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Abstract. We describe the boundary of linear subvarieties in the moduli space of multi-scale
differentials. Linear subvarieties are algebraic subvarieties of strata of (possibly) meromorphic dif-
ferentials that in local period coordinates are given by linear equations. The main example of such
are affine invariant submanifolds, that is, closures of SL.2;R/-orbits. We prove that the boundary
of any linear subvariety is again given by linear equations in generalized period coordinates of the
boundary. Our main technical tool is an asymptotic analysis of periods near the boundary of the
moduli space of multi-scale differentials which yields further techniques and results of independent
interest.
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1. Introduction

Let � D .�1; : : : ; �n/ 2 Zn with
Pn
iD1 �i D 2g � 2. The stratum H .�/ is the mod-

uli space consisting of pairs .X; !/ where X is a Riemann surface of genus g and !
is a meromorphic differential with multiplicities of zeroes and poles prescribed by �.
The projectivized stratum PH .�/ is the quotient of H .�/ by C�, where C� acts on a
differential by rescaling. Strata have a natural linear structure, i.e. a set of coordinates,
distinguished up to the action of the linear group, called period coordinates, such that the
transition functions are linear. A special class of subvarieties of strata is given by linear
subvarieties.

Definition 1.1. A .C/-linear subvariety M is an irreducible algebraic subvariety of a
stratum H .�/ that, at any point, is given by a finite union of linear subspaces in local
period coordinates.

A particularly important class of linear subvarieties are affine invariant submanifolds.
Those are linear subvarieties in strata of holomorphic differentials where the linear sub-
spaces are defined over the real numbers. By a combination of [7] and [8], affine invariant
submanifolds are exactly orbit closures of the natural SL.2;R/-action.
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Linear subvarieties in projectivized strata are usually not compact. For example, affine
invariant submanifolds are never compact since one can use cylinder deformations to
degenerate to a stable curve.

Recently in [2] the authors constructed a modular compactification P„Mg;n.�/ of
the projectivized stratum PH .�/, the moduli space of projectivized multi-scale differen-
tials. The goal of this paper is to study the boundary of a linear subvariety in P„Mg;n.�/.

The boundary P„Mg;n.�/ nPH .�/ parametrizes multi-scale differentials, i.e. stable
curves together with a collection of meromorphic differential forms on the irreducible
components, subject to several technical conditions, which we recall in Section 2.4. Fur-
thermore, the boundary decomposes into a union of open boundary strata, each of which
possesses a natural linear structure induced by generalized period coordinates. We will
explain the structure of the boundary in more detail in Section 2.7.

For technical reasons we work with the “unprojectivized” moduli space of multi-scale
differentials„Mg;n.�/. The group C� acts on„Mg;n.�/ by rescaling and P„Mg;n.�/

D „Mg;n.�/=C� is the quotient. Our main result is as follows.

Theorem 1.2 (Main theorem). Let M � H .�/ be a C-linear subvariety. Then the inter-
section of the closure xM �„Mg;n.�/ with any open boundary stratumD� of the moduli
space „Mg;n.�/ of multi-scale differentials is a levelwise linear subvariety, for the nat-
ural linear structure on the boundary stratum D� � @„Mg;n.�/.

Furthermore, the linear equations for @M \D� are explicitly computable from the
linear equations for M near the boundary.

For this statement, we recall that the irreducible components of stable curves in the
boundary of „Mg;n.�/ are stratified by levels, depending on the vanishing order of the
differential on each component along one-parameter families. By a levelwise linear sub-
variety we mean that each linear equation only relates periods of the differential along
curves contained in the same level.

This version of the main theorem is only a preliminary qualitative result. In the course
of the paper we state several more precise versions. Once we define the linear structure of
the boundary, we can make a more precise, but still qualitative statement, given in Theo-
rem 2.3. Later, in Sections 7, 8 and 10, we will be able to determine the explicit equations
defining the boundary @M \D� provided we know the linear equations defining M at a
point near the boundary. In Proposition 8.2 we give an explicit formula in local coordi-
nates, while Proposition 10.1 gives a coordinate-free description of the linear equations
defining @M .

Our main technical tool is a detailed asymptotic analysis of the behavior of peri-
ods near the boundary of „Mg;n.�/. When integrating differentials over cycles passing
through nodes of the limiting stable curve, the period might diverge logarithmically. In
particular, periods do not extend as holomorphic functions to the boundary @„Mg;n.�/,
but they do extend after subtracting their logarithmic divergences. We call the resulting
functions log periods. The first part of the paper is devoted to properly defining log periods
and computing their limits at the boundary.
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Log periods can also be viewed naturally in the context of Hodge theory. Stated in this
language, the extension of log periods can be seen as an analogue of Schmid’s nilpotent
orbit theorem [13] in the flat setting. We discuss the relations to Hodge theory in Section 7.
See also [6] for similar discussions.

The linear equations of the boundary

We now explain how to obtain the linear equations defining the intersection of a boundary
stratum with the closure of a linear subvariety M from the linear equations defining M
near the boundary.

Let .X;�/ be a multi-scale differential in the boundary ofM \D� . The stable curveX
has two types of nodes: vertical nodes connect irreducible components of different lev-
els, while horizontal nodes connect components of the same level. Near the boundary
stratum D� of „Mg;n.�/, every smooth surface can be cut by simple closed curves into
subsurfaces of different levels. The subsurface of level i specializes to the irreducible
components of X of level i under degeneration.

In a period chart inside H .�/, a linear equation for M is a homology class F DP
l Al Œl � where the collection ¹lº is a suitable basis for relative homology, called a �-

adapted homology basis. We define the notion of �-adapted basis in Section 4.5. Roughly
speaking one starts by choosing a homology basis for each subsurface of level i and
extends those to a basis on the whole surface by only passing through lower levels.

We say F is of top level at most i if it can be represented by a sum of paths, each
of which is completely contained in the subsurface of level � i . To obtain the equations
for the boundary proceed as follows. Start with the defining equations F1; : : : ; Fk for M ,
written in terms of a �-adapted bases and put into reduced row echelon form. Then for
each Fl repeat the following steps.

(1) Determine the top level >.Fl / of Fl .

(2) If the equation Fl crosses horizontal nodes of level >.Fl /, delete it.

(3) Otherwise, restrict Fl to each irreducible component of X of level>.Fl /. The result-
ing cycle then defines an equation for @M \D� .

We describe the restriction procedure more explicitly in Section 4. The collection of linear
equations obtained in this way are then the linear equations defining the boundary of M .
In Section 9 we give an explicit example illustrating the above process.

Potential applications

The main theorem gives a novel tool to study the classification problem for affine invariant
submanifolds. Let M � H .�/ be an affine invariant submanifold. Then by Theorem 1.2
the intersection of @M with any boundary stratum is a lower-dimensional linear subvari-
ety. One can now try to iterate this process inductively. A useful consequence of Theo-
rem 1.2 for this approach is the following corollary.
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Corollary 1.3. If the linear equations forM are defined over a fieldK � C, then the lin-
ear equations @M intersected with any open boundary stratum of „Mg;n.�/ are defined
over a subfield of K.

Another consequence of the proof of Theorem 1.2 are restrictions on the possible lin-
ear equation defining M inside H .�/ arising from considerations of invariance under
monodromy. The precise statement is given in Remark 7.7. This should be compared to
the cylinder deformation theorem [16, Thm. 5.1] which also restricts the possible lin-
ear equations, albeit in a slightly different language and thus the results are not directly
comparable. In [5] we investigate in detail the relation of our approach to cylinder defor-
mation results, together with applications to describing the geometry and combinatorics
of possible degenerations of affine invariant manifolds. More precisely, we show that the
cylinder deformation theorem for affine invariant submanifold is a direct consequence of
algebraicity. Furthermore, we determine the explicit analytic equations for the closure of
linear subvarieties in plumbing coordinates in a neighborhood of the boundary, rather than
just describing the boundary.

Algebraicity

We stress that our setup only works for algebraic subvarieties that are locally given by
finitely many linear subspaces, and does not apply to merely analytic subvarieties. By [8]
affine invariant submanifolds, i.e. analytic subvarieties given by subspaces defined over
the real numbers, are always algebraic. On the other hand, [3] have communicated to us
an example of an analytic subvariety of a meromorphic stratum which is locally defined
by linear equations with rational coefficients, which is not algebraic.

Algebraicity is only used once in the argument, in Section 7.3, where we use the classi-
cal fact that the Euclidean closure of an algebraic variety in an algebraic compactification
coincides with the Zariski closure and in particular is an analytic variety.

Afterwards, we use the fact that every boundary point of an analytic variety is the
limit of a holomorphic one-parameter family, and not just of some sequence. This will
ultimately allow us to avoid the cautionary example from [4, Section 4] and take limits of
linear equations. We will discuss the cautionary example in more detail in Remark 7.11.

1.1. Relationship to previous work

Degenerations of affine invariant submanifolds have been considered in [4, 12]. If we
consider a family of differentials inside the Hodge bundle, the limit on a stable curve is a
collection of differentials on each irreducible component with at most simple poles at the
nodes and opposite residues at each node. In [4,12] the authors consider a partial compact-
ification zH .�/ of H .�/ which is constructed by removing all nodes and filling them in
with marked points, and contracting all components where the differential vanishes. Thus
they only consider the top level part of a limit multi-scale differential in the boundary.
Each differential .X1; !1/ 2 zH .�/ is contained in a stratum H .!1/ of possibly dis-
connected differentials with at most simple poles. The resulting partial compactification is
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called “WYSIWYG” compactification because only the parts of the limit are considered
that are represented by flat surfaces of positive area. The following is a description of the
boundary of an affine invariant submanifold inside zH .�/.

Theorem 1.4 ([4, Thm. 1.2]). Let M be an affine invariant submanifold and .X1; !1/
2 zH .�/ with no simple poles. The intersection of the boundary @M � zH .�/ with the
stratum H .!1/� zH .�/ is an algebraic variety, locally given by finitely many subspaces
in the period coordinates of H .!1/. Furthermore, assume that a sequence .Xn; !n/ of
points of M converges to .X1; !1/. After removing finitely many terms, the sequence
.Xn; !n/ may be partitioned into finitely many subsequences such that for each subse-
quence the tangent space to a branch of @M \H .!1/ at .X1; !1/, inside zH .�/, is
equal to the intersection of the tangent space of a branch of M at .Xn; !n/ and the tan-
gent space of H .!1/, for n sufficiently large. Here we use the fact that, since .X1; !1/
has no simple poles, the tangent space to H .!1/ is naturally a subspace of H .�/

at .Xn; !n/.

Theorem 1.2 should then be seen as an analogue of Theorem 1.4 for the moduli space
of multi-scale differentials. Roughly speaking, Theorem 1.4 says that the boundary of an
affine invariant submanifold is given by linear equations on all components of the limit
where the differential does not vanish. After suitable rescaling, the limits become non-
zero on the remaining components, and we show that, after rescaling, the whole boundary
is given by linear equations.

There exists a forgetful map p W „Mg;n.�/! zH .�/ by sending a multi-scale dif-
ferential to its top level piece. In Section 11 we will see that our results quickly imply
Theorem 1.4. The crucial observation is that p has compact fibers. In the presence of
simple poles and multiple levels, the description of the tangent space to the boundary
in „Mg;n.�/ is much more involved than Theorem 1.4, and the complete description is
given by Proposition 10.1.

The proofs in [4, 12] use the theory of cylinder deformations and thus only work for
affine invariant submanifolds in strata of holomorphic differentials, our results on the
other hand work for linear subvarieties with arbitrary coefficients and in meromorphic
strata, provided that they are algebraic. In particular, Theorem 1.4 is true for arbitrary
linear subvarieties in meromorphic strata.

1.2. Outline of the proof

The proof of Theorem 1.2 can be roughly divided into two parts. The first part is to deter-
mine a set of linear equations that are satisfied by any boundary point of @M . Afterwards
we need to show that every point on the boundary satisfying those linear equations is
indeed in xM .

After choosing a homology basis ¹1; : : : ; d º,M can locally near x0 2M be written
as the zero locus of k0 D codimH.�/.M/ linear equations. In particular, we can find a



F. Benirschke 4526

matrix A D .Akl /kl in reduced row echelon form such that

M D

²
.X; !/ 2 H .�/ W

dX
lD1

Akl

Z
l

! D 0 for k D 1; : : : ; k0

³
:

Naïvely one would now take the limit of these equations as ! approaches the boundary
of „Mg;n.�/, but the periods

R
l
!, which are locally holomorphic functions on H .�/,

cannot be extended holomorphically to the boundary. Firstly, due to monodromy one can-
not continuously extend the cycles Œl � to a whole neighborhood of the boundary and
secondly, along a sequence converging to the boundary the period might diverge. In Sec-
tion 5 we thus study the asymptotic behavior of periods as they approach the boundary
of „Mg;n.�/. The main result of that section, Theorem 5.2, says that after subtract-
ing suitable, explicitly given, multivalued, logarithmic terms, the period

R

! becomes

monodromy-invariant and extends holomorphically to„Mg;n.�/. The resulting extended
“periods” are called log periods. In Theorem 5.2 we additionally compute the limit of the
log periods at the boundary @„Mg;n.�/.

We can now describe our strategy to produce linear equations satisfied on the boundary
of M , which is the content of Section 7. Let b0 2 @M be a boundary point of the linear
subvariety M contained in an open boundary stratum. We can choose a one-parameter
family f W �! xM which is generically contained in M and such that f .0/ D b0. Since
M is a linear subvariety, the linear equations are invariant under the monodromy of the
Gauss–Manin connection, and this forces the linear equations to be of a special form;
see Proposition 7.6.

The special form of the linear equations together with the explicit formula for the
limit of log periods then immediately implies that, at least along one-parameter families,
we can take the limit of the linear equations defining M . Thus we get necessary linear
equations satisfied on @M . The precise statement is Corollary 7.9.

In Section 8 we then show that the linear equations obtained in Section 7 are actually
the defining equations for the boundary @M intersected with an open boundary stratum.
On „Mg;n.�/ the linear equations for M cannot be extended to the boundary, even if
rewritten in log periods, but on a suitable cover of „Mg;n.�/, which we call the log
period space LPS, they do extend. The proof of Theorem 1.2 is then obtained by a detailed
analysis of the extended linear equations on LPS. For technical reasons, instead of a sin-
gle cover LPS, we need to consider a countable collection LPS� of such. The indexing
set corresponds roughly to different monodromies of the periods along one-parameter
families.

As a result of the proof of Theorem 1.2 we obtain an explicit formula, in local coordi-
nates, for how obtain linear equations for @M intersected with an open boundary stratum,
given the linear equations for M . In Section 10 we interpret these results in a coordinate-
free way by constructing natural maps in relative homology relating the tangent spaces of
the stratum H .�/ and the boundary D� .

In Section 11 we apply the results of Section 10 to prove Theorem 1.4.
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2. Basic setup and notation

2.1. Setup for families

We fix a stratum H .�/ of meromorphic differentials with

� D .�1; : : : ; �r ; �rC1; : : : ; �rCs/ 2 ZrCs; r C s D n;

where
rCsX
iD1

�i D 2g � 2; �1 � � � � � �r � 0 > �rC1 � � � � � �rCs :

Our setup for families of differentials is as follows. A family of differentials .� W
X ! B; !; �/ is a family .� W X ! B; �/ of pointed stable curves with sections
� D .�1; : : : ;�rCs/ over the base B , together with a section ! of !X=B.�

PrCs
iDrC1�i�i /

defined on the complement of the nodes. By abuse of notation we will sometimes denote
the family of differentials by !. For generic b 2 B we require ord�i .b/ !b D �i and
additionally require ! to have no other zeroes or poles outside of the nodes. A family
of flat surfaces of type � is a family of differentials where all fibers Xb are smooth and
!b 2 H .�/ for all b 2 B .

We will often write

Z D .Z1 WD �1; : : : ;Zr WD �r /; P D .P1 WD �rC1; : : : ;Ps WD �rCs/

for the zero and pole sections, respectively.
For equisingular families .X;!/ of differentials we let . zX;!/ be the associated family

which is obtained by fiberwise normalization. Here the differential on zX is simply the
pullback of ! from X and by abuse of notation we denote it also by !. In this case we let
Q˙e be the sections of the preimages of the nodes on zX.

We usually consider families over a smooth base B D .��/d ��e for non-negative
integers d; e, most of the time arising as the complement of a simple normal crossing
divisor. Our convention is that�k is a polydisk in Ck centered at the origin of sufficiently
small radius, to be chosen, and possibly further shrunk.

The moduli space of multi-scale differentials. We now start recalling the moduli space
of multi-scale differentials „Mg;n.�/ and its projectivized version P„Mg;n.�/ con-
structed in [2].

The main features of interest for us are:

� „Mg;n.�/ and P„Mg;n.�/ are smooth algebraic orbifolds and their respective bound-
aries @„Mg;n.�/; @P„Mg;n.�/ are normal crossing divisors;

� the boundary has a modular interpretation in terms of multi-scale differentials and
assigned prong-matchings, which we will recall next;

� P„Mg;n.�/ is compact.
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Orbifold structure. The moduli space „Mg;n.�/ of multi-scale differentials and its pro-
jectivization P„Mg;n.�/ are smooth, algebraic DM-stacks. All our results are true for
linear algebraic substacks of H .�/. We usually omit the stack structure and only work
with the underlying varieties.

2.2. Enhanced level graphs

To describe the boundary of „Mg;n.�/, we need to add additional decorations to the
dual graph of a stable curve. Our setup mostly follows the conventions from [1], where we
simplify some conventions to focus on the features that are important to us, avoiding some
of the more technical notions. A level graph � D .�; `/ is a stable graph � D .V; E;H/
with half-edges H corresponding to marked points of the stable curve, together with a
total pre-order on the vertices V defined by a level function

` W V ! L�.�/

where L�.�/ WD ¹0;�1; : : : ;�`.�/º is the set of levels. Following the convention of
[2] we write L.�/ WD L�.�/ n ¹0º, and refer to it as the set of lower levels. An edge
is called horizontal if it joins vertices of the same level, and vertical otherwise. We let
Ever; Ehor � E be the sets of all vertical and horizontal edges, respectively. An enhance-
ment is an assignment of an integer �e � 0, called the number of prongs, to each edge e,
so that �e D 0 if and only if e 2 Ehor. If an edge e joins the vertices v and v0 such that
`.v/ � `.v0/ then we let `.eC/ be the level of v and similarly `.e�/ the level of v0. Fur-
thermore, we set v.eC/ WD v and v.e�/ WD v0. At horizontal nodes we make a random
choice. Similarly, for a half-edge h we let v.h/ be the vertex connected to h, and `.h/ the
level of v.h/.

We let �.�i/ be the restriction of � to levels at most i , i.e. we remove all vertices
from � with levels above i and all edges and half-edges adjacent to those vertices. The
restrictions �.i/; �.>i/ are defined similarly.

For later use we define

ai WD lcm.�e/; me;i WD ai=�e (2.1)

where the lcm is taken over all edges connecting �.�i/ and �.>i/, and me;i is defined for
any edge e such that `.eC/ > i � `.e�/.

2.3. Stable curves and level graphs

Let � be an enhanced level graph and .X; S/ be a stable curve with marked points S and
dual graph � . Usually we omit the marked points in our notation. We denote by Xv the
irreducible component of X corresponding to v 2 V . Similarly we let X.i/ be the sub-
curve consisting of all irreducible components of level i . We refer to X.0/ as the top level
of X . There are analogous definitions for the subcurve X.�i/ consisting of components of
level � i , for X.�i/, and X.>i/. For each node e let qCe and q�e be the preimages of the
node that are contained in Xv.eC/ and Xv.e�/, respectively.
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Let S D Z [ P be the marked points, partitioned into marked zeroes and poles.
On the normalization zX of X we define

zZ WD Z [ ¹qCe W e 2 E
ver
º;

zP WD P [ ¹q�e W e 2 E
ver
º [ ¹q˙e W e 2 E

hor
º;

zS WD zZ [ zP :

We denote by zX.i/ the normalization ofX.i/ and consider it as a possibly disconnected
curve with marked points zS.i/ where

zZ.i/ WD zZ \X.i/; zP.i/ WD zP \X.i/; zS.i/ WD zS \X.i/: (2.2)

We define zZv; zPv; zSv on the normalization zXv of Xv analogously.

2.4. Multi-scale differentials

The boundary of „Mg;n.�/ can be described in terms of multi-scale differentials.
A multi-scale differential .X; S;�/ compatible with an enhanced dual graph � is a stable
curve .X; S/ and a collection � D .�v/v2V of meromorphic differentials on the normal-
ization zXv of each irreducible component Xv satisfying

� (Prescribed vanishing) Each differential �v is non-zero, and has no zeroes or poles
outside zSv . Moreover, the order of vanishing at the marked point Sk is �k .

� (Matching orders) For every node e we have

ord
q
C
e
�v.eC/ D �e � 1;

ordq�e �v.e�/ D ��e � 1:

� (Matching residues at horizontal nodes) At horizontal nodes e 2 Ehor, we have

res
q
C
e
�v.eC/ C resq�e �v.e�/ D 0:

� (Global residue condition) For every level i and every connected component Y
of X.>i/ that does not contain a marked point with a prescribed pole, i.e. such that
P \ Y D ;, the following condition holds. Let ¹e1; : : : ; ebº denote the set of all nodes
where Y intersects X.i/. Then

bX
jD1

resq�ej �v.ej�/ D 0:

Instead of grouping the differentials by irreducible components, it is often useful to group
them level by level. In this case we write � D .�.i//i2L�.�/. We usually omit the marked
points S in the notation, since they are already encoded as the zeroes and poles of � away
from the nodes.
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2.5. The structure of the boundary

The boundary components of the moduli space of multi-scale differentials„Mg;n.�/ are
indexed by the discrete data of enhanced level graphs. The open boundary stratum corre-
sponding to the enhanced level graph � is denoted by D� . A point of D� � @„Mg;n.�/

corresponds to a pair .X; �/ where X is a stable curve with dual graph � , and � is a
multi-scale differential compatible with � . Additionally there needs to be a choice of a
prong-matching at every vertical node. Since we only work locally, we do not need to
keep track of the prong-matching, and refer to [2, Section 5.4] for a proper discussion.

Two multi-scale differentials .X; �/ and .X 0; �0/ correspond to the same boundary
point of D� if they are related by the action of the level-rotation torus which acts simul-
taneously on the different levels by rescaling and on the prong-matchings; we refer to
[2, Section 6] for the precise definitions. For our purposes we can again mostly ignore
the action: near a boundary point .X; �/ with a chosen prong-matching, the boundary
component D� can be parametrized by a small neighborhood in the space of multi-scale
differentials compatible with � , considered up to scaling each differential �.i/ on lower
levels by an arbitrary non-zero complex number, one complex number for each level.

Remark 2.1. Suppose .X; �/ and .X; �0/ are two multi-scale differentials with the same
underlying differential but different prong-matchings. Since � and �0 have the same peri-
ods it seems interesting to ask: if .X;�/ is contained in the boundary of a linear subvariety,
is the same true for .X;�0/ and furthermore are the linear equations the same? Our meth-
ods are purely local inside the moduli space of multi-scale differentials, i.e. they only
allow us to describe the linear subvariety in a small neighborhood of .X;�/ which might
not contain .X;�0/, and thus do not seem to be applicable to this question.

2.6. Local coordinates on the boundary

It is classically known that the stratum H .�/ has local coordinates given by the relative
cohomologyH 1.X nP;ZIC/. The boundary stratumD� has a similar local description,
which we now discuss.

The prescribed vanishing and matching orders conditions for multi-scale differentials
imply that a multi-scale differential � is contained in the product of strata

Q
v2V H .�v/,

where each �v is completely determined by � and the enhanced level graph � . Thus
the space of multi-scale differentials, i.e. unprojectivized and without a choice of prong-
matchings, can be identified with the subspace

Q
v2V H .�v/

GRC of
Q
v2V H .�v/, con-

strained by the matching residues at horizontal nodes, as well as the global residue condi-
tions. To describe the boundary component D� , we need to additionally projectivize the
differential on lower levels, and choose the prong-matchings. This causes the stratumD�
to be a cover of

Q
v2V H .�v/

GRC, suitably projectivized. We can use this to describe local
coordinates on D� . For every level i we set

H1.i/.X IZ/ WD H
1. zX.i/ n zP.i/; zZ.i/IZ/; (2.3)
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where zP.i/; zZ.i/ are defined in (2.2). We sometimes simply write H1
.i/
.X/ instead of

H1
.i/
.X IZ/ and also write H1

.i/
.X IC/ WD H1

.i/
.X IZ/˝Z C. We additionally denote by

H1
.i/
.X/GRC � H1

.i/
.X/ the subspace satisfying the global residue and matching residue

conditions at horizontal nodes. We will revisit the global residue condition in Section 4.2.
See in particular (4.3) for an explicit definition of H1

.i/
.X/GRC. The boundary stratumD�

then has local projective coordinates given by

H1.X; �/ WD H1.0/.X IC/ �
Y

i2L.�/

P .H1.i/.X IC/
GRC/:

By this we mean that, after choosing local coordinates on each projective space, we get
local coordinates on D� . Note that this statement is only meaningful because the transi-
tion functions in those coordinates are given by projective linear maps. We will discuss
the transition functions in more detail in Section 2.7. We refer to those coordinates as gen-
eralized period coordinates. Similarly, the boundary PD� of P„Mg;n.�/ has projective
local coordinates given by P .H 1.X; �//, where additionally the homology H1

.0/
.X/ of

the top level is projectivized.
Let U � D� be such a generalized period chart centered at b0 D .Xb0 ; �b0/. Then

over U there exists an equisingular family

.X ! U;�/ (2.4)

of stable curves with dual graph � , where � is the multi-scale differential determined by
generalized period coordinates. We define .X.i/ ! U; �.i// to be the potentially discon-
nected family consisting only of irreducible components of level i . From time to time it
will be useful to consider the fiberwise normalization

. QX ! U;�/; (2.5)

which is a family of smooth, possibly disconnected, Riemann surfaces, where we make
a choice of marking of the preimages of all nodes. Notice that while a point in U only
parametrizes an equivalence class of multi-scale differentials, choosing local charts on
each projective space P .H1

.i/
.X/GRC/ allows us to choose for each u 2 U a representative

.Xu; �u/, varying holomorphically in u.

Convention 2.2. From now on, b0 2 D� will denote a boundary point, chosen once and
for all, in a neighborhood of which in„Mg;n.�/ we will perform all of our constructions
and computations. We will usually write .X;�/ instead of .Xb0 ;�b0/. Furthermore, from
now on,X always denotes a stable curve contained inD� and† a smooth curve in H .�/.

2.7. The linear structure of the boundary

After choosing a homology basis on X.i/ for each i , the changes of coordinates for D�
are given by linear transformations in GL.�/ WDGL.d1;Z/�

Q
i2L.�/ PGL.di ;Z/where

di WD dim H1
.i/
.X/GRC. ThusD� possesses a GL.�/-structure or what we call a levelwise

linear structure. We call a subvariety of D� levelwise linear if locally in generalized
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period coordinates it equals a finite union of products

V0 �
Y

i2L.�/

P .Vi / � H1.X; �/

where Vi � H1
.i/
.X IC/ are some linear subspaces. Since on PD� also the top level is

projectivized, PD� admits a
Q
i2L�.�/ PGL.di ;Z/-structure, i.e. coordinate changes live

in
Q
i2L�.�/ PGL.di ; Z/, and a subvariety is levelwise linear if locally it is given byQ

i2L�.�/P .Vi /. Note that if a subvarietyM �D� is levelwise linear, the same is true for
its image PM � PD� . We can now give a more precise, though still qualitative, version
of our main result, Theorem 1.2.

Theorem 2.3 (Main theorem, levelwise version). Let M � H .�/ be a linear subvariety.
For each open boundary component D� � „Mg;n.�/ the intersection @M \ D� is a
levelwise linear subvariety ofD� . The same is true for the projectivization PM �PH .�/.

We stress that this statement already greatly restricts the possible linear equations of
@M \D� , since each linear equation only involves periods contained in the same level.

In Section 10 we will describe how to relate the levelwise linear structure on the
boundary stratum D� to the linear structure on the stratum H .�/.

Remark 2.4. We stress that all levelwise projectivizations above are taken with respect to
the standard action of CL.�/ on

Q
i2L.�/H

1
.i/
.X/, not to be confused with the triangular

action which will be introduced in (2.10), following [2, (11.1)].

2.8. The model domain

We now recall the local structure of the moduli space of multi-scale differentials near the
open boundary stratumD� . In [2, Section 8], the authors first introduce an auxiliary space,
the model domain, and then show later in [2, Section 10] that it is locally biholomorphic
to „Mg;n.�/. Local coordinates of the model domain „Mg;n.�/ near b0 2 D� can be
given by

B WD U ��`.�/�1 ��jE
horj (2.6)

where U � D� denotes a generalized period chart.

Convention 2.5. From now on, unless stated otherwise, U � D� will always refer to a
generalized period chart in D� centered at b0, which we allow to be further shrunk as
needed. Furthermore, we often implicitly identify U with U � .0; : : : ; 0/ � B .

We call B the local model domain and denote its coordinates by b D .�; t; h/ with
scaling parameters t D .ti /i2L.�/, horizontal node parameters h D .he/e2Ehor , and � a
multi-scale differential. We omit the stable curve X from the notation.

Notation 2.6. Throughout the text we denote

N WD `.�/ � 1C jEhor
j; M WD dimU D dimD� : (2.7)

In particular, dimB D N CM .
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Note that our notation here differs from [2] where N denotes the number of levels,
not including the count of horizontal nodes. We recall that we denote the number of levels
by `.�/.

Let p W B ! U denote the projection onto the first factor. On B we consider the
pullback family .p�X ! B; �/ where .X ! U/ is the family from (2.4), which we call
the model family. We usually omit the projection map p and only write

.X ! B;�/ (2.8)

for the model family.
We will explain the role of the parameters ti and he more precisely in Section 2.9. For

the moment we only define, following [2],

tdie WD

�1Y
kDi

t
ak
k
; (2.9)

where the exponents ak are defined in (2.1), and define the triangular action of t on � by

t ? � WD .tdie�.i//i2L�.�/: (2.10)

We also define the plumbing parameters

se WD

´Q`.eC/�1

iD`.e�/
t
me;i
i at vertical nodes;

he at horizontal nodes:
(2.11)

where the exponents me;i are defined in (2.1). Note that at vertical nodes we have the
relation

td`.e�/e D s
�e
e td`.eC/e: (2.12)

We define the (local) boundary D � B as the normal crossing divisor given by the
equations

D WD
° Y
i2L.�/

ti �
Y
e2Ehor

he D 0
±
: (2.13)

The boundary component U 'D� \B DU � .0; : : : ; 0/�D is called the most degener-
ate boundary stratum, while the complement D nD� corresponds to partial undegener-
ations of � . We will not need the precise definition of undegenerations, and instead refer
the reader to [2].

2.9. The universal family of multi-scale differentials

In [2, Section 10] the authors use plumbing to construct the universal family .Y ! B;!/

of multi-scale differentials over the base B defined in (2.6). We refer the reader to [2, Sec-
tion 11] for the precise definition of families of multi-scale differentials. For our purposes
we only need the following properties of the universal family Y:

(1) For any b 2 B nD the differential !b is a flat surface in the stratum H .�/.
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(2) On the most degenerate stratum, i.e. for any b 2 U � .0; : : : ; 0/, the differential !b is
a multi-scale differential in D� .

(3) There exist families of unions of disks zU � Y; U � X containing zS , and a biholo-
morphism

‰ W Y n zU ' X nU: (2.14)

Near a marked point, zU and U are homeomorphic to a disk, while at nodes they are
homeomorphic to a union of two disks intersecting at the node.

(4) Suppose K � Y n zU is compact and ‰.K/ � X.i/. Then

lim
t;h!0

1

tdie
!.b/jK D �.i/

uniformly, where b D .�; t; h/ and in the limit all ti and he go to zero. In other words,
as b approaches a boundary point, � 2 D� , on the i -level !.i/.b/, rescaled by tdie;
converges uniformly to �.i/, away from the nodes and marked points.

(5) Along the most degenerate boundary stratum D� the map ‰ extends to an isomor-
phism

YjD
�
' XjD

�
:

3. Constructing the universal family of „Mg;n.�/

In this section we outline the construction of the universal family Y. We follow [2, Sec-
tion 10] in notation and setup, but we only highlight the features of the construction
necessary for our discussion.

3.1. Modification differentials

For a multi-scale differential, the residues match at horizontal nodes, while at vertical
nodes the multi-scale differential is holomorphic at qCe and has a pole at q�e . On the other
hand, for the plumbing construction in Section 3.2 it will be important to have differentials
with matching residues at every node. The solution, as found in [1], is as follows. It is a
consequence of the global residue condition that we can add a “small” differential � to
� such that the residues of t ? � C � match at all nodes. The precise definition is as
follows (see also [2, Def. 9.1]). A family of modifying differentials � for the model family
.X! B;�/ is a family of meromorphic differentials .X! B; �/ with � D .�v/v2V such
that

� � is holomorphic except for possible simple poles along nodal and polar sections of �,
and we allow � to have residues at horizontal nodes;

� �.i/ is divisible by tdi�1e for each i 2 L.�/, and �.�`.�// � 0;

� t ? �C � has matching residues at all nodes.
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3.2. Plumbing setup

In [2, Section 10] the authors introduced a plumbing setup for multi-scale differentials
which we will now recall and use subsequently. We will work on a polydisk B" � B of
radius " D ".b0/ > 0. We define the standard annulus in C:

Aı1;ı2 WD ¹ı1 < jzj < ı2º:

For ı D ı.b0/ > 0 to be determined, we define the standard plumbing fixture to be

Ve WD ¹.b; u; v/ 2 B" ��
2
ı W uv D se.b/º

where se.b/ is defined by (2.11). We consider Ve ! B" as a family over B" with
fibers .Ve/b . We equip Ve with the relative one-form �e given by

�e WD .td`.eC/eu
�e � r 0e/

du

u
D �.td`.e�/ev

��e C r 0e/
dv

v

with residue r 0e to be determined. We also consider the families of disjoint annuli ACe ;A
�
e

� Ve given by

ACe WD ¹.b; u; v/ W ı=R < juj < ıº; A�e WD ¹.b; u; v/ W ı=R < jvj < ıº;

for some constant R > 0.

Definition 3.1. For b 2 B n D, we define the vanishing cycle �e � .Ve/b to be the
standard generator of the fundamental group of the annulus .Ve/b in u-coordinates, rep-
resented by a path encircling the origin once with counterclockwise orientation.

Our convention for the orientation on �e has the following interpretation: If one
chooses a tangent vector Ev on the curve pointing from lower levels to higher levels, then
the frame .Eu; Ev/ is positively oriented where Eu is the tangent vector along �e , as seen in
Figure 1. At horizontal vanishing cycles the orientation depends on the random choice of
eC and e�.

Fig. 1. Orientation on vanishing cycles.
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We stress that we consider �e as an actual path and not just a homology class. If no
confusion is possible we will not distinguish between �e and its class.

For each marked zero Zk of order mk , we define a family of disks, equipped with a
relative one-form �Zk , by

DZk WD B" ��ı ; �Zk WD z
mkdz:

We define a family of annuli AZk � DZk by

AZk WD B" � Aı=R;ı :

3.3. Standard form coordinates for multi-scale differentials

The idea of the plumbing construction for the universal family Y is to find local coordi-
nates near marked zeroes and nodal sections in which the families .X; t ? �/ and .X; t ?
�C �/ have a simple form. The difference between the two families is that the order of
vanishing at the nodes and marked points is constant for the first family .X; t ? �/ but it
can jump for the second family .X; t ? �C �/. In [2] the authors introduce the following
solution. For the family .X; t ? �/ we can find local coordinates near each nodal section
and each marked point, in which the differential has a simple form, while for the second
family .X; t ? �C �/ this is only possible on an annulus such that the disk bounded by it
contains the marked zeroes and the nodes. The results are as follows. We begin with the
family .X; t ? �/.

Theorem 3.2 ([2, Thm. 4.1]). There exists a constant ı1 > 0 such that for each edge e
and for each marked zero Zk of � there are families of conformal maps of disks

�Ce W B" ��ı1 ! X`.eC/; ��e W B" ��ı1 ! X`.e�/; �Zk W B" ��ı1 ! X`.Zk/

such that the following properties are satisfied:

(1) The restrictions of these maps to B" � 0 coincide with the nodal sections QeC ;Qe�

and the marked sections Zk , respectively.

(2) The pullback of t ? � has standard form, that is,

.�Ce /
�.t ? �/ D td`.eC/e

�
z�e � resq�e .t ? �/

� dz
z
;

.��e /
�.t ? �/ D �td`.e�/e

�
z��e C resq�e .t ? �/

� dz
z
;

.�Zk /
�.t ? �/ D td`.Zk/ez

mkdz:

The next result concerns the family .X; t ? �C �/.

Theorem 3.3 ([2, Thm. 10.4]). For any R > 1, there exist constants "; ı > 0 such that
for each edge e and each marked zero Zk of � there are families of conformal maps of
annuli

�Ce WB"�Aı=R;ı!X`.eC/; ��e WB"�Aı=R;ı!X`.e�/; �Zk WB"�Aı=R;ı!X`.Zk/

such that the following properties are satisfied:



The boundary of linear subvarieties 4537

(1) The images of �Ce ; �
�
e ; �Zk are families of annuli BCe ;B

�
e ;BZk not containing any

zeroes of .X; t ? � C �/. The families of annuli bound families of unions of disks
UCe ;U

�
e ;UZk containing the nodal sections QCe , Q�e and the section Zk , respec-

tively.

(2) The pullback of t ? �C � has standard form, that is,

.�Ce /
�.t ? �C �/ D td`.eC/e

�
z�e � resq�e .t ? �C �/

� dz
z
;

.��e /
�.t ? �C �/ D �td`.e�/e

�
z��e C resq�e .t ? �C �/

� dz
z
;

.�Zk /
�.t ? �C �/ D td`.Zk/ez

mkdz:

(3) The holomorphic maps �Ce ; �
�
e ; �Zk agree with the corresponding maps �Ce ; �

�
e ; �Zk

on the most degenerate boundary stratum, i.e. on .U � .0; : : : ; 0// � Aı=R;ı :

Definition 3.4. By a slight abuse of notation, we refer to the family of coordinates given
by �Ce as �Ce -coordinates, and similarly for ��e ; �h; �

C
e ; �

�
e ; �Zk . If we do not want to

specify whether we refer to a preimage of a node or a marked point, we simply write �
or �.

The maps �Ce ; �
�
e ; �Zk are not determined uniquely. Following [2], note that the maps

can be specified uniquely by choosing base points near the marked zeroes and nodes. We
choose sections &Ce ; &

�
e ; &Zk W B! Y such that the image is contained in a chart centered

at qCe ; q
�
e ; Zk respectively. Fix p0 WD ı=

p
R 2 Aı=R;ı as the base point of the annulus.

Then by [2, Thm. 4.1] there exist unique �Ce ; �
�
e ; �h such that

�Ce .b; p0/ D &eC.b/; ��e .b; p0/ D &e�.b/; �Zk .b; p0/ D &Zk .b/;

for any b 2 U � .0; : : : ; 0/.

Convention 3.5. From now on, we fix once and for all a choice of nearby sections &.

3.4. The plumbing construction

For each node e and each marked zero Zk we define conformal isomorphisms ‡˙e W
A˙e ! B˙e and ‡Zk W AZk ! BZk by

‡Ce .b; u; v/ WD �
C
e .b; u/; ‡�e .b; u; v/ WD �

�
e .b; v/; ‡Zk .b; z/ WD �Zk .b; z/:

We define Y to be the family obtained by removing the disks U˙e ; UZk from X and
attaching Ve and DZk by identifying the A- and B-annuli via the ‡-gluing maps. Since
t ? �C � and �˙; �Zk are identified via ‡, the family Y inherits a relative one-form !.

We denote by U the union of UCe ;U
�
e ;UZk over all nodes and marked points, and

similarly we denote by zU the union of the families of disks B" � Aı=R;ı � Y over
all marked points and nodes. The families U and zU are exactly the families of disks
from Section 2.9, .3/.
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We have thus locally described the universal family .Y ! B; !/. It will be needed
to compare the periods of ! and the limit multi-scale differential � in Theorem 5.2. We
will in particular need the particular form of �-coordinates to analyze what happens in a
neighborhood of the nodes.

4. Level filtrations

In this section we introduce various notions of level for paths and homology classes. This
will be necessary since the asymptotics of periods

R

! are governed by the level of  .

We now introduce the setup for the rest of this section. We let † be a topological
surface homeomorphic to surfaces in H .�/, which is obtained from a nodal Riemann
surface using the plumbing construction from Section 3. In Definition 3.1 we have defined
the vanishing cycles on an annulus. Using the plumbing maps from Theorem 3.3 we can
pull back �e from the annulus to †. By abuse of notation we denote the resulting curves
again by �e . We define ƒ WD ¹�e W e 2 Eº � † considered as a multicurve, and then
topologically a stable curve in D� is obtained by pinching ƒ. As before, we fix a stable
curve X 2 D� .

4.1. Thickenings of vanishing cycles

For each vanishing cycle �e , let �ıe be a small open neighborhood of �e that deformation
retracts onto �e , and denote by ƒı � † the union of all such thickenings.

We decompose
ƒ D ƒver

tƒhor

into vanishing cycles corresponding to vertical and horizontal nodes, respectively, and
further decompose

ƒver
D

G
i2L�.�/

ƒver
.i/; ƒhor

D

G
i2L�.�/

ƒhor
.i/

where

ƒver
.i/ WD ¹�e W e 2 E

ver; `.eC/ D i; `.e�/ < iº;

ƒhor
.i/ WD ¹�e W e 2 E

hor; `.eC/ D `.e�/ D iº:

In words, ƒver
.i/

consists of vertical vanishing cycles connecting †.i/ to lower levels and
ƒhor
.i/

consists of horizontal vanishing cycles contained in †.i/.
For each edge e 2 E the boundary @�ıe consists of two boundary circles, �Ce t �

�
e ,

with �Ce � †.`.eC// and ��e � †.`.e�//. At horizontal nodes we randomly choose which
boundary component is denoted �Ce . We need to be careful about choosing orientations
for �˙e . Our convention is that �Ce has the same orientation as �e , while ��e has the oppo-
site orientation. We write

ƒC WD ¹�Ce W e 2 E
ver
º; ƒ� WD ¹��e W e 2 E

ver
º t ¹�˙e W e 2 E

hor
º:



The boundary of linear subvarieties 4539

We define analogues of ƒ.i/ and ƒver for ƒı and ƒ˙. For example, ƒC;ver
.i/

consists
of �Ce for all vertical nodes e with `.eC/ D i and `.e�/ < i , while ƒı;ver

.>i/
consists of �ıe

for all vertical nodes with `.eC/ > i and `.e�/ � i .
Figure 2 illustrates the definitions.

Fig. 2. Thickenings of vanishing cycles.

We now introduce several different ways of filtering the Riemann surface† by levels.
If we remove all vertical vanishing cycles fromX , then the remaining surface decomposes
into a disjoint union of surfaces of a fixed level, i.e.

† nƒı;ver
D

G
i2L�.�/

†.i/:

Each of the resulting subcurves †.i/ is a connected compact surface potentially with
boundary. We note that we remove ƒı;ver instead of just ƒver since we want the result
to be compact. If instead of removing all vertical vanishing cycles, we only remove verti-
cal vanishing cycles that cross the i -th level transition, i.e. exactly the vanishing cycles in
ƒ
ı;ver
.�i/

, then we decompose † into two surfaces: the part of † that is at least of level i and
the part of † below level i . We write

† nƒ
ı;ver
.�i/
DW †.�i/ t†.<i/:

So far we have only removed the vertical vanishing cycles but later we will also need
to remove the horizontal ones. We thus define

†cut
.i/ WD †.i/ nƒ

ı;hor (4.1)

to be the surface obtained from†.i/ by cutting along all horizontal vanishing cycles. Note
that the resulting surface is usually a disconnected compact surface with boundary. See
Figure 3 for an example illustrating the different ways of filtering †.

4.2. Global residue condition revisited

We later want to compare period coordinates on H .�/ and generalized period coordinates
on D� . In the terminology of this section, we have

H 1
.i/.X IC/ D H

1.†cut
.i/ n P;Z [ƒ

C;ver
.i/
IC/
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† †.0/ †cut
.0/

†.�1/ †cut
.�1/

Fig. 3. The different ways of filtering † by level.

where H1
.i/
.X/ is defined in (2.3). Thus local coordinates on D� and H .�/ are given byL

i2L�.�/H
1.†cut

.i/
n P;Z [ƒ

C;ver
.i/
IZ/GRC and H 1.† nZ;P IC/, respectively.

Instead of working with cohomology we phrase everything in this section in terms of
homology, where we think of a linear subspace of cohomology as being the annihilator of
a subspace in homology. For the rest of the section we follow the convention that, unless
stated otherwise, homology is taken with Z-coefficients. We first need to set up various
spaces modeling residue conditions on multi-scale differentials. Let Y be a connected
component of X.>i/ with P \ Y D ;, and denote by ¹e1; : : : ; ebº the set of all nodes
where Y intersects X.i/. Then we define

�Y WD

bX
kD1

�ek 2 H1.†.i/ n P;Z [ƒ
ver;C
.i/

/;

and we denote by GRCver
.i/ � H1.†.i/ n P;Z [ƒ

ver;C
.i/

/ the linear span

GRCver
.i/ WD h�Y W Y a connected component of X.>i/ with P \ Y D ;iC: (4.2)

In words, GRCver
.i/ is the span of all the equations defining the global residue conditions of

level i . We stress that this does not include the matching residue conditions at horizontal
nodes at level i . We analogously define GRCver;cut

.i/
� H1.†

cut
.i/
n P; Z [ ƒ

ver;C
.i/

/ by the

same cycles �Y , now considered as elements of H1.†cut
.i/
n P;Z [ƒ

ver;C
.i/

/.
To include the matching residue condition at horizontal nodes, we let

MRH.i/ WD h�C � �� W � 2 ƒhor
.i/iC � H1.†

cut
.i/ n P;Z [ƒ

ver;C
.i/

/:

and finally we define

GRC.i/ WD GRCver;cut
.i/

CMRH.i/ � H1.†cut
.i/ n P;Z [ƒ

ver;C
.i/

/;

GRC WD
L

i2L�.�/

GRC.i/ :

In particular, GRC consists exactly of all global residue equations including the
matching residue condition at horizontal nodes. We obtain the following description for
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H 1.†cut
.i/
nP;Z [ƒ

C;ver
.i/

/GRC, which is exactly the subspace in cohomology satisfying all
global residue and matching residue conditions:

H 1.†cut
.i/ n P;Z [ƒ

C;ver
.i/

/GRC
D Ann.GRC.i//

' .H1.†
cut
.i/ n P;Z [ƒ

C;ver
.i/

/=GRC.i//�: (4.3)

4.3. Level and vertical filtration

In this section we define the concept of level for homology classes. Additionally, we
introduce two filtrations L� and W� of H1.† n P;Z/. Roughly speaking, Li will consist
of all cycles which can be represented by paths supported in the subsurface †.�i/ of level
at most i , while cycles Wi � Li can additionally be represented by paths disjoint from
the horizontal vanishing cycles of level i .

The motivation for introducing Wi is that it will come with a surjective linear map

fi W Wi ! H1.†
cut
.i/ n P;Z [ƒ

ver;C
.i/

/=GRC.i/;

the specialization morphism, with kernel Li�1, and we will thus haveL
i2L�.�/

Wi=Li�1 '
L

i2L�.�/

H1.†
cut
.i/ n P;Z [ƒ

ver;C
.i/

/=GRC.i/ :

This will allow us to compare the local coordinates on H .�/ and on D� .
We start by describing the specialization morphism in words. Any class Œ� in Wi can

be represented by a collection of smooth curves in †.�i/ which are all disjoint from the
horizontal vanishing cycles. Suppose for simplicity that Œ� can be represented by a single
curve ˛ in †.�i/, disjoint from the vanishing cycles. We then restrict ˛ to the subsurface
†.i/ of level i , i.e. we remove all the parts of ˛ that go into lower levels. The result is a
path ˛0 in †.i/ but since ˛ is disjoint from all horizontal vanishing cycles, ˛0 is actually
contained in †cut

.i/
. We then define

fi .Œ�/ D ˛
0:

The rest of the section is concerned with making the definition of fi precise and showing
that it is well-defined in homology. The specialization morphism is illustrated in Figure 4.

† †cut
.0/

Fig. 4. The specialization morphism f0.
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To simplify notation, for the rest of this section we adopt the convention that for
B;A � C the relative homology H1.B;A/ is always to be understood as H1.B;A \ B/
(which is simply equal to H1.B;A/ if A � B).

Definition 4.1. The inclusion †.�i/ � † induces a map

vi W H1.†.�i/ n P;Z/! H1.† n P;Z/ ;

and we define the level filtration L� by

Li WD Im.vi / � H1.† n P;Z/ :

By naturality vi�1 factors over the natural map

H1.†.�i�1/ n P;Z/! H1.†.�i/ n P;Z/ ;

and thusLi�1 �Li . We say a cycle Œ� 2H1.† nP;Z/ is of top level i if Œ� 2Li nLi�1,
and we then write

>.Œ�/ D i:

We let

.ƒhor
.i//
?
WD ¹Œ� 2 H1.† n P;Z/ W hŒ�; �i D 0 8� 2 ƒ

hor
.i/º

where h�; �i WH1.† nP;Z/�H1.† nZ;P /! Z denotes the algebraic intersection pair-
ing. We then define the vertical filtration W� by

Wi WD Li \ .ƒ
hor
.i//
?
� Li :

By construction every cycle in Li�1 can be represented by a collection of paths con-
tained in†.�i�1/. Since†.�i�1/ is disjoint from all horizontal vanishing cycles, of level i ,
we have in particular

Li � Wi � Li�1:

Example 4.2. To demonstrate some of the features of the level and vertical filtration
we consider the example from Figure 4. Here �1 is a horizontal vanishing cycle and �2
and �3 are vertical vanishing cycles separating † into †.0/ and †.�1/. Since ˛ is a path
completely contained in †.0/ and is not homologous to any path contained in †.�1/,
we have Œ˛� 2 L0. Furthermore, ˛ has zero intersection number with �1 and thus Œ˛� is
contained in the vertical filtration W0. On the other hand, the path ˇ intersects †.0/ but is
homologous to a path completely contained in †.�1/, thus Œˇ� 2 L�1. Since there are no
horizontal vanishing cycles in †.�1/, the �1-th piece of the level filtration coincides with
the �1-th piece of the vertical filtration, i.e. L�1 D W�1. Thus Œˇ� 2 W�1 D L�1. All
three vanishing cycles �1; �2 and �3 are homologous (up to orientation), thus �i 2 L�1
for i D 1; 2; 3. In Figure 5 (b) we exhibit an explicit basis for each graded piece of the
filtration L�1 D W�1 � W0 � L0.
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(a) Cautionary examples (b) A basis for L� and W�

Fig. 5. The level filtration L� and the vertical filtration W�.

The specialization morphism

Our goal is now to make the construction of the specialization morphism

fi W Wi ! H1.†
cut
.i/ n P;Z [ƒ

ver;C
.i/

/=GRC.i/

precise. As a technical step we first construct an auxiliary map

gi W Li ! H1.†.i/ n P;Z [ƒ
ver;C
.i/

/

which is defined on the whole level filtration Li and not just the vertical filtration Wi .
Both fi and gi are basically restriction maps: Given a path of level i , the map gi simply
restricts the path to the i -th level, i.e. the result is a path in †.i/. The map fi is similar;
the difference is that if a path is disjoint from all horizontal vanishing cycles, then its
restriction is actually contained in †cut

.i/
D †.i/ n ƒ

hor
.i/

. There is an ambiguity in how a
cycle inWi can be represented by a collection of curves disjoint from the vanishing cycles.
It turns out that the ambiguity is an element of GRC.i/ and thus fi will give a well-defined
map to H1.†cut

.i/
n P;Z [ƒ

ver;C
.i/

/=GRC.i/ and not to H1.†cut
.i/
n P;Z [ƒ

ver;C
.i/

/.
We now start the description of fi and gi . We first describe then on the level of paths

and then show that they give well-defined maps on homology.
Let Œ� 2 Li . By the definition of the level filtration we can write Œ� D

P
k akk

where k are simple smooth curves contained in †.�i/. For each k we let  0
k
WD kj†.i/

be the restriction to †.i/ considered as a relative cycle with boundary in Z [ƒver;C
.i/

and
then define

gi .Œ�/ WD
X
k

ak Œ
0
k � 2 H1.†.i/ n P;Z [ƒ

ver;C
.i/

/:

Now that we have constructed gi we need to define an auxiliary map hi , and after-
wards we will define fi as the composition of hi and gi . Set

zWi WD .ƒ
hor
.i//
?
� H1.†.i/ n P;Z [ƒ

ver;C
.i/

/:

Note that in particular gi .Wi / � zWi . We are now going to define a map

hi W zWi ! H1.†
cut
.i/ n P;Z [ƒ

ver;C
.i/

/=GRC.i/

as follows.
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Fig. 6. A band move.

Let Œ� 2 zWi . Write Œ�D
P
k ck˛k as a sum of smooth simple curves. Since the inter-

section number with any horizontal vanishing cycle is zero, we can make the collection
¹˛kº of curves disjoint from any horizontal vanishing cycle of level i by a series of band
moves, as depicted in Figure 6 or [10]. Thus we can write Œ� D

P
k ck˛

00
k

where ˛00
k

is a
collection of smooth simple curves in †cut

.i/
. We then define

hi .Œ�/ WD
X
k

ck Œ˛
00
k � 2 H1.†

cut
.i/ n P;Z [ƒ

ver;C
.i/

/=GRC.i/;

and finally set
fi WD hi ı gi jWi :

The maps fi are not well-defined as maps toH1.†cut
.i/
nP;Z [ƒ

ver;C
.i/

/, since different
choices of band moves can differ by multiples of the vanishing cycles, as seen in Figure 7,
but we will see that fi is well-defined as a map toH1.†cut

.i/
nP;Z [ƒ

ver;C
.i/

/=GRC.i/. See
Figure 8 for an illustration of the map fi .

Fig. 7. The ambiguity of band moves.

† †cut
.0/

Fig. 8. The map f0.
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Proposition 4.3. The linear maps

gi W Li ! H1.†.i/ n P;Z [ƒ
ver;C
.i/

/;

fi W Wi ! H1.†
cut
.i/ n P;Z [ƒ

ver;C
.i/

/=GRC.i/

are well-defined and surjective. Furthermore,

kerfi D kergi D Li�1:

Proof. We start with the map gi . From the long exact sequence of the triple

Z � .†.�i�1/ n P / [Z � .†.�i/ n P / [Z;

we obtain an exact sequence

H1.†.�i�1/ n P;Z/ H1.†.�i/ n P;Z/ H1.†.�i/ n P; .†.�i�1/ n P / [Z/

H1.†.i/ n P;ƒ
ver;C
.i/
[Z/

�i

'

where the vertical isomorphism is induced by excising †.�i�1/ nƒver
.i/

.
Since the excision map is defined via barycentric subdivision, it follows that for a

simple smooth curve ˛ the composition

H1.†.�i/ n P;Z/! H1.†.i/ n P;ƒ
ver;C
.i/
[Z/

is given by the restriction ˛0 to †.i/ and thus the map coincides with gi . From the exact
sequence we then obtain ker gi D Li�1. To see that gi is surjective, take any smooth
closed curve  representing a class in H1.†.i/ n P;Z [ƒ

ver;C
.i/

/. By [1, Lemma 3.9] we

can connect the boundary points of  inƒver;C
.i/

to marked zeroes in†.�i/ by only passing
through levels below i and thus creating a gi -preimage for  . This proves all claims
about gi ; it remains to prove the analogous statements for fi .

To show that fi is well-defined, it is enough to show that hi is well-defined.
Let Œ� 2 zWi and represent Œ� D

P
k ck˛k D

P
l dlˇl 2 H1.†.i/ n P; Z [ ƒ

ver;C
.i/

/

in two different ways by collections of smooth simple curves contained in †cut
.i/

.
We let ˛ D

P
k ck˛k and ˇ D

P
l dlˇl be the associated cohomology classes in

H1.†
cut
.i/
n P; Z [ ƒ

ver;C
.i/

/ considered as relative cohomology classes in †cut
.i/

. We want
to show that ˛ � ˇ 2 GRC.i/.

We will apply the relative version of Mayer–Vietoris. We set

A WD †.i/ n .ƒ
hor
.i/ [ P / D †

cut
.i/ n P; B WD ƒ

hor;ı
.i/

:

In particular, we have A \ B D ƒhor;˙
.i/

and A [ B D †.i/ n P . We need the following
part of the Mayer–Vietoris sequence:

H1.ƒ
hor;˙
.i/

/
.��;�
0
�/

����! H1.†
cut
.i/nP;Z[ƒ

ver;C
.i/

/˚H1.ƒ
hor;ı
.i/

/
k��l�
����! H1.†.i/nP;Z[ƒ

ver;C
.i/

/

where � W A\B! A, �0 W A\B! B , k W A! A[B and l W B! A[B are inclusions.
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By construction .˛ �ˇ;0/ 2H1.†cut
.i/
nP;Z [ƒ

ver;C
.i/

/˚H1.ƒ
hor;ı
.i/

/ lies in the kernel
of k� � l� and thus in the image of .��; �0�/. Note that we have .��; �0�/.a�

C C b��/ D

.a�C C b��; .a C b/�/. We conclude that ˛ � ˇ D a.�C � ��/ 2 GRC.i/ and thus hi
and fi are well-defined.

Observe that hi fits into a commutative diagram

zWi H1.†
cut
.i/
n P;Z [ƒ

ver;C
.i/

/

H1.†
cut
.i/
n P;Z [ƒ

ver;C
.i/

/=GRC.i/

hi

pi

qi

where pi is the natural map induced by the inclusion †cut
.i/
� †.i/ and qi is the natural

quotient map. Thus hi is surjective and ker hi D pi .GRC.i//.
Since gi and hi are surjective, so is fi D hi ı gi . It remains to show that kerfi DLi�1.
We define G.i/ �Wi to be the subspace generated by �Y as in (4.2). Then gi .G.i//D

pi .GRC.i// D ker hi and thus ker fi D G.i/ C ker gi D G.i/ C Li�1. We claim that
G.i/ � Li�1. This can be seen as follows. Let Y be a connected component of X.>i/
with P \ Y D ;, and denote by ¹e1; : : : ; ebº the set of all nodes where Y intersects X.i/
and additionally by ¹ebC1; : : : ; ecº the nodes where Y intersects X.<i/. Then

Pc
kD1 �ek

is zero in H1.† n P;Z/ since this collection of vanishing cycles is separating, and thus

�Y D

bX
kD1

�ek D �

cX
kDbC1

�ek 2 Li�1:

4.4. Top level

So far we have defined the level of cycles Œ� 2 H1.† n P;Z/ but it will be convenient
to be able to talk about the level of paths. There has to be some care when comparing the
level of a path and of its homology class.

Definition 4.4. For a collection of curves  on † we define its .top/ level to be the
largest i such that  \ †.i/ ¤ ; and then write >./ D i . Note that this is only well-
defined as long as none of the curves are contained in ƒı. We then define the top level
restriction > to be the intersection of  with †.>.//. By considering †.>.// as a sub-
surface of X we can also define the level of a collection of curves on the stable curve X .
In this case we define > to be the restriction of  to X.>.//.

The following example shows that one has to be cautious when comparing the level
of a path and a homology class.

Example 4.5 (Tilted cherry). Figure 9 depicts a smooth genus 3 curve with vanishing
cycles corresponding to a tilted cherry level graph. The two vanishing cycles �1 and �2
are homologous and thus >.Œ�1�/ D >.Œ�2�/ D �2. On the other hand, both  and  0 are
simple closed curves representing Œ�1�, but >./ D 0; >. 0/ D �1.
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�1

�2

Fig. 9. A smooth genus 3 curve and the tilted cherry level graph.

The example shows that even if a cycle is represented by a simple curve, we cannot
necessarily read off the level of the cycle from a path representing it. But since every cycle
Œ� 2 Li can be represented by a collection of paths supported on X.�i/ we have

>.Œ�/ D inf ¹>./ W  is a collection of simple smooth curves representing Œ�º:

4.5. An adapted homology basis

In this section we construct a homology basis suited to analyzing linear equations.
Roughly speaking, we only want to consider paths that cross different levels as little as
possible. This will allow us later to compare the local coordinates on H .�/ and on D� .
For the remainder of this section we let† be a topological surface in H .�/ andX a stable
curve in D� .

Definition 4.6. We say a cycle Œ� 2 H1.† n P;Z/ crosses a node e 2 E.�/ if hŒ�; �ei
¤ 0. A cycle Œ� is called a horizontal-crossing cycle if it crosses some horizontal node at
level >.Œ�/, and non-horizontal otherwise. Note that non-horizontal cycles are allowed
to cross horizontal nodes below the top level. Similarly, for Œ� 2 H1.X n P;Z/ we say
that Œ� crosses e, is a horizontal-crossing cycle or is non-horizontal if the same is true for
some lift of Œ� to H1.† n P;Z/.

If Œ� 2 H1.† n P; Z/ has top level i and is a horizontal-crossing cycle, then
Œ� 2 Li nWi . On the other hand, if Œ� is non-horizontal, then Œ� 2 Wi n Li�1.

Example 4.7. We consider the dual graph in Figure 10 with two components of top level
and three horizontal nodes. The diamond indicates a marked pole. The cycle 1 crosses e1,
but 2 is non-horizontal, since it can be deformed away from e2.

Fig. 10. Crossing and non-crossing curves.
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Definition 4.8. A basis ¹1; : : : ; nº of H1.† n P;Z/ is called �-adapted if there exists
a partition

¹1; : : : ; nº D
G

i2L�.�/

.¹˛
.i/
1 ; : : : ; ˛

.i/

n.i/
º t ¹ı.i/e W e 2 E

hor
.i/ º/

into horizontal-crossing cycles ı.i/e 2 Li nWi and non-horizontal cycles ˛.i/
k
2Wi nLi�1

such that

Li D
DG
j�i

¹˛
.j /
1 ; : : : ; ˛

.j /

n.j /
º t ¹ı.j /e W e 2 E

hor
.j /º

E
C
;

Li=Wi ' hı
.i/
e W e 2 E

hor
.i/ iC;

Wi=Li�1 ' h˛
.i/
1 ; : : : ; ˛

.i/

n.i/
iC;

and additionally

hı.i/e ; �e0i D

´
1 if e D e0;

0 otherwise,
for all e 2 Ehor

.i/ ; e
0
2 Ehor:

As a first remark, we note that the definition of �-adapted basis only depends on the
level graph and not on the enhancement. The basic statement is the existence of �-adapted
bases.

Proposition 4.9. For every enhanced level graph � there exists a �-adapted homology
basis.

Proof. We claim that the natural map

�i W Li ! CjE
hor
.i/
j
; Œ� 7! .hŒ�; �ei/e2Ehor

.i/
;

is surjective and thus
Li=Wi ' CjE

hor
.i/
j
:

Assuming this, the existence of a �-adapted basis can now be seen as follows. We
have the filtration

H1.† n P;Z/ � L0 � W0 � � � � � L`.�/ � W`.�/

with graded pieces

Li=Wi ' CjE
hor
.i/
j
; Wi=Li�1 ' H1.†

cut
.i/ n P;Z [ƒ

ver;C
.i/

/=GRC.i/ :

We are now going to construct a �-adapted basis inductively by lifting a basis
from each graded piece. We start by choosing a basis ¹ Q̨ .i/1 ; : : : ; Q̨

.i/

n.i/
º for

H1.†
cut
.i/
n P;Z [ƒ

ver;C
.i/

/=GRC.i/ and then let ˛.i/
k

be a preimage of Q̨ .i/
k

under the spe-

cialization map fi . Afterwards we let ¹ı.i/e º be �i -preimages of the unit basis in CjE
hor
i
j.
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It thus remains to prove the surjectivity of the map �i . For this we construct explicit
cycles ı.i/e with

hı.i/e ; �e0i D

´
1 if e D e0

0 otherwise
for all e0 2 Ehor:

We fix a horizontal node e 2 Ehor
.i/

. If both v.eC/ and v.e�/ are local minima for
the level order, then they contain a marked point which is not a pole or a preimage of
any node (see [1, Lemma 3.9]), and we can then connect these marked points by a path
that goes through the node e once and does not cross any other horizontal nodes. On the
other hand, if for example v.eC/ is not a local minimum then consider a path  0 in the
dual graph connecting v.eC/ to a local minimum v0 by only passing through vertical
edges connecting to levels below i . Then by the same argument as before, Xv0 contains a
marked point PC as above. We can run the same argument for v.e�/ and find a marked
point P�. By embedding the dual graph into X we can represent  0 by a path ı.i/e in X
connecting PC and P�. By construction, ı.i/e intersects �e once and is disjoint from all
other horizontal vanishing cycles.

The motivation for introducing �-adapted bases is that this allows relating the coor-
dinates on the boundary D� to the coordinates on the open stratum H .�/, which we
recall are given by

L
i2L�.�/H

1
.i/
.X/GRC and H 1.† n P;Z/, respectively. We now fix a

�-adapted basis ¹1; : : : ; nº, once and for all.

Example 4.10. We now illustrate this definition with some examples. Figure 11 depicts
a level graph � and two different homology bases forH1.X n P;Z/. The numbers inside
the vertices denote the genus of the corresponding irreducible component of the stable
curve. Note that the decorations �e and the zero orders at the marked points are irrelevant
for our discussion (since the notion of a �-adapted basis only depends on the level graph
and not on the choice of an enhancement) and thus we omit them. The stable curves are
degenerations of genus 3 curves and the multi-scale differentials live in the codimension 4
boundary stratum D� . The homology basis of Figure 11 (b) provides an example of a �-
adapted basis while the basis in Figure 11 (c) violates the definition in two ways. Firstly,
every horizontal node is crossed by multiple basis elements and secondly, all paths have
top level 0, thus when restricting to the top level they are linearly dependent. In particular,
the top level restrictions together with the vanishing cycles generateH1.X.0/ nP.0/;Z.0//
but fail to generate H1.X.1/ n P.1/; Z.1//.

The second example, as depicted in Figure 12, is a degeneration of a genus 7 curve
in a codimension 4 boundary component of „Mg;n.�/. Bullets and diamonds represent
marked zeroes and marked poles, respectively. We omit the orientation of paths. In this
slightly more complicated example one can see all the features of a �-adapted basis. First
we start by choosing a basis for the vertical filtration W�1 D h˛

.�1/
1 ; ˛

.�1/
2 i and extend

this to a basis of L�1 D hı
.�1/
1 ; ı

.�1/
2 i ˚W�1 by adding paths that cross the horizontal

nodes in level �1. On the top level we have

W0 D L�1 ˚ h˛
.0/
1 ; : : : ; ˛

.0/
8 i:



F. Benirschke 4550

�1

(a) A level graph �

(b) A �-adapted basis (c) A non-�-adapted basis

Fig. 11. A level graph � and an example and a non-example of �-adapted bases.

�1

(a) A level graph �

(b) A �-adapted basis

Fig. 12. An example of a �-adapted basis.

Here we started by choosing a symplectic basis ¹˛.0/1 ; : : : ; ˛
.0/
6 º on each irreducible com-

ponent and then extended it by paths encircling marked nodes, in this case only ˛.0/7 , as
well as paths connecting marked zeroes, in this case ˛.0/8 . Finally, for the vertical filtra-
tion L0 one has to add paths crossing horizontal nodes in level 0. In this case we have

L0 D W0 ˚ hı
.0/
1 ; ı

.0/
2 ; ı

.0/
3 i:
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5. Log periods

In this section we only work with the universal family of multi-scale differentials
.Y ! B;!/. Our goal is to study the asymptotics of relative periods as we approach
the boundary D of the local model domain B . When integrating differential forms over
cycles, we will not usually distinguish between a cycle Œ� and a representative  .

5.1. The definition of log periods

We fix a cycle Œ� 2 H1.X n P; Z/ represented by a path  . We want to investigate the
behavior of the periods of !.b/ as b approaches the boundary. Thus we need a way of
deforming the cycle Œ� from X D Xb0 D Yb0 to nearby fibers of Y ! B . In Section 5.2
below we will give an explicit construction of a continuous family of cycles Œ.b/� 2
H1.Yb n Pb; Zb/ deforming Œ�. The family of cycles Œ.b/� is only well-defined locally.
By a process analogous to analytic continuation, it can be considered as a multivalued
family with multiple branches; the values of different branches differ by integral multiples
of the vanishing cycles �e .

In Section 5.5, we perform a second construction, making the family of cycles Œ.b/�
invariant under monodromy, thus obtaining a family Œ O.b/� of relative cycles well-defined
on B nD. By repeating the process for all elements of a basis ¹1; : : : ; nº of homology
we construct a family of bases for H1.Xb n Pb; ZbIC/ for all b 2 B n D that varies
continuously over B nD. In algebro-geometric terms, we construct an explicit frame for
the dual of the Deligne extension of the local system of relative cohomology (see for
example [14, Section 3]). Postponing the explicit constructions of Œ.b/� and Œ O.b/� for
now, we are able to define log periods. We define the vanishing cycle period

re.b/ WD
1

2�i

Z
�e

!.b/:

Definition 5.1. We define the log period   W B nD ! C of ! along  by

  .b/ WD
1

td>./e

Z
O.b/

!.b/ D
1

td>./e

�Z
.b/

!.b/ �
X
e2E

h; �eire.b/ ln.se/
�

where Œ.b/� and Œ O.b/� are the families of cycles that will be constructed in Sections 5.2
and 5.5, respectively, and h�; �i denotes the intersection pairing. Recall that the plumbing
parameters se were defined in (2.11).

Several comments are in order. Heuristically, the scaling factor 1=tdie comes from the
fact that on X.i/, at least away from the nodes, the differential ! behaves like .t ? �/.i/ D
td>./e� since the contribution from the modification differential � is small. The logarithm
ln.se/ is to be understood as follows. One starts by choosing a branch of the logarithm for
each coordinate ti and he at some base point x0 2 B nD� . Next, we extend the branches
via analytic continuation. By requiring that ln.se/ D

P`.eC/�1

iD`.e�/
ai ln.ti / we then define

branches for all parameters se . This of course only defines a multivalued function but
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later on we will see that   is single-valued, where we recall that the deformation .b/ is
also multivalued, and this multivaluedness will cancel out the multivaluedness of ln.se/.
The idea is that

R
.b/

! and ln.se/ behave similarly under analytic continuation and thus
their difference is single-valued. We stress that there is not a unique function   but a
countable collection of such depending on the choices of representatives  on the fixed
based surface and branches of the logarithms, but once those initial choices are made,  
is a well-defined and single-valued function on B nD. From now on we always fix such
an initial choice.

The following is the main result of this section.

Theorem 5.2. For any homology class Œ� 2 H1.X n P;Z/, the log period   is single-
valued and extends to an analytic function on B . Furthermore, the limit of   at b D
.�; 0; : : : ; 0/ 2 D� is

  .b/ D

Z
.b/>

Hol.�/ �
X
e2Ehor

h>; �ei resq�e .�/ce

where ce is a constant and the holomorphic part
R
.b/

Hol.�/ will be defined in (5.2).
The constants ce only depend on choices of the normal coordinates and branches of the
logarithm.

While we postpone the definition of Hol.!.b// in general to Section 5.6, we mention
here a special case. If b 2 D� and  is non-horizontal, then our definition will yieldZ



Hol.!.b// D
Z


�:

Recall that non-horizontal cycles were defined in Definition 4.6. We thus obtain the fol-
lowing corollary.

Corollary 5.3. If  is non-horizontal, then

  .�; 0; 0/ D

Z
>

�:

Remark 5.4. We will see in Section 7.2 that Theorem 5.2 can be seen as a version of
Schmid’s nilpotent orbit theorem [13] for flat surfaces with the following difference in
the setup. Instead of a whole basis for stable differentials we only have a single multi-
scale differential and instead of absolute homology we integrate over relative homology.

Comparing log periods and perturbed periods

In [2] the authors introduce a coordinate system on B given by so-called perturbed
period coordinates. Perturbed periods come in two different types, depending on whether
 crosses any horizontal nodes or not. If  only crosses vertical nodes, one truncates k
at the nearby section & of such a node and the perturbed period along  is obtained by
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integrating !.b/ over the truncation of  . In particular, the perturbed period forgets about
the period inside the plumbing cylinder. We use log periods in this paper because it is
easier to compare them, rather than perturbed periods, quantitatively to the actual periodsR
.b/

!.b/. The downside of using log periods is that the collection of all log periods over
a relative homology basis does not give local coordinates on B , since one cannot recover
the plumbing parameters he at horizontal nodes.

The rest of the section is devoted to the setup for and the proof of Theorem 5.2.

5.2. Deforming cycles to the universal family

We now describe the construction of the family of cycles Œ.b/�. We first explain the
construction at the level of paths.

The construction proceeds in two steps. In the first step we deform  fromX to nearby
curves Xb of the model family. In the second step, we parse through the explicit construc-
tion of the universal family in Section 3.4 to deform the cycles to Y.

We now start with the first step. First, lift  to a path on the normalization QX . Since the
family of normalizations . QX ! B;�/ is a family of (possibly disconnected) smooth Rie-
mann surfaces, we can, after possibly shrinkingB , find aC1-trivialization of . QX!B;�/,
by Ehresmann’s lemma. Furthermore, we can choose the trivialization so that it identifies
the marked points and nodes. Via the trivialization we construct a family of paths on QX
deforming  , which we still denote by  . Since we chose a trivialization that preserves
the nodes, the family of paths  descends to X. By abuse of notation we denote this new
family of paths on X also by  .

Suppose we now start with the homology cycle Œ� 2 H1.X n P; Z/ represented by
the original path  . By deforming  as above and then taking the associated homology
class, we get a family of cycles inH1.Xb nPb;Zb/ for all b 2 B deforming Œ�. Note that
the cycles still live in the appropriate relative homology since we chose the trivializations
to preserve the marked points.

5.3. Thin and thick part of 

We now prepare for the second step of the construction. Again we work with actual
paths first. For every node or marked point that  goes through, we modify  through
a homotopy such that, locally in a �-coordinate neighborhood of b0, where we recall �-
coordinates from Definition 3.4, the path  coincides with the straight line from p0 to the
origin. By choosing the trivialization from the first step appropriately, we can achieve this
for the whole family of paths  over B . Afterwards, we define the thick part  thick of 
to be the path contained in X nU, obtained by truncating  at the nearby sections &.b0/.
The remaining part of  , given by the straight lines from p0 D &.b0/ to the origin in
�-coordinates, is denoted by  thin and is called the thin part of  . By construction,  is
the collection of disjoint paths  thick and  thin. See Figure 13 for an example.
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 thick

 thin

Fig. 13. The separation of  into  thick and  thin

5.4. Second construction step

We now proceed with the construction of .b/. Recall that so far we have constructed a
family  of paths on X. We will define the thick part .b/thick and the thin part .b/thin

separately and finally let .b/ be the composition of .b/thick and .b/thin. The thick part
.b/thick is simply

.b/thick
WD ‰�1. thick/;

where ‰ was defined in (2.14). The construction now differs near nodes and near marked
points. We focus on a marked point Zk first. In �Zk -coordinates the endpoint of .b/thick

is .�h;b/�1.&k.b0//. We denote by .b/thin
k

the straight line from .�k;b/
�1.&h.b0// to the

base point .�k;b0/
�1.&h.b0// D p0, followed by the straight line from p0 to the origin.

At nodes the construction is more involved. As before we can connect
.�C
e;b
/�1.&Ce .b0// to p0 via a straight line in �Ce -coordinates and similarly

.��
e;b
/�1.&�e .b0// to p0 via a straight line in ��e -coordinates. We denote by pC0 and p�0

the images of p0 in ACe and A�e respectively. To finish the construction it remains to
connect pC0 and p�0 on the plumbing fixture Ve .

At b 2 B , we identify .Ve/b WD ¹.u; v/ 2 �ı W uv D seº with the annulus A WD
¹u W ı=jsej � juj � ıº in u-coordinates. Under this identification we have

pC0 D ı=
p
R; p�0 D se

p
R=ı:

We divide the annulus A into finitely many sectors Secl , each with a chosen base point xl .
Suppose se

p
R=ı 2 Secl . We then choose a path from ı=

p
R to xl and connect xl to

se
p
R=ı via a straight line, as depicted in Figure 14.
The resulting construction is continuous on Secl but depends on the choice of a path

from ı=
p
R to xl ; different choices differ by a multiple of the vanishing cycle �e . We can

make all choices in such a way that the construction is continuous on the intersection of
two sectors but has monodromy if we try to extend it to all of A. We have thus constructed
a (multivalued) path .b/thin

e from pC0 to p�0 . We let  thin be the composition of .b/thin
e
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Secl

Fig. 14. The path .b/thin
e in u-coordinates.

and .b/thin
k

for all nodes and marked zeroes �k crossed through by  . We finally let .b/
be the composition of .b/thick and .b/thin.

We stress that while  thick and  thin are paths on the model family X, the paths .b/thin,
.b/thick, and thus also .b/, are on the universal family Y.

The family .b/ is multivalued, with different branches differing by integral mul-
tiples of the vanishing cycles. Furthermore, if  and  0 are homologous on X but differ
by multiples of the vanishing cycles, then .b/ and  0.b/ yield different branches of the
same multivalued function. Thus we can define a multivalued family of cycles Œ.b/�, but
which branch is picked out depends on the choice of a representative  for Œ� on X .

5.5. Monodromy-invariant cycles

Due to monodromy the family Œ.b/� 2 H1.Xb n Pb; ZbIZ/ is not well-defined on all of
B nD. By subtracting suitable logarithmic terms we are going to construct a new family
of cycles which will be monodromy-invariant. We now choose, once and for all, branches
of logarithms for ti and he locally near a base point x0 2 B nD, and then define branches
for se at vertical nodes, locally near x0, via

ln.se/ WD
`.eC/�1X
iD`.e�/

ai ln.ti /

where ai was defined in (2.1).
To make the family Œ.b/� monodromy-invariant we set

Œ O.b/� WD Œ.b/� �
1

2�i

X
e2E

h; �ei ln.se/Œ�e� 2 H1.Xb n Pb; ZbIC/: (5.1)

We call Œ O.b/� the invariant cycle associated to  since Œ O.b/� is invariant under analytic
continuation along any path in �1.B n D; x0/. The invariant cycle is well-defined on
B nD but not unique, since both Œ.b/� as well as the branches of ln.se/ involve certain
choices. From now on we fix one set of those choices.
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5.6. Holomorphic part of a period

We can now define the holomorphic part of the period which appeared in the statement
of Theorem 5.2. We recall that b D .�; t; h/. We setZ



Hol.!.b// WD
Z
 thick

.t ? �C �/C

Z
 thin.b/

.t ? �C �/hol (5.2)

where .t ? � C �/hol is the holomorphic part of the Laurent expansion of t ? � C �
of � in �˙e -coordinates near the nodes. We stress that we are not defining a differen-
tial Hol.!.b// but only the expression

R


Hol.!.b//. We define
R


Hol.�/ in the same
way with

R
 thin.b/

.t ? �C �/hol replaced by
R
 thin �.

Note that in particular
R
 thin �

hol D
R
 thin � if  is non-horizontal and we thus obtain

Corollary 5.3.
We have now defined all the objects appearing in Theorem 5.2 and can thus proceed

with the proof.

Proof of Theorem 5.2. We first show that the log period is indeed single-valued. Recall
that both

R
.b/

!.b/ and re.b/ ln.se/ are multivalued; analytic continuation along a
path encircling the origin ke times counter-clockwise in se-coordinates changes .b/
to .b/ C keh.b/; �ei�e , where �e is the vanishing cycle of the node e. Thus bothR
.b/

!.b/ and re.b/h.b/; �ei ln.se/ change under such an analytic continuation by the
addition of

ke

Z
�e

!.b/ D kere.b/h.b/; �ei;

and in particular their difference is single-valued. Our goal is to compare the periods ofR

� and

R
.b/

!.b/. For this we need to use the plumbing construction of ! reviewed
in Section 3.4. We split the period over  into the thick and thin part, i.e.Z

.b/

!.b/ D

Z
.b/thick

!.b/C

Z
.b/thin

!.b/:

Over the thick part we haveZ
.b/thick

!.b/ D

Z
 thick

.t ? �C �.b//

and thus
lim
t;h7!0

1

td>./e

Z
.b/thick

!.b/ D

Z
 thick
>

�;

since on X.i/ the modification differential � is divisible by tdi�1e. It remains to compute
the integral over .b/thin.

We discuss the situation at vertical nodes, horizontal nodes and marked zeroes sepa-
rately. We start with the case of vertical nodes. We recall from the construction that, in
this case, .b/thin

e consists of two parts, the straight line from ��1
b
.&.b// to p˙0 and then a

chosen path from pC0 D ı=
p
R to p�0 D se

p
R=ı. We analyze both parts separately.
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Near a vertical node e, in u-coordinates, we haveZ ı=
p
R

se
p
R=ı

.t ? �C �/ D

Z ı=
p
R

se
p
R=ı

.td`.eC/eu
�e � re.b//

du

u

D td`.eC/e �
.ı=
p
R/�e � .se

p
R=ı/�e

�e

� re.b/Œln.ı=
p
R/ � ln.se

p
R=ı/�:

Note that there exist integers ˛e such that

ln.se
p
R=ı/ D ln.se/ � ln.ı=

p
R/C 2�i˛e:

We thus define ce WD 2�i˛e � 2 ln.ı=
p
R/. Additionally, we computeZ

 thin
eC

� D

Z
 thin
eC

�hol
D

Z ı=
p
R

0

u�e�1du D
.ı=
p
R/�e

�e
:

Finally, we need to estimate the period along the straight line segment from ��1
b
.&.b//

to p0. Recall from Section 3.3 that ��1
b0
.&.b0//D p0 for all multi-scale differentials � and

thus
lim
t;h!0

��1.�;t;h/.&.�; t; h// D p0:

We conclude that Z ��1
.�;t;h/

.&.�;t;h//

p0

.t ? �C �/ D O.td`.eC/e.t C h//:

The notation O.tdie.t C h// here means that the left-hand side is analytic in b D
.t; h; �/ and every monomial in the power series expansion is divisible by tdieti or tdiehe
for some i or e.

Putting everything together, we conclude that at vertical nodes,Z
.b/thin

e

!.b/ D td`.eC/e

Z
 thin
eC

�hol
C re.b/ ln.se/CO.td`.eC/e.t C h//

where we have used re.b/ D O.td`.eC/e.t C h//.
We now turn to the case of a marked zero Zk . In this case .b/thin

k
consists of the

straight line from .�k;b/
�1.&h.b0// to .�k;b0/

�1.&h.b0//D p0 combined with the straight
line from p0 to the origin.

As before we haveZ ��1
.�;t;h/

.&.�;t;h//

p0

.t ? �C �/ D O.td`.eC/e.t C h//:

And furthermoreZ p0

0

.t ? �C �/ D

Z p0

0

.td`.eC/eu
�e�1/ du D td`.eC/e

Z
 thin
k

� D td`.eC/e

Z
 thin
k

�hol:
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Finally, we address the case of horizontal nodes. In that case we have �hol D 0 in
�e-coordinates andZ ı=

p
R

se
p
R=ı

.t ? �C �/ D

Z ı=
p
R

se
p
R=ı

�re.b/
du

u

D re.b/ ln.se/CO.td`.eC/e.t C h//:

6. Setup for one-parameter families

Our method for studying the boundary of a linear subvariety is based on the observation
that every point in the boundary can be approached along a holomorphic one-parameter
family. This will enable us to do computations in one-parameter families, which is more
useful for our purposes since it allows controling the relative growth rates of the parame-
ters ti and he . We first collect some simple facts about one-parameter families.

6.1. Short arcs

See [11] for an introduction to this circle of ideas.

Definition 6.1. A .complex/ analytic arc on a complex analytic spaceX is a holomorphic
map f W �! X . Given a subset Z � X , a short arc on .X; Z/ is an analytic arc with
f �1.Z/D¹0º. We say an analytic arc f connects two points x and y if both are contained
in the image of f . Similarly we say f passes through x if x is contained in the image.
Furthermore, we say a short arc f is smooth if f .��/ � Xreg, where Xreg denotes the
smooth locus of X .

Unless stated otherwise, we denote the coordinate on � by z. Recall that we do not
specify the radius of � in order to lighten the notation. The following is a simple conse-
quence of the ideas developed by Winkelmann [15].

Lemma 6.2. LetX be an irreducible complex analytic space and letZ �X be a complex
analytic subspace. Then for any pair of points x 2 X nZ; z 2 Z there exists a short arc
f W�! X on .X;Z/ connecting x and z. Furthermore, if x 2 Xreg nZ, then there exists
a smooth such arc f .

Proof. By [15, Thm. 5] there exists a holomorphic map f W �! X passing through x
and z. Since f �1.Z/ is a proper subspace, after possibly shrinking �, we can assume
that f �1.Z/ is a finite set. We can choose a Jordan curve in � such that z and x are in
its interior component while all other points of f �1.Z/ lie in the exterior component.
By the Riemann mapping theorem the interior component is biholomorphic to �. For
the second claim we proceed similarly. Again, after shrinking, we can assume that the
preimage f �1..X n Z/sing/ of the singular locus is finite. Again we choose a Jordan
curve containing z and x in its interior and all singular points in its exterior.
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6.2. Log periods along one-parameter families

Along a one-parameter family f we immediately get the following slight improvement
of Theorem 5.2. We define �e to be the order of vanishing of se ı f at z D 0.

Corollary 6.3. Let f W�!B be a one-parameter family of differentials with multi-scale
limit f .0/D b0 D .X;�/ and let  2H1.X n P;Z/. The log period  f along f defined
by

 f .z/ WD
1

td>./e

�Z
.f .z//

!.f .z// �
�X
e2E

h; �eire.f .z//�e

�
ln.z/

�
is single-valued, analytic in a neighborhood of the origin, and satisfies

 f .0/ D

Z
>

Hol.�/C
X
e2E

h>; �ei resq�e .�/�ec
0
e:

Here c0e are constants and > is the restriction of  to its top level.

Proof. Along f we can write se.f .z// D z�eege.z/ for some analytic function ge . Then
for each e there exists an integer ke such that

ln.se/ D �e ln.z/C g.z/C 2�ike:

We thus compute

  .f .z// D  
f
 .z/ �

X
e2E

h; �ei
re.f .z//

td>./e
.g.z/C 2�ike/

and then the result follows directly from Theorem 5.2 by setting c0e WD ceC g.0/C 2�ike .

We note that since b0 is contained in the most degenerate stratum D� � D, all inte-
gers �e are strictly positive.

The usefulness of log periods  f along f stems from the fact that the logarithmic
divergence now only depends on one variable z. Thus in order to get sufficient control over
the divergence of  f on the punctured disk ��, we only need to control one expressionP
e2E.�/h>; �eire.f .z//�e .

7. Monodromy of complex linear varieties

7.1. The Gauss–Manin connection

In this subsection we let .� W T ! A; !/ be an arbitrary family of flat surfaces over an
arbitrary smooth base A.

We let L be the local system, or equivalently the vector bundle with flat connection,
of relative cohomology over A, with fiber La ' H1.Ta nPa;ZaIZ/. More explicitly,

L WD R1.�jT nP /�jŠZ
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where j WZ! T nP is the inclusion of the reduced zero-divisor of !. For any given pair
of points a; a0 2 A choose a path  connecting them. The Gauss–Manin connection asso-
ciated to L allows us to identify different fibers La ' La0 via parallel transport along  .
For the convenience of the reader, we recall the details. On any contractible neighborhood
W �Awe can trivialize L and thus identify La 'La0 for all a;a0 2W . Let  W Œ0; 1�!A

be a path and let V � L.0/ be a subspace. By covering .Œ0; 1�/ with finitely many con-
tractible neighborhoods, we get an induced isomorphism � WL.0/'L.1/ and we define

GM .V / WD � .V / � L.1/;

which only depends on the homotopy class of  and not on how it is covered by con-
tractible neighborhoods.

7.2. Hodge-theoretic description of log periods

We now describe the monodromy action on the relative cohomology near the boundary
of„Mg;n.�/. As a byproduct, we get a more conceptual definition of log periods. In this
subsection we work with the local universal family .Y ! B;!/ of multi-scale differen-
tials. For the remainder of this subsection only, we relabel the local coordinates on B . We
set

.z1; : : : ; zM ; zMC1; : : : ; zNCM / WD b D .�; t; h/

where we recall from (2.7) that N D `.�/ � 1C jEhorj and M D dimU .
The boundary D of B in these coordinates is then D D .

QMCN
kDMC1 zk D 0/. The

universal family .Y; !/ over B nD D�M � .��/N is a family of flat surfaces contained
in H .�/. We now restrict the local system L from Section 7.1 to B nD with associated
monodromy action

ZN ' �1.B nD; x0/! GL.H1.i/.Xx0 nPx0 ;Zx0 IZ//

for some base point x0.

Convention 7.1. From now on, x0 2 B nD always denotes a base point in H .�/ with
corresponding fiber .Xx0 ; !x0/.

Let Tk be the monodromy operator, i.e. the image under the monodromy action, of
the standard generator of �1.B nD; x0/ encircling the origin once in the coordinate zk
and constant otherwise. We sometimes write Ti or Te instead of Tk if zk D ti or zk D se .
The monodromy action can be computed explicitly from the construction of „Mg;n.�/

in Section 3. We have
Te.Œ�/ D Œ�C h; �eiŒ�e�; (7.1)

i.e. Te acts as a Dehn twist along �e . Similarly,

Ti .Œ�/ D Œ�C
X

e2Ever; `.e�/�i<`.eC/

me;i h; �eiŒ�e�; (7.2)
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i.e. Ti acts as a multitwist along all curves �e with `.e�/ � i < `.eC/ where the multi-
plicities me;i were defined in (2.1). Note that in particular .I � Tk/2 D 0 for all k.

We set
Nk WD � logTk D I � Tk : (7.3)

We choose a basis ¹1.b/; : : : ; n.b/º of H1.Xx0 n Px0 ; Zx0/ where d WD

dimH1.Xx0 n Px0 ; Zx0/ D dim H .�/. Due to the multivaluedness of k.b/, there are
two ways of defining a relative period map, which we now explain. We choose one of the
branches k.b/ near x0, as explained in Section 5.4.

Definition 7.2. Locally in a period chartW around x02B nD we can define ' WW !Cd

by

'.b/ WD

�Z
k.b/

!

�d
kD1

:

Note that ' does depend on the choice of branches for k.b/. We cannot extend ' to all
of B n D due to the monodromy action but we still have the following analogue. The
fundamental group ZN ' �1.B nD; x0/ acts on Cd ' H 1.Xx0 n Px0 ; Zx0/ by

.m1; : : : ; mN / � v D T
m1
1 ı � � � ı T

mN
N .v/

and we denote by � W Cd ! Cd=ZN the quotient by the monodromy action. On B nD
we define the relative log period map � W B nD ! Cd=ZN by setting � WD � ı '. Note
that � does not depend on the choice of branches for k.b/, since different branches of
log periods differ exactly by the monodromy action for some path  2 �1.B nD; x0/.

Via the universal cover

Q� W �M �HN
! �M � .��/N ;

.w1; : : : ; wNCM / 7! .w1; : : : ; wM ; e
2�iwMC1 ; : : : ; e2�iwMCN /;

we obtain a lifting Q� of � that fits in the following commutative diagram:

�M �HN Cd

�M � .��/N Cd=ZN

Q�

Q� �

�

The map

Q W �M �HN
! Cd ; .w1; : : : ; wNCM / 7! e�

PMCN
kDMC1

wkNk�M Q�.w/;

is ZN -invariant and thus descends to a map  W �M � .��/N ! Cd .

Proposition 7.3. The map  W�M � .��/N !Cd is, up to rescaling of each component
by the scaling parameters of the top level of the corresponding curve, given by log periods.
More precisely,

 .w/ D
�
td>.k/e k .w/

�d
kD1

for all w 2 �M � .��/N .
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Proof. In (7.1) and (7.2) we described the action of Ti and Te on homology. Thus, if we
locally write we D 1

2�i
ln.se/; wi D 1

2�i
ln.ti /, we can compute

e�
P
k wkNk Q .w/ D

�Z
k.w/

! �
1

2�i

X
e2E

h; �ei

�Z
�e

!

�
ln.se/

�d
kD1

:

Now compare this with Definition 5.1, where we defined log periods.

7.3. Setup for complex linear varieties

Let M � H .�/ be a linear subvariety. Since M is algebraic, the Euclidean closure xM �
„Mg;n.�/ is an algebraic variety. This uses the algebraicity of„Mg;n.�/ [2, Thm. 1.3].
We stress that this is the only time where we use algebraicity of M . From now on we
assume that our chosen base point b0 is contained in @M \ D� . Locally near b0, the
variety xM has finitely many irreducible components. Note that this only uses the fact xM
is an analytic variety, i.e. we do not have to use algebraicity a second time.

Assumption 7.4. For now we will assume that xM is irreducible near b0 and will work
under this assumption. In Section 8.4 we explain how to extend the results to the general
case.

Note that a linear subvariety is only near a smooth point defined by a single linear
subspace. Near singular points it looks like a union of multiple linear subspaces. For
example, affine invariant submanifolds are manifolds immersed in a stratum and the points
of self-intersections correspond exactly to the singular locus.

We choose x0 2 Mreg \ B in the smooth locus Mreg of M . In a local period chart
near x0, the variety M coincides with a linear subspace V � H 1.Xx0 n Px0 ; Zx0/.
By abuse of notation we do not distinguish the subspace V from the analytic subva-
riety it defines in a period chart. We let ¹ 01; : : : ; 

0
d 0
º be a basis of H1.X n P; Z/

where d 0 D dimH1.X n P; Z/ and choose a �-adapted basis ¹1.b/; : : : ; d .b/º of
H1.Xx0 n Px0 ; Zx0/ such that each cycle is a deformation of either  0

k
for some k as

described in Section 5.2, a vanishing cycle or a horizontal-crossing cycle. In coordinates
given by the �-adapted basis we can write

V D ¹A � '.b/ D 0º

whereAD .Akl /kD1;:::;codim.M/; lD1;:::;d and '.b/ WD .
R
l .b/

!.b//d
lD1

. To make our com-
putations easier, we will always assume that the matrix A is in reduced row echelon form.
This will be useful in two ways: this determines the matrix A uniquely, and allows us to
read off the rank of A easily, for computations in Section 8. We consider linear equations
on H 1.Xx0 n Px0 ; Zx0/ as elements of the dual and thus as homology classes.

We let
`.l/ WD >.Œl �/; `.k/ WD max

lD1;:::;d
¹`.l/ W Akl ¤ 0º:
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Let A.i/ D .A.i/
kl
/kl denote the matrix obtained from A by defining

A
.i/

kl
WD

´
Akl if `.k/ D `.l/ D i;

0 otherwise,

and deleting all zero rows. In words, A.i/ collects all the linear equations of top level i
and restricts them to the subsurfaceX.i/, i.e. forgets about all terms in the linear equations
corresponding to cycles of levels below i . Furthermore, let A.i/;ver denote the submatrix
of A.i/ only containing rows corresponding to non-horizontal equations. We refer to A.i/

as i -th level equations and to A.i/;ver as vertical i -th level equations.
From now on, x0 denotes a point in M and b0 a point in @M \ D� . If not stated

otherwise, we denote by f a short arc on .B; B \D�/ connecting x0 and b0. We recall
that these notions were defined in Section 6.1. We also denote by z0 2�� an f -preimage
of x0, i.e. f .z0/ D x0.

Definition 7.5. A short arc f on .B;B \D�/ is called an M-disk if f .��/ �Mreg.

7.4. Monodromy along arcs

Let f be as above. Then the monodromy of the local system f �.LjBnD/ can be described
directly as follows. For every level i and every horizontal node e we define �i and �e to
be the orders of vanishing of ti and he , respectively, as functions of z. At vertical nodes
we set

�e WD

`.eC/�1X
iD`.e�/

me;i�i :

Thus �e is defined for all nodes e 2 E as the vanishing order of se ı f at z D 0. We call
the tuple

�f WD ..�i /i2L.�/; .�e/e2Ehor/ 2 ZN (7.4)

the monodromy type of f . We let Tf be the monodromy of the standard generator on ��

and denote Nf D I � Tf its monodromy logarithm. We have the explicit equation

Nf D
X
i2L.�/

�iNi C
X
e2Ehor

�eNe (7.5)

where the monodromy logarithms Nk are defined in Section 7.2. In particular, the mon-
odromy action on the homology H1.Xx0 n Px0 ; Zx0/ is completely determined by the
monodromy type.

We now study one-parameter families of differentials contained in a linear subvari-
ety. For an arc f W � ! B the monodromy of f �.L/ is controlled completely by the
monodromy type �f . Along a one-parameter family contained in a linear subvariety, the
monodromy acts trivially on the defining subspaces and this forces the linear equations
for V to be of a special type. That is precisely the content of the next proposition.
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Proposition 7.6. Let f be an M -disk. Then

Nf .V / � V;

i.e. the linear subspace defining M is invariant under the monodromy logarithm.

Proof. Let z0 2 �� be a preimage of x0 under f and y 2 �� an arbitrary point. Further-
more, we choose a path  W Œ0; 1�! �� starting at z0 and ending at y. We let

S WD ¹t 2 Œ0;1� W 9 open period chart W 3 f ..t// such thatGM.t/.V /\W DM \W º:

Note that by abuse of notation we do not distinguish between the vector space GM.t/.V /

and the analytic variety it defines in a small period chart around .t/. A period chart here
is any open contractible subset W � H .�/ such that periods are injective. For any point
y 2 S , let W be an open period chart as in the definition of S ; then W � S . Thus S
is open and it is also non-empty since z0 2 S . Let .tl /l be a sequence in S converging
to t . After passing to a subsequence we can assume that the whole segment f ..Œt1; t �//
lies in a contractible period chart W around f ..t//. Furthermore, we can choose W
such that the analytic variety GM.t/.V / \W is irreducible. By assumption there exists
a contractible period chart W1 � W containing f ..t1// such that

GM.t/.V / \W1 D GM.t1/.V / \W1 DM \W1

where the first equality follows since GM.t/.V / and GM.t1/ are obtained from each
other via parallel transport along  jŒt1;t� and thus both vector spaces define the same ana-
lytic variety. Since both GM.t/.V / \W and M \W are irreducible it follows that we
have equality, GM.t/.V / \W DM \W .

Let  0 be another path connecting z0 and y. We then have

GM .V / \W DM \W D GM 0.V / \W

and thus GM .V / D GM 0.V /.
The second statement follows by choosing a loop  starting at x0. Since GM .V /

D V , the monodromy operator Tf D I �Nf sends V to itself and thus Nf .V / � V .

Remark 7.7. Proposition 7.6 should be seen as a type of cylinder deformation theorem
(see [16, Thm. 5.1]) in the sense that it constrains the possible linear equations of complex
linear varieties. In period coordinates the equations for M are

dX
lD1

Akl

Z
l .b/

!.b/ D 0 for k D 1; : : : ; codim.M/; (7.6)

and the condition Nf .V / � V can be written as

dX
lD1

Akl

�X
e2E

hl ; �ei�ere.b/
�
D 0 for k D 1; : : : ; codim.M/: (7.7)
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Thus every linear equation for M forces an additional relation between the vanishing
cycle periods. Furthermore, note that the coefficients of (7.7) involve the monodromy
type of f . In particular, the monodromy type ofM -disks is not arbitrary. This is the main
motivation for the complicated construction of the log period space LPS� in Section 8.

Remark 7.8. In Section 9 we give an example of how one linear equation forces an
additional one. In a subsequent work [5] we study this phenomenon in more detail and
obtain several more restrictions among the linear equations. As a consequence we are able
to determine the explicit analytic equations defining xM in a neighborhood of a boundary
point, instead of only the defining equations of @M as we do in Theorem 1.2. In loc.cit.
we heavily use the results from this paper. If one could compute the analytic equations by
other means this would potentially give a much quicker proof of Theorem 1.2, avoiding
the technical difficulties of the log period space in Section 8. In the special case of linear
subvarieties defined over the real numbers, in [5, Theorem 1.9] we use the restrictions on
the linear equations to reprove Wright’s cylinder deformation theorem [16].

AlongM -disks we can rewrite the linear equations cutting out V in period coordinates
as linear equations in log periods, and this will allow us to take the limit of the linear
equations as z goes to zero and to obtain necessary linear equations that are satisfied on
the boundary @M .

Corollary 7.9. Let f be anM -disk. Then the boundary point b0 D f .0/ lies in the linear
subvariety of U � D� locally defined by the equations

A.i/ �  f .0/ D 0 for every i 2 L�.�/; (7.8)

where  f .0/ WD . fk .0//
n
kD1

is the vector of log periods.

Proof. Locally near x0 we know that

0 D

dX
lD1

Akl

Z
l .z/

! D

dX
lD1

Akl

�Z
l .z/

! �
X
e2E

hl ; �ei�ere.b/ ln.z/
�

D

dX
lD1

Akl � td`.l/e 
f
l
.z/;

where the second equality follows from (7.7). After rescaling each equation by 1=td`.k/e,
it follows that the function

dX
lD1

Akl
td`.l/e

td`.k/e
 fl .z/

is identically zero on ��. We then take the limit as z ! 0. Since

lim
z!0

td`.l/e

td`.k/e
D

´
1 if `.l/ D `.k/;

0 if `.l/ < `.k/;
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we conclude that

lim
z!0

dX
lD1

Akl
td`.l/e

td`.k/e
 fl .z/ D

X
lD1

A
.`.k//

kl
 fl .0/:

Remark 7.10. Equation (7.8) depends not only on the limit point b0, but also on the short
arc f . On the other hand, if we restrict ourselves to the vertical equations, we can write

A.i/;ver
�  f .0/ D

� X
lW `.l/D`.k/Di

A
.i/

kl

Z
.l />

�

�
k

D 0 (7.9)

where the index k runs only over non-horizontal equations. Note that (7.9) is independent
of f and only depends on the limit point b0. The goal of the next section is to show that
given any boundary point b0 2 D� satisfying (7.9), we can choose a short arc f such
that (7.8) is satisfied along f , that is, showing that b0 lies in @M and thus proving suffi-
ciency of the linear equations which were shown above to be necessary in Corollary 7.9.

Remark 7.11 (Avoiding the cautionary example). In [4, Section 4] the authors give an
example of a continuous family f W Œ0; "0/!„Mg;n.�/ that satisfies certain linear equa-
tions for t 2 .0; "0/ such that the limit at t D 0 does not satisfy the limit of the equations,
which is in stark contrast to Corollary 7.9. The limit .X0; !0/ is a multi-scale differential
which contains two horizontal nodes such that their plumbing parameters along f behave
like e�1=t

2
and thus are not real-analytic at t D 0. The proof of Corollary 7.9 breaks down

since one cannot find suitable rescaling parameters tdie. On the other hand, for families
that extend real-analytically to the boundary an analogue of Corollary 7.9 holds, since all
periods and plumbing parameters asymptotically grow like a power of the base parameter
and are thus comparable to each other.

8. The defining equations on the boundary

This section contains the proof of Theorem 1.2. The setup of this section is the same
as in Section 7.3. We recall that given any boundary point b0 2 @M \D� , we need to
show that in a small neighborhood U �D� of b0 the subvariety @M \U of U is defined
by linear equations in generalized period coordinates, as introduced in Section 2.6. In
(7.9) we have found a collection of necessary equations satisfied by @M \D� � D� in
a neighborhood of b0, and our goal is now to show that these equations define @M \D� ,
i.e. any point in D� near b0 satisfying them is indeed contained in @M .

Definition 8.1. We define V lim to be the subvariety of U � D� defined by (7.9), that is,

V lim
WD
�
A.i/;ver

� 'ver.�/ D 0; i 2 L�.�/
�

where 'ver.�/ WD .
R
.l />

�/l .
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Recall that geometrically this means we take the equations defining M , restrict them
to each level subsurface of the stable curve, and forget about all horizontal-crossing equa-
tions.

The following proposition says precisely that @M \D� is defined by the linear equa-
tions V lim, i.e. satisfying the linear equations defining V lim are both necessary and suffi-
cient conditions for a point of D� to be contained in @M \D� .

Proposition 8.2. After possibly shrinking U , we have

@M \ U D V lim:

For now we only prove the inclusion @M \ U � V lim, which follows readily
from Corollary 7.9. The proof of the remaining inclusion V lim � @M \ U is the core
argument, which we will give in Section 8.2.

Proof of @M \ U � V lim. Let b0 2 @M \U . By Lemma 6.2 there exists anM -disk con-
necting b0 and x0. By Corollary 7.9 the limit f .0/ D b0 satisfies

A.i/ �  f .0/ D 0;

which in particular implies
A.i/;ver

� 'ver.�/ D 0

as explained in Remark 7.10.

8.1. Proof of the main theorem

Assuming the proof of Proposition 8.2 for now, we show how to finish the proof of our
main theorem.

Proof of Theorem 1.2. We stress that at the moment we still work under the additional
assumption that @M is locally irreducible near b0. The general case will be handled in
Section 8.4.

We recall our setup for convenience. Let b0 2 @M \D� and U � D� a period chart
containing b0. To finish the proof we need to exhibit linear equations defining @M in a
neighborhood of b0. The content of Proposition 8.2 is exactly that @M \ U is defined by
the linear equations defining V lim.

8.2. The log period space

Our goal is now to show the remaining inclusion @M \ U � V lim, after possibly further
shrinking U . For this we need a new concept, the log period space, which we now moti-
vate. We have already seen in Proposition 7.6 and Remark 7.7 that along one-parameter
families the monodromy type of a short arc is restricted by the linear equations for V .
Instead of working on „Mg;n.�/, where the monodromy around the boundary is unre-
stricted, we will thus work on a suitable cover LPS� , the log period space. OnU the linear
equations definingM are only well-defined in a small period chart, and they do not extend
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to a whole neighborhood of the boundary due to monodromy. But LPS� will be defined in
such a way that the linear equations extend to a whole neighborhood of the boundary and
thus define a subvariety zV� � LPS� . By studying the limiting behavior of the equations
for zV� explicitly, we will be able to prove the inclusion above. We remark that there is not
just one log period space, but rather a collection . zV� � LPS� /�2† indexed by the set† of
possible vanishing orders of coordinates ti and he along one-parameter families. In con-
trast to„Mg;n.�/, on LPS� the vanishing of the plumbing parameters se is controlled by
a single parameter z, and the discrete data � controls how fast each plumbing parameter
tends to zero. Thus LPS� has monodromy properties similar to a holomorphic arc. Before
giving the (technical) definition of LPS� , we state those of its properties that we need,
and then demonstrate how LPS� can be used to finish the proof of Proposition 8.2.

Proposition 8.3. There exists a collection . zV� � LPS� /�2† of varieties with maps �� W
LPS� ! B such that

(1) every M -disk f can be lifted to a short arc Qf W �! zV� on . zV� ; zV� \ ��1� .D�// for
some � 2 †;

(2) for every short arc Qf on . zV� ; zV� \ ��1� .D�// passing through some preimage of x0
under �� , the composition �� ı Qf is an M -disk;

(3) zV� is smooth at any point of the preimage ��1� .D�/;

(4) the restriction �� j zV�\��1� .D
�
/ is open, and �� . zV� / \ U � V lim.

Assuming the above proposition for now, we can prove the other containment
in Proposition 8.2, finishing its proof, and thus also the proof of our main theorem.

Proof of Proposition 8.2. We prove the containment @M \U � V lim. Choose anM -disk
f0 connecting b0 and x0. By .1/ there exists a lift Qf0 to a short arc on zV� for some � .
Let Qb0; Qx0 be some �� -preimages of b0; x0 contained in Qf0.�/, respectively. Let Z be
the irreducible component of zV� containing Qf0.��/. Since zV� is smooth at Qb0 by (3),
only one irreducible component of zV� passes through Qb0 and thus there exists an open
neighborhood W � zV� of Qb0 contained in Z. We define Ub0 WD �� .W \ �

�1
� .U // D

�� .W / \ U , and note that Ub0 is an open neighborhood of b0 by .4/. It remains to show
that

@M \ Ub0 � V
lim
\ Ub0 :

By definition of Ub0 , for any point z 2 V lim \Ub0 there exists a �� -preimage Qz 2W �Z
of z. Since Z is irreducible, there exists a short arc on .Z; Z \ ��1� .D�// connecting
Qz and Qx0. Composing with �� yields an M -disk connecting z and x0 by .2/. By the
definition of M -disks, this shows z 2 @M .

8.3. The construction of LPS�

We now start constructing the log period spaces LPS� . In this section we write an element
� 2 ZN as

� D ..�i /i2L.�/; .�e/e2Ehor/:
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We consider the positive cone

C WD ¹� 2 ZN W �i > 0; �e > 0º � ZN:

In analogy to the monodromy logarithm Nf of a short arc (see (7.5)), for any � 2 C

we define the associated monodromy logarithm

N� WD
X
i2L.�/

�iNi C
X
e2Ehor

�eNe :

Additionally, we define the V -preserving cone to be the set of those monodromy loga-
rithms that preserve V :

† WD ¹� 2 C W N� .V / � V º:

This † will be the index set for LPS� stipulated in the proposition above. By Proposi-
tion 7.6 we have �f 2 CV for any M -disk f , where �f is defined in Section 7.4.

Our construction of LPS� proceeds in two steps. First we define a covering space
�� W LPSı� ! B nD, and then construct LPS� by adding suitable limit points to LPSı�
such that the map extends to a holomorphic map �� W LPS� ! B .

We start by describing LPSı� . For any � 2 †, we let �� W LPSı� ! B n D be the
covering of B nD corresponding to the cyclic subgroup h�i �ZN D �1.B nD/. Denote
coordinates on �� �CN�1 ��M by

Qb D
�
z; � D ..�i /i2L.�/; � D .�e/e2Ehor/;�

�
:

If � has at least two levels, we set �`.�/ D 0. On the other hand, if `.�/ D 0, we choose
one horizontal node e0 2 Ehor and set �e0 D 0. This notation will simplify the following
formulas.

Explicitly, we can describe LPSı� � �
� � CN�1 ��M as the domain (that is, open

connected subset) given by

LPSı� WD
®
.z; �; �;�/ W Im �i >

�i
2�

log jzj; Im�e >
�e
2�

log jzj
¯
:

Note that LPSı� is diffeomorphic to�� �HN�1 ��M , since the conditions on the imag-
inary parts define a family of smoothly varying horizontal half-planes over the punctured
disk, and thus in particular �1.LPSı� / ' Z.

The covering map

�� W LPSı� ! �� � .��/N�1 ��M D B nD

is explicitly given by

z D z; ti D z
�i e2�i�i ; he D z

�ee2�i�e ; � D �:

Additionally, the universal cover H �HN�1 ��M ! LPSı� is given by

z D e2�i� ; ti D ˛i � �i�; he D ˇe � �e�; � D �
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where .�; .˛i /; .ˇe/; �/ are the coordinates on H � HN�1 � �M . At horizontal nodes
we set se. Qb/ WD he. Qb/ D z�ee2�i�e and we are now going to also define functions se W
LPSı� ! C at vertical nodes. For any vertical node e we define

�e WD

`.eC/�1X
iD`.e�/

me;i�i ; �e WD

`.eC/�1X
iD`.e�/

me;i�i ; (8.1)

se. Qb/ WD z
�ee2�i�e : (8.2)

Here �e and �e are so defined that the relation

se D

`.eC/�1Y
`.e�/

t
me;i
i

is satisfied, where me;i was defined by (2.1). The fact that N� preserves V is then equiv-
alent to

dX
lD1

Akl
X
e2E

hl ; �eire.b/�e D 0 for all k D 1; : : : ; codim.M/:

Note that this follows from (7.7) together with (8.1).
We let finally

LPS� WD LPSı� t .¹0º �CN�1
��M / � � �CN�1

��M :

Observe that LPS� D int.LPSı� / � � �CN�1 ��M and thus LPS� is open.

Remark 8.4. The space LPSı� can be seen as a family of products of horizontal half-
planes ¹Im z > c.b/º parametrized over the punctured disk with limb!0 c.b/ D �1.
Each half-plane becomes a copy of C in the limit b! 0 and taking the interior closure of
LPSı� fills in the limiting copies of C.

Furthermore, since �� W LPSı� ! B n D is the restriction of a holomorphic map
CNCM ! CNCM , it extends to a holomorphic map of the closures, LPS� ! B , which
we still denote �� . The boundary QD of LPS� is

QD WD ¹z D 0º D ��1� .B \D�/ D LPS� nLPSı� � LPS� :

Arc log periods

Now that we have explicitly described the log period space LPS� , we describe a variant
of log periods which is suitably adapted to LPS� .

Definition 8.5. We define the arc log period  � W LPS� ! C by

 � .
Qb/ WD

1

td>./e

�Z
. Qb/

!. Qb/ �
X
e2E

h; �eire. Qb/�e ln.z/
�

where �e is defined by (8.1).
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As in the case of one-parameter families in Corollary 6.3, we can use the asymptotics
of log periods from Theorem 5.2 to obtain the limit of arc log periods at the boundary zD.

Proposition 8.6. The arc log period  � W LPS� ! C is single-valued and analytic. Fur-
thermore,

 � .0; �; �;�/ D

�Z
>

Hol.�/C
X
e2E

h>; �ei res
q
C
e
.�/.�e C Qce/

�
where Qce are certain constants, depending only on the choice of normal form coordinates
and branches of logarithms.

Proof. We write bD �� . Qb/ for the rest of the proof. For all nodes e, there exist integers k0e
such that

ln.se. Qb// D �e ln.z/C �e C 2�ik0e

by (8.1). We thus have

  .b/ D
1

td>./e

�Z


!.b/ �
X
e2E

h; �eire.b/ ln.se/
�

D  � .
Qb/ �

X
e2E

h; �ei
re.b/

td>./e
.�e C 2�ik

0
e/:

Thus the result follows from Theorem 5.2 with Qce WD ce C 2�ik0e .

The subvariety zV�

We now come to the definition of zV� � LPS� . On the stratum we can only define the
linear equations defining M in a small period chart. Due to monodromy, periods do not
extend as holomorphic functions to the boundary @„Mg;n.�/. On the other hand, we have
seen that log periods do extend to „Mg;n.�/. Thus naïvely one would try to convert the
linear equations definingM into equations involving log periods. The naïve idea does not
work since the logarithmic divergences do not cancel out. The space LPS� is constructed
in such a way that the logarithmic divergences cancel out, and thus we will be able to
rewrite linear equations in period coordinates as equations in arc log periods. We let A0 D
.A0
kl
/1�k�codim.M/; 1�l�d be the matrix with

A0kl WD
td`.l/e

td`.k/e
Akl

being the equations for V , suitably rescaled, and define

zV� WD ¹ Qb 2 LPS� W A0 �  �. Qb/ D 0º � LPS� (8.3)

where  � WD . �k .
Qb//k . The rescaling factors in the definition of A0

kl
are motivated by

the proof of Corollary 7.9.
The next result says that, over a period chart, zV� is just the �� -preimage of V .
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Proposition 8.7. For any sufficiently small period chart W � B nD containing x0 we
have

�� . zV� / \W D V \W; (8.4)

��1� .V \W / D zV� \ �
�1
� .W /: (8.5)

Proof. For any Qb 2 ��1� .W / we compute

dX
lD1

Akl td`.l/e 
�
l
. Qb/ D

dX
lD1

Akl

�Z
l

! �
X
e2E

hl ; �ei�ere.b/ ln.z/
�
:

Since the matrix A are the defining linear equations for the linear subvariety M near x0,
it follows from Proposition 7.6 or equivalently (7.7) that

dX
lD1

Akl �
�X
e2E

hl ; �ei�ere.b/
�
D 0 for k D 1; : : : ; codim.M/:

Thus ��1� .V \W / D zV� \ �
�1
� .W / and the first claim follows since W is contained in

the image of �� .

We now study the limiting behavior of the equations defining zV� on the boundary zD
of LPS� , for arbitrary � .

Consider one of the defining equations
Pd
lD1 A

0
kl
 �l D 0 of zV� and restrict it to

zD D ¹z D 0º. In the limit z! 0 only the arc log periods  �l with `.l/D `.k/ contribute.
Thus, using Proposition 8.6 the equations for zV� \ zD can be written asX

¹lW `.l/D`.k/º

Akl

�Z
.l />

Hol.�/C
X
e2E

h.l />; �ei rese.�/.�e C Qce/
�
D 0: (8.6)

Thus on the boundary zD, the equations for zV� and for ��1� .V lim/ coincide except for the
equations involving horizontal nodes. As a corollary of this discussion we obtain

Corollary 8.8. The image �� . zV� \ zD/ is contained in V lim.

The following step is crucial in the proof of property .3/ of Proposition 8.3.

Proposition 8.9. For any Qb0 2 zV� \ zD, the subvarieties zV� and zV� \ zD are smooth at Qb0
and furthermore the restriction

�� j zV�\ zD W
zV� \ zD ! V lim

is a submersion at Qb0.

Remark 8.10. This proposition is the key technical component of the proof of Theo-
rem 1.2. The proof uses both the asymptotic analysis for log periods and the notion of
�-adapted basis in a crucial way.
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Proof of Proposition 8.9. For the rest of the proof we write ` D `.�/. We start with the
smoothness of zV� . We choose a �-adapted basis

¹1; : : : ; d º D ¹ı
.0/
1 ; : : : ; ı

.0/

c.0/
; ˛
.0/
1 ; : : : ; ˛

.0/

d.0/
; : : : ; ı

.`/
1 ; : : : ; ı

.`/

c.L/
; ˛
.`/
1 ; : : : ; ˛

.`/

d.`/
º;

where we recall that ˛.i/1 ; : : : ; ˛
.i/

d.i/
are non-horizontal cycles of level i and ı.i/1 ; : : : ; ı

.i/

c.i/

are horizontal-crossing cycles of level i . We will write �.i/
l

instead of �e where e is the
unique horizontal edge crossed by ı.i/

l
. For each level i we order the �-adapted basis in

such a way that
R
.˛i
d.i/

/>
�¤ 0. Additionally, if � has only one level, we also arrange that

ı
.0/

d.0/
crosses only the horizontal node e0, where �e0 is the omitted coordinate on LPS� .

Let F1; : : : ; Fcodim.M/ be the defining equations for zV� in LPS� , considered as func-
tions on LPS� . Our goal is to show that the Jacobian matrix of the F1; : : : ; Fcodim.M/ has
full rank with respect to a suitable coordinate system on LPS� . For this we recall that
LPS� has different coordinates, depending on whether � has only one or multiple levels.

In the case of only one level we can describe a coordinate system as follows. We
choose a horizontal edge e0 such that the coordinate �e0 is omitted. Then z; �e for
e 2 Ehor n ¹e0º and

R
.
.0/

l
/>
� for l D 1; : : : ; d.0/ are coordinates on LPS� .

On the other hand, if � has multiple levels, coordinates on LPS� are given by z; �i
for i D 1; : : : ; ` � 1; �e for e 2 Ehor;

R
.˛
.i/

l
/>
� for i D 0; : : : ; ` and l D 1; : : : ; d.i/� 1;

and
R
.˛
.0/

d.0/
/>
�.

We are now going to compute the Jacobian with respect to the coordinate systems just
described. According to (8.3) we can write

Fk D

dX
lD1

Akl
td`.l/e

td`.k/e
 �l ;

where Akl are the coefficients of the linear equations defining V . We assume, as always,
that the matrix A D .Akl / is in reduced row echelon form and we denote by Akp.k/ the
pivot of the k-th row. Each pivot Akp.k/ corresponds to some element p.k/ of the �-
adapted basis. For the rest of the proof we write u WD codim.M/ and we let F1; : : : ; Fu0
be the linear equations such that p.k/ is a horizontal-crossing cycle, and Fu0C1; : : : ; Fu
the remaining equations. In the former case, we let e.k/ be the unique horizontal edge
crossed by p.k/.

We now distinguish the two cases described above. First we assume that � has more
than one level.

For every 1 � k � u0 we can write, using Proposition 8.6,

Fk D re.k/.�e.k/ C Qce.k//C hk. Qb/C zgk. Qb/

where gk ; hk are analytic. Furthermore, by inspecting Proposition 8.6 closely we see that

hk. Qb/ D hk

�
�
.`.k//

p.k/C1
; : : : ; �

.`.k//

c.k/
;

Z
.˛
.`.k/
1

/>

�; : : : ;

Z
.˛
.`.k//

d.k/
/>

�

�
:
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Similarly, the remaining equations Fu0C1; : : : ; Fu can be written near Qb0 as

Fk D

Z
.˛
.`.k/

p.k/
/>

�C hk

�Z
.˛
.`.k/

p.k/C1
/>

�; : : : ;

Z
.˛
.`.k/

d.k/
/>

�

�
C zgk.zb/

where again hk and gk are analytic.
We note that in this case p.k/ ¤ d.i/ since otherwise

R
.˛
.i/

d.i/
/>
� D 0, which can be

seen by taking the limit of the equations at b0. Thus for any equation Fk ; k > u0, the pivotR
.˛
.`.k/

p.k/
/>
� is a coordinate on LPS� . Thus the submatrix of the Jacobian corresponding

to �e.k/ for k D 1; : : : ; u0 and
R
.˛
.`.k/

p.k/
/>
� for k D u0 C 1; : : : ; u has full rank at Qb0 and

therefore zV� is smooth at zb0. Smoothness of zV� \ zD follows similarly, by noting that
additionally z is one of the coordinates on LPS� .

The argument is very similar in the second case where � has only one level, with
some care needed to make sure everything works out well for the omitted coordinate
�e0 D �

.0/

c.0/
. We recall that we ordered the �-adapted basis in such a way that �e.i/ is the

omitted coordinate on LPS� . We claim that ı.0/
c.0/

does not correspond to any of the pivots
p.k/, since otherwise we would have rese0.�/ D 0 by Remark 7.7, which is impossible.
Thus, as before, each pivot corresponds to a coordinate on LPS� , and thus the Jacobian
has full rank.

We now come to the final claim that �� j zV�\ zD W
zV� \ zD! V lim is a submersion at Qb0.

Let � � ¹1; : : : ; dº be the set of all non-pivotal rows and let �0 � � be the non-pivots
corresponding to cross cycles ı.i/e . In particular, we can then use the periods ¹

R
.l />

�º

for l 2 � n�0 together with �e for e 2 �0 and �i for i 2 L.�/ as local coordinates on
zV� \ zD.

Similarly, we can use
R
.l />

� for all l 2 � n�0, as coordinates on V lim, and thus ��
is a submersion near Qb0.

The proof of Proposition 8.3

We now have all the necessary ingredients for the proof of Proposition 8.3; it is a matter
of summarizing what we have proved so far.

Proof of Proposition 8.3. We have seen in Proposition 8.9 that zV� is smooth at any
point of ��1� .D�/, thus proving (3). Furthermore, Proposition 8.9 also shows that
�� j zV�\��1� .D

�
/ is open and maps into V lim by Corollary 8.8, and we have thus proved (4).

We now address the lifting properties of short arcs, (1) and (2). Let f W �! B be a
short arc with �f D � . Since f�.�1.��; x0//D h�f i, there exists a lift Qf ı W��! LPS� .
More explicitly, we can write

ti D z
�i e2�i�i .z/; se D z

�ee2�i�e.z/; � D �.z/; (8.7)

where �i and �e are holomorphic. In particular, �i and �e are holomorphic at z D 0.
Recall that on LPS� there exists either a level i with �i D 0 or a horizontal node e with
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�e D 0. We assume that �i D 0 for some i ; the other case can be treated analogously.
After a change of coordinates z 7! ze2�i�i .z/=�i we can arrange that �i .z/ D 0 and then
define

Qf ı.z/ WD
�
z; .�i .z//i ; .�e.z//e;�

�
:

Since f is holomorphic at the origin, Qf ı extends to a short arc Qf W�! B . Now suppose
f is an M -disk and W a period chart containing x0. Then f .�/ \ W � V \ W and
by (8.5) the lift Qf maps into zV� , thus showing (1).

Similarly, if g W �! zV� is a short arc on . zV� ; zV� \ zD/ passing through a preimage
of x0 on, then by (8.5) the composition �� ı g is an M -disk. This proves (2).

8.4. Multiple components

So far we have assumed that xM is locally irreducible near b0. In general we can write xM DS
˛ M˛ locally near b0 where M˛ are the finitely many, local irreducible components

of xM . For every ˛ we choose a base point x˛ and a subspace V˛ such that M˛ coincides
with V˛ near x˛ . We can then apply Proposition 8.2 to each irreducible component M˛

and thus obtain
@M \ U D

[
˛

V lim
˛

for a suitable neighborhood U . In particular, @M is defined by a finite union of linear
subspaces at any boundary point b0 2 @M \D� and this finishes the proof of Theorem 1.2
for the case of multiple components.

9. An example

We now demonstrate how to obtain the linear equations on the boundary from the lin-
ear equations on a nearby smooth surface in an example. We stress that we do not claim
that there exists an actual linear subvariety which is locally defined by those linear equa-
tions; the example is only hypothetical. In Figure 15 we see a smooth genus 7 curve †,
just chosen sufficiently complicated to illustrate all possible phenomena. We consider the
degeneration X obtained by simultaneously pinching the cycles �i ; i D 1; : : : ; 6; with
normalization zX ! X . By abuse of notation we denote homology cycles on X and †
with the same name. The level structure on � can be seen in Figure 16.

We note that the image of the vanishing cycles in H1.† n P; Z/ is generated by
h�1; �2i. Furthermore, the images of ¹˛; 1; 2; ı1; ı2; 3; 4; ˇº on the stable curve X
can be extended to a �-adapted basis. The advantage of using a �-adapted basis is that
we can read off the equations directly. We assume that at all vertical nodes the number of
prongs is one, i.e. �e D 1.

Suppose M � H .�/ were a linear subvariety which locally near † is given by the
linear equations Z

˛

! C

Z
2

! C 3

Z
ˇ

! D 0; (9.1)
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Fig. 15. A smooth genus 7 curve.

�1

Fig. 16. The level graph � .

Z
1

! C

Z
5

! D 0; (9.2)

3

Z
ı1

! � 5

Z
ı2

! D 0; (9.3)

3

Z
�1

! � 10

Z
�2

! D 0; (9.4)Z
3

! D

Z
4

!: (9.5)

Before describing the linear equations of @M \D� we describe the implications of
Proposition 7.6 in this case. Since (9.3) crosses the horizontal vanishing cycles �1 and �2
as well as the vertical vanishing cycles �3 and �6, there has to be an additional equation
of the form

3

�
m1

Z
�1

! Cm3

Z
�3

! Cm3

Z
�6

!

�
� 5

�
m2

Z
�2

! Cm3

Z
�3

! Cm3

Z
�6

!

�
(9.6)

for some positive integersm1;m2 andm3. Here we use the fact that the number of prongs
at each of �3 and �6 is 1, thus the coefficient m3 is the same for both. Note that �3 C �6
D 0 since the sum of the two vanishing cycles is separating. We decide, for the sake of
an example, that m1 D 1;m2 D 2 and thus (9.6) reduces to (9.4). Similarly, the equation
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1
! C

R
5
! D 0 forces a linear equation

m3

Z
�3

! Cm3

Z
�6

! D 0:

Since �6 D ��3 this equation is vacuously true and thus does not impose an additional
constraint.

Fig. 17. The normalization zX .

We now describe the linear equations defining @M \ D� near X . For each of the
defining equations F 2 H1.† n P;Z/ for M we repeat the following steps.

(1) Determine the top level >.F / and write F D
P
k dkk in a �-adapted basis.

(2) If the equation F is a horizontal-crossing cycle, delete it.

(3) Otherwise, restrict F to its top level>.F /, i.e. we consider f>.F /.F / in the language
of Section 4. The resulting cycle then defines an equation for the boundary @M \D�
at level >.F /.

First, since (9.3) crosses the horizontal vanishing cycles ı1 and ı2, we omit it from
the equations of @M \D� . We then restrict all remaining equations to their respective
level. Equations (9.1), (9.2) and (9.4) are of level 0, while (9.5) is of level �1. When
restricting (9.1) we loose

R
ˇ
! since `.ˇ/D�1. We thus arrive at the following equations:Z

˛

�C

Z
2

� D 0; (9.7)Z
.1/>

� �

Z
.5/>

� D 0; (9.8)

3

Z
�1

� � 10

Z
�2

� D 0; (9.9)Z
3

� D

Z
4

�: (9.10)
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We remark that the global residue condition for � imposes the additional constraint
R
�3
�

D
R
�6
�, which does not come from the linear equations for M but simply from the fact

that �3 and �6 are homologous.

10. Comparing the linear structures

We now give a coordinate-free way of interpreting the linear equations for @M on the
boundary, which will give the final and most precise formulation of Theorem 1.2. Again
we suppose that xM is locally irreducible near b0 and for the general case we just apply
the results on each local irreducible component separately. We still use the same setup as
in Section 7.3. In the course of the proof of Theorem 1.2 we described how to obtain the
subspace defining @M in terms of defining equations.

Suppose Tx0M D V � H 1.Xx0 n Px0 ; Zx0 IC/ is the linear subspace defining M
near x0. We consider an equation in H 1.† n P; ZI C/ as an element of the dual
H1.† n P;ZIC/. Suppose

F D
X
l

Al Œl � 2 H1.Xx0 n Px0 ; Zx0 IC/

is an equation vanishing on V of level i . If F is a horizontal-crossing cycle we want
to ignore F , and otherwise we restrict it to its top level to obtain an equation vanish-
ing on @M . In order to makes this precise, we need to recall some of the setup from
Section 4.3. The only difference is that now we exclusively work with homology and
cohomology with C-coefficients; to lighten notation all spaces here are simply obtained
by tensoring their analogue from Section 4.3 by C. For example, the vertical filtration

Wi � H1.Xx0 n Px0 ; Zx0 IC/

consists of paths of level at most i that do not intersect any horizontal vanishing cycles of
level i . We denote by ai WWi !H1.Xx0 nPx0 ;Zx0 IC/ the inclusion. The specialization
map

fi W Wi ! H1.†
cut
.i/ n P;Z [ƒ

ver;C
.i/

/=GRC.i/
is obtained by restricting a path inWi to the surface†cut

.i/
. We recall that†cut

.i/
consists only

of the i -th level piece of † and is furthermore cut along all horizontal vanishing cycles of
level i .

The following proposition is now a matter of rephrasing what we have proved so far
in the language of Section 4.3. We denote by f �i and a�i the dual maps of fi and ai ,
respectively.

Proposition 10.1. LetM be a linear subvariety, b0 2 @M \D� and x0 2Mreg \ .B nD/

with Tx0M D V . Then @M \D� is near b0 defined by the linear subspace

p
� Y
i2L�.�/

.f �i /
�1.a�i .V //

�
� H1.0/.X IC/ �

Y
i2L.�/

P .H1.i/.X IC/
GRC/;

where p W
Q
i2L�.�/ H1

.i/
.X IC/GRC ! H1

.0/
.X/ �

Q
i2L.�/ P .H1

.i/
.X IC/GRC/ is the nat-

ural quotient map.
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Proof. We write V DAnn.E/whereE �H1.Xx0 nPx0 ;Zx0 IC/ are the linear equations
defining V . More explicitly, E D .H 1.Xx0 n Px0 ; Zx0 IC/=V /

�.
The restriction E \Wi corresponds to all equations with top level � i which do not

pass through any horizontal nodes, and fi .E \Wi / is then generated by their restrictions
to level i . Note that fi .E \Wi / � H1.†cut

.i/
n P;Z [ƒ

ver;C
.i/
IC/=GRC.i/ and

Ann.fi .E \Wi // � .H1.†cut
.i/ n P;Z [ƒ

ver;C
.i/
IC/=GRC.i//�

D H 1.†cut
.i/; Z [ƒ

C;ver
.i/
IC/GRC

D H1.i/.X IC/
GRC:

By Proposition 8.2 and the explicit form of (7.9), we see that the defining equations
for @M near x0 on the i -th level are exactly given by fi .E \Wi /. In particular, @M is
given by the linear subspace p.

Q
i2L�.�/ Ann.fi .E \Wi ///.

It now follows from properties of the annihilator that

Ann.fi .E \Wi // D Ann.fi .a�1i .E/// D .f �i /
�1.Ann.a�1i .E///

D .f �i /
�1.a�i .V ///:

Remark 10.2. We now explain how Proposition 10.1 relates to the results of [12]. Since
fi is surjective, its dual f �i is injective, and we can identify .f �i /

�1.a�i .V // with its
image under f �i inside W �i . We obtain

.f �i /
�1.a�i .V // ' a

�
i .V / \ Im.f �i / D a

�
i .V / \ Ann.kerfi / � W �i :

In the special case where H .�/ is a stratum of holomorphic differentials and � has
no horizontal nodes, we have H1.† n P;Z/ D L0 D W0 and L1 D W1 D kerf0. In this
case the tangent space for the top level part only is given by

.f �0 /
�1.V / ' V \ Ann.W1/:

This coincides with the tangent space description of [12, Thm. 2.9]. We stress that the
space of vanishing cycles in [12] coincides with W1 in our notation and should not be
confused with the collection of vanishing cycles ƒ.

11. The boundary in the “WYSIWYG” partial compactification

We now show how to quickly deduce Theorem 1.4 from Proposition 10.1, re-proving one
of the main results of [4].

First we recall some of the setup. We work on a fixed stratum H .�/ which is allowed
to be meromorphic (note that in [4] only holomorphic strata are considered). For a multi-
scale differential .X; �/ we define �.X; �/ D .X.0/; !.0// to be the top level projection
and recall the partial compactification

zH .�/ WD „Mg;n.�/=.�.X;�// ' �.X
0;�0//:
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with the natural projection map

p W „Mg;n.�/! zH .�/:

The fibers of p are compact, being given by a cover of a finite union
S
�0 P„Mg0;n0.�

0/.
Let M � H .�/ be a linear subvariety, potentially defined over the complex num-

bers. We now fix a boundary point .X1; !1/ 2 p.@M/ in a stratum H .!1/. Our goal
is to show that p.@M/ \H .!1/ is a finite union of linear subvarieties. While Chen and
Wright [4, Thm. 1.1] show that zH .�/ is not a complex analytic space and in general p is
only continuous, the restriction pjp�1.H.!1//

W p�1.H .!1//! H .!1/ is in fact alge-
braic and proper. Thus p.@M/ \H .!1/ is algebraic. Furthermore, we have computed
at each point x of p�1.X1; !1/ \ .@M \D�/ the linear equations defining @M \D� .
We now want to show that there are only finitely many different linear equations for the
top level when we vary the point x over p�1.X1; !1/ \ @M . While so far we have
worked on each open boundary component D� separately, p maps different boundary
strata into H .!1/ and thus [4, Thm. 1.2] does not just follow as part of the statements
we proved. Before we can proceed with the proof we thus need some preparation.

Given .X; �/ 2 p�1.X1; !1/ \ D� our first goal is to determine which nearby
boundary strata map into p�1.X1; !1/. Let B �„Mg;n.�/ be a small chart containing
.X; �/.

We define
D�1 WD ¹t�1 D 0º � B

where t�1 was defined in Section 2.8. Thus D�1 is a union of boundary strata, corre-
sponding to undegenerations of � with the same top level graph as � . Since on zH .�/ all
zeroes and preimages of nodes are marked, we have the following observation.

Lemma 11.1. Let .X; �/ 2 B \ p�1.X1; !1/ as above. Then

B \ p�1.X1; !1/ � D�1:

We need to study the asymptotic of log periods onD�1. While the general asymptotic
for undegenerations is complicated, for paths of top level 0 there is a formula similar to
Theorem 5.2. We only state it in the case of curves not crossing horizontal nodes but it
can be adapted in general.

Lemma 11.2. Let  be a path of top level 0 not crossing any horizontal nodes. Then

  .b/ D

Z
.b/>

� for all b 2 D�1.

Note that this shows that the top level equations for @M \D� are constant on D�1,
at least along a local irreducible component of @M .

Proof of Lemma 11.2. The proof of Theorem 5.2 works almost verbatim, the only dif-
ference being that ��1

b0
.&e.b0// D p0 is only true for nodes with `.eC/ D 0 since the

modifying differential on the top level vanishes.
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Thus at nodes with `.eC/ D 0 we haveZ ��1
.�;t;h/

.&.�;t;h//

p0

� D O.t�1/:

On lower levels, we only know that ��1
b0
.&e.b0// is bounded, but the integrand is divisible

by t�1 and thus Z ��1
.�;t;h/

.&.�;t;h//

p0

.t ? �C �/ D O.t�1/

as well.

We have now assembled all the tools to give an independent proof of Theorem 1.4.

Proof of Theorem 1.4. Let .X1;!1/ 2 @M \ zH .�/. For each y 2W WD p�1.X1;!1/
we let �.y/ be the associated enhanced level graph. If y 2 xM we choose Uy such that
Uy \ xM has only finitely many irreducible components and Uy \D� satisfies the condi-
tions of Proposition 8.2 for each local irreducible component.

We write @M \D� \Uy D
S
ˇMˇ .y/ as a union of its local irreducible components.

We choose arbitrary points zˇ .y/ inMˇ .y/\ zH .�/ and let Vˇ .y/D Tzˇ.y/Mˇ .y/ be the
corresponding tangent space. Note that so far in Proposition 8.2 we assumed that z˛.y/ is
a smooth point of M . We now claim that this assumption can be removed as follows.

In a small period chart around zˇ .y/ we can choose a smooth point of Mˇ .y/ and
then transport the linear subspace for the given branch via the Gauss–Manin connection
to zˇ .y/.

We set V .0/
ˇ
.y/ WD .f �0 /

�1.˛0/
�.Vˇ .y//. In the case !1 has no simple poles, by

Remark 10.2, we can identify V .0/
ˇ
.y/with the intersection of the tangent space toMˇ .y/

at zˇ .y/ and the tangent space to H .!1/.
We can assume that Uyl is a product U 0yl � U

00
yl

of polydisks where U 0yl �

H1.X.0/ n P.0/; Z.0// is a polydisk in the coordinates of the top level. By compact-
ness of W we can cover W \ @M by finitely many Uy1 ; : : : ; Uyl with yk 2 @M . We
set U WD

Tl
kD1 U

0
yk

.
We claim that

@M \H .!1/ \ U D

l[
kD1

[
ˇ

V
.0/

ˇ
.yk/ \ U:

Let .xn/ be a sequence in M converging to .X 01; !
0
1/ 2 U \ p.@M/. After removing

finitely many elements, the sequence is contained in
Sl
kD1 Uyk . We partition it into sub-

sequences .x.k/n / contained in Uyk . After passing to a subsequence we can assume that
.x
.k/
n / converges to x.k/ 2 @M \ Uyk . Now if x.k/ lies in the same open boundary com-

ponent D� as yk , it follows from Proposition 10.1 that p.x.k// 2 V .0/
ˇ
.yk// for some ˇ.

If x lies in an undegeneration, then it follows first from Lemma 11.1 that x.l/ 2D�1, and
then the claim follows from Lemma 11.2.

On the other hand, if x.k/ 2 V .0/
ˇ
.yk/\U , then we construct a multi-scale differential

.X;�/ by gluing x.k/ and the lower level parts of yk . Since the equations are levelwise, it
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follows that .X;!/ is contained in Uyk \ @M , and thus there exists a sequence .xn/ inM
converging to .X; �/ and by continuity .xn/ converges to x.k/ in zH .�/. This proves the
first claim.

The second claim follows since we can choose zˇ .y/ arbitrarily inside the branch
Mˇ .y/ and thus we can take zˇ .y/ D xn.
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