]. But
note that Wiy ...i;] depends on the expression for w[iy ... ;] as a word in the simple
reflections and not only on the Weyl group element.

Let P = MU be the standard parabolic subgroup of GE7 whose unipotent radical
contains Uy, if and only if i = 2, with Levi subgroup M and unipotent radical U. Then
M is isomorphic to GL7 x GL; (see Lemma 4.1.1 for details). Let Q be the standard
parabolic subgroup of GE; whose unipotent radical contains Uy, if and only if i = 4
or 6. More generally, for S C {1,2,3,4,5,6,7}, let Ps = MgUg denote the standard
parabolic subgroup whose Levi subgroup Mg contains the root subgroups attached to the
simple roots {&; : i € S} and whose unipotent radical Ug contains the root subgroups
We also fix once and for all a maximal compact subgroup K of GE7(A).

We shall also consider automorphic representations of the split exceptional group G».
We denote the long simple root of G, by f and the short one by «. For y € {8, o} we
let P, denote the maximal parabolic subgroup of G, whose Levi M, contains the root
subgroup U, attached to y. We let N,, denote the unipotent radical of P, .

Let g» and gl; be the Lie algebras of G, and GL7, respectively. Following [11] we
embed g, into g, by letting it act on a seven-dimensional vector space. We order the
basis vectors as follows: v4, U3, V1, U, W1, W3, W4. Then it follows from the formulae in
[11, p. 354] that the matrices of Y; and Y, (using notation [11, p. 340]) are

0
1

respectively. The matrices attached to H; and H» are easily computed by looking at the

0
0

0
1

0
2

0
0

and

0
-1 0

images of H; and H, under the weights.

0
0

0
—1

Weight Hy | Hy

o 2 -1

B -3 2

w; =2+ B 1 0
w] —«a -1 1
w—a—p 2 | -1
w1 —20—p 0 0
wr—3a—-8 | 2] 1
w1 —3a-=28| 1 | -1
w; —4a =28 | —1 0

0
0

0
0

0
1

0
0 0
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The matrices are

0 and 0

respectively. Finding the action of X; and X, takes a little work. In some cases, we use
our knowledge about the set of weights. For example X;w3; must be zero because ws is
weight w; — 3o — 28 and w; — 2 — 2 is not a weight of this representation. For the
others we use our knowledge of the action of Y1, Y», H;, H,, and bracket relations. For
example, since Xjv4 = 0, it follows that

Xiv3 = X1Y1v4 = (Hy + Y1 X1)vg = Hiva = v4.
After similar computations we find that the matrices of X; and X, are

0

1
0

0
0

2
0

1
0

0
0

—1
0

and

0 -1

0 O
0 0
0

1
0

0
0

respectively. Finally, for a matrix g we denote the transpose by ‘g. When g is a square
matrix, we also denote by ;g the transpose about the second diagonal, which may be
1
obtained by conjugating ’g by the matrix o ), i.e., with ones from lower left corner
1

to upper right corner and zeros elsewhere.

3. Preliminaries and some general results

3.1. Fourier coefficients attached to nilpotent orbits

In this section, we recall Fourier coefficients of automorphic forms attached to nilpotent
orbits, following the formulation in [17]. Let G be a reductive group defined over F', or
a central extension of finite degree. Fix a nontrivial additive character ¢ of F\A. Let g
be the Lie algebra of G(F) and u be a nilpotent element in g. The element u defines a
function on g(A):

Yu i g(A) > C~
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by ¥y (x) = ¥ (k(u, x)), where k is a G-invariant symmetric bilinear form on g(A) which
is nondegenerate on every simple summand of g (such as the Killing form, or a convenient
scalar multiple).

Given any semisimple element s € g, under the adjoint action, g is decomposed into
a direct sum of eigenspaces g} of & corresponding to eigenvalues i. For any r € Q, let
al, = @D, ~, . The element s is called rational semisimple if all its eigenvalues are
in_Q. Given a nilpotent element u, a Whittaker pair is a pair (s,u) with s € g being a
rational semisimple element, and u € g*,. The element s in a Whittaker pair (s, u) is
called a neutral element for u if there is a nilpotent element v € g such that (v, s, ) is an
sl,-triple in this case we call (s, u) a neutral pair. For any X € g, let gx be the centralizer
of X in g.

Given any Whittaker pair (s, u), define an anti-symmetric form w,, on g by w,(X,Y)
= «(u, [X,Y]). Let ug = g2, and let ny, = ker(w,) be the radical of w,|y,. Then
[ug, ug] C g2, C ngy. By [1_7, Lemma 3.2.6], ns,, = g%, + g7 N gy. Note that if the
Whittaker pa_ir (s, u) comes from an sl,-triple (v, s, u)j then ng, = g2,. Let Uy =
exp(uy) and Ny, = exp(ng,,) be the corresponding unipotent subgroups_ of G. Abus-
ing notation, we define a character of Ny, by Y, (n) = ¥ (k(u, log(n))). Let Ny, =
N N ker(yy,). Then Uy /Ny, is a Heisenberg group with center Ng/Ny . It follows
that for each Whittaker pair (s, u), ¥, defines a character of Nj,(A) which is trivial
on Ng, (F). Let my = g3 and M, = exp(m). Then Py = MU is a parabolic subgroup
of G with Levi subgroup M and unipotent radical Us.

Assume that 7 is an automorphic representation of G(A). Define a degenerate
Whittaker—Fourier coefficient of ¢ € m by

Feul)©) = [ T dn, g€ GA).  G.LD
Ny (F)\Nsu(A)

Let %5 () = {Fsu(@) : ¢ € w}. If 5 is a neutral element for u, then F5,(¢) is also
called a generalized Whittaker—Fourier coefficient of ¢. We are interested in the collection
of neutral pairs (s, ) such that 5, (¢) # 0. It is easy to see that this set is preserved by
the natural action of G(F') on g x g. We shall refer to an orbit for the action of G(F) on
the nilpotent subvariety of g as a rational nilpotent orbit. By a stable nilpotent orbit we
shall mean the intersection of g with a G(F)-orbit in ¢ ® 7 F, where F is the algebraic
closure of F. The (global) wave-front set () of 7 is defined to be the set of rational
nilpotent orbits @ such that ¥ ,, () is nonzero for some Whittaker pair (s, u) withu € O
and s being a neutral element for u. Note that if ¥, () is nonzero for some Whittaker
pair (s,u) with f € @ and s being a neutral element for u, then it is nonzero for any
such Whittaker pair (s, #), since the non-vanishing property of such Fourier coefficients
does not depend on the choice of representatives of (9. Let n” (;r) be the set of maximal
elements in n(77) under the natural order of nilpotent orbits.

Assume that 7 is an admissible representation of G(F,), where v is a finite place
of F. Then similarly we can define a twisted Jacquet module of = by ¢, ,, v, (;r) and
consider the (local) wave-front set n(7r) and the subset n”” (7).

The following theorem is one of the main results in [17].
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Theorem 3.1.2 ([17, Theorem C]). Let w be an automorphic representation of G(A).
Given two Whittaker pairs (s, u) and (s’,u), with s being a neutral element for u, if
Fy u(1) is nonzero, then ¥, (1) is also nonzero.

In the following, we prove a slightly generalized version of Theorem 3.1.2 using sim-
ilar arguments.

Assume that (s, u) and (s’, u) are two Whittaker pairs with the same u such that
guNgl, C gi/l. Letz = s/ — s € gy. And for any rational number 0 < ¢ < 1, let s, =
s+ lz,_u, = g_s>’1, v, = gi’l, and w; = gi’. The number ¢ is called regular if u; = sy
for any small eﬁough € € Q; and ¢ is called critical if it is not regular. For convenience,
we say that 0 is critical and 1 is regular. Fix a Lagrangian m C g N g} and let

I[ =m + (II], N gZ<0) + V¢ + (wl N gu)v
vy =m+ (w; NgZy) + v, + (W, N gy).
Note that [; and r, defined here agree with those in [17] by applying [17, Lemma 3.2.6].

Fori,j € Q, let
gi,j =X €q:[s,X] =iX, [z, X] = jX}.

Then one can see that w; = @, ,;—; 8i,j» V1 = D;4;>1 Gi,j» ! 1s a critical number if
and only if there exists (i, j) such thati 4+ ¢j = 1 and j # 0, and ¢ is a regular number if
and only if w; = g1,0 = g7 N g}. And we can rewrite [, and r; as follows:

[; =m+ @ gi,j + o+ ( @ Qi,j) N gu +a1,0 N Qu, (3.1.3)

i+tj=1,j<0 i+tj=1,j>0
y=m+ D g +vz+( D gi,j)ﬂgu+g1,oﬂgu. (3.1.4)
i+tj=1,j>0 i+1j=1, ;<0

We summarize the results in [17, Lemma 3.2.7] in the following lemma.

Lemma 3.1.5 ([17, Lemma 3.2.7]). Assume that (s,u) and (s’,u) are two Whittaker pairs
with the same u such that g, N gszl C gsz/l. Then the following properties hold.
(1) Foranyt >0, [; and vy are maximal isotropic subspaces of u; and [y, v:] C 1, Ny,
And
u,/ker(wylu,) = w;/(w; N g + w; N ay)
defines a symplectic structure, with the image of |, and vy being two complementary
Lagrangians.
(2) Suppose that 0 <t < t’, and that all the elements in the open interval (t,t') are
regular. Then vy C Ly,

In the following lemma, we analyze the precise structure of [/ /r;, in the situation of
Lemma 3.1.5(2).

Lemma 3.1.6. Assume that (s, u) and (s’,u) are two Whittaker pairs with the same u
such that g, N g%, C gsz/l. Suppose that 0 < t < t’, and that all the elements in the open
interval (t,1") are regular. Then, L /vy = (D 44/ j=1, j>0 8i.j) N Gu, preserving Y.
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Proof. By (3.1.3) and (3.1.4),

[t’ =m + @ Qi,j + vy + ( @ Qi,j) n Qu —+ 1,0 N Qu- (317)

i+t'j=1,j<0 i+t'j=1,j7>0
n=m+ @D g t+o+ ( D gi,j) Ngu+g10Ngu. (318
i+tj=1,j>0 i+tj=1,j<0
Since 0 < ¢ < t/, and all the elements in the open interval (¢, ') are regular, one can
see that
@ gjtu= & gj;to
i+tj=1,j>0 i+t'j=1,j<0
Therefore,

[t’+( D gi,j>ﬂgu=1‘z+< ) gi,j)ﬂgu-
i+tj=1,j<0 i+t/j=1,j>0
Note that if i + ¢/ = 1 and j <0, then i + j < 1. Hence, @, /=1, j<o Qi.j C
6%, Since gy 193, C 021 @yyyon, <o 1) O gu = {0}, Therefore, L/, =

(®l+t’ =1, j>0 @i,j) N Gu, preserving ¥,.
This completes the proof of the lemma. |

For a Whittaker pair (s, u), let [ C 1, be any maximal isotropic subalgebra with
respect to the form w,. And let Ly = exp(l5). Then v, can be extended trivially to a
character of Ly(k)\Ls(A). Let & be an automorphic representation of G(A). Define the
following Fourier coefficient of f € m:

FL(f)(g) = / Fg)Vadn, geGA). (.19
Ls(k)\Ls(A)

Let 5 (1) = {F5 (f) : f e m).
Next, we recall a lemma.

Lemma 3.1.10 ([17, Lemma 6.0. 2]) Let w be an automorphic representation of G(A).
Then ¥, () # 0 if and only lfst J(m) #0.

The next theorem is the global analogue of [17, Corollary 3.0.3] with essentially the
same proof. To be complete, we sketch it in the following.

Theorem 3.1.11. Let w be an automorphic representation of G(A). Assume that (s, u)
and (s',u) are two Whittaker pairs with the same u such that g, N a3, C gsz/l. If Fgr 0 (0)
is nonzero, then ¥, (1) is also nonzero.

Proof. Let (s,u) and (s, u) be two Whittaker pairs as in the statement. Then it is clear
that s’ — s € gy.

Let to =0 < t; < --- <t be all the critical numbers. Let #;,; = 1. Then, for
0 <i <k, all the rational numbers in the open interval (¢;,t;41) are regular. Let

R:.
R;, = exp(ry;) and Ly, = exp(l;,,,). Assume that 375,_”’” () # 0; then we have

i+
Ly
Fo 1, () # 0 by Lemma 3.1.10. By Lemma 3.1.5, v;, C l4; 41, and by Lemma 3.1.6,

Stjp1¥

i
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Ly /vy = (®€+t,t+1j=l,j>0 a¢,j) N gu C wy N gy, which is abelian and normal-

):
izes ¥,. Then it is clear that ,'ﬂ[l_tfu () # 0.

R

Note that F,, *+!

1%

Fstgu (m) = Jﬂi;?u (r) # 0. This completes the proof of the theorem. [

(7) = Fg u(w) # 0. Therefore, by the above discussion, 5, (7) =

3.2. A few general results

Before we turn to matters that are specific to the problem of descent from GL; to G, by
way of GE5, we would like to present some results in a general setting. These are related
to the general problem of computing the twisted Jacquet module

Fvpy (IndG x).

where G is a reductive p-adic group, Q is a parabolic subgroup of G, U is a subgroup
of the unipotent radical of a second parabolic subgroup, P, of G, U is normalized by P,
x is a character of Q, and ¥y is a character of U. In this direction, the most general result
of which we are aware is [2, Theorem 5.2]. This result considers a set-up which is more
general than the one we shall consider here, but it has the defect that one must check a
certain finiteness condition which, for many applications, is unnecessary.

The group P acts on the space of characters of U by p - Yy (u) = Yy (p~'up). In
fact, this action may be realized as the rational representation of P dual to its action on
U/(U,U). Let Ry,, denote the stabilizer of ¥y in P. Then for any admissible represen-
tation 7 of G, the twisted Jacquet module Jy,y,, (;r) has the structure of an Ry, -module.

We assume that G is equipped with a choice of minimal parabolic subgroup Py and
that P and Q are both standard, i.e., both contain Py. We also choose a maximal split
torus Ty contained in Py. The space Indg x has a filtration by P-modules /,, indexed
by the elements of Q\G/P. As representatives, we choose minimal-length elements
of the relative Weyl group. The P-module /,, corresponding to w may be realized as
c—ind£ Aw—10w )(SIQ/ 2o Ad(w), where w is any representative for w in G and c-ind is the
compact induction.

We say that p € P is w-admissible if p - Yy is trivial on U N w™! Qw. (Clearly this
is relative to Yy and Q.)

Lemma 3.2.1. For each w, the set of w-admissible elements is a subvariety of P.

Proof. Write [U/(U, U)]* for the rational representation of P that is dual to U/(U, U).
Then ¥y corresponds to an element X of [U/(U, U)]*(F). Let V denote the image of
UnNw™'QwinU/(U,U). Then p is w-admissible if and only if (Ad(p).X, v) = 0 for
all v € V. Here (,) is the canonical pairing between U/(U, U) and [U/(U, U)]*. Taking
a basis of V' we obtain a finite number of polynomial conditions in p which define the
w-admissible subvariety. ]

Now fix w and let X, denote the open subset of w-inadmissible elements in P. Let
I3 denote {f € I, : supp(f) C Xy}. Then 19 is an Ry, -submodule of I,. Let Tw
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denote the quotient, so we have a short exact sequence of Ry, -modules
0— I — I — T, — 0.
Lemma 3.2.2.

JvyoU3) =0, hence  Juyy (In) = Jvyy (Tw).

Proof. In general, for an admissible representation (7, V) of P the kernel of the map
V — duy (V) is the subspace of elements v such that

/ Yy m)m(n).vdn =0
N

for some compact subgroup N of U. In the case of an induced representation, this is
equivalent to

fN F(pn)Pu@)dn =0 Vpe P,

For each fixed p,
[ tomgGyan = [ roupp-pumdn.
N N

where p - Yy (u) = Yy (p~'up). Itis clear that if p - Yy is nontrivial on U N w™! Qw,
then this integral will be zero for all sufficiently large N, and if f* € 19, then this holds
for all p in the support of f. We need to show that N can be chosen independently of p.
This follows because p - ¥y depends continuously on p and the support of f is compact
modulo P Nw~ ! Qu. ]

For each w in our set of representatives for Q\G/P let P, = P N w~!Qw. Note
that the w-admissible subvariety of P is a union of Py,, Ry, -double cosets.

Lemma 3.2.3. Assume that w-admissible subvariety of P is a single Py, Ry, -double
;2/ 2o Ad(Wx).

U

— . R
coset Py xRy, . Then, as an Ry, -module, I, = C-1ndR:Z
U

Nx~lw—1Qwx x8
Proof. Recall that 10 is the subset of elements of /,, whose support is in the open set X,
of inadmissible elements. So, the canonical quotient map [, — [, /15 = T, may be

. -~ o . .= . o -
realized as restriction to the admissible subvariety. Write / fv) for this realization of I, as

a subspace of C*°(Py xRy, ).

Clearly, each element f € 7,(01) is determined by the function hy(r) = f(xr) €

C*(Ry,,)- Thus we obtain a second realization of T, as a subspace of C*® (Ry,,) which

—(2) . =(2) . . . Ryy 1/2 .
we denote /,,”. We claim that /,;” is precisely c-1ndR‘/,U Ax—lw—1 Quwx XSQ o Ad(wx).

Itis clear thath s (pr) :)(SIQ/Z(szpx_lw_l)hf(r) foreach pe Ry, Nx~'w™ ! Quwx,

and r € Ry,,. Moreover, since Ry, N x 'w™!Qwx\Ry, maps injectively into P N

)

w~ ! Qw, the support of /15 will be compact modulo x~!w~! Qwx. Thus T,(j is contained
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. . R . . .
in c-deiZ rx—lw—1 Qux XSIQ/Z o Ad(wx). What remains is to show that this map from

—(2) . RV/U
I, to c-1ndeU

1/2

Ax—lw—1 Qwx X8Q o Ad(wx) is surjective.

Given h € c—indﬁzz Ar—lw—1 Qwx X81Q/2 o Ad(wx), we can choose a compact open
set Q such that / is supported on (Ry,, N x'w™! Qwx)$2, a compact open subgroup K
of Ry,, such that that / is right- K -invariant, and a compact open subgroup K of P such
that K> N Ry, = K. Then we can define

)(81Q/2(u')qu'1_1)h(r), g=qxrk,q € Py, 1 € Ry, , k € K,

/&)= {0, 8 & PuxRy, K>.

Using the form «, the space [U/(U, U)]* may be identified with a subspace
[U/(U,U)]™ of the Lie algebra u, of the unipotent radical U, of the parabolic that is
opposed to P. It is important to keep in mind that this identification is an isomorphism of
M p-modules, where Mp is the Levi of P, but that it is not an isomorphism of P -modules.
More precisely, the form « gives us a linear isomorphism gger — g, that sends X € ger
to the linear form Y +— «(X,Y). Here, g4, is the derived subalgebra of g. We can decom-
pose g into irreducible Mp-submodules and those that are not contained in mp come in
dual pairs. More precisely, each irreducible in up is paired with an irreducible in u7. The
Lie algebra of U is a direct sum of irreducible components in up so its dual is identified
with a subspace of 11;,. Then the dual of the quotient U/(U, U) is a subspace of the dual
of U. Since (U, U) is Mp-invariant, [U/(U, U)]* is again a direct sum of irreducible
M p-submodules of up. Notice that X € [U/(U, U)]™ implies Ad(m)X € [U/(U,U)]™
for all m in M but not Ad(p)X € [U/(U,U)]” for p in P butnotin M.

The Lie algebra g decomposes as g~ @ 1o where g~ is the Lie algebra of the
parabolic g~ opposed to Q and ug is the Lie algebra of the unipotent radical of Q.
Conjugating by w we have also g = Ad(w™!)g~ & Ad(w™Huy.

Lemma 3.2.4.
[U/(U.U)]” = ([U/(U.U)]” NnAdw™)g7) & ([U/(U.U)]” N Ad(w™ " up).

Proof. Let Mg be the standard Levi factor of Q (containing Tp). Let Zp,, denote its cen-
ter, and Ay, = Zp, N To. Because the space [U/(U, U)]™ is preserved by w_lAMQ w,
we can decompose [U/(U, U)]™ into eigenspaces of w_lAMQ w. If A is one of the eigen-
characters, then A o Ad(w) is either trivial or a relative root for the torus Apy,,. If it is
trivial or negative then the A-eigenspace lies in Ad(w~!)q ™ and if it is positive then the

A-eigenspace lies in Ad(w™Huyg.
Take X € [U/(U,U)]~. Then using this eigenspace decomposition we can write X =
X1+ X2 where X1 €[U/(U,U)]" NAd(w™1)q™) and X, € ([U/(U,U)]” NAd(w Huyp).
(]

Notice that p is w-admissible if and only if the projection of Ad(p)X onto
[U/(U,U)]"isin [U/(U,U)]” N Ad(w™ Huyg.
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Now write Up for the unipotent radical of the parabolic P. Inside [U/(U, U)]* we
have the subspace of [U/(U, Up)]* of linear forms which corresponds to the space of
characters of U that are trivial on (U, Up). This is an Mp-invariant subspace which we
can identify with a subspace [U/(U, Up)]~ of [U/(U,U)]".

If X e [U/(U,Up)]” and p = mu withm € Mp and u € Up then the projection of
Ad(p).X onto [U/(U,U)]™ is Ad(m).X. Put differently, if ¢y is trivial on (U, Up) then
Up fixes Yy, and hence p - Yy = m - Yy.

Assume now that Y is trivial on (U, Up). Then p = mu is w-admissible if and only if
Ad(m).X isin [U/(U,U)]” N Ad(w™")ug, or, equivalently, if Ad(wm)X € ug. In par-
ticular, X must be conjugate to an element of the subspace [U/(U,U)]” N Ad(w™ Hug.

Corollary 3.2.5. If Yy is trivial on (U, Up) and the space [U/(U,U)]~ N Ad(w™ Hug
does not contain any elements of the orbit of X, then the w-admissible subvariety of P is

emptry.
Corollary 3.2.6. Suppose that Yy is trivial on (U, Up) and the w-admissible subvariety
of P is nonzero. Then the nilpotent element X attached to Yy is conjugate to an element
ofug.
Corollary 3.2.7. If Yy is trivial on (U, Up) and the space 1o does not contain any
elements of the orbit of X, then the w-admissible subvariety of P is empty for all w, and

F W) (IdG (1)) = 0.

Corollary 3.2.8. Let O be the Richardson orbit of Q (the largest stable orbit that inter-
sects ug). Let O’ be a stable orbit that is greater than or not related to @. Let (s, u) be
any Whittaker pair withu € Q. Let U = exp(g%,). Then

F Wy (IndG (1)) = 0.

Proof. Let P = exp(g%,); then Up = exp(gl,). The previous corollary applies to this
situation, since (U, Up) = exp(gl;) and ¥y, is trivial on it. |

Corollary 3.2.9. Let O be the Richardson orbit of Q. Let O’ be a stable orbit that is
greater than or not related to O. Let (s, u) be any Whittaker pair with u € O'. Then

F Nyt (INdG ) = 0.

Proof. Define U as in the previous corollary. Then the conclusion follows from the defi-
nition of g, ,, v, because gy, ,, v, (7r) is a quotient of gy y,) () for any . [

Remark 3.2.10. (1) Suppose that the weighted Dynkin diagram of @ consists of 0’s

and 2’s (namely O is even) and let Q be the parabolic whose Levi contains the simple

roots labeled 0 and whose unipotent radical contains the simple roots labeled 2. Then O

is the Richardson orbit of Q (see [8, Theorem 7.1.1, Theorem 7.1.6, Corollary 7.1.7]).
(2) Corollary 3.2.9 can also be deduced from the argument in [29, Section 1I.1.3].
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4. The A4 Levi of GE7 and Eisenstein series

Recall that P = MU is the standard parabolic subgroup of GE; whose unipotent rad-
ical contains Uy, if and only if i = 2, with Levi subgroup M and unipotent radical U.
In this section, we show that this Levi subgroup M which is of type Ag is isomorphic to
GL7 x GL;. Then we introduce the Eisentein series associated to P whose residues at
s = 1 generate a residual representation. This residual representation serves as automor-
phic kernel of our descent construction.

4.1. The Ag Levi
Lemma 4.1.1. The group M is isomorphic to GL7 x GL;.

Proof. Recall that the derived group of a Levi subgroup of a simply connected group
is simply connected. In particular, the derived group Mg, of M is simply connected,
semisimple, of type Aq. This means that it is isomorphic to SL;. To pin down a partic-
ular isomorphism we first require that T N My, is mapped to the standard torus of SL;
(the diagonal elements), and B N M., is mapped to the standard Borel of SL7 (the upper
triangular elements). Any isomorphism satisfying these requirements induces a bijection
on the set of simple roots which respects the structure of the root system. There are only
two such bijections. For reasons which will become apparent, we choose to map o7 to
the first simple root of SL; and «; to the last. These conditions determine the isomor-
phism up to conjugation by an element of 7" N My.,. To make it unique, we can use the
parametrizations X, : there is a unique isomorphism ¢y : Mger — SL7 such that
1 1 1r
1 1 1
Xg, (F) — 111 , Xy (r) = 11” s Xy () 111
1r 1 1
1 1 1

Now M is the product of its derlved group and the maximal torus 7'. A general element

of T is of the form []° . Of course [ &

;' lies in M which is mapped to

i=1"%

(under ¢q)
17
156
1g'ts
151
;'
50
it
Since
nlooj=4
@2y =L =7,
1, otherwise,

we can extend (o to a homomorphism ¢; : M — GL7 such that
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u(?) = 1 coulgt) = 1
%) 1
53 1
153 1

For any m € M, assume that m = motz(m)%vtg (m)“sv, where mg € Mge,. Define the
map
t: M — GL; Xx GLy, m > (11(m), t(m)),

which is a group homomorphism. We claim that ¢ is an isomorphism between M
and GL; x GL,. Indeed, assume that ((m) = (I7, 1). Then t,(m) = 1. Consequently,
det(t1(m)) = tg ' (m), which is equal to det(/7) = 1. Hence, t1 (m) = 19(m¢) = I7. Since
Lo is an isomorphism, we see that m is the identity of M. Hence m = mgt, (m)"‘zv ts (m)"‘g
is the identity of M. Therefore, ¢ is an isomorphism. This completes the proof of the
lemma. ]

Remark 4.1.2. The inverse of ¢ can be described explicitly as follows: for g € GL7 write
g= g1(“_l Io ), with g1 € SL7; then

1 (g’ b) _ [al (gl)aoc;{ baﬁ/—asv—Zotg—3a7v—4ag ]

Remark 4.1.3. The center of GE7 is the image of 20y + 3oy + 4oy + 60ty + 50y +
dog + 3oy + 204 .

Remark 4.1.4. Recall that there is a notion of duality on split algebraic groups (by means
of their root data) which underlies the definition of the L-group. By this duality, the iso-
morphism ¢ : M — GL7; x GL; induces a dual isomorphism ¢¥ : GL; x GL; — M.

Remark 4.1.5. For 1 <i <7 let e¢; denote the rational character of the standard maximal
torus of GL7; which maps a matrix to its ith diagonal entry. Treat e; also as a rational
character of GL7 x GL; which is trivial on the second factor and let eg denote projection
onto the second factor, so that e, ..., eg is a Z-basis for the lattice of rational characters
of the standard maximal torus of GL7 x GL;. Let e}, ..., e; be the dual basis for the
lattice of cocharacters. Then we see at once that

Vo % * Vo % * Vo % * Vo % * Vo % *
ay =e] —e,, g =e, —e3, 05 =€3—e;, 0 =e,—es, 0O =€5—¢,
Vo % * Vo %k * * * vV o_ *
af =eg—eq, a, =es+egs+e;t+eg, g =—ej.

4.2. Eisenstein series

Let 7 be an irreducible cuspidal automorphic representation of GL7(A) and y : A* — C*
a Hecke character. Having fixed above an isomorpism ¢ : M — GL7 x GL;, we may regard
7 ® y as an irreducible cuspidal automorphic representation of M (A). Restriction maps
the lattice X(M) of rational characters of M isomorphically onto a subgroup of the lat-
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tice X(T') of rational characters of T'. This sublattice is generated by the second and eighth
fundamental weights @, and wg. We denote their preimages in X (M) by @, and @sg.
Then &g extends to a generator for the lattice of rational characters of GE7 itself. Abus-
ing notation, we still denote this extension by @g. Let P be the standard parabolic whose
Levi is M. We consider the family of induced representations Indga()A) (T ® y) - |@2|°,

s € C (normalized induction), and the corresponding space of Eisenstein series.

Lemma 4.2.1. The ratio of products of partial L-functions appearing in the constant
term of these Eisenstein series is

LS(s,m ® y, A3 x St)LS (25, 7 ® y%wy, St x St)
LS+ 1,7 ® y, A3 xS)LSQ2s + 1,7 ® y2wy, St x St)

(4.2.2)

Proof. This is standard from the Gindikin—Karpalevic formula and the L-group formal-
ism. The Lie algebra of the unipotent radical of the parabolic P is a direct sum of two
irreducible MY -submodules. The highest weights correspond to the coroots oty + oty +
205 + 3y + 30 + 20 + oF, and 20y + 205 + 3oy + 4oy + 30 + 20 + .
We must view the corresponding coroots as weights on the maximal torus of GL7(C) x
GL;(C). In terms of the basis e}, ..., eg these two cocharacters are ef + e5 + e5 + eg
and e} + ef + e + e} + eX + e} + 2e, respectively. The highest weight of A3 is
ey + e5 + e}, and projection to the GL; factor is eg and determinant of the GL; factor.
The weight ef + €3 + e} + e} + eX + e} is the highest weight of the A® representa-
tion, which can also be regarded as the dual to the standard representation twisted by the
determinant. |

Let wo = w[243154234565423143542765423143542654376542], which is the
longest Weyl word which is reduced by the Weyl group of GL7 on both the left and the
right. By [30, 11.1.7] the constant term of the Eisenstein series applied to a section f of
the induced space is given by f 4+ M(wy). f, where M (wy) is the standard intertwining
operator as in [30, I1.1.6]. By [30, IV.1.11], M(wy). f can have at most a simple pole at
s = 1. By [26, (3.1) and (3.5, ¢)], it follows that (4.2.2) can have at most a simple pole at
s =1.

Since the standard L-functions of cuspidal representations of GL(n) are nonzero on

the half-plane Re(s) > 1 (see [24, Theorem 5.3]) and are entire on the whole complex

LS (25, 7@ 2wy ,St X St LS (s, Q@yx,A3 XSt

plane, LS(2(siKﬁé>x‘gZ:ﬂ,51x;t) has no pole and no zero at s = 1. So, LS(S(:iY-;r,néX,/\3X§l)

has at most a simple pole at s = 1. Moreover, from [26, (3.5, b)] a pole of the intertwining
LS (s,m®x,A3xSt)

LS (s+1,m®@x,A3XSt) ’

operator in the half-plane Re(s) > 1 must come from

Proposition 4.2.3. If the Eisenstein series has a pole in the half-plane Re(s) > 0, then
the residual representation is square integrable.

Proof. This is an easy application of the square integrability in [30, 1.4.11]. ]

According to [27, Lemma 7.5], the Eisenstein series can have a square integrable
residue only if 7 ® y o Ad(Wo) = 7 ® y. We investigate what this condition says explic-
itly about 7 and y.
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Lemma 4.2.4. There is a representative g for wo such that the automorphism of
GL7 x GLq induced by Ad(wg) and our choice of isomorphism M — GL; x GL; is

gy (g2 ),
detg’ (detg)3

where ;g is defined at the end of Section 2.

Proof. For any choice of representative, Ad(wg) induces an automorphism of GL7 x GL,
which preserves the chosen torus and Borel. When such an automorphism is restricted to
SL7 there are two possibilities: either it is given by conjugation by an element of the torus
of GL7 (in which case we can adjust the representative wo to make it trivial), or else it
is given by g > ,g7!
which case we can adjust the representative 1, to make it g — g~ ).

By inspecting the action of wg on the simple coroots, one can see that Ad(wg) maps
h(ty,...,tg) to

composed with conjugation by an element of the torus of GL7 (in

L't 385 5 3 nh
If we push this through the isomorphism with GL7 x GL4, it becomes

ty ntg
£ %)

7o NoN Nmd
i3 tf;ts 153
14 5
1585) 1718
13 153
I 3
3

We see that on the torus of SL; (obtained by setting , = tg = 1) this agrees with g
g~ ! In general, it can be expressed as (¢,1,) — (; g, tg’/tz), and tg can be expressed
as 13 /detg. n

Corollary 4.2.5. If n is a character, write n - w for the twist of = by n o det. Then for any
7, X we have
T ® x 0 Ad(io) = (' F) ® (w3 2").

Corollary 4.2.6. If
T® yoAd(wy) =7 g,

then there is a self-contragredient cuspidal representation wy with trivial central charac-

ter, and a character 1 such that w = n~'mg and y = n>.
Proof. If y = w3 x® then w2 = x77, 50 y = (wx x?)73. Setting n = w, ! y72, we have
x=n*andw, = y 21! = 7. Then w; ' y~3 - 7 = n~27. If this is isomorphic to 7

then 7y := 7 ® 7 is self-contragredient with trivial central character. ]
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Remark 4.2.7. L5 (s, 07 g ® 1, A3 ® St) = L5 (s, o, A3).

Remark 4.2.8. If a representation 7 of GL7 is self-contragredient, then LS (s, m, symz)
has a simple pole at s = 1. Indeed, each self-contragredient representation of GL,, is of
either orthogonal type (LS (s, 7, sym?) has a pole) or symplectic type (L5 (s, 7o, A2)
has a pole). When # is odd, my must be of orthogonal type, because LS (s, 7o, /\2) has no
poles in the odd case (see [23,25,31]).

Corollary 4.2.6 implies that a cuspidal representation whose twisted A3 L-function
has a pole is simply a twist of a representation whose untwisted A3 L-function has a pole.
Since there is no essential loss of generality, we shall henceforth restrict our attention to
untwisted A3 L-function, i.e., we shall assume that x is trivial. In this case we get the
following simplification of Corollary 4.2.6.

Lemma 4.2.9. If L5 (s, w, A3) has a pole, then = = 1 - g where 1 is cubic, mq is self-
contragredient with trivial central character and L5 (s, o, sym?) has a pole at s = 1.

Definition 4.2.10. An irreducible cuspidal automorphic representation 7w of GL7(A) is
said to be of G, type if it is self-contragredient and L5 (s, , A3) has a pole at s = 1.

Remark 4.2.11. By [26, Theorem 1], if LS(s, T, /\3) has apole at s = 1, then it is simple.
By Lemma 4.2.9, if an irreducible cuspidal automorphic representation 7= of GL;(A) is of
G, type, then the central character of r is trivial and LS (s, 7r, sym?) has a pole at s = 1.

Proposition 4.2.12. If 7 is of G, type then the Eisenstein series has a simple pole at
s = 1.

Proof. We have already explained that the Eisenstein series has the same poles as
L3 (s.mA?)
% m RC(S) > 1.
The exterior cube L-function is holomorphic at 2 by [26, Lemma 5.1], so a pole at 1

will be inherited by the ratio and hence the Eisenstein series. ]

Definition 4.2.13. When r is of G, type, we can see that the Eisenstein series above has
a simple pole at s = 1. Denote the residual representation by &,.

Remark 4.2.14. (1) It is possible for the Eisenstein series to have a pole at 1 even if
LS (s, m, A3) has no pole, namely, if L(s, 7, A3) vanishes at s = 2. One expects that this
does not occur. For example, if Langlands functoriality holds, then LS (s, 7r, A%) is simply
the standard L-function of the A> lift of . This lift does not need to be cuspidal, but if
the Ramanujan conjecture also holds, then both 7 and its lift will be tempered at every
place, so that the lift will be an isobaric sum of unitary cuspidal representations. In this
case its standard L-function is holomorphic and nonvanishing in Re(s) > 1.

(2) For similar reasons, one expects that LS (s, r, A®) will have no poles other than
possibly at 0 and 1 with poles at 0 and 1 arising when the trivial character is an isobaric
summand of the A3 lift.

(3) If & is of G, type, then LS (s, m, A3) must be nonvanishing at s = 2, since the
intertwining operator can have at most a simple pole.
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(4) If 7 is not of G5 type but LS (s, 7, A%) has a pole at s = 1, then we can still obtain
a residual representation &.

Lemma 4.2.15. If an irreducible automorphic representation 7w of GL7(A) is the weak
functorial lift of an irreducible automorphic representation o of Go(A), then

(1) = is nearly equivalent to its contragredient 7,
(2) LS(s,m, A%) = LS(s, w, sym?) L5 (s, 7).

Proof. The embedding of G, into GL; factors through an embedding of the special
orthogonal group SO; < GL7, it follows that if & is a weak functorial lift associated
with this embedding, then w, = 7, at every unramified place v.

Write I, 5, for the irreducible representation of G, (C) with highest weight ale 2 4+
bsz 2. (Here le 2, w2G 2 are the fundamental weights of G,(C).) The seven-dimensional
“standard” representation of G»(C) is I'1,o. Then /\3I‘1,0 = To,0 @ T'1,0 @ I'20, while
sym? 'y o = [0 @ 2,0, 50 ATy o 2 sym? 'y o @ I'y0. It follows that for 7 the weak
functorial lift of o we have

L3(s,w. A%) = L¥(5.0,A’T'1,0) = L5 (s.0.5ym” T ,0) L5 (5.0, T'1,0)
= L5, 7, symz)LS(s, ). |
Lemma 4.2.16. If an irreducible cuspidal representation w of GL7(A) is the weak functo-

rial lift of an irreducible cuspidal representation o of G2 (A), then 7 is self-contragredient
and LS (s, w, A3) has a simple pole at s = 1.

Proof. From Lemma 4.2.15 (1), and strong multiplicity 1 for GL7, it follows that 7 = 7.
From Lemma 4.2.15 (2), we have

LS5 (s, 7, A%) = L5(s, 7, sym?) L5 (s, 7).

Now, LS (s, ) is holomorphic and nonvanishing in Re(s) > 1, while LS (s, m, symz) has
a simple pole at s = 1, because 7 is self-contragredient. Note that self-contragredient rep-
resentations of GL;(A) are automatically of orthogonal type. It follows that LS (s, 77, A3)
has a simple pole at s = 1. ]

5. The nilpotent orbit A¢ of E7

In this section we consider the rational orbit structure for the nilpotent orbit of £7 whose
Bala—Carter label is A¢ and whose weighted Dynkin diagram is

0 — 0 — 2 — 0 — 2 — 0

We will show that this nilpotent orbit consists of a single rational orbit, and the residual
representation &, has a nonzero generalized Whittaker—Fourier coefficient attached to it.
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First, we introduce some notation related to nilpotent orbits. One of the most con-
venient ways to specify a nilpotent orbit @ in a reductive Lie algebra is by a weighted
Dynkin diagram. This method of specifying nilpotent elements relies on two facts:

(1) Orbits of nilpotent elements are in bijection with orbits of sl,-triples [5, Theorem
5.5.11].

(2) Once a split maximal torus 7" and a base A of simple roots (relative to 7') have been
fixed, each sl,-triple is conjugate to a triple (v, s, #) such that s € t, and a(s) > 0
for all @ € A. (Since each torus is contained in a maximal one, all maximal tori are
conjugate, and every weight is in the Weyl orbit of a dominant one.)

Definition 5.0.1. The semisimple element s = s@ as above is called the standard semi-
simple element attached to the orbit @ in question. Let P9 = MpUg be the parabolic
subgroup Py = MU defined in Section 3.1, with Levi subgroup M9 = M and unipotent
radical Up = Us.

Each element s of t determines a weighted Dynkin diagram

ai(s) oaz(s) aa(s) as(s) aels) a7(s)
oa(s)
The weighted Dynkin diagram of a nilpotent orbit is then the weighted Dynkin diagram
of its standard semisimple element.

The map from t to weighted Dynkin diagrams is not injective, but each fiber has a
unique element which is contained in the span of the coroots of G. For any nilpotent
orbit, the standard semisimple element is contained in this subspace of t. In addition, if
the weights of the Dynkin diagram are integral, then the diagram canonically determines
a homomorphism from the root lattice into Z, i.e., a coweight. Whenever convenient, we
will use integrally weighted Dynkin diagrams to specify coweights, nilpotent orbits, and
elements of t.

To study the nilpotent orbit Ag, we consider the parabolic subgroup Q = LV whose
Levi L contains the root subgroups attached to o, s, o3, @5 and o7 and whose unipo-
tent radical V' contains the root subgroups attached to the other simple roots. The
derived group of L is isomorphic to SL3 x SL, X SL, x SL;, and we can map L into
GL3 x GLy x GL, x GL, so that the induced map on Lie algebras maps Z?=1 tiHy, +
21,2357 % Xa; + yiX—g; 10

13 — 14 X3
Ih —1ts Xo ts — 1o X5 t7 — 13 X7
V3 =1 x1 ( )( )( )
Y2 2 ys la—1Is Yy ote—17
V1 —I
The image is
{(g1,82,83,84) € GL3 X GLy x GLp X GL, : detg; = detg,}. (5.0.2)

Denote the isomorphism from L to (5.0.2) by ¢z . Denote the projection of GL3 x GL, x
GL, x GL, onto the ith factor by p; fori = 1,2, 3,4. We write D for the differential,
i.e., the induced map on Lie algebras. Thus, for example Dp, o Dy, maps [ — gl,.
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The space of characters of V is identified with the sum of the root spaces g_,, attached
to roots « such that @ = 21'7:1 cia; and 2¢4 + 2¢¢ = 2. Clearly, this is the direct sum of
two subspaces

V] = &b g—¢ and v, = P q—c-
a:ca=1,c6=0 a:c4=0,ce=1
Lemma 5.0.3. Write GSO4 for the usual split similitude orthogonal group in four vari-
ables. In other words, let

1
Jy = . GSO4:={g € GL4 : gJ4'g = A(g)Js. A(g) € GL1}.
1
There is a surjective homomorphism of algebraic groups pr : GLy X GLy — GSOy,

aq bl as —bz

" aq b] an b2 _ C1 dl an b2
p C1 d] ’ (6] dz - aq —bl —C2 dz ’

—c1  di 5 d>
which satisfies A(pr(g1, g2)) = det g1 det g».

Proof. Write E;; for the 2 x 2 matrix with a 1 at the 7, j entry and zeros elsewhere.
Then pr sends (g1, g2) to the matrix of the linear operator X — g1 X ‘g, relative to the
ordered basis (Ey,1, E2,1, —E1,2, E2,2) of Mataxa . Notice that the coordinate vector for
the matrix (‘C’ 3) relative to this ordered basis is ‘l[a ¢ —b d]. Thus the quadratic
form determined by the matrix J4 corresponds to twice the determinant form on Mat, x>,
from which it easily follows that GL, x GL; maps into GSO4 (which can also be checked
by hand on the matrices above). The formula for A o pr also follows easily.

It remains to show that the map is surjective. It suffices to show that the image contains

all four root subgroups and the full torus, and this is straightforward. ]

Lemma 5.0.4. There is an isomorphism of vector groups Loz : v, — Mataxo which is
compatible with 1, in the sense that

loy (Ad(L (1. 82. 3. 84))-X) = gatus (X)g5 .

Proof. We consider the action of SL3 x SL, x SL, x SL, on v, and easily see that the
copies of SL, attached to the roots a5 and a7 act nontrivially, while the copy of SL,
attached to a» and the SL3 factor act trivially. There is a unique four-dimensional rep-
resentation of SL, x SL, on which both factors act trivially. Hence, the given action on
Mat, ., is one realization of it, while inclusion into SL3 x SL, x SL, x SL, at the third
and fourth positions composed with Ad o LZI is another.

To construct a specific isomorphism we start by matching our preferred highest weight
vectors and generating the correspondence on the complete bases of weight vectors.
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Thus, we map X _gpg0010 (a highest weight vector in v;) to Eq> (a highest weight
vector in Matyx;). Then, since the differential of ¢ maps X_ggo0100 to (E21,0), it
follows that ad(X_0000100) X—0000010 must be mapped to E5; - Ej5 = E3;. Of course
ad(X-0000100) X—0000010 is a scalar multiple of X_gg00110. The scalar depends on the
structure constants of our realization (or equivalently of the corresponding Chevalley
basis). USiIlg GAP, we find [X—OOOOIOO» X_0000010] = X_0000110- Continuing in this fash-
ion, we compute]

lvz—(X0000010X—0000010+X0000011X—0000011+x0000110X—0000110+x0000111X—0000111)
. (Xooooon Xooooom)

X0000111  X0000110

4 \4 Vv
‘What remains is to check that the action of ZZ“ tg 6 lg 8 is the same on both sides. And
this is easy, since

-1 53 1
-1 —1 Bx =X
(l6 )(Xooooou xooooom) (fg ) _ | 0000011 3220000010
4
f4) \Xoooo111  X0000110 f6 1418X0000111 7, X0000110
ay af ad\—0000011 oy o oag\—0000010
4 g og 4 Y 98
<(l4 lg" Ig X0000011 (l4 Ig" Ig ) X0000010 -
- oy o ag\—0000111 oy o ag\—0000110 :
4 6 8 4 6
(l4 lg” Ig ) X0000111 (l4 Ig" Ig ) X0000110

Lemma 5.0.5. There is an isomorphism of vector groups Loy 1 ©] —> Matsxg which is
compatible with (1, in the sense that

tor (AA(Z ' (1. 2. 83, 84))-X) = gutwr (X) Pr(g2.83) 7"

Proof. This is proved by the same method. We record only the essential information. The
correspondence between roots « such that X, lies in v] and entries in an element of
Mats x4 is succinctly expressed by the following matrix:

—0101100 —0001100 —0101000 —0001000
—0111100 —0011100 —0111000 —0011000
—1111100 —1011100 —1111000 —1011000

4 Vv 4
In the next matrix we record the image of 7, * £¢° zg® under these twelve roots:

te to/ta 1/t4 1/1‘3
tela te 1 1/l4
tela te 1 1/1‘4

Each entry matches exactly the effect of multiplying by diag(z, 1.1, 1) on the left and
diag(tets, t6, 1, t4_1) on the right. Finally, one has to check that diag(tst4, t6, 1, t4_1)71 =

pr((41 ) (%" ,))- .

'We remark that the scalars are not important for the present argument — only the correspon-
dence between roots and entries is really needed.
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Next we compute the rational orbit structure for the action of GL3 x GSO4 on Matsx4
by (g1,82).Y = g1Yg; 1. Write Mat?,,y;(n3 for the space of 3 x 3 symmetric matrices. The
group GL3 x GL; acts by (g,a).Z = agZ'g. We have a map Matzxq —> Matzy:3 given
by Y +— YJ,'Y. Clearly

(g1Yg; 4" (g1Ygs ") = Mgy g1V J4'Y.

Thus Y7 and Y5 lie in the same GL3 x GSOg4-orbit if and only if Y1?Y7 lies in the same
GL3 x GLy-orbit as Y»'Y,. It is clear that Rank Y and Rank Y Y are both invariants
of a GL3 x GSOg4-orbit, and that the latter is bounded by the former. It is relatively
easy to show that {Y € Matzx4 : RankY = j,Rank Y 'Y = j} is nonempty and a single
GL3 x GSO4-orbit for (i, j) = (0,0), (1,0), (1,1),(2,0), and (2, 1). Also, one can easily
find a matrix Y of rank 2 such that Y 'Y = diag(a, b, 0) for any a, b.

Lemma 5.0.6. Take F a field and Y € Matzx4(F) of rank 3. Then there exists g € GL3
such that (gY 'Y 'g) is of the form

1

Proof. Write V for the span of the rows of Y. We choose a suitable basis for V' such that
the quadratic form attached to J4, when written in terms of the new basis, has a matrix of
the specified form.

We may write Mat; x4 = Wy & W, where Wj, W, are two-dimensional isotropic sub-
spaces. Since dim V' > dim W, there exist nontrivial elements of v which project to 0
in Wy. Thatis, V N Wy # 0. Likewise V N W, # 0. Selectv; € VN Wy and vy € V N Wa.

First suppose that v; is orthogonal to v,. Then the span of v; and v, is a maximal
isotropic subspace W]. Select v3 in the orthogonal complement of W} and then replace
v1, vz by a new basis v}, v for W] such that v}, J4v3 = 0 and v} J4v3 = 1. Then the basis
v}, v5, v3 fits the bill.

Now suppose that v; is not orthogonal to v,, and let vz be any element of V' which
is linearly independent of v; and v,. Then there exist a, b such that vy — bvy — cv; is
orthogonal to both v; and v,, and the basis vy, v3, v, fits the bill. [

Corollary 5.0.7.
{Y € Mat3y4(F) : Rank Y'Y = 3}

is a Zariski open GL3(F) x GSO4(F)-orbit over any field F.

Proof. The set is clearly Zariski open. We have shown that each orbit with Rank Y 'Y =3

contains an element with
1

Yy = a
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If the rank is 3 then a is nonzero and we can scale by a~! in GL; and then act by
diag(a, 1,1) in GL3 to get (1 1 l) , which completes the proof that our set is a single
orbit. ]

Corollary 5.0.8. The nilpotent orbit Ag consists of a single rational orbit.

Proof. We know that each rational orbit in A¢ has a representative that lies in
] (F) @ v; (F), and that two elements of this space lie in the same G(F)-orbit if
and only if they lie in the same L(F)-orbit. We can identify vy (F) & v, (F) with
Matszx4(F) @ Matoxo (F). It is clear that the action of L(F) preserves the Zariski open
subset {(Y, X) € Matsx4(F) x Matyxo(F) : Rank Y 'Y = 3, Rank X = 2}. We show that
this set is a single L (F)-orbit. Take two elements (Y7, X1) and (Y3, X»). Recall that L is
identified with {(g1, g2, g3, 84) € GL3 X GL, X GL x GL, : detg; = det g,}, and note
that (g1, g2, g3, &4) — (g1, pr(gz2, g3)) gives a surjective mapping onto GL3 X GSOy.
Thus, there exists (g1, g2, g3) such that Ad(g1, g2. g3, I2).(Y1, X1) = (Y2, X,). Then
Ad([3,Iz,]z,X;l(Xé)).(Yz,Xé) = (Yz,Xz). |

It will be convenient to select a representative for our open orbit. A representative in
Matzx4 X Matyx, would be
1
. ( 1)
1

A convenient representative in v] D v, would be X_¢101100 + X—0111000 + X—0011100
+ X_1011000 + X—0000110 + X—0000011- This will correspond to the above pair of matri-
ces up to some signs. In particular, it will be an element of the correct orbit. Let wo =
w[243154234654237654]. (This notation for an element of the Weyl group was intro-
duced in Section 2.) Then there is a representative wq for wg such that

1

Ad(wo).(X—0101100 + X—0111000 + X—0011100 + X—1011000 + X—0000110 + X—0000011)
= Xy + Xa) + Xea, + Xae + Xgg + X—as.

This nilpotent element corresponds to the regular orbit of the A¢ Levi. We remark that if
a standard representative Wy is used then

Ad(Wo).(X—0101100 + X—0111000 + X—0011100 + X—1011000 + X—0000110 + X—0000011)
= —Xogy + Xgy = Xy + X + X — X—as.

For the sake of completeness, we record our findings regarding the rational orbit
decomposition of Mat3xg4.

Proposition 5.0.9. The set

{Y € Matsxs : RankY =i, RankYJ,'Y = j}
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is nonempty if and only if either 0 < j <i <2,0ri =3 and?2 < j < 3. It is a single
GL3 X GSOg4-orbit unless i = j = 2, in which case it is a union of orbits which are in
one-to-one correspondence with the action of GL, x GL1 on Mat;y;nz .

Theorem 5.0.10. &, has a nonzero generalized Fourier coefficient attached to the ratio-

nal nilpotent orbit labeled by Asg.

Proof. Takeu =X 4, + X o, + X o, + X_4s + X o + X_4; and arational semisim-
ple s’ element which acts by 2 on each simple root space. Then %/, maps an automorphic
form to the GL; nondegenerate Whittaker—Fourier integral of its constant term along
the Ag parabolic. It is clear that the residual representation supports this coefficient. There-
fore, by Theorem 3.1.2, it also supports F; ,, where s is a neutral element for u. n

Remark 5.0.11. We expect that in fact w” (€,) = {A¢}. Indeed, we expect that if 7 is of
G type then at each unramified place v, m, is attached to a semisimple conjugacy class
of GL7(C) which intersects the subgroup G (C). By Corollary 3.2.8 and Remark 3.2.10,
it follows from the discussion in §7.3.2 below that if there is even one unramified finite
place where this condition holds, then n”(&,) = {A4¢}-

6. Descent Fourier coefficients and descent modules

From the table [5, pp. 403—404], we learn that there are two conjugacy classes of sl,-
triples in GE7 such that the stabilizer is of G type. They are known as AZ and A, + 3A4;.
For the sake of completeness, we consider Fourier coefficients and associated descent
modules attached to each of them.

6.1. Al

The weighted Dynkin diagram of this orbit is 293922 Let s be the standard semi-
simple element attached to the orbit. Then the Levi subgroup whose Lie algebra is g3 is
the semidirect product of a derived group isomorphic to Sping and a four-dimensional
torus, while the space g_p is the direct sum of two nonisomorphic irreducible eight-
dimensional representations of this Levi and one one-dimensional representation. On
each eight-dimensional representation we have a Sping-invariant quadiatic form, which

A//

is unique up to scalar (see [11, Exercise 20.38]). The Levi acts on g_; with an open

orbit. It is not hard to check that in this case the open orbit consists of triples such that
each eight-dimensional component is anisotropic relative to the Sping-invariant form and
the one-dimensional component is nonzero (see [22]). The stabilizer of any point in this
open orbit is the product of the center of GE7 and a group isomorphic to G». It is not hard
to check that

Jo := X—0000001 + X—1111000 + X—1011100 + X—0101110 + X—0011110
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is in this open orbit. The corresponding copy of g, is generated by

X 10001000, X+0100000 — X+0010000 + X+£0000100-

and we embed G, into GE7 so that X14 = X10100000 — X+£0010000 + X+0000100 and
X+1g = X+o001000- Recall that PA/S/ = MA’S’ UAg = Py = M Ujs is the parabolic subgroup
defined as in Section 3.1, where s is the standard semisimple element (see Definition
5.0.1) attached to A%, M, 4y = M is the Levi subgroup, and UA;r = Ujs is the unipotent

radical. Then U, Az contains Uy, if and only if i # 2,3,4,5. Let W{;Z” be the character of
5
Ugz (F)\Uygz(A) attached to fo.

Definition 6.1.1. Let 7 be an irreducible cuspidal automorphic representation of GL7(A)
which is of G, type (as in Definition 4.2.10). Let &, be the residual representatlon as in

Definition 4.2.13. We define the corresponding descent module D, = Dy 45 to be

(UA”’WU //
Dy = {y > |Gya) 19 € Ex}s

where

/0
(UAg ’qu”)

¢ $(g) = PV, () du. g € GEr(A).

LAg (F)\UA’S’(A)

6.2. A> +34;

The weighted Dynkin diagram of this orbit is © 99990 Recall that M is the standard
Levi subgroup isomorphic to GL7 x GL;, P is the standard parabolic which contains it,
and U is the unipotent radical of P. Then P = MU = Pg, 134, = Ma,134,Usr434,
as in Definition 5.0.1, M = My, 134,, U = Ugy 434,

Leteg = X_1122100 + X—1112110 + X—1111111 + X—0112210 + X—0112111 and

W P(u) = ¥ (u1122100 + U1112110 + Ut111111 + Uo112210 + Uo112111)

be the corresponding character of U(F)\U(A). We write u € U as [ [, Xq (4q) with the
roots taken in some fixed order. The coordinate u, is independent of the choice of order
provided the second coordinate of « is 1.

Lemma 6.2.1. The stabilizer of wle]o in M is the product of the center and a group iso-
morphic to G,.

Proof. We can identify the space of characters of U(F)\U(A) with the space

ug_l) = P u.

(@, 0y )=—1

As representation of gl-, this representation is isomorphic to the exterior cube representa-
tion of GL7. It is well known (see [11, pp. 356-357]) that GL7 acts on this representation
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with an open orbit, and that the stabilizer of any point in this open orbit is of G, type.
Using SageMath, with adjoint matrices from GAP, we verified that w(e]o is fixed by

2
X1000000(@)X0001100(—a")X0000100(2a)X0001000 (@) X0000001 (—@),
X0010000(P)X0000010(D),  X—0010000(D)X—0000010()),

X-1000000(@)X—-0001100 (az)x—oooowo (@)x-0001000(2@)X—-0000001 (—a)-

These subgroups generate a split subgroup of GL7 of G, type. The stabilizer also contains
the center of GE5. It remains to prove that the stabilizer is no larger. For this purpose it
suffices to prove that our character corresponds to a point in the open orbit. In [11, p. 357]
a specific point in the open orbit is written down; it is a sum of five weight vectors. We
easily check that these five weights correspond to the five roots which appear in wgo. Over
an algebraically closed field, the torus acts transitively on the set of linear combinations
of these five weight vectors so that all five coefficients are nonzero. Therefore the point
corresponding to w(ejo is also in the open orbit. ]

We remark that the embedding of G, into GL; obtained in this way agrees with the
one from [11].

It is convenient to know that the roots in supp( 1,/ff]°) can be simultaneously conjugated
to simple roots. Let Ry = {1122100, 1112110, 1111111,0112210,0112111}, and we =
w[423546542314376542]. Then wg - R} = {aq, a2, a3, a5, a7}.

Definition 6.2.2. Let 7 be an irreducible cuspidal automorphic representation of GL7(A)
which is of G, type (as in Definition 4.2.10). Let &, be the residual representation as in

Definition 4.2.13. We define the corresponding descent module D, = i),‘;1 21341 15 be

(‘0
Dy = {9 UV |6,a) 1 ¢ € Ex),

where
EO —
WUV (g) = / ey’ (w)du, g <€ GE7(A).
UF)\U(A)

Remark 6.2.3. The embedding of G, which comes from the orbit A, + 34 is closely
related to the appearance of A3 in the constant term. Indeed, LS (s, 7, r) appears in the
constant term of an Eisenstein series of a group G if and only if  appears in the action of
the relevant Levi of G on the nilpotent radical of the Lie algebra of the corresponding
parabolic. That is, r appears equipped with a realization as a space of nilpotent elements.
In fact, the realization of A3 is precisely as the space g5 where s is the standard semisimple
element attached to A, + 3A4;. That is, the embedding of G,(C) into GE7(C) on the L-
group side as the stabilizer of a point in the representation obtained from an L-function,
and the embedding of G, into GE?7 as the stabilizer of a Fourier coefficient are essentially
the same embedding. This phenomenon does not occur in the classical situation of [16],
as it requires self-contragredientity of both the group denoted by H and the one denoted
by A in our discussion of the general set-up in the introduction.

In the introduction we remarked on prior work of Ginzburg where H = G, and
A = Fy4, as well as prior work of Ginzburg—Hundley where H = F, and A = Ejg, where
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the descent modules fail to be cuspidal. It is noteworthy that in both of those cases, H and
A are self-contragredient and the embedding of H into A obtained from the L-function
is the only embedding of H into A.

7. The A;’ case

Recall from Definition 6.1.1 that in the A% case the descent module D, is defined by
applying the Fourier coefficient (U, Az w(j};”) from Section 6.1 to the residual representa-
5

tion &, where 7 is an irreducible cuspidal automorphic representation of GL7(A) which
is of G, type. In this section, we prove the following theorem.

Theorem 7.0.1. Assume that i is an irreducible cuspidal automorphic representation of
GL7(A) which is of G, type, and Dy, is defined as in Definition 6.1.1. Then

(1) Dy is generic.

(2) Suppose that there exists a finite place vy such that my, is a principal series repre-
sentation of GL7(Fy,) which is attached to a semisimple conjugacy class of GL7(C),
and intersects the subgroup G (C). Then Dy, is cuspidal.

(3) Suppose that for almost all finite places v, mw, is a principal series representation of
GL;(F,) which is attached to a semisimple conjugacy class of GL7(C), and intersects
the subgroup G,(C). Then 7 is a weak functorial lift of each irreducible summand

of Dy.

7.1. Genericity of the A% descent module

The purpose of this section is to prove that the descent module D, is generic. The proof
can be explained using the language of “unipotent periods” introduced in [20]. Let Unc,';&
be the standard maximal unipotent subgroup of G». Let ¥ ©2 be any character of UmGai.
Then the composite (Unﬁi, ¥ 92) o (UAg_/, w{;z”) makes sense as a unipotent period on

C*°(GE7(F)\GE7(A)). Explicitly, it maps ¢ é C*®(GE7(F)\GE7(A)) to

fo G
euiu2g) ¥y, ()Y o2 (uz) duy dus.
/Umi% (F)\USZ (A) /U(F)\U(A) Yag

In our discussion of unipotent periods it is helpful to note that
S «— 1_[ U,
aES
is a bijection
{SCP:a,eS,0a+BcdU{0}=>a+B<S}
<—> {T -stable unipotent subgroups of GE7}.
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Thus, it is often convenient to specify a unipotent subgroup V' of GE; by identifying
®(V, T). We adopt a convenient abuse of notation. Let V' be a T -stable unipotent sub-
group of GE5 and let i be a character of it. We shall call {& € ®(V. T) : ¥v |y, ) # 1}
the “support” of 1y and denote it supp . We denote by (V, ¥y) or V>¥v) the follow-
ing attached unipotent period:

/ oe)Ty (W) dv. g € GEr(A).
V(F)\V(A)

Given two unipotent periods (V, ¥y) and (U, ypy), if V>¥V) is left-invariant by U(F),
then we denote the composed period by (U, yv) o (V, ¥y).

We recall the concept of equivalence of unipotent periods. Write #; | P, if P, van-
ishes identically on any automorphic representation on which #; vanishes identically.
Two periods &1 and P, are said to be equivalent (denoted P ~ P,) if P; | P> and P> | P;.

In the study of Fourier coefficients of automorphic forms, in particular concerning the
global nonvanishing property, a technical lemma from [16] has been very useful in the
theory. We recall it as follows. Let G be any connected reductive group defined over F'.
Let C be an F-subgroup of a maximal unipotent subgroup of G, and let ¥'¢ be a non-
trivial character of [C] = C(F)\C(A). Suppose X, Y are two unipotent F-subgroups
satisfying the following conditions:

(1) X and Y normalize C;

(2) XNC and Y N C are normal in X and Y, respectively, and both (X N C)\ X and
(Y N C)\Y are abelian;

(3) X(A) and Y(A) preserve ¥c;

(4) Y istrivialon (X N C)(A) and (Y N C)(A);

G [X.Y]CC;

(6) there is a nondegenerate pairing (X N C)(A)\X(A) x (Y N C)(A)\Y(A) - C*,
given by (x, y) — ¥¢ ([x, y]), which is multiplicative in each coordinate, and iden-

tifies the set (Y N C)(F)\Y(F) with the dual of X(F)(X N C)(A)\X(A), and
(X N C)(F)\X(F) with the dual of Y(F)(Y N C)(A)\Y(A).

Let B=CX and D =CY, and extend Y ¢ trivially to characters of [B] = B(F)\ B(A)
and [D] = D(F)\D(A), which will be denoted by ¥p and ¥p respectively. When there
is no confusion, we will denote both ¥ g and yp by ¥ c.

Lemma 7.1.1 ([16, Lemma 7.1 and Corollary 7.1]). Assume that (C, V¢, X, Y) satisfies
all the above conditions. Let f be an automorphic function of uniformly moderate growth
on G(A). Then

[ rogvawa = [ fuxg)p () dudx, Vg € G(A),
[B] (XNCYAM\X(A) J[D]
The right hand side of the above equality is convergent in the sense

dx < oo,

f(uxg)¥p(u)du

[D]

/;XOC)(A)\X(A)
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and this convergence is uniform as g varies in compact subsets of G(A). Moreover,

(B, ¥B) ~ (D, V¥p).

We consider the unipotent period (Uy, w(%l) where Uj is the T'-stable unipotent group
attached to the set of positive roots whose complement is {1011000, 0001110, 1010000,
0000110, 1000000, 0000010} Also W%l (u) = Iﬁ(u()oo()()(n + Ui111000 + U1011100 +
U0101110 + 0011110 + A1Uay + A2Uqs + A3Ugs + daUg,). Fora = (ay,az2,a3,a4) € F*,
we define a character ‘/ff]Gz of Un?ai by wiGz () = Y(asug + (a1 — az + az)uy).

max max

Lemma 7.1.2. The period (Uy, 1//[%] ) is equivalent to the composed period (UmGa%(, W?;Gz)

o (Uny ¥°,)-
5

max

Proof. The proof consists of three applications of the “exchange lemma”, Lemma 7.1.1.
Each time, the group X is a product of two commuting root subgroups Uy, , U, of GE7,
and there are three roots 1, 82, B3 of GE7 and a root § of G, such that g, N @13: Lug;
= ug. For the group ¥ we may use any complement to Us in Ug, Ug, Ug,. The ro0ts
which determine the groups X and Y in the successive applications of Lemma 7.1.1 are
given in the table below.

X Y 8
1000000, 0000010 | 0111000,0101100,0011100 | 2« + B
1010000, 0000110 | 0101000,0011000,0001100 | o + B
1011000, 0001110 | 0100000, 0010000, 0000100 o

Checking conditions (1) to (6) for Lemma 7.1.1 is similar to the proof of Lemma 8.1.3. =

Note that the character w%l is attached to
o= fotarXog, +a2X o3 +a3X o5+ asX—q,.

Lemma 7.1.3. (1) Let X be a nilpotent element of e7. Then X is in the closure of Ag if
and only if ad(X)' = 0. In this case ad(X)'3 is also 0.

(2) Let X be in the closure of As. Then X is in Ag itself if and only if ad(X)'? # 0.

Proof. To any nilpotent element X € e; we may associate the rank sequence
(rank ad(X )k),‘zozo. (All but finitely many entries are zero.) It is clear that the rank
sequence is an invariant of the stable orbit of X. In general the map from stable orbits
to rank sequences is not injective, but one can check (using GAP, for example) that for
e it is. This lemma can then be proved by inspecting the rank sequences for all nilpotent
orbits in e, obtained from GAP, while using the chart in [5, p. 442] to see which orbits
are in the closure of Ag. [

Lemma 7.1.4. (1) For a in general position, f, is in the orbit E7(as4).

(2) The orbit of fa is in the closure of Ae if and only if at least one of the following
conditions holds:
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(@) a4 =0;
(b) az =0and ay = ay;
(¢) a1 = azci(cy + 2) and ay = azci(cy + 1) for some c;.
() Ifas =0, oraz = 0and a; = ay, then the orbit of f, is strictly less than Ag.

4) If ay = azci(c1 +2) and ay = aszci(cy + 1), then fg is in Ae if and only if as and
. a . .
a1 — a, + as are both nonzero, i.e., the character 30*62 is generic.

max

Proof. Using GAP and SageMath, we compute that for a in general position,
Rank ad(f,)'* = 1,Rankad( f,)'® = 2, Rankad( f;)'? = 4. It follows that for a in gen-
eral position, f, is an element of the orbit £7(a4). An element f of e lies in the closure
of Ag if and only if ad(f)!®> = 0. It lies in Ag itself if and only if Rank ad( f)'? = 3.
Further, Rank ad( f;)!'* = 0 if and only if a4 = 0 or

(a1 —a»)?® + as(ay —2az) = 0. (7.1.5)

If a4 = 0, then Rank ad( f;)'! = 0, and f; is in an orbit which is less than Ag. If a3 = 0
and a, = ai, the same is true.

If a3 # 0 then we may let by = a; — a,, and (7.1.5) becomes by —a, = —bf/a3. Then
letting ¢; = by /a3, this becomes a; = cjasz + c%a3. Also ay; = c1az + ap = 2c1a3 +
cfa3. We may compute ad( f;), with a1, a, defined by these formulas, using SageMath.
After dropping all rows and columns that consist entirely of zeros, we obtain a 9 x 9
matrix, all of whose entries are divisible by 462a§a4(cl + 1)2, which is easily seen to be
rank 3 if this expression is nonzero. Further, when a1, a, are defined by these formulas,
we have a; — a; + az = (c1 + 1)as. From this we conclude that for any a such that
Jfa € Ag., the character WQ@ is generic. ]

Remark 7.1.6. Note that the character wQGz istrivial ifand only ifags = a; —az + a3 =

0. We found that in this case f; is always {nﬁxthe orbit A%.
Lemma 7.1.7. Let U, be the T -stable unipotent subgroup such that
O(T, Uy) = ®F ~ {0000100, 0000110, 0001100, 0010000, 0011000, 1010000},

and let w[%z : Ua(A) — C* be the character of Uy(F)\U,(A) given by

a
I/fﬁz(u) = ¥/ (10000111 + Uo101100 + U0001110 + U0111000 + U1011000

+ asuoo00010 + A4U0011100 + 140100000 + A2141000000)-

Let * denote entrywise multiplication in F*:

(01702,6’3,04) * (al,a2,a37a4) = (Clal,Czaz,C3a3,C4a4)-

Then there exists ¢ = (c1, 2, ¢3,¢4) € {E1Y* such that (Uy, w%l) ~ (U3, 1//5?) for all
a € F*
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Proof. Conjugate by a suitable representative of w[5631]. For any representative,
W[5631], we have w[5631]x, (r)w[5631]71 = Xw[s631]a (Ci[5631],a7), fOr some constant
Ci[5631],« Which depends on o, the choice of representative w[5631], and the struc-
ture constants of the Chevalley basis. Moreover, there exist representatives such that
Ci[s631],a € {E1} for all «. Since the five roots from the original A% character can be
simultaneously conjugated to simple roots, it follows that we can adjust our representa-
tive by an element of the torus to make these five coefficients 1. ]

The character 1//?72 is attached to Ad(w[5631]) fz+q, Which is, of course, in the same
orbit as fc«e. We have seen in Lemma 7.1.4 that if this orbit is greater than or equal
to Ag, then wg’% will be a generic character of Uncl';&. But the set of such characters is
permuted transi"t‘i:/ely by the torus of G,. Hence, all such characters are equivalent. That
is, (Ua, ‘/’?72) ~ (U, w%z) whenever the nilpotent elements attached to w%z and w%z are
both attached to orbits that are greater than or equal to Ae.

Lemma 7.1.8. Let Us be the T -stable unipotent subgroup such that
O(T, Uy) = ®F ~ {0000001, 0000100, 0001000, 0001100, 0010000, 0011000},

and let w(%3 : U3 (A) — C* be the character given by W[%g (u) = ¥ (uoo01110 +Uo101100 +

U0000111 + U0111000 + U 1010000 + A3U0000011 + a4M0011100d+ a110101000 + a2141000000)-
Then there exists d € {+1}* such that (U,, w(%z) ~ (Us, wﬁjg) foralla € F*.

Proof. Exchange o7 for 0000110 and o4 for 1010000, applying Lemma 7.1.1, and then
conjugate by a suitable representative for w[47]. ]

Lemma 7.1.9. Let Us be the unipotent subgroup attached to E7(as). Thus Uy, is in Us
fori =1,4and’7. Let Uy be the subgroup of Us defined by the condition uy, = 0. And
1,0?74 be the character of this group defined by the same formula as w%} Then (Us, 1,0?73) ~

(Us, ¥75,)-

Proof. We exchange 0100000 for 0011000, 0000010 for 0001100, and then 0000110 for
0000001, applying Lemma 7.1.1. |

Proposition 7.1.10. For a € F* and b € F, let wg,;b be the character given by

1//?,’51’(14)60[4 (r) = 1//?74 )Y (br) for u € Us(A) and r € A. Then an automorphic rep-

resentation supports the period (Uy, wa) if and only if it supports (Us, 1//?7’51)) for some b.
a

Proof. Given an automorphic form ¢ we perform Fourier expansion of ¢(U4’WU4) along

the one-dimensional unipotent group Uy, (F)\Uy, (A). |

Let My 3 5,6) be the standard Levi subgroup of GE7 which contains Uy, if and only
if i =2,3,5, or 6. (Thus, M{; 3 5¢) is the standard Levi factor of a standard parabolic
whose unipotent radical is the group Us.)
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Proposition 7.1.11. Let y, = X_ooo01110 + X—o0101100 + X—0000111 + X—o0111000 +
X_1010000 + d3X—0000011 + @4 X 0011100 + a(l)X—omlooo + axX—_1000000, Which is the
nilpotent element associated to 1//%4 and 1//?,’5 . Let e = X_1010000 + X—0000011 +
X—o0111000 + X—0101100 + X—0011100 + X—0001110- If Y4 is in the orbit Ag then there

exists m in My 3,56y such that Ad(m).y, = ey. In particular, lfg[f(ej(; is the character
of Us(A) attached to e, then the periods (Us, w%’so) and (Us, 1//2‘;) are equivalent.
Proof. Computations very similar to those in the proof of Lemma 7.1.4 show that y, is
in Ag if and only if a4,a3 # 0,a; = 2c1a3 + c12a3,a2 = —(clza3 + c1as), with ¢y # —1.
Let

u1(b1, b2, b3, bg, bs)=x0100000(P1)X0010000 (h2)X0000100(D3)X0000010(P2)X0000110(D5),
l1(b1, b2, b3, b4, bs)=x—-0100000(b1)X-0010000(H2)X-0000100(H3)X—0000010 (D4)

X X_g000110(bs).
Th ( _( 2 + ) _ 2 2 2) t
en uj1(asagcy, ascy ascCi), C1d3, —A3a4Cy,a504C7) Maps yq 1o
X 0001110 + X—0101100 + X—0000111 + X—0111000 + X—1010000
+ (a3 4+ azc1) X 0000011 + @4 X _0o11100-

Then acting on this by

1 1 1 1 1
l [ P [ P
l(2a3a4(61 +1)" 2a3(ci+ 1) asz(ci+1)" 2azas(ci +1)" 4adas(cr + 1)2)

produces

X 0001110 + X—0101100 + X—0111000 + X—1010000

+ (a3 + aszc1) X—o0000011 + @4 X—0011100-
Then acting by a suitable torus element produces e;,. ]

Lemma 7.1.12. Let w3 = w[24315423465423765]. Then there is a representative W3 for
w3 in GE7(F) such that Wzey = X—o, + X—q3 + X—ay + X—a5 + X—og + X0,

Proof. One may check (using LiE for example) that w3 maps the six roots which appear in
the expression for e, to the six negative simple roots in the GL7 subgroup. It follows that
the identity holds up to nonzero scalars for any representative w[24315423465423765].
We may then adjust by an element of 7'(F') to make all the scalars 1. |

Remark 7.1.13. Lets = 293002 pe the standard semisimple element attached to the
orbit E7(as). Then (Us, Yr) = Fyer .

Lemma 7.1.14. Let s’ = w3'.22322 2 Then Fy 1 (6x) # 0.
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Proof. Let ey = w3ey = X—g, + X—o3 + X—gy, + X—gs + X—oy + X, and s” =
222222 Then as in the proof of Theorem 5.0.10, ;7 ., maps an automorphic form
to the GL; nondegenerate Whittaker—Fourier integral of its constant term along the
Ag parabolic. Therefore, F57 0, (Ex) # 0. Since for ¢ € &, we have st’,e’O(fﬂ)(g) =
Fs7 er (@) (w3g), it follows that J’ﬂ/,eé (&r) # 0. [

Lemma 7.1.15. fffs,eé | ‘(FS"E()' Hence, 375’36 (&x) #£0.

Proof. By Theorem 3.1.11, we only need to check that
auNgl; Caig.

Here u = ej, s = 292902 In order to check this condition, it is convenient to embed
u into a neutral pair. The element u is in the orbit A¢ and it is not hard to check that
w([4].u lies in the unipotent radical determined by © © 202 0 Tt follows that w[4].u forms
a neutral pair with 02029 ‘and thence u forms a neutral pair with

002020 _ 02-—2220 _.
w(4].9°%5 = 5 =:50.

Now, we know that g, C g2 Hence g, N g%, C g%, N g2 ,. Itis not hard to check
that gs<°0 N g2, is the sum of the root subgroups attached to the following roots:

{1011000, 0001000, 0101000, 0011000, 0001100, 1000000, 0000001}

and from there its not hard to check that gioo Ngl, C gil.

In fact, it turns out that s" = 7s — 6s¢. It immediately follows that if s acts on X with

a positive eigenvalue, and so acts on X with a nonpositive eigenvalue, then s acts on X

with a positive eigenvalue, which is what we wanted. |
a . . G a

Corollary 7.1.16. Ifl,//;G2 is generic, then & supports (Unqx, W;GZ) o (Ugz, %”o ).

V4
As

max max

a . . . a
Proof. If Y ~, is generic, then —since ¥ " depends only on a; — az + a3 — we may
max max

assume that a; = a, = 0. In this case, by Lemma 7.1.4, the element f; is in A¢. Hence,
if c and d are as in Lemmas 7.1.7 and 7.1.8 respectively, then y¢.q+4, Which is conjugate
to fg, is also in Ag. From Proposition 7.1.11, Lemmas 7.1.12 and 7.1.15, and Remark
7.1.13, it follows that &, supports (Us, w%’so). Then, by Proposition 7.1.10 and Lemmas

7.1.9,7.1.8,7.1.7, and 7.1.2, it supports (Unﬁi, wicz) o (UA/S/, lﬂgi”) as well. n
max 5

Reformulating Corollary 7.1.16 gives the main theorem of this section.
Theorem 7.1.17. D, is generic.

Remark 7.1.18. (1) It can be shown that for each ¢ € F* there is a unique b € F such
that the nilpotent element attached to the character w(gj:i*g,b is in the closure of Ag, and

that this element is in A if and only if %, , 1s a generic character.

max
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(2) If 7 is not of G, type but LS (s, , A%) has a pole at s = 1, then Theorem 7.1.17
is still valid for the residual representation &, with exactly the same proof.

(3) It follows from the proof above that given any irreducible automorphic represen-
tation IT of GE7(A), if Fj, el (IT) # 0 then the (U, Az 1/fU )-Fourier coefficients of IT are

generic. In particular, this applies to the residue of our Elsensteln series at 1, whenever it
exists.

7.2. Local descent

Since the results of [17] hold in both the local and global settings, the same set of argu-
ments given in the global setting above also provides a local analogue.

Theorem 7.2.1. Let F,, be a nonarchimedean local field. Suppose that an irreducible
admissible representatlon I1, of GE7(Fy) supports the twisted Jacquet module attached
to (Us, WU ) with y, (see Proposition 7.1.11) in the orbit Ag. Then the (U, 7 WU )-

A//
twisted Jacquet module of T1,, supports twisted Jacquet modules attached to Umax and all
generic characters of Uni& In particular, this holds when I1,, is the local component of
any irreducible summand of &, where 1 has the property that LS (s, , A%) has a pole at
s =1

7.3. Unramified constituents of &,

7.3.1. Unramified lifting. Let y be an unramified character of GL7(F,) where F, is
nonarchimedean. Recall that our isomorphism of the Levi M of GE; with GL7; x GL,
maps h(tq,...,1t5) to

151t
17_1[6
t6_1[5
15
[4_112[3
1300

t 1[2
Thus, it identifies y with a matrix 7 = diag(f1, ..., %7) in GL7(C) such that

X(h(tl» [8)) _ [n7—ng't*n6—n7tn5 n6?n4—n5'["n2+n3—n47n1+n2—ng'l;'n2—n1

where n; = ord(¢;) fori =1,...,8.
If7 € G,(C) then 73 = 71/72,74 =1,75 = t~2/t~1,t~6 = 'tv;l,andt~7 = t~1’1,hence

_ 7n1—2npy—n3+ng+ns—ne+ny—ng—n|+2n3—ng—ns+2ne—ny
x(h(ty, 1g)) = I 123 .



J. Hundley, B. Liu 4434

We can rephrase this as follows. Let A; = wy — 2w, — w3 + W4 + W5 — We + @7
— wg, and Ay = —wy + 2w3 — w4 — W5 + 2wWe — W7, and let y; be the unramified
character of GL; (F,) attached to 7; fori = 1,2. Then

1) = x1(t*) 2 (t*?) fort = h(1y,...,t3) € M. (7.3.1)

This element 7 € G»(C) C GL7(C) also determines a character y of the standard torus
of G,. If « is the short simple root of G, and 8 is the long simple root, then oV is the
long simple coroot and is identified with the long simple root of the dual group, while 8V
is identified with the short simple root of the dual. Then

~ My ;7NN
v 51 12 ~ ~ _
/,,L([ixvlzﬂ ) (~ ) ( 2 ) tl n1+n2l22n1 nz’

53 1

where n; = ord(¢;) fori = 1,2.

7.3.2. Degeneration. Recall that P is the standard parabolic subgroup of GE7 whose
unipotent radical contains Uy, if and only if i = 2, and Q is the standard parabolic sub-
group of GE7 whose unipotent radical contains Uy, if and only if i = 4 or 6.

Suppose now that 7, is a principal series representation of GL7(F,) which is attached
to a character of the form (7.3.1). We consider the representation Indgf;fg”) Ty + |D2|.
If m, is the local component of a cuspidal representation & of G, type, then the resid-
ual representation &, is a quotient of Indga()A) 7 - |@2|. It may be reducible, but it is
in the discrete spectrum, and if IT is any irreducible summand, then IT, is a quotient

of Indgf;g”) 7y - |@2|. Moreover, if I, is unramified, then it is the unique unramified

: GE7(Fy) ~
constituent of IndP(Fv) Ty - | D3|

Lemma 7.3.2. Let wg be w[423546542314376542] as in Section 6.2, so wg maps the five
roots in the character wf,o to{a; i =1,2,3,5,7}. Let wg denote the longest element of
the Weyl group of GE7 which is reduced by P on the left and right. Then wewo maps Ay
10 Wy — We — W3, A2 10 —W4 + 2We — Ws, and wy to pg — pp + (3/2)ws.

Proof. This can be checked using a computer software package such as LiE. ]

Since wewoA; pairs trivially with all coroots in the Levi of Q, it induces a rational
character v; of this Levi. Similarly, wgwgoA; induces a rational character v,.

Corollary 7.3.3. The unramified constituent of Indgf}g") 7y | @3] is equal to that of
IndgE(}(f;“)()(l ovy)(y20 vz)z"ffg/z. (7.3.4)

Proposition 7.3.5. Let (s, u) be a Whittaker pair such that u is contained in an orbit
which is greater than or not related to As. Let U = exp(gl,). Then both §w,y,) and
INg v v Kill the representation (7.3.4).

Proof. This follows from Corollary 3.2.8 (cf. Remark 3.2.10). ]
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7.4. Cuspidality of the A’ descent module

The purpose of this section is to show that D, is cuspidal, provided that there exists a
finite place vo such that m,, is a principal series representation of GL;(Fy,) which is
attached to a character of the form (7.3.1). There are two maximal parabolic subgroups
of G,. Recall that 8 denotes the long simple root of G, and o denotes the short one,
and for y € {8, o}, P, denotes the maximal parabolic subgroup of G, whose Levi M,,
contains the root subgroup U, attached to y. Finally, N, denotes the unipotent radical
of P,.

7.4.1. Constant term along Ny.

Lemma 7.4.1. Let hp, = 2a¥ + 4BY. This is the standard semisimple element of G,
which is attached to the parabolic Py.

(1) The embedding of G, into GE7 identifies hp, with 20y + 20y + 4oy + 207 .

(2) The weight attached to this semisimple element is =292 0 =20,

(3) The Weyl element wp, = w[134567245631] maps this weight to the dominant weight
200000

(4) Let

f1 = X—0100000 + X—0011000 + X—0001100 + X—0000110 + X—0000011-

Then there exists a representative Wp, for wp, which maps fo to fi.

Proof. The embedding fixed in Section 6.1 maps o¥ to oy + oy + o5 and BY to &) so
(1) is clear. Parts (2) and (3) can be checked using LiE. As for part (4), let

Sf, = {—0100000, —0011000, —0001100, —0000110, —0000011}.

Then we can first check using LiE that wp, maps the five roots y such that X, appears
in fop to the five roots of Sy,. This ensures that any representative wp, maps fo to
D yes » ¢y Xy for some quintuple (cy)yes,, of elements of F*. Since wp, is unique
up to an arbitrary element of the torus T(F'), it suffices to show that for any such quin-
tuple (cy)yes s, » there is an element ¢ € T'(F) which acts on X,, by ¢, foreach y € Sy,.
Since Eg is of adjoint type and GE7 contains the full torus of Eg, the elements of F* by

which 7 acts on Xy, ..., X, can be chosen arbitrarily. Since Sy, is a subset of a basis of
the root lattice, it follows that the scalars by which ¢ acts on {X,, : y € S, } can be chosen
arbitrarily as well. ]

Lemma 7.4.2. Let Uy be the unipotent subgroup of GE7 such that ®(U;, T) =

®T(GE7, T) ~ {a1, a2, a3, as, og, 1010000, 0000110}. Let w{;‘: be the character of Uy

determined by fy, and let tri denote the trivial character of Ny. Then the composed period
. fo N ; £

(Ng, tri) o (Uyy, wUZg) is equivalent to (Uy, ¥rgy?).

Proof. This follows from the exchange lemma (Lemma 7.1.1). (Cf. Lemma 7.1.2.) ]
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Now let Uy = wp, Ulw;;. Then it follows from Lemma 7.4.1 (4) that (Uq, I/f{;‘l)) is
equivalent to (Us, w{g ).

Lemma 7.4.3. Let S3 be the set which consists of all positive roots of E7 except
0000001, 0000100, 0010000, 1000000, 1010000, 1011000, 1011100, 1011110, 1011111,

and in addition contains —1000000, —1010000. This set is closed under addition, and
hence determines a unipotent subgroup Us. The nilpotent element f1 determines a char-
acter of U3 (A) which we denote by 1#5‘3 Then (U,, w(}g) is equivalent to (Us, lﬂ(};l)

Proof. We apply the exchange lemma (Lemma 7.1.1) six times, exchanging —1111100
for 1122100, —1111000 for 1112100, —1011111 for 1111111, —1011110 for 1111110,
—1011100 for 1111100, and —1011000 for 1111000. ]

Lemma 7.4.4. Fora,b € F, let f>(a,b) = f1i + aX_1011110 + bX 1011111 Let Uy be
the product of Us and the two-dimensional unipotent group corresponding to 1011110

and 1011111. Then
b
Usv) = > (Uaw$2 ).
a,beF

Proof. This follows from taking the Fourier expansion on the two-dimensional unipotent
group corresponding to 1011110 and 1011111. ]

Lemma 7.4.5. The element f>(a,b) lies in the orbit Dg(ay) unlessa = b = 0.

Proof. This was checked using GAP and SageMath. An element X of e; is in Dg(ay) if
and only if Rank ad(X)F is given as in the table for the listed values of k.

k 10 11 12 13 14
Rankad(X)¥* 11 6 3 2 1

GAP was used to obtain adjoint matrices for a Chevalley basis of e;. These were then
loaded into SageMath, in order to work in the polynomial ring Z[a, b]. The matrices
ad( f(a,b))* were then computed, starting with k = 1 and continuing until the zero matrix
was obtained. Next, we deleted any rows and columns consisting entirely of zeros to
obtain a sequence of smaller matrices, which we refer to as the nonzero parts of the
matrices ad( f(a, b))*. Clearly, each matrix has the same rank as its nonzero part. Next,
we computed the ranks of the matrices ad(f(a, b))¥, deducing that as an element of
e7(Zla, b)), f2(a, b) lies in the orbit Dg(ay). This implies that for any specific scalars a
and b, f>(a, b) lies in the Zariski closure of Dg(ay).

Now, each stable orbit which is less than Dg(ay) is contained in the closure of either
E;(as) or Ds. (See, for example, the diagram in [5, p. 442].)

If X lies in the closure of E7(as) then ad(X)!* = 0. The nonzero part of ad( f'(a,b))'*
is

—1716a®> —1716ab
(—1716ab —1716b2)’

We deduce that if f(a, b) is in the closure of E7(as) thena = b = 0.
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If X lies in the closure of Ds, then rank ad(X)!! < 4. A suitable permutation of the
rows and columns of the nonzero part of ad( f(a, b))'! puts it into the form

0 0 0 A4
0 0 B O
0 -'B 0 0
-4 0 0 O

where

4= 0 264a —330a —66b —528a%> —330a*> —528ab 330ab
~ \66a  330b —264b 0 —528ab —330ab —528b%> 330b2)°

B — —594a —528a* —528ab 11884 1188ab
~ \—59%4b —528ab —528b% 1188ab 1188h%)

It is fairly easy to see that if (a, b) # (0,0), then A and —’A are of rank 2, B and —’B are
of rank 1, and ad( f(a, b))'! is of rank 6. n

Lemma 7.4.6. Let U, = w([31]Usw([13], which is the unipotent radical of a parabolic
subgroup and contains the root subgroup Uy, attached to the simple root o; ifi = 2,3,
or 6. Let w[31] be a representative for w[31] and f;(a,b) = Ad(W[31]) f2(a,b). Then
for any smooth automorphic function ¢,

f4(a.b)
fa(a,b) (R )
Uy, .
eV ()= YTV (i[31]g).

J(a,b .
In particular, the periods (Uy, W{Z(a’b)) and (Uy, wlj;z,(a )) are equivalent.
4

Proposition 7.4.7. Let & = ), &, be an irreducible automorphic representation of
GE7(A) and assume that there is a finite place vy such that &y, is induced from a

character of the group Q from Section 7.3.2. Then & does not support the coefficient

U3y ) for (@.b) # (0.0).

Proof. This follows from Corollary 3.2.7, since the Richardson orbit of Q is Ag (cf.
Remark 3.2.10) and f;(a, b) is in Dg¢(a1) by Lemma 7.4.5. |

Proposition 7.4.8. Let S5 be the set which consists of all positive roots of E7 except
0000001, 0000100, 0010000, 1000000, 1010000.

Then for any smooth automorphic function ¢,

f1 /1
Uy, Us,
</’( 4WU4)(8) =/ / <ﬂ( 5wUS)(x71000000(rl)xfIOIOOOO(rZ)g) dridrs.
AlJa

In particular, (U, WZ(O’O)) is equivalent to (Us, 1//{%(0’0)),

Proof. This is another application of the exchange lemma (Lemma 7.1.1). ]
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Lemma 7.4.9. Let Ug be the product of Us and the two-dimensional unipotent group
Us; Uy +as- Fora,b € F, let f3(a.b) = fi +aX_a, +bX_1010000. Then (Us. Y2 )

(a,b)
=Y aper (Us. W;Z 7).
Proof. This is again just a Fourier expansion. ]

Lemma 7.4.10. The residual representation &, does not support the period
U /3(0,0)
( 6> WUG )

Proof. This holds because Ug contains the full unipotent radical of the standard maximal

parabolic subgroup of E7 whose Levi is of type D¢, and the character wgz ©.0) i trivial

on this subgroup. Thus (Us, 1//52(0’0)) factors through the constant term attached to this
maximal parabolic. But that parabolic is not associate to the one used in constructing our
Eisenstein series, so neither the Eisenstein series nor its residue will support this constant
term. u

Lemma 7.4.11. If (a,b) # (0,0) then f3(a, b) lies in the orbit Dg.
Proof. We use the same method which we used above to find the orbit of f;(a, b). |

Proposition 7.4.12. Let & = ), &, be an irreducible automorphic representation of
GE7(A) and assume that there is a finite place vy such that &y, is induced from a
character of the group Q from Section 7.3.2. Then & does not support the coefficient

e, v for (a.b) # (0,0).

Proof. This follows from Corollary 3.2.7 and Lemma 7.4.11, because the Richardson
orbit of Q is Ag (cf. Remark 3.2.10). [

Hence, we have the following theorem.

Theorem 7.4.13. Let mw be an irreducible cuspidal automorphic representation of
GL7(A) which is of G, type, such that 1, is induced from a character of the form (7.3.1)
Wy,
at some finite place vy. Then the constant term of & 5 along Ny is zero.
7.4.2. Constant term along Ng. Lethp, = 4a 4 6. This is the standard semisimple
element of G, which is attached to the parabolic Pg. The embedding of G, into GE7 iden-
tifies hp, with 4oy + 4oy’ + 60 + 4y . The weight attached to this semisimple element
is 7429240 The Weyl element wp, = w[3,4,1,3,2,4,5,6,7,4,3,2,4,5,6,4,3,1]
maps this to the dominant weight ©2 000,

Lemma 7.4.14. Let Uy be the unipotent subgroup of GE7 such that ®(U;, T) =
@t (GE;, T) ~ {0001000, 1011000, 0001110, 1010000, 0000110, 1000000, 0000010}.
Let W{;‘l’ be the character of Uy determined by fy, and let tri denote the trivial character

of Ng(A). Then the composed period (Ng, tri) o (UA%" W{;Z”) is equivalent to (Uy, lﬂ[j;?).
5
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Proof. This follows from the exchange lemma (Lemma 7.1.1). (Cf. Lemma 7.1.2.) [
Now let Uy = wp, Ulw;; and
J1 = X—0100000 + X—0001000 + X—0000100 + X—0000010 + X—0000001-

Then there exists a representative wp, for wp, which maps fo to f1, so (Us, 1//[};‘1’) is
equivalent to (Ua, W{;;).
Lemma 7.4.15. Let S3 be the set which consists of all positive roots of E7 except

0010000, 0011000, 0011100, 0111000, 1000000, 1010000, 1011000,

1011100, 1011110,1111000, 1111100, 1122100, 1122110, 1122210,

and in addition contains
—1111000,—-1011100, —1011000, —0011000, —1122100, —1010000, —0010000.

This set is closed under addition, and hence determines a unipotent subgroup Us. The
nilpotent element f1 determines a character of Us(A) which we denote w[j;l Then

(U2, 1//5;) is equivalent to (Us, 1/;5;).

Proof. We apply the exchange lemma (Lemma 7.1.1) five times, exchanging —1122210
for 1123210, —1122111 for 1122211, —0011100 for 0011110, —0111000 for 0111100,
—1122110 for 1122111. |

Lemma 7.4.16. Fora € F, let f>(a) = f1 + aX_1122210- Let Uy be the product of Us
and the one-dimensional unipotent group corresponding to 1122210. Then

WUz ) = D Wa v 7).
acF
Proof. This follows from taking the Fourier expansion on the one-dimensional unipotent
group corresponding to 1122210. [ ]

Lemma 7.4.17. The element f>(a) lies in the orbit D¢(ay) unless a = 0.
Proof. The method is similar to that of Lemma 7.4.5. ]

Proposition 7.4.18. Let & = ), &, be an irreducible automorphic representation of
GE;(A) and assume that there is a finite place vo such that &, is induced from a charac-
ter of the group Q from Section 7.3.2. Then & does not support the coefficient (Uy, l//l{i @ )
fora # 0.

Proof. Recall that for S C {1,2,3,4,5,6,7}, Ps denotes the standard parabolic subgroup
whose Levi contains the root subgroups attached to the simple roots {e; : i € S} and whose
unipotent radical contains the root subgroups attached to the simple roots {o; : i ¢ S}. Let
w = w[425423413]. Let U; = wUsw™!, which is contained in the unipotent radical of
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P2 .3,5,61- Let W be a representative for w and f; (a) = Ad(W) f>(a). Then for any smooth
automorphic function ¢,
@)

(U41///2(“))(g): Wivrg? )

¢ ¢ (wg).

In particular, the periods (Us, ¥, (a)) and (U, sz( “

Hence, it suffices to show that & does not support the coefficient (U, Yy, ) for
a # 0. This follows from Corollary 3.2.7 and Lemma 7.4.17, because the R1c4hardson
orbit of Q is Ag (see Remark 3.2.10). ]

) are equivalent.
f3(@@)

Proposition 7.4.19. Let S5 be the set which consists of all positive roots of E7 except
0010000, 0011000, 0111000, 1000000, 1010000, 1011000, 1111000, 1122100,

and in addition contains —1010000, —0010000. Then (U, W{Z(O)) is equivalent to
s, y2%).
Proof. This is another application of the exchange lemma (Lemma 7.1.1) five times:

exchanging —1011100 for 1011110, —1111000 for 1111100, —1122100 for 1122110,
—0011000 for 0011100, —1011000 for 1011100. |

Lemma 7.4.20. Let Ug be the product of Us and the one-dimensional unipotent group
Uti22100. Fora € F, let f3(a) = f1 +aX_1122100- Then

Us. ") = > W v ).
acF

Proof. This is again just a Fourier expansion. ]
Lemma 7.4.21. Ifa # 0 then f3(a) lies in the orbit Dg.
Proof. The method is similar to that of Lemma 7.4.5. ]

Proposition 7.4.22. Let & = ), &, be an irreducible automorphic representation of
GE7(A) and assume that there is a finite place vo such that &y, is induced from a charac-
ter of the group Q from Section 7.3.2. Then & does not support the coefficient (Us, 1//52 (a))
fora # 0.

Proof. Let Ué = w(3,4, 1, 3]Usw]3, 4, 1, 3]. Let w[3, 4, 1, 3] be a representative for
w[3,4,1,3] and f;(a) = Ad(w[3. 4, 1,3]) f3(a). Then for any ¢,

fia)
3

(w[3,4,1,3]g).
f3(@)

Sf3(a) ! ,w
Us,
ooV gy =g
In particular, the periods (Us, ngU‘ (a)) and (U, Vi ) are equivalent.
Hence, it suffices to show that & does not support the coefficient (U, (2%

a #0.

/3 (a)) for
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Now, write sp, for the standard semisimple element attached to the orbit Dg. Let Vp,
be the unipotent group whose Lie algebra is g>2 . Then U¢ = VpsU0000100Uo001100,

2a)
v, 2 .
f3@ is trivial on Upooo100Uo001100- SO ¢ oM ug may be written as a double
wf3(a)
6"YVpg

and Ip

integral with the inner integral being go( . So, it suffices to show that the coeffi-
cient (Vp,, wfg e )) vanishes on &. This follows from Corollary 3.2.7 and Lemma 7.4.21,
because the Richardson orbit of Q is A¢g (see Remark 3.2.10), and Dg is greater than Ag.
The role of “P” in Corollary 3.2.7 is played by P4;. ]

Lemma 7.4.23. Let U7 be the product of Ug and the two-dimensional unipotent group
Uo111000U1111000- Fora,b € F, let fa(a,b) = f1 + aX—o111000 + bX-1111000. Then

b
Us V) = Y Wryft?),

a,beF
Proof. This is again just a Fourier expansion. ]
Lemma 7.4.24. If (a,b) # (0,0) then fi(a,b) lies in the orbit Dg(ay).
Proof. The method is similar to that of Lemma 7.4.5. ]

Proposition 7.4.25. Let & = @), &, be an irreducible automorphic representation of
GE(A) and assume that there is a finite place vy such that &, is induced from a
character of the group Q from Section 7.3.2. Then & does not support the coefficient

U, 92 @) for (a,b) # (0,0).

Proof. Let U; = w[13]U;w(31] and f,(a,b) = Ad(w[13]). fa(a,b). Then U; = Uz 43.
We apply Corollary 3.2.7 with P = P(3 4y. Since the Richardson orbit of Q is A¢ (see
Remark 3.2.10), it follows from Lemma 7.4.24 that &,,, does not support the coefficient

(U3, wf“(a b)) which is clearly equivalent to (U7, Iﬂf“(a b)) [

Proposition 7.4.26. Let Ss be the set which consists of all posmve roots of E; except
0010000, 1010000. Then (Us. Y *?) is equivalent to (Us, y ™).

Proof. This is another application of the exchange lemma (Lemma 7.1.1) twice: exchang-
ing —1010000 for 1011000, —0010000 for 0011000. [

Lemma 7.4.27. Let Uy be the product of Ug and the two-dimensional unipotent group
Uoo10000U1010000- For a,b € F, let fs(a,b) = fi +aX_oo10000 + bX—1010000. Then

Us. v = 3 WUs. y 574,

a,beF

Proof. This is again just a Fourier expansion. |

Lemma 7.4.28. If (a,b) # (0,0) then f5(a,b) lies in the orbit Dg.

Proof. The method is similar to that of Lemma 7.4.5. ]
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Proposition 7.4.29. Let & = ), &, be an irreducible automorphic representation of
GE(A) and assume that there is a finite place vy such that &, is induced from a
character of the group Q from Section 7.3.2. Then & does not support the coefficient

Uo, y{5 ) for (a,b) # (0,0).

Proof. Note that Uy is the full unipotent radical of the parabolic Py;y. We apply Corollary
3.2.7 with P = Pyyy. The result follows from Lemma 7.4.28, because the Richardson orbit
of Q is Ag (see Remark 3.2.10). [ ]

Lemma 7.4.30. The residual representation &, does not support the period
U /5(0,0)
( 9 ng )

Proof. This holds because Uy contains the full unipotent radical of the standard maximal

parabolic subgroup Pyi 45,67y, and the character 1/,{]‘(5)(0,0) is trivial on this subgroup.

Thus (Us, ‘/f(j;g (0’0)) factors through the constant term attached to this maximal parabolic.
But that parabolic is not associate to the one used in constructing our Eisenstein series, so
neither the Eisenstein series nor its residue will support this constant term. ]

Hence, we have the following theorem.

Theorem 7.4.31. Let w be an irreducible cuspidal automorphic representation of
GL7(A) which is of Gy type, such that 7y, is induced from a character of the form (7.3.1)
(UA/S/’IIIZIZ//)

at some finite place vgy. Then the constant term of & > along Ng is zero.

Therefore, Theorems 7.4.13 and 7.4.31 together imply the following theorem on the
(UA’S’ ’wt/IZ// )
cuspidality of our descent module &, 5.

Theorem 7.4.32. Let m be an irreducible cuspidal automorphic representation of
GL7(A) which is of G, type, such that 1, is induced from a character of the form (7.3.1)

Wi,
at some finite place vy. Then &, 5
G2 (A).

is a cuspidal automorphic representation of

Remark 7.4.33. It follows from the proof above that given any irreducible automorphic

representation IT of GE7(A), if Dg(ay), D¢ ¢ n(I1) and the constant terms of IT along

Pi23.4567 and Py 5 4 56,7y are identically zero, then the (U, 7, W{;i//)-Fourier coeffi-
5

cients of IT are cuspidal.

7.5. Unramified local descent

The purpose of this section is to show that 7 is a weak functorial lift of each irreducible
summand of D, provided that for almost all finite places v, 7, is a principal series
representation of GL;(F,) which is attached to a character of the form (7.3.1).



Descent from GL7 to G, 4443

Recall that PA/S/ =M Al UA’S’ = P; = M Uj is the parabolic subgroup defined as in
Section 3.1, where s = Sal is the standard semisimple element (see Definition 5.0.1)
attached to A7, M ay = M is the Levi subgroup, and U, ay = Us is the unipotent radical.

We consider the twisted Jacquet module

GE7(Fy ~3/2
Fu o (IndQ(}(U) Y10 v)(x2 0 v2) B3 7).
5 7AY

For y; and v;, see §7.3. To that end we study the space Q (F,)\GE7(Fy)/G2(F,)U, /Sx(Fv)
of double cosets, where G, is embedded into M, Ay as the stabilizer of fj.
For y € Q(Fv)\GE7(Fv)/Gz(Fv)UA/S/(Fv) we say that y is admissible if we have
f _ . .
1//UZ/5/ |UA/5/m(y—l oy) = 1. Each double coset contains elements of the form wu with w
in the Weyl group of minimal length in its (Q, P g)—double coset, and u € M /S/(Fv).

Indeed, u may be taken modulo G,(Fy) on the right and M az N w~'Qw — which is a
standard parabolic subgroup of M, 47— on the left. Then

I
-

Jo =1 Jo
_ = P .
wUAglUAgﬂ(l’ 10y) M WUA,S/ UA/S/ﬁ(w—le)

Note also that p - gﬁ{;iﬁ = WSjEfL )-fo, Clearly Ad(u). fo is in the open orbit for the action
SA// 5 5
of Myy ong_5.
Lemma 7.5.1. Let
Qyr(2) ={x € ®:(a,sq7) =2}

Then ZaECIJA/S/Q) aq X_q is in AZ if and only if

2
(@001111090101110 — @000111040111110 — @000011040112110 — €000001040112210)

2.2
><(a1011100611111()00_a1011000611111100"‘611010000611112100"*‘6110()0000a1122100) 40000001
£0.

Proof. Direct computation using SageMath, with adjoint matrices obtained using GAP.
L]

Proposition 7.5.2. The set of reduced representatives w for Q\GE7/ PA/S/ such that
N4

1//5AN |UA/,ﬁw—1 ow = 1 for some f in the open MA/S/—orbit of g_A25 has only one element,

5

namely,

wo 1= w[4231435423165423143542654317654231435426543176).
Proof. 1f wl{AgwAgm_le = 1with £ = Yeo,,) %X-a then
{a € Oyqr(2) : wa <0}

contains {& € CIJA(S/ (2) 1 ay # 0}. If f is in the open orbit, then it follows from Lemma
7.5.1 that {« € GJA{S/(Z) : a, # 0} contains
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(1) the root 0000001,
(2) two roots of the form 1 * % * x00 that add up to 2122100,
(3) two roots of the form 0 * * * *10 that add up to 0112220.

One can check using LiE that Q\GE7/P 7 has 786 elements. Of these, only 342 map
0000001 to a negative root. Of these 342 only 120 map two roots of the form 1 * % % 00
that add up to 2122100 to negative roots, and of these 120 only one maps two roots of the
form O * * * *10 that add up to 0112220 to negative roots. Thus there is only one element
of Q\GE7/PAr5r such that the set

A5 _
{fe g5 - 1pUA,S,|UA{5/r'1w—1Qw =1}
contains elements of the orbit AZ. This element is wy. m

Lemma 7.5.3. The orbit A% is a single rational orbit.

N4

Proof. The space g_AZS decomposes as a direct sum of three irreducible M, Az -modules:
(X0000001) and

V910
= (X0000010, X0000110, Xooo1110, Xo101110, Xoo11110, Xo111110, Xo112110, Xo112210).
0100

= (X1000000- X1010000, X1011000, X1111000, X1011100, X1111100, X1112100, X1122100)-

N4

. . A . .
We identify an element of g_, with a triple (x, y, z) where x and y are column vectors

. . . Say . .
of size 8 and z is a scalar. The action of M, a7 on g_, then induces a rational homomor-

phism MA%/ — GLg x GLg x GL;. From Lemma 7.5.1, the triple (x, y, z) corresponds
to an element of AZ if g1 (x)g2( )z # 0, where ¢ and g, are two quadratic forms.
The derived group of M Az is isomorphic to Sping, and its image in GLg x GLg x GL;
preserves the forms ¢; and g,. That is, the image the derived group is contained in
SOs(q1) x SOg(g2) x {1}. By [21, Propositions 1 and 4], we can map any triple which
corresponds to an element of A7 to one of the form

=N eNel b =Nl
S OO =T O OO

using an element of the derived group of M, Az It then suffices to show that the torus of
GE7 contains an element ¢ which acts by a™! on X_1111000, by 5~} on X_g101110 by
z71 on X_0000001 and by 1 on X_1011100 and X_oo11110- Since the images of # under the

seven simple roots of E can be chosen arbitrarily, this is easy. ]
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Proposition 7.5.4. Let Py y,, := MA/S/ N wal Qwg. Then Py 4, acts transitively on

SA//
{f eg 5 (F)nAy: wlf}AgwA,s,mngwo =1}.

In the language of §3.2, the wo-admissible subvariety of PA/S/ is equal to Py y, - G2U, Az

N4

Proof. Write f € g_A25 as ), doX—o, and identify it with a triple (x, y, z) as above,
given by

= [@1000000 @1010000 @1011000 41111000 21011100 @1111100 @1112100 @1122100),
X=[ 0000010 @0000110 @0001110 40101110 @0011110 do111110 do112110 do112210]-

The group Pj 4, is the standard parabolic subgroup of M Az whose Levi contains Uy,
and U445, and whose unipotent radical contains Uy, and Uy. This parabolic preserves a
flag in each of the spaces v and vg1o Which is compatible with the order placed on the
roots above. Specifically, write

bl
Xq Vs
_ | X2 _
X= x5 |’ Y=1%:
X4 i:

where x; is a column vector of size 2 for each i, Y, is a column vector of size 4, and y; is
a scalar forl = 1,2,4,5. Then the standard Levi subgroup of P1,u, respects this decom-

position. The condition wUA’S’ |UAg”w6

ai112100 = a1122100 = 0,1e,t0 x, =0,y = y5 = 0.

The triple (x, y. z) corresponds to an element of AZ if z # 0 and x and y are each
anisotropic relative to a certain quadratic form (cf. Lemma 7.5.1). When x,, y4 and ys
are trivial, this forces y, and (32) to be anisotropic.

The derived group of the Levi of Py 4, is isomorphic to SL, X SL,; its action on the
Y, component of vg1o can be identified with the action of SL, x SL, on 2 x 2 matrices by

low, = | 1s equivalent to ao112110 = do112210 =

(g1,82) Y = g1Yg, . Anisotropic elements correspond to matrices ¥ with detY # 0.
Clearly, each such matrix is in the same orbit as a diag(a, 1) for some a. It follows that
each f is in the same orbit as one with @go11110 = @o101110 = 0, @o111110 = 1. The
condition f € A’ forces agppo1110 7# 0. Once Y, is of this form, the subgroup of SL, x SL,
which preserves it is isomorphic to SL;. The four-dlmensmnal space corresponding to x,
and x5 can then be identified with 2 x 2 matrices with this SL, acting by g - X = gX
(matrix multiplication). Once again, det X # 0 for (iﬁ ) anisotropic. Hence we can choose
a suitable element of SL, so that gX = diag(b, 1). Hence we can arrange a1111100 = 1,
a1011100 = @1111000 = 0. The condition f € A/5/ then forces a1011000 ;é 0. Now, acting
by a suitable element of the torus, we can arrange d1011000 = 20001110 = @0000001 = 1
without changing the existing conditions @g111110 = @1111100 = . Finally, we can act by
an element x0011000(@)X0101100(b)X0001100(¢)X0111000() to make x, yq and y; trivial.

[ ]
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Proposition 7.5.5. The twisted Jacquet module

$u., v /0 (IndZE7 ((x1ov)(x20 Uz){f’s/z))
AS’ UA/S/

is isomorphic as a representation of G, to Indgé L, where [ is given in Section 7.3.1
2

and Bg, is the Borel subgroup of G, obtained by intersecting G, with our standard Borel
Of GE7 .

Proof. Tt now follows from the results of §3.2 that

U
A5

) GE7 ~3/2\\ _ (T
gUA/S/J[fl;Z,S, (IndQ ((Xl o Ul)(XZ o] Vz)ws )) - gUA/S/’]/f/O (Iwo)?
where
GzUA// _
> ((x1ovi)(x2o Vz)w$/2)5lg/2 o Ad(wo).

1w, = c-ind
wo G2UA<5’”WJIQW0

The group G, N wy ! Qwy is the standard Borel subgroup of G,, while UA's' N
wy L Qwy is the product of the root subgroups attached to the following five roots:
{0112110,0112210,0112211, 1112100, 1122100}.

Let J denote the sum of these five roots.
We compute

J = 2w +2w4 + w5 — 2we — W7 — Wy,
v1 o Ad(wg) = —w1 + w4 — w5 — We + W7 + Ws,
vy 0 Ad(wg) = —@4 + 2ws5 — 2w7 + @s,

ﬁ)’g (@) Ad(wo) = ﬁ)’g,

51Q/2 = 3w, + 2w — 133,

81Q/2 o Ad(wg) = —8w + 3wy + 2ws — 8w — 2wy + 13ws.
Each of these induces a rational character of the standard torus 7, of the embedded G.
If the fundamental weights are denoted 2 and w2, then
J = w1G2 + ZwZGz,
G G,
vi o Ad(wo)lrg, = —w,* + @,”,
v2 0 Ad(wo)|76, = 2w —w i,
ﬁ'g o Ad(wo)|TG2 = 0,

5y 0 Ad(wo)lr,, = 2w + 3wy 2.

Thus (y1 o vi)(x2 © vz)ﬁg/z o Ad(wo)|7g, is precisely the character u given in Section

7.3.1, and an element /& of 7w0 satisfies h(utg) = ,u(t)Slg/z(wotwal)h(g) for u in the
standard maximal unipotent of G, and ¢t € Tg,.
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Now, for h € Two let

wi(e) = [

(UA,S,mwO—leO)\UA/S/

hug)y ), () du.

(This is convergent, since the support of & is compact modulo (U, Az G2 Nwy ' Qwyp).)
7o (T,)- That

Then the kernel of W is the kernel of the canonical map Two — gU "
agVu A

is, the image of W is a concrete realization of J U
A

5

in [20, Section 10].) Further, direct computation shows that

470 (T w,)- (The proof is the same as
U

A//

W.h(uqustg)
=¥, )08y 0 Ad(wo) (D)1 Woh(g), w1 €Uy us €U 1 €T, g € Ga.
5

max’

But
G G
8y 0 Ad(wo) — N1, = Wy + w2 = 5119/022-

Hence restriction from G, U, a7 t0 G is a linear isomorphism from the image of W onto

Indgé2 (n). [

Hence, we have proved the following theorem.

Theorem 7.5.6. Assume that for almost all finite places v, w, is a principal series rep-
resentation of GL;(Fy) which is attached to a character of the form (7.3.1). Then every
irreducible summand of Dy weakly functorially lifts to 7.

Remark 7.5.7. It follows from the proof above that given any irreducible automorphic

representation IT of GE7(A) and any finite local place v, if IT, has the form as in (7.3.4),

then the (U, Az wgz//)—twisted Jacquet module of IT, has the form Inlegé2 W, where u is
5

given in Section 7.3.1.

8. The A, + 341 case

Recall from Definition 6.2.2 that in the A, + 3A; case the descent module D, is defined
by applying the Fourier coefficient (U, wéo) from Section 6.2 to the residual representa-
tion &, where r is an irreducible cuspidal automorphic representation of GL;7(A) which
is of G, type. In this section, we prove the following theorem.

Theorem 8.0.1. Assume that i is an irreducible cuspidal automorphic representation of
GL7(A) which is of G, type, and Dy, is defined as in Definition 6.2.2. Then
(1) Dy is generic.

(2) Dy is not cuspidal. Actually, D, supports all degenerate Whittaker—Fourier coeffi-
cients of G.
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We also study the unramified local descent as in Section 7.5, which is motivated by
the question of whether irreducible subquotients of £, would lift functorially back to 7,
and provides evidence that they might well not.

8.1. Nonvanishing Fourier coefficients of the descent module

The main goal of this subsection is to prove (in the following theorem) that the descent
module supports the Whittaker—Fourier integral along the maximal unipotent of G,
against any character of this group. In particular, it is globally generic, but not cuspidal,
and its constant term along the Borel is nontrivial.

Theorem 8.1.1. Recall that Un?ai is the standard maximal unipotent subgroup of G,
and let Y52 be any character of US2(F)\USZ(A). Write (US2, w62) for the cor-
responding (possibly) degenerate Whittaker—Fourier integral. That is, for any f €
C=(G2(F)\G2(A)),

Gy G —
fOAT () 1= / Gy ) S UV du.
Unat (F)\Unig (A)
Then (Unﬁi, V¥ G2) does not vanish identically on the descent module Dy. That is, there is

G
some D € Dy such that D Wiz . w92) #0.

Define V; = UUIg& and define Yy, : Vi(F)\Vi(A) = C* by ¥y, (u1uz) =
wgo(ul)l//Gz(uz) for uy € U and u, € Un%%( (this is a well-defined character of
Vi(F)\V1(A)). Then the composed period (Unﬁi, ¥62) o (U, wg‘)) is (V1, ¥v,). Theo-
rem 8.1.1 is therefore an immediate consequence of the following theorem.

Theorem 8.1.2. The period (V1, Yy, ) does not vanish identically on &.

Lemma 8.1.3. Let
50 _ 0100000, 0101000,0111000,0101100,1111000,0111100,0101110, 1111100,
2 0112100,0111110,0101111,1112100,1111110,0112110,0111111

Let S, = @1 ~ 8% and S, = S3 U {1223210, 1223211}. Let V, and V) be the T -stable
unipotent subgroups of GE; corresponding to S, and S3.
Let Yy, denote a character of V, such that supp Yy, is contained in

{1000000, 0010000, 0001000, 0000100, 0000010, 0000001,
1111111, 1122100, 1112110,0112210,0112111},

and Y, |v,(a)nvaa) = Y lvianr,a). Then for any automorphic function f :
GE7(F)\GE7(A) — C of uniformly moderate growth, and any g € GE7(A),

f(Vmﬁvl)(g) - / f(Vzﬂlfvz)(v;g) dv’z.
(V2NV3(AN\V;(A)

Moreover, (V1,¥v,) ~ (Va, ¥y,).
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Proof. The proof is by nine successive applications of Lemma 7.1.1. The applications
come in three basic types. In the first type there are two roots 8; € ®(M,T), y1 € (U, T)
such that X = U, and Y = Ug, . In these cases g» N 1, = {0}, and the roots 1, y; are
given in the table below. Recall that g5 is the Lie algebra of G».

In the second type, there are two roots 1, 82 € ®(M,T) and § € CD]g’; (positive long
roots of G») such that g, Nug, @ nug, = us. In these cases, there isaroot y € (U, T)
such that X = U, which has a pairing with Ug, Ug, as in Lemma 7.1.1, and Us is the
right kernel of this pairing. We may take Y to be any complement of Us in Ug, Ug, so
that the group D in Lemma 7.1.1 contains the whole group Ug, Ug, . For these cases, the
roots B1, B2 and y are given in the table below.

The third type is similar to the second, except that § is a short root of G,. In this
case (see proof of Lemma 6.2.1), there are four roots B1, B2, B3, Ba € (M, T) such
that g> N @?:1 ug, = ug. Moreover, there is a unique pair of them such that the sum
is another root 85 € ®(M, T'). The product ]_[1-521 Ug; is a T-stable subgroup. In fact, it
is the smallest 7 -stable subgroup of GE7 which contains Us. We denote it V. It is two-
step nilpotent with center Ug. . In these cases the group X is a product ]_[l‘?’=1 U,,; which
has a pairing with Vs as in Lemma 7.1.1, and UsUg., is the right kernel of this pairing.
For Y, we may select any subgroup of Vs which contains Ug. such that the image in the
abelian quotient Vs / Ug. is complementary to the image of Us. In the table below we give
Y1, Y2, Y3 and By, ..., B5 with B5 in parentheses.

X Y )
0100000 1011111
0101000 0011111, 1011110 30+ 28
0111000 0001111, 1011100 304+ B
0101100 0011110

1111000,0111100,0101110 | 0000111,0001110,0011100, 1011000, (1011111) | 20 + B
1111100,0112100,0101111 | 0000011, 0011000,0000110, 1010000, (0011110) | o + B

0111110 0001100
1112100 0000010, 0010000 B
1111110,0112110,0111111 | 0000001, 0001000,0000100, 1000000, (0001100) o

At the first stage, the group B is just V7. At each later stage it is the group D obtained
from the previous stage. At each stage the group C may be thought of as the subgroup
of B obtained by deleting the roots listed under “X” in the table. More precisely, the Lie
algebra ¢ of C is the largest subalgebra of the Lie algebra b of B whose projection onto
1y, is trivial for each i. The group D is the product of C and the root subgroups attached
to the roots listed under “Y” in the table.

Checking conditions (1) to (6) for Lemma 7.1.1 is fairly routine. The order in which
the nine applications of Lemma 7.1.1 are carried out is important. It is useful to con-
sider the bigrading in which the root subgroup U, , where y = 21-7:1 cjo;, gets grading
(c2, 217:1 c; — c3). Notice that as the table is read top-to-bottom, the second component
of this grading is nondecreasing in the column labeled “X”* and nonincreasing in the col-
umn labeled “Y . This determines a partial ordering on the nine rows. It is fairly easy to
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check most of the conditions of Lemma 7.1.1 provided this partial ordering is respected,
but (3) and (6) require some care, particularly for applications of the third type. We dis-
cuss the first application of the third type in some detail and leave all the remaining details
to the reader.

For the first application of the third type, X = Ui111000Uo111100U0101110 = 11111000

@ uo111100 ® Uoro01110, While Vs = Upooo111Uo001110U0011100U1011000U1011111- The
center of Vs is Ug, = Uio11111- The quotient Vs(A)/Uio11111(A) may be identified with

10000111 D Uooo1110 D Woo11100 D U1011000- The character of C(A) which we consider
is given by

Ve (expe) = Y(k(eo,c)) (¢ € c(A)).

In order to check conditions (3) and (6) we must consider the pairing

T(x,y) =y ([x, yD),
where
[x,y] = xyx"1y7l, x e X(A), y € Vs(A).
(It is trivial on X(A) x Ugs(A) and hence may be regarded as a pairing on the set
X(A) x Vs/Ugs(A).) The pairing Y satisfies

Y(expa,expb) = ¥ (k(eo. [a.b])) = ¥ (wey(a. b)), (8.1.4)

where

la, bl =ab—ba, aecnuiir1000 ® Moi11100 @ Uo101110.

b € 1000111 D 10001110 P 10011100 © 11011000-

To check condition (3), we have to check that X(A) and Y(A) preserve y¢. This
amounts to checking that Y is trivial on X(A) x Us /Ugs (A) and on Y (A) x Us / Ugs(A).
The former is obvious, since 15 = g N @?:1 ug, . The latter is also obvious, since
Y C Vs and Vs / Upg, is abelian. To check condition (6), we have to check that Y is non-
degenerate on X(A) x Y(A)/Ug,(A) for any Y such that Y /Ug, is complementary to
Us/U 85 - In other words, we have to show that

{y e Vs(A): Y(x,y) =1Vx € X(A)} = Us(A).
By (8.1.4), this reduces to showing that
{b € 19000111 D Mooo1110 D Mo011100 D M1011000 :
Kk(eo,[a,b]) = 0 Va € uii11000 @ o111100 D Wot01110) = 5.

Now « (eq, [a,b]) = —«([b, o], a), which is certainly trivial if b € ug, since [b, eg] = 0 for
all b € g,. On the other hand, if b ¢ ug = g, N @?:1 ug,, then [b, e¢] is nonzero, hence
k([b, eo],a) # 0 for some a € e7 because « is nondegenerate, and hence « ([b, e¢],a) # 0
for some a € 111111000 D Uo111100 D Uo101110 because k respects the bigrading. [
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Remark 8.1.5. As noted, for applications of Lemma 7.1.1 of the second and third types,
the group Y is not uniquely determined, but can be taken to be any complement to a given
subgroup. This is the reason that vy, may be chosen with some degree of freedom. In
addition we have a degree of freedom in the choice of 162,

In order to proceed further, it will be convenient to write ¥y, and ¥ G2 explicitly in
coordinates. There exist a;, as, a4, as,ag, a7 € F such that

Y, (V) = ¥ (V1122100 + V1112110 + V1111111 + Vo112210 + Vo112111

+ a1Va, + a3Va; + A4V, + A5Vas + AVag + A7Va;)
forall v € V5. Then ¥ @2 (u) = ¥ (a1 + a4 + as + ag)uq + (as +ae)ug) forallu € Un?ai.
Rewrite ¥y, as 1//%2 witha = {ay.as,a4,as,a¢,a7}.

Lemma 8.1.6. Let

S3 = ®U{—a4}\{0000001,0001000,0001100,0001111,0011000,0101000,0112100,
0112111,1011000,1112100,1112111, 1123211, 0100000, 0010000, 0000100, 0000010},

and let V3 be the corresponding T -stable unipotent subgroup. Let wl%; : V3(A) - C* be
given by

¥ (Voooo111 + Vo111100 + Voroi110 + V1010000 + Voor1110

! U i / li /
+ a1v0101100 + @300000011 + A4V0011100 + A5Va; + AgV0111000 + A7V0001110)-

Let wq = w[745632451342]. Then there is a representative Wy for w4 such /that for
each a there exists a’ with a; being a nonzero scalar multiple of a; and f(V3’w‘%3)(g) =
FY2Y0) (a0 forall f € C®(GE7(F)\GE+(A)) and g € GE(A), whence (Va, V)
~ (V3. V).

Proof. Let

Ry ={1122100,1112110,1111111,0112210,0112111},
Ry={o;:1<i<7,i+#2},

R/1 = {0000111,0111100,0101110, 1010000, 0011110},

R’, = {0101100, 0000011, 0011100, 1000000, 0111000, 0001110}.

— / — /
Then ws Ry = R} and w4 R, = R;.
For any representative 1,4 for wy4, we have V3 = 4 Vzwjl, and

7
a ca—=loo y § . 2 .
sz (g vig) = l;//( Cipg,0Vwae + aICU)4,aivw4C!,‘>
a€R; i=1
i#2
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for some nonzero constants c;, o depending on the choice of the representative ws4. The
point is to show that w4 may be chosen so that ¢, o = 1 for all @ € Ry. Now, w4 is
unique up to an element of the maximal torus 7" of GE7, so it suffices to check that the
mapping T — GLJ induced by the five elements of R; is surjective. This follows from
the fact that these five elements can be simultaneously conjugated to simple roots, as seen
in Section 6.2. ]

Remark 8.1.7. Recall that the descent Fourier coefficient is attached to the standard
semisimple element 009090 The regular nilpotent orbit of g is attached to a stan-
dard semisimple element of g,, which may then be mapped to a semisimple element of
ge;, namely 22 2,222 The sumis 22 2,222 If we regard it as a coweight, it is
not dominant. The dominant element of its Weyl orbit is 2% 3992 which is the stan-
dard semisimple element attached to a nilpotent orbit of E7 whose Bala—Carter label is
E7(a4). The element w4 maps 2 2 7210 222 o 202002 This was the original motiva-

tion for considering wq4, V3, and w‘%.
Lemma 8.1.8. Let

S4 = @1 U {—ay} \ {0000001,0001000,0001100,0001111,0011000, 0101000,
0112100, 1011000, 0100000, 0010000, 0000100, 0000010},

and let V4 be the corresponding unipotent subgroup. Let 1//?,; be the character such that
w§4|V3(A) =y, and Yy, \UV =1forye®(Va,T)\ ®(V3,T). Then (V3,9y) | (Va, ¥y
Proof. One may write (Vg, w‘g,;) as a double integral with (V3, w%;) as inner integral. =

Lemma 8.1.9. Let S5 = S4 U {0001111,0000001} \ {—a4,0000110}. Let V5 be the cor-
responding T -stable unipotent group. Let w‘%s : Vs(A) — C* be the character such that

Uy vanvsa) = ¥y, vanvsa) and Yy |Uy, Ugoor 11 () = 1. Then
Vard Vs
Frvd(g) = / / s WVS)(x_a4(r1)x0000110(r2)g) drydrs.
AJa

Moreover, (Vs, w%;) ~ (Vq, 1//1%;).
Proof. This is another application of Lemma 7.1.1. ]

The key feature of Vs is that it is contained in the unipotent subgroup attached to the

weighted Dynkin diagram 2 © 3 902 for the orbit E7(a4). Further supp w‘%; is contained
in

{a7,0001110,0011100,0101100, 0111000, 0000011,
0011110, 1010000,0101110,0111100, 0000111},

which is contained in the two-graded piece for this weighting.
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Let Ve be the full unipotent group for 202902 (that is, all root subgroups with
weights bigger than or equal to 2) and %%6 be the character of it with %%6 }Vs = w%s

and supp w‘%; = supp 1//‘%; Then for any automorphic function f of uniformly moderate

growth, f 6-¥v) can be written as a double integral with inner integral f W5:9v5) Hence

(Vs, w%;) | (Ve, w%;). Notice that (V, w%;) is a unipotent period of the type considered
in Section 3.1.

Lemma 8.1.10. Let

Xar = X_1010000 + X—0000111 + X—0011110 + X—0101110 + X—0111100
/ / / i
+ a7X 0001110 + a4 X 0011100 + @3 X 0101100 + a6 X 0111000

i Vi
+ a3 X 0000011 + a5X—-1000000,

and

/
eo = X_1010000 + X—0000011 + X—0111000 + X—0101100 + X—0011100 + X—0001110-

Then
(1) Xy is an element of the closure of the orbit Ae if and only if

—1716(a} asas +asayas—2a)asal —ayasal, —asagal)*afaZaf = 0. (8.1.11)

(2) When ai = 0, the element X4 lies in Ag if and only if a|a’ayaga’, # 0.
(3) If Xy is in Ag then it is conjugate to ey,.

Proof. We may regard X, first as an element of the Lie algebra e; over a polynomial
ring in six indeterminates and compute its rank sequence as such. This can be done, for
example, by obtaining 133 x 133 matrices for ad(X, ) for the relevant roots y from GAP
and then loading them into SageMath. This tells us what orbit X, lies in for @’ in general
position, and allows us to obtain polynomial conditions for X, to lie in a smaller orbit.

It turns out that for @’ in general position, X,/ lies in the orbit E;(a4). The largest
value of k such that X Zf, # 0is 14, and X (},4 is rank 1, with only one nonzero entry. This
nonzero entry is the left hand side of (8.1.11). As mentioned in Lemma 7.1.3, X is in
Ag if and only if its 14th power is 0.

From the diagram in [5, p. 442], we see that there are three stable orbits which are less
than E7(a4) but not less than Ag. Their Bala—Carter labels are Ds 4+ Ay, Dg(ay), and
Ds. For X in any of these orbits we have rank ad(X)!'# = 1. This proves the first part.

It is then clear that a5 = 0 implies X,/ is in the closure of A¢. Referring again to
the diagram in [5, p. 442], we see that O < Ag < O < E;(as). By inspecting the rank
sequences of these two orbits, we can see that if X € A, then rank ad(X)!? = 3, while if
X € E7(as), then rank ad(X)'? = 0. When a% = 0, if we calculate the matrix ad(X,)'?
(as an element of e7 over a polynomial ring) and then discard all rows and columns which
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consist entirely of zeros, we obtain the following 3 x 3 matrix:

0 0 —462a'3a?a,ala’?

[y a40647
0 924a2a’}al}aa’? 0
—462aPaaaia’? 0 0

This completes the proof of the second part.
To prove the third part we consider

A / / / /
X, = X_1010000 + a3X 0000011 + agX 0111000 + @71 X—0101100 + a4 X 0011100

!/
+ azX—oo01110,

and
u(by,...,bs) = x—g, (b1)X—a3(b2)X—45(D3)X—a5—ag (D4) X—q( (D5).

Using SageMath, one can check that for each a}, a%, a},., ag, a’; (all nonzero) there exist
unique b1, ..., bs such that

Ad(u(br.....bs)) Xo = X}.

These six roots which appear in X/, may be simultaneously conjugated to simple
roots (cf. Lemma 7.1.12). Hence we can conjugate X/, to e, using a suitable element of
the torus. ]

Corollary 8.1.12. Let \”{/6 : Ve — C* be given by

¥y, (V) = ¥ (vooot110 + Yoor1100 + Vor01100 + V0111000 + V0000011 + V1010000)-
Then for each a’ = (a}, aj, ay, 0, ag, a%) with a; # 0 for i =1,3,4,6,7, there
exists Vo' € GEs(F) such that va'Vsvy' = Ve and yry, (varvv') = Yy (v) for all
v € Vg(A). Hence fVo¥ve) (g) = f(V(”W{%)(vg/g)for all smooth automorphic functions
f :GE7(F)\GE7(A) — C and all g € GE7(A), and in particular (Vg, Iﬂ%é) ~ Ve, Iﬂ{,é).

This completes the proof of Theorem 8.1.1, since (Vg, w{,ﬁ) has appeared previously

as (Us, W:f;)s and it was already shown in Lemma 7.1.15 that &, supports this period.

8.1.1. Remarks. The proof of Theorem 8.1.1 can be summarized as follows. For ¢ =
(c1, ¢2), let 1//52(14) = Y (c1uq + coug) for u € Unclf&. Then (U,g&, 1//52) o (U, wle]"

divides (Vs, 1//?,;) whenever ¢ is the image of @’ under a certain linear map. In this sit-
uation, every representation which supports (Vg, w%;) must also support (U,gi, 1/ng %) o
(U, 1/fle]°). For any ¢, we can choose @’ which maps to ¢ and corresponds to an element of
the orbit Ag¢. The residual representation &, supports the Fourier coefficient (Vg, w%;)

whenever a’ corresponds to an element of Ag. Therefore it supports (U,g&, wg 2o
(U, y() forall c.

In particular, the conclusion applies not only to &, but to any automorphic repre-
sentation IT which supports the Fourier coefficient (Vs, 1//%;)) whenever a’ corresponds
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to an element of Ag. Moreover, it is reasonable to ask whether A¢ can be replaced by a
smaller orbit. In this connection we note that taking a’3 = a’5 = 1 and the rest zero, or
a’5 = a’6 = 1 and the rest zero, gives an element X, in the orbit 24, 4+ A, which lies
immediately above the orbit A, 4+ 3A; attached to 1//80.

If 7 is not of G, type but LS(s, T, /\3) has a pole at s = 1, then Theorem 8.1.1 is still
valid for the residual representation &, with exactly the same proof.

8.2. Local descent

Since the results of [17] hold in both the local and global settings, the same set of argu-
ments given in the global setting above also provides a local analogue.

Theorem 8.2.1. Let F,, be a nonarchimedean local field. Suppose that an irreducible
admissible representation I1,, of GE;(Fy) supports the twisted Jacquet module attached
to (V, W%;) with @’ now in F corresponding to an element of Ag. Then the (U, 1//50 -
twisted Jacquet module of T1,, supports (twisted and untwisted) Jacquet modules attached
to Un%( and all characters of UmGai. In particular, this holds when T1, is the local compo-
nent of any irreducible subquotient T1 of &, where 7 has the property that LS (s, 7t, A3)
has a pole at s = 1.

8.3. Unramified local descent
One may now consider the twisted Jacquet module

Fuyco IdGH " O o v) (2 0 v2) %),
If 7 is an irreducible cuspidal automorphic representation of GL; with m, being induced
from a character of the form (7.3.1) and o is an irreducible quotient of &, then o, will
be a quotient of this twisted Jacquet module.

The study of such a twisted Jacquet module is closely connected with the structure of
the double coset space Q(F,)\GE7(Fy,)/G2(F,)U(Fy). Notice that this space is infinite,
since

dimGE; = 134, dim Q +dim G, +dimU = 133.

This stands in contrast to the situation encountered in [16, 20], where [2, Theorem 5.2]
could be applied.

Moreover, suppose we say that a double coset is admissible if its elements y satisfy
Vi’ lunp—10y) = 1. Then we have

Lemma 8.3.1. The set of admissible double cosets in Q(Fy,)\GE7(Fy)/G2(Fy)U(Fy) is
infinite.

Proof. We can sort the elements of Q(F,)\GE7(Fy)/G»(F,)U(F,) according to the ele-
ments of Q(F,)\GE7(Fy)/P(Fy). Of course this latter double coset space is finite and
represented by elements of the Weyl group. We use elements w of the Weyl group that
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are of minimal length in their double coset. For each such w,
§ = OQ(Fy)wdGa(Fy)U(Fy)

induces a bijection between the set of Q(Fy), Go(F,)U(Fy,)-double cosets in
O (Fy)wP(Fy) and (M(Fy) Nw™ ' Q(F,)w)\M(Fy)/G2(F,). Moreover, for § € M(Fy),

I/f[e]o|Ur\8—1w—1Qw8 =1 — [8 lr//[e]o]lUﬂw—le =1
We consider the longest element wo of Q (F,,)\GE7(Fy,)/P(F,), and show that

{8 € (M(Fy) N wy' Q(F)wo)\M(Fy)/G2(Fo) : 8 Vi ly s owo = 1)
is infinite.

To do this we first compute M N wy ' Qwyp and find that it is the product of the GL,
factor of M and the parabolic of type (2,2, 3) in the Levi factor. Note that the dimension
of this parabolic is 33.

If we let GL7(F,) act on wle]o, then the stabilizer is G, (F ), and so the orbit is a variety
of dimension 35. Recall that Ipf]" is identified with a nilpotent element X of ge,, lying
in g%, for the semisimple element ©© 9999 ‘and our variety is then identified with the
GL7-orbit of X in g% ,.

Finally, we compute that {& € ®(U, T) : wox > 0} = {1123321}. Because wy is of
shortest length in Qwq P, this implies that U N wgl Qwgy = Uj123321. This means that
the condition § - 1//5,“| Unwg! Quo = 1 amounts to a single polynomial equation on the
entries of §, so we get a 34-dimensional subvariety. Clearly, our 33-dimensional parabolic
cannot act transitively on this subvariety. ]

Lemma 8.3.2. Ar least eight different Q(Fy), P(Fy,)-double cosets contain admissible
O(Fy), Gy (Fy)U(Fy)-double cosets.

Proof. Indeed, there are eight distinct Kostant representatives w for elements of
O\GE7/ P such that wle]"lUnw_l ow = 1. That s, there are eight Kostant representatives
such that

{8 € (M(Fy) Nw™ Q(F)w)\M(Fy)/G2(Fy) : 8- Y lumw—1 0w = 1}

contains the identity. (And possibly other representatives such that it is nonempty but does
not contain the identity.) ]

Remark 8.3.3. We expect that if 7 is of G, type then the local components of 7 at
unramified places will be induced from characters of the form (7.3.1), with y1, y» being
unitary characters. However, we would expect that in general y;, y» would not satisfy
any special condition that would permit (7.3.4) to be reducible. The representation (7.3.4)
has a P-module filtration parametrized by the elements of Q\GE7/ P, and Lemma 8.3.2
suggests that at least eight of the P-modules in this filtration will have nontrivial twisted
Jacquet modules. Thus the local unramified descent appears to be highly reducible.

This is consistent with our global results. We would expect an irreducible cuspi-
dal automorphic representation w of G, type to be a weak functorial lift attached to
the embedding G,(C) — GL7(C) of some generic cuspidal automorphic representation
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of G,(A). In the classical cases considered in [16,20], the descent recovers the original
cuspidal representation that was lifted (up to near equivalence). In our case, our global
results let us know that the descent module also contains noncuspidal functions. In gen-
eral, we would not expect any noncuspidal automorphic forms to lift weakly to 7z. Hence
our noncuspidality result predicts that the descent module will not consist solely of auto-
morphic forms which lift weakly to .
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