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Abstract. In this paper, we prove a sharp local well-posedness result for spherically symmetric
solutions to quasilinear wave equations with rough initial data, when the spatial dimension is three
or higher. Our approach is based on Morawetz type local energy estimates with fractional regular-
ity for linear wave equations with variable C 1 coefficients, which rely on the multiplier method,
weighted Littlewood–Paley theory, duality and interpolation. Together with weighted linear and
nonlinear estimates (including weighted trace estimates, Hardy’s inequality, a fractional chain rule
and a fractional Leibniz rule) which are adapted to the problem, the well-posedness result is proved
by iteration. In addition, our argument yields almost global existence for n D 3 and global exist-
ence for n� 4when the initial data are small and spherically symmetric with almost critical Sobolev
regularity.
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1. Introduction

Let n� 3. We are interested in the local well-posedness of spherically symmetric solutions
of the Cauchy problem for a quasilinear wave equation with low regularity

�uC g.u/�u D a.u/u2t C b.u/jruj
2; .t; x/ 2 .0; T / �Rn ; (1.1)

u.0; x/ D u0.x/ 2 H
s
rad.R

n/; @tu.0; x/ D u1.x/ 2 H
s�1
rad .Rn/; (1.2)

where � D �@2t C �, g; a; b are smooth functions, g.0/ D 0 and �C g.u/� satisfies
the uniform hyperbolicity condition. Here, H s

rad stands for the subspace of spherically
symmetric functions in the usual Sobolev space H s .

Equation (1.1) is scale-invariant in the sense that u�.t; x/ D u.t=�; x=�/ solves (1.1)
for every � > 0 whenever u.t; x/ is a solution. This gives us the critical homogeneous
Sobolev space PH sc with

sc D n=2;

which is known to be a lower bound of s such that the problem is well-posed in H s .
On the other hand, another characteristic feature of wave equations is the propagation of
singularities along the light cone, which heuristically yields ill-posedness at the regularity
level s � sl D .nC 5/=4.
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For semilinear wave equations, that is, with g � 0, the problem can be shown to be
locally well-posed inH s for s > n=2C 1� 1=q with q Dmax.2; 4=.n� 1// by LqCt L1x
Strichartz estimates. Moreover, it is known that the problem is locally well-posed if

s > max.sc ; sl /;

and ill-posed in general if s < sc or s � sl ; see Ponce and Sideris [40] (nD 3), Tataru [46]
(n � 5) and Zhou [53] (n D 2; 4) for positive results, and Lindblad [28, 29] (n D 3),
Fang–Wang [8] (n � 6) and Liu–Wang [32] (n � 5) for negative results. The critical well-
posedness remains open for higher dimensions (n � 6).

If the nonlinearity is of the first null-form, that is, a.u/u2t C b.u/jruj2 D

c.u/.u2t � jruj
2/ for some c.u/, improved local well-posedness results are also available,

which state that s > sc is sufficient for local well-posedness; see, e.g., Klainerman–
Machedon [22] (n D 3), Klainerman–Selberg [26] (n � 2), and also Liu–Wang [32].

Furthermore, it is well-known that we can extend the admissible pairs for Strichartz
estimates when the initial data are spherically symmetric or have a certain angular regular-
ity; see Klainerman–Machedon [21], Sterbenz [44], Machihara–Nakamura–Nakanishi–
Ozawa [33] and Fang–Wang [9]. With the help of this observation, we can improve the
radial results to s > 3=2 for n D 2 and s � 2 for n D 3. We see that there is still a 1=2
gap of regularity, between the positive results and the scaling regularity. When n D 3

in the case of radial small data, by exploiting local energy estimates and weighted frac-
tional chain rule, the regularity assumption is improved to the almost critical assumption
s > 3=2 in Hidano–Jiang–Lee–Wang [12], with previous results of Hidano–Yokoyama
[16] for s D 2. In view of [12], it seems that the critical radial regularity for n D 2 is
s D 3=2 against the scaling critical regularity s D 1. Concerning radial solutions to gen-
eral semilinear hyperbolic systems in 3D under the null condition, global existence for
small scaling invariant PW 2;1.R3/ data is known from Yin–Zhou [52].

The quasilinear problem (1.1) is much more delicate. By the classical energy argu-
ment, the problem is locally well-posed as long as s > n=2 C 1 [17]. Similar to the
semilinear problem, the approach usingLqCL1 Strichartz estimates has been intensively
investigated. To make the argument work, we need to obtain Strichartz estimates for wave
operators with variable coefficients. It is known that we have the full Strichartz estimates
provided that the perturbation is C 1;1; see Smith [41], Tataru [48], as well as Kapitanskii
[19] and Mockenhaupt–Seeger–Sogge [37] for previous results with a smooth perturb-
ation. However, in view of application to the quasilinear problem (1.1), u 2 H s with
s < n=2C 1 will only imply g.u/ 2 C 0;s�n=2, by Sobolev embedding, which means that
it is desirable to obtain Strichartz estimates for wave operators with rough coefficients.

The first breakthrough was achieved through the independent works of Bahouri-
Chemin [3] (Hadamard parametrix) and Tataru [47] (FBI transform), where weaker
Strichartz estimates for a metric with limited regularity were obtained, giving the local
well-posedness for

s >
nC 2

2
�

´
1=4; n � 3;

1=8; n D 2:
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This approach was developed further, to arrive at

s >
nC 2

2
�

´
1=3; n � 3;

1=6; n D 2I

see Bahouri–Chemin [2] and Tataru [48]. To get further improvements, it is desirable to
exploit the additional geometric information on the metric g.u/ and the solution u. In the
work of Klainerman–Rodnianski [23], the nonlinear structure of solutions was exploited
to obtain the improved result s > 3 �

p
3=2 when n D 3. Finally, the well-posedness for

s >
nC 2

2
�

´
1=2; 3 � n � 5;

1=4; n D 2;

was proven by Klainerman–Rodnianski [24] for the Einstein-vacuum equations (n D 3),
and by Smith–Tataru [42] for general quasilinear wave equations in all space dimensions,
by constructing a parametrix using wave packets. Later, Q. Wang [51] gave an alternative
proof for Smith–Tataru’s result when n D 3, by the commuting vector fields approach.

When n D 3; 2, we know from Lindblad [30] and Liu–Wang [32] that the well-
posedness result in [42] is sharp in general. However, concerning the Einstein-vacuum
equations, the so-called bounded L2 curvature conjecture (well-posedness in H 2)
was verified in Klainerman–Rodnianski–Szeftel [25]. In contrast, Ettinger–Lindblad [7]
proved an ill-posedness result in H 2 for Einstein-vacuum equations in the harmonic
gauge.

In summary, the quasilinear problem is locally well-posed in H s for

s >

8̂̂<̂
:̂
.nC 5/=4; n � 3;

.nC 1/=2; n D 4; 5;

n=2C 2=3; n � 6;

in general.
Comparing with the semilinear problem, we expect naturally that there should be

improved well-posedness when the problem and the initial data are spherically symmetric.
Actually, in [14], together with Hidano and Yokoyama, we proved that the 3-dimensional
problem

�uC g.u/�u D au2t C bjruj
2

is well-posed for small radial data in H 2
rad �H

1
rad, with almost global existence of solu-

tions, up to time exp.c=k.ru0; u1/kH1/ (see also Zhou–Lei [54] for previous work on
global existence with aD b D 0, for compactly supportedH 2

rad �H
1
rad data). On the other

hand, when n D 2, the improved local well-posedmess result for H s
rad with s > 3=2 was

suggested in Fang–Wang [10]. In addition, as already mentioned, when nD 2; 3, the long
time well-posedness with small radial data in H s

rad with s > 3=2 is known from Hidano–
Jiang–Lee–Wang [12].
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1.1. Main results

Let us turn to the first main result of this paper, concerning the physically important
case, n D 3. It is known that the problem is well-posed in H 2

rad (at least for small data)
and generally ill-posed in H s

rad with s < sc D 3=2. Heuristically, comparing with the
semilinear results, we may expect well-posedness in H s

rad for certain s < 2. However,
H 2

rad is the lowest possible regularity we can obtain by the approach of (L2tL
1
x ) Strichartz

estimates, even in the radial case. To break the Sobolev regularity barrier s D 2, we need
to circumvent the Strichartz estimates approach.

In the following result, we prove well-posedness inH s
rad for any subcritical regularity,

s > 3=2, which shows that there are no other obstacles to well-posedness in the radial
case except scaling. As far as we know, this might be the first well-posedness result for
three-dimensional quasilinear wave equations, which breaks the Sobolev regularity bar-
rier, sD 2. More precisely, we prove the following, with a certain low frequency condition
on u1.

Theorem 1.1. Let n D 3, s 2 .3=2; 2� and s0 2 Œ2 � s; s � 1�. Consider (1.1)–(1.2)
with u0 2 H s

rad and u1 2 PH s�1
rad \

PH
s0�1
rad . There exists T0 > 0 such that the problem

is .unconditionally/ locally well-posed in the function space

u 2 L1t H
s
rad \ C

0;1
t H s�1

rad \ Ct
PH s0.Œ0; T0� �R3/; @tu 2 Ct PH

s0�1: (1.3)

More precisely:

(1) (Existence) There exists a universal constant C > 0 such that there exists a .weak/
solution u satisfying (1.3) and

k@ukL1 PH� C T
��=2
kr�.1��/=2D�@ukL2.Œ0;T ��R3/ � Ck.ru0; u1/k PH�

for all � 2 ¹s0 � 1º [ Œ0; s � 1� and T 2 .0; T0�. Here � D s � 3=2, D D
p
��.

(2) (Uniqueness) The solution is unconditionally unique in (1.3).

(3) (Persistence of regularity) Let T� be the maximal time of existence .lifespan/ for the
solution in (1.3). If .u0; u1/ 2 H s1 �H s1�1 for some s1 � 3, then the solution u is
in L1H s1 � C

0;1
t H s1�1 in Œ0; T � �R3 for any T < T�.

(4) (Continuous dependence) We also have continuous dependence on the data when
s0 < s � 1, in the following sense: for any T 2 .0; T�/, s1 2 .sc ; s/ and " > 0, there
exists ı > 0 such that whenever k.r.u0 � v0/; u1 � v1/k PH s�1\ PHmax.s1�2;s0�1/ � ı,
the corresponding solution v 2 L1H s1 � C

0;1
t H s1�1 is well-defined in Œ0; T � �R3

and
k@.u � v/kL1. PH s1�1\ PHmax.s1�2;s0�1// � ":

Remark 1.2. The regularity assumption on the lifespan obtained in Theorem 1.1 is sharp
in general. More precisely, we do not have well-posedness for data in some critical space,
B , and possibly nonsubcritical space PH s with s � sc D 3=2. Actually, let g D 0, a D 1,
b D 0, and �;  be given nonnegative nontrivial, spherically symmetric C10 functions.
Then it is well-known (see, e.g., John [18]) that for classical solutions, for any " > 0, the
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lifespan T� is finite for data u0 D "�, u1 D " . By persistence of regularity, we know that
T� is the same as the lifespan for weak solutions. If the problem is still well-posed, then by
continuous dependence at the trivial solution, there exists ı > 0 such that T� � ı for any
data with critical norm k.u0; u1/kB � ı and "s D k.rxu0; u1/k PH s�1 � ı. Let "� 1 be
such that the critical norm of the data is � ı and we obtain a solution u with T� <1. For
such fixed " > 0, by rescaling we know that, for any 0 < � � 1, u�.t; x/ D u.t=�; x=�/
solves the equation with rescaled data, and

k.u�.0/; @tu�.0//kB D k.u0; u1/kB � ı; "s;� D �
sc�s"s � "s � "0; T�;� D �T�:

This gives 0 < ı � T�;� D �T� <1 for any 0 < � � 1, which is clearly a contradiction.
On the other hand, we have an auxiliary low frequency regularity assumption on the initial
velocity u1 2 PH s0�1, due to the second order of the equation and the limited regularity
level s < 2. This assumption plays a key role in our analysis, to close the iteration, and it
will be interesting to determine whether it is essential for the well-posedness result or not.
Notice, however, that we do not need to assume that u1 is in PH s0�1 when it is compactly
supported.

Next, we present our high-dimensional well-posedness result.

Theorem 1.3. Let n � 4 and s D n=2C � with

� 2

´
.0; 1=2�; n odd;

.0; 1/; n even:
(1.4)

The problem (1.1)–(1.2) is .unconditionally/ locally well-posed in the function space

u 2 L1t H
s
rad \ C

0;1
t H s�1

rad \ CH
1
\ C 1L2: (1.5)

More precisely:

(1) (Existence) There exists a constant C > 0 such that for any data .u0; u1/ 2 H s
rad �

H s�1
rad , there exist T > 0 and a .weak/ solution u in (1.5) in Œ0; T � �Rn satisfying

k@ukL1 PH� C T
��=2
kr�.1��/=2D�@ukL2.Œ0;T ��Rn/ � Ck.ru0; u1/k PH�

for all � 2 Œ0; s � 1�.

(2) (Uniqueness) The solution is unconditionally unique in (1.5).

(3) (Persistence of regularity) Let T� be the lifespan. If .u0; u1/ 2 H s1 � H s1�1 for
some s1 � Œ.nC 4/=2�, then the solution u is in L1H s1 �C

0;1
t H s1�1 in Œ0; T ��Rn

for any T < T�.

(4) (Continuous dependence) We also have continuous dependence on the data, in the
H s1 topology, for s1 2 .sc ; s/.

For the small data problem, we can give the following long time existence result.
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Theorem 1.4 (Long time existence for small data). Let n� 3 and s > sc D n=2. Consider
(1.1)–(1.2) with .u0; u1/ 2H s

rad �H
s�1
rad . When nD 3, assuming further that u1 2 PH s�2,

there exist c > 0 and ı > 0 such that for any data with "1 C "s < ı, the problem admits
an almost global L1.Œ0; T �IHmin.s;2/.R3// solution, where

T D exp.c=."1 C "s//; (1.6)

"1 WD k.rxu0; u1/kL2 ; "s WD k.rxu0; u1/k PH s�1 ; "c D k.ru0; u1/k PBsc�1
2;1

: (1.7)

When n� 4, for any s > sc there exists " > 0 such that the problem admits global solutions
whenever "s C "1 � ".

Remark 1.5. The lower bound (1.6) of the lifespan obtained in Theorem 1.4 for n D 3
is sharp in general, in terms of the order. Actually, as in Remark 1.2, for the sample case
a D 1, g D b D 0, it is well-known that there exist data ."�; " / such that, for any
" 2 .0; 1�, the lifespan of the classical solutions has upper bound T� � exp.C="/ for some
C > 0. By the way, it is clear from the proofs of Theorems 1.1–1.3 that, when jgj � 1,
we can obtain the following lower bound of the lifespan:

T� � c.g; a; b; "c/"
�1=.s�sc/
s :

Moreover, when "c � 1,

T� � c.g; a; b/"
�1=.s�sc/
s exp.c.g; a; b/="c/:

On the other hand, under certain nonlinear conditions, such as null conditions, or many
cases of weak null conditions, the problem admits global solutions with small data. See,
e.g., [1, 31, 54] for global results with a D b D 0. In such situations, we naturally expect
that global radial results with s > sc (or even in certain critical spaces like PBsc2;1) still hold,
which is an interesting further problem.

Remark 1.6. Although we state our results only for scalar quasilinear wave equations, it
is clear from the proofs that they also apply to general multi-speed systems of quasilinear
wave equations which permit spherically symmetric solutions. In particular, the system
with multi-speeds (cj > 0)

@2t u
j
� c2j .1C gj .u//�u

j
D Q

j˛ˇ

kl
.u/@˛u

k@ˇu
l ; 1 � j � N;

is locally well-posed in H s
rad.R

n/ � .H s�1
rad .Rn/ \ PH s�2.Rn// for n � 3 and s > n=2 as

long as it admits spherically symmetric solutions. A similar statement holds for

@2t u
j
� c2j .1C gj .u; @u//�u

j
D Q

j˛ˇ

kl
.u/@˛u

k@ˇu
l ; 1 � j � N;

in H s
rad.R

n/ � .H s�1
rad .Rn/ \ PH s�3.Rn// when n � 3 and s > .nC 2/=2.

In addition, the quasilinear part could be replaced by the D’Alembertian �g.u/ with
respect to the metric ds2 D�dt2C g.u/dx2, or by�gC g.u/� when g is a small, long
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range perturbation of the Minkowski metric:

g D �K0.t; r/
2dt2 C 2K01.t; r/dtdr CK1.t; r/

2dr2 C r2d!2;

j.K0 � 1;K01; K1 � 1/j � 1;X
j�0

kr j j��hri�@ .K0 � 1;K01; K1 � 1/kL1t;x.1Cjxj�2j /
� 1;

for 1 � j j � Œn=2�C 1 (and K01 D 0 when n D 3).

1.2. Idea of proof

Let us discuss the idea of the proof. Basically, we rely on Morawetz type local energy
estimates, instead of Strichartz estimates. In many works on dispersive and wave equa-
tions, Morawetz type local energy estimates have proven to be more fundamental and
robust than Strichartz estimates, for many nonlinear problems.

To make this approach work for quasilinear wave equations, similar to the approach
using Strichartz estimates, we prove a version of Morawetz type local energy estimates
(Theorem 3.1) for linear wave equations with variable C 1 coefficients. It is this version
of local energy estimates which makes it possible to relax the regularity requirement
for quasilinear wave equations. The proof is based on the classical multiplier approach
with well-chosen multipliers, which yields such estimates for small perturbations of the
Minkowski metric. Furthermore, the property of finite speed of propagation is exploited
to handle the general case of large perturbations.

With the help of the well-adapted Morawetz type local energy estimates (weighted
space-time L2 estimates), we are naturally led to develop the corresponding linear
and nonlinear estimates involving weight functions. Among others, we prove weighted
Sobolev type estimates (including weighted trace estimates, Proposition 2.2, and weighted
Hardy inequality, Lemma 2.7), a weighted fractional chain rule (Theorem 2.3 and Propos-
ition 2.8), as well as a weighted Leibniz rule (Theorem 2.4).

The Morawetz type local energy estimates of Theorem 3.1 are at the regularity level
of PH 1. To make the approach work, we need to develop the corresponding version of
local energy estimates at the regularity level PH s with s > n=2. With the help of inter-
polation, Littlewood–Paley theory involving weight functions, together with the weighted
Sobolev type estimates from Proposition 2.2, Lemma 2.7 and Lemma 2.9, we prove a
series of local energy estimates with positive fractional derivatives (Propositions 3.5, 3.6
and 3.9).

Equipped with all these linear and nonlinear estimates, we then use the standard itera-
tion argument to establish local existence and uniqueness, as well as long time existence.
In particular, for n D 3, to prove convergence of approximate solutions, we develop local
energy estimates with negative regularity, and we need to make a certain low frequency
requirement on the initial velocity, due to the second order of the equation and the limited
regularity level s < 2.
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Recall that, in the approach using Strichartz estimates, the proof of local existence
immediately implies persistence of regularity and continuous dependence on the data,
through Gronwall’s inequality. By contrast, in our approach, the proofs of persistence of
regularity and continuous dependence on the data are not so direct. For example, con-
cerning persistence of regularity, we prove first the result from regularity index s to any
s 2 .sc ; Œ.nC 2/=2�/, and then to s D Œ.nC 4/=2�, which is sufficient to conclude persist-
ence of higher regularity.

This paper is organized as follows. In the next section, we recall and prove various
basic linear and nonlinear estimates, including weighted Sobolev type estimates, weighted
trace estimates, weighted Hardy inequality, and a weighted fractional chain rule and a
weighted Leibniz rule. In Section 3, we present a version of Morawetz type local energy
estimates for linear wave equations with variable C 1 coefficients, as well as estimates
with fractional regularity. In Sections 4 and 5, by an iteration argument, we prove local
existence and uniqueness for nD 3 and n � 4. In Section 6, we show persistence of regu-
larity for weak solutions when the initial data have higher regularity, as well as continuous
dependence on the data. Next, in Sections 7 and 8, we present the proof of almost global
existence and global existence for nD 3 and n� 4when the initial data are small. Finally,
in the appendix, we establish the fundamental Morawetz type estimates, by an elementary
multiplier approach with carefully chosen multipliers.

1.3. Notations

We close this section by listing some notations.

� F .f / and bf denote the Fourier transform of f ; D D
p
�� WD F �1j�jF ; and Pj D

�.2�jD/ is the (homogeneous) Littlewood–Paley projection on the space variable, j 2Z.
� rDjxj, hriD

p
2C r2, @D .@t ;rx/D .@t ;r/, Q@uD .@u;u=r/, jrkujD

P
j jDk jr

uj

for multi-indices  .
� Lp.Rn/ denotes the usual Lebesgue space, and Lpr .RC/ D Lp.RC; rn�1dr/.
� L

p
r L

q
! is the Banach space defined by the norm

kf kLpr L
q
!
D
kf .r!/kLq!Lpr :

� H s , PH s (resp. Bsp;q , PBsp;q) are the usual inhomogeneous and homogeneous Sobolev
(resp. Besov) spaces on Rn.
�With parameters �;�1 2 .0; 1/ and T 2 .0;1/, we define

kukLET D k@ukL1t L
2
x
C kr�.1��/=2hri�.�C�1/=2@ukL2t;x

C hT i��=2kr�.1��/=2@ukL2t;x
C .lnhT i/�1=2kr�.1��/=2hri��=2@ukL2t;x ;

(1.8)

for functions on Œ0; T � �Rn. In the limit case T D1, we set

kukLE D k@ukL1t L
2
x
C kr�.1��/=2hri�.�C�1/=2@ukL2t;x

C sup
T>0

kukLET :
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In addition, for fixed � 2 .0; 1/,

kukXT WD kukL1t L
2
x
C T ��=2kr�.1��/=2ukL2t;x

; (1.9)

kF kX�
T
WD inf

FDF1CF2
.kF1kL1tL

2
x
C T �=2kr .1��/=2F2kL2t;x

/: (1.10)

For q 2 Œ1;1�, we introduce the Besov version as follows:

kukXT;q WD kukL1t PB
0
2;q
C T ��=2kr�.1��/=2Pjuk`q

j
L2t;x

:

2. Sobolev type and nonlinear estimates

In this section, we recall and prove various basic estimates to be used.

2.1. Weighted Sobolev type estimates

We will use the following version of weighted Sobolev estimates, which essentially are
consequences of the well-known trace estimates.

Lemma 2.1 (Trace estimates). Let n � 2 and s 2 Œ0; n=2/. Then

kr .n�1/=2ukL1r L2! . kuk PB1=22;1

; krn=2�suk
L1r H

s�1=2
!

. kuk PH s ; s > 1=2; (2.1)

krn.1=2�1=p/�sf kLpr L2! . kf k PH s ; 2 � p <1; 1=2 � 1=p � s < n=2: (2.2)

The estimate (2.1) is well-known: see, e.g., [11, (1.3), (1.7)] and references therein.
The inequality (2.2) with s D 1=2 � 1=p is due to [27]; see also [15] for an alternative
proof using real interpolation and (2.1).

We shall also use the following weighted variant of trace estimates.

Proposition 2.2 (Weighted trace estimates). Let n � 2, ˛ 2 .1=2; n=2/ and ˇ 2

.˛ � n=2; n=2/. Then

krn=2�˛CˇPjukl2
j
L1r H

˛�1=2
!

. krˇD˛ukL2 ; (2.3)

krn=2�˛Cˇuk
L1r H

˛�1=2�
!

. krˇ2j˛Pjukl1
j
L2 : (2.4)

In addition,
krn.1=2�1=p/�˛CˇukLpr L2! . kr

ˇD˛ukL2 (2.5)

for any p 2 Œ2;1�, ˛ 2 .1=2 � 1=p; n=2/ and ˇ 2 .˛ � n=2; n=2/.

Proof. We essentially follow [50, Lemma 4.2], where (2.3) was proven for ˛ 2 .1=2; 1�
and n � 3. Recall that we have the following weighted Littlewood–Paley square-function
estimate:

kwPjf kLp`2
j
' kwf kLp ; wp 2 Ap; f 2 L

p.wpdx/; p 2 .1;1/: (2.6)
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As r2ˇ 2 A2 if and only if jˇj < n=2, we get

krˇ2j˛Pjuk`2
j
L2 ' kr

ˇD˛ukL2 ; ˇ 2 .�n=2; n=2/: (2.7)

Based on this estimate, we observe that, by rescaling, interpolation and frequency
localization, the proof of (2.3) and (2.4) can be reduced to proving

ku.!/k
H
˛�1=2
! .Sn�1/

. krˇrkuk˛=k
L2
krˇuk

1�˛=k

L2
; ˛ 2 Œ1=2; n=2/; (2.8)

where ˇ 2 .˛ � n=2; n=2/, k 2 .˛; ˛ C 1�.
For the proof of (2.8), we recall the weighted Hardy–Littlewood–Sobolev estimates

of Stein–Weiss:

krˇ�˛uk2 . krˇD˛uk2; ˛ 2 .0; n/; ˇ 2 .˛ � n=2; n=2/: (2.9)

Then for any ˛ 2 .0; n/ and ˇ 2 .˛ � n=2; n=2/, we have

krˇ�˛uk2 . krˇD˛uk2 . krˇrkuk˛=k2 kr
ˇuk

1�˛=k
2 (2.10)

if ˛ < k. Moreover, if k 2 .˛; ˛ C 1� \N, we have

krˇ�jukL2 . krˇrjukL2 ; 8j < k; (2.11)

for such ˛; ˇ. Let � be a cutoff function of B2 n B1=2 which equals 1 for jxj D 1. We
deduce from (2.1) that for ˛ 2 Œ1=2; n=2/ and ˇ 2 .˛ � n=2; n=2/,

ku.!/k
H
˛�1=2
!

. krk.�u/k˛=k
L2
k�uk

1�˛=k

L2

.
�X
j<k

krˇ�jrk�jukL2
�˛=k
krˇuk

1�˛=k

L2
C krˇ�˛ukL2

. krˇrkuk˛=k
L2
krˇuk

1�˛=k

L2
;

where we have used (2.10) and (2.11). This gives (2.8), and so (2.3) and (2.4).
Finally, (2.5) follows directly from interpolation between (2.9), (2.3) and (2.4).

2.2. Weighted fractional chain rule

When dealing with nonlinear problems, it is natural to introduce a weighted fractional
chain rule and a weighted Leibniz rule. We first present the following generalized version
of the weighted fractional chain rule of Hidano–Jiang–Lee–Wang [12], which could be
viewed as a transition from Sobolev type norm to Besov type norm, as well as a transition
from space variables to space-time variables. We recall the Muckenhoupt Ap class of
weight functions: by definition,

w 2 A1 ” Mw.x/ � Cw.x/; a.e. x 2 Rn;

w 2 Ap .1 < p <1/ ”

�Z
Q

w.x/ dx

��Z
Q

w.x/1�p
0

dx

�p�1
� C jQjp;

8 cubes Q;
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where Mw.x/ D supr>0 r
�n
R
Br .x/

w.y/ dy denotes the Hardy–Littlewood maximal
function. See, e.g., [39, §2.5.2].

Theorem 2.3 (Weighted fractional chain rule). Let s 2 .0; 1/, � � 1, q; q1; q2 2 .1;1/
and p; p1; p2 2 Œ1;1� with

1

q
D

1

q1
C

1

q2
;

1

p
D

1

p1
C

1

p2
: (2.12)

Assume F W Rk ! Rl is a C 1 map satisfying F.0/ D 0 and

jF 0.�v C .1 � �/w/j � �.�/jG.v/CG.w/j (2.13)

with G > 0 and � 2 L1.Œ0; 1�/. If .w1w2/q 2 Aq , wq11 2 Aq1 and wq22 2 Aq2 , then

kw1w22
jsPjF.u/k`�

j2ZL
p
t L

q
x
. kw12jsPjuk`�

j2ZL
p1
t L

q1
x
kw2G.u/kLp2t L

q2
x

(2.14)

for any Œ0; T / �Rn 3 .t; x/ 7! u.t; x/ 2 Rk . In addition, when q2 D1 and q 2 .1;1/,
if wq1 ; .w1w2/

q 2 Aq and w�12 2 A1, we have

kw1w22
jsPjF.u/k`�

j2ZL
p
t L

q
x
. kw12jsPjuk`�

j2ZL
p1
t L

q
x
kw2G.u/kLp2t L1x

: (2.15)

For comparison, we recall here that the estimates obtained from [12, Theorem 1.2]
can be stated as follows:

kw1w2D
sF.u/kLq . kw1DsukLq1 kw2G.u/kLq2 ; (2.16)

kw1w2D
sF.u/kLq . kw1DsukLqkw2G.u/kL1 : (2.17)

Proof of Theorem 2.3. The proof uses similar arguments to those for the estimates
obtained from [12, Theorem 1.2]. First, recall that, by repeating essentially the argument
of Taylor [49, (5.6), p. 112], we can obtain

jPjF.u/.x/j .
X
k2Z

min.1; 2k�j /
�
M.Pku/.x/M.H/.x/CM.HPku/.x/

�
; (2.18)

where H.x/ WD G.u.x//.
By (2.18), we know that

kw1w22
jsPjF.u/k`�

j2ZL
p
t L

q
x

.
w1w22js min.1; 2k�j /

�
M.Pku/M.H/CM.HPku/

�
`�
j2ZL

p
t L

q
x`
1
k

.
w1w22ks min.2.j�k/s; 2.k�j /.1�s//

�
M.Pku/M.H/CM.HPku/

�
`r
j2Z`

1
k
L
p
t L

q
x

.
w1w22ks�M.Pku/M.H/CM.HPku/

�
`r
k2ZL

p
t L

q
x

where we have used Young’s inequality with the assumption s 2 .0; 1/ in the last inequal-
ity.



Sharp local well-posedness for quasilinear wave equations 4471

By applying Minkowski’s and Hölder’s inequalities to the last expression we have

kw1w22
jsPjF.u/k`�

j2ZL
p
t L

q
x

. kw1w22ksM.Pku/M.H/k`�
k2ZL

p
t L

q
x
C kw1w22

ksM.HPku/
�
k`�
k2ZL

p
t L

q
x

. kw2M.H/k
L
p2
t L

q2
x
kw12

ksM.Pku/k`�
k2ZL

p1
t L

q1
x
C kw1w22

ksHPkuk`�
k2ZL

p
t L

q
x

for any q 2 .1;1/, p; p1; p2 2 Œ1;1� and q1; q2 2 .1;1� satisfying (2.12). In the last
term above we have used a weighted Hardy–Littlewood inequality for .w1w2/q 2Aq with
q 2 .1;1/.

If q2 <1, recall that we have assumed wq11 2 Aq1 and wq22 2 Aq2 ; applying Hölder’s
inequality and the weighted Hardy–Littlewood inequality again, we obtain

kw1w22
jsPjF.u/k`�

j2ZL
p
t L

q
x
. kw2HkLp2t L

q2
x
kw12

ksPkuk`�
k2ZL

p1
t L

q1
x
;

which gives the desired inequality.
For the the remaining case q2 D 1, a similar argument yields (2.15) if we recall the

weighted L1 estimate of [12, (2.17)]:

kw�1M.H/kL1 . kw�1HkL1 ; 8w 2 A1: (2.19)

This completes the proof.

2.3. Weighted fractional Leibniz rule

A closely related and useful result is the weighted fractional Leibniz rule.

Theorem 2.4 (Weighted fractional Leibniz rule). Let s > 0, q0; q1; q2 2 .1;1/, p1; p2 2
.1;1� and sj 2 Œ1;1� be such that

1

q0
D

1

q1
C

1

p1
D

1

q2
C

1

p2
;

1

s0
D

1

s1
C
1

s2
D

1

s3
C
1

s4
:

Suppose the time-independent weight functionswi satisfyw0 Dw1z1 Dw2z2 > 0,wqjj 2
Aqj , zpjj 2 Apj when pj <1, and z�1j 2 A1 when pj D1. Then

kw02
jsPj .uv/k`�

j
L
s0
t L

q0
x
. kw12jsPjuk`�

j
L
s1
t L

q1
x
kz1vkLs2t L

p1
x

C kw22
jsPj vk`�

j
L
s3
t L

q2
x
kz2ukLs4t L

p2
x
; (2.20)

which also yields . for time-independent functions/

kw02
jsPj .uv/k`�

j
L
q0
x
. kw12jsPjuk`�

j
L
q1
x
kz1vkLp1x

C kw22
jsPj vk`�

j
L
q2
x
kz2ukLp2x

:

(2.21)

We remark that the weighted fractional Leibniz rule

kw0D
s.uv/kLq0 . kw1DsukLq1 kz1vkLp1 C kw2D

svkLq2 kz2ukLp2 (2.22)



C. Wang 4472

with qj ; pj 2 .1;1/ has been obtained by Cruz–Uribe and Naibo [5] and D’Ancona [6].
However, in view of applications, the results with pj D1 seem to be more desirable.

Proof of Theorem 2.4. The proof follows from a standard paraproduct argument and we
present only the proof of (2.20). In view of u D

P
Pju, v D

P
Pj v, we introduce the

paraproduct and decompose uv as follows:

Tuv D
X

j�k>N

PkuPj v; uv D Tuv C TvuCR.u; v/;

where N is chosen such that PkuPj v has spectral localization in the annulus of
radius � 2j . The estimates for the Tvu and Tuv are easy:

kw02
jsPj .Tvu/kLs0t L

q0
x
.

X
jl�j j.N

kw12
lsPlukLs1t L

q1
x
kz1P<l�N vkLs2t L

p1
x

.
X

jl�j j.N

kw12
lsPlukLs1t L

q1
x
kz1vkLs2t L

p1
x
;

and so is (2.20) for Tuv C Tvu, where we have applied (2.19) when p1 D 1, as well as
the facts that

kP<l�N vkLp.wdx/ � CkvkLp.wdx/; w 2 Ap; p 2 .1;1/; (2.23)

and jP<l�N vj .M.v/.
It remains to control R.u; v/ D

P
jl�kj�N PluPkv, for which we have

PjR.u; v/ D Pj

� X
jl�kj�N; j�k.N

PkuPlv
�
:

Then it follows that

kw02
jsPjR.u; v/k`�

j
L
s0
t L

q0
x

.
kw12jsPkukLs1t Lq1x kz1PlvkLs2t Lp1x `�j `1k�j�CN `1jl�kj�N
. kw12jsPkuk`�

j
`1
k�j�CN

L
s1
t L

q1
x
kz1vkLs2t L

p1
x

. k2.j�k/sw12ksPkuk`�
j
`1
k�j�CN

L
s1
t L

q1
x
kz1vkLs2t L

p1
x

. kw12ksPkuk`�
k
L
s1
t L

q1
x
kz1vkLs2t L

p1
x
;

where we have used Young’s inequality in the last inequality, and the assumption s > 0.

We shall encounter the following weight functions, which are known to beAp weights
[12, Lemma 2.5].

Lemma 2.5. Let w.x/ D r�1C2ı1hri�2ı1�2ı2 with 0 � 1 � 2ı1 � 1 C 2ı2 < n. Then
w 2 Ap.Rn/ for any p 2 Œ1;1/.
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As a corollary of the weighted fractional Leibniz rule (Theorem 2.4), together with a
weighted variant of the trace estimates (Proposition 2.2), we obtain the following inequal-
ity which will be frequently used.

Proposition 2.6. Let n � 3, � 2 .0; 1/ and j� j � .n � 2/=2C �. Then

kr .1��/=2D� .fg/kL2 . kr�.1��/=2D�f kL2kgk PH .n�2/=2C� (2.24)

whenever f; g are either spherically symmetric or first-order derivatives of spheric-
ally symmetric functions. Moreover, for any q 2 Œ1;1� and non-endpoint � , i.e., j� j <
.n � 2/=2C �, we can obtain the following estimates by interpolation:

kr .1��/=22j�Pj .fg/k`q
j
L2tL

2 . kr�.1��/=22j�Pjf k`q
j
L2tL

2kgkL1t PH .n�2/=2C�
: (2.25)

Proof. First, we notice that it suffices to prove the result with � D .n � 2/=2 C �, by
duality and complex interpolation, if we recall the well-known fact that r˛ 2 A2 if and
only if j˛j < n, and so kr˛=2D�f kL2 ' kr

˛=22j�Pjf k`2
j
L2 .

By (2.21) of Theorem 2.4 with � D q0 D 2, we have

kr .1��/=2D� .fg/kL2 . kr�.1��/=2D�f kL2kr
1��gkL1 C kD

�gkL2kr
.1��/=2f kL1

provided that
r�.1��/=2; r��1 2 A1; r˙.1��/ 2 A2;

which is true as � 2 .1 � n; 1/. By the symmetry assumption, we have

kr1��gkL1 . kr1��gkL1r L2! . kD
�gkL2 ;

kr .1��/=2f kL1 . kr .1��/=2f kL1r L2! . kr
�.1��/=2D�f kL2 ;

where we have used Lemma 2.1 and (2.5) of Proposition 2.2. This gives us (2.24) with
� D .n � 2/=2C �, completing the proof.

2.4. Inhomogeneous weight

We will need the following weighted Hardy type estimate with inhomogeneous weight.

Lemma 2.7 (Weighted Hardy inequality). Let 0 � ˛ � ˇ < n=2 � s and s � 0. Then

kr�˛�shri�ˇC˛ukL2 . kr�˛hri�ˇC˛DsukL2 :

Proof. The proof is inspired by [39, §9.3]. By Lemma 2.5, the conditions are sufficient to
ensure

.r�˛�shri�ˇC˛/2 2 A2; 8s 2 Œ0; n=2/:

By Littlewood–Paley theory, we can reduce the proof to the case of uD Pku with k 2 Z,
that is, we want to show uniform boundedness of the following operators on L2:

Tk D 2
�ksr�˛�shri�ˇC˛Pkr

˛
hriˇ�˛:
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This is equivalent to the uniform boundedness of T �
k
Tk with kernel

Kk.x; y/ D

Z
2�2ksw.x/�k.x � z/jzj

�2sw.z/�2�k.z � y/w.y/ dz

where we setw.x/D jxj˛hxiˇ�˛ and �k.x/D 2kn�.2kx/ with � 2 �.Rn/. AsKk.x;y/
D Kk.y; x/, by Schur’s test we need only prove the uniform boundedness of

Kk.x; y/ 2 L
1
x L

1
y : (2.26)

We will divide the proof into three cases: (i) jyj . jzj, (ii) jyj � jzj and jzj � 2�k ,
(iii) jyj � jzj and jzj . 2�k .

Case (i): jyj . jzj. In this case, we have w.y/ . w.z/ and soZ
jKk.x; y/j dy .

Z
2�2ksw.x/j�k.x � z/j jzj

�2sw.z/�1dz: (2.27)

We consider first the subcase jzj& 2�k , when we have j2kzj�2s . 1, as s � 0. If jxj. jzj,
we have w.x/ . w.z/, and soZ

jKk.x; y/j dy .
Z
j�k.x � z/j dz . 1:

On the other hand, if jxj � jzj, we know that

j�k.x � z/j . 2knh2kxi�N ;

and thus Z
jKk.x; y/j dy .

Z
w.x/j�k.x � z/jw.z/

�1 dz

. h2kxi�Nw.x/2kn
Z
jxj�jzj&2�k

w.z/�1 dz:

If jxj . 1, we have w.x/ ' jxj˛ andZ
jxj�jzj&2�k

w.z/�1 dz . jxjn�˛ . jxjnw.x/�1;

while for jxj � 1, w.x/ ' jxjˇ and soZ
jxj�jzj&2�k

w.z/�1 dz . jxjn�ˇ . jxjnw.x/�1:

In conclusion, we get (2.26) for jxj � jzj & 2�k :Z
jKk.x; y/j dy . h2kxi�N .2kjxj/n . 1:



Sharp local well-posedness for quasilinear wave equations 4475

Next, we consider another subcase: jzj � 2�k , when we have

j�k.x � z/j . 2knh2kxi�N ;

and we need to control I WD
R
jzj�2sw.z/�1 dz. If k � 0, we have jzj�2sw.z/�1 '

jzj�2s�˛ and so I . 2�k.n�2s�˛/. ThenZ
jKk.x; y/jdy .

Z
2�2ksw.x/j�k.x � z/j jzj

�2sw.z/�1 dz . 2k˛h2kxi�Nw.x/ . 1:

For k < 0, we have I . 1C 2�k.n�2s�ˇ/ . 2�k.n�2s�ˇ/ and we get (2.26) similarly.

Case (ii): jyj � jzj and jzj � 2�k . First, if jzj � max.1; 2�k/, we have w.y/ ' jyjˇ ,
and Z

j�k.z � y/jw.y/ dy .
Z
2knh2kyi�N jyjˇ dy . 2�kˇ . jzjˇ ' w.z/:

Thus we get (2.27), which has been proven to be bounded.
On the other hand, if 2�k � jzj . max.1; 2�k/, we have k > 0, 2�k � jzj . 1 and

w.z/ ' jzj˛ . ThenZ
j�k.z � y/jw.y/ dy .

Z
jyj�1

C

Z
jzj�jyj�1

j�k.z � y/jw.y/ dy . 2k.n�N/ C 2�k˛

. jzj˛;

which also gives (2.27).

Case (iii): jyj � jzj and jzj . 2�k . In this case, we have

j�k.x � z/j . 2knh2kxi�N ; j�k.z � y/j . 2knh2kyi�N :

Consider first the case k � 0; we then have w.z/ ' jzj˛ andZ
jKk.x; y/j dy .

Z
jzj�jyj

2�2k.s�n/w.x/h2kxi�N h2kyi�N jzj�2sw.z/�2w.y/ dz dy

. 2�2k.s�n/w.x/h2kxi�N
Z
h2kyi�N jyjn�2.sC˛/w.y/ dy

. 2�2k.s�n/w.x/h2kxi�N 2k.2sC˛�2n/ . w.2kx/h2kxi�N . 1:

For k < 0, we consider three subcases: jzj � 1, jyj � 1, and jzj < 1 < jyj.
When jzj � 1, we getZ
jKk.x; y/j dy .

Z
1�jzj�jyj

2�2k.s�n/w.x/h2kxi�N h2kyi�N jzj�2.sCˇ/jyjˇ dz dy

. 2�2k.s�n/w.x/h2kxi�N
Z
h2kyi�N jyjn�2s�ˇ dy

. 2�2k.s�n/w.x/h2kxi�N 2k.2sCˇ�2n/ . w.2kx/h2kxi�N . 1;

where we have used the assumption that 2.s C ˇ/ < n.
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On the other hand, if jyj � 1, we have h2kyi ' 1 and soZ
jKk.x; y/j dy .

Z
jzj�jyj�1

2�2k.s�n/w.x/h2kxi�N jzj�2.sC˛/jyj˛ dz dy

. 2�2k.s�n/w.x/h2kxi�N
Z
jyj�1

jyjn�2s�˛ dy

. 2�2k.s�n/w.x/h2kxi�N . 1;

where we have used the fact that �2.s � n/ � ˇ � ˛.
Finally, when jzj < 1 < jyj, we see thatZ
jKk.x; y/jdy .

Z
jzj<1<jyj

2�2k.s�n/w.x/h2kxi�N h2kyi�N jzj�2.sC˛/jyjˇ dz dy

. 2�2k.s�n/w.x/h2kxi�N
Z
jyj�1

h2kyi�N jyjˇ dy

. 2k.n�2s�ˇ/w.x/h2kxi�N . 1;

where we have used the assumption that n � 2s � ˇ � ˇ � ˛ in the last inequality. This
completes the proof.

Based on Theorems 2.3 and 2.4, we obtain a weighted fractional chain rule with higher
regularity. For simplicity and future reference, we present the result with the inhomogen-
eous weight r�˛hri�.ˇ�˛/ as in Lemma 2.5.

Proposition 2.8 (Weighted fractional chain rule, higher regularity). Let � 2 RC, k D
Œ� � 2 Œ0; n=2/ and 0 � ˛ � ˇ < n=2 � k. Then

kr�˛hri�.ˇ�˛/D�f .u/kL2x .f C
�

max
j�k
krjrjukL1x

�
kr�˛hri�.ˇ�˛/D�ukL2x

for any f 2 C1.

Proof. Let w WD r�˛hri�.ˇ�˛/. By Lemma 2.5, the assumptions on ˛; ˇ ensure

w2; r�2kw2 2 A2; r�j 2 A1; 8j 2 Œ0; k�:

The case k D 0 follows directly from Theorem 2.3. In the following, we assume k � 1.
Letting � D k C � with � 2 Œ0; 1/ and k � 1, we have

kwD�f .u/kL2x . kwr
kD�f .u/kL2x

.
X

j
P
ˇl jDk; jˇl j�1

wD�
�
f .j /.u/

jY
lD1

r
ˇlu

�
L2x
:

For each term, we know from Theorems 2.3 and 2.4 that
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wD�
�
f .j /.u/

jY
lD1

r
ˇlu

�
L2x

. kr�kwD� .f .j /.u/ � f .j /.0//kL2x

rk jY
lD1

r
ˇlu


L1x

C

X
C.f; kukL1x /kr

�.k�jˇl0 j/wD�
r
ˇl0ukL2x

rk�jˇl0 j Y
l¤l0

r
ˇlu


L1x

. C.f; kukL1x /kr
�kwD�ukL2x

Y
l

kr jˇl jrˇlukL1x

C

X
l0

C.f; kukL1x /kwD
kC�ukL2x

Y
l¤l0

kr jˇl jrˇlukL1x

. C
�
f;max
j�k
krjrjukL1x

�
kwD�ukL2x ;

where we have also used the weighted Hardy inequality (Lemma 2.7) in the last two
inequalities.

Lemma 2.9 (Weighted trace estimate). Let n � 2 and 0 � ˛ � ˇ � .n� 1/=2. Then, for
any p 2 Œ2;1/,

kr�˛C.n�1/.1=2�1=p/hri˛�ˇ�kLpr L2! . kr
�˛
hri˛�ˇD1=2�1=p�kL2 :

Proof. Let w D r�˛hri˛�ˇ with w2 2 A2. As before, by interpolation, we need only
prove the endpoint case:

kr .n�1/=2w�kL1r L2! . kwPj 2
j=2�kl1

j
L2 ;

which follows from

kr .n�1/=2w�k2
L1r L

2
!
. kw�kL2kwr�kL2 :

The proof is elementary, by observing that rn�1w2 is essentially increasing:Z
Sn�1

w.R/2Rn�1�.R!/2 d! D

Z
Sn�1

Z 1
R

w.R/2Rn�1@r�.r!/
2 dr d!

.
Z

Rn
w2j��0j dx . kw�kL2kwr�kL2 ;

which completes the proof.

3. Morawetz type local energy estimates

In this section, we present a version of Morawetz type local energy estimates, involving
fractional derivatives, for linear wave equations with small, variable C 1 coefficients. It
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is this version of local energy estimates that makes it possible to decrease the regularity
requirement for quasilinear wave equations.

Similar estimates for linear wave equations with small C 2 coefficients are well-known
(see Metcalfe–Tataru [35]). There the authors employ the paradifferential calculus and
the positive commutator method to obtain a microlocal version of local energy estimates.
However, it is well-known that for applications to quasilinear problems, the C 2 require-
ment is simply too strong for a problem with low regularity. In particular, in the current
setting, we are working with the regularity level s < 2 (in the most physical related case
of n D 3) and the most we can require is a local energy estimate with C 1;˛ (˛ � 1=2)
metric, even in the spherically symmetric case.

Here, we present a certain weaker but still strong enough variant of Morawetz type
local energy estimates, which applies to linear wave equations with small C 1 coefficients.
The approach is remarkably simple, relying basically on the multiplier method with a
well-chosen multiplier, and interpolation, without involving paradifferential calculus. The
multiplier method has been well-developed in Metcalfe–Sogge [34] and Hidano–Wang–
Yokoyama [14, Section 2] (with more general weights, which we will mainly follow) for
small perturbations of �. As we shall see, the Morawetz type local energy estimates we
shall use are also closely related to the KSS estimates, which appear first in Keel–Smith–
Sogge [20].

Let T 2 .0;1�, ST D Œ0; T / � Rn, and let h˛ˇ 2 C 1.ST / with h˛ˇ D hˇ˛ ,
0 � ˛; ˇ � n, satisfy the following uniform hyperbolicity condition:

ı0.ı
jk/ < .hjk.t; x// < ı�10 .ıjk/; h00 D �1; jh0j j � ı�10 ; (3.1)

for some ı0 2 .0; 1/. Set Qh˛ˇ D h˛ˇ �m˛ˇ wherem˛ˇ is the flat Minkowski metric com-
ponent, .m˛ˇ / D Diag.�1; 1; 1; : : : ; 1/. Consider the linear wave equation with variable
coefficients (with the summation convention for repeated upper and lower indices)

�hu WD .h˛ˇ .t; x/@˛@ˇ /u D F.t; x/ in .0; T / �Rn; (3.2)

with the initial data
u.0; �/ D u0; @tu.0; �/ D u1: (3.3)

Theorem 3.1 (Morawetz type estimates). Let n� 3 and�2 .0;1/ and consider the initial
value problem (3.2)–(3.3) with h0j D 0, hjk 2 C1.ST0/ satisfying (3.1) and

kr1��@hkL1t;x.Œ0;T0/�Rn/ � ı
�1
0 : (3.4)

Then there exist ı1 2 .0;min.ı0; T0// and C0 � 1 such that for any T 2 .0; ı1�, we have

kQ@ukXT � C0.k.ru0; u1/kL2.Rn/ C kF kX�T
/; (3.5)

where the XT and X�T norms are defined in (1.9) and (1.10).

3.1. Morawetz type estimates for small perturbations of fixed background

We begin with standard energy estimates.
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Lemma 3.2 (Energy estimates). For any solutions u 2 C1.Œ0; T /I C10 .R
n// to the

uniformly hyperbolic equation (3.2) in ST , let e0 D .hjkujuk � h
00.ut /

2/=2 '

jut j
2 C jruj2. Then there exists a uniform constant C depending only on ı and n such

that, for E.t/ D
R

Rn e
0dx,ˇ̌̌̌
d

dt
E.t/

ˇ̌̌̌
� C

Z
Rn
.jF j jut j C j@hj je

0
j/ dx: (3.6)

Proof. The result is classical, and follows from a multiplier argument:

ut .h
˛ˇ .t; x/@˛@ˇ /u

D @˛.h
˛ˇuˇut / � @˛.h

˛ˇ /uˇut � .@˛@tu/h
˛ˇuˇ

D @˛.h
˛ˇuˇut / � @˛.h

˛ˇ /uˇut � @t

�
h˛ˇuˇu˛

2

�
C
1

2
.@th

˛ˇ /uˇu˛

D @˛E
˛
CR;

where

E0 D �
h˛ˇu˛uˇ

2
C h0ˇuˇut D

h00.ut /
2 � hjkujuk

2
; Ej D hjˇuˇut ;

and R D �@˛.h˛ˇ /uˇut C .@th˛ˇ /u˛uˇ=2. We observe that e0 D �E0 ' u2t C jruj
2

as long as we have (3.1), which gives us (3.6) in view of the divergence theorem.

Lemma 3.3 (Morawetz type estimates for small perturbation of Minkowski). Let n � 3,
� 2 .0; 1/ and consider the initial value problem (3.2)–(3.3) for h˛ˇ 2C1.ST / satisfying
(3.1). Then there exist ı 2 .0; ı0/ and C � 1 such that for any T > 0 with

kr1��@h˛ˇkL1t;x.Œ0;T ��Rn/ � ıT
��; k Qh˛ˇkL1.ST / � ı; (3.7)

we have
kQ@ukXT � C.k.ru0; u1/kL2.Rn/ C kF kX�T

/: (3.8)

To prove this result, we need the following fundamental Morawetz type estimates,
which follow from the elementary multiplier approach with carefully chosen multipliers.
We leave the tedious proof to the appendix.

Theorem 3.4 (Morawetz type estimates, multiplier approach). Let n � 3, � 2 .0; 1/ and
consider the initial value problem (3.2)–(3.3) for h˛ˇ 2 C1.ST / satisfying (3.1). Then
there exists C � 1, independent of T 2 .0;1/, such that

kQ@uk2XT � Ck.ru0; u1/k
2
L2.Rn/

C C

Z T

0

Z
Rn
jQ@uj

�
jF j C j@uj

�
j@hj C

j Qhj

r1��.r C T /�

��
dx dt (3.9)
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for any solution u 2 C1.Œ0; T /IC10 .R
n// to (3.2)–(3.3) with F 2 C1.Œ0; T /IC10 /. In

addition, for T 2 .0;1�, we have

kuk2LET � Ck.ru0; u1/k
2
L2.Rn/

C C

Z T

0

Z
Rn
jQ@uj

�
jF j C j@uj

�
j@hj C

j Qhj

r1��hri�

��
dx dt: (3.10)

With the use of (3.9) and the Cauchy–Schwarz inequality, Lemma 3.3 follows directly
from the assumption

j@hj C
j Qhj

r1��.r C T /�
� r��1T ��:

3.2. Proof of Theorem 3.1

With the help of Lemmas 3.2 and 3.3, we are ready to present the proof of Theorem 3.1.
Let ı1 > 0, to be determined. First, without loss of generality, we may assume that the

speed of propagation does not exceed ı�10 , and then for any x0 2 Rn nBı1 , the solution u
in

ƒı1.x0/ D ¹.t; x/ W t 2 Œ0; ı1�; jx � x0j < 2ı1 C ı
�1
0 .ı1 � t /º

depends only on h, F in ƒı1.x0/, and the data in B.2Cı�1
0
/ı1
.x0/.

To apply Lemma 3.3, we need an estimate of the perturbation in ƒı1.x0/. Let x.s/ D
x0 C s.x � x0/ with s 2 Œ0; 1�. We have either inf jx.s/j � jx0j=2 or inf jx.s/j � jx0j=2.
In the second case, there exists s0 2 Œ0; 1� such that jx.s0/j D inf jx.s/j � jx0j=2. Then
we have x � x0 ? x.s0/, jx � x0j � jx � x.s0/j � jx0j=2 and

jx.s/j2 D jx.s0/j
2
C .s � s0/

2
jx � x0j

2
� .s � s0/

2
jx � x0j

2
� .s � s0/

2
jx0j

2=4:

Notice that in the first case, we also have jx.s/j � jx0j=2 � sjx0j=2, and we see that in
either case,

jx.s/j � js � s0j jx0j=2 (3.11)

for some s0 2 Œ0; 1�.
In view of (3.4) and (3.11), the perturbation of h in ƒı1.x0/ can be controlled as

follows:

jh.t; x/ � h.0; x0/j �

ˇ̌̌̌Z 1

0

rh.t; x.s// � .x � x0/ ds

ˇ̌̌̌
C tk@th.s; x0/kL1.s2Œ0;t�/

�

�
jx � x0j

Z 1

0

jx.s/j��1 ds C t jx0j
��1

�
kr1��@hkL1t;x.Œ0;ı1��Rn/

. .jt j C jx � x0j/jx0j��1kr1��@hkL1t;x.Œ0;ı1��Rn/

. ı�10 ı
�
1 kr

1��@hkL1t;x.Œ0;ı1��Rn/:

Thus, h˛ˇ can be viewed as a small perturbation of h˛ˇ .0; x0/ in ƒı1.x0/ when ı1 � 1.
If h˛ˇ .0; x0/ D m˛ˇ , we can apply Lemma 3.3 in ƒı1.x0/.
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In general, as hjk are uniformly elliptic, there exists a linear transformM W Rn! Rn

such that in the new coordinates hjk.0; x0/ reduces to the Euclidean metric. Suppose that
in the new coordinates, y DMx, we have

H˛ˇ .t; y/@˛@ˇu D F

and H 00 D �1, H 0j D 0, and H jk.t; Mx0/ D ı
jk . Notice that there exists a uniform

C > 0 such that

kr1��@HkL1t;y.Œ0;T ��Rn/ � Ckr
1��@hkL1t;x.Œ0;T ��Rn/:

Thus, when ı1 � 1, we have the following variant of (3.7) with T � ı1:

kr1��@H˛ˇ
kL1t;y.Œ0;ı1��Rn/ � ıı

��
1 ; kH˛ˇ

�m˛ˇkL1.Mƒı1 .x0//
� ı; (3.12)

from which we deduce (3.8) in Mƒı1.x0/, with T � ı1, from Lemma 3.3. Transforming
back to the original variable we obtain, for some uniform C > 0,

k�ƒı1 .x0/
Q@ukXT � C

�
k.ru0; u1/kL2.B

.2Cı�1
0
/ı1
.x0//
C k�ƒı1 .x0/

F kX�
T

�
(3.13)

for any jx0j � ı1 � T .
Finally, we choose ¹zj º1jD1 3 x0 so that

S
j ƒı1.zj / D Sı1 and the ƒı1.zj / satisfy

the finite overlapping property. Then we conclude (3.5) from (3.13).

3.3. Local energy estimates with fractional regularity, � 2 Œ0; 1�

Based on Theorem 3.1, we obtain the following local energy estimates with fractional
regularity.

Proposition 3.5 (Local energy estimates with positive regularity). Let n � 3 and � 2
.0; 1/, and let h 2 C 1 with h0j D 0 satisfy (3.1) and (3.4). Then there exist ı2 2 .0; ı1�
and a constant C1 > 4C0 such that for any T 2 .0; ı1� with

T �kr1��@hkL1t;x.Œ0;T ��Rn/ � ı2; (3.14)

and solutions u to (3.2) with data .u0; u1/, we have

kQ@D�ukXT � C1.k.ru0; u1/k PH� C kD
�F kX�

T
/; 8� 2 Œ0; 1�; (3.15)

k@D1=2ukXT;1 � C1
�
k.ru0; u1/k PB1=2

2;1

C T �=2kr .1��/=22j=2PjF k`1
j
L2t;x

�
: (3.16)

Proof. First, by approximation, we can assume h 2 C1, u; F 2 C1t C
1
0 so that we can

apply Theorem 3.1.
Let us begin by proving a higher order estimate of (3.5). Applying the spatial derivat-

ive @j to equation (3.2), we get

.�@2t C�C
Qhmk@m@k/@ju D @jF.t; x/ � .@jh

mk/@m@ku: (3.17)
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By (3.5), we see that

kQ@rukXT . ku0k PH2 C ku1k PH1 C krF kX�T C T
�=2
kr .1��/=2.rh/r2ukL2t;x

. ku0k PH2 C ku1k PH1 C krF kX�T C T
�
kr1��rhkL1k@rukXT :

In view of (3.14) for some ı2 � 1, we can absorb the last term and have

kQ@rukXT . ku0k PH2 C ku1k PH1 C krF kX�T : (3.18)

Notice that all of the weights occurring in kQ@ukXT and X�T are among the functions
w D r�.1��/=2; r�.3��/=2 and their reciprocals, which share the property that w2 2 A2.
Based on this fact, we know (2.6) holds for p D 2, and so complex interpolation holds
for the weighted Sobolev space of fractional order (see e.g. [4, Theorem 6.4.3], [36,
Lemma 4.6] for similar results):

Œ PH 0
w ;
PH 1
w �� D

PH �
w ; � 2 Œ0; 1�; kf k PH�w

WD kwD�f kL2 : (3.19)

With the help of (2.6), we see that (3.18) gives us (3.15) with � D 1. As (3.5) is just
(3.15) with � D 0, the general estimate (3.15) with � 2 Œ0; 1� follows in view of (3.19).
Finally, with the help of (3.15), (2.6), and real interpolation with � D 1=2, we obtain the
estimate (3.16).

Using basically the same argument, from Theorem 3.4 we also get the following local
energy estimates with fractional regularity, for a small perturbation of Minkowski.

Proposition 3.6. Let n � 3 and � 2 .0; 1/ and let h 2 C 1 satisfy (3.1). There exists a
constant C > 1 such that if

k.r1��@h; Qh/kL1t;x.Œ0;T ��B1/ C .ln hT i/k.r@h;
Qh/kL1t;x.Œ0;T ��B

c
1
/ � 1=C ; (3.20)

then for any weak solutions u to (3.2) with data .u0; u1/, we have

kD�ukLET � C
�
k.ru0; u1/k PH� C .ln hT i/

1=2
kr .1��/=2hri�=2D�F kL2t;x

�
(3.21)

for any � 2 Œ0; 1�. Similarly, if instead of (3.20), we assume

khri�1.r1��hri�@h; Qh/kL1t;x.Œ0;1/�Rn/ � 1=C ; (3.22)

then we have

kD��kLE � C
�
k.ru0; u1/k PH� C kr

.1��/=2
hri.�C�1/=2D�F kL2t;x

�
; 8� 2 Œ0; 1�:

(3.23)

3.4. Local energy estimates with negative regularity

It is well-known that quasilinear problems suffer loss of regularity, which naturally occurs
when we try to prove the convergence of the Picard iteration series. More precisely, we
will need to control some term like .g.u/ � g.v//�v, for which one standard way to
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bypass is to prove the convergence in a weaker topology. One typical choice will be the
standard energy norm, for which we are led to the requirement s � 2 for the regularity.
In this sense, to break the regularity barrier 2 (for dimension 3), it is very natural to
consider energy type estimates with negative regularity. To obtain such estimates, as we
have limited regularity for h, it is natural to work with equations in divergence form.

Proposition 3.7 (Local energy estimates with negative regularity). Let n � 3 and � 2
.0;1=2�, and let h˛ˇ 2C 1 with h0j D 0 satisfy (3.1) and (3.4). Then there exist ı3 2 .0; ı2�
and a constant C > 0 such that for any T 2 .0; ı1� with

T �kr1��@hkL1t;x.Œ0;T ��Rn/ � ı3; (3.24)

we have
k@D��ukXT � CkD

��F kX�
T
; 8� 2 Œ0; 1�; (3.25)

for any weak solutions u to
.@˛h

˛ˇ@ˇ /u D F (3.26)

with vanishing data. Here the XT and X�T norms are defined in (1.9)–(1.10). In addition,
if � 2 Œ.4 � n/=2 � �; 1� \ Œ0; 1�, and hjk are spherically symmetric, then

k@D��ukXT . k@u.0/k PH�� C T
�
khkL1t PH .n�2/=2C�

k@u.0/k PH1�� C kD
��F kX�

T

(3.27)
for any spherically symmetric weak solutions u to (3.26).

Remark 3.8. As is clear from the local energy estimate (3.5), when � D 0, the second
term on the right of (3.27) is not necessary. We do not know, however, if it is necessary to
have such a term for general � .

Proof of Proposition 3.7. First, we observe that the local energy estimate (3.5) applies
also to the wave operator in divergence form

@˛h
˛ˇ .t; x/@ˇ ;

as the difference of these two operators is just a term like .@˛h˛ˇ /@ˇ , which could be
absorbed into the left hand side by (3.24) with small ı3, and gives us (3.25) with � D 0,
which in particular yields

kDukXT . kF kX�T :

By duality, we obtain

krD�1ukXT . kukXT . kD
�1F kX�

T
: (3.28)

By interpolation, to prove (3.25), it remains to estimate @tu with � D 1, for which
we shall also argue by duality. Observe that the difference between .�C @j Qhjk@k/u and
.�C @j @k Qhjk/u is given by @j ..@k Qhjk/u/D @j ..@khjk/u/, which is an admissible error
term thanks to (3.4) and (3.28), as we have

kD�1@j ..@kh
jk/u/kX�

T
. k.@khjk/u/kX�

T
. T �kr1��@hkL1t;xkukXT . kD

�1F kX�
T
:
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The proof is thus reduced to obtaining an estimate for .�C @j @k Qhjk/uD F . Recall that,
for any G 2 C1t C

1
0 with kDGkX�

T
� 1, we have

k@j @kwkXT C kD@twkXT . kD@wkXT . kDGkX�T � 1

for any solutions to .� C Qhjk@j @k/w D G with vanishing data at time t D T , which
follows directly from the estimate (3.18). Now, for the sake of duality, we observe that

d

dt

Z
Rn
.wtutCrw �ru�u Qh

jk@j @kw/dxC

Z
Rn

�
wtFCutG�u.@th

jk/@j @kw
�
dxD0;

and so Z
ST

G@tudt dx D

Z
ST

..@th
jk/u@j @kw � F@tw/ dt dx:

Then, thanks to (3.24) and (3.25) with rD��u, we obtainˇ̌̌̌Z
ST

G@tudt dx

ˇ̌̌̌
� kD@twkXT kD

�1F kX�
T
C T �kr1��@hkL1t;xkukXT k@j @kwkXT

. kD�1F kX�
T
C T �kr1��@hkL1t;xkrD

�1ukXT

. kD�1F kX�
T
;

which, by duality, gives the desired estimate

kD�1@tukXT . kD
�1F kX�

T
;

and completes the proof of (3.25).
Finally, we prove the homogeneous estimates, for .@˛h˛ˇ@ˇ /u D 0. For this purpose,

we introduce the homogeneous solution for the standard d’Alembertian�w D 0, w.0/D
u.0/, wt .0/ D ut .0/. Then it follows from (3.5) and Œ�;D� � D 0 that

kD�@wkXT � C0k@u.0/k PH�

for any � 2 R. Next, we want to estimate the difference v D u�w, for which we observe
that v.0/ D @tv.0/ D 0 and

.@˛h
˛ˇ@ˇ /v D �@j . Qh

jk@kw/:

Applying (3.25) to v, we obtain

kD��@vkXT . T
�=2
kr .1��/=2D��@j . Qh

jk@kw/kL2t;x

. T �=2kr .1��/=2D1�� . Qhrw/kL2t;x

. T �k QhkL1t PH .n�2/=2C�kD
1��
rwkXT

. T �khkL1t PH .n�2/=2C�k@u.0/k PH1�� ;

provided that � 2 Œ.4 � n/=2 � �; 1� \ Œ0; 1� so that j1 � � j � .n � 2/=2C � and � 2
Œ0; 1�, where we have used Lemma 2.6 in the third inequality, since h and u are assumed
to be spherically symmetric. Combining all these estimates, we obtain (3.27), and this
completes the proof.
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3.5. Local energy estimates with high regularity: radial case

Considering spherically symmetric equations and solutions, we have the following ver-
sion of local energy estimates with high regularity.

Proposition 3.9 (Local energy estimates with high regularity). Let n � 3, � 2 .0; 1/ and
h.t; x/ D h.t; jxj/ 2 .ı0 � 1; ı

�1
0 � 1/, and consider radial solutions � for

.�@2t C�C h�/� D F; �.0/ D u0; �.0/ D u1: (3.29)

Then there exists ı > 0 such that

kQ@D��kXT . kD
� .ru0; u1/kL2 C kD

�F kX�
T
; � 2

�
0; Œn=2�

�
; (3.30)

k@Dn=2�1�kXT;1 . k.ru0; u1/k PBn=2�1
2;1

C T �=2kr .1��/=22j.n=2�1/PjF k`1
j
L2t;x

; (3.31)

for any classical solutions � to (3.29) provided that

T �k@hkL1t PHn=2�1C�
� ı: (3.32)

In addition, when (3.32) is satisfied, for k D 1C Œn=2� we have

kQ@rk�kXT . kr
k.ru0; u1/kL2 C kr

kF kX�
T
C T �krk�kXT khkL1t PH .nC2/=2C�

(3.33)
if n is odd or � > 1=2, and

kQ@rk�kXT . kr
k.ru0;u1/kL2Ckr

kF kX�
T
CT �khkL1t PHkC1

kDn=2C��kXT (3.34)

if � > 1=2. Similarly, when n � 4, � 2 .0; 1=2/ and �1 2 .0; ��, there exists ı0 > 0 such
that

kD��kLET . kD
� .ru0; u1/kL2

C kr .1��/=2hri.�C�1/=2D�F kL2t;x
; � 2 Œ0;

�
.n � 1/=2�

�
; (3.35)

for any classical solutions to (3.29) provided that

khkL1t;x C k@hkL1t PHn=2�1C�
C k@hkL1t PH

n=2�1��1 � ı
0: (3.36)

Proof. As in Proposition 3.5, the proof of (3.30) and (3.31) can be reduced to the proof
of (3.30) with D� replaced by rk with k 2 N. When � D 0; 1, this has been proven in
(3.15) of Proposition 3.5, by recalling the trace estimates

kr1��@hkL1t;x . k@hkL1t PHn=2�1C� :

The general case follows from a similar strategy. By applying r˛ with j˛j D k � 2,
we have

.�@2t C�C h�/r
˛� D r˛F C Œh;r˛��� D r˛F C

kX
jD1

O.jrjhj jrk�j��j/:
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First, if 1 � j � k � 1, we have n=2C � � j 2 .1=2; n=2/, and

k.rjh/rk�j��kX�
T
. T �=2krj��rjhkL1kr�=2�jC1=2rk�j��kL2

. T �=2khkL1t PHn=2C�kr
�.1��/=2

r
k�1��kL2 ;

where we have used (2.9) and the trace estimate. For the term with j D k, we proceed
similarly if n=2C � � k 2 .1=2; n=2/, that is, k < .n � 1/=2C �. Thus all these com-
mutator terms can be absorbed into the left side, in view of (3.32), which proves (3.30)
with 0 � k < .n � 1/=2C �.

The remaining case, .n � 1/=2C � � k � Œn=2�, only happens when n is even and
k D n=2 with � 2 .0; 1=2�. Then we have k � 1 � 1, and

k.rkh/��kX�
T
. T �=2kr��rkhkL1t L2kr

.1C�/=2��kL2tL1

. T �=2khkL1t PHkC�kr
�.1��/=2

r
k�1��kL2 ;

where we have used (2.4) and Hardy’s inequality. This gives (3.30) with k D n=2.
We now turn to the proof of (3.33) and (3.34), in which case we have .n� 1/=2C��

k < .nC 1/=2C�. Notice that we still have n=2C�� j 2 .1=2;n=2/ for 1� j � k � 1
and, as before, these commutator terms are good terms. For the case j D k, we have
.nC 2/=2C � � k > 1=2 and so

k.rkh/��kX�
T
. T �=2kr1��Ck�2rkhkL1t;xkr

�.1��/=2C2�k��kL2t;x

. T �=2khkL1t PH .nC2/=2C�kr
�.1��/=2

r
k�kL2

. T �khkL1t PH .nC2/=2C�kr
k�kXT ;

which gives us (3.33). Similarly, for (3.34), the term with j D k can be controlled as
follows:

k.rkh/��kX�
T
. T �=2krn=2�1rkhkL1t;xkr

.1��/=2C1�n=2��kL2t;x

. T �=2khkL1t PHkC1kr
�.1��/=2Dn=2C��kL2

. T �khkL1t PHkC1kD
n=2C��kXT ;

where we have used n=2C � � 2 and (2.9), which completes the proof of (3.34).
Finally, we treat (3.35), for which we follow a similar strategy, by reducing it to rk

with k D Œ.n � 1/=2�. First, for 1 � j � Œn=2� � 1, we notice that n=2 � �1 � j and
n=2C � � j are in .1=2; n=2/, and so

kr .1��/=2hri.�C�1/=2.rjh/rk�j��kL2t;x

. krj��hri�C�1rjhkL1kr�.1��/=2�.j�1/hri�.�C�1/=2rk�j��kL2

. khkL1t PHn=2C�\L1t PHn=2��1 kr
�.1��/=2

hri�.�C�1/=2rk�1��kL2 ;
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where we have used Lemma 2.7. For the remaining terms with j > Œn=2�� 1, we see that
n is odd, j D k D .n� 1/=2 and so n=2C�� k D 1=2C�, n=2��1 � k D 1=2��1.
Notice that (2.2) gives

kr .n�1/.1=2��1/hkL1=�1 . khk PH1=2��1 ; kr
.n�1/.1=2��1/����1hkL1=�1 . khk PH1=2C� ;

that is,

kr .n�1/.1=2��1/����1hri�C�1hkL1=�1 . khk PH1=2C� C khk PH1=2��1 : (3.37)

With the help of (3.37) we obtain, for 1=q D 1=2 � �1,

kr .1��/=2hri.�C�1/=2.rkh/��kL2t;x

. kr .n�1/.1=2��1/����1hri�C�1rkhkL1t L.1/=�1
� kr�.1��/=2�.n�3/=2Cn�1hri�.�C�1/=2��kLq

. khkL1t PHn=2C�\L1t PHn=2��1 kr
�.1��/=2�.n�3/=2C�1hri�.�C�1/=2D�1��kL2

. khkL1t PHn=2C�\L1t PHn=2��1 kr
�.1��/=2

hri�.�C�1/=2D.n�3/=2��kL2 ;

where we have used Lemma 2.9, Lemma 2.7 and the assumption n � 4, so that we have
.n � 3/=2 � �1. This gives (3.35).

4. Local existence and uniqueness for dimension 3

With the help of Propositions 3.5 and 3.7, we are able to prove the local existence and
uniqueness part of Theorem 1.1.

4.1. Approximate solutions

First, we fix a spherically symmetric function � 2 C10 .R
n/which equals 1 near the origin

and
R

R3 �.x/dxD 1, and set �k.x/D 23k�.2kx/. Using �, we define a standard sequence
of C1 spherically symmetric functions approximating .u0; u1/,

u
.k/
0 .x/ D �k � u0.x/; u

.k/
1 .x/ D �k � u1.x/; k � 3: (4.1)

It is clear that

k.ru
.k/
0 ; u

.k/
1 /k PH�rad

� k.ru0; u1/k PH�rad
; 8� 2 R;

k.ru
.k/
0 ; u

.k/
1 /k PB�

2;1
� k.ru0; u1/k PB�

2;1
; 8� 2 R:

Since .u0; u1/ 2 H s
rad � .H

s�1
rad \

PH
s0�1
rad / with s 2 .3=2; 2� and s0 2 Œ2 � s; s � 1�, we

have
lim
k!1

.ku
.k/
0 � u0kH srad

C ku
.k/
1 � u1kH s�1rad \

PH
s0�1

rad
/ D 0:
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In addition, for any � 2 Œs0 � 3; s � 1/,

1X
kD3

.kru
.k/
0 � ru

.kC1/
0 k PH� .R3/ C ku

.k/
1 � u

.kC1/
1 k PH� .R3// <1: (4.2)

Indeed, we can easily check this by using the fact that k�k � ' � 'kL2 � C2��kk'k PH�
for any � 2 Œ0; 2�. Moreover, there exists a subsequence ¹jkº such that

ku
.jk/
0 � u

.jkC1/

0 k PH s.R3/ C ku
.jk/
1 � u

.jkC1/

1 k PH s�1.R3/ � 2
�k ; (4.3)

and we also have (4.2) for .u.jk/0 ; u
.jk/
1 / with � D s � 1. Furthermore, we can cut off

the data so that they are compactly supported smooth functions, while all of the above
properties remain valid (with possibly larger constants). We still denote the sequence
(after cut-off) as .u.jk/0 ; u

.jk/
1 /.

With .u.jk/0 ; u
.jk/
1 / as data, we use a standard iteration to define a sequence of approx-

imate solutions. Let F.u/ D a.u/u2t C b.u/jruj
2, u2 � 0 and define uk (k � 3) recurs-

ively by solving´
�uk C g.uk�1/�uk D F.uk�1/; .t; x/ 2 .0; T / �R3;

uk.0; �/ D u
.jk/
0 ; @tuk.0; �/ D u

.jk/
1 :

(4.4)

By Proposition 3.5, together with a standard existence, uniqueness and regularity the-
orem, we will see that there exists some uniform T .u0; u1/ 2 .0;1/ such that for all
k � 2, uk is well-defined and C1 on ST , spherically symmetric, and satisfies

k@ukkL1 PH� � k@D
�ukkXT � 2C1k.ru

.jk/
0 ; u

.jk/
1 /k PH� ; 8� 2 Œ0; 1�; (4.5)

k@ukkL1t PB
1=2
2;1

� kQ@D1=2ukkXT;1 � 2C1k.ru0; u1/k PB1=2
2;1

D 2C1"c : (4.6)

4.2. Uniform boundedness of uk

In this subsection, we prove the uniform boundedness of the sequence, that is, (4.5) and
(4.6).

Lemma 4.1. Let s 2 .3=2; 2�, "s WD k.rxu0; u1/k PH s�1 and set s D 3=2C �. Then there
exists c D c.g;a; b; "c/ such that the spherically symmetric functions uk 2 C1 \CH � \

C 1H ��1 are well-defined on ST for any k � 2, � � 3 and enjoy the uniform bounds (4.5)
and (4.6) for any T 2 .0; T0� with T0 D min.ı1; c.g; a; b; "c/"

�1=�
s /.

Proof. The proof proceeds by induction. First, the result is trivial for k D 2. Then we
make the inductive assumption that for some m � 3 we have for any 2 � k � m � 1,
uk 2 C

1 \ CH � \ C 1H ��1 for any � � 3 with the bounds (4.5)–(4.6) satisfied.
Recalling the Sobolev inequality

k�kL1 � Ck�k PB3=2
2;1

;
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in view of (4.6) for um�1 we see that

kum�1kL1t;x � Ckum�1kL1t PB
3=2
2;1

� 2CC1k.ru0; u1/k PB1=2
2;1

D 2CC1"c : (4.7)

As um�1 2 C1 \ CH � \ C 1H ��1 for any � � 3 with the bounds (4.5) and (4.6),
we see that F.um�1/ 2L1.Œ0;T �IH ��1/ and g.um�1/ 2 C1. Based on this information,
we see from the classical local existence theorem that (4.4) is solvable with solution um
well-defined, smooth in Œ0; T � �Rn and with um 2 CH � \ C 1H ��1 for any � � 3.

To apply Proposition 3.5 for um, we need to check (3.14) for hjj D g.um�1/ and
h˛ˇ D 0 with ˛ ¤ ˇ. As � 2 .0; 1=2� and um�1 is spherically symmetric, by (2.1) we
have

kr1��@g.um�1/kL1 � kr
1��g0.um�1/@um�1kL1 . k@um�1kL1 PH1=2C�rad

. "s; (4.8)

where we have used (4.5) and (4.7) for um�1. Here we notice that the implicit constant
may depend on g and "c through kg0.um�1/kL1 . Thus, with

T0 D c.g; "c/"
�1=�
s (4.9)

for some small constant c, which may depend on "c and g, we have (3.14) for g.um�1/
and can apply Proposition 3.5 for um. In conclusion, for � 2 Œ0; 1� and T 2 .0; ı1� we get

k@D�umkXT � C1
�
k.ru

.jm/
0 ; u

.jm/
1 /k PH� C T

�=2
kr .1��/=2D�F.um�1/kL2t;x

�
;

(4.10)

k@D1=2umkXT;1 � C1.k.ru0; u1/k PB1=2
2;1

C T �=2kr .1��/=22j=2PjF.um�1/k`1
j
L2t;x

/:

(4.11)

To control the right hand side, we will exploit Lemma 2.6, the weighted fractional
chain rule (Theorem 2.3), as well as the weighted fractional Leibniz rule (Theorem 2.4).
Without loss of generality, we assume b D 0 and write

F.u/ D a.u/u2t D Qa.u/u
2
t C a.0/u

2
t DW F1.u/C F2.u/: (4.12)

We first give an estimate for F2.u/ for any � 2 Œ0; 1�:

kr .1��/=22j�PjF2.u/k`q
j
L2t;x
. kr�.1��/=22j�Pjutk`q

j
L2t;x
kr1��utkL1t;x

. kr�.1��/=22j�Pjutk`q
j
L2t;x
kutkL1t PH1=2C�

by Lemma 2.5, (2.20) and (2.1). For F1.u/, we use a similar argument, applying (2.20),
(2.15), and (2.1) to obtain, for � 2 Œ0; 1�,

kr .1��/=22j�PjF1.u/k`q
j
L2t;x

. k Qa.u/kL1kr .1��/=22j�Pj .u2t /k`q
j
L2t;x
C kr�.3��/=22j�Pj Qa.u/k`q

j
L2t;x
kr2��u2t kL1

. C.k@uk
L1t

PB
1=2
2;1

/kutkL1t PH1=2C�

� .kr�.1��/=22j�Pjutk`q
j
L2t;x
C kr�.3��/=22j�Pjuk`q

j
L2t;x

/:
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For the last term in the last inequality, we recall that

kr�.3��/=22j�Pjuk`2
j
L2t;x
' kr�.3��/=2D�ukL2t;x

. kr�.1��/=2D1C�ukL2t;x

' kr�.1��/=2D�
rukL2t;x

in the case of q D 2 and � 2 Œ0; 1�, which follows directly from the weighted Hardy–
Littlewood–Sobolev inequality. The general result for q with non-endpoint � 2 .0; 1/
follows then by real interpolation, that is, we have

kr�.3��/=22j�Pjuk`q
j
L2t;x
. kr�.1��/=22j�Pjruk`q

j
L2t;x

:

In conclusion, we have proved that, for q D 2, � 2 Œ0; 1� or q D 1, � D 1=2,

kr .1��/=22j�PjF.u/k`q
j
L2t;x
� C.a; k@uk

L1t
PB
1=2
2;1

/T �=2k@D�ukXT;qk@ukL1t PH1=2C�
;

(4.13)
from which we get

k@D�umkXT;q � 2C1k.ru
.jm/
0 ; u

.jm/
1 /k PB�

2;q

provided that T � min.ı1; T0/ where T0 is given in (4.9) with possibly smaller c D
c.g; a; b; "c/ > 0 such that 4C 21C.a; 2C1"c/T

� � 1. This completes the proof by induc-
tion.

To prove convergence of the approximate solutions when s < 2, we will also require
bounds for the solutions in a Sobolev space of negative order.

Lemma 4.2. Under the same assumption as in Lemma 4.1, let .u0; u1/ 2 H s
rad.R

3/ �

.H s�1
rad \

PH
s0�1
rad /.R3/ with s0 2 Œ2� s; s � 1�. Then there exist c D c.g; a; b; "c/ 2 .0; 1/

and C > 0 such that for any � 2 Œs0; s � 1�, we have

kD��1@ukkXT � C"� C CT
�"�C1"s�1; 8k � 2; (4.14)

provided that
T � min.ı1; c"�1=�s /: (4.15)

In particular, with � D s � 1, we have

k@ukkL1 PH s�2 � kD
s�2@ukkXT � 2Ck.ru0; u1/k PH s�2 : (4.16)

Proof. As in the proof of Lemma 4.1, we proceed by induction. First, the result is trivial
for k D 2. Then we make the inductive assumption that for somem� 3, (4.14) is satisfied
by uk for any 2 � k � m � 1.

To apply Proposition 3.7, we write equation (4.4) of uk in the equivalent divergence
form for .t; x/ 2 .0; T / �R3:´

�uk Cr � .g.uk�1/ruk/ D r.g.uk�1// � ruk C F.uk�1/;
uk.0; �/ D u

.jk/
0 ; @tuk.0; �/ D u

.jk/
1 :

(4.17)
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From (4.7) and (4.8) in the proof of Lemma 4.1, we see that (3.24) is satisfied and we can
apply Proposition 3.7 to obtain, for � 2 Œ1=2 � �; 1=2C ��,

kD��@ukkXT

. k@uk.0/k PH�� C T
�
kg.uk�1/kL1t PH1=2C�

k@uk.0/k PH1��

C T �=2kr .1��/=2D�� .r.g.uk�1// � ruk/kL2t;x
C T �=2kr .1��/=2D��F.uk�1/kL2t;x

. k@uk.0/k PH�� C C.g; kuk�1kL1/T
�
kuk�1kL1t PH1=2C�

k@uk.0/k PH1��

C T �kD��@.uk ; uk�1/kXT
�r.g.uk�1//; .a.uk�1/; b.uk�1//@uk�1�L1t PH1=2C� ;

where, in the last inequality, we have used Proposition 2.6 and fractional chain rule based
on the fact that g.0/ D 0. To control the last term, as r.g.uk�1// D g0.uk�1/ruk�1, we
see that all terms are of the form of f .u/@u, for which we can use the classical fractional
Leibniz rule and chain rule to conclude that

kf .u/@uk PH1=2C� . jf .0/j k@uk PH1=2C� C k Qf .u/kL1k@uk PH1=2C�
C k Qf .u/k PW 1=2C�;6k@ukL3

. C.f; kuk PB1=2
2;1

/k@uk PH1=2C� ; (4.18)

where Qf .u/ D f .u/ � f .0/.
In view of the boundedness (4.5) and (4.6), for � 2 Œ1=2 � �; 1=2C �� we see that

kD��@ukkXT �
C

2
"1�� C C.g; a; b; "c/T

�"s
�
"2�� C kD

��@.uk ; uk�1/kXT
�
:

Thus, for T satisfying (4.15) with sufficiently small c, by the inductive assumption we get

kD��@ukkXT � C"1�� C C.g; a; b; "c/T
�"s�1"2�� ;

which completes the proof.

4.3. Convergence in C PH s0
rad

In this subsection, we show that the approximate solutions are convergent in the weaker
topology C PH s0 , so that the desired solution of the quasilinear problem is given by the
limit.

Lemma 4.3. Under the same assumption as in Lemma 4.1, let .u0;u1/ 2H s
rad � .H

s�1
rad \

PH
s0�1
rad /with s0 2 Œ2� s; s � 1�, and ¹ukºk�2 be the approximate solutions defined in (4.4),

or equivalently (4.17), which satisfy the bounds (4.5), (4.6) and (4.14) for any k � 2. Then
there exists c D c.g; a; b; "c/ 2 .0; 1/ such that for any T with

T � min.ı1; c."s C "s�1/�1=�/; (4.19)
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¹ukº is a Cauchy sequence in C.Œ0; T �I PH s0/ \ C 0;1.Œ0; T �I PH s0�1/ withX
k�3

kDs0�1@.ukC1 � uk/kXT . "s0 C "s0C1 C
X
k�3

k@.ukC1 � uk/.0/k PH s0�1\ PH s0 :

(4.20)
Here the right hand side is bounded because of (4.2)–(4.3).

Proof. If we set wk D ukC1 � uk then wk satisfies

�wk Cr � .g.uk/rwk/ D r � ..g.uk�1/ � g.uk//ruk/
Cr.g.uk// � rukC1 � r.g.uk�1// � ruk C F.uk/ � F.uk�1/ DW G:

As we see from the proof of Lemma 4.1, (3.4) is satisfied for h D g.uk/ and we can
apply Proposition 3.7 with � � 1=2 � � D 2 � s to obtain

kD��@wkkXT . k@wk.0/k PH�� C T
�
kg.uk/kL1t PH s�1

k@wk.0/k PH1�� C kD
��GkX�

T
:

(4.21)
For the term involving g.uk/, we know from Theorem 2.3, g.0/D 0, (4.6) and (4.16) that

kg.uk/kL1t PH s�1
� C.g; "c/kukkL1t PH s�1

. k.ru0; u1/k PH s�2 D "s�1: (4.22)

The main part of the proof is to deal with G. We will write it as a combination of
favorable terms and deal with each term separately. For this purpose, we denote G1 D
r � ..g.uk�1/ � g.uk//ruk/ and G2 D F.uk/ � F.uk�1/. Then

G �G1 �G2 D g
0.uk/ruk � rukC1 � g

0.uk�1/ruk�1 � ruk

D g0.uk/ruk � rwk C g
0.uk/rwk�1 � ruk C .g

0.uk/ � g
0.uk�1//ruk�1 � ruk

DW G3 CG4 CG5:

For Gj with j � 2, we observe that they fall into the following two categories:

QG2 D .f .uk/ � f .uk�1//@.uk�1; uk/@.uk�1; uk/;

QG3 D f .uk/@.uk�1; uk/@.wk�1; wk/:

For all these terms, we claim that for any � 2 Œ2 � s; s � 1�,

kD��GkX�
T
� C.g; a; b; "c/T

�"skD
��@.wk�1; wk/kXT : (4.23)

Before presenting the proof of (4.23), we apply it to prove (4.20). Actually, by (4.21)
and (4.22), we have

kD��@wkkXT . k@wk.0/k PH�� CT
�"s�1k@wk.0/k PH1�� CT

�"skD
��@.wk�1;wk/kXT

for any � 2 Œ2 � s; s � 1�, where the implicit constant may depend on g; a; b; "c . Let
� D 1 � s0. Then for any T satisfying (4.19) with sufficiently small c, we have

kDs0�1@wkkXT � C.k@wk.0/k PH s0�1 C k@wk.0/k PH s0 /C
1
4
kDs0�1@.wk�1; wk/kXT ;
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and so

kDs0�1@wkkXT � 2C.k@wk.0/k PH s0�1 C k@wk.0/k PH s0 /C
1
2
kDs0�1@wk�1kXT

for any k � 3. However, recalling that w2 D u3 � u2 D u3, we know from (4.14) and
(4.19) that

kDs0�1@w2kXT � C."s0 C T
�"s0C1"s�1/ � C."s0 C "s0C1/:

Thus an iteration argument shows that
P
kDs0�1@wkkXT is convergent and we have

(4.20). Actually, for any j 2 Œ3;1/, for a finite summation from 3 to j , we have

jX
kD3

kDs0�1@wkkXT � 2C

jX
kD3

k@wk.0/k PH s0�1\ PH s0 C

j�1X
kD2

1

2
kDs0�1@wkkXT ;

and so
jX
kD3

kDs0�1@wkkXT � 4C

jX
kD3

k@wk.0/k PH s0�1\ PH s0 C kD
s0�1@w2kXT

� 4C

jX
kD3

k@wk.0/k PH s0�1\ PH s0 C C."s0 C "s0C1/:

Letting j go to1, we obtain (4.20).
It remains to prove (4.23), for which we separately handle three terms,G1, QG2 and QG3.

(i) First term: G1 D r � ..g.uk�1/ � g.uk//ruk/. We see that

kD��G1kX�
T
� T �=2kr .1��/=2D��G1kL2t;x

. T �=2kr .1��/=2D1�� ..g.uk�1/ � g.uk//ruk/kL2t;x

. T �=2kr�.1��/=2D1�� .g.uk�1/ � g.uk//kL2t;x
krukkL1t PH s�1

where, as � 2 Œ2� s; s�, in the last inequality we have used Proposition 2.6 with j1� � j �
s � 1. To control the term involving g.uk�1/ � g.uk/, we observe that

g.u/ � g.v/ D

Z 1

0

g0.v C �.u � v//.u � v/ d�

and so

kr�.1��/=2D1�� .g0.v C �.u � v//.u � v//kL2t;x

. kr�.1��/=2D1�� .u � v/kL2t;x
kg0.v C �.u � v//kL1t;x

C kr�.1��/=2.u � v/k
L2tL

6=.1C2�/
x

kD1��g0.v C �.u � v//k
L1t L

3=.1��/
x

. kg0.v C �.u � v//k
L1t

PW
1��;3=.1��/
x \L1t;x

kr�.1��/=2D1�� .u � v/kL2t;x

. C.g; k.u; v/k
L1t

PB
3=2
2;1

/T �=2kD1�� .u � v/kXT ;
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where we have used Theorem 2.4 and (2.5) in the first and second inequalities, for � 2
Œ0; 1�. In summary, we have proved that

kr�.1��/=2D1�� .g.u/ � g.v//kL2t;x
� C.g; k.u; v/k

L1t
PB
3=2
2;1

/T �=2kD1�� .u � v/kXT ;

(4.24)
which gives

kD��G1kX�
T
� C.g; "c/T

�
kD1��wk�1kXT krukkL1t PH s�1

: (4.25)

(ii) Second category of terms: QG2. Recall that

QG2 D .f .uk/ � f .uk�1//@.uk�1; uk/@.uk�1; uk/:

Let us present the proof for the typical term QG2 D .f .uk/ � f .uk�1//@y@z, for which
we know that, as � 2 Œ0; s � 1�, kD�� QG2kX�

T
is bounded by

T �=2kr�.1��/=2D�� ..f .uk/ � f .uk�1//@y/kL2t;x
k@zkL1 PH s�1

. T �=2kr�.1��/=2C� ..f .uk/ � f .uk�1//@y/kL2t;xk@zkL1 PH s�1

. T �=2kr�.1��/=2�1C� .f .uk/ � f .uk�1//kL2t;xkr@ykL1t;xk@zkL1 PH s�1

. C.f; k.uk�1; uk/kL1t;x /T
�=2
kr�.1��/=2�1C�wk�1kL2t;x

k@yk
L1t

PB
1=2
2;1

k@zkL1 PH s�1

. C.f; k.uk�1; uk/kL1t;x /T
�=2
kr�.1��/=2D1��wk�1kL2t;x

k@yk
L1t

PB
1=2
2;1

k@zkL1 PH s�1 :

That is, we have

kD�� QG2kX�
T
� C.f; "c/T

�
kD1��wk�1kXT k@.uk ; uk�1/kL1t PH s�1

: (4.26)

(iii) Third category of terms: QG3 D f .uk/@.uk�1; uk/@.wk�1; wk/. In this case, with
the help of Proposition 2.6, we see that kD�� QG3kX�

T
is bounded by

T �=2kr�.1��/=2D��@.wk�1; wk/kL2t;x
kf .uk/@.uk�1; uk/kL1 PH s�1 :

Similar to the proof of (4.18) in Lemma 4.2, we find that

kf .uk/@.uk�1; uk/kL1t PH s�1
. C.f; k@.uk�1; uk/kL1t PB1=22;1

/k@.uk�1; uk/kL1t PH s�1
;

and so

kD�� QG3kX�
T
� C.f; "c/T

�
kD��@.wk�1; wk/kXT k@.uk ; uk�1/kL1t PH s�1

: (4.27)

In summary, in view of (4.25)–(4.27), as well as the uniform bounds (4.5) and (4.6),
we have completed the proof of (4.23) and Lemma 4.3.

4.4. Local well-posedness in H s

Equipped with Lemmas 4.1–4.3, we are ready to prove the (unconditional) local well-
posedness.
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Lemma 4.4. Let n D 3, s D 3=2C � 2 .3=2; 2� and s0 2 Œ2 � s; s � 1�. Consider the
initial value problem (1.1)–(1.2) with .u0;u1/2H s

rad � .H
s�1
rad \

PH
s0�1
rad /. Then, for any T

satisfying (4.19), there exists a unique weak solution

u 2 L1t H
s
rad \ C

0;1
t H s�1

rad \ Ct
PH s0 \ C

0;1
t
PH s0�1 (4.28)

in Œ0; T � � R3. Moreover, there exists C2 > 0 such that @u 2 C.Œ0; T �I PH ��1/ for any
� 2 Œs0; s/, and

k@ukL1 PH� � k@D
�ukXT � C2k.ru0; u1/k PH� ; 8� 2 Œ0; s � 1�; (4.29)

k@uk
L1t

PB
1=2
2;1

� k@D1=2ukXT;1 � C2k.ru0; u1/k PB1=2
2;1

; (4.30)

k@ukL1 PH��1 � kD
��1@ukXT � C2."� C "s�1/; 8� 2 Œs0; s � 1�: (4.31)

Proof. By Lemmas 4.1 and 4.2, the approximate solutions uk are well-defined and satisfy
the bounds (4.5), (4.6) and (4.14). Moreover, Lemma 4.3 tells us that ¹ukº is a Cauchy
sequence in the space C.Œ0; T �I PH s0/ \ C 0;1.Œ0; T �I PH s0�1/; we denote its limit by
u 2 C.Œ0; T �I PH s0/ \ C 0;1.Œ0; T �I PH s0�1/. By Helly’s selection theorem, a subsequence
of ¹ukº is weak star convergent to u in L1.Œ0; T �I PH s

rad/ \ C
0;1.Œ0; T �I PH s�1

rad /, prov-
ing (4.28). Then @uk converges to @u inC.Œ0;T �I PH ��1/ for any � 2 Œs0; s/, which follows
directly, by interpolation, from the boundedness for � D s and continuity for � D s0. Con-
sequently, in view of the definition (4.4) of uk , u is the desired weak solution for the initial
value problem (1.1)–(1.2), and satisfies the bounds (4.29)–(4.31).

It remains to prove unconditional uniqueness. Suppose there is a solution

v 2 L1t H
s
rad \ C

0;1
t H s�1

rad \ Ct
PH s0 ; @tv 2 Ct PH

s0�1; (4.32)

in Œ0; T1� � R3 for the initial value problem (1.1)–(1.2), for some T1 2 .0; T �. The key
observation here is that by (4.32), we have

Ds0�1@v 2 L1H 1;

and so by Hardy’s inequality,

kr�.1��/=2Ds0�1@vkL2.Œ0;T2��R3/ .T kDs0�1@vkL1.Œ0;T2�I PH .1��/=2/

. kDs0�1@vkL1.Œ0;T2�IH1/

for any T2 2 .0; T1�. In other words, Ds0�1@v 2 XT2 for any T2 2 .0; T1�.
As in the proof of Lemma 4.3, we set w D u� v withDs0�1@w 2 XT2 , and write the

equation for w as

� @2tw C�w Cr � .g.u/rw/ D r � ..g.v/ � g.u//rv/

Cr.g.u// � ru � r.g.v// � rv C F.u/ � F.v/ DW G.u;w/;

together with w.0; x/ D 0, @tw.0; x/ D 0.
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As u is constructed as the limit of uk , we can apply Proposition 3.7 with � D 1 � s0
to the wave operator �@2t C�Cr � g.u/r. That is, we have

kDs0�1@wkXT . kD
s0�1GkX�

T
: (4.33)

With the help of (4.33), applied to w D u � v, together with a similar proof to that for
(4.25)–(4.27), we get

kDs0�1@wkXT . kD
s0�1G.u;w/kX�

T

. C.g; a; b; k@.u; v/k
L1
T1
PB
1=2
2;1

/T �kDs0�1@wkXT k@.u; v/kL1
T1
PH s�1

. T �kDs0�1@wkXT :

Thus, for T2 2 .0; T1� sufficiently small, we see that kDs0�1@wkXT2 D 0 and so w � 0 in
Œ0; T2� � R3, in view of w.0; x/ D 0. After a simple iteration argument, this proves that
u � v in Œ0; T1� �R3, which completes the proof of unconditional uniqueness.

5. High-dimensional well-posedness

Let n � 4, s D n=2C � with � as in (1.4), and "s , "c be as in (1.7). In this section, we
prove the existence and uniqueness part of Theorem 1.3, following a similar approach to
Section 4.

5.1. Approximate solutions

As in Section 4.1, we can construct a sequence of spherically symmetric, compactly sup-
ported, smooth functions .u.k/0 ; u

.k/
1 /! .u0; u1/ in H s

rad �H
s�1
rad such that

k.ru
.k/
0 ; u

.k/
1 /k PB�

2;q
� C�;qk.ru0; u1/k PB�

2;q
; 8� 2 R; q 2 Œ1;1�; (5.1)

kru
.k/
0 � ru

.kC1/
0 kH srad.R

n/ C ku
.k/
1 � u

.kC1/
1 kH s�1rad .Rn/ � 2

�k : (5.2)

Let F.u/ D a.u/u2t C b.u/jruj
2, u2 � 0 and define uk (k � 3) recursively by solving´

�uk C g.uk�1/�uk D F.uk�1/; .t; x/ 2 .0; T / �Rn;

uk.0; �/ D u
.k/
0 ; @tuk.0; �/ D u

.k/
1 :

(5.3)

5.2. Uniform boundedness of uk

Let C be the implicit constant in the estimates of Proposition 3.9. We claim that we have
uniform bounds

kQ@D�ukkXT � 2CkD
� .ru0; u1/kL2 ; � 2 Œ0; s � 1�; (5.4)

k@Dn=2�1ukkXT;1 � 2Ck.ru0; u1/k PBn=2�1
2;1

; (5.5)
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for any T > 0 satisfying
T �f .C"c/"s � c (5.6)

for some increasing function f and constants c � 1� C .
We prove the bounds by induction. They are trivially true when k D 2. Assuming that

for some m � 2, they are true for any k � m, for h D g.um/ we have

T �k@hkL1t PHn=2�1C�
� C."c/T

�"s � ı; (5.7)

and so the requirement (3.32) of Proposition 3.9 is satisfied.
From Proposition 3.9, we know that

kQ@D�umC1kXT � CkD
� .ru0; u1/kL2 C CkD

�F.um/kX�
T
; � 2

�
0; Œn=2�

�
;

k@Dn=2�1umC1kXT;1 � Ck.ru0; u1/k PBn=2�1
2;1

C CT �=2kr .1��/=22j.n=2�1/PjF.um/k`1
j
L2t;x

:

To control the nonlinear term, we apply Proposition 2.6 to obtain, for a sample term
F.u/ D a.u/u2t ,

kD�F.u/kX�
T
. T �=2kr�.1��/=2D�@ukL2t;x

ka.u/@ukL1t PH s�1

. T �kQ@D�ukXT Qa.kukL1 PBn=2
2;1

/k@ukL1t PH s�1

whenever � 2 Œ0; s � 1�, where, since s � 1< n=2, we have used the following well-known
consequence of the fractional Leibniz rule and chain rule:

k.a.u/ � a.0//vk PH s�1 . ka.u/ � a.0/k PBn=2
2;1

kvk PH s�1 . C.kukL1/kuk PBn=2
2;1

kvk PH s�1 :

Similarly, by (2.25), we have

kr .1��/=22j.n=2�1/PjF.u/k`1
j
L2t;x
. kr�.1��/=22j.n=2�1/Pj @uk`1

j
L2t;x
ka.u/@ukL1t PH s�1

.T �=2k@Dn=2�1ukXT;1 Qa.kukL1 PBn=2
2;1

/k@ukL1t PH s�1
:

From the induction assumption and (5.6), we get (5.4) and (5.5) for k D mC 1 if we set
c > 0 to be sufficiently small. This completes the proof by induction.

5.3. Convergence in C PH 1 \ C 0;1L2

Let wk D ukC1 � uk . Then

�wk C g.uk/�wk D .g.uk�1/ � g.uk//�uk C F.uk/ � F.uk�1/:

Thus, by Theorem 3.1,

k@wkkXT . k@wk.0/kL2 C k.g.uk�1/ � g.uk//�ukkX�T C kF.uk/ � F.uk�1/kX�T :
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Notice that k.g.uk�1/ � g.uk//�ukkX�
T

is controlled by

T �=2C."c/kr
n=2�1wk�1kL1kr

�.1��/=2�.n=2�2C�/�ukkL2

. T �=2C."c/k@wk�1kL1L2kr�.1��/=2DsukkL2 . T �"sC."c/k@wk�1kXT :

Similarly, for the sample term F.u/ D a.u/u2t , we have

kF.uk/ � F.uk�1/kX�
T

. T �=2krn=2�1.a.uk/ � a.uk�1//kL1kr@ukkL1kr .1��/=2�n=2@ukkL2

C C1."c/T
�=2
kr1��@.uk�1; uk/kL1kr

�.1��/=2@wk�1kL2

. T �"s QC."c/k@wk�1kXT :

By letting c in (5.6) be even smaller, we can conclude that

k@wkkXT � Ck@wk.0/kL2 C
1
2
k@wk�1kXT ;

which yields convergence in C PH 1 \ C 0;1L2, thanks to (5.2).

5.4. Local well-posedness

Let u 2 CH 1 \ C 0;1L2 be the limit of uk . By weak star compactness, we have @u 2
L1H s�1 and @uk is convergent to @u in C.Œ0; T �I PH ��1/ for any � 2 Œ1; s/. Then, in
view of the definition (5.3) of uk , it is clear that u is a weak solution for the initial value
problem (1.1)–(1.2).

Unconditional uniqueness follows from a similar argument to that in Lemma 4.4, and
we omit the proof.

6. Persistence of regularity

In this section, we show persistence of regularity for weak solutions when the initial data
have higher regularity, as well as continuous dependence on the data.

In Sections 4 and 5, for data inH s �H s�1, with additional requirement in PH s0�1 for
initial velocity when n D 3, we have constructed solutions in H s where

s 2

´
.n=2; .nC 1/=2�; n odd;

.n=2; .nC 2/=2/; n even:

Recall that the classical energy argument shows local well-posedness in H s1 for any
s1 > n=2C 1, together with persistence of higher regularity. Keeping this fact in mind,
we need only prove persistence of regularity in H s1 with s1 D Œ.nC 4/=2�.
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6.1. Persistence of regularity: a weaker version

First, we prove a weaker version of persistence of regularity, when the data has slightly
better regularity s2 D n=2C �2, .u0; u1/ 2 PH s2 � PH s2�1, with

�2 2

´
.�; 1=2�; n odd;

.�; .�C 1/=2/; n even;

where � D s � n=2.
Fixing T < T�, we have a uniform bound on k@uk

L1t
PH s�1\L1t

PB
n=2�1
2;1

.Œ0;T ��Rn/
. With

ı3 > 0 to be determined, by dividing Œ0; T � into finitely many small, disjoint, adjacent
intervals Ij , we have jIj j�k@ukL1t PH s�1.Ij�Rn/ � ı3, so that

jIj j
�
k@g.u/kL1t PH s�1.Ij�Rn/ � ı (6.1)

for each Ij D ŒTj ; TjC1�, with �Tj D jIj j, where ı is as in (3.32) of Proposition 3.9.
In addition, possibly shrinking Ij , we can apply the iteration argument in Ij to obtain a
uniform bound in H s for data .u.Tj /; @tu.Tj // at t D Tj .

By recasting the iteration argument for local well-posedness on Ij we obtain, for the
iterative C1 sequence uk on Ij ,

k@ukkL1t PH s�1.Ij�Rn/ � Cj k@u.Tj /k PH s�1 ; k@ukkL1t PB
n=2�1
2;1

� Cj k@u.Tj /k PBn=2�1
2;1

;

lim
k!1

k@.uk � u/kL1t L2.Ij�Rn/ D 0:

Reasoning by induction on j , assume that

k@uk.Tj /k PH s2�1 � Ck@u.Tj /k PH s2�1 �
QCj k@u.0/k PH s2�1 : (6.2)

Applying Proposition 3.9 with � D s2 � 1, we have

kD�ukC1kfLEIj ;� WD kQ@D�ukC1kX�Tj .Ij /
. k@u.Tj /k PH� C kD

�F.uk/kX�
�Tj

.Ij /
:

(6.3)
For the nonlinear term, we have

Lemma 6.1. Let n be odd or �2 < .�C 1/=2, and F.u/ D a.u/u2t C b.u/jruj
2. Then

for radial functions u,

kDs2�1F.u/kX�
�Tj

.Ij /
. C.k@uk

L1t
PB
n=2�1
2;1

/jIj j
�
kDs2�1ukfLEIj ;�k@ukL1t PH s�1 :

(6.4)

Proof. As in (4.12), without loss of generality, we deal with F1.u/ and F2.u/ D u2t . For
F2.u/ D u

2
t , we have

kr .1��/=2D�F2.u/kL2t;x
. kr�.1��/=2D�utkL2t;x

kr1��utkL1t;x

. jIj j�=2kD�ukfLEIj ;�k@ukL1t PHn=2�1C�
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by Theorem 2.4 and (2.1). Concerning the other term F1.u/D Qa.u/u
2
t D Qa.u/F2.u/, with

Qa.0/ D 0, from Theorem 2.4 we get

kr .1��/=2D�F1.u/kL2t;x

. k Qa.u/kL1t;xkr
.1��/=2D�F2.u/kL2t;x

C kr�.3��/=2D�
Qa.u/kL2t;x

kr2��F2.u/kL1t;x

. kr1��@ukL1t;x
� .kr�.1��/=2D�@ukL2t;x

C.kukL1t;x /C kr
�.3��/=2D�

Qa.u/kL2t;x
kr@ukL1t;x /

. QC.k@uk
L1t

PB
n=2�1
2;1

/jIj j
.�/=2
kD�ukfLEIj ;�k@ukL1t PHn=2�1C� ;

where we have used Theorem 2.3 with � D s2 � 1 2 .0; 1�when nD 3, in the last inequal-
ity.

For odd n � 5 , the inequality still holds for �2 < 1=2. Actually, as � D s2 � 1 with
k D Œ� � D .n � 3/=2 � 1, with ˛ D �.3 � �/=2 we see that

˛ < n=2; k � ˛ < n=2;

and so we apply Proposition 2.8, together with Lemma 2.1, to obtain

kr�.3��/=2D�
Qa.u/kL2t;x

. C
�

max
j�k
krjrjukL1t;x

�
kr�.3��/=2D�ukL2t;x

. C.k@uk
L1t

PB
n=2�1
2;1

/kr�.3��/=2D�ukL2t;x
: (6.5)

Alternatively, when �2 D 1=2 and so � D .n � 1/=2 � 2, we can estimate directly as
follows:

kr�.3��/=2D�
Qa.u/kL2t;x

.
X

j
P
ˇl jD�; jˇ1j�j ǰ j�1

r�.3��/=2 jY
lD1

r
ˇlu


L2t;x

.
X

1�jˇ1j��

kr�.3��/=2Cjˇ1j��rˇ1ukL2t;x

jY
lD2

kr jˇl jrˇlukL1t;x

. C.k@uk
L1t

PB
n=2�1
2;1

/kr�.3��/=2D�ukL2t;x
:

For n even, we have k D Œ� �D .n� 2/=2, � D � � k and n=2 < k � ˛ < n=2C 1. Let
q; p 2 .2;1/ be such that 1=q C 1=p D 1=2. A similar argument to that for Proposition
2.8 gives the desired bound, except the following term:X

j
P
ˇl jDk; jˇl j�1

kr��n=qD� . Qa.j /.u/ � Qa.j /.0//kLqx

r˛��Cn=q jY
lD1

r
ˇlu


L
p
x

:

As �n < �q � n < n.q � 1/, we have r�q�n 2 Aq and so

kr��n=qD� . Qa.j /.u/ � Qa.j /.0//kLqx . C.k@uk PBn=2�12;1

/kr��n=qD�ukLqx

. C.k@uk PBn=2�1
2;1

/kuk PBn=2
2;1

;
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where we have used Theorem 2.3 and Lemma 2.1. For the other term, we let p be suffi-
ciently close to 2 such that � � ˇ1 2 .1=2 � 1=p; n=2/. Because of the assumption that
˛ � �2 C 2 D .�C 1/=2 � �2 > 0, we also have

˛ < n=2; ˛ � .� � jˇ1j/ > �n=2;

and thus we can apply (2.5) to obtainr˛��Cn=q jY
lD1

r
ˇlu


L
p
x

� kr˛��Cn=qCjˇ1jrˇ1ukLpx

rk�jˇ1j jY
lD2

r
ˇlu


L1x

. kr˛D�ukL2kuk
j�1

PB
n=2
2;1

:

Thus, we still have (6.5), which completes the proof.

In view of (6.3) and Lemma 6.1, we have

kDs2�1ukC1kfLEIj ;� . k@u.Tj /k PH s2�1 C jIj j�kDs2�1ukkfLEIj ;�k@ukkL1t PH s�1
for any k � 2. Then, with ı3 > 0 sufficiently small, we deduce a uniform bound

kDs2�1ukC1kfLEIj ;� . k@u.Tj /k PH s2�1
for any k � 2, which, combined with the induction assumption (6.2), gives us the desired
bound

kDs2�1ukfLEIj ;� . k@u.Tj /k PH s2�1 . k@u.0/k PH s2�1 :
As (6.2) is trivial when Tj D 0, by induction (6.2) holds for any j and thus

kDs2�1ukfLET;� . k@u.0/k PH s2�1 :
This completes the proof of @u 2 L1t PH

s2�1.Œ0; T � � Rn/. As it is true for any T < T�,
we see that @u 2 L1loc

PH s2�1.Œ0; T�/ �Rn/.
Note also that for n even, the result can be iterated to show that for any s22.s;n=2C1/,

we have persistence of regularity.

6.2. Persistence of regularity for n odd

Now we prove persistence of regularity to H s1 with s1 D Œ.nC 4/=2�. Let us begin with
the case of n odd, when s1 D .nC 3/=2.

As we see from Section 6.1, we can assume we have an H k solution, where k D
.nC 1/=2 D Œ.nC 2/=2� and � D 1=2. Also, it suffices to prove

k@ukL1 PHk.Œ0;T ��Rn/ . 1C k@u.0/k PHk (6.6)
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for any T such that

T 1=2krkukXT . T
1=2
kDk�1ukfLET;1=2 � 1;

kukL1t Hk.Œ0;T ��Rn/ C k@tukL1t Hk�1.Œ0;T ��Rn/ . 1:

For simplicity, we will just illustrate the proof for solutions, rather than approximate solu-
tions.

By (3.33), we have

kQ@rkukXT . k@u.0/k PHk C kr
kF kX�

T
C T 1=2krkukXT kg.u/kL1t PHkC1

: (6.7)

The classical Schauder estimates yield

kg.u/kL1t HkC1
. C.g; kukL1/kukL1t HkC1 ;

which shows that the last term on the right of (6.7) is admissible.
Then, to finish the proof of (6.6), we need only prove a nonlinear estimate for the

nonlinear term krkF kX�
T

, which is provided by the following

Lemma 6.2. Let n be odd and k D .n C 1/=2, and let F.u/ D a.u/u2t C b.u/jruj
2.

Then for radial functions u,

kr1=4rkF.u/kL2t;x
. C.k@ukL1t Hk�1/kr

�1=4
r
k@ukL2k@ukL1t Hk�1

: (6.8)

Proof. First, when there are no derivatives acting on a.u/ or b.u/, we need only control

kr1=4rk.@u/2kL2t;x
. kr�1=4rk@ukL2t;xkr

1=2@ukL1t;x

. kr�1=4rk@ukL2t;xk@ukL1t PHk�1 ;

by Theorem 2.4 and (2.1).
For the remaining case, thanks to the uniform boundedness of u, we are reduced to

controling r1=4 lY
jD1

r j̨ @u

L2x

where l � 3 and
P
j j̨ j D k C 2 � l . Without loss of generality, we assume j j̨ j is non-

increasing. Notice then that

k C 2 � l D
X
j j̨ j � 2j˛2j; so j˛2j �

n � 1

4
; so j˛2j �

n � 3

2
;

where we have used the fact that j˛2j must be an integer. Then we see from (2.1) that

kr j j̨ jC1=2r j̨ @ukL1t;x C kr
j j̨ jC1r j̨ @ukL1t;x . k@ukL1t Hk�1

for any j � 2.



Sharp local well-posedness for quasilinear wave equations 4503

When j˛1j � 1, we have �1=4 � k C j˛1j > �n=2, and

kr1=4
lY

jD1

r j̨ @ukL2x . kr
1=4C1=2�

P
j�2.j j̨ jC1/r

˛1@ukL2

�

r1=2Cj˛2jr˛2@ukL1 lY
jD3

kr1Cj j̨ jr j̨ @u

L1

. k@ukl�1
L1t H

k�1kr
�1=4�kCj˛1jr

˛1@ukL2

. k@ukl�1
L1t H

k�1kr
�1=4
r
k@ukL2 ;

by (2.9), while for j˛1j D 0, we have l D k C 2, j j̨ j D 0, and

r1=4 lY
jD1

r j̨ @u

L2x
.
r1=4 kC2Y

jD1

@u

L2x

. k@ukkC1
L1t H

k�1kr
1=4�.kC1/=2

hri�.kC1/=2@ukL2

. k@ukkC1
L1t H

k�1kr
1=4�k@ukL2

. k@ukkC1
L1t H

k�1kr
�1=4Dk@ukL2 :

This completes the proof.

6.3. Persistence of regularity for n even

When n is even, we use a similar argument. Here s1 D Œ.n C 4/=2� D n=2 C 2, k D
n=2C 1 and � 2 .1=2; 1/. We need only prove

k@ukL1 PHk.Œ0;T ��Rn/ . 1C k@u.0/k PHk ; (6.9)

for any T � 1 such that

T �kDn=2�1C�@ukXT � 1; k.u; @u/kL1Hn=2�1C� C k@ukXT . 1:

By (3.34), we have

kQ@rkukXT . k@u.0/k PHk C kr
kF kX�

T
C T �kg.u/kL1t PHkC1

kDn=2C�ukXT ; (6.10)

where, as before, the last term is admissible, thanks to Schauder estimates.
As for the nonlinear term, we have the following estimate, which is sufficient to con-

clude the proof of (6.9).

Lemma 6.3. Let n� 4 be even, kD n=2C 1,�D 2=3, andF.u/D a.u/u2t C b.u/jruj
2.

Then for radial functions u,

kr
kF kX�

T
. C.k@ukL1t Hn=2�1C�/T

�.k@ukXT C kD
k@ukXT /k@ukL1t Hn=2�1C�

:

(6.11)
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Proof. The proof is similar to that of Lemma 6.2. First, when there are no derivatives
acting on a.u/ or b.u/, we need only control

kr
k.@u/2kX�

T
. T �=2kr�.1��/=2rk@ukL2t;xkr

1��@ukL1t;x

. T �krk@ukXT k@ukL1t PHn=2�1C� ;

by Theorem 2.4 and (2.1).
For the remaining case, thanks to the uniform boundedness of u, we are reduced to

controling r .1��/=2 lY
jD1

r j̨ @u

L2x

where l � 3,
P
j j̨ j D k C 2 � l and j j̨ j is nonincreasing.

When j˛2j D 0, we see from (2.1) that

kr1��@ukL1t;x . k@ukL1t PHn=2�1C�

for any j � 2. As 3 � l � k C 2, j˛1j D k C 2 � l , k � �.l � 2/ 2 Œ.1 � �/k; k� and
.1 � �/=2 � .l � 1/.1 � �/ > �n=2, we haver .1��/=2 lY

jD1

r j̨ @u

L2x
.
r .1��/=2�.l�1/.1��/r˛1@ukL2x lY

jD2

kr1��@u

L1x

. kr�.1��/=2D.l�2/.1��/
r
˛1@ukL2xk@uk

l�1
PHn=2�1C�

. kr�.1��/=2Dk��.l�2/@ukL2xk@uk
l�1
PHn=2�1C�

:

On the other hand, if j˛1j D j˛2j D 1, as � > 1=2 we have n=2C�� 1� j˛2j> 1=2,
and so

kr j j̨ jC1��r j̨ @ukL1x . k@uk PHn=2�1C�

for any j � 2. Thus

r .1��/=2 lY
jD1

r j̨ @u

L2x

.
r .1��/=2�.1��/.l�1/�.kC2�l�j˛1j/r˛1@u

L2x

lY
jD2

kr j j̨ jC1��r j̨ @ukL1x

. kr�.1��/=2C�.l�2/�n=2r@ukL2xk@uk
l�1
PHn=2�1C�

. kr�.1��/=2Dk��.l�2/@ukL2xk@uk
l�1
PHn=2�1C�

;

where in the last inequality we have used the fact that �.l � 2/ � � > .1� �/=2, thanks
to � 2 .1=2; 1/, so that we can apply (2.9).

It remains to consider the case j˛1j � 2. Then

�.1 � �/=2 � .k � j˛1j/ > �n=2;
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and so
kr�.1��/=2�.k�j˛1j/r˛1@ukL2x . kr

�.1��/=2
r
k@ukL2x :

Also, noticing that

j˛2j � k C 2 � l � j˛1j � k C 2 � 3 � 2 D n=2 � 2;

we see from (2.1) that

kr j˛2jC1��r˛2@ukL1x . k@uk PHn=2�1C� ; kr
j j̨ jC1r j̨ @ukL1x . k@uk PHn=2�1

for any j � 3. Thus

r .1��/=2 lY
jD1

r j̨ @u

L2x

. kr�.1��/=2�.k�j˛1j/r˛1@ukL2xkr
j˛2jC1��r

˛2@ukL1x

lY
jD3

kr j j̨ jC1r j̨ @ukL1x

. kr�.1��/=2rk@ukL2xk@uk PHn=2�1C�k@uk
l�2
PHn=2�1

. kr�.1��/=2Dk@ukL2xk@uk
l�1
Hn=2�1C�

:

This completes the proof.

6.4. Continuous dependence

The continuous dependence property is essentially included in the proofs of convergence
of the approximate solutions (Lemma 4.3), and unconditional uniqueness.

Let T� > 0 be the lifespan of the solution u with data .u0; u1/. Fix T < T� and s1 2
.sc ; s/. We have a uniform bound on k@ukL1t H s�1.Œ0;T ��Rn/. When n D 3, as s0 < s � 1,
without loss of generality, we can assume that s0 D s1 � 1 and also that we have a uniform
bound on k@ukL1t PH s1�2 . As the proof for n � 4 is relatively easier, we present only the
proof for n D 3.

6.4.1. Short time continuity. Before proving the full continuous dependence property,
we present a result on short time continuous dependence, from data with regularity �0
to solution with regularity �1, with s � �0 > �1 � s1. Suppose k@u.0/k PH s�1\ PH s1�2 �
M <1 and �0 � �1 � " > 0. We would like to find T > 0with the following property: for
any " > 0, there exists ı."/ > 0 such that whenever k.r.u0 � v0/;u1 � v1/k PH�0�1\ PH s1�2
� ı, the corresponding solution v 2 L1H �0 � C

0;1
t H �0�1 is well-defined in Œ0; T � �R3

and
k@.u � v/kL1. PH�1�1\ PH s1�2/ � ":

Here, T can be chosen to be independent of the specific choices of �0, �1.
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First, by assuming ı� 1, we can always assume k@v.0/k PH�0�1\ PH s1�2 �M C 1<1.
Hence, we find that

."�0 C "�0�1/
�1=.�0�sc/ � .2.M C 1//�1=.s1�sc/ > 0;

and thus, in view of Lemma 4.4 and (4.19), the corresponding solution v 2 L1H �0 �

C
0;1
t H �0�1 \ Ct PH

s1�1 \ C
0;1
t
PH s1�2 is well-defined in Œ0; T4� � R3, together with a

uniform bound in L1 PH �0 � C
0;1
t
PH �0�1, where

T4 WD min.ı4; c.2.M C 1//�1=.s1�sc/; T0/: (6.12)

We need to estimate
k@.u � v/kL1. PH�1�1\ PH s1�2/

in terms of the norm of @.u � v/.0/. For this purpose, we first estimate
k@.u � v/kL1 PH s1�2 . Let w D u � v and �0 D �0 � sc . Then

�w Cr � .g.u/rw/ D r � ..g.v/ � g.u//rv/
Cr.g.u// � ru � r.g.v// � rv C F.u/ � F.v/ DW G.u;w/;

with w.0; x/ D u0 � v0 and @tw.0; x/ D u1 � v1. Noticing that T �0kg.u/kL1t PH�0 . 1,
by Proposition 3.7 and arguing as in Lemma 4.3 we find that for any R 2 .0; T4�,

kDs1�2@wkXR

. k@w.0/k PH s1�2 CR
�0kg.u/kL1

R
PH�0�1k@wj .0/k PH s1�1 C kD

s1�2G.u;w/kX�
R

. k@w.0/k PH s1�2\ PH s1�1
C C.g; a; b; k@.u; v/k

L1
t2Œ0;T �

PB
sc�1
2;1

/R�0kDs1�2@wkXRk@.u; v/kL1
t2Œ0;T �

PH�0�1

. k@w.0/k PH s1�2\ PH s1�1 CR
�0kDs1�2@wkXR ;

where the implicit constant is independent of R 2 .0; T4�. Thus by choosing R small
enough, we obtain

k@wkL1.Œ0;R�I PH s1�2/ . kD
s1�2@wkXR . k@w.0/k PH s1�2\ PH s1�1 :

Iterating this argument finitely many times (� T4=R), we obtain

k@wkL1.Œ0;T4�I PH s1�2/ . k@w.0/k PH s1�2\ PH s1�1 : (6.13)

Combining this with the uniform bounds (like that in Lemma 4.4),

k@wkL1.Œ0;T4�I PH�0�1/ � k@ukL1.Œ0;T4�I PH�0�1/ C k@vkL1.Œ0;T4�I PH�0�1/ � 2C2.M C 1/;

we obtain, for any t 2 Œ0; T4�,

k@w.t/k PH�1�1 � k@w.t/k
1��
PH�0�1

k@w.t/k�
PH s1�2

. k@w.0/k�
PH s1�2\ PH s1�1

; (6.14)

where �0.1 � �/C .s1 � 1/� D �1.
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6.4.2. Long time continuity. With short time continuity available, it is easy to deduce
long time continuity. Actually, as T < T�, there exists M <1 such that

k@ukL1.Œ0;T �I PH s�1\ PH s1�2/ �M <1:

For fixed s1 2 .sc ; s/, we have a uniform T4 such that we have short time continuity in any
interval of length less than T4, around the solution u. Thus, we divide Œ0; T � into finitely
many, say N , adjacent intervals ¹Ij ºNjD1 with jIj j < T4, Ij D Œtj�1; tj �, t0 D 0, tN D T .

Let �j D s � j.s � s1/=N . We apply short time continuity, from tj�1 with regular-
ity �j�1, to solution with regularity �j in the interval Ij . Combining the results in those
intervals, we obtain long time continuity.

7. Three-dimensional almost global existence with small data

In this section, when n D 3, we show that the lower bound of the lifespan, available from
local results, can be improved to almost global existence (Theorem 1.4). Without loss
of generality, we assume that s D 3=2 C � with � 2 .0; 1=2� and the solution lies in
CH s \ C 1H s�1.

Let I � J WD Œ0; T�.u0; u1// be the subset such that for any T 2 I , we have

kDs�1ukLET � 10C3"s; kukLET � 10C3"1; (7.1)

where C3 denotes the constant in (3.21). It is clear that I is nonempty and closed in J .
By a bootstrap argument, to show existence up to time exp.c1=."1 C "s//, we need only
show that (7.1) holds for 5C3 instead of 10C3, for any T 2 I \ Œ0; exp.c1=."1 C "s//�,
provided that "1 C "s < ı for some sufficiently small ı > 0.

By Sobolev embedding, we see that

kukL1t;x.ST / � CkrukL1H s�1.ST / � 10CC3."1 C "s/ . 1;

g0.u/ D O.1/, and so

kg.u/kL1.ST / �

u Z 1

0

g0.�u/ d�


L1.ST /

. "1 C "s :

Moreover, we have

kr1��@g.u/kL1 . kr1��@ukL1 . k@ukL1 PH s�1 . "s; (7.2)

kr@g.u/kL1 . kr@ukL1 . k@ukL1t H s�1 . "1 C "s : (7.3)

From these estimates, we see that (3.20) is satisfied when T � exp.c="c/ with c C "1 C
"s � 1.

Recalling that u is constructed through approximation from C1t C
1
c solutions of

approximate equations, Proposition 3.6 applies to u as well, which gives us

kDs�1ukLET � C3"s C C3.ln hT i/
1=2
kr .1��/=2hri�=2Ds�1F.u/kL2t;x

; (7.4)

kukLET � C3"1 C C3.ln hT i/
1=2
kr .1��/=2hri�=2F.u/kL2t;x

: (7.5)
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When F.u/ D a.u/u2t , in view of (7.2) and (7.3) we have

kr .1��/=2hri�=2F.u/kL2t;x
. kr�.1��/=2hri��=2utkL2t;xkr

1��
hri�a.u/utkL1t;x

. .ln hT i/1=2"1."1 C "s/:

For the term with Ds�1 D D1=2C�, by Theorems 2.4 and 2.3 together with Lemma 2.5
we have

kr .1��/=2hri�=2Ds�1F.u/kL2t;x

. kr�.1��/=2hri��=2Ds�1utkL2t;x
kr1��hri�.ja.u/j C ja.0/j/utkL1t;x

C kr�3.1��/=2hri��=2Ds�1.a.u/ � a.0//kL2t;x
kr2.1��/hri�u2t kL1t;x

. kr�.1��/=2hri��=2Ds�1utkL2t;x
k@ukL1t H s�1

C kr�.1��/=2hri��=2r��1Ds�1ukL2t;x
k@ukL1t PH s�1

k@ukL1t H s�1

. .ln hT i/1=2"s."1 C "s/C kr�.1��/=2hri��=2D3=2ukL2t;x
k@ukL1t PH s�1

. .ln hT i/1=2"s."1 C "s/;

where in the second to last inequality, we have used Lemma 2.7.
Then, combining this with (7.4) and (7.5), we arrive at

kD��1ukLET � C3"� C C."1 C "s/"� ln hT i; � D 1; s;

and so
kDs�1ukLET � 5C3"s; kukLET � 5C3"1;

for any T 2 I \ Œ0; exp.c1=."1 C "s//�, where c1 D min.c; 1=.4C //.

8. High-dimensional global well-posedness

In this section, we show that when "s C "1 is small enough, the lower bound of the lifespan
can be improved to global existence when n � 4.

For any s > sc , there exists � 2 .0; 1=3/ such that s > sc C �. Without loss of gen-
erality, we assume s D sc C � and the solution lies in CH s \ C 1H s�1. Let I � J WD
Œ0; T�.u0; u1// be the subset such that for any T 2 I , we have

kDs�1ukLET � 10C"s; kukLET � 10C"1; (8.1)

where C is the constant in (3.35) of Proposition 3.9. It is clear that I is nonempty and
closed in J . By a bootstrap argument, to show global existence, we need only show that
(8.1) holds for 5C instead of 10C , for any T 2 I , provided that "1 C "s < ı for some
sufficiently small ı > 0.

By Sobolev embedding, we see that

kukL1t;x.ST / . k@ukL1H s�1.ST / . "1 C "s;
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and g0.u/ D O.1/, and so

khri�1g.u/kL1.ST / . khri
�1ukL1.ST / . kukL1. PHn=2��1\ PHn=2C�1 /.ST / . "1 C "s;

provided that �1 � �. Moreover, we have

kr1��@g.u/kL1 . kr1��@ukL1 . k@ukL1 PH s�1rad
. "s; (8.2)

kr1C�1@g.u/kL1 . kr1C�1@ukL1 . k@ukL1t PHn=2�1��1 . "1 C "s; (8.3)

and for any 0 � j � Œ.n � 1/=2�,

krjrjukL1x . kuk PBn=2
2;1

. "1 C "s :

From these estimates, we see that (3.36) is satisfied when "1 C "s � 1.
Recalling that u is constructed through approximation from C1t C

1
c solutions of

approximate equations, (3.35) applies for u as well, which gives us

kukLET � C"1 C CkwF.u/kL2t;x
; (8.4)

and in the case of odd n,

kDs�1ukLET � C"s C CkwD
s�1F.u/kL2t;x

; (8.5)

where we set w D r .1��/=2hri.�C�1/=2. We claim that the following variant of (8.5):

kDs�1ukLET � C"s C CkwD
s�1F.u/kL2t;x

C QC"s."1 C "s/ (8.6)

for some QC , applies for even n as well. Before presenting the proof of (8.6), let us use it
to conclude the global existence.

First, we have

kwF.u/kL2t;x
. kw�1@ukL2t;xkw

2.ja.u/j C jb.u/j/@ukL1t;x

. kw�1@ukL2t;xC.kukL1t;x /k@ukL1t H s�1 . ."1 C "s/"1:

Concerning the part withDs�1, when F.u/D a.u/u2t D .a.0/C Qa.u//u
2
t and n is odd, by

Theorem 2.4, Proposition 2.8 with Œs � 1�D kD .n� 3/=2 and kC .1��/C .1C�1/=2
< n=2, together with Lemma 2.5, we see that kwDs�1F.u/kL2t;x

is controlled by

kw�1Ds�1utkL2t;x
kw2utkL1t;x C kr

�.1��/w�1Ds�1
Qa.u/kL2t;x

kr1��wu2t kL1t;x

. kDs�1ukLET k@ukL1t H s�1 C kr
�.1��/w�1Ds�1ukL2t;x

k@ukL1t PH s�1

. kDs�1ukLET k@ukL1t H s�1 C kw
�1Ds��ukL2t;x

k@ukL1t PH s�1
. ."1 C "s/"s;

where in the second inequality, we have used Lemma 2.7.
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When n is even, we have Œs � 1� D n=2 � 1, and we can apply Proposition 2.8 only
if � > .1C �1/=2. For the remaining case 0 < � � .1C �1/=2, we notice that 1� �C
.1C �1/=2 < n=2, and we can apply Lemma 2.7 to obtain

kw�1r��1Ds�1
Qa.u/kL2t;x

. kw�1Ds��
Qa.u/kL2t;x

. kw�1rn=2 Qa.u/kL2t;x :

Noticing that

jr
n=2
Qa.u/j .

X
j
P
ˇl jDn=2; jˇ1j�jˇl j�1

jY
lD1

jr
ˇluj

.
X

jˇl j<n=2; l�2

r jˇ1j�n=2jrˇ1uj

jY
lD2

jr jˇl jrˇluj;

we get

kw�1rn=2 Qa.u/kL2t;x
.

X
1�j�n=2

kw�1rj�n=2rjukL2t;x
. kw�1Dn=2ukL2t;x

. "1 C "s;

(8.7)
and thus we have the same estimate as for the odd spatial dimension.

Then, combining the above with (8.4) and (8.5), we arrive at

kDs�1ukLET � C"s C
QC"s."1 C "s/; kukLET � C"1 C

QC"1."1 C "s/:

Consequently, with "1 C "s � 1, we have

kDs�1ukLET � 2C"s; kukLET � 2C"1;

for any T 2 I , which shows that (8.1) holds for 2C . By continuity, we see that T� D 1
and this completes the proof.

8.1. (8.6) for even spatial dimension

In the case of even n with s D n=2C � � 2, we can apply (3.35) with � D s � 2 to the
equation of ru,

.�C g.u/�/ru D rF.u/ � .rg.u//�u;

which gives

kDs�1ukLET . "s C kwD
s�1F.u/kL2t;x

C kwDs�2..rg.u//�u/kL2t;x
: (8.8)

When n � 6, we have n=2 � 2 � �1 > 1=2 so that

kw2r�ukL1x . k�ukH s�2rad
. "1 C "s; kr1��rukL1t;x . "s :

Moreover, by Lemma 2.7, as 2��C .1C�1/=2 < n=2, we have the following estimate
similar to (8.7):

kw�1r��2Ds�2g0.u/kL2t;x
. kw�1Dn=2g0.u/kL2t;x

. kw�1Dn=2ukL2t;x
. "1 C "s;
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which gives
kw�1r��2Ds�2g0.u/kL2t;x

. "1 C "s : (8.9)

Then, by Theorem 2.4,

kwDs�2..rg.u//�u/kL2t;x
. kw�1Ds�2�ukL2t;x

kw2g0.u/rukL1t;x

C kw�1r�1Ds�2
rukL2t;x

kw2rg0.u/�ukL1t;x

C kw�1r��2Ds�2g0.u/kL2t;x
kw2r2��ru�ukL1t;x

. "s."1 C "s/:

In the case of nD 4, we have s D 2C�. Let q D 2=.1� 2�/ so that 1=qC�D 1=2,
and

kr3��ukL1t L
q
x
. kD��ukL1t L

2
x
. "s :

Moreover, we claim that

kwr�3�D�
rg.u/k

L2tL
1=�
x
. "1 C "s; (8.10)

thus

kwD�..rg.u//�u/kL2t;x
. kw�1D��ukL2t;x

kw2rg.u/kL1t;x

C kwr�3�D�
rg.u/k

L2tL
1=�
x
kr3��ukL1t L

q
x

. "s."1 C "s/:

It remains to prove the claim (8.10). Actually, noticing that

wr�3� D r1�4�hri�C�1w�1 . r3.1=2��/.w�1r�1=2�� C w�1r�1�1=2/;

an application of Lemma 2.9 gives

kwr�3�D�
rg.u/k

L2tL
1=�
x

. kw�1r�1=2��D1=2
rg.u/kL2t;x

C kw�1r�1�1=2D1=2
rg.u/kL2t;x

;

where we have used the assumption � � 1=3 to ensure �.1 C �1/=2 � 1=2 � � �
�.n � 1/=2. The second term on the right can be controlled by using Proposition 2.8
and Lemma 2.7:

kw�1r�1=2C�1D1=2
rg.u/kL2t;x

. kw�1r�1=2C�1D3=2ukL2t;x

. kw�1D2��1ukL2t;x
. "1 C "s :

For the first term on the right, we use Lemma 2.7 to obtain

kw�1r�1=2��D1=2
rg.u/kL2t;x

. kw�1r���g.u/kL2t;x

. kw�1r���ukL2t;xCkw
�1r�1rukL2t;x

kr1��rukL1t;x

. "1 C "s :
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9. Appendix: Proof of Morawetz type estimates of Theorem 3.4

In this section, we prove the fundamental Morawetz type estimates (Theorem 3.4). Let
ST D Œ0; T / �Rn with n � 3. We consider the linear wave equation (3.2), that is,

�hu WD .�@2t C�C Qh
˛ˇ .t; x/@˛@ˇ /u D F; (9.1)

where we assume Qh˛ˇ D h˛ˇ �m˛ˇ , h˛ˇ D hˇ˛ , Qh00D 0 and�h is uniformly hyperbolic
in the sense of (3.1).

Lemma 9.1 (Morawetz type estimates). Let f D f .r/ be any fixed differentiable func-
tion. For any solutions u 2 C1.Œ0; T �IC10 .R

n// to equation (9.1) in ST with (3.1) and
n � 3, we have

.fXu/.h˛ˇ@˛@ˇu/ D @P


h
�Q; (9.2)

where Xu D .@r C n�1
2r
/u, P 0

h
D f h0ˇ@ˇuXu, P j

h
D O..jf j C jrf 0j C jf Qhj/jQ@uj2/,

Q D Q0 CO
�
.jf Qhj=r C j@.f Qh/j/j@uj jQ@uj

�
;

Q0 D
2f � rf 0

r

j6ruj2

2
C f 0

j@ruj
2 C j@tuj

2

2
�
n � 1

4
�

�
f

r

�
u2; (9.3)

and j6ruj2 D jruj2 � j@ruj2.

This essentially comes from multiplying the wave equation by f .r/
�
@r C

n�1
2r

�
u and

a tedious calculation with integration by parts. See e.g. [34, pp. 199–200], [14, p. 273,
(2.10)–(2.11)]. Typically, f is chosen to be a differentiable function satisfying

f � 1; 2f � rf 0.r/ � 0; ��.f=r/ � 0; (9.4)

which ensures that Q0 is positive semidefinite. In the literature, some of the typical
choices are f D 1 [38], 1 � .3C r/�ı (ı > 0) [45], r=.R C r/ [34, 43], .r=.R C r//�

(� 2 .0; 1/) [13, 14].

9.1. Details: general case

Let !j D !j D xj =r . As @j D !j @r C 6rj , @r D !j @j , 2X D @r � @�r D !
j @j C @j!

j D

2!j @j C .n � 1/=r , we have ŒX; @t � D 0 and

ŒX;@k �D Œ!
j ; @k �@j C

n � 1

2

�
1

r
; @k

�
D�

ı
j

k
� !j!k

r
@j C

n � 1

2r2
!k D

1

r
.�@k C!kX/:

Noticing that

@˛@ˇuXu D @˛.@ˇuXu/ � @ˇu@˛Xu

D @˛.@ˇuXu/ � @ˇuŒ@˛; X�u � @ˇuX@˛u;
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as u˛ˇ D uˇ˛ we obtain

2@˛@ˇuXu D @˛.@ˇuXu/C @ˇ .@˛uXu/ � @ˇuŒ@˛; X�u � @˛uŒ@ˇ ; X�u

� @ˇuX@˛u � @˛uX@ˇu:

Noticing also that @j .!jFG/ D FXG CGXF , we get

2@˛@ˇuXuD @˛.@ˇuXu/C@ˇ .@˛uXu/�@ˇuŒ@˛;X�u�@˛uŒ@ˇ ;X�u�@j .!
j @ˇu@˛u/:

To be specific, we have

@2t uXu D @t .@tuXu/ � @j .!
ju2t =2/;

2@t@juXu D @t .@juXu/C @j .@tuXu/ � @k.!
k@tu@ju/C

ut .�@k C !kX/u

r
;

2@j @kuXu D @j .@kuXu/C @k.@juXu/ � @m.!
m@ju@ku/

C
@ju.�@k C !kX/uC @ku.�@j C !jX/u

r
:

In summary, we have
.@˛@ˇu/Xu D @P



˛ˇ
CQ˛ˇ ; (9.5)

with P 
˛ˇ
D O.j@uj jQ@uj/ and rQ˛ˇ D O.j@uj jQ@uj/.

9.2. Details: general multiplier

By (9.5), when we multiply fXu by�u, we get

@˛@˛ufXu D @ .f m
˛ˇP



˛ˇ
/ � f 0!km

˛ˇP k˛ˇ C f m
˛ˇQ˛ˇ ;

where

m˛ˇP 0˛ˇ D �P
0
00 C

X
j

P 0jj D �@tuXu;

m˛ˇP k˛ˇ D �P
k
00 C

X
j

P kjj D !
k u

2
t

2
C

X
j

�
ıkj ujXu �

1

2
!ku2j

�
D !k

u2t � jruj
2

2
C ukXu;

m˛ˇQ˛ˇ D �Q00 C
X
j

Qjj D
X
j

@ju
1

r
.�@j C !jX/u

D
1

r
.�jruj2 C u2r /C

n � 1

2r2
u@ru:

Noticing that u@ru
r2
D

1
r2
@ru

2 D �
1
2
rr�1 � ru2 and

2f
u@ru

r2
D �r

f

r
� ru2 C

f 0

r
@ru

2
D �r �

�
u2r

f

r

�
C u2�

�
f

r

�
C
f 0

r
@ru

2;
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we obtain

�f 0!km
˛ˇP k˛ˇ D �f

0

�
u2t � jruj

2

2
C urXu

�
;

and

f m˛ˇQ˛ˇ D �
f

r
j6ruj2 C

n � 1

4

�
�

�
f

r

�
u2 C

f 0

r
@ru

2

�
C @jF

j

with F j D O..jf j C jrf 0j/r�2u2/.
In summary, we have

.@˛@˛u/fXu D @ .f m
˛ˇP



˛ˇ
/ � f 0!km

˛ˇP k˛ˇ C f m
˛ˇQ˛ˇ

D @ QP

�
f

r
j6ruj2 C

n � 1

4
�

�
f

r

�
u2 � f 0

�
u2t � jruj

2

2
C u2r

�
D @ QP


� f 0

u2t C u
2
r

2
C
n � 1

4
�

�
f

r

�
u2 �

.2f � rf 0/j6ruj2

2r

D @ QP

�Q0;

where QP j D O..jf j C jrf 0j/jQ@uj2/ and QP 0 D �f utXu.
For perturbation, we have

f Qh˛ˇ .@˛@ˇu/Xu D @ .f Qh
˛ˇP



˛ˇ
/ � P



˛ˇ
@ .f Qh

˛ˇ /C f Qh˛ˇQ˛ˇ : (9.6)

In summary, we have obtained (9.2).

9.3. Choice of multiplier function f

To prove the Morawetz type estimates (Lemma 3.4), we will choose two kinds of multi-
plier functions f , with parameter R > 0,

f D
r

RC r
; (9.7)

f D

�
r

RC r

��
D

�
1 �

R

RC r

��
; � 2 .0; 1/: (9.8)

Of course, (9.7) can be viewed as the limit case of (9.8) when � D 1.
Now we do the calculation for f given in (9.8) with � 2 .0; 1�. We first notice that

f 0.r/ D �

�
r

RC r

���1
R

.RC r/2
D �

Rr��1

.RC r/�C1
� 0; (9.9)

f .r/

r
� f 0.r/ D

r��1

.RC r/�

�
1 �

�R

RC r

�
� 0; (9.10)

2f .r/ � rf 0.r/

r
�
f .r/

r
� f 0.r/: (9.11)

In order to compute ��.f .r/=r/, we recall that

��

�
f .r/

r

�
D �r1�n@r

�
rn�1@r

f .r/

r

�
D r1�n@r

�
rn�2

�
f .r/

r
� f 0.r/

��
:
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Using this identity and (9.10), we see that ��.f .r/=r/ equals

r1�n@r

�
rnC��3

.RC r/�

�
1 �

�R

RC r

��
D

�
.nC � � 3/r�3C�

.RC r/�
�

�r�2C�

.RC r/�C1

��
1 �

�R

RC r

�
C

�Rr�2C�

.RC r/�C2

D
r�3C�

.RC r/�

�
.nC � � 3/ �

�r

RC r

��
1 �

�R

RC r

�
C

�Rr�2C�

.RC r/�C2

D
r�3C�

.RC r/�

�
n � 3C

�R

RC r

��
1 �

�R

RC r

�
C

�Rr�2C�

.RC r/�C2
;

from which we see that, as n � 3,

��

�
f .r/

r

�
� .1 � �/

�R2r�3C�

.RC r/�C2
C

�Rr�2C�

.RC r/�C2
� 0: (9.12)

In summary, when � 2 .0; 1/ we see that Q0 from (9.3) is nonnegative and has the
following lower bound for r � R:

Q0 � f
0 j@uj

2

2
�
n � 1

4
�

�
f

r

�
u2 &�

jQ@uj2

R�r1��
; (9.13)

where the implicit constant depends only on n and � 2 .0; 1/, and in particular is inde-
pendent of R > 0. On the other hand, when � D 1, Q0 is still nonnegative and has the
following lower bound for R=2 � r � R:

Q0 � f
0 j@uj

2

2
�
n � 1

4
�

�
f

r

�
u2 �

1

8R
j@uj2 C

n � 1

32

1

R2r
u2 &

jQ@uj2

r
: (9.14)

9.4. Proof of Morawetz type estimates

Equipped with Lemmas 3.2 and 9.1, together with the observations (9.13)–(9.14), we can
prove the Morawetz type estimates of Lemma 3.4.

Let us begin with the proof of (3.10). First, applying (9.13) with R D 1, and (9.14)
with R � 1, that is, using f D

�
r
1Cr

�� and f D r
RCr

with R � 1, we getZ
r�1

jQ@uj2

r1��
dx dt C sup

R�1

Z
R=2�r�R

jQ@uj2

r
dx dt

. sup
fD. r

1Cr
/�; r

RCr
;R�1

Z
ST

Q0 dx dt

. sup
fD. r

1Cr
/�; r

RCr
;R�1

�
�

Z
ST

fF

�
@r C

n � 1

2r

�
udx dt C

Z
Rn
P 0h .t; �/ dx

ˇ̌̌̌T
tD0

C

Z
ST

.Q0 �Q/dx dt

�
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.
Z
ST

jF Q@uj dx dt C

Z
Rn
j@u.T /j jQ@u.T /j dx C

Z
Rn
j@u.0/j jQ@u.0/j dx

C sup
fD. r

1Cr
/�; r

RCr
;R�1

Z
ST

�
jf @hj C

jf Qhj

r

�
j@uj jQ@uj dx dt

.
Z
ST

jF Q@uj dx dt C kQ@u.t/k2
L1L2.ST /

C

Z
ST

�
j@hj C

j Qhj

r1��hri�

�
j@uj jQ@uj dx dt;

where we have used (9.2) in the second inequality, and the facts jf j � 1, 0 � f 0 � f=r ,

jQ �Q0j .
�
jf @hj C jf 0 Qhj C

jf Qhj

r

�
j@uj jQ@uj

.
�
jf @hj C

jf Qhj

r

�
j@uj jQ@uj;

and jP 0j . j@uj jQ@uj in the third inequality. By Lemma 3.2 and Hardy’s inequality,

kuk2X1 WD

Z
r�1

jQ@uj2

r1��
dx dt C sup

R�1

Z
R=2�r�R

jQ@uj2

r
dx dt C k@u.t/k2

L1L2.ST /

.
Z
ST

jF Q@uj dx dt C k@u.0/k2
L2

C

Z
ST

�
j@hj C

j Qhj

r1��hri�

�
j@uj jQ@uj dx dt:

Thus to get (3.10), we need only show that

kukLET . kukX1 ; (9.15)

which essentially follows from a standard argument of Keel–Smith–Sogge [20]. Here, for
completeness, we write down the proof. The first and second terms are trivial to control.
For the remaining two terms, with ˛ 2 Œ0; ��, we have

kr�.1��/=2hri�˛=2 Q@uk2
L2t;x.ST /

. kr .��1/=2 Q@uk2
L2.r�1/

C

X
0�j�ln hT i

kr .��1�˛/=2 Q@uk2
L2.r'2j /

Ckr .��1�˛/=2 Q@uk2
L2.r�hT i/

. kuk2X1 C
X

0�j�ln hT i

2j.��˛/kr�.1=2/ Q@uk2
L2.r'2j /

C hT i��1�˛kQ@uk2
L2t;x.r�hT i/

.
X

0�j�ln hT i

2j.��˛/kukX1 C hT i
��˛
kQ@ukL1t L

2
x
. C˛.T /kuk2X1 ;

where

C˛.T / D

²
ln hT i; ˛ D �;

hT i��˛; ˛ 2 Œ0; �/:

This completes the proof of (9.15), and so of (3.10).
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Turning to the proof of (3.9), we will use f D . r
TCr

/� � 1. Applying (9.13), we get
as beforeZ
r�T

jQ@uj2

T �r1��
dx dt

.
Z
ST

.jF j C jf Q@ Qhj j@uj/jQ@uj dx dt C kQ@u.t/k2
L1L2.ST /

.
Z
ST

�
jF j C

�
j@hj C

j Qhj

r1��.T C r/�

�
j@uj

�
jQ@uj dx dt C kQ@u.t/k2

L1L2.ST /
:

Together with Lemma 3.2, we see that

kuk2X2 WD

Z
r�T

jQ@uj2

T �r1��
dx dt C k@u.t/k2

L1L2.ST /

.
Z
ST

�
jF j C

�
j@hj C

j Qhj

r1��.T C r/�

�
j@uj

�
jQ@uj dx dt C k@u.0/k2

L2
:

Moreover, we have

kr�.1��/=2 Q@ukL2t;x
. kr�.1��/=2 Q@ukL2.jxj�T / C kr�.1��/=2 Q@ukL2.jxj�T /

. kr�.1��/=2 Q@ukL2.jxj�T / C T �.1��/=2kQ@ukL2t;x.jxj�T /

. kr�.1��/=2 Q@ukL2.jxj�T / C T �=2kQ@ukL1t L2x . T
�=2
kukX2 ;

which gives (3.9).
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