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Abstract. The problem of computing spectra of operators is arguably one of the most investi-
gated areas of computational mathematics. However, the problem of computing spectra of general
bounded infinite matrices has only recently been solved. We establish some of the foundations
of computational spectral theory through the Solvability Complexity Index (SCI) hierarchy, an
approach closely related to Smale’s program on the foundations of computational mathematics and
McMullen’s results on polynomial root finding with rational maps. Infinite-dimensional problems
yield an intricate infinite classification theory, determining which spectral problems can be solved
and with what types of algorithms. We provide answers to many longstanding open questions on
the existence of algorithms. For example, we show that spectra can be computed, with error con-
trol, from point sampling operator coefficients for large classes of partial differential operators on
unbounded domains. Further results include: computing spectra of (possibly unbounded) operators
on graphs and separable Hilbert spaces with error control; determining if the spectrum intersects a
compact set; the computational spectral gap problem and computing spectral classifications at the
bottom of the spectrum; and computing discrete spectra, multiplicities, eigenspaces and determining
if the discrete spectrum is non-empty. Moreover, the positive results with error control can be used
in computer-assisted proofs. In contrast, the negative results preclude computer-assisted proofs for
classes of operators as a whole. Our proofs are constructive, yielding a library of new algorithms
and techniques that handle problems that before were out of reach. We demonstrate these algo-
rithms on challenging problems, giving concrete examples of the failure of traditional approaches
(e.g., “spectral pollution”) compared to the introduced techniques.

Keywords. Computational spectral problem, Solvability Complexity Index hierarchy, Smale’s
program on the foundations of computational mathematics, computer-assisted proofs
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1. Introduction

The problem of computing spectra of operators has fascinated yet frustrated mathemati-
cians for several decades, resulting in a vast literature (see §4). Indeed, W. Arveson [7]
pointed out in the nineties that: “Unfortunately, there is a dearth of literature on this basic
problem, and so far as we have been able to tell, there are no proven techniques”. This
longstanding problem for general infinite matrices has recently been addressed [12, 95].
Arveson’s question, of why “there are no proven techniques”, can be explained by clas-
sification results in the newly established Solvability Complexity Index (SCI) hierarchy
[11–13, 49, 51–53, 55, 57, 59, 95, 96]. The fact that algorithms were not found for the gen-
eral computational spectral problem has a potentially surprising cause: one needs several
limits in the computation. Traditional approaches have been dominated by techniques
based on one limit, and this is the reason behind Arveson’s observation. Moreover, the
fact that several limits are required is a phenomenon shared by other areas of computa-
tional mathematics. For example, the problem of root-finding of polynomials with rational
maps initiated by S. Smale [132] is also subject to the issue of requiring several limits.
This result was established by C. McMullen [109, 110] and P. Doyle & C. McMullen
in [70], and their results become classification results in the SCI hierarchy.

Recent results establishing the SCI hierarchy [11–13, 49, 51–53, 55, 57, 59, 95, 96]
reveal that the computational spectral problem becomes an infinite classification theory.
There is a vast well of open problems, some of which have been open for decades. For
example, the following issue, even when neglecting the requirement of an error parameter,
has been open since the early days of spectral computations in the 1950s:

For which classes of differential operators on unbounded domains do there exist
algorithms that converge to the true spectrum, and also guarantee that the output
is in the spectrum up to an arbitrary small � > 0 parameter .the problem is in †1
in the SCI hierarchy language/? In other words, the algorithm is verifiable and
will never make a mistake.

A vast literature on computing spectra of differential operators on bounded domains
exists. However, these techniques will typically yield non-convergent methods in the
unbounded domain case. Even for bounded domains, obtaining error bounds is, in general,
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well known to be very difficult. The purpose of this paper is to provide solutions to such
problems, and this program has three main motivations:

(I) Classifications and lower bounds: Sharp classifications of problems in the SCI hier-
archy establish the boundaries of what computers can achieve. Such classifications give a
precise measure of the difficulty1 of a computational problem and prevent the search for
algorithms that cannot exist.

(II) New algorithms: Constructive classifications, which we always provide in this paper,
provide algorithms that realise these boundaries. Such algorithms solve problems in the
sciences that before were not possible. We provide several examples in this paper.

(III) Computer-assisted proofs: Computer-assisted proofs use computers to solve numeri-
cal problems rigorously. These have become essential in modern mathematics. What may
be surprising is that undecidable (non-computable) problems can be used in computer-
assisted proofs. For example, led by T. Hales, the recent proof of Kepler’s conjecture
(Hilbert’s 18th problem) on optimal packings of 3-spheres relies on such undecidable
problems [91,92]. Another example is the Dirac–Schwinger conjecture on the asymptotic
behaviour of ground states of certain Schrödinger operators. This conjecture was proven
in a series of papers by C. Fefferman and L. Seco [74–82] using computer assistance.
Fascinatingly, this proof also relies on computing non-computable problems. The SCI
hierarchy explains this apparent paradox. In particular, the †A1 class described below is
crucial. Hales, Fefferman and Seco implicitly prove †A1 classifications in the SCI hierar-
chy in their papers. Our classifications of spectral problems provide new results on which
spectral problems can be used in computer-assisted proofs.

Table 1 provides a summary of the main results of this paper. §3 contains the theorems,
and we focus on the following four important open problems:

(i) Computing spectra of differential operators. Linked to computational PDE theory,
there is a rich literature on computing spectra of differential operators on bounded
domains (see [22,23,41–43,48,119,120,144] for a small sample). However, in general, it
is unknown how to compute spectra of differential operators on unbounded domains. We
provide a sharp solution to this problem for large classes of differential operators, realis-
ing the boundary of what computers can achieve. We provide convergent algorithms that
are also guaranteed to produce an output contained in the spectrum, up to an arbitrarily
small error chosen by the user. As such, these algorithms can be used in computer-assisted
proofs.

(ii) Computing spectra of unbounded operators on graphs. Operators on l2.N/ and, more
generally, graphs or lattices are ubiquitous in mathematics and physics. We establish sharp

1We are referring here to difficulty in terms of computability. This is different to computational
complexity, which only makes sense for �1 problems (i.e., problems for which there exists an
algorithm that given � produces an �-accurate solution). By simply considering diagonal infinite
matrices, it is easy to see that most infinite-dimensional spectral problems of interest are not in �1.
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classifications of spectral problems for such operators. In many cases, we provide conver-
gent algorithms with guaranteed error control on the output. Hence these algorithms may
be used in computer-assisted proofs. We also consider the decision problem of determin-
ing whether spectra (or pseudospectra) intersect a given compact set.

(iii) The spectral gap problem. The spectral gap problem has a long tradition. It is linked
to many important conjectures and problems, such as the Haldane conjecture [89] and
the Yang–Mills mass gap problem in quantum field theory [26]. The problem consists in
determining whether there is a gap between the lowest element in the spectrum and the
next element. We show why this problem is notoriously difficult. The problem is higher
up in the SCI hierarchy, even for the simplest of operators. This result means that no
algorithm can provide verifiable results on a computer. Hence, these problems cannot be
used in computer-assisted proofs without further (typically global) assumptions on the
class of operators. We extend this result to spectral classification at the bottom of the
spectrum.

(iv) Computing discrete spectra and multiplicities. Computing discrete spectra is a noto-
riously difficult problem and previous numerical approaches have found it very difficult
to do this reliably, even for special classes of one-dimensional operators (see §3.4.4). We
demonstrate why this is a difficult problem by establishing the correct classification high
up in the SCI hierarchy. However, the sharp algorithm we provide is still practical. Its first
limit is always contained in the discrete spectrum, and one can obtain the distance of each
point of the output to the spectrum. We extend these results to computing multiplicities,
eigenspaces, and determining if the discrete spectrum is non-empty.

The rest of this paper is organised as follows. In §2 we provide a brief summary of the
SCI hierarchy to allow the interpretation of Table 1 and theorems, with a detailed discus-
sion of the hierarchy delayed until §5. The main results are given in §3 with connections
to previous work provided in §4. Proofs are given in §6–§9. Finally, some computational
examples are given in §10, and pseudocode is provided in Appendix A.

2. Classifications in the SCI hierarchy

2.1. The SCI hierarchy

We start with the definition of a computational problem. The basic objects of a compu-
tational problem are: �, called the domain; ƒ, a set of complex-valued functions on �,
called the evaluation set; .M; d /, a metric space; and „ W �!M, the problem function.
The set � is the set of objects that give rise to our computational problems. The problem
function „ W � ! M describes what we want to compute (with the metric space giv-
ing the notion of convergence). Finally, ƒ is the collection of functions that provide the
information we allow algorithms to read as input.

Definition 2.1 (Computational problem). Given (i) a domain �, (ii) an evaluation set ƒ,
such that for any A1; A2 2 �, A1 D A2 if and only if f .A1/ D f .A2/ for all f 2 ƒ,
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Problem description SCI hierarchy classification Theorems

Computing spectrum/pseudospectrum of differential
operators, whose coefficients have bounded total
variation, from point evaluations of coefficients

2 †A1 , … �G1
(see Theorem for relaxations)

3.3

Computing spectrum/pseudospectrum of differential
operators, whose coefficients are entire, from power
series of coefficients

2 †A1 , … �G1
(see Theorem for relaxations)

3.6

Computing spectrum/pseudospectrum of unbounded
operators with known bounded dispersion and known
resolvent bound

2 †A1 , … �G1
(same for diagonal operators)

3.8

Determining if the spectrum/pseudospectrum of an
operator with known bounded dispersion intersects a
compact set

2 …A2 , … �G2
(same for diagonal operators)

3.10

Spectral gap problem 2 †A2 , … �G2
(same for diagonal operators)

3.13

Spectral classification problem 2 …A2 , … �G2
(same for diagonal operators)

3.13

Computing cl.Spd .A// (and multiplicities of eigen-
values) for bounded normal operators; here, Spd .A/
denotes the discrete spectrum of A

With bounded dispersion:
2 †A2 , … �G2
(same for diagonal operators)
Multiplicities: 2 …A2
Without bounded dispersion:
2 †A3 , … �G3

3.15, 3.17

Determining if the discrete spectrum is non-empty for
bounded normal operators

With bounded dispersion:
2 †A2 , … �G2
Without bounded dispersion:
2 †A3 , … �G3

3.15, 3.17

Tab. 1. Summary of the main results. Bounded dispersion means that we know the asymptotic
off-diagonal decay of suitable matrix elements of the operator (see (3.9)). Known resolvent bound
means control of the growth of the resolvent .A � zI /�1 near the spectrum (see (3.4) and (3.10)).
Appendix A provides pseudocode for the algorithms.

(iii) a metric space M, and (iv) a problem function „ W �!M, we call the collection
¹„;�;M; ƒº a computational problem.

The definition of a computational problem is deliberately general to capture any com-
putational problem in the literature. The set-up of this paper has the following typical
form: � is a class of operators on a separable Hilbert space H , „.A/ D Sp.A/ (the
spectrum or other related maps), .M; d / is the collection of closed subsets of C with
an appropriate generalisation of the Hausdorff metric (see (3.1) and (3.2)), and ƒ may
be the set of complex functions that could provide the matrix elements of A 2 � given
some orthonormal basis ¹ej º of H . For example,ƒ could consist of fi;j W A 7! hAej ; ei i,
i; j 2N, the entries of the matrix representation ofAwith respect to the basis. As another
example,ƒ could be the collection of functions providing point samples of a potential (or
coefficient) function of a Schrödinger (or more general) partial differential operator.
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The SCI of a class of computational problems is the smallest number of limits needed
to compute the solution to the problem. The SCI hierarchy for spectral problems can be
informally described as follows [12, 51, 95]. For decision problems, the description is
similar (see §5 for the formal definitions).

The SCI hierarchy: Given a collection C of computational problems,

(i) �˛0 D …˛
0 D †˛0 is the set of problems that can be computed in finite time, SCI

D 0.

(ii) �˛1 is the set of problems that can be computed using one limit (SCI D 1) with
control of the error, i.e., there exists a sequence ¹�nº of algorithms such that
d.�n.A/;„.A// � 2

�n for all A 2 �.

(iii) †˛1 is the set of problems for which there exists a sequence ¹�nº of algorithms such
that limn!1 �n.A/ D „.A/ for all A 2 �. Moreover, �n.A/ is always contained
in a set Xn.A/ such that d.Xn;„.A// � 2�n. We have�˛1 � †

˛
1 � �

˛
2 (where�˛2

is described below).

(iv) …˛
1 is the set of problems for which there exists a sequence ¹�nº of algorithms such

that limn!1 �n.A/D„.A/ for all A 2�. Moreover, there exists sets Xn.A/ such
that „.A/ � Xn.A/ and d.Xn; �n.A// � 2�n. We have �˛1 � …

˛
1 � �

˛
2 (where

�˛2 is described below).

(v) �˛2 is the set of problems that can be computed using one limit (SCI D 1) without
the requirement of error control, i.e., there exists a sequence ¹�nº of algorithms
such that limn!1 �n.A/ D „.A/ for all A 2 �.

(vi) �˛mC1, for m 2 N, is the set of problems that can be computed by using m limits,
(SCI � m), i.e., there exists a family ¹�nm;:::;n1º of algorithms such that

lim
nm!1

: : : lim
n1!1

�nm;:::;n1.A/ D „.A/; 8A 2 �:

(vii) †˛m is the set of problems that can be computed by passing to m limits, and com-
puting the mth limit is a †˛1 problem.

(viii) …˛
m is the set of problems that can be computed by passing to m limits, and com-

puting the mth limit is a …˛
1 problem.

Schematically, the SCI hierarchy can be viewed in the following way:

…˛
0 …˛

1 …˛
2

�˛0 �˛1 †˛1 […
˛
1 �˛2 †˛2 […

˛
2 �˛3 � � �

†˛0 †˛1 †˛2

D

D

¨ ¨ ¨ ¨ ¨¨
¨

¨

¨

¨

¨

¨

¨

¨

¨

¨
(2.1)

The †˛1 and …˛
1 classes are crucial in computer-assisted proofs, since they guarantee

algorithms that will not make mistakes (see §2.2). Figure 1 shows the †˛1 and …˛
1 classes

for the Hausdorff metric.
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„.A/

†1 convergence

�n.A/

� 2�nPP

…1 convergence

�n.A/

� 2�n
@@

Fig. 1. Meaning of †1 and …1 convergence for problem function „ computed in the Hausdorff
metric. The left plot shows the desired set„.A/. The shaded areas show the output of the algorithm
�n.A/.†1 convergence (middle plot) means convergence as n!1 and each output point in �n.A/
is at most distance 2�n from „.A/. Similarly, in the case of …1 (right plot), we have convergence
as n!1 and any point in „.A/ is at most distance 2�n from �n.A/.

Remark 2.2 (The model of computation ˛). The ˛ in the superscript indicates the model
of computation, which is described in §5. For ˛ D G, the underlying algorithm is gen-
eral and can use any tools at its disposal. The reader may think of a Blum–Shub–Smale
(BSS) machine [20] or a Turing machine [137] (a general algorithm is more powerful
than either model). However, ˛ D A means that only arithmetic operations and compar-
isons are allowed. In particular, if rational inputs are considered, the algorithm is a Turing
machine, and in the case of real inputs, a BSS machine. Hence, a result of the form

… �Gk is stronger than … �Ak :

Indeed, a … �G
k

result is universal and holds for any model of computation. Similarly,

2 �Ak is stronger than 2 �Gk :

Of course, these comments also hold for the …k and †k classes. In this paper, we always
prove lower bounds for ˛DG and upper bounds for ˛DA (Table 1). Hence, we combine
the strongest forms of results in terms of models of computation.

2.2. The SCI hierarchy and computer-assisted proofs

�A1 is the class of problems that are computable according to Turing’s definition of com-
putability [137]. In particular, there exists an algorithm that can, for any � > 0, produce
an �-accurate output. Unlike the finite-dimensional case, most infinite-dimensional spec-
tral problems are not in �A1 : The simplest way to see this is to consider the problem
of computing spectra of infinite diagonal matrices. This problem is the simplest of infi-
nite computational spectral problems, but it does not lie in �A1 . Hence, it should come
as no surprise that very few interesting infinite-dimensional spectral problems are actu-
ally in �A1 . Instead, most existing results on spectral computations provide algorithms
that yield �A2 classification results. This means that an algorithm will converge, but error
control may not be possible.
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Problems that are not in �A1 are computed daily in the sciences, simply because
numerical simulations may be suggestive rather than providing a rock-solid truth. More-
over, the lack of error control may be compensated for by comparing with experiments.
However, this is not possible in computer-assisted proofs, where 100% rigour is the only
approach accepted. It may be surprising that famous conjectures have been proven with
numerical calculations of problems that are not in �A1 . A striking example is the proof
of Kepler’s conjecture [91, 92], where the decision problems computed are not in �A1 .
The decision problems are of the form of deciding feasibility of linear programs given
irrational inputs (shown in [11] not to lie in�A1 ). Similarly, to prove the Dirac–Schwinger
conjecture, asymptotics of the ground state of the operator

HdZ D

dX
kD1

.��xk �Zjxkj
�1/C

X
1�j<k�d

jxj � xkj
�1;

as Z !1 were obtained via a computer-assisted proof [74–82] by Fefferman and Seco,
and relied on problems that were not in �A1 . The SCI hierarchy can describe these para-
doxical phenomena.

2.2.1. The †A1 and …A
1 classes. The key to the above paradoxical phenomena lies in

the †A1 and …A
1 classes. These classes of problems are larger than �A1 , but can still be

used in computer-assisted proofs. Indeed, suppose we consider computational spectral
problems that are in†A1 . In that case, there is an algorithm that will never provide incorrect
output. The output may not include the whole spectrum, but it is always sound. Thus, a
computer-assisted proof could disprove conjectures about operators never having spectra
in a certain area of the complex plane. Similarly,…A

1 problems can be approximated from
above, and thus conjectures on the spectrum being in a certain area could be disproved by
computer simulations.

In both of the above examples (the proof of the Dirac–Schwinger conjecture and
Kepler’s conjecture), it is implicitly shown that the relevant computational problems in
the computer-assisted proofs are in †A1 .

3. Main results

Our main results are sharp classifications in the SCI hierarchy, with algorithms, settling
some of the open classification problems in computational spectral theory. We are con-
cerned with the following problem:

Given a computational spectral problem, where is it in the SCI hierarchy?

We consider the following four main problems: computing spectra of general differen-
tial operators, computing spectra of unbounded operators on graphs, the computational
spectral gap problem, and computing discrete spectra with multiplicities.

In addition to the spectrum, we consider the pseudospectrum

Sp�.A/ WD cl.¹z 2 C W kR.z;A/k > 1=�º/; � > 0;
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where cl denotes closure and R.z; A/ D .A � zI /�1. When computing the spectrum of
bounded operators, we let .M; d / be the set of all non-empty compact subsets of C pro-
vided with the Hausdorff metric d D dH:

dH.X; Y / D max
°

sup
x2X

inf
y2Y

d.x; y/; sup
y2Y

inf
x2X

d.x; y/
±
; (3.1)

where d.x; y/ D jx � yj is the usual Euclidean distance. In the case of unbounded oper-
ators, we use the Attouch–Wets metric defined by

dAW.C1; C2/ D

1X
nD1

2�n min
°
1; sup
jxj�n

jdist.x; C1/ � dist.x; C2/j
±
; (3.2)

for C1; C2 2 Cl.C/. Here, Cl.C/ denotes the set of closed non-empty subsets of C.

3.1. Computing spectra of differential operators on unbounded domains

There is a rich literature on computing spectra of differential operators on bounded
domains. The computation is often done with finite element, finite difference or spectral
methods by discretising the operator on a suitable finite-dimensional space, and then using
algorithms for finite-dimensional matrix eigenvalue problems on the discretised operator
[22,23,41–43,48,119,120,144]. However, it is generally unknown how to compute spec-
tra of differential operators on unbounded domains, or where this problem lies in the SCI
hierarchy (e.g., is it possible in one limit?).

For N 2 N, consider the operator formally defined on L2.Rd / by

T u.x/ D
X

k2Zd
�0
; jkj�N

ak.x/@
ku.x/; (3.3)

where we use multi-index notation with jkj D max ¹jk1j; : : : ; jkd jº and @k D @k1x1 : : : @
kd
xd .

We assume that the coefficients ak.x/ are complex-valued functions on Rd , and that T
can be defined on an appropriate domain D.T / such that T is closed with non-empty
spectrum. Our aim is to compute the spectrum and �-pseudospectrum of T from the coef-
ficients ak . We consider two cases. First, the algorithm can point sample the coefficients,
and second, the algorithm can access the coefficients in a Taylor series of each of the
coefficients2 ak in the case that the ak are entire. Note that these are two very different
computational problems.

Remark 3.1 (The open problem of computing spectra of differential operators). There is
no existing theory guaranteeing even a finite SCI for this problem, even when each ak is a
polynomial. For example, a standard procedure is to discretise the differential operator via
finite differences, truncate the resulting infinite matrix, and then handle the finite matrix

2We take Taylor series about the origin, but any point will do.
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with standard algorithms designed for finite-dimensional problems. Such an approach
would at best give a �A2 classification, and, in general, this approach may not always
converge. Despite this, we prove below that one can achieve †A1 classification for a large
class of operators.

3.1.1. The set-up. We let � consist of all such T such that the following assumptions
hold:

(1) The set C10 .R
d / of smooth, compactly supported functions forms a core of T and its

adjoint T �.

(2) The adjoint operator T � can be initially defined on C10 .R
d / via

T �u.x/ D
X

k2Zd
�0
; jkj�N

Qak.x/@
ku.x/;

where Qak.x/ are complex-valued functions on Rd .

(3) For each of the functions ak.x/ and Qak.x/, there exist Ak > 0 and Bk 2 Z�0 such
that

max ¹jak.x/j; j Qak.x/jº � Ak.1C jxj2Bk /; 8x 2 Rd :

That is, we have at most polynomial growth.

(4) We have access to a sequence ¹gmºm2N of strictly increasing continuous functions
gm W R�0 ! R�0 that vanish at zero and diverge at infinity, such that

gm.dist.z;Sp.T /// � kR.z; T /k�1; 8z 2 Bm.0/; (3.4)

where Bm.0/ is the closed ball of radius m about the origin. In this case, we say that
T has resolvent bounded by ¹gmº. This implicitly assumes that Sp.T / (and hence
each Sp�.T /) is non-empty.

We consider the operator T defined as the closure of (3.3) initially defined on C10 .R
d /.

The initial domain C10 .R
d / is commonly encountered in applications, and it is straight-

forward to adapt our methods to other initial domains such as Schwartz space.

Remark 3.2. To handle non-self-adjoint operators, we need to control the resolvent as in
(3.4). Without such control, the spectral problem is not in�G2 , even for tridiagonal infinite
matrices. If T has Sp.T / ¤ ;, a simple compactness argument shows the existence of a
suitable sequence ¹gmº. We may not be able to control the growth of the resolvent across
the whole complex plane by a single function. For self-adjoint (and, more generally, nor-
mal) T , we can take gm.x/D x. Operators with gm.x/D x are known as G1 and include
the well studied class of hyponormal operators (operators A with A�A�AA� � 0) [118].
There are examples where suitable functions ¹gmº not equal to the identity are known for
non-normal operators, such as perturbations of self-adjoint operators [87, e.g., Theorem
7.7.1]. As another example, if an operator is similar to a normal operator with a similarity
transformation S that has bounded condition number �.S/, we can take gm.x/D x=�.S/.
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Nonetheless, in general, knowledge of ¹gmº is a strong assumption on the behaviour of the
resolvent and may be difficult to apply to practical examples. However, in what follows,
the functions ¹gmº are not needed to compute pseudospectra.

3.1.2. General case with function evaluations. In this section, we treat the computa-
tion of spectra and pseudospectra of T 2 � from point evaluations of the coefficients
ak and Qak . For dimension d and r > 0, consider the space

Ar D ¹f 2M.Œ�r; r�
d / W kf k1 C TVŒ�r;r�d .f / <1º; (3.5)

whereM.Œ�r; r�d / denotes the set of measurable functions on the hypercube Œ�r; r�d and
TVŒ�r;r�d the total variation norm in the sense of Hardy and Krause [111]. This space is a
Banach algebra when equipped with the norm kf kAr D kf k1C .3

d C 1/TVŒ�r;r�d .f /:
We assume that each of the (appropriate restrictions of) ak and Qak lie in Ar for all r > 0,
and that we are given a sequence of positive numbers ¹cnºn2N such that

max ¹kakkAn ; k QakkAnº � cn; n 2 N; jkj � N: (3.6)

This information is entirely analogous to using bounded dispersion for matrix prob-
lems encountered in §3.2. We shall see that it cannot be omitted if one wishes to gain error
control in the sense of †1. Let

�1TV D ¹T 2 � W assumptions (1)–(4) and (3.6) holdº:

A special subclass of�1TV is the Schrödinger operators ��C V . The fact that computing
spectra and pseudospectra of Schrödinger operators (by point sampling the potential) with
bounded potentials of bounded total variation lies in †A1 was shown in [12]. (Unbounded
sectorial potentials without total variation bounds that induce a compact resolvent were
also treated in [12] without error control.) Part of Theorem 3.3 generalises this result to
arbitrary differential operators with polynomially bounded coefficients. We letƒ1 contain
functions that point sample the functions ¹gmºm2N at points in Q�0 and ¹ak ; Qakºjkj�N
at points in Qd , as well as the constants ¹Ak ; Bkºjkj�N ; ¹cnºn2N . Consider the weaker
assumption on ƒ1 that we can evaluate bn > 0 (and not the Ak , Bk’s and the cn’s) such
that

sup
n2N

max ¹kakkAn ; k QakkAn W jkj � N º
bn

<1: (3.7)

With a slight abuse of notation, we use �2TV to denote the class of problems where we
have this weaker requirement. We can now define the mappings

„k1 W �
k
TV 3 T 7! Sp.T / 2 Cl.C/ for k D 1; 2;

„k2 W �
k
TV 3 T 7! Sp�.T / 2 Cl.C/ for k D 1; 2;

where we equip Cl.C/ with the Attouch–Wets metric dAW. The following theorem con-
tains our result.
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Theorem 3.3 (Differential operators and point samples). Let „1j , „2j , �1TV and �2TV be
as above. Then for j D 1 or 2, we have

�G1 63 ¹„
1
j ; �

1
TVº 2 †

A
1 and †G1 […

G
1 63 ¹„

2
j ; �

2
TVº 2 �

A
2 :

Remark 3.4. The proof of Theorem 3.3 relies on Theorem 3.8 that covers unbounded
operators on graphs. Thus, in the proof sections below, the theorems are proven in a dif-
ferent order than they are presented.

Remark 3.5. The proof also shows that even if the information ¹Ak ; Bkºjkj�N is added
to the evaluation set for operators in �2TV, we would still have

¹„2j ; �
2
TVº … †

G
1 […

G
1 :

Though we have chosen Rd as the geometrical domain of our operators, the result can
easily be adapted to other domains for which we can build a suitable basis to represent
the operator. Examples include the half-line (e.g., for radially symmetric Dirac operators
in quantum chemistry), intervals using orthogonal polynomial series, or products of the
above geometries. One can also extend our results to more complicated domains using
finite elements, non-orthogonal bases, and generalised pencil eigenvalue problems, but
this will be the topic of future work.

3.1.3. Entire coefficients. In this section, we assume that the functions ak and Qak are
entire. In particular, we assume we can evaluate ¹cj ºj2N , an enumeration (where we know
the ordering) of the coefficients am

k
where ak.x/D

P
m2Zd

�0
am
k
xm. Note that this means

we can compute the corresponding coefficients of the Qak.x/ using finitely many arithmetic
operations on ¹cj º. As well as the information ¹gmº, ¹cj º and ¹Ak ; Bkº, we assume our
algorithms can read the following information. Given

ak.x/ D
X

m2Zd
�0

amk x
m; Qak.x/ D

X
m2Zd

�0

Qamk x
m;

for each n 2 N we know a constant dn such that

jamk j; j Qa
m
k j � dn.nC 1/

�jmj; 8m 2 Zd�0; jkj � N: (3.8)

Suitable dn must exist since the power series converges absolutely on the whole of Rd .
Let

�1AN D ¹T 2 � W assumptions (1)–(4) hold, the ak are entire and (3.8) holdsº:

We let ƒ1 contain functions that point sample the functions ¹gmºm2N at points in Q�0,
and access the constants ¹Ak ; Bkºjkj�N , ¹cnºn2N , and ¹dnºn2N . The proof makes clear
that ¹dnºn2N can be replaced by any suitable information that allows us to control the
remainder term in the truncated Taylor series uniformly on compact subsets of Rd . For
example, we could use Cauchy’s formula, together with bounds on the functions ak on
compact subsets of Cd . We also consider a weaker requirement on ƒ1 by replacing
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knowledge of Ak ; Bk and dn by some sequence of positive numbers bn with

sup
n2N

sup
m2Zd

�0

max ¹jam
k
j.nC 1/jmj; j Qam

k
j.nC 1/jmj W jkj � N º

bn
<1:

With a slight abuse of notation, we use �2AN to denote the class of problems where we
have this weaker requirement. Moreover, let�p denote the class of operators in�2AN such
that each ak is a polynomial (where we can let bn D nŠ, for example). We can now define
the mappings

„kC21 W �kAN 3 T 7! Sp.T / 2 Cl.C/ for k D 1; 2;

„kC22 W �kAN 3 T 7! Sp�.T / 2 Cl.C/ for k D 1; 2;

where we equip Cl.C/ with the Attouch–Wets metric dAW. The following theorem con-
tains our result.

Theorem 3.6 (Differential operators and entire coefficients). Let„3j ,„4j ,�1AN,�2AN and
�p be as above. Then for j D 1 or 2, we have

�G1 63 ¹„
3
j ;�

1
ANº 2†

A
1 ; †G1 […

G
1 63 ¹„

4
j ;�

2
ANº 2�

A
2 ; †G1 […

G
1 63 ¹„

4
j ;�pº 2�

A
2 :

The new algorithms in Theorems 3.3 and 3.6 yielding the above †A1 results on
unbounded domains are also useful on bounded domains. Standard algorithms for com-
puting spectra of differential operators on bounded domains often have results on
qualitative convergence rates. However, typically they do not have the above feature of
error control. Moreover, it can be challenging to determine which portion of the output of
standard algorithms can be trusted. This well-known problem occurs even if the algorithm
is convergent [143], and when this happens, the algorithms cannot be used for computer-
assisted proofs. In the language of the SCI hierarchy, these standard algorithms provide,
at best,�A2 classifications of the problems and not the sharp†A1 classification. Hence, we
draw the following conclusion:

Computing spectra of differential operators through discretising the operator and
computing eigenvalues of the resulting finite matrix is typically not an optimal method.
Such methods may not yield the sharp †A1 classification providing certainty about the
output. However, as demonstrated above, optimal algorithms exist that provide error
control and certainty about the computed output.

3.2. Computing spectra of unbounded operators on graphs

Given a closed operator A with domain D.A/ � l2.N/ and non-empty spectrum, we
consider the problem functions

„1.A/ D Sp.A/; „2.A/ D Sp�.A/:

Let C.l2.N// denote the set of closed, densely defined operators on l2.N/, and consider
the following assumptions:
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(1) The subspace span¹en W n2Nº forms a core ofA andA�, where ¹ej ºj2N is the canon-
ical basis for l2.N/. This allows us to associate an infinite matrix Aij D hAej ; ei i
with A, and ensures that the operator is fully determined by its action on finite sums
of basis functions (e.g., see Theorem 6.7).

(2) Given f W N ! N with f .n/ � n, we define

Df;n.A/ WD max ¹k.I � Pf .n//APnk; k.I � Pf .n//A�Pnkº; (3.9)

where Pn is the projection onto the span of ¹e1; : : : ; enº of the canonical basis. We say
that an operator has bounded dispersion with respect to f if limn!1Df;n.A/ D 0.
We assume knowledge of a null sequence ¹cnºn2N � Q and such an f withDf;n.A/
� cn.

(3) As in the case of §3.2, we have access to functions ¹gmº (see (3.4) and the assump-
tions on ¹gmº) such that

gm.dist.z;Sp.A/// � kR.z;A/k�1; 8z 2 Bm.0/: (3.10)

Recall that if this holds, we say that A has resolvent bounded by ¹gmº. Note that this
implicitly assumes that the spectrum is non-empty.

Remark 3.7. The concept of bounded dispersion in (3.9) generalises the notion of a
banded matrix. Moreover, given any operator with assumption (1), there exists an f such
that limn!1Df;n.A/ D 0. The theorem we prove is for the class of operators that have
limn!1Df;n.A/ D 0 given a fixed f . The function f is used to construct certain rect-
angular truncations of our operators, which is a key difference to previous methods that
typically use square truncations.

3.2.1. Defining � and ƒ.

Operators on l2.N/: Let f be as in assumption (2), and let O� be the class of all
A 2 C.l2.N// with non-empty spectrum such that (1) and (2) hold. Given a sequence
of functions g D ¹gmº as in (3), let �g be the class of all A 2 O� such that (3.10) holds.
Finally, let �D denote the set of diagonal operators in O�.

Operators on graphs: Consider a connected, undirected graph G , such the set of vertices
V D V.G / is countably infinite. We treat operators on l2.V / that are closed and densely
defined of the form

A D
X
v;w2V

˛.v;w/jvihwj; (3.11)

for some ˛ W V � V ! C (below, we assume we can sample ˛). We use the classical
Dirac notation in (3.11), identifying any v 2 V by the element in  v 2 l2.V / such that
 v.v/ D 1 and  v.w/ D 0 for w ¤ v. We assume that the linear span of such vectors
forms a core of both A and A�. We also assume that for any v 2 V , the set of vertices
w with ˛.v; w/ ¤ 0 or ˛.w; v/ ¤ 0 is finite. Let �G be the class of all such A with
non-empty spectrum and let �G

g be the class of operators in �G of known g D ¹gmº
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such that (3.10) holds. Finally, we assume that with respect to some given enumeration
v1; v2; : : : of V , we have access to a function S W N ! N such that if m > S.n/, then
˛.vn; vm/ D ˛.vm; vn/ D 0.

Definingƒ: For operators on l2.N/,ƒ contains the collection of matrix value evaluation
functions A 7! hAej ; ei i, functions describing the dispersion and the family of the func-
tions ¹gmº controlling the growth of the resolvent. For operators on l2.V /,ƒ contains the
functions ˛, the function S and, in the case of �G

g , the family ¹gmº.
We can now state the main result of this section:

Theorem 3.8 (Unbounded operators on graphs). Let „1 be the problem function Sp.�/
and „2 be the problem function Sp�.�/ for � > 0, where these map into the metric space
.Cl.C/; dAW/. Then

�G1 63 ¹„1; �Dº 2 †
A
1 ; �G1 63 ¹„1; �gº 2 †

A
1 ; �G1 63 ¹„1; �

G
g º 2 †

A
1 ;

and

�G1 63 ¹„2; �Dº 2 †
A
1 ; �G1 63 ¹„2;

O�º 2 †A1 ; �G1 63 ¹„2; �
G
º 2 †A1 :

Furthermore, the routines CompSpecUB and PseudoSpecUB in Appendix A realise the
sharp †A1 inclusions, and in the case of „2, the output is guaranteed to be inside the true
pseudospectrum.

Remark 3.9. The algorithm used to compute the pseudospectrum can be applied to
cases where the spectrum or pseudospectrum are empty, and we provide a computational
example of this below.

Finally, we consider two discrete problems, which also include the case when the spec-
trum is empty. Let K be a non-empty and compact subset of C and denote the collection
of such subsets by K.C/. Consider

„3 W .A;K/! “Is Sp.A/ \K D ;?”;

„4 W .A;K/! “Is Sp�.A/ \K D ;?”:

Here we consider the space M D ¹0; 1º with the discrete topology, where 1 is interpreted
as “Yes” and 0 as “No”. Thus our computational problem is a decision problem. The
information we consider available to the algorithms in the l2.N/ (l2.V .G //) case is the
matrix elements of A (the functions ˛), the dispersion function f and dispersion bounds
¹cnº (the finite sets Sv) and a sequence of finite sets Kn � Q C iQ, with the property
that dH.Kn; K/ � 2

�.nC1/. The following shows that the discrete problems „3 and „4
are harder than computing the spectrum.

Theorem 3.10 (Does a set intersect the spectrum/pseudospectrum?). We have the follow-
ing classifications for j D 3; 4:

�G2 63 ¹„j ;
O� �K.C/º 2 …A

2 ; �G2 63 ¹„j ; �D �K.C/º 2 …A
2 ;

�G2 63 ¹„j ; �
G
�K.C/º 2 …A

2 :
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The routines TestSpec and TestPseudoSpec in Appendix A, used for „3 and „4
respectively, realise the sharp …A

2 classifications. Furthermore, the proof makes clear
that the lower bounds also hold when we restrict the allowed compact sets to any fixed
compact subset of R.

Remark 3.11. By considering singletonsK D ¹zº, we can test whether a point lies in the
spectrum or pseudospectrum. Even when restricting to such K, the proof shows that the
classification remains the same.

Remark 3.12. One could consider the problem of computing infz2K kR.z; A/k�1. This
quantity is zero if and only if z 2 Sp.K/. The problem of computing infz2K kR.z;A/k�1

has SCI D 1 (using the metric space R). Thus Theorem 3.10 is a demonstration of the
following issue. It is often harder to solve the decision problem of whether a convergent
sequence has a specific given limit (0 in the case of „3), than to compute the limit (in
our case infz2K kR.z; A/k�1, which could be non-zero). As discussed in Remark 5.12
below, we emphasise that this holds regardless of the model of computation and is not
an issue of finite-precision or round-off errors. Rather, it is due to the information our
algorithms have access to in ƒ. If we had a bound on how close our approximation is to
infz2K kR.z;A/k�1, then we could convert this into a †A1 tower for the problems in The-
orem 3.10. However, such information cannot be computed from our ƒ and corresponds
to a very strong form of global information on the matrix representations of the relevant
operators.

3.3. The spectral gap problem and classifications of the spectrum

The spectral gap problem has a long tradition and is linked to many important problems
such as the Haldane conjecture [89] and the Yang–Mills mass gap problem in quantum
field theory [26]. It is fundamental in physics, and [61] showed that the spectral gap
problem is undecidable when considering the thermodynamic limit of finite-dimensional
Hamiltonians.

In this paper, we consider the general infinite-dimensional problem. We formulate the
question as follows. Let b�SA be the set of all self-adjoint and bounded below operators A
on l2.N/ for which the linear span of the canonical basis forms a core of A. Note that we
do not assume thatA is bounded above. We say thatA 2 b�SA is gapped if the minimum of
Sp.A/ is an isolated eigenvalue with multiplicity 1. Otherwise we say that it is gappless.
We also let b�D denote the operators in b�SA that are diagonal and define

„gap W b�SA;b�D 3 A 7! “Is the spectrum of A gapped?”: (3.12)

The above spectral gap problem is extended as follows. Let b�fSA�
b�SA be the subclass

of operators that have (known) bounded dispersion with respect to the function f . Let
a.A/ D inf ¹x W x 2 Sp.A/º; then one of the four cases must hold:

(1) a.A/ lies in the discrete spectrum and has multiplicity 1,

(2) a.A/ lies in the discrete spectrum and has multiplicity > 1,
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(3) a.A/ lies in the essential spectrum but is an isolated point of the spectrum,

(4) a.A/ is a cluster point of Sp.A/.

For example, if A is compact, self-adjoint and non-negative, only (3) or (4) can hold. If
A is compact and self-adjoint but has negative eigenvalues, only (1) or (2) can hold. We
consider the classification problem„class which maps b�fSA to the discrete space ¹1;2;3;4º
(with the natural ordering).

Theorem 3.13 (Spectral gap and classification). Let„gap be as in (3.12) and b�SA;b�D as
above. Similarly, let „class and b�fSA be as above. Then

�G2 63 ¹„gap;b�SAº 2 †
A
2 ; �G2 63 ¹„gap;b�Dº 2 †

A
2 :

In particular, the routine SpecGap in Appendix A realises the sharp†A2 inclusions. More-
over,

�G2 63 ¹„class;b�fSAº 2 …
A
2 ; �G2 63 ¹„class;b�Dº 2 …

A
2 ;

and SpecClass in Appendix A realises the sharp …A
2 inclusions.

Remark 3.14 (Diagonal vs. full matrix). Theorem 3.13 shows that there is no difference
in the classification of the spectral gap problem between the set of diagonal matrices and
the collection of full matrices.

3.4. Computing discrete spectra, multiplicities and approximate eigenvectors

For any normal operator A, there is a simple decomposition of Sp.A/ into the discrete
spectrum and the essential spectrum, denoted by Spd .A/ and Spess.A/ respectively. The
discrete spectrum consists of isolated points of the spectrum that are also eigenvalues
of finite multiplicity. The essential spectrum has numerous definitions for non-normal
operators, but for normal operators is defined as the set of z such that A � zI is not a
Fredholm operator.

3.4.1. When we can bound the dispersion. Let �dN denote the class of bounded normal
operators on l2.N/ with (known) bounded dispersion and with non-empty discrete spec-
trum. Denote by �dD the class of bounded diagonal self-adjoint operators in �dN. Define
the problem function

„d1 W �
d
N; �

d
D 3 A 7! cl.Spd .A//: (3.13)

We take the closure and restrict to operators with non-empty discrete spectrum since we
want convergence with respect to the Hausdorff metric. However, the algorithm we build,
�n2;n1 , has the property that limn1!1 �n2;n1.A/ � Spd .A/, so this is not restrictive in
practice.

We also let �fN denote the class of bounded normal operators with (known) bounded
dispersion with respect to the function f . In addition, let �D denote the class of bounded
diagonal self-adjoint operators and consider the following discrete problem function:

„d2 W �
f
N ; �D 3 A 7! “Is Spd .A/ ¤ ;?”: (3.14)
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For „d2 we consider the space M D ¹0; 1º with the discrete topology, where 1 is inter-
preted as “Yes” and 0 as “No”. Thus the computational problem is a decision problem.

Theorem 3.15. Let „d1 , �dN and �dD, as well as „d2 , �fN and �D, be as above. Then

�G2 63 ¹„
d
1 ; �

d
Nº 2 †

A
2 ; �G2 63 ¹„

d
1 ; �

d
Dº 2 †

A
2

and
�G2 63 ¹„

d
2 ; �

f
N º 2 †

A
2 ; �G2 63 ¹„

d
2 ; �Dº 2 †

A
2 :

In particular, the routines DiscreteSpec and DiscSpecEmpty in Appendix A realise
the sharp †A2 inclusions for „d1 and „d2 respectively.

The constructed algorithm �n2;n1 (routine DiscreteSpec) has the following prop-
erty. Given A 2 �dN and z 2 Spd .A/, the following holds. If � > 0 is such that Sp.A/ \
B2�.z/ D ¹zº, there is at most one point in �n2;n1.A/ that also lies in B�.z/. In other
words, any point of Spd .A/ has at most one point in �n2;n1.A/ approximating it. Further-
more, the limit limn1!1 �n2;n1.A/ D �n2.A/ is contained in the discrete spectrum and
increases to cl.Spd .A// in the Hausdorff metric.

3.4.2. Eigenvectors and multiplicities. Suppose that zn2;n1 2 �n2;n1.A/ (the output of
DiscreteSpec) with

lim
n2!1

zn2;n1 D zn2 D z 2 Spd .A/:

Our tower also computes a function hn2;n1.A; �/ over the output �n2;n1.A/ such that

lim
n2!1

lim
n1!1

hn2;n1.A; zn2;n1/ D h.A; z/

(where h.A; z/ denotes the multiplicity of the eigenvalue z) in Z�0 with the discrete
metric. The routine Multiplicity in Appendix A computes hn2;n1 .

ApproxEigenvector in Appendix A approximates eigenvectors. For simplicity, we
stick to eigenspaces of multiplicity 1, but these ideas can be easily extended to higher
multiplicities to approximate the whole eigenspace. Given zn1 in the output �n2;n1.A/ of
the algorithm DiscreteSpec and an approximation

�inf.Pf .n1/.A � zn1I /jPn1H / � E.n1; zn1/; (3.15)

where �inf denotes the smallest singular value, can we find an xn1 of unit norm satisfy-
ing k.A � zn1I /xn1k � E.n1; zn1/C cn1 (recall that cn1 is the dispersion bound)? The
discussion in §10.3 shows that such a sequence is an approximate eigenvector sequence.

Theorem 3.16. Suppose A 2 �fN . Let ı > 0 and zn1 2 �n2;n1.A/ be such that zn1 !
z 2 Spd .A/. Suppose we also have the computed bound .3.15/. Then we can compute a
corresponding vector xn1 .of finite support/ satisfying

k.A � zn1I /xn1k < kxn1k.E.n1; zn1/C cn1 C ı/ and 1 � ı < kxn1k < 1C ı

in finitely many arithmetic operations.
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3.4.3. What happens when we cannot bound the dispersion? Whilst Theorem 3.15 shows
that computing the discrete spectrum requires two limits, the constructed tower ¹�n2;n1º
of algorithms is still useful since limn1!1�n2;n1.A/� Spd .A/:Moreover, Theorem 3.16
shows that we can still effectively approximate eigenspaces with error control. But what
happens if we do not know a dispersion function f as in (3.9)? To answer this, let �d1
denote the class of bounded normal operators with non-empty discrete spectrum and �d2
the class of bounded normal operators. As the following theorem reveals, we get a jump
in the SCI hierarchy.

Theorem 3.17. Let „di and �di be as above. Then

�G3 63 ¹„
d
1 ; �

d
1 º 2 †

A
3 and �G3 63 ¹„

d
2 ; �

d
2 º 2 †

A
3 :

3.4.4. Spectral classification is a much harder problem than the spectrum. Theorems
3.15 and 3.17 show that computing spectral classifications is a much harder problem
than computing the spectrum (Theorem 3.8). This difficulty is reflected in software pack-
ages such as SLEIGN(2) [8, 9], SLEDGE [72, 85, 117], and MATSLISE(2) [103, 104]
for Sturm–Liouville problems. Even for such structured problems in one dimension, it
is very difficult to develop reliable algorithms that classify the spectrum. Similar prob-
lems occur when counting the number of negative bound states of suitable Schrödinger
operators [106].

As well as the classification into discrete and essential spectrum, one can consider the
absolutely continuous, singular continuous and pure point parts of the spectrum. These
computations also require more than one limit (three in the case of singular continu-
ous spectra), both for the relevant spectral sets, and the corresponding spectral measures
[49, 52]. However, computing the full spectral measures can be done in one limit. For
applications of spectral measures using these algorithms, see [58, 100].

4. Connection to previous work

The SCI hierarchy: Our paper is part of the program on the SCI hierarchy [1,11–15,25,
49–55,57,59,95,96], which is a direct continuation of S. Smale’s work and his program on
the foundations of computational mathematics [20,21,131,133]. Related to our paper are
the results by C. McMullen [109, 110] and P. Doyle & C. McMullen [70] on polynomial
root-finding, which are classification results in the SCI hierarchy, and the contributions
by L. Blum, F. Cucker, M. Shub & S. Smale [20, 21, 62, 127]. Further examples are the
results by C. Fefferman and L. Seco [74–82], proving the Dirac–Schwinger conjecture on
the asymptotic behaviour of the ground state energy of a family of Schrödinger operators,
which implicitly prove †A1 classifications in the SCI hierarchy. This is also the case in
T. Hales’ Flyspeck program [91,92] leading to the proof of Kepler’s conjecture (Hilbert’s
18th problem) which also implicitly proves †A1 classifications. Many other problems in
the foundations of computations, such as the work by S. Weinberger [139], can be viewed
in the context of the SCI hierarchy.
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Classical results on computing spectra: Due to the vast literature on spectral compu-
tation, we can only cite a small subset related to this paper. The ideas of using compu-
tational and algorithmic approaches to obtain spectral information date back to leading
physicists and mathematicians such as H. Goldstine [88], T. Kato [101], F. Murray [88],
E. Schrödinger [123], J. Schwinger [124] and J. von Neumann [88]. Schwinger introduced
finite-dimensional approximations to quantum systems in infinite-dimensional spaces that
allow for spectral computations. An interesting observation is that Schwinger’s ideas were
already present in the work of H. Weyl [141]. The work by H. Goldstine, F. Murray &
J. von Neumann [88] was one of the first to establish rigorous convergence results, and
their work yields �A1 classification for certain self-adjoint finite-dimensional problems.
T. Digernes, V. S. Varadarajan & S. R. S. Varadhan [68] proved convergence of spectra of
Schwinger’s finite-dimensional discretisation matrices for a specific class of Schrödinger
operators with certain types of potential, which yields a�A2 classification in the SCI hier-
archy.

The finite-section method, which has been intensely studied for spectral compu-
tation, and has often been viewed in connection with Toeplitz theory, is very similar
to Schwinger’s idea of approximation using a finite-dimensional subspace. The reader
may want to consult the pioneering work by A. Böttcher [27, 28] and A. Böttcher &
B. Silberman [32, 33]. W. Arveson [3–7] and N. Brown [35–37] pioneered the combi-
nation of spectral computation and the C �-algebra literature (which dates back to the
work of A. Böttcher & B. Silberman [31]), both for the general spectral computation
problem and for Schrödinger operators. See also the work by N. Brown, K. Dykema
& D. Shlyakhtenko [38], where variants of finite section analysis are implicitly used.
Arveson also considered spectral computation in terms of densities, which is related to
Szegő’s work [134] on finite section approximations. Similar results are also obtained
by A. Laptev & Y. Safarov [102]. Typically, when applied to appropriate subclasses
of operators, finite section approaches yield �A2 classification results. There are also
other approaches based on the infinite QR algorithm in connection with Toda flows with
infinitely many variables pioneered by P. Deift, L. C. Li & C. Tomei [67]. See also the
work by P. Deift, J. Demmel, C. Li & C. Tomei [66]. E. B. Davies [63,65] considered sec-
ond order spectra methods, and E. Shargorodsky [126] demonstrated how second order
spectra methods [63] will never recover the whole spectrum.

Recent results on computing spectra: There are many recent directions in computa-
tional spectral theory that are related to our work.

(i) Infinite-dimensional numerical linear algebra: S. Olver, A. Townsend & M. Webb
[112–115] have provided a foundational and practical framework for infinite-
dimensional numerical linear algebra and foundational results on computations with
infinite data structures. This includes efficient codes as well as theoretical results.
The infinite-dimensional QL and QR algorithms, inspired by the work of Deift et al.
[66, 67] mentioned above, are important parts of this program that yield classifica-
tions in the SCI hierarchy of computing extreme elements in the spectrum, see also
[57, 93] for the infinite-dimensional QR algorithm. The recent work of M. Webb &



Foundations of spectral computations 4659

S. Olver [138] on computing spectra of Jacobi operators is also formulated in the
SCI hierarchy.

(ii) Finite section approaches: In the cases where the finite section method works, it
will typically yield �A2 classifications in the SCI hierarchy, and occasionally �A1
classifications; see, for example, the work by A. Böttcher, H. Brunner, A. Iserles &
S. Nørsett [29], A. Böttcher, S. Grudsky & A. Iserles [30], H. Brunner, A. Iserles
& S. Nørsett [39, 40], M. Marletta [107] and M. Marletta & R. Scheichl [108]. The
latter papers also discuss the failure of the finite section approach for certain classes
of operators; see also [93, 94].

(iii) Resonances: We would like to mention the recent work by M. Zworski [145,146] on
computing resonances that can be viewed in terms of the SCI hierarchy. In particular,
the computational approach in [146] is based on expressing resonances as limits of
non-self-adjoint spectral problems, and hence the SCI hierarchy is inevitable; see
also [130]. The recent work of J. Ben-Artzi, M. Marletta & F. Rösler [14, 15] on
computing resonances is also formulated in terms of the SCI hierarchy.

(iv) Computer-assisted proofs: We have already mentioned the results by C. Fefferman
& L. Seco [74–82] on computer-assisted proofs proving classification results in the
SCI hierarchy. However, recent results using computer-assisted proofs in spectral
theory also includes the work of M. Brown, M. Langer, M. Marletta, C. Tretter &
M. Wagenhofer [34] and S. Bögli, M. Brown, M. Marletta, C. Tretter & M. Wagen-
hofer [24].

Finally, since writing this paper, the first author has developed rigorous data-driven algo-
rithms for spectral properties of Koopman operators (operators on infinite-dimensional
spaces that globally linearise non-linear dynamical systems) [56,60]. For these problems,
ƒ consists of snapshot data of the system.

5. Mathematical preliminaries

In this section, we formally define the SCI hierarchy. We have already presented the def-
inition of a computational problem ¹„;�;M; ƒº in §2.1. The goal is to find algorithms
that approximate the function „. More generally, the main pillar of our framework is the
concept of a tower of algorithms, which is needed to describe problems that need several
limits in the computation. However, first we need the definition of a general algorithm.

Definition 5.1 (General algorithm). Given a computational problem ¹„; �;M; ƒº, a
general algorithm is a mapping � W �!M such that for each A 2 �,

(i) there exists a (non-empty) finite subset of evaluations ƒ�.A/ � ƒ,

(ii) the action of � on A only depends on ¹Af ºf 2ƒ� .A/ where Af WD f .A/;

(iii) for every B 2 � such that Bf D Af for every f 2 ƒ�.A/, it holds that ƒ�.B/ D
ƒ�.A/.
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The definition of a general algorithm is more general than the definition of a Turing
machine [137] or a Blum–Shub–Smale (BSS) machine [20]. A general algorithm has no
restrictions on the operations allowed. The only restriction is that it takes a finite amount
of information, though it is allowed to adaptively choose the finite amount of information
it reads depending on the input. Condition (iii) ensures that the algorithm consistently
reads the information. With a definition of a general algorithm, we can define the concept
of towers of algorithms.

Definition 5.2 (Tower of algorithms). Given a computational problem ¹„; �;M; ƒº,
a tower of algorithms of height k for ¹„;�;M; ƒº is a family of sequences of functions

�nk W �!M; �nk ;nk�1 W �!M; : : : ; �nk ;:::;n1 W �!M;

where nk ; : : : ; n1 2 N and the functions �nk ;:::;n1 at the lowest level of the tower are
general algorithms in the sense of Definition 5.1. Moreover, for every A 2 �,

„.A/ D lim
nk!1

�nk .A/; �nk ;:::;njC1.A/ D lim
nj!1

�nk ;:::;nj .A/; j D k � 1; : : : ; 1:

In addition to a general tower of algorithms (defined above), we will focus on arith-
metic towers.

Definition 5.3 (Arithmetic tower). Given a computational problem ¹„;�;M;ƒº, where
ƒ is countable, we define the following: An arithmetic tower of algorithms of height k
for ¹„;�;M; ƒº is a tower of algorithms where the lowest functions � D �nk ;:::;n1 W

�!M satisfy the following: For all A 2� the mapping .nk ; : : : ; n1/ 7! �nk ;:::;n1.A/D

�nk ;:::;n1.¹Af ºf 2ƒ/ is recursive, and �nk ;:::;n1.A/ is a finite string of complex numbers
that can be identified with an element in M. For arithmetic towers we let ˛ D A.

Remark 5.4. By recursive we mean the following. If f .A/ 2 Q (or Q C iQ) for all
f 2ƒ, A 2�, andƒ is countable, then �nk ;:::;n1.¹Af ºf 2ƒ/ can be executed by a Turing
machine [137], that takes .nk ; : : : ; n1/ as input and an oracle input tape consisting of
¹Af ºf 2ƒ. If f .A/ 2 R (or C) for all f 2 ƒ, then �nk ;:::;n1.¹Af ºf 2ƒ/ can be executed
by a BSS machine [20] that takes .nk ; : : : ; n1/ as input and an oracle that can access any
Af for f 2 ƒ.

Given the definitions above, we can now define the key concept – the Solvability
Complexity Index:

Definition 5.5 (Solvability Complexity Index). A computational problem ¹„;�;M; ƒº

is said to have Solvability Complexity Index SCI.„; �;M; ƒ/˛ D k, with respect to a
tower of algorithms of type ˛, if k is the smallest integer for which there exists a tower
of algorithms of type ˛ of height k. If no such tower exists, SCI.„;�;M; ƒ/˛ D 1: If
there exists a tower ¹�nºn2N of type ˛ and height 1 such that„D �n1 for some n1 <1,
we define SCI.„; �;M; ƒ/˛ D 0. The type ˛ may be General or Arithmetic, denoted
by G and A, respectively. We sometimes write SCI.„;�/˛ to simplify notation when M

and ƒ are obvious.
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We let SCI.„; �/A and SCI.„; �/G denote the SCI with respect to an arithmetic
tower and a general tower, respectively. Note that a general tower means just a tower of
algorithms as in Definition 5.2, where there are no restrictions on the mathematical oper-
ations. Thus, clearly SCI.„;�/A � SCI.„;�/G. The definition of the SCI immediately
induces the SCI hierarchy:

Definition 5.6 (The Solvability Complexity Index hierarchy). Consider a collection C of
computational problems and let T be the collection of all towers of algorithms of type ˛
for the computational problems in C . Define

�˛0 WD
®
¹„;�º 2 C W SCI.„;�/˛ D 0

¯
;

�˛mC1 WD
®
¹„;�º 2 C W SCI.„;�/˛ � m

¯
; m 2 N;

�˛1 WD
®
¹„;�º 2 C W 9¹�nºn2N 2 T s.t. 8A d.�n.A/;„.A// � 2�n

¯
:

When there is additional structure on the metric space, such as in the spectral case
when one considers the Attouch–Wets or the Hausdorff metric, one can extend the SCI
hierarchy.

Definition 5.7 (The SCI hierarchy (Attouch–Wets/Hausdorff metric)). Given the set-up
in Definition 5.6, suppose in addition that .M; d / has the Attouch–Wets or the Hausdorff
metric induced by another background metric space .M0; d 0/. Define, for m 2 N,

†˛0 D …
˛
0 D �

˛
0 ;

†˛1 D
°
¹„;�º 2 �˛2 W 9¹�nº 2 T s.t. 8A 2 � lim

n!1
�n.A/ D „.A/ and

9¹Xn.A/º �M s.t. �n.A/ �
M0
Xn.A/ with d.Xn.A/;„.A// � 2�n

±
;

…˛
1 D

°
¹„;�º 2 �˛2 W 9¹�nº 2 T s.t. 8A 2 � lim

n!1
�n.A/ D „.A/ and

9¹Xn.A/º �M s.t. „.A/ �
M0
Xn.A/ with d.Xn.A/; �n.A// � 2�n

±
;

where�M0 means inclusion in the background metric space .M0; d 0/, and ¹Xn.A/º �M

is a sequence that may depend on A. Moreover,

†˛mC1 D
°
¹„;�º 2 �˛mC2 W 9¹�nmC1;:::;n1º 2 T s.t. 8A 2 �

lim
nmC1!1

: : : lim
n1!1

�nmC1;:::;n1.A/ D „.A/ and

9¹XnmC1.A/º �M s.t. �nmC1.A/ �
M0
XnmC1.A/ with

d.XnmC1.A/;„.A// � 2
�nmC1

±
;

…˛
mC1 D

°
¹„;�º 2 �˛mC2 W 9¹�nmC1;:::;n1º 2 T s.t. 8A 2 �

lim
nmC1!1

: : : lim
n1!1

�nmC1;:::;n1.A/ D „.A/ and

9¹XnmC1.A/º �M s.t. „.A/ �
M0
XnmC1.A/ with

d.XnmC1.A/; �nmC1.A// � 2
�nmC1

±
:

In all of the above, d can be either dH or dAW.
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For example, suppose that .M0; d 0/ is the complex plane C with the usual metric
and consider the Hausdorff metric on non-empty compact subsets of C. A computational
problem is in †˛1 if there exists a convergent sequence of algorithms ¹�nº, such that for
input A, there exists a sequence of non-empty compact subsetsXn.A/�C with �n.A/�
Xn.A/ and dH.Xn.A/;„.A// � 2

�n. Note that to build a †˛1 algorithm, it is enough by
taking subsequences of n to construct �n.A/ such that �n.A/ � „.A/C BEn.A/.0/ with
some computable En.A/ that converges to zero. The sequence of sets �n.A/ thus con-
verges to„.A/ and is contained in„.A/ up to the arbitrarily small tolerance (convergence
from below).

Similarly, a computational problem is in …˛
1 if there exists a convergent sequence of

algorithms ¹�nº, such that for input A, there exists a sequence of non-empty compact
subsets Xn.A/ � C with „.A/ � Xn.A/ and dH.Xn.A/; �n.A// � 2

�n. Note that to
build a …˛

1 algorithm, it is enough by taking subsequences of n to construct �n.A/ such
that „.A/ � �n.A/C BEn.A/.0/ with some computable En.A/ that converges to zero.
The sequence of sets �n.A/ thus converges to „.A/ and „.A/ is contained in �n.A/ up
to the arbitrarily small tolerance (convergence from above).

The classes †˛m and …˛
m for m > 1 generalise this notion of convergence from below

or, respectively, above in the final limit.
The same extension can be applied to the real line with the usual metric, or to ¹0; 1º

with the discrete metric. For decision problems, we use ¹0; 1º, where we interpret 1 as
“Yes” and 0 as “No”.

Definition 5.8 (The SCI hierarchy (totally ordered set)). Given the set-up in Definition
5.6, suppose in addition that M is a totally ordered set. Define

†˛0 D …
˛
0 D �

˛
0 ;

†˛1 D
®
¹„;�º 2 �˛2 W 9¹�nº 2 T s.t. �n.A/% „.A/ 8A 2 �

¯
;

…˛
1 D

®
¹„;�º 2 �˛2 W 9¹�nº 2 T s.t. �n.A/& „.A/ 8A 2 �

¯
;

where% and& denotes convergence from below and above respectively, as well as, for
m 2 N,

†˛mC1 D
°
¹„;�º 2 �˛mC2 W 9¹�nmC1;:::;n1º 2 T s.t.

lim
nmC1!1

: : : lim
n1!1

�nmC1;:::;n1.A/ D „.A/ and �nmC1.A/% „.A/ 8A 2 �
±
;

…˛
mC1 D

°
¹„;�º 2 �˛mC2 W 9¹�nmC1;:::;n1º 2 T s.t.

lim
nmC1!1

: : : lim
n1!1

�nmC1;:::;n1.A/ D „.A/ and �nmC1.A/& „.A/ 8A 2 �
±
:

Remark 5.9 (�˛1 ¨ †˛1 ¨ �˛2 ). Note that the inclusions are strict. For example, if �K
consists of the set of compact infinite matrices acting on l2.N/ and „.A/ D Sp.A/ (the
spectrum of A), then ¹„;�Kº is in�˛2 but not in†˛1 […

˛
1 for ˛ representing either tow-

ers of arithmetical or general type (see [12] for a proof). Moreover, as was demonstrated
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in [59], if Q� is the set of discrete Schrödinger operators on l2.Z/, then ¹„;�º is in †˛1
but not in �˛1 .

Suppose we are given a computational problem ¹„;�;M;ƒº, and thatƒD ¹fj ºj2ˇ ,
where ˇ is some index set that can be finite or infinite. Obtaining fj may be a computa-
tional task in its own right, which is exactly the problem in most areas of computational
mathematics. For example, given A 2 �, fj .A/ could be the number e�i=j . Hence, we
cannot access fj .A/, but rather fj;n.A/ where fj;n.A/! fj .A/ as n!1. Or, just as
for problems that are high up in the SCI hierarchy, it could be that we need several limits.
One may need mappings fj;nm;:::;n1 W �! QC iQ such that

lim
nm!1

: : : lim
n1!1

k¹fj;nm;:::;n1.A/ºj2ˇ � ¹fj .A/ºj2ˇk1 D 0; 8A 2 �: (5.1)

In particular, we may view the problem of obtaining fj .A/ as a problem in the SCI
hierarchy. Thus, �1 classification would correspond to the existence of mappings fj;n W
�! QC iQ such that

k¹fj;n.A/ºj2ˇ � ¹fj .A/ºj2ˇk1 � 2
�n; 8A 2 �: (5.2)

The following definition formalises these ideas.

Definition 5.10 (�m-information). Let ¹„;�;M; ƒº be a computational problem. For
m 2 N we say that ƒ has �mC1-information if for each j , fj 2 ƒ is not available, but
there are mappings fj;nm;:::;n1 W�!QC iQ such that (5.1) holds. Similarly, formD 0,
there are mappings fj;n W �! QC iQ such that (5.2) holds. Finally, if k 2 N and Oƒ is
a collection of such functions described above, we say that Oƒ provides �k-information
for ƒ. We denote the family of all such Oƒ by Lk.ƒ/.

We want to have algorithms that can handle computational problems ¹„;�;M; Oƒº for
any Oƒ 2 Lm.ƒ/. To formalise this, we define what we mean by a computational problem
with �m-information.

Definition 5.11 (Computational problem with �m-information). Given m 2 N, a com-
putational problem where ƒ has �m-information is denoted by ¹„; �;M; ƒº�m WD

¹ Q„; Q�;M; Qƒº; where

Q�D
®
QAD¹fj;nm;:::;n1.A/ºj;nm;:::;n12ˇ�Nm WA2�; ¹fj ºj2ˇ Dƒ; fj;nm;:::;n1 satisfy .�/

¯
;

and .�/ denotes (5.1) if m > 1, and (5.2) if m D 1. Moreover, Q„. QA/ D „.A/, and we
have Qƒ D ¹ Qfj;nm;:::;n1ºj;nm;:::;n12ˇ�Nm , where Qfj;nm;:::;n1. QA/ D fj;nm;:::;n1.A/. Note that
Q„ is well-defined by Definition 2.1 of a computational problem.

The SCI and the SCI hierarchy, given�m-information, is then defined in the standard
obvious way. We use the notation ¹„;�;M; ƒº�m 2 �˛

k
to denote that the computa-

tional problem is in �˛
k

given �m-information. When M and ƒ are obvious, we write
¹„;�º�m 2 �˛

k
for short.
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Remark 5.12 (Classifications in this paper). For the problems considered in this paper,
the SCI classifications do not change if we consider arithmetic towers with �1-informa-
tion. This is easy to see through Church’s thesis and an analysis of the stability of our
algorithms. For example, when the input is rational we have been careful to restrict all
relevant operations to Q rather than R, and errors incurred from �1-information can
be removed in the first limit. Explicitly, for the algorithms based on DistSpec (see
Appendix A), it is possible to carry out an error analysis. We can also bound numeri-
cal errors (e.g., using interval arithmetic – see §10) and incorporate this uncertainty for
the estimation of kR.z; A/k�1 to gain the same classification of our problems; and simi-
larly for other algorithms based on similar functions. In other words, for the results of this
paper, it does not matter which model of computation one uses for a definition of ‘algo-
rithm’. From a classification point of view, they are equivalent for these spectral problems.
This leads to rigorous †˛

k
or …˛

k
type error control suitable for verifiable numerics. In

particular, for †˛1 or …˛
1 towers of algorithms, this could be useful for computer-assisted

proofs.

6. Proofs of theorems on unbounded operators on graphs

We now prove the theorems in §3.2, whose proofs will be used in the proofs of the results
of §3.1. The following argument shows that it is sufficient to consider the l2.N/ case.
Given the graph G and an enumeration v1; v2; : : : of the vertices, consider the induced iso-
morphism l2.V .G //Š l2.N/. This induces a corresponding operator on l2.N/, where the
functions ˛ now become matrix values. For the lower bounds, we can consider diagonal
operators in�G (that is, ˛.v;w/D 0 if v¤w) with the trivial choice of S.n/D n. Hence,
lower bounds for �D translate to lower bounds for �G and �G

g . For the upper bounds,
the construction of algorithms for l2.N/ shows that given the above isomorphism, we can
compute a dispersion bounding function f for the induced operator on l2.N/ simply by
taking f .n/ D S.n/. This has Df;n.A/ D 0. Any of the functions in ƒ for the relevant
class of operators on l2.N/ can be computed via the above isomorphism using functions
in ƒ for the relevant class of operators on l2.V .G //. For instance, to evaluate matrix
elements, we use ˛.vi ; vj /.

There is a useful characterisation of the Attouch–Wets topology. For any closed
non-empty sets C and Cn, the convergence dAW.Cn; C / ! 0 holds if and only if
dK.Cn; C /! 0 for any compact K � C where

dK.C1; C2/ D max
°

sup
a2C1\K

dist.a; C2/; sup
b2C2\K

dist.b; C1/
±
;

with the convention that the supremum over the empty set is 0. This occurs if and only if
for any ı > 0 and K, there exists N such that if n > N then Cn \K � C C Bı.0/ and
C \ K � Cn C Bı.0/. Furthermore, it is enough to consider K of the form Bm.0/, the
closed ball of radiusm about the origin, for largem 2N. Throughout this section we take
our metric space .M; d / to be .Cl.C/; dAW/.
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Remark 6.1 (A note on the empty set). There is a slight subtlety regarding the empty set.
It could be the case that the output of our algorithm is the empty set and hence �n.A/
does not map to the required metric space. However, the proofs show that for large n,
�n.A/ is non-empty, and we gain convergence. By successively computing �n.A/ and
outputting �m.n/.A/, where m.n/ � n is minimal with �m.n/.A/ ¤ ;, we see that this
does not matter for the classification, but the algorithm in this case is adaptive.

The following lemma is a useful criterion for determining †A1 error control in the
Attouch–Wets topology and will be used in the proofs without further comment.

Lemma 6.2. Suppose that „ W � ! .Cl.C/; dAW/ is a problem function and �n is a
sequence of arithmetic algorithms with each output a finite set such that

lim
n!1

dAW.�n.A/;„.A// D 0; 8A 2 �:

Suppose also that there is a function En provided by �n .and defined over the output
of �n/ such that

lim
n!1

sup
z2�n.A/\Bm.0/

En.z/ D 0

for all m 2 N and such that

dist.z;„.A// � En.z/; 8z 2 �n.A/:

Then:

(1) For each m 2 N and given �n.A/, we can compute in finitely many arithmetic oper-
ations and comparisons a sequence of non-negative numbers amn ! 0 .as n!1/
such that

�n.A/ \ Bm.0/ � „.A/C Bamn .0/:

(2) Given �n.A/, we can compute in finitely many arithmetic operations and compar-
isons a sequence of non-negative numbers bn ! 0 such that �n.A/ � An for some
An 2 Cl.C/ with dAW.An; „.A// � bn.

Hence we can convert �n to a †A1 tower using the sequence ¹bnº by taking subsequences
if necessary.

Proof. For the proof of (1), we may take amn D sup ¹En.z/ W z 2 �n.A/ \ Bm.0/º and the
result follows. Note that we need �n.A/ to be finite to compute this number with finitely
many arithmetic operations and comparisons. We next show (2) by defining

Amn D
�
.„.A/C Bamn .0// \ Bm.0/

�
[ .�n.A/ \ ¹z W jzj � mº/:

It is clear that �n.A/ � Amn and given �n.A/ we can easily compute a lower bound m1
such that „.A/ \ Bm1.0/ ¤ ;. Compute this from �1.A/ and then fix it. Suppose that
m � 4m1, and suppose that jzj < bm=4c. Then the points in Amn and „.A/ nearest to z
must lie in Bm.0/ and hence

dist.z; Amn / � dist.z;„.A//; dist.z;„.A// � dist.z; Amn /C a
m
n :
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It follows that
dAW.A

m
n ; „.A// � a

m
n C 2

�bm=4c:

We now choose a sequence m.n/ such that setting An D A
m.n/
n and bn D a

m.n/
n C

2�bm.n/=4c proves the result. Clearly it is enough to ensure that bn converges to zero.
If n < 4m1, set m.n/ D 4m1, otherwise consider 4m1 � k � n. If such a k exists with
akn � 2

�k , letm.n/ be the maximal such k. If no such k exists, setm.n/D 4m1. For a fixed
m, amn ! 0 as n!1. It follows that am.n/n � 2�m.n/ for large n, and thatm.n/!1.

Remark 6.3. We will only consider algorithms where the output of �n.A/ is at most
finite for each n. Hence the above restriction does not matter in what follows.

To build our algorithms, we characterise the reciprocal of resolvent norm in terms of
the injection modulus. For A 2 C.l2.N//, we define the injection modulus as

�inf.A/ D inf ¹kAxk W x 2 D.A/; kxk D 1º; (6.1)

and define the function


.z; A/ D min ¹�inf.A � zI /; �inf.A
�
� NzI /º:

The following shows that if z … Sp.A/ then 
.z; A/ D �inf.A � zI / D �inf.A
� � NzI / D

kR.z;A/k�1. For z 2 Sp.A/, it can occur that �inf.A� zI / ¤ �inf.A
� � NzI /, but we still

must have 
.z; A/ D 0.

Lemma 6.4. For A 2 C.l2.N//, 
.z; A/ D 1=kR.z; A/k, where R.z; A/ denotes the
resolvent .A � zI /�1 and we adopt the convention that 1=kR.z;A/k D 0 if z 2 Sp.A/.

Proof. We deal with the case z … Sp.A/ first, where we prove that �inf.A � zI / D

�inf.A
� � NzI / D 1=kR.z; A/k. We show the equality for �inf.A � zI / and the other case

is similar using the fact that R.z; A/� D R.z; A�/ and kR.z; A/k D kR.z; A/�k. Let
x 2 D.A/ with kxk D 1. Then

1 D kR.z;A/.A � zI /xk � kR.z;A/k k.A � zI /xk:

Hence upon taking the infimum over such x, �inf.A � zI / � 1=kR.z; A/k. Conversely,
let xn 2 l2.N/ be such that kxnk D 1 and kR.z;A/xnk ! kR.z;A/k. It follows that

1 D k.A � zI /R.z; A/xnk � �inf.A � zI /kR.z;A/xnk:

Letting n!1 we get �inf.A � zI / � 1=kR.z;A/k.
Now suppose that z 2 Sp.A/. If at least one of A � zI or A� � NzI is not injective on

the respective domain then we are done, so assume both are one-to-one. Suppose also that
�inf.A � zI /; �inf.A

� � NzI / > 0 as otherwise we are done. It follows that R.A � zI / is
dense in l2.N/ by injectivity of A� � NzI since R.A � zI /? D N.A� � NzI /. It follows
that we can define .A� zI /�1, bounded on the dense set R.A� zI /. We can extend this
inverse to a bounded operator on the whole of l2.N/. Closedness of A now implies that
.A � zI /.A � zI /�1 D I . Clearly .A � zI /�1.A � zI /x D x for all x 2 D.A/. Hence,
.A � zI /�1 D R.z;A/ 2 B.l2.N// so that z … Sp.A/, a contradiction.
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Suppose we have a sequence of functions 
n.z;A/ that converge uniformly to 
.z;A/
on compact subsets of C. Define the grid

Grid.n/ D
1

n
.ZC iZ/ \ Bn.0/: (6.2)

For a strictly increasing continuous function g WR�0!R�0 with g.0/D 0 and diverging
at infinity, for n 2 N and y 2 R�0 define

CompInvg.n; y; g/ D min ¹k=n W k 2 N; g.k=n/ > yº: (6.3)

CompInvg.n; y; g/ can be computed from finitely many evaluations of the function g.
We now build the algorithm converging to the spectrum using the functions in (3.10). For
each z 2 Grid.n/, let

‡n;z D BCompInvg.n;
n.z;A/;gdjzje/.z/ \ Grid.n/:

If 
n.z; A/ > .jzj2 C 1/�1, set Mz D ;, otherwise set

Mz D

°
w 2 ‡n;z W 
n.w;A/ D min

v2‡n;z

n.v; A/

±
:

Finally, define �n.A/ D
S
z2Grid.n/Mz . It is clear that if 
n.z; A/ can be computed in

finitely many arithmetic operations and comparisons from the relevant functions in ƒ for
each problem, then this procedure defines an arithmetic algorithm �n. If A 2 C.l2.N//
with non-empty spectrum, there exists z 2 Bm.0/ with 
.z;A/ � .m2 C 1/�1=2 and, for
large n, zn 2 Grid.n/ sufficiently close to z with 
.zn; A/ � .jznj2 C 1/�1. Hence, by
computing successive �n.A/, we can assume that �n.A/ ¤ ; without loss of generality
(see Remark 6.1).

Proposition 6.5. Suppose A 2 C.l2.N// with non-empty spectrum and we have a func-
tion 
n.z;A/ that converges uniformly to 
.z;A/ on compact subsets of C. Suppose also
that .3.10/ holds, namely

gm.dist.z;Sp.A/// � kR.z;A/k�1; 8z 2 Bm.0/:

Then �n.A/ converges in the Attouch–Wets topology to Sp.A/ .assuming �n.A/ ¤ ;
without loss of generality/.

Proof. We use the characterisation of the Attouch–Wets topology. Suppose that m 2 N
is large such that Bm.0/ \ Sp.A/ ¤ ;. We must show that given ı > 0, there
exists N such that if n > N then �n.A/ \ Bm.0/ � Sp.A/C Bı.0/ and Sp.A/ \ Bm.0/
� �n.A/C Bı.0/. Throughout the rest of the proof we fix such an m. Let �n D
k
n.�; A/ � 
.�; A/k1;BmC1.0/, where the notation means the supremum norm over the
set BmC1.0/.

We deal with the second inclusion first. Suppose that z 2 Sp.A/\ Bm.0/. Then there
exists some w 2 Grid.n/ such that jw � zj � 1=n. It follows that


n.w;A/ � 
.w;A/C �n � dist.w;Sp.A//C �n � �n C 1=n:
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By choosing n large, we can ensure that �n < .2m2 C 2/�1 and that 1=n � .2m2 C 2/�1

so that 
n.w;A/ < .jwj2 C 1/�1. It follows that Mw is non-empty. If y 2Mw ,

jy � zj � jw � zj C jy � wj � 1=nC 1=nC g�1
dwe.
n.w;A//:

But the gk’s are non-increasing in k, strictly increasing continuous functions with
gk.0/ D 0. Since 
n.w;A/ � �n C 1=n, it follows that

jy � zj � 2=nC g�1mC1.�n C 1=n/: (6.4)

There exists N1 such that if n � N1 then (6.4) holds and 2=nC g�1mC1.�n C 1=n/ � ı.
This gives the second inclusion Sp.A/ \ Bm.0/ � �n.A/C Bı.0/.

For the first inclusion, suppose for a contradiction that this is false. Then there
exist nj !1, ı > 0 and znj 2 �nj .A/ \ Bm.0/ such that dist.znj ; Sp.A// � ı. Then
znj 2Mwnj

for some wnj 2 Grid.nj /. Let

I.j / D BCompInvg.nj ;
nj .wnj ;A/;gdjwnj je/
.wnj / \ Grid.nj /;

the set that we compute minima of 
nj over. Let ynj 2 Sp.A/ be of minimal distance
to wnj (such a ynj exists since the spectrum restricted to any compact ball is compact). It
follows that jynj � wnj j � g

�1
djwnj je

.
.wnj ; A//. A simple geometrical argument (which
also works when we restrict everything to the real line for self-adjoint operators) shows
that there must be a vnj in I.j / such that

jvnj � ynj j � 4=nj C g
�1
djwnj je

.
.wnj ; A// � g
�1
djwnj je

.
nj .wnj ; A//:

Since znj minimises 
nj over I.j / and Mwnj
is non-empty, it follows that


.znj ; A/ � 
nj .znj ; A/C �nj � min
²

1

jwnj j
2 C 1

; 
nj .vnj ; A/

³
C �nj :

This implies that

ı � dist.znj ;Sp.A// � g�1m

�
min

²
1

jwnj j
2 C 1

; 
nj .vnj ; A/

³
C �nj

�
; (6.5)

where we recall that g�1m is continuous. It follows that thewnj must be bounded and hence
so are the vnj . Due to the local uniform convergence of 
n to 
 , it follows that

4=nj C g
�1
djwnj je

.
.wnj ; A// � g
�1
djwnj je

.
nj .wnj ; A//! 0 as nj !1:

But then

.vnj ; A/ � dist.vnj ;Sp.A// � jvnj � ynj j ! 0:

The local uniform convergence implies that 
nj .vnj ;A/! 0, which contradicts (6.5) and
completes the proof.
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Next, given such a sequence 
n, we would like to provide an algorithm for comput-
ing the pseudospectrum. However, care must be taken in the unbounded case since the
resolvent norm can be constant on open subsets of C [125]. Simply taking Grid.n/ \
¹z W 
n.z; A/ � �º is not guaranteed to converge, as can be seen in the case that 
n is
identically 
 and A is such that the level set ¹kR.z; A/k�1 D �º has non-empty interior.
To get around this, we need an extra assumption on the functions 
n.

Lemma 6.6. Suppose A 2 C.l2.N// with non-empty spectrum and let � > 0. Suppose
we have a sequence of functions 
n.z; A/ that converge uniformly to kR.z; A/k�1 on
compact subsets of C. Set

��n.A/ D Grid.n/ \ ¹z W 
n.z; A/ < �º:

Then for large n, ��n.A/ ¤ ; .so we can assume this without loss of generality/. Suppose
also that there exists N 2 N .possibly dependent on A but independent of z/ such that if
n � N then 
n.z; A/ � kR.z;A/k�1. Then dAW.�

�
n.A/;Sp�.A//! 0 as n!1.

Proof. Since the pseudospectrum is non-empty, ��n.A/ ¤ ; for large n. It follows from
our usual argument of computing successive ��n.A/ (see Remark 6.1) that we may assume
��n.A/¤; for all nwithout loss of generality. We use the characterisation of the Attouch–
Wets topology. Suppose that m is large such that Bm.0/ \ Sp�.A/ ¤ ;. There exists
N 2 N such that if n � N then 
n.z; A/ � kR.z; A/k�1 and hence ��n.A/ \ Bm.0/ �
Sp�.A/. Hence we must show that given ı > 0, there exists N1 such that if n > N1 then
Sp�.A/\Bm.0/� �

�
n.A/C Bı.0/. Suppose for a contradiction that this were false. Then

there exist znj 2 Sp�.A/ \ Bm.0/, ı > 0 and nj !1 such that dist.znj ; �
�
nj
.A// � ı.

Without loss of generality, we can assume that znj ! z 2 Sp�.A/ \ Bm.0/. There exists
some w with kR.w; A/k�1 < � and jz � wj � ı=2. Assuming nj > mC ı, there exists
ynj 2 Grid.nj / with jynj � wj � 1=nj . It follows that


nj .ynj ; A/ � j
nj .ynj ; A/ � 
.ynj ; A/j C j
.w;A/ � 
.ynj ; A/j C kR.w;A/k
�1:

But 
 is continuous and 
nj converges uniformly to 
 on compact subsets. Hence for
large nj , it follows that 
nj .ynj ;A/ < � so that ynj 2 �

�
nj
.A/. But jynj � zj � jz �wj C

jynj � wj � ı=2C 1=nj ; which is smaller than ı for large nj . This inequality gives the
required contradiction.

Now suppose that A 2 O� (recall that O� is the class of all A 2 C.l2.N// with non-
empty spectrum such that (1) and (2) from §3.2 hold) and letDf;n.A/� cn. The following
shows that we can construct the required sequence 
n.z;A/. Each function output requires
only finitely many arithmetic operations and comparisons of the corresponding input
information.

Theorem 6.7. Let A 2 O� and define the function

Q
n.z; A/ D min ¹�inf.Pf .n/.A � zI /jPn.l2.N///; �inf.Pf .n/.A
�
� NzI /jPn.l2.N///º:
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We can compute Q
n up to precision 1=n using finitely many arithmetic operations and
comparisons. We call this approximation O
n and set


n.z; A/ D O
n.z; A/C cn C 1=n:

Then 
n.z; A/ converges uniformly to 
.z; A/ on compact subsets of C and 
n.z; A/ �

.z; A/.

Proof. We will first prove that �inf..A � zI /jPn.l2.N/// # �inf.A � zI / as n!1. It is
trivial that �inf..A � zI /jPn.l2.N/// � �inf.A � zI / and that �inf..A � zI /jPn.l2.N/// is
non-increasing in n. Using Lemma 6.4, let � > 0 and x 2D.A/ be such that kxk D 1 and
k.A � zI /xk � �inf.A � zI /C �. Since span ¹en W n 2 Nº forms a core of A, it follows
that APnj xnj ! Ax and Pnj xnj ! x for some nj !1 and some sequence of vectors
xnj of norm 1. Consequently, for large nj ,

�inf..A � zI /jPnj .l
2.N/// �

k.A � zI /Pnj xnj k

kPnj xnj k
! k.A � zI /xk � �inf.A � zI /C �:

Since � > 0 was arbitrary, this shows the convergence of �inf..A � zI /jPn.l2.N///.
The fact that span ¹en W n 2 Nº forms a core of A� can also be used to show that
�inf..A � zI /

�jPn.l2.N/// # �inf.A
� � zI /.

Next we use the assumption of bounded dispersion from assumption (2) of §3.2 for
A 2 O�. For any bounded operators B; C , it holds that j�inf.B/ � �inf.C /j � kB � Ck:

The definition of bounded dispersion now implies thatˇ̌
Q
n.z; A/ �min ¹�inf..A � zI /jPn.l2.N///; �inf..A � zI /

�
jPn.l2.N///º

ˇ̌
� cn:

The monotone convergence of min ¹�inf..A � zI /jPn.l2.N///; �inf..A � zI /
�jPn.l2.N///º,

together with Dini’s theorem, implies that Q
n.z;A/ converges uniformly to the continuous
function 
.z; A/ on compact subsets of C with Q
n.z; A/C cn � 
.z; A/.

The proof will be complete if we can show that we can compute Q
n.z;A/ to precision
1=n using finitely many arithmetic operations and comparisons. To do this, consider the
matrices

Bn.z/ D Pn.A � zI /
�Pf .n/.A � zI /Pn; Cn.z/ D Pn.A � zI /Pf .n/.A � zI /

�Pn:

By an interval search routine and Lemma 6.8 below, we can determine the smallest l 2 N
such that at least one of Bn.z/ � .l=n/2I or Cn.z/ � .l=n/2I has a negative eigenvalue.
We then output l=n to get the 1=n bound.

Every finite Hermitian matrix B (not necessarily positive semidefinite) has a decom-
position

PBP T D LDL�;

where L is lower triangular with 1’s along its diagonal, D is block diagonal with block
sizes 1 or 2 and P is a permutation matrix [44,45], [90, §4.4]. The permutation matrix P
arises from pivoting strategies for stability. The above decomposition can be computed
with finitely many arithmetic operations and comparisons.
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Lemma 6.8. Let B 2Cn�n be self-adjoint .Hermitian/. Then we can determine the num-
ber of negative eigenvalues of B in finitely many arithmetic operations and comparisons
.assuming no round-off errors/ on the matrix entries of B .

Proof. The matrix QB D PBP T has the same eigenvalues as B . Hence, without loss of
generality, we can consider QB . We can compute the decomposition QB D LDL� in finitely
many arithmetical operations and comparisons. By Sylvester’s law of inertia, D has the
same number of negative eigenvalues as QB . It is then clear that we only need to deal with
2 � 2 matrices corresponding to the maximum block size of D. Let �1; �2 be the two
eigenvalues of such a matrix. Then we can determine their sign pattern from the trace and
determinant of the matrix.

This lemma has a corollary that is used in §9.

Corollary 6.9. Let B 2 Cn�n be self-adjoint .Hermitian/ and list its eigenvalues in
increasing order, including multiplicity, as �1 � � � � � �n. In exact arithmetic, given � > 0,
we can compute �1; : : : ; �n to precision � using only finitely many arithmetic operations
and comparisons.

Proof. Consider A.�/ D B � �I . We will apply Lemma 6.8 to A.�/ for various �. First,
by considering the sequences �1;�2; : : : and 1; 2; : : : we can find m1 2 N such that
Sp.B/ � .�m1;m1/. Now let m2 2 N be such that 1=m2 < � and let aj be the output of
Lemma 6.8 applied to A.j=m2/ for �m1m2 � j � m1m2. Set

Q�k D min ¹j W �m1m2 � j � m1m2; aj � kº; k D 1; : : : ; n:

If �k 2 Œj=m2; .j C 1/=m2/ then Q�k D .j C 1/=m2 and hence j Q�k � �kj � 1=m2 < �.

Remark 6.10. Of course, in practice, there are much more computationally efficient ways
to numerically compute eigenvalues or singular values. The above is purely used to show
this can be done to any precision with finitely many arithmetic operations. Computing
the eigenvalues and eigenvectors of finite-dimensional matrices dates back to Wilkinson
[142], with guaranteed convergence for self-adjoint matrices via Wilkinson shifts [116].
It is not completely straightforward to deduce Corollary 6.9 via the QR algorithm with
Wilkinson shifts, as one has to deal with halting criteria to achieve the correct precision.
Moreover, one must approximate roots to extract the approximate eigenvalues from a
potential 2� 2matrix block. One could make the cost of the method in Corollary 6.9 log-
arithmic in the desired accuracy by using interval bisections. This is beyond the scope of
the present paper (and not its purpose). For a polynomial-time (but impractical) algorithm
for eigenvalues and eigenvectors based on Newton’s method, see [2].

By taking successive minima, �n.z; A/ D min1�j�n 
n.z; A/; we can obtain a
sequence of functions �n that converge uniformly on compact subsets of C to 
.z; A/
monotonically from above. Hence without loss of generality, we will always assume that

n have this property. We can now prove our main result.
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Proof of Theorem 3.8. By considering bounded diagonal operators, it is straightforward
to see that none of the problems lie in �G1 . We first deal with the convergence of height 1
arithmetical towers. For the spectrum, we use the function 
n described in Theorem 6.7
together with Proposition 6.5 and its described algorithm. For the pseudospectrum, we
use the same function 
n described in Theorem 6.7, and convergence follows from using
the algorithm in Proposition 6.6.

We are left with proving that our algorithms have †A1 error control. For any A 2 O�,
the output of the algorithm in Proposition 6.6 is contained in the true pseudospectrum
since 
n.z;A/ � 
.z;A/D kR.z;A/k�1. Hence we need only show that the algorithm in
Proposition 6.5 provides †A1 error control for input A 2 �g . Denote the algorithm by �n
and set

En.z/ D CompInvg.n; 
n.z; A/; g�1djzje/

on �n.A/ and zero on Cn�n.A/. Since 
n.z;A/� kR.z;A/k�1, the assumptions on ¹gmº
imply that

dist.z;Sp.A// � En.z/; 8z 2 �n.A/:

Suppose for a contradiction that En does not converge uniformly to zero on compact
subsets of C. Then there exists some compact setK, some � > 0, a sequence nj !1 and
znj 2K such that Enj .znj / � �. It follows that znj 2 �nj .A/. Without loss of generality,
znj ! z. By convergence of �nj .A/, z 2 Sp.A/ and hence 
nj .znj ; A/! 
.z; A/ D 0.
Now choose M large such that K � BM .0/. But then

Enj .znj / � g
�1
M .
nj .znj ; A//C 1=nj ! 0;

the required contradiction.

Remark 6.11. The above shows that En.z/ converges uniformly to the function
g�1
djzje

.
.z; A// as n!1 on compact subsets of C.

Finally, we consider the decision problems „3 and „4.

Proof of Theorem 3.10. It is clearly enough to prove the lower bounds for �D �K.C/
and the existence of towers for O� �K.C/. The proof of lower bounds for �D �K.C/
can also be trivially adapted to the more restrictive versions of the problem than described
in the theorem.

Step 1: ¹„3; �D �K.C/º 62 �G2 . Suppose this were false, and �n is a height 1 tower
solving the problem. For every A and n there exists a finite number N.A; n/ 2 N such
that the evaluations from ƒ�n.A/ only take the matrix entries Aij D hAej ; ei i with
i; j � N.A; n/ into account. Without loss of generality (by shifting and rotating our
argument), we assume that K \ Œ0; 1� D ¹0º. We will consider the operators Am D
diag¹1; 1=2; : : : ; 1=mº 2 Cm�m, Bm D diag¹1; : : : ; 1º 2 Cm�m and C D diag¹1; 1; : : : º.
Set A D

L1
mD1.Bkm ˚ Akm/ where we choose an increasing sequence km inductively

as follows.
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Set k1 D 1 and suppose that k1; : : : ; km have been chosen. Sp.Bk1 ˚ Ak1 ˚ � � � ˚
Bkm ˚ Akm ˚ C/ D ¹1; 1=2; : : : ; 1=mº and hence

„3.Bk1 ˚ Ak1 ˚ � � � ˚ Bkm ˚ Akm ˚ C/ D “No”:

So there exists some nm � m such that if n � nm then

�n.Bk1 ˚ Ak1 ˚ � � � ˚ Bkm ˚ Akm ˚ C/ D “No”:

Now let kmC1 � max ¹N.Bk1 ˚ Ak1 ˚ � � � ˚ Bkm ˚ Akm ˚ C; nm/; km C 1º. By
assumption (iii) in Definition, 5.1 it follows that ƒ�nm .Bk1 ˚ Ak1 ˚ � � � ˚ Bkm ˚

Akm ˚ C/ D ƒ�nm .A/ and hence by assumption (ii) in the same definition, �nm.A/ D
�nm.Bk1 ˚Ak1 ˚ � � � ˚Bkm ˚Akm ˚C/D “No”. But 0 2 Sp.A/ and so we must have
limn!1 �n.A/ D “Yes”, a contradiction.

Step 2: ¹„4;�Dº 62 �G2 . The same proof as Step 1, but replacing A by AC �I works in
this case.

Step 3: ¹„3; O� �K.C/º 2 …A
2 . Recall that we can compute, with finitely many arith-

metic operations and comparisons, a function 
n that converges monotonically down to
kR.z;A/k�1 uniformly on compact subsets of C. Set

�n2;n1.A/ D “Does there exist some z 2 Kn2 such that 
n1.z; A/ < 1=2
n2?”:

This is an arithmetic algorithm since each Kn is finite. Moreover,

lim
n1!1

�n2;n1.A/ D “Does there exist some z 2 Kn2 such that kR.z;A/k�1 < 1=2n2?”

DW �n2.A/:

If K \ Sp.A/ D ;, kR.z; A/k�1 is bounded below on the compact set K and hence
for large n2, �n2.A/ D “No”. However, if z 2 Sp.A/ \ K, let zn2 2 Kn2 minimise the
distance to z. Then

kR.zn2 ; A/k
�1
� dist.zn2 ;Sp.A// < 1=2n2

and hence �n2.A/ D “Yes” for all n2. This also shows the …A
2 classification.

Step 4: ¹„4; O� �K.C/º 2 …A
2 . Set

�n2;n1.A/ D “Does there exist some z 2 Kn2 such that 
n1.z; A/ < 1=2
n2 C �?”:

Then the same argument as in Step 3 works in this case.

6.1. Examples of f used in the computational examples

We end with some examples for the graph case l2.V .G //. Recall that we consider opera-
tors in (3.11), where for any v 2 V the set of w 2 V with ˛.v;w/ ¤ 0 is finite. As noted
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at the start of §6, we can equate our operators with operators on l2.N/ with bounded
dispersion as in (3.9) with Df;n.A/ D 0.

Suppose our enumeration of the vertices obeys the following pattern. The neighbours
of v1 (including itself) are S1 D ¹v1; : : : ; vq1º for some finite q1. The set of neighbours of
these vertices is S2D ¹v1; : : : ; vq2º for some finite q2, where we continue the enumeration
of S1. This process is continued to inductively enumerate each Sm.

Example 6.12. Suppose that the bounded operator A can be written as

A D
X
v�kw

˛.v;w/jvihwj (6.6)

for some k 2 N. Here we write v �k w for two vertices v; w 2 V if there is a path
of at most k edges connecting v and w. Hence A only involves kth nearest neighbour
interactions. This is a graph operator version of A being banded (though of course the
representation matrix acting on l2.N/ need not be banded in the usual sense). Suppose
also that the vertex degree of G is bounded by M . It holds that vn 2 Sn and ¹w 2 V W
v �k wº � SnCk . Inductively jSmj � .M C 1/m and hence we may take the upper bound

S.n/ D .M C 1/nCk :

Example 6.13. Consider a nearest neighbour operator (kD 1 in (6.6)) on l2.Zd /. It holds
that jSmj � O.md / whilst jSmC1 � Smj � O.md�1/ (by considering radial spheres). It
is easy to see that we can choose a suitable S such that

S.n/ � n � O.n
d�1
d /;

that is, S grows at most linearly.

7. Proofs of theorems on differential operators on unbounded domains

Here we prove Theorems 3.3 and 3.6. The constructed algorithms involve technical error
estimates with parameters depending on these estimates. In the construction of the algo-
rithms, our strategy will be to reduce the problem to one handled by the proofs in §6. To
do so, we must first select a suitable basis and then compute matrix values. Recall that
we aim to compute the spectrum and pseudospectrum from the information given to us
regarding the coefficient functions ak and Qak , with the information we can evaluate made
precise by the mappings „1j , „2j , „3j and „4j . We start by constructing the algorithms
used for the positive results in Theorems 3.3 and 3.6, and then prove the lower bounds.

7.1. Construction of algorithms

We begin with the description for d D 1 and then comment on how this can easily be
extended to arbitrary dimensions. As an orthonormal basis of L2.R/ we choose the Her-
mite functions

 m.x/ D .2
mmŠ
p
�/�1=2e�x

2=2Hm.x/; m 2 Z�0;
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where Hm denotes the mth (physicists’) Hermite polynomial defined by

Hm.x/ D .�1/
m exp.x2/

dm

dxm
exp.�x2/:

The Hermite functions obey the recurrence relations

 0m.x/ D

r
m

2
 m�1.x/ �

r
mC 1

2
 mC1.x/;

x m.x/ D

r
m

2
 m�1.x/C

r
mC 1

2
 mC1.x/:

We let CH .R/ D span ¹ m W m 2 Z�0º. Note that since the Hermite functions decay
like e�x

2=2 (up to polynomials) and the functions ak and Qak can only grow polynomially,
the formal differential operator T and its formal adjoint T � make sense as operators
from CH .R/ to L2.R/. The next proposition says that we can use the chosen basis.

Proposition 7.1. For any operator T 2 �, CH .R/ forms a core of both T and T �.

Proof. We argue for T , and the case of T � is analogous. Let f 2 CH .R/ and choose
� 2 C10 .R/ (the space of compactly supported smooth functions) bounded by 1 such that
�.x/D 1 for all jxj � 1. It is straightforward, using the fact that the ak’s are polynomially
bounded, to show that

lim
n!1

�.x=n/f .x/ D f .x/; lim
n!1

T�.x=n/f .x/ D .Tf /.x/

in L2.R/, where Tf is the formal differential operator applied to f . The fact that T is
closed implies that f 2 D.T / and that the formula in (3.3) holds for u D f .

Let g 2 C10 .R/ and in the L2 sense write

g D
X
m�0

bm m:

Define gn D
Pn
mD0 bm m. We show that Tgn converges as n!1. Since T is closed

and C10 .R/ is a core for T , and CH .R/ 3 gn ! g, proving this will prove the desired
result.

LetH denote the closure of the operator �d2=dx2 C x2 with initial domain C10 .R/.
Then H m D .2m C 1/ m and H is self-adjoint. Note also that g 2 D.Hn/ for any
n 2 N. But hHg; mi D .2mC 1/hg; mi D .2mC 1/bm; so ¹.2mC 1/jbmjº is square
summable. We can repeat this argument any number of times to see that the coeffi-
cients bm decay faster than any inverse polynomial. To prove the required convergence,
it is enough to consider one of the terms ak.x/@k that defines T acting on CH .R/. The
coefficient ak.x/ is polynomially bounded almost everywhere, and for some Ak and Bk ,

hak@
k m; ak@

k mi � A
2
k

Z
R
.1C jxj2Bk /2@k m.x/@

k m.x/ dx:
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We can use the recurrence relations for the derivatives of the Hermite functions and
orthogonality to bound the right-hand side by a polynomial in m. The convergence now
follows since Tgn is a Cauchy sequence due to the rapid decay of the ¹bmº.

Clearly, all of the above analysis holds in higher dimensions by considering tensor
products

CH .R
d / WD span ¹ m1 ˝ � � � ˝  md W m1; : : : ; md 2 Z�0º

of Hermite functions. We abuse notation and write  m D  m1 ˝ � � � ˝  md . It will be
clear from the context when we are dealing with the multidimensional case. To build
the required algorithms with †A1 error control, we need to select an enumeration of Zd�0
in order to represent T as an operator acting on l2.N/. A simple way to do this is to
consider successive half-spheres Sn D ¹m 2 Zd�0 W jmj � nº. We list S1 as ¹e1; : : : ; er1º
and given an enumeration ¹e1; : : : ; ernº of Sn, we list SnC1nSn as ¹ernC1; : : : ; ernC1º.
We then list our basis functions as e1; e2; : : : with  m D eh.m/. In practice, it is often
more efficient (especially for large d ) to consider other orderings such as the hyperbolic
cross [105]. Now that we have a suitable basis, the next question to ask is how to recover
the matrix elements of T . In §6 the key construction is a function, which can be computed
from the information given to us, 
n.z; T /, that also converges uniformly from above to
kR.z; T /k�1 on compact subsets of C. Such a sequence of functions is given by

‰n.z; T / WD min ¹�inf..T � zI /jPn.l2.N///; �inf..T
�
� NzI /jPn.l2.N///º

as long as the linear span of the basis forms a core of T and T �. In §6 we used the notion
of bounded dispersion to approximate this function. Here we have no such notion, but
we can use the information given to us to replace this. It turns out that to approximate

n.z; T /, it suffices to use the following.

Lemma 7.2. Let � > 0 and n 2 N. Suppose that we can compute, with finitely many
arithmetic operations and comparisons, the matrices

¹Wn.z/ºij D h.T � zI /ej ; .T � zI /ei i CE
n;1
ij .z/;

¹Vn.z/ºij D h.T � zI /
�ej ; .T � zI /

�ei i CE
n;2
ij .z/;

for 1 � i; j � n, where the entrywise errors En;1i;j and En;2i;j have magnitude at most �.
Then

j‰n.z; T /
2
�min ¹�inf.Wn/; �inf.Vn/ºj � n�:

It follows that if � is known, we can compute ‰n.z; T /2 to within 2n�. If � is unknown,
then for any ı > 0, we can compute‰n.z;T /2 to within n�C ı. .In each case with finitely
many arithmetic operations and comparisons./

Proof. Given ¹Wn.z/ºij , .¹Wn.z/ºij C ¹Wn.z/ºj i /=2 still has an entrywise absolute error
bounded by �. Hence without loss of generality we can assume that the approximations
Wn.z/ and Vn.z/ are self-adjoint. Let QWn.z/ and QVn.z/ denote the corresponding matrices
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with no errors. Then

min ¹�inf..T � zI /jPn.l2.N///; �inf..T
�
� NzI /jPn.l2.N///º

2
D min ¹�inf. QWn/; �inf. QVn/º;

and

jmin ¹�inf. QWn/; �inf. QVn/º �min ¹�inf.Wn/; �inf.Vn/ºj � max ¹kWn � QWnk; kVn � QVnkº:
(7.1)

For a finite matrix M , we can bound kMk by its Frobenius norm
pP

jMij j
2. Hence the

right hand side of (7.1) is at most n�. Given a self-adjoint positive semidefinite matrixM ,
we can compute �inf.M/ to arbitrary precision using finitely many arithmetic operations
and comparisons via the argument in the proof of Theorem 6.7. The lemma now follows.

Finally, we need some results concerning quasi-Monte Carlo numerical integration,
which we use to build the algorithm. Note that either with no prior information concerning
the coefficients, or for large d , this is the type of approach one would use in practice. We
start with some definitions and theorems, which we include here for completeness. An
excellent reference for these results is [111].

Definition 7.3. Let ¹t1; : : : ; tj º be a sequence in Œ0; 1�d and let K denote all subsets of
Œ0; 1�d of the form

Qd
kD1Œ0; yk/ for yk 2 .0; 1�. Then we define the star discrepancy of

¹t1; : : : ; tj º to be

D�j .¹t1; : : : ; tj º/ D sup
K2K

ˇ̌̌̌
1

j

jX
kD1

�K.tj / � jKj

ˇ̌̌̌
;

where �K denotes the characteristic function of K.

Theorem 7.4. If ¹tkºk2N is the Halton sequence in Œ0;1�d in the pairwise relatively prime
bases q1; : : : ; qd , then

D�j .¹t1; : : : ; tj º/ <
d

j
C
1

j

dY
kD1

�
qk � 1

2 log.qk/
log.j /C

qk C 1

2

�
:

Note that given d (and suitable q1,. . ., qd ), we can easily compute in finitely many
arithmetic operations and comparisons a constant C.d/ such that the above implies

D�j .¹t1; : : : ; tj º/ < C.d/.log.j /C 1/d=j: (7.2)

The following theorem says why this is useful.

Theorem 7.5 (Koksma–Hlawka inequality [111]). If f has bounded variation
TVŒ0;1�d .f / on the hypercube Œ0; 1�d then for any t1; : : : ; tj in Œ0; 1�d ,ˇ̌̌̌

1

j

jX
kD1

f .tk/ �

Z
Œ0;1�d

f .x/ dx

ˇ̌̌̌
� TVŒ0;1�d .f /D

�
j .¹t1; : : : ; tj º/:
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By rescaling, if f has bounded variation TVŒ�r;r�d .f / and sk D 2rtk � .r; : : : ; r/T , we
obtainˇ̌̌̌

.2r/d

j

jX
kD1

f .sk/ �

Z
Œ�r;r�d

f .x/ dx

ˇ̌̌̌
� .2r/d � TVŒ�r;r�d .f /D

�
j .¹t1; : : : ; tj º/:

Finally, to deal with our choice of basis, we need the following.

Lemma 7.6. Let  m.x/ WD  m1.x1/ � � � md .xd / in d dimensions and let r > 0. Then

TVŒ�r;r�d . m/ �
�
1C 2r

p
2.jmj C 1/

�d
� 1: (7.3)

Proof. We use an alternative form of the total variation which holds for sufficiently
smooth functions and can be found in [111]:

TVŒ�r;r�d . m/ D
dX
kD1

X
1�i1<���<ik�d

Z r

�r

� � �

Z r

�r

ˇ̌̌̌
@k m

@xi1 : : : @xik
. Qx/

ˇ̌̌̌
dxi1 : : : dxik ;

where Qx has Qxj D xj for j D i1; : : : ; ik and Qxj D r otherwise. We can use the recur-
rence relations for Hermite functions as well as Cramér’s inequality (bounds on Hermite
functions [99]) to gain the boundZ r

�r

� � �

Z r

�r

ˇ̌̌̌
@k m

@xi1 : : : @xik
. Qx/

ˇ̌̌̌
dxi1 : : : dxik �

�
2r
p
2.jmj C 1/

�k
:

It follows that

TVŒ�r;r�d . m/ �
dX
kD1

�
2r
p
2.jmj C 1/

�k X
1�i1<���<ik�d

1

D

dX
kD1

�
2r
p
2.jmj C 1/

�k�d
k

�
D
�
1C 2r

p
2.jmj C 1/

�d
� 1:

Proposition 7.7. Given T 2�1TV or T 2�1AN and � > 0, we can approximate the matrix
values

h.T � zI / m; .T � zI / ni and h.T � zI /� m; .T � zI /
� ni

to within � using finitely many arithmetical operations and comparisons of the relevant
information given to us in each class .captured by „1j and „3j in �3.1/.

Proof. Let T 2 �1TV or T 2 �1AN, and � > 0. Recall that

T D
X
jkj�N

ak.x/@
k ; T � D

X
jkj�N

Qak.x/@
k :



Foundations of spectral computations 4679

By expanding out the inner products and also considering the case ak D 1, it is sufficient
to approximate

hak@
k m; aj @

j ni and h Qak@
k m; Qaj @

j ni

for all relevant k; j; m and n. Due to the symmetry in the assumptions on T and T �, we
only need to show that we can compute the first inner product. The proof for the second
inner product is analogous. For the choice of the basis functions  m, @k m can be written
as a finite linear combination of tensor products of Hermite functions using the recurrence
relations. The coefficients in these linear combinations are recursively defined as functions
of k. Hence, in the inner product, we can assume that there are no partial derivatives. In
doing this, we have assumed that we can compute square roots of integers (which occur
in the coefficients) to arbitrary precision (recall we want an arithmetic tower). A simple
interval bisection routine can achieve this computation. It follows that we only need to
consider approximations of inner products of the form hak m; aj ni:

To do so, let R > 1. By Hölder’s inequality and the assumption of polynomially
bounded growth on the coefficients ak , we haveZ
jxi j�R

jakaj j j m nj dx

� AkAj

�Z
jxi j�R

.1C jxj2Bk /2.1C jxj2Bj /2 m.x/
2 dx

�1=2�Z
jxi j�R

 n.x/
2 dx

�1=2
:

The first integral on the right-hand side can be bounded by

16

Z
Rd
jxj2B m.x/

2 dx � 16

Z
Rd
.x21 C � � � C x

2
d /
B m.x/

2 dx

for B D 4.Bk C Bj /, since we restrict to jxi j � R with R > 1 and jxj � kxk2. Since
B is even, we can expand out the product .x21 C � � � C x

2
d
/B=2 m using the recurrence

relations for the Hermite functions. In one dimension this gives

x m.x/ D

r
m

2
 m�1.x/C

r
mC 1

2
 mC1.x/;

x2 m.x/ D

r
m

2
x m�1.x/C

r
mC 1

2
x mC1.x/;

D

r
m

2

�r
m � 1

2
 m�2.x/C

r
m

2
 m.x/

�
C

r
mC 1

2

�r
mC 1

2
 m.x/C

r
mC 2

2
 mC2.x/

�
;

and so on. We can do the same for tensor products of Hermite functions. In particu-
lar, multiplying a tensor product of Hermite functions,  m, by x21 C � � � C x

2
d

induces
a linear combination of at most 4d such tensor products, each with a coefficient of
magnitude at most .jmj C 2/2 and index with l1 norm bounded by jmj C 2 (allowing
repetitions). It follows that .x21 C � � � C x

2
d
/B=2 m can be written as a linear combination
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of at most .4d/B=2 such tensor products, each with a coefficient of magnitude at most
.jmj C B/B . Squaring this and integrating, the orthogonality and normalisation of the
tensor product of Hermite functions implies that

16

Z
Rd
.x21 C � � � C x

2
d /
B m.x/

2 dx � 16.4d/B=2.jmj C B/2B DW p1.jmj/:

For the other integral, define p2.jnj/ WD 4d.jnj C 2/4: We then haveZ
jxi j�R

 2n dx �
1

R4

Z
Rd
jxj4 2n dx �

p2.jnj/

R4
;

by using the same argument as above but with B D 2.
So given ı > 0 and n;m;B;Ak ; Aj (and d ), we can choose r 2 N large such thatZ

jxi j�r

jakaj j j m nj dx � AkAj
p1.jmj/

1=2p2.jnj/
1=2

r2
� ı:

We now have to consider the cases T 2 �1TV and T 2 �1AN separately, noting that it is
sufficient to approximate the integral

R
jxi j�r

akaj m n dx to any given precision. For
notational convenience, let

Lr .m/ D
h
1C .3d C 1/

��
1C 2r

p
2.jmj C 1/

�d
� 1

�i
so that with the definition of k � kAr , we find via Lemma 7.6 that k mkAr � Lr .m/:

Case 1: T 2 �1TV. Given k; j;m; n; ı and r 2 N as above, choose M large such that

.2r/d �
C.d/.log.M/C 1/d

M
� c2r � Lr .m/ � Lr .n/ � ı=2; (7.4)

where C.d/ is as in (7.2) and cr controls the total variation as in (3.6). Again, note that
such an M can be chosen in finitely many arithmetic operations and comparisons with
the given data, assuming that logarithms and square roots can be computed to arbitrary
precision (say by a power series representation and bound on the remainder). Using the
fact that Ar is a Banach algebra (so that we can bound the norms of products of functions
by the product of their norms) and Theorem 7.5, it follows thatˇ̌̌̌

.2r/d

M

MX
lD1

ak.sl /aj .sl / m.sl / n.sl / �

Z
jxi j�r

akaj m n dx

ˇ̌̌̌
� ı=2;

where sl D 2rtl � .r; : : : ; r/T are the rescaled Halton points. Hence it is enough to show
that each product ak.sl /aj .sl / m.sl / n.sl / can be computed to a given accuracy using
finitely many arithmetic operations and comparisons. Since each sl 2Qd , we can evaluate
ak.sl /aj .sl /. Note that we can compute exp.�x2=2/ to arbitrary precision with finitely
many arithmetic operations and comparisons (e.g., by a power series representation and
bound on the remainder) and that we can compute the coefficients of the polynomialsQm
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with  m.x/ D Qm.x/ exp.�x2=2/ using the recursion formulae to any given precision.
It follows that we can compute  m.sl / n.sl / to a given accuracy using finitely many
arithmetic operations and comparisons. Using the bounds on the ak and aj and Cramér’s
inequality, we can bound the error in the product, and hence the result follows.

Case 2: T 2 �1AN. On the compact cube jxi j � r the double series

ak.x/aj .x/ D
X
t2Zd
�0

X
s2Zd
�0

atka
s
jx
tCs

converges uniformly (recall that ¹at
k
ºt2Zd

�0
are the power series coefficients for ak). It

follows that we can exchange this series and integration to writeZ
jxi j�r

akaj m n dx D
X

t;s2Zd
�0

atka
s
j

Z
jxi j�r

xsCt m.x/ n.x/ dx: (7.5)

But j
R
jxi j�r

xsCt m.x/ n.x/ dxj is bounded by r jt jCjsj
R
x2Rd j mj j nj dx � r

jt jCjsj;

by Hölder’s inequality. Let
� D r=.r C 1/:

Since we know dr in (3.8), we can bound the tail of the series in (7.5) by

d2r

X
jt j;jsj>M

� jt jCjsj � d2r

� X
jt j>M

� jt1j=dC���Cjtd j=d
�2
;

using the fact that jxj � .jx1j C � � � C jxd j/=d . We can explicitly sum this series (as the
difference of geometric series) to gain the bound

d2r

�
1 � .1 � � .MC1/=d /d

.1 � �1=d /d

�2
:

Given r and dr (and d ), we can keep increasing M and evaluating the bound (strictly
speaking an upper bound accurate to 1=M say), to choose M large such that the tail
is smaller than ı=2 for any given ı > 0. It follows that it is enough to estimate inte-
grals of the form

R
jxi j�r

xsCt m.x/ n.x/dx: Using the recurrence relations for Hermite
functions and writing  m.x/ D Qm.x/ exp.�x2=2/, it is enough to split the multidi-
mensional integral up as products and sums of one-dimensional integrals of the formR r
�r
xa exp.�x2/ dx; for a 2 Z�0. Again, we have assumed that we can compute the

coefficients of theQm to any given accuracy using finitely many arithmetic operations and
comparisons, and using this we can bound the total error of the expression by ı=2. The
above integral vanishes unless a is even, so integration by parts (again assuming we can
evaluate exp.�x2/ to any desired accuracy) reduces this to estimating

R r
�r

exp.�x2/ dx:
Consider the Taylor series for exp.�x2/. The tail can be bounded byX

k>N

r2k

kŠ
�
r2N

NŠ
exp.�r2/:
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Integrating this estimate over the interval Œ�r; r�, we can bound this by any given � > 0 by
choosing N large enough. We can then explicitly compute

R r
�r

P
k�N x

2k=kŠ dx. Keep-
ing track of all the errors is elementary. Hence

R
jxi j�r

akaj m n dx can be approximated
with finitely many arithmetic operations and comparisons, as required.

In some cases, we can also directly compute matrix elements without the cut-off
argument used in the above proof. For instance, if each ak.x/ (and hence Qak.x/) is a poly-
nomial then we can simply integrate the power series to compute hak.x/ m; aj .x/ ni
and use the recurrence relations for Hermite functions. If we know a bound on the degree
of the polynomials, then clearly we can compute

h.T � zI / m; .T � zI / ni and h.T � zI /� m; .T � zI /
� ni (7.6)

to within � using finitely many arithmetical operations and comparisons directly.
We can now prove the positive parts of Theorems 3.3 and 3.6.

Proof of inclusions in Theorems 3.3 and 3.6. Step 1: ¹„11; �
1
TVº; ¹„

3
1; �

1
ANº 2 †

1
A. The

proof of this simply strings together the above results. The linear span of ¹e1; e2; : : : º
(the reordered Hermite functions) is a core of T and T � by Proposition 7.1. By
Proposition 7.7, we can compute the inner products h.T � zI /ej ; .T � zI /ei i and
h.T � zI /�ej ; .T � zI /

�ei i up to arbitrary precision with finitely many arithmetic
operations and comparisons. Using Lemma 7.2, given z 2 C, we can compute some
approximation �n.z; T / in finitely many arithmetic operations and comparisons such thatˇ̌

�n.z; T /
2
�min ¹�inf..T � zI /jPn.l2.N///; �inf..T

�
� NzI /jPn.l2.N///º

2
ˇ̌
� 1=n2:

We now set

n.z; T / D �n.z; T /C 1=n: (7.7)

Then 
n satisfies the hypotheses of Proposition 6.5. The proof of Theorem 3.8 also makes
clear that we have error control since 
n.z; T / � kR.z; T /k�1.

Step 2: ¹„12; �
1
TVº; ¹„

3
2; �

1
ANº 2 †

1
A. Consider the sequence of functions 
n defined

by (7.7). These converge uniformly to kR.z; T /k�1 on compact subsets of C and satisfy

n.z; T / � kR.z; T /k

�1. We can now apply Proposition 6.6.

Step 3: ¹„21;�
2
TVº; ¹„

2
2;�

2
TVº 2 �

A
2 . Let T 2 �2TV. Our strategy will be to compute the

inner products h.T � zI /ej ; .T � zI /ei i and h.T � zI /�ej ; .T � zI /�ei i to an error that
decays rapidly enough as we increase the cut-off parameter r . We follow the proof of
Proposition 7.7 closely. Recall that given n;m, we can choose r 2 N large such thatZ

jxi j�r

jakaj j j m nj dx � AkAj
p1.jmj/

1=2p2.jnj/
1=2

r2
;

with the crucial difference that now we do not assume we can compute Ak ; Aj ; p1 or p2.
It follows that there exists some polynomial p3, with coefficients not necessarily com-
putable from the given information, such thatZ

jxi j�r

jakaj j j m nj dx �
p3.jmj; jnj/

r2
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for all jj j; jkj � N . Now we use the sequence br to bound the error in the integral over
the compact cube asymptotically. We assume without loss of generality that br increases
to infinity as r !1. Using Halton sequences and the same argument as in the proof of
Proposition 7.7, we can approximate

R
jxi j�r

akaj m n dx; with an error that, asymptot-
ically up to some unknown constant, is bounded by

rd �
.log.M/C 1/d

M
� b2r � Lr .m/ � Lr .n/; (7.8)

where M is the number of Halton points. We can let M depend on r , n and m such
that (7.8) is bounded by a constant times 1=r2. It follows that we can bound the total
error in approximating hak m; aj ni for any j; k by p3.jmj; jnj/=r2, by making the
coefficients of p3 larger if necessary. We argue similarly for the adjoint and note that
h.T � zI / m; .T � zI / ni and h.T � zI /� m; .T � zI /� n are both approximated to
within

.1C jzj2/
P.jmj; jnj/

r2
;

for some unknown polynomial P . Hence we can apply Lemma 7.2 (the form where we
do not know the error in inner product estimates), changing the polynomial P to take
into account the basis mapping from Zd�0 to N to some polynomial Q, to gain some
approximation �n.z; T / in finitely many arithmetic operations and comparisons such thatˇ̌
�n.z; T /

2
�min ¹�inf..T � zI /jPn.l2.N///; �inf..T

�
� NzI /jPn.l2.N///º

2
ˇ̌

�
n.1C jzj2/Q.n/

r.n; z/2
C

1

n3
: (7.9)

We now choose r.z; n/ larger if necessary such that r.z; n/ � .1C jzj2/ exp.n/. We now
set


n.z; T / D �n.z; T /C 1=n:

Then 
n satisfies the hypotheses of Propositions 6.5 and 6.6 since the error in (7.9) decays
faster than 1=n2. We can use these propositions to build the required arithmetical algo-
rithm.

Step 4: ¹„41; �
2
ANº; ¹„

4
2; �

2
ANº 2 �

A
2 . We argue as in Step 3. To control the error in the

approximation of the integral over a compact hypercube, choose the cut-off M.r/ such
that X

jt j;jsj>M.r/

�
r

r C 1

�jt jCjsj
�

1

b2r r
2
:

It follows that there exists some (unknown) constant B such that we can bound the error
in approximating

R
jxi j�r

akaj m n dx by B=r2. Here we have absorbed the arbitrarily
small error that comes from approximating the integral of the truncated power series using
finitely many arithmetic operations and comparisons. The rest of the argument is the same
as in Step 3.
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7.2. Proofs of impossibility results in Theorems 3.3 and 3.6

We first deal with Theorem 3.3. Recall the maps

„k1 W �
k
TV 3 T 7! Sp.T / 2 Cl.C/ for k D 1; 2;

„k2 W �
k
TV 3 T 7! Sp�.T / 2 Cl.C/ for k D 1; 2:

We first deal with �1TV, and then with �2TV.

Proof that ¹„1j ; �
1
TVº … �

G
1 . Suppose first for a contradiction that a height 1 tower, �n,

exists for the problem ¹„11;�
1
TVº such that dAW.�n.T /;„

1
1.T // � 2

�n. We deal with the
one-dimensional case since higher dimensions are similar. Let �.x/ be any smooth bump
function with maximum value 1, minimum value 0 and support Œ0; 1�. Let �n denote the
translation of � to have support Œn;nC 1�. We consider the two (self-adjoint and bounded)
operators

.T0u/.x/ D 0; .Tmu/.x/ D �m.x/u.x/;

which have spectra ¹0º and Œ0; 1� respectively. For these operators we can take the poly-
nomial bound (the ¹Akº and ¹Bkº) to be 1 and the total variation bound to be cr D
1 C .3d C 1/TVŒ0;1�.�/. When we compute �2.T0/, we only use finitely many evalua-
tions of the coefficient function a0.x/ D 0 (as well as the other given information). We
can then choosem large such that the support of �m does not intersect the points of evalua-
tion. By assumptions (ii) and (iii) in Definition 5.1, �2.Tm/D �2.T0/. But this contradicts
the triangle inequality since dAW.¹0º; Œ0; 1�/ � 1.

To argue for the pseudospectrum let � > 0 and note that 2� … Sp�.T0/ but 2� 2
Sp�.�Tm/. We now alter the given cr to �.1C .3d C 1/TVŒ0;1�.�// and the polynomial
bound to �. The argument is now exactly as before. Namely, we choose n large such that

dAW.�n.T0/; Œ��; 2��/ > 2
�n;

and then choose m large such that �n.T0/ D �n.�Tm/:

Proof that ¹„2j ; �
2
TVº … †

G
1 […

G
1 . Suppose first of all that a †G1 tower, �n, exists for

¹„21; �
2
TVº. We deal with the one-dimensional case since higher dimensions are similar.

Consider the operators

.T0u/.x/ D 0; .T1u/.x/ D f .x/u.x/;

where we define f in terms of �n as follows. We will ensure that f .x/ D 1 except for
finitely many values of x, where it takes the value 0. Hence T0 and T1 have spectra ¹0º
and ¹1º, respectively, and are both self-adjoint. Note that once the zeros of f are fixed,
this choice ensures that f has total variation bounded by a constant on any hypercube and
hence we may take br D 1 for all r 2 N. There exists some n such that �n.T0/ contains
zn 2 B1=8.0/ with a guaranteed error estimate of dist.zn;Sp.T0// � 1=4. But �n.T0/ can
only depend on finitely many evaluations of 0 (as well as br D 1 and the trivial choice of
gj .x/ D x). We choose f to be zero at precisely these evaluation points. By assumptions
(ii) and (iii) in Definition 5.1, �n.T1/D�n.T0/, including the given error estimates, which
is the required contradiction.



Foundations of spectral computations 4685

For ¹„22; �
2
TVº … †

G
1 , given � > 0 we replace f by 3�f in the above argument

and keep all other inputs the same. Hence T0 and T1 have �-pseudospectra Œ��; �� and
Œ2�; 4�� respectively. We note that again there exists some n such that �n.T0/ contains
zn 2 B�=8.0/ with a guaranteed error bound of dist.zn; Sp�.T0// � �=4. But �n.T0/ can
only depend on finitely many evaluations of 0 (as well as br D 1 and the trivial choice of
gj .x/ D x). We choose f to be zero at precisely these evaluation points. By assumptions
(ii) and (iii) in Definition 5.1, �n.T1/ D �n.T0/, including the given error bounds, which
is the required contradiction.

To argue that neither problem lies in …G
1 , we can use the same arguments as in the

proof that ¹„1j ;�
1
TVº …�

G
1 . The only change now is that the algorithm, �n, used to derive

the contradiction provides…G
1 information rather than�G1 . For the spectrum, we consider

the operators
.T0u/.x/ D 0 and .Tmu/.x/ D �m.x/u.x/;

and choose n large such that �n.T0/ produces the guarantee Sp.T0/\ B1=4.0/c D ;. For
m sufficiently large, we argue as before to get �n.Tm/D �n.T0/, including the guarantee,
the required contradiction. Again a similar argument works for the pseudospectrum by
rescaling Tm to 2�Tm.

We now deal with the impossibility results in Theorem 3.6, where

„kC21 W �kAN 3 T 7! Sp.T / 2 Cl.C/ for k D 1; 2;

„kC22 W �kAN 3 T 7! Sp�.T / 2 Cl.C/ for k D 1; 2:

Proof that ¹„3j ; �
1
ANº … �

G
1 . Suppose for a contradiction that a height 1 tower, �n, exists

for ¹„31; �
1
ANº such that dAW.�n.T /;„

3
1.A// � 2

�n. Now consider the two (self-adjoint
and bounded) operators

.T1u/.x/ D 0 and .T2u/.x/ D x
k exp.�x2/u.x/=sk ;

where k is even and will be chosen later. We choose sk such that the range of the function
is xk exp.�x2/=sk is Œ0; 1� and hence T2 has spectrum Œ0; 1�. We can take the polynomial
bounding function to be the constant 1 for both operators and must show that we can use
the same dr for both operators in (3.8), independent of k. Simple calculus shows that
sk D .k=.2e//

k=2. It follows that such a dr must satisfy�
2e

k

�k=2
.r C 1/2mCk

mŠ
� dr ; 8k 2 2N; m 2 Z�0: (7.10)

Hence it suffices to show that the function on the left-hand side of (7.10) is bounded (as
a function of m; k for all r 2 N). Using Stirling’s approximation (explicitly the bounds
on mŠ) this will follow if we can show

r2mCk

kk=2mmC1=2
�

�
r
p
k

�k�
r
p
m

�2m
is bounded for all r 2 N (now with m > 1/. But this is obvious.
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We can now choose k (which depends on the algorithm �n) to gain a contradiction.
Since Sp.T1/D ¹0º and 1 2 Sp.T2/ for all even k, there exists n such that dist.1;�n.T1//
> 1=4 but dist.1; �n.T2// < 1=4. However, �n.T / can only depend on finitely many of
the coefficients ¹cj º, say c1; : : : ; c QN.T;n/, of T (as well as the other given information). By
assumption (iii) in Definition 5.1, we can choose k such that the coefficient corresponding
to xk , call it clk , has lk > QN.T1; n/ and get �n.T1/D �n.T2/, the required contradiction.

To show ¹„32; �
1
ANº … �

G
1 , we use exactly the same argument as above. To gain the

necessary separation 3� … Sp�.T1/ but 3� 2 Sp�.T2/, we rescale T2 to 3�T2. Then there
exists n such that dist.3�; �n.T1// > �=2 but dist.3�; �n.T2// < �=2. The rest of the
contradiction follows.

Proof that ¹„4j ; �
2
ANº; ¹„

4
j ; �pº … †

G
1 […

G
1 . Since �p � �2AN, it is enough to prove

the results for �p .
Suppose for a contradiction that there exists a †G1 algorithm, �n, for ¹„41; �pº. Con-

sider
.T1u/.x/ D xu.x/ and .T2u/.x/ D .x � x

k/u.x/;

where k is even and chosen later. .Tj ˙ iI /C10 .R/ are dense in L2.R/ with Tj ini-
tially defined on C10 .R/ symmetric. It follows that the closure of Tj jC1

0
.R/ is self-

adjoint and hence Tj 2 �p . Note that Sp.T1/ D R but Sp.T2/ � .�1; 1�. Now choose
n such that �n.T1/ contains a point zn 2 B1=4.2/ with a guaranteed error estimate of
dist.zn; Sp.T1// � 1=4. However, �n.T / can only depend on the first QN.T; n/ coeffi-
cients, c1; : : : ; c QN.T;n/, of T (as well as the trivial choice gj .x/ D x and the numbers
bn D nŠ). By assumption (iii) in Definition 5.1, we can choose k such that the coefficient
corresponding to xk , call it crk , has rk > QN.T1; n/ and get �n.T1/D �n.T2/, the required
contradiction. Similarly by rescaling as above, we get ¹„42; �pº … †

G
1 .

To show ¹„41; �pº … …
G
1 we argue the same way, but now set .T1u/.x/ D 0 and

.T2u/.x/D x
ku.x/. As before, Tj 2�p , but now Sp.T1/D ¹0º and 1 2 Sp.T2/. Choose

n such that �n.T1/ produces the guarantee Sp.T1/\B1=4.0/c D ;. Again, choose k such
that crk has rk > QN.T1; n/ and we get �n.T1/ D �n.T2/, the required contradiction.
Rescaling and using the same argument shows ¹„42; �pº … …

G
1 .

8. Proofs of theorems on discrete spectra

We first need some results on finite section approximations to the discrete spectrum of a
Hermitian operator below the essential spectrum. There are two cases to consider. Either
there are infinitely many eigenvalues below the essential spectrum, or there are only
finitely many. The following two lemmas are well known and follow from the ‘min-max’
theorem characterising eigenvalues.

Lemma 8.1. LetB 2B.l2.N// be self-adjoint with eigenvalues �1 � �2 � � � � .infinitely
many, counted according to multiplicity/ below the essential spectrum. Consider the finite
section approximates Bn D PnBPn 2 Cn�n and list the eigenvalues of Bn as �.n/1 � � � �
� �

.n/
n . Then the following hold:
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(1) �j � �
.n/
j for j D 1; : : : ; n,

(2) for any j 2 N, �.n/j # �j as n!1 .j � n, so that �.n/j makes sense/.

Lemma 8.2. Let B 2 B.l2.N// be self-adjoint with finitely many eigenvalues �1 � � � �
� �m .counted according to multiplicity/ below the essential spectrum and let aD inf ¹x W
x 2 Spess.B/º. For j > m set �j D a. Consider the finite section approximates Bn D
PnBPn 2 Cn�n and list the eigenvalues of Bn as �.n/1 � � � � � �

.n/
n . Then the following

hold:

(1) �j � �
.n/
j for j D 1; : : : ; n,

(2) for any j � m, �.n/j # �j as n!1 .j � n so that �.n/j makes sense/,

(3) given � > 0 and k 2 N, there exists N such that for all n � N , �.n/
k
� aC �.

Proof of Theorem 3.15 for „d1 . Step 1: ¹„d1 ; �
d
Dº … �

G
2 . Suppose this were false and

that there exists some height 1 tower �n solving the problem. Consider the matrix opera-
tors Am D diag¹0; : : : ; 0; 2º 2 Cm�m and C D diag¹0; 0; : : : º and set

A D diag¹1; 2º ˚
1M
mD1

Akm ;

where we choose an increasing sequence km inductively as follows. Set k1 D 1 and sup-
pose that k1; : : : ; km have been chosen. Spd .diag¹1;2º˚Ak1 ˚ � � � ˚Akm ˚C/D ¹1;2º
is closed and so there exists some nm � m such that if n � nm, then

dist.2; �n.diag¹1; 2º ˚ Ak1 ˚ � � � ˚ Akm ˚ C/ � 1=4: (8.1)

Now let kmC1 � max ¹N.diag¹1; 2º ˚ Ak1 ˚ � � � ˚ Akm ˚ C; nm/; km C 1º. Arguing as
in the proof of Theorem 3.10, it follows that �nm.A/ D �nm.diag¹1; 2º ˚ Ak1 ˚ � � � ˚
Akm ˚ C/. But �nm.A/ converges to Spd .A/ D ¹1º, contradicting (8.1).

Step 2: ¹„d1 ; �
d
Nº 2 †

A
2 . We now construct an arithmetic height 2 tower for „d1 and the

class �dN. To do this, we recall that a height 2 tower Q�n2;n1 for the essential spectrum of
operators in �dN was constructed in [12]. For completeness, we write out the algorithm
here.3 Let Pn be the usual projection onto the first n basis elements and setQn D I �Pn.
Define

�m;n.A/ WD min ¹�inf.Pf .n/.A � zI /jQmPn.l2.N///; �inf.Pf .n/.A � zI /
�
jQmPn.l2.N///º;

Gn WD min
²
s C i t

2n
W s; t 2 ¹�22n; : : : ; 22nº

³
;

‡m.z/ WD z C ¹w 2 C W jRe.w/j; jIm.w/j � 2�.mC1/º:

3The actual algorithm is slightly more complicated to avoid the empty set, but its listed proper-
ties still hold.
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We then define the following sets for n > m:

Sm;n.z/ WD ¹j D mC 1; : : : ; n W 9w 2 ‡m.z/ \Gj with �m;i .w/ � 1=mº;

Tm;n.z/ WD ¹j D mC 1; : : : ; n W 9w 2 ‡m.z/ \Gj with �m;i .w/ � 1=.mC 1/º;

Em;n.z/ WD jSm;n.z/j C jTm;n.z/j � n;

Im;n WD

²
z 2

²
s C i t

2m
W s; t 2 Z

³
W Em;n.z/ > 0

³
:

Finally, for n1 > n2 we define

Q�n2;n1.A/ D
[

z2In2;n1

‡n2.z/;

and set Q�n2;n1.A/ D ¹1º if n1 � n2. Furthermore, the tower has the following desirable
properties:

(1) For fixed n2, the sequence Q�n2;n1.A/ is eventually constant as we increase n1.

(2) The sets limn1!1
Q�n2;n1.A/ DW

Q�n2.A/ are nested, converging down to Spess.A/.

We also need the height 1 tower, O�n, for the spectrum of operators in �dN discussed in
§3.2 and §6. Note that O�n.A/ is a finite set for all n. For z 2 O�n.z/, this also outputs an
error bound E.n; z/ such that dist.z;Sp.A// � E.n; z/ and E.n; z/ converges to the true
distance to the spectrum uniformly on compact subsets of C (with the choice of g.x/D x
since the operator is normal). We now fit the pieces together and initially define

�n2;n1.A/ D ¹z 2
O�n1.A/ W E.n1; z/ < dist.z; Q�n2;n1.A/C B1=n2.0//º:

We must show that this defines an arithmetic tower in the sense of Definitions 5.1
and 5.3. Given z 2 O�n1.A/ and using Pythagoras’ theorem, along with the fact that
Q�n2;n1.A/ consists of finitely many squares in the complex plane aligned with the real
and imaginary axes, we can compute dist.z; Q�n2;n1.A//

2 in finitely many arithmetic oper-
ations and comparisons. We can compute .E.n1; z/ C 1=n2/2 and check if this is less
than dist.z; Q�n2;n1.A//

2. Hence �n2;n1.A/ can be computed with finitely many arithmetic
operations and comparisons. There are now two cases to consider:

Case 1: Spd .A/ \ . Q�n2.A/C B1=n2.0//
c D ;. For large n1, Q�n2.A/ D Q�n2;n1.A/ and

this set contains the essential spectrum. It follows, for large n1, since E.n1; z/ �

dist.z; Q�n2;n1.A// for all z 2 O�n1.A/, that �n2;n1.A/ D ;.

Case 2: Spd .A/ \ . Q�n2.A/C B1=n2.0//
c ¤ ;. In this case, this set is a finite subset of

Spd .A/, ¹Oz1; : : : ; Ozm.n2/º, separated from the closed set Q�n2.A/ C B1=n2.0/ (we need
the CB1=n2.0/ for this to be true to avoid accumulation points of the discrete spectrum).
There exists some ın2 > 0 such that the balls B2ın2 . Ozj / for j D 1; : : : ; m.n2/ are pair-
wise disjoint and such that their union does not intersect Q�n2.A/C B1=n2.0/. Using the
convergence of O�n1.A/ to Sp.A/ andE.n;z/� dist.z;Sp.A//, it follows that for large n1,

�n2;n1.A/ �

m.n2/[
jD1

Bın2 . Ozj / (8.2)
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is non-empty and �n2;n1.A/ converges to Spd .A/ \ . Q�n2.A/ C B1=n2.0//
c ¤ ; in the

Hausdorff metric.
Suppose that �n2;n1.A/ is non-empty. Recall that we only want one output per eigen-

value in the discrete spectrum. To do this, we partition the finite set �n2;n1.A/ into
equivalence classes as follows. For z; w 2 �n2;n1.A/, we say that z �n1 w if there
exists a finite sequence z D z1; z2; : : : ; zn D w 2 �n2;n1.A/ such that BE.n1;zj /.zj / and
BE.n1;zjC1/.zjC1/ intersect. The idea is that equivalence classes correspond to clusters of
points in �n2;n1.A/. Given any z 2 �n2;n1.A/ we can compute its equivalence class using
finitely many arithmetic operations and comparisons. Let S0 be the set ¹zº and given Sn,
let SnC1 be the union of any w 2 �n2;n1.A/ such that BE.n1;w/.w/ and BE.n1;v/.v/ inter-
sect for some v 2 Sn. Given Sn, we can compute SnC1 using finitely many arithmetic
operations and comparisons. The equivalence class is any Sn where Sn D SnC1, which
must happen since �n2;n1.A/ is finite. We letˆn2;n1 consist of one element of each equiv-
alence class that minimises E.n1; �/ over its respective equivalence class. By the above
comments it is clear that ˆn2;n1 can be computed in finitely many arithmetic operations
and comparisons from the given data. Furthermore, due to (8.2) which holds for large n1,
the separation of the B2ın2 . Ozj / and the fact that E.n1; �/ converges uniformly on compact
subsets to the distance to Sp.A/, it follows that for large n1 there is exactly one point
in each intersection B2ın2 . Ozj / \ ˆn2;n1.A/. But we can shrink ın2 and apply the same
argument to see thatˆn2;n1.A/ converges to Spd .A/\ . Q�n2.A/CB1=n2.0//

c ¤ ; in the
Hausdorff metric.

Now suppose that �n2;n1.A/ is non-empty, z1; z2 2 ˆn2;n1.A/, and both lie in B�.z/
for some z 2 Spd .A/ and � > 0 with Sp.A/ \ B2�.z/ D ¹zº. It follows that z minimises
the distance to the spectrum from both z1 and z2. Hence, BE.n1;z1/.z1/ and BE.n1;z2/.z2/
both contain the point z so that z1 �n1 z2. But then at most one of z1; z2 can lie in
ˆn2;n1.A/, and hence z1 D z2.

To finish, we must alterˆn2;n1.A/ to take care of the case when �n2;n1.A/D ; and to
produce a†A2 algorithm. In the case that �n2;n1.A/D;, setˆn2;n1.A/D;. LetN.A/2N
be minimal such that Spd .A/\ . Q�N .A/CB1=N .0//

c ¤ ; (recall the discrete spectrum is
non-empty for our class of operators). If n2 > n1, set �n2;n1.A/D ¹0º, otherwise consider
ˆk;n1.A/ for n2 � k � n1. If all of these are empty, set �n2;n1.A/D¹0º, otherwise choose
minimal k with ˆk;n1.A/ ¤ ; and let �n2;n1.A/ D ˆk;n1.A/. Note that this defines an
arithmetic tower of algorithms, with �n2;n1.A/ non-empty. By the above case analysis,
for large n1 it holds that

�n2;n1.A/ D ˆn2_N.A/;n1.A/

and it follows that

lim
n1!1

�n2;n1.A/ DW �n2.A/ D Spd .A/ \ . Q�n2_N.A/.A/C B1=n2_N.A/.0//
c : (8.3)

Hence �n2.A/� Spd .A/ and �n2.A/ converges up to cl.Spd .A// in the Hausdorff metric.

Step 3: Multiplicities. Suppose that zn2;n1 2 �n2;n1.A/ converges as n1 !1 to some
zn2 D z 2 �n2.A/ � Spd .A/, where �n2 is the first limit of the height 2 tower con-
structed in Step 2. Consider the following operator, viewed as a finite matrix acting on Cn,
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An D Pn.A � zI /
�.A � zI /Pn: This is a truncation of the operator .A � zI /�.A � zI /.

The key observation is that 0 lies in the discrete spectrum of .A � zI /�.A � zI / with
h..A� zI /�.A� zI /; 0/D h.A; z/, the multiplicity of the eigenvalue z. To see this, note
that ker.A � zI / D ker..A � zI /�.A � zI // and if kxk D 1 then

k.A � zI /xk �
p
k.A � zI /�.A � zI /xk:

Since .A � zI / is bounded below on ker.A � zI /?, the same must be true for
.A � zI /�.A � zI /. Now set

hn2;n1.A; zn2;n1/

Dmin
®
n2;

ˇ̌
¹w 2 Sp.Pn1.A�zn2;n1I /

�Pf .n1/.A�zn2;n1I /Pn1/ W jwj < 1=n2�dn1º
ˇ̌¯
;

where dn1 is some non-negative sequence converging to 0 that we define below. As usual,
we consider the relevant operator as a matrix acting on Cn1 and we count eigenvalues
according to their multiplicity. Via shifting by .1=n2 � dn1/I and assuming that dn1 can
be computed with finitely many arithmetic operations and comparisons, Lemma 6.8 shows
that hn2;n1 is a general algorithm and can be computed with finitely many arithmetic
operations and comparisons. Consider the similar function (that we cannot necessarily
compute since we do not know z),

qn2;n1.A; z/ D min
®
n2;

ˇ̌
¹w 2 Sp.An1/ W jwj < 1=n2º

ˇ̌¯
;

where
An1 D Pn1.A � zI /

�.A � zI /Pn1 :

We set B D .A � zI /�.A � zI / and list �1 � �2 � � � � as in Lemmas 8.1 and 8.2. Then

lim
n1!1

qn2;n1.A; z/ D min ¹n2; j�j W �j < 1=n2jº:

It is then clear from the same lemmas that

lim
n2!1

lim
n1!1

qn2;n1.A; z/ D h..A � zI /
�.A � zI /; 0/ D h.A; z/:

We will have completed the proof if we can choose dn1 such that

lim
n1!1

jhn2;n1.A; zn2;n1/ � qn2;n1.A; z/j D 0:

It is straightforward to show that

kAn1 � Pn1.A � zn2;n1I /
�Pf .n1/.A � zn2;n1I /Pn1k

� .jz� zn2;n1 jC cn1/
�
kAPn1kC jz� zn2;n1 jC jzn2;n1 jC kPf .n1/.A� zn2;n1I /Pn1k

�
� .jz� zn2;n1 jC cn1/

�
2kPf .n1/APn1kC jz� zn2;n1 jC 2jzn2;n1 jC cn1

�
;

where Df;m.A/ � cm is the dispersion bound. Choose

dn1 D .E.n1; zn2;n1/C cn1/.E.n1; zn2;n1/C 2jzn2;n1 j C 2kn1 C cn1/;
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where kn1 overestimates kPf .n1/APn1k by at most 1, and can be computed using a similar
positive definiteness test as in DistSpec (see Appendix A). Since zn2;n1 converges to
z 2 Spd .A/, it is clear that

kAn1 � Pn1.A � zn2;n1I /
�Pf .n1/.A � zn2;n1I /Pn1k � dn1

eventually and that dn1 converges to 0. Weyl’s inequality for eigenvalue perturbations of
Hermitian matrices implies the needed convergence.

Proof of Theorem 3.15 for „d2 . Since�D ��
f
N , its suffices to show that ¹„d2 ;�

f
N º 2†

A
2

and ¹„d2 ; �Dº … �
G
2 .

Step 1: ¹„d2 ; �Dº … �
G
2 . The proof is almost identical to Step 1 in the proof of The-

orem 3.15 for „d1 . Suppose there exists some height 1 tower �n solving the problem.
Consider the matrix operators Am D diag¹0; : : : ; 0; 2º 2 Cm�m and C D diag¹0; 0; : : : º
and set

A D

1M
mD1

Akm ;

where we choose an increasing sequence km inductively as follows. Set k1 D 1 and sup-
pose that k1; : : : ; km have been chosen. Since Spd .Ak1 ˚ � � � ˚ Akm ˚ C/ D ¹2º, there
exists some nm � m such that if n � nm then

�n.Ak1 ˚ � � � ˚ Akm ˚ C/ D 1:

Now let kmC1 � max ¹N.diag¹1; 2º ˚ Ak1 ˚ � � � ˚ Akm ˚ C; nm/; km C 1º. Arguing as
in the proof of Theorem 3.10, it follows that

�nm.A/ D �nm.Ak1 ˚ � � � ˚ Akm ˚ C/:

But �nm.A/ converges to 0 as A has no discrete spectrum and this contradiction finishes
this step.

Step 2: ¹„d2 ; �
f
N º 2 †

A
2 . Consider the height 2 tower, �n2;n1 , defined in Step 2 of the

proof of Theorem 3.15 for „d1 . Let A 2 �fN and if �n2;n1.A/ D ;, define �n2;n1.A/ D 0,
otherwise define �n2;n1.A/ D 1. The discussion in the proof of Theorem 3.15 for „d1
shows that

lim
n1!1

�n2;n1.A/ DW �n2.A/ D

´
0 if Spd .A/ \ . Q�n2.A/C B1=n2.0//

c D ;;

1 otherwise.

Since the set Spd .A/ \ . Q�n2.A/ C B1=n2.0//
c increases to cl.Spd .A//, it follows that

limn2!1 �n2.A/ D „
d
2 .A/, and if �n2.A/ D 1 then „d2 .A/ D 1. Hence, �n2;n1 provides

a †A2 tower for ¹„d2 ; �
f
N º.

Proof of Theorem 3.16. Let � D .E.n1; zn1/C ı/
2 and consider the matrix

B D Pn1.A � zn1I /
�Pf .n1/.A � zn1I /Pn1 � �In 2 Cn�n;
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where In is the n � n identity matrix. B is a Hermitian matrix and is not positive semi-
definite. It follows that B can be put into the form

PBP T D LDL�;

where L is lower triangular with 1’s along its diagonal, D is block diagonal with block
sizes 1 � 1 or 2 � 2 and P is a permutation matrix. This can be computed in finitely
many arithmetic operations and comparisons. Let x be an eigenvector of B with negative
eigenvalue and set y D L�Px. Such an x exists by assumption. Note that

hy;Dyi D hL�Px;DL�Pxi D hx;Bxi < 0:

It follows that there exists a unit vector yn1 with hyn1 ;Dyn1i< 0. Such a vector is easy to
spot if a value in one of the 1� 1 blocks ofD is negative. If not, we need to consider 2� 2
blocks. Using the argument in the proof of Lemma 6.8, we can find a 2 � 2 block with a
negative eigenvalue by computing the trace and determinant. Without loss of generality
we assume that this block is the upper 2 � 2 portion of D. It follows that there exist real
numbers a;b, not both equal to 0, such that yn1 D .a;b;0; : : : ; 0/

T has hyn1 ;Dyn1i< 0. If
D2;2 < 0, we can take aD 0;bD 1. Otherwise, a¤ 0 so set aD 1. We then note that there
is an open interval J such that if b 2 J then yn1 D .a; b; 0; : : : ; 0/

T has hyn1 ;Dyn1i < 0.
We can now perform a search routine on R with finer and finer spacing to find such a b.

Since L� is invertible and upper triangular, we can efficiently solve for Qxn1 D
P T .L�/�1yn1 using finitely many arithmetic operations and comparisons. We then
approximately normalise Qxn1 by computing k Qxn1k � tn1.�/ > 0 to precision � > 0 using
finitely many arithmetic operations and comparisons. If we set xn1 D Qxn1=tn1.�/ then

1 �
�

tn1.�/
D
tn1.�/ � �

tn1.�/
� kxn1k �

tn1.�/C �

tn1.�/
D 1C

�

tn1.�/
:

So we successively choose � smaller until we reach �n1 such that �n1=tn1.�n1/ < ı. This
is always possible since lim�#0 tn1.�/ D k Qxn1k > 0. Let tn1 D tn1.�n1/, then

hxn1 ; Bxn1i D t
�2
n1
hL�P Qxn1 ;DL

�P Qxn1i D t
�2
n1
hyn1 ;Dyn1i < 0:

Note that

kPf .n1/.A � zn1I /xn1k
2
D hxn1 ; Bxn1i C kxn1k

2� < kxn1k
2�:

Taking square roots and recalling thatDf;n1.A/ � cn1 and the definition ofDf;n1 finishes
the proof.

Note that even in the finite-dimensional case, this type of error control is the best
possible owing to numerical errors due to round-off and finite precision. This method is
also efficient.

Proof of Theorem 3.17. Step 1: ¹„d1 ;�
d
1 º …�

G
3 . Suppose for a contradiction that �n2;n1

is a height 2 tower solving this problem. For this proof we shall use one of the decision
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problems in [53] that were proven to have SCIG D 3. Let .M; d / be the discrete space
¹0; 1º, let �0 denote the collection of all infinite matrices ¹ai;j ºi;j2N with entries ai;j 2
¹0; 1º and consider the problem function

„0.¹ai;j º/ W “Does ¹ai;j º have only finitely many columns containing only finitely many
non-zero entries?”

We will gain a contradiction by using the supposed height 2 tower for ¹„d1 ; �
d
1 º, �n2;n1 ,

to solve ¹„0; �0º.
Without loss of generality, identify B.l2.N//with B.X/whereX DC2˚

L1
jD1Xj

in the l2-sense with Xj D l2.N/. Now let ¹ai;j º 2 �0 and for the j th column define
Bj 2 B.Xj / with the following matrix representation:

Bj D

MjM
rD1

A
l
j
r
; Am WD

0BBBBB@
1 1

0

: : :

0

1 1

1CCCCCA 2 Cm�m;

where ifMj is finite then ljMj D1 with A1 D diag.1; 0; 0; : : : /. The ljr are defined such
that Pm

iD1 ai;jX
rD1

ljr D mC

mX
iD1

ai;j : (8.4)

Define the self-adjoint operator

A D diag¹3; 1º ˚
1M
jD1

Bj :

Note that no matter what the choices of ljr are, 3 2 Spd .A/ and hence A 2 �d1 . Note also
that the spectrum of A is contained in ¹0; 1; 2; 3º. If „0.¹ai;j º/ D 1, then 1 is an isolated
eigenvalue of finite multiplicity and hence in Spd .A/. But if „0.¹ai;j º/ D 0, then 1 is an
isolated eigenvalue of infinite multiplicity, so does not lie in the discrete spectrum and
hence Spd .A/ � ¹0; 2; 3º.

Consider the intervals J1DŒ0;1=2�; and J2DŒ3=4;1/: Set ˛n2;n1Ddist.1;�n2;n1.A//.
Let k.n2; n1/ � n1 be maximal such that ˛n2;k.A/ 2 J1 [ J2. If no such k exists or
˛n2;k.A/ 2 J1, set Q�n2;n1.¹ai;j º/ D 1. Otherwise set Q�n2;n1.¹ai;j º/ D 0. It is clear from
(8.4) that this defines a generalised algorithm. In particular, given N we can evaluate
¹Ak;l W k; l � N º using only finitely many evaluations of ¹ai;j º, where we can use a
suitable bijection between bases of l2.N/ and C2 ˚

L1
jD1 Xj to view A as acting

on l2.N/. The point of the intervals J1; J2 is that we can show limn1!1
Q�n2;n1.¹ai;j º/D

Q�n2.¹ai;j º/ exists. If „0.¹ai;j º/ D 1, then, for large n2, limn1!1 ˛n2;k.A/ < 1=2

and hence limn2!1
Q�n2.¹ai;j º/ D 1. Similarly, if „0.¹ai;j º/ D 0, then, for large n2,



M. J. Colbrook, A. C. Hansen 4694

limn1!1 ˛n2;k.A/ > 3=4 and hence it follows that limn2!1
Q�n2.¹ai;j º/ D 0. Hence

Q�n2;n1 is a height 2 tower of general algorithms solving ¹„0; �0º, a contradiction.

Step 2: ¹„d2 ; �
d
2 º … �

G
3 . To prove this we can use a slight alteration of the argument in

Step 1. Replace X by X D l2.N/˚
L1
jD1Xj and A by

A D diag¹1; 0; 2; 0; 2; : : : º ˚
1M
jD1

Bj :

It is then clear that „d2 .A/ D 1 if and only if „0.¹ai;j º/ D 1.

Step 3: ¹„d1 ; �
d
1 º 2 †

A
3 . For this we argue similarly to the proof of Theorem 3.15 for

„d1 , Step 2. It was shown in [12] that there exists a height 3 arithmetic tower Q�n3;n2;n1 for
the essential spectrum of operators in �d1 such that

� each Q�n3;n2;n1.A/ consists of a finite collection of points in the complex plane,

� for large n1, Q�n3;n2;n1.A/ is eventually constant and equal to Q�n3;n2.A/,

� Q�n3;n2.A/ is increasing with n2 with limit Q�n3.A/ containing the essential spectrum;
the limit Q�n3.A/ is also decreasing with n3.

Furthermore, it was proven in [12] that for operators in �d1 , there exists a height 2 arith-
metic tower O�n2;n1 for computing the spectrum such that

� O�n2;n1.A/ is constant for large n1,

� for any z 2 O�n2.A/, dist.z;Sp.A// � 2�n2 .

Using these, we initially define

�n3;n2;n1.A/ D ¹z 2
O�n2;n1.A/ W 2

�n3 � 2�n2 � dist.z; Q�n3;n2;n1.A//º:

The arguments in the proof of Theorem 3.15 for „d1 show that this can be computed in
finitely many arithmetic operations and comparisons using the relevant evaluation func-
tions. Note that for large n1,

�n3;n2;n1.A/ D ¹z 2
O�n2.A/ W 2

�n3 � 2�n2 � dist.z; Q�n3;n2.A//º DW �n3;n2.A/:

There are now two cases to consider (we useD�.z/ to denote the open ball of radius �
about a point z):

Case 1: Spd .A/\ . Q�n3.A/CD2�n3 .0//
c D ;. Suppose, for a contradiction, in this case

that there exists zmj 2 �n3;mj .A/ withmj !1. Then, without loss of generality, zmj !
z 2 Sp.A/. We also have

dist.zmj ; Q�n3;mj .A// � 2
�n3 � 2�mj ;

which implies that dist.z; Q�n3.A//�2
�n3 and hence z2Spd .A/\. Q�n3.A/CD2�n3 .0//

c ,
the required contradiction. It follows that �n3;n2.A/ is empty for large n2.

Case 2: Spd .A/ \ . Q�n3.A/ C D2�n3 .0//
c ¤ ;. In this case, this set is a finite subset

of Spd .A/, ¹Oz1; : : : ; Ozm.n3/º. Each of these points is an isolated point of the spectrum. It
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follows that there exists zn2 2 O�n2.A/ with zn2 ! Oz1 and jzn2 � Oz1j � 2
�n2 for large n2.

Since the Q�n3;n2.A/ are increasing, this implies

dist.zn2 ; Q�n3;n2.A// � dist.zn2 ; Q�n3.A// � dist. Oz1; Q�n3.A// � 2
�n2 � 2�n3 � 2�n2 ;

so that zn2 2 �n3;n2.A/. The same argument holds for points converging to all of
¹Oz1; : : : ; Ozm.n3/º. On the other hand, the argument used in Case 1 shows that any limit
points of �n3;n2.A/ as n2 ! 1 are contained in Spd .A/ \ . Q�n3.A/ C D2�n3 .0//

c . It
follows that, in this case, �n3;n2.A/ converges to Spd .A/\ . Q�n3.A/CB1=n3.0//

c ¤ ; in
the Hausdorff metric as n2 !1.

Let N.A/ 2 N be minimal such that Spd .A/ \ . Q�N .A/ C D2�N .0//
c ¤ ; (recall

the discrete spectrum is non-empty for our class of operators). If n3 > n2, set
�n3;n2;n1.A/ D ¹0º, otherwise consider �k;n2;n1.A/ for n3 � k � n2. If all of these are
empty, set �n3;n2;n1.A/ D ¹0º, otherwise choose minimal k with �k;n2;n1.A/ ¤ ; and
let �n3;n2;n1.A/ D �k;n2;n1.A/. Note that this defines an arithmetic tower of algorithms,
with �n3;n2;n1.A/ non-empty. Since we consider finitely many of the sets �k;n2;n1.A/, and
these are constant for large n1, it follows that �n3;n2;n1.A/ is constant for large n1 and
constructed in the same manner with replacing �k;n2;n1.A/ by �k;n2.A/. Call this limit
�n3;n2.A/.

For large n2,
�n3;n2.A/ D �n3_N.A/;n2.A/:

It follows that

lim
n2!1

�n3;n2.A/ DW �n3.A/ D Spd .A/ \ . Q�n3_N.A/.A/CD2�n3_N.A/.0//
c :

Hence �n3.A/� Spd .A/ and �n3.A/ converges up to cl.Spd .A// in the Hausdorff metric.

Step 4: ¹„d2 ; �
d
2 º 2 †

A
3 . Consider the height 3 tower, �n3;n2;n1 , defined in Step 3. Let

A 2�d2 and if �n3;n2;n1.A/D ;, define �n3;n2;n1.A/D 0, otherwise set �n3;n2;n1.A/D 1.
The discussion in Step 3 shows that

lim
n2!1

lim
n1!1

�n3;n2;n1.A/ DW �n3.A/ D

´
0 if Spd .A/ \ . Q�n3.A/CD2�n3 .0//

c D ;;

1 otherwise.

Since Spd .A/ \ . Q�n3.A/ C D2�n3 .0//
c increases to cl.Spd .A//, it follows that

limn3!1 �n3.A/ D „
d
2 .A/ and if �n3.A/ D 1, then „d2 .A/ D 1. Hence, �n3;n2;n1 pro-

vides a †A3 tower for ¹„d2 ; �
d
2 º.

9. Proof of theorem on the spectral gap and spectral classification

Proof of Theorem 3.13 for „gap. Step 1: ¹„gap;b�SAº 2 †
A
2 . Let A 2 b�SA. Using Corol-

lary 6.9 we can compute all n eigenvalues of PnAPn to arbitrary precision in finitely
many arithmetic operations and comparisons. In the notation of Lemmas 8.1 and 8.2
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(whose analogous results also hold for the possibly unbounded A 2 b�SA), consider an
approximation

0 � ln WD �
.n/
2 � �

.n/
1 C �n; n � 2;

where we have computed �.n/2 � �
.n/
1 to accuracy j�nj � 1=n using Corollary 6.9 with

B D PnAPn. Using Lemmas 8.1 and 8.2, we see that ln converges to zero if and only if
„gap.A/D0, otherwise it converges to some positive number. If n1D1, set �n2;n1.A/D1,
otherwise consider the following.

Let J 1n2 D Œ0;1=.2n2/� and J 2n2 D .1=n2;1/. Given n1 2N, consider lk for k � n1. If
no such k exists with lk 2 J 1n2 [ J

2
n2

, set �n2;n1.A/ D 0. Otherwise, consider k maximal
with lk 2 J 1n2 [ J

2
n2

and set �n2;n1.A/D 0 if lk 2 J 1n2 and �n2;n1.A/D 1 if lk 2 J 2n2 . The
sequence ln1 ! c � 0 for some number c. The separation of the intervals J 1n2 and J 2n2 ,
ensures that ln1 cannot be in both intervals infinitely often as n1!1 and hence the first
limit �n2.A/ WD limn1!1 �n2;n1.A/ exists. If c D 0 then �n2.A/D 0, but if c > 0, there
exists n2 with 1=n2 < c and hence for large n1, ln1 2 J

2
n2

. It follows in this case that
�n2.A/D 1 and we also see that if �n2.A/D 1 then„gap.A/D 1. Hence �n2;n1 provides
a †A2 tower.

Step 2: ¹„gap; b�Dº … �
G
2 . We argue by contradiction and assume the existence of a

height 1 tower, �n converging to „gap. The method of proof follows the same lines as
before. For every A and n there exists a finite number N.A; n/ 2 N such that the eval-
uations from ƒ�n.A/ only take the matrix entries Aij D hAej ; ei i with i; j � N.A; n/
into account. List the rationals in .0; 1/ without repetition as d1; d2; : : : . We consider
the operators Am D diag¹d1; : : : ; dmº 2 Cm�m, Bm D diag¹1; : : : ; 1º 2 Cm�m and C D
diag¹1; 1; : : : º. Let

A D

1M
mD1

.Bkm ˚ Akm/;

where we choose an increasing sequence km inductively as follows. In what follows, all
operators considered are easily seen to be in b�D.

Set k1 D 1 and suppose that k1; : : : ; km have been chosen. Define �p WDmin ¹dr W 1 �
r � kpº. Since Sp.Bk1 ˚ Ak1 ˚ � � � ˚ Bkm ˚ Akm ˚ C/ D ¹d1; : : : ; dkm ; 1º has �m the
minimum of its spectrum and an isolated eigenvalue of multiplicity 1, we have

„.Bk1 ˚ Ak1 ˚ � � � ˚ Bkm ˚ Akm ˚ C/ D “Yes”:

It follows that there exists some nm � m such that if n � nm, then

�n.Bk1 ˚ Ak1 ˚ � � � ˚ Bkm ˚ Akm ˚ C/ D “Yes”:

Now let kmC1 � max ¹N.Bk1 ˚Ak1 ˚ � � � ˚Bkm ˚Akm ˚ C; nm/; km C 1º. The same
argument used in the proof of Theorem 3.10 shows that

�nm.A/ D �nm.Bk1 ˚ Ak1 ˚ � � � ˚ Bkm ˚ Akm ˚ C/ D “Yes”:

But Sp.A/ D Œ0; 1� is gappless, and so limn!1.�n.A// D “No”, a contradiction.
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Proof of Theorem 3.13 for „class. By composing with the map

� W ¹1; 2; 3; 4º ! ¹0; 1º; �.1/ D 1; �.2/ D �.3/ D �.4/ D 0;

it is clear that the result for „gap implies that ¹„class; b�fSAº; ¹„class; b�Dº … �
G
2 . Sinceb�D � b�fSA, we need only construct a …A

2 tower for ¹„class;b�fSAº.
Let A 2 b�fSA. For a given n, set Bn D PnAPn and in the notation of Lemmas 8.2

and 8.1, let
0 � ljn WD �

.n/
jC1 � �

.n/
1 C �

j
n for j < n:

where we have again computed �.n/jC1 � �
.n/
1 to accuracy j�jn j � 1=n using only finitely

many arithmetic operations and comparisons by Corollary 6.9. Then „class.A/ D 1 if and
only if l1n converges to a positive constant as n!1; and „class.A/ D 2 if and only if l1n
converges to zero as n!1 and there exists j with ljn converging to a positive constant.

Note that we can use the algorithm presented in §6, denoted O�n, to compute the spec-
trum, with error function denoted by E.n; �/ converging uniformly on compact subsets
of C to the true error from above (again with the choice of g.x/ D x since the operator is
normal). Setting

an.A/ D min
x2 O�n.A/

.x CE.n; x//;

we see that an.A/ � a.A/ WD infx2Sp.A/ x and an.A/! a.A/. Now consider

bn2;n1.A/ D min ¹E.k; ak.A/C 1=n2/C 1=k W 1 � k � n1º:

Then bn2;n1.A/ is positive and decreasing in n1, so converges to some limit bn2.A/ as
n1 !1.

Lemma 9.1. Let A 2 b�fSA and cn2;n1.A/ D E.n1; an1.A/C 1=n2/C 1=n1. Then

lim
n1!1

cn2;n1.A/ DW cn2.A/ D dist.aC 1=n2;Sp.A//:

Furthermore, if „class.A/ ¤ 4 then cn2.A/ D bn2.A/ D 1=n2 for large n2.

Proof of Lemma 9.1. We know that an1.A/ C 1=n2 converges to a.A/ C 1=n2 as
n1 ! 1. Furthermore, dist.z; Sp.A// is continuous in z and E.n1; z/ converges uni-
formly to dist.z; Sp.A// on compact subsets of C. Hence, the limit cn2.A/ exists and is
equal to dist.a.A/C 1=n2; Sp.A//. It is clear that bn2.A/ � cn2.A/. Suppose now that
„class.A/ ¤ 4. Then for large n1, say bigger than some N , and for large enough n2,

E.n1; an1.A/C 1=n2/ � dist.an1.A/C 1=n2;Sp.A//

D jan1.A/C 1=n2 � a.A/j

� 1=n2 D dist.a.A/C 1=n2;Sp.A// D cn2.A/:

Now choose n2 large such that the above inequality holds and 1=n2 � 1=N . Then
bn2;n1.A/ � 1=n2. Taking limits finishes the proof.
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If n2 � n1, set �n2;n1.A/D 1. Otherwise, for 1 � j � n2, let kjn2;n1 be maximal with
1 � k

j
n2;n1 < n1 such that lj

k
j
n2;n1

2 J 1n2 [ J
2
n2

if such kjn2;n1 exist, where J 1n2 and J 2n2 are

as in the proof for„gap. If k1n2;n1 exists with l1
k1n2;n1

2 J 2n2 , set �n2;n1.A/D 1. Otherwise,

if any of kmn2;n1 exists with lm
kmn2;n1

2 J 2n2 for 2 � m � n2, set �n2;n1.A/ D 2. Suppose

that neither of these two cases hold. In this case, compute bn2;n1.A/. If bn2;n1.A/� 1=n2,
set �n2;n1.A/ D 3, otherwise set �n2;n1.A/ D 4. We must now show this provides a …A

2

tower solving our problem.
First we show convergence of the first limit. Fix n2 and consider large n1. The separa-

tion of the intervals J 1n2 and J 2n2 ensures that for each j , the sequence ¹ljn ºn2N cannot visit
each interval infinitely often. Since bn1;n2.A/ is non-increasing in n1, we also see that the
question whether bn2;n1.A/ � 1=n2 eventually has a constant answer. These observations
ensure convergence of the first limit �n2.A/ D limn1!1 �n2;n1.A/.

If„class.A/D1, then for large n2, l1n1 must eventually be in J 2n2 and hence �n2.A/D1.
It is also clear that if �n2.A/D 1, then l1n1 converges to a positive constant, which implies
„class.A/ D 1. If „class.A/ D 2, then for large n2, lmn1 eventually lies in J 2n2 for some
2 � m � n2, but l1n1 eventually in J 1n2 . It follows that �n2.A/ D 2. If �n2.A/ D 2, we
know that there exists some lmn1 convergent to l � 1=n2 and hence we know „class.A/ is
either 1 or 2.

Suppose that „class.A/ D 3. Then for fixed n2 and any 1 � m � n2, lmn1 eventually
lies in J 1n2 and hence our lowest level of the tower must eventually depend on whether
bn2;n1.A/ � 1=n2. From Lemma 9.1,

bn2.A/ D cn2.A/ D 1=n2

for large n2. It follows that for large n2, bn2.A/ � 1=n2 for all n1 and �n2.A/ D 3. If
�n2.A/D 3we know that cn2.A/� bn2.A/� 1=n2, which implies„class.A/¤ 4. Finally,
note that if„class.A/ D 4 but there exists n2 with �n2.A/ ¤ 4, then the above implies the
contradiction „class.A/ ¤ 4. The partial converses proven above imply �n2;n1 realises
the …A

2 classification.

10. Computational examples

We now demonstrate that, as well as being optimal from a foundations point of view, the
algorithms constructed in this paper can be efficiently implemented for large scale com-
putations. The algorithms have desirable convergence properties, with some converging
monotonically or eventually constant as captured by the †=… classification. They are
also completely local and hence parallelisable. Pseudocodes are given in Appendix A.

Remark 10.1. Although we only stated results for the graph case, l2.V .G //, in §3.2, the
ideas used to prove the results show that all the classification results and algorithms in
§§3.2–3.4 extend to general separable Hilbert spaces H . Once a basis is chosen (so that
matrix elements make sense), we can introduce concepts like bounded dispersion etc.
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10.1. Polynomial coefficients

We first consider computing spectra and pseudospectra of partial differential operators of
the form

T D P.x1; : : : ; xd ; @1; : : : ; @d / (10.1)

for a polynomial P . In this case, the algorithms of §3.1 (which use a Hermite basis in
the proof) reduce to computing the spectrum/pseudospectrum of infinite matrices A act-
ing on l2.N/. From the comments in Example 6.13 and recurrence relations for Hermite
functions, we can choose a basis such that f .n/ � n � Cn.d�1/=d , where f is the dis-
persion function in (3.9) and C.d/ is a constant. We also choose f so that it describes
the off-diagonal sparsity structure of A, so that An;k D Ak;n D 0 if k > f .n/. Hence, this
section also showcases the algorithms presented in §3.2, and the two different methods
become equivalent.

Our algorithms are built around routines such as DistSpec (Appendix A) that com-
pute smallest singular values of matrices. For the examples in this section, all error bounds
were verified with interval arithmetic using the package INTLAB [122] that runs in MAT-
LAB. The most efficient way to do this is as follows. First, we compute a candidate
smallest singular value � and right-singular vector v of the corresponding finite matrix B
in standard double precision.4 This computation can be done using a search routine such
as DistSpec, or, often more efficiently if the matrix is sparse, using iterative methods. Let
QB be the stored approximation of B . Once a candidate pair .�; v/ has been computed, we

compute a bound on the norm of the residual k. QB � �/vk using interval arithmetic. This
step is typically faster than the computation of � and v. Finally, to obtain an upper bound
on the smallest singular value of B , we add error bounds corresponding to kB � QBk (and
also the approximate normalisation of the vector v).

10.1.1. Anharmonic oscillators. First, consider operators of the form

H D ��C V.x/ D ��C

dX
j

ajxj C

dX
j;kD1

bj;kxjxk C
X

˛2Zd
�0
; j˛j�M

c.˛/x˛;

where aj ; bj;k ; c.˛/ 2 R and the multi-indices ˛ are chosen such that
P
j˛j�M c.˛/x˛ is

bounded below. The Faris–Lavine theorem [121, Theorem X.28] shows that H is essen-
tially self-adjoint. Anharmonic oscillators have attracted interest in quantum research for
over three decades [18, 19, 83, 140]. Amongst their uses are approximations of poten-
tials near stationary points. The problem of developing efficient algorithms to compute
their spectra has received renewed interest due to advances in asymptotic analysis and
symbolic computing algebra [10, 86, 136]. Current methods are rich and diverse but lack
uniformity. We show that we can obtain error control for general anharmonic operators in
a computationally efficient manner.

4Sometimes if B contains entries spanning several orders of magnitude, quadruple precision is
used if high accuracy is desired. This is not due to any instabilities in our algorithm, but is simply
an intrinsic problem of dealing with such matrices.
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We begin with comparisons to some known results in one dimension [47]:

V1.x/ D x
2
� 4x4 C x6; E0 D �2;

V2.x/ D 4x
2
� 6x4 C x6; E1 D �9;

V3.x/ D .105=64/x
2
� .43=8/x4 C x6 � x8 C x10; E0 D 3=8;

V4.x/ D .169=64/x
2
� .59=8/x4 C x6 � x8 C x10; E1 D 9=8:

Following the physicists’ convention, if the spectrum is discrete and bounded below, we
list the energy levels asE0 �E1 � � � � . The algorithm �n.A/ for the spectrum is described
by the routine CompSpecUB, shown as pseudocode in Appendix A. This relies on the
approximation of kR.z; A/k�1 in Theorem 6.7 given by the routine DistSpec. Other
methods such as finite section (of the matrices constructed using Hermite functions) will
converge in this case since the spectrum is discrete. However, they do not provide the
sharp †1 classification. We found that the grid resolution of the search routine and the
search accuracy for the smallest singular values, not the matrix size, were the main decid-
ing factors in the final error bound. Once we know roughly where the eigenvalues are,
we can speed up computations using the fact that the algorithm is local. Furthermore,
the computational time of the search routine only grows logarithmically in its precision.
Hence we set the grid spacing and the spacing of the search routine to .105n/�1.

Table 2 shows the results. All values were computed using a local search grid. In this
simple example, the output agrees precisely with the eigenvalues since they lie on the
search grid. Note that we quickly gain convergence and the error bounds become the pre-
cision of the search routine in DistSpec (namely, .105n/�1). This is usually a pessimistic
estimate of �inf.Pf .n/.H � zI /Pn/. For example, using nD 500 for the first potential V1,
the estimate for �inf.Pf .n/.H � zI /Pn/ with z D �2 obtained by iterative methods and
then verified with interval arithmetic is 5:8� 10�12. Finally, for potentials with large poly-
nomial order and for large truncation parameter n, the truncation of the matrix involves
entries of large and small modulus. For example, for nD 1000, the truncated matrix corre-
sponding to the potential V4 has a maximum entry modulus of approximately 7:85� 1015.
Hence we found it necessary to use quadruple precision for such values. This is not due
to any instabilities in our algorithm, but is simply an intrinsic problem of dealing with
the matrices of this example. Even when using quadruple precision, the total computa-
tion time (including verification with interval arithmetic) to compute any of the entries in
Table 2 was less than 20 seconds on a 3.9GHz desktop computer without parallelisation.

Next, we demonstrate how the algorithm can be used in more than one spatial dimen-
sion. We consider

H1 D ��C x
2
1x
2
2 ;

which is a classic example of a potential that does not blow up at infinity in every direction,
yet still induces an operator with compact resolvent [129]. Figure 2 shows the conver-
gence of the estimate of kR.z; H1/k�1 from above, as well as finite section estimates.
As expected from variational methods, the finite section method produces eigenvalues
converging to the true eigenvalues from above (there is no essential spectrum and the
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Potential Exact n D 500 n D 1000

V1 �2 �2˙ 2 � 10�8 �2˙ 10�8

V2 �9 �9˙ 2 � 10�8 �9˙ 10�8

V3 0:375 0:375˙ 1:62 � 10�4 0:375˙ 10�7

V4 1:125 1:125˙ 6:02 � 10�4 1:125˙ 2:4 � 10�7

Tab. 2. Test of our algorithm on some potentials with known eigenvalues. Note that we quickly
converge to the eigenvalue with error bounds computed by the algorithm (through DistSpec) and
verified using interval arithmetic.
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Fig. 2. Left: The convergence of the algorithm (shown as DistSpec) and finite section to the true
eigenvalues on the interval Œ0; 10�. Note that points with reliable finite section eigenvalues corre-
spond to points where the estimate of the resolvent norm is well resolved. Right: Error bounds
computed using DistSpec (with an adaptive grid spacing) and verified with interval arithmetic.

operator is positive). Furthermore, the areas where DistSpec has converged correspond
to areas where finite section has converged. We also show rigorous error bounds computed
using DistSpec for different n for the first five eigenvalues. These are computed using an
adaptive grid spacing to resolve the local minima of the approximation of kR.z;H1/k�1

using rectangular truncations. For n D 104, it took about a second to locate the candidate
eigenvalue and eigenvector pair (the candidate singular value and left-singular vector of
the truncation) and on the order of milliseconds to verify with interval arithmetic. Both
timings were on a 3.9GHz desktop computer without parallelisation.

10.1.2. Pseudospectra and P T symmetry. We now turn to pseudospectra and consider
P T -symmetric non-self-adjoint operators T (we consider examples for which compactly
supported smooth functions form a core of T and T � [73]). The first example is the
imaginary cubic oscillator in one dimension,

H2 D �d
2=dx2 C ix3:
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Fig. 3. Left: Computed pseudospectrum for the imaginary cubic oscillator. Note the clear presence
of eigenvalues. Right: Computed pseudospectrum for imaginary Airy operator. Both figures were
produced using n D 1000 and verified with interval arithmetic.

This operator is the most studied example of a P T -symmetric operator5 [16, 17], as well
as appearing in statistical physics and quantum field theory [84]. The resolvent is com-
pact [46], and all of the eigenvalues are simple and in R�0 [69, 71]. The eigenvectors
are complete but do not form a Riesz basis [128]. Figure 3 (left) shows the computed
pseudospectrum using n D 1000. This demonstrates the instability of the spectrum of
the operator. For this example, it took about 0:01s to estimate the resolvent norm using
nD 1000 and on the order of milliseconds to verify with interval arithmetic, per point, on
a 3.9GHz desktop computer without parallelisation.

Next, we consider the imaginary Airy operator

H3 D �d
2=dx2 C ix:

This is known to have an empty spectrum [97] and so demonstrates that the algorithm is
effective in this case also. Note that any finite section method will necessarily overestimate
the pseudospectrum in regions of the complex plane due to the presence of false eigenval-
ues. H3 is P T -symmetric and has compact resolvent. The resolvent norm kR.z; H3/k
only depends on the real part of z and blows up exponentially as Re.z/!C1. We have
shown the computed pseudospectrum for n D 1000 in Figure 3 (right). Timings for this
example were similar to the imaginary cubic oscillator.

We do not need to discretise anything to apply the above method. Up to numerical
errors in the testing of positive definiteness, all computed pseudospectra are guaranteed to
be inside the correct pseudospectra. In fact, in our case, we checked results using interval
arithmetic and obtained a verified lower bound on the resolvent norm.6 This reliability

5Meaning ŒH2;P T � D 0 with .Pf /.x/ D f .�x/ and .T f /.x/ D f .x/.
6To turn this into a formal proof, one would need a proof that the implementation of interval

arithmetic is correct and a proof that our code uses the algorithms correctly. Both of these are
beyond the scope of this paper.
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is in contrast to the numerical experiments conducted in, for example, [64], where the
operator is discretised. It is also easy to construct examples where discretisations fail
dramatically, either not capturing the whole spectrum or suffering from spectral pollution.
Even without spectral pollution, figuring out which parts of computations are trustworthy
can be very difficult for finite section and related methods [143]. Algorithms such as
PseudoSpec are a valuable tool to test the reliability of such outputs.

10.2. Partial differential operators with general coefficients

10.2.1. Perturbed harmonic oscillator. As a first set of examples, we consider

T D ��C x2 C V.x/

on L2.R/, where V is a bounded potential. Such operators have discrete spectra. The
perturbation V causes the eigenvalues to shift relative to the classical harmonic oscillator,
whose spectrum is the set of odd positive integers. Table 3 shows the first five eigenvalues
for a range of potentials. Each entry in the table is computed with an error bound at
most 10�9 provided by DistSpec. The truncation size is chosen adaptively to achieve
this error, and computational times were on the order of seconds on a 3.9GHz desktop
computer without parallelisation.

Potential V E0 E1 E2 E3 E4

cos.x/ 1:7561051579 3:3447026910 5:0606547136 6:8649969390 8:7353069954

tanh.x/ 0:8703478514 2:9666370800 4:9825969775 6:9898951678 8:9931317537

exp.�x2/ 1:6882809272 3:3395578680 5:2703748823 7:2225903394 9:1953373991

.1C x2/�1 1:7468178026 3:4757613534 5:4115076464 7:3503220313 9:3168983920

Tab. 3. First five computed eigenvalues for different potentials. Each eigenvalue Ek is computed
with an error bound at most 10�9 via DistSpec with an adaptive truncation size. The eigenvalueEk
is a perturbation of the harmonic oscillator eigenvalue 2k C 1.

10.2.2. Fourth-order operator. Next, we consider the operator

T� D
d4

dx41
C

�
�i

d

dx2
C
x1

2

�4
C
2�x2 C �

2

1C x22

on L2.R2/, as an example with gaps in the essential spectrum. Figure 4 shows a portion
of the spectrum, as well as the output of finite section, using 100 basis functions in each
spatial dimension. The maximum error bound provided by DistSpec is bounded by 10�2.
For each value of �, the computational time was on the order of five minutes for a grid
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Fig. 4. Left: Output of finite section showing severe spectral pollution in the gaps of the essential
spectrum. Right: Output of CompSpecUB. Both plots use 100 basis functions in each spatial dimen-
sion. The spectrum of T0 is shown as red circles.

spacing of 0:005 (approximately 2000 test points7) when executed with parallelisation
using 20 CPU cores. Finite section produces heavy spectral pollution in the gaps of the
essential spectrum. The spectrum for �D 0 is shown as red circles, and consists of isolated
eigenvalues of infinite multiplicity. As � increases, these fan out to produce the essential
spectra shown.

10.3. Example for discrete spectra

We now turn to the computation of discrete spectra. Although it is hard to analyse the
convergence of a height 2 tower, we can take advantage of the extra structure in this
problem. The routine DiscreteSpec in Appendix A computes �n2;n1.A/ such that
limn1!1 �n2;n1.A/ is a finite subset of Spd .A/. Furthermore, for each z 2 Spd .A/,
there is at most one point in zn1 2 �n2;n1.A/ approximating z. We can use the routine
DistSpec to gain an error bound of dist.zn1 ;Sp.A//, which, for large n1, will be equal to
jz � zn1 j since z is isolated. As we increase n2, more and more of the discrete spectrum
(in general portions nearer the essential spectrum) are approximated.

Our example is the Almost Mathieu Operator on l2.Z/ given by

.H˛x/n D xn�1 C xnC1 C 2� cos.2�n˛/xn;

where we set � D 1 (critical coupling). For rational choices of ˛, the operator is periodic

7Though we did not do so, one can do the following to reduce the number of grid points.
Suppose one has access to finite section eigenvalue approximations of a self-adjoint operator. In that
case, one can consider grid points close to the computed eigenvalues. This method works because
finite sections of a self-adjoint operator will approximate all of the spectrum (though of course,
suffer from spectral pollution). Another strategy is to choose the grid adaptively. Once an estimate
of the distance r to the spectrum has been computed at a point z, we can ignore grid points in a ball
of radius r around z.
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and its spectrum is purely absolutely continuous. For irrational ˛ the spectrum is a Cantor
set (Ten Martini Problem). To generate a discrete spectrum, we add a perturbation of the
potential of the form

V.n/ D Vn=.jnj C 1/; (10.2)

where Vn are independent and uniformly distributed in Œ�2; 2�. The perturbation is com-
pact so preserves the essential spectrum. This type of problem is well studied, for example,
in the more general setting of Jacobi operators [98, 135].

Figure 5 shows a typical result for a realisation of the random potential. The top panel
of the figure shows the output of finite section and our algorithm (with a uniform error

Fig. 5. Top: Output of finite section. Spectral pollution detected by our algorithm is shown as red
crosses. Bottom: Output of DiscreteSpec and the splitting into the essential spectrum and the
discrete spectrum. The output captures the discrete spectrum down to a distance� 0:01 away from
the essential spectrum, which can be made smaller for larger n2.
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bound of 10�2) for computing the total spectrum. The bottom panel of the figure shows
the output of DiscreteSpec, which separates the discrete spectrum from the essential
spectrum. For each value of ˛, the computational time was on the order of tens of sec-
onds on a 3.9GHz desktop computer without parallelisation. For each ˛, we took n2 large
enough for an expected limit inclusion Spd .A/ � �n2.A/C B0:01.0/ (obtained by com-
paring with the output of the height 2 tower for computing the essential spectrum). Taking
n2 larger caused sharper inclusion bounds. Additionally, we confirmed the accuracy of
the results using a height 1 tower to compute the spectrum with and without the random
potential. Note that it is difficult to detect spectral pollution when using finite section
with the additional perturbation (10.2). In contrast, DiscreteSpec computes the discrete
spectrum without spectral pollution and allows us to separate the discrete spectrum from
the essential spectrum.

The error bounds provided by DistSpec (applied to the output of DiscreteSpec)
can also be translated into computing approximations of the eigenvectors of an opera-
tor A, specifically those corresponding to the discrete spectrum, with an error bound in
the following manner. The routine ApproxEigenvector in Appendix A computes a vec-
tor xn1 of norm� 1 such that (in this case taking ı # 0, cn D 0)

k.A � zn1I /xn1k � DistSpec.A; n1; f .n1/; zn1/:

We write xn1 D x
d
n1
C yn1 ; where xdn1 is an eigenvector of A with eigenvalue z, and yn1

is perpendicular to the eigenspace associated with z and zn1 ! z. It follows that

k.A � zI /yn1k � jz � zn1 j C DistSpec.A; n1; f .n1/; zn1/

� 2 � DistSpec.A; n1; f .n1/; zn1/

for large n1. But A � zI is bounded below on the orthogonal complement of the eigen-
space, with lower bound dist.z;Sp.A/n¹zº/. Hence,

kyn1k �
2 � DistSpec.A; n1; f .n1/; zn1/

dist.z;Sp.A/n¹zº/

for large n1. This bound also bounds the l2 distance of xn1 to the eigenspace, and can
be estimated by approximating the spectrum of A. It is also straightforward to adjust
this procedure to eigenvalues of multiplicity greater than 1 and approximate the whole
eigenspace. For the above example, all the eigenvalues were found to have multiplicity
1, as expected for a random perturbation. Finally, the method of computing eigenvectors
and error bounds can also be used for unbounded operators when z lies in the discrete
spectrum.
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Appendix A. Computational routines

We provide pseudocode for the algorithms of this paper, all of which provide sharp clas-
sifications in the SCI hierarchy.

Algorithm 1: The routine CompSpecUB computes spectra of unbounded operators on l2.N/
(or, more generally, graphs) using the subroutines CompInvg and DistSpec described
above, and provides †1 error control. The subroutine IsPosDef checks whether a matrix is
positive definite and is a standard routine that can be implemented in a myriad of ways. In
practice, the while loop in DistSpec is replaced by a much more efficient interval bisection
method. An alternative method for sparse matrices (which, however, does not rigorously
guarantee an error bound on the smallest singular values but still gives an upper bound) is
to compute the smallest singular values of the rectangular matrices using iterative methods.

Function CompInvg(n, y, g)
Input n 2 N; y 2 RC, g W RC ! RC
Output m 2 RC, an approximation of g�1.y/
m D min ¹k=n W k 2 N; g.k=n/ > yº

end
Function DistSpec(A,n,z,f .n/)

Input n 2 N; f .n/ 2 N, matrix A, z 2 C
Output y 2 RC, an approximation of kR.z;A/k�1

B D .A � zI /.1 W f .n/; 1 W n/
C D .A � zI /�.1 W f .n/; 1 W n/
S D B�B
T D C�C
� D 1, l D 0
while � D 1 do

l D l C 1

p D IsPosDef.S � l2

n2
/

q D IsPosDef.T � l2

n2
/

� D min.p; q/
end
y D l

n
end
Function CompSpecUB(A, n, ¹gmº, f .n/, cn)

Input n 2 N, f .n/ 2 N, cn 2 RC (bound on dispersion), gm W RC ! RC, A 2 �g
Output �n.A/ � C, an approximation of Sp.A/, and En.A/ 2 RC, the error bound
G D Grid(n) (see (6.2))
for z 2 G do

F.z/ D DistSpec(A, n, z, f .n/)
if F.z/ � .jzj2 C 1/�1 then

for wj 2 BCompInvg(n, F.z/, gdjzje).z/ \G D ¹w1; : : : ; wkº do
Fj D DistSpec(A, n, wj , f .n/)

end
Mz D ¹wj W Fj D minq Fqº

else
Mz D ;

end
end
�n.A/ D

S
z2GMz

En.A/ D maxz2�n.A/ CompInvg(n, DistSpec(A, n, z, f .n/)C cn, gdjzje)
end
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Algorithm 2: PseudoSpecUB computes �n.A/ � Sp�.A/ with limn!1 �n.A/ D Sp�.A/.

Function PseudoSpecUB(A, n, f .n/, cn, �)
Input n 2 N, f .n/ 2 N, cn 2 RC, A 2 O�, � > 0
Output �n.A/ � C, an approximation of Sp�.A/
G D Grid(n)
for z 2 G do

F.z/ D DistSpec(A, n, z, f .n/)C cn
end
�n.A/ D

S
¹z 2 G W F.z/ < �º

end

Algorithm 3: TestSpec solves ¹„3; O� �K.C/º (does K, compact, intersect Sp.A/) with
input Kn2 and access to 
n1.z; A/ (e.g., via DistSpec). Similarly, TestPseudoSpec solves
¹„4; O� �K.C/º (does K, compact, intersect Sp�.A/) with input Kn2 , � > 0 and access to

n1.z;A/.

Function TestSpec(n1, n2,Kn2 , 
n1.z;A/)
Input n1; n2 2 N,Kn2 an approximation ofK, access to evaluation of 
n1.z;A/
Output �n2;n1.A/, an approximation of„3.A/
�n2;n1.A/ D “Does there exist some z 2 Kn2 such that 
n1.z;A/ < 1=2

n2?”
end
Function TestPseudoSpec(n1, n2,Kn2 , 
n1.z;A/, �)

Input n1; n2 2N,Kn2 an approximation ofK, access to evaluation of 
n1.z;A/, � > 0.
Output �n2;n1.A/, an approximation of„4.A/
�n2;n1.A/ D “Does there exist some z 2 Kn2 such that 
n1.z;A/ < 1=2

n2 C �?”
end

Algorithm 4: SpecGap solves the spectral gap problem in Theorem 3.13, and requires an eigen-
value solver to implement Corollary 6.9 to compute all n eigenvalues of PnAPn to arbitrary
precision.

Function SpecGap(n1, n2, Pn1APn1)
Input n1; n2 2 N, Pn1APn1 the square truncation of the matrix A
Output �n2;n1.A/, an approximation of„gap.A/

if n1 D 1 then
Set �n2;n1.A/ D 1

else
for k 2 ¹2; : : : ; n1º do

Compute lk D �
.k/

2 ��
.k/

1 C �k , j�k j � 1=k,
using Corollary 6.9 and notation of Lemmas 8.1, and 8.2 applied to PkAPk

end
Set J 1n2 D Œ0; 1=.2n2/� and J 2n2 D .1=n2;1/
if ¹lk W k 2 ¹1; : : : ; n1º \ .J 1n2 [ J

2
n2
/º D ; then

Set �n2;n1.A/ D 0
else

Let Qk � n1 be maximal with l Qk 2 J
1
n2
[ J 2n2

if l Qk 2 J
1
n2

then
Set �n2;n1.A/ D 0

else
Set �n2;n1.A/ D 1

end
end

end
end
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Algorithm 5: SpecClass solves the spectral classification problem in Theorem 3.13. As
well as an eigenvalue solver to implement Corollary 6.9, we need the algorithm CompSpecUB
denoted by O�n, which computes the spectrum together with an error bound E.n; �/ on the
output.

Function SpecClass(n1, n2, A, f )
Input n1; n2 2 N, A 2 b�fSA, f the dispersion bounding function
Output �n2;n1.A/, an approximation of „class.A/

if n1 � n2 then
Set �n2;n1.A/ D 1

else
for n 2 ¹1; : : : ; n1º and j 2 ¹1; : : : ; n � 1º do

Compute ljn D �
.n/
jC1 � �

.n/
1 C �

j
n , j�jn j � 1=n,

using Corollary 6.9 and notation of Lemmas 8.1 and 8.2 applied to PnAPn
end
Set J 1n2 D Œ0; 1=.2n2/� and J 2n2 D .1=n2;1/
for j 2 ¹1; : : : ; n2º do

Let kjn2;n1 be maximal with 1 � kjn2;n1 < n1 such that lj
k
j
n2;n1

2 J 1n2 [ J
2
n2

if

such kjn2;n1 exists
end
if k1n2;n1 exists with l1

k1n2;n1
2 J 2n2 then

Set �n2;n1.A/ D 1
else

if any kmn2;n1 exists with lm
kmn2;n1

2 J 2n2 for 2 � m � n2 then
Set �n2;n1.A/ D 2

else
for k 2 ¹1; : : : ; n1º do

Set ak.A/ D min
x2 O�k.A/

¹x CE.k; x/º

Set qk D E.k; ak.A/C 1=n2/C 1=k
end
Set bn2;n1.A/ D min ¹qk W 1 � k � n1º
if bn2;n1.A/ � 1=n2 then

Set �n2;n1.A/ D 3
else

Set �n2;n1.A/ D 4
end

end
end

end
end
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Algorithm 6: DiscreteSpec computes the closure of the discrete spectrum of A. The
approximation of the essential spectrum, Q�n2;n1.A/, is described in the proof of conver-
gence and was given in [12]. Moreover, limn1!1 �n2;n1.A/ � Spd .A/ (see (8.3)), and
converges up to cl.Spd .A// as n2 ! 1. Given zn1 ! z, Multiplicity computes the
multiplicity, h.A; z/, of the eigenvalue z.

Function DiscreteSpec(n1, n2, O�n1.A/, E.n1; �/, Q�n2;n1.A/)
Input n1; n2 2 N, O�n1.A/ an approximation of Sp.A/, error estimate E.n1; �/ over

O�n1.A/, Q�n2;n1.A/ an approximation of Spess.A/
Output �n2;n1.A/, an approximation of cl.Spd .A//

if n2 � n1 then
for n2 � k � n1 do

�k;n1.A/ D ¹z 2
O�n1.A/ W E.n1; z/ < dist.z; Q�k;n1.A// � 1=kº

for z; w 2 �k;n1.A/ do
z �n1 w if and only if BE.n1;wj /.wj / \ BE.n1;wjC1/.wjC1/ ¤ ; for

some z D w1; w2; : : : ; wn D w 2 �k;n1.A/
end
This gives equivalence classes Œz1�; : : : ; Œzm�
for j 2 ¹1; : : : ; mº do

Choose zkj 2 Œzj � of minimal E.n1; �/
end
if
S
j2¹1;:::;mº¹zkj º ¤ ; then
ˆk;n1.A/ D

S
j2¹1;:::;mº¹zkj º

else
ˆk;n1.A/ D ;.

end
end
if at least one of ˆk;n1.A/ ¤ ; then

�n2;n1.A/ D ˆk;n1.A/ D ; with k minimal such that �k;n1.A/ ¤ ;
else

�n2;n1.A/ D ¹0º
end

else
�n2;n1.A/ D ¹0º.

end
end
Function Multiplicity(A, n1, n2, f .n1/, zn1 , dn1)

Input n1; n2 2 N; f .n1/ 2 N, A 2 �dN , zn1 2 C, dn1
Output hn2;n1.A; zn1/, an integer approximation of h.A; z/, where zn1 ! z

B D Œ.A � zn1I /.1 W f .n1/; 1 W n1/�
�Œ.A � zn1I /.1 W f .n1/; 1 W n1/� � .1=n1 � dn1/I

ŒL;D;P T � D ldl.B/ (compute L;D;P such that PBP T D LDL�)
if D is diagonal then

Find J the set of j with D.j; j / < 0
hn2;n1.A; zn1/ D jJ j

else
Find J1 the set of j with size 1 block D.j; j / < 0
Find J2 the number of negative eigenvalues corresponding to size 2 blocks by

looking at trace and determinant
hn2;n1.A; zn1/ D jJ1j C jJ2j

end
end
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Algorithm 7: DiscSpecEmpty computes „d2 .A/ (is the discrete spectrum non-empty) in

two limits for A 2 �fN , the class of bounded normal operators with known dispersion
bounding function. The inputs are the algorithm O�n computing the spectrum (for example,
CompSpecUB), the error control E.n; z/ (that converges to the true error uniformly on com-
pact subsets of C) and the height 2 tower Q�n2;n1 presented in [12] to compute the essential
spectrum.

Function DiscSpecEmpty(n1, n2, O�n1.A/, E.n1; �/, Q�n2;n1.A/)
Input n1; n2 2 N, O�n1.A/ an approximation of Sp.A/, error estimate E.n1; �/ over

O�n1.A/, Q�n2;n1.A/ an approximation of Spess.A/

Output �n2;n1.A/, an approximation of „d2 .A/

�n2;n1.A/ D ¹z 2
O�n1.A/ W E.n1; z/ < dist.z; Q�n2;n1.A// � 1=n2º

if �n2;n1.A/ ¤ ; then
�n2;n1.A/ D 1

else
�n2;n1.A/ D 0

end
end

Algorithm 8: ApproxEigenvector takes as input A, n, f .n/, zn and the bound E.n; zn/
where �inf.Pf .n/.A � znI /jPn.l2.N/// � E.n; zn/: Given ı > 0, it computes an approxi-
mate eigenvector xn (of finite support) with k.A � znI /xnk � kxnk.E.n; zn/C cn C ı/
and 1 � ı < kxnk < 1C ı:

Function ApproxEigenvector(A, n, f .n/, zn, E.n; zn/, ı)
Input n 2 N; f .n/ 2 N, A, zn 2 C, error bound E.n; zn/ and tolerance ı > 0
Output xn 2 Cn, a vector satisfying k.A � znI /xnk � kxnk.E.n; zn/C cn C ı/

� D .E.n; zn/C ı/
2

B D Œ.A � znI /.1 W f .n/; 1 W n/�
�Œ.A � znI /.1 W f .n/; 1 W n/� � �I

ŒL;D;P T � D ldl.B/ (compute L;D;P such that PBP T D LDL�)
if D is diagonal then

Find i with D.i; i/ < 0
y D ei

else
Find y eigenvector of D with eigenvalue < 0

end
Solve upper triangular system y D L�Pxn for Pxn, apply P T to obtain xn, and then

normalise to precision ı
end
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