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Abstract. We prove a conjecture of Teissier asserting that if f has an isolated singularity at P
and H is a smooth hypersurface through P , then z̨P .f / � z̨P .f jH /C 1

�P .f /C1
, where z̨P .f /

and z̨P .f jH / are the minimal exponents at P of f and f jH , respectively, and �P .f / is an invari-
ant obtained by comparing the integral closures of the powers of the Jacobian ideal of f and of
the ideal defining P . The proof builds on the approaches of Loeser (1984) and Elduque–Mustaţă
(2021). The new ingredients are a result concerning the behavior of Hodge ideals with respect to
finite maps and a result about the behavior of certain Hodge ideals for families of isolated singu-
larities with constant Milnor number. In the opposite direction, we show that for every f , if H is a
general hypersurface through P , then z̨P .f /� z̨P .f jH /C 1

multP .f /
, extending a result of Loeser

from the case of isolated singularities.
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1. Introduction

Let X be a smooth complex algebraic variety and f 2 OX .X/ nonzero, defining a hyper-
surface Y . For a point P 2 Y , the minimal exponent z̨P .f / can be defined as the negative
of the largest root of the reduced Bernstein–Sato polynomial of f at P . This is a very
interesting invariant of singularities that refines the log canonical threshold lctP .f /; more
precisely, by a result of Lichtin and Kollár, we have lctP .f / D min ¹z̨P .f /; 1º (see [13,
Section 10]). Moreover, by a result of Saito [27, Theorem 0.4] the hypersurface Y has
rational singularities at P if and only if z̨P .f / > 1. In the setting where Y has an iso-
lated singularity at P , the minimal exponent can be described via asymptotic expansion
of integrals along vanishing cycles [16, 17]. In this incarnation, it has been extensively
studied in [1] and is also known as the Arnold exponent of f at P .
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In this article we are interested in the behavior of the minimal exponent under restric-
tion to a smooth hypersurface H in X , containing P . When Y has an isolated singularity
at P , Teissier [33] introduced and studied the invariant �P .f / defined as

�P .f / D max
E

ordE .Jf /
ordE .mP /

; (1)

where E runs over the prime divisors overX with center at P , mP is the ideal defining P
in X , and Jf is the Jacobian ideal of f . Using the description of the integral closure of
an ideal in terms of divisorial valuations (see [14, Chapter 9.6.A]) one can see that the
maximum in (1) is achieved by a divisor on the normalized blow-up of X along mP � Jf ;
moreover, �P .f / is the minimum of the positive rational numbers r=s with the property
that mr

P is contained in the integral closure J s
f

of J s
f

. The following is our main result,
giving a positive answer to a conjecture of Teissier [34].

Theorem 1.1. Suppose that n D dim.X/ � 2 and the hypersurface defined by f in X
has an isolated singularity at P . If H is a smooth hypersurface in X , with f jH ¤ 0 and
P 2 H , then

z̨P .f / � z̨P .f jH /C
1

�P .f /C 1
:

By successively applying the theorem for general hyperplane sections (which auto-
matically have isolated singularities), we obtain the following:

Corollary 1.2. If the hypersurface Y defined by f in X has an isolated singularity at P
and if H1; : : : ;Hn�1 are general smooth hypersurfaces in X , containing P , then

z̨P .f / �
1

�P .f /C 1
C

1

�P .f jH1
/C 1

C � � � C
1

�P .f jH1\���\Hn�1
/C 1

:

The inequality in Theorem 1.1 was proved by Loeser [15], with �P .f / replaced by
its round-up d�P .f /e (that is, the smallest integer that is � �P .f /). Assuming that f 2
CŒx1; : : : ; xn�, P D 0, and H is the hyperplane given by xn D 0, the argument in [15]
made use of the family of hypersurfaces

ht .x1; : : : ; xn/ D f .x1; : : : ; xn�1; txn/C .1 � t /x
�C1
n ;

where � D d�P .f /e. Note that z̨0.h1/ D z̨0.f / and z̨0.h0/ D z̨0.f jH /C 1
�C1

by the
Thom–Sebastiani property of Arnold exponents (see for example [16, Example (6.8)]).
The definition of �0.f / implies that the Milnor number of ht at 0 is constant in a neigh-
borhood V of 1, hence by a result of Varchenko [35] it follows that z̨0.ht / is constant
on V . Finally, by the semicontinuity of the Arnold exponent [30, Theorem 2.11], it fol-
lows that z̨0.ht / � z̨0.h0/ for t 2 V , and we conclude that z̨0.f / � z̨0.f jH /C 1

�C1
.

This argument was modified in [6] to prove the weaker version of Theorem 1 for log
canonical thresholds. The idea was to consider the same family .ht /t2C, with � D �P .f /.
In order to make sense of this, one pulls back this expression by the finite cover given
by �.x1; : : : ; xn/ D .x1; : : : ; xn�1; xdn /, where d is a divisible enough positive integer.
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Recall that the log canonical threshold is characterized by the triviality of certain invari-
ants associated to f , the multiplier ideals (see [14, Chapter 9]); due to the presence of
the finite cover � , the argument in [6] relied on considering whether the equation xd�1n

(defining the relative canonical divisor of �) lies in a suitable multiplier ideal of ht ı � ,
by making use of various properties of multiplier ideals.

In this note we follow the same approach. Since we deal with the minimal exponent,
we need to make use of more refined invariants, the Hodge ideals Ip.f �/ introduced and
studied in [21]. The definition of these invariants (as well as the proofs of their basic
properties) makes use of Saito’s theory of mixed Hodge modules [26]. It was shown in
[22,29] that in the same way that triviality of multiplier ideals characterizes log canonical
thresholds, triviality of Hodge ideals characterizes minimal exponents. In order to extend
the approach in [6] to the setting of Hodge ideals, we need two new properties of these
invariants, that are of independent interest.

Theorem 1.3. Let � W Y ! X be a finite surjective morphism between smooth varieties
and let KY=X be the effective divisor on Y defined by the determinant of the Jaco-
bian matrix of � . If 0 ¤ f 2 OX .X/ and g D ��.f / both define reduced divisors,
then for every h 2 OX .X/, every nonnegative integer p, and every � 2 Q>0, if ��.h/ �
OY .�KY=X / � Ip.g

�/, then h 2 Ip.f �/.

For a more general statement, which does not assume that f and g define reduced
divisors, see Theorem 3.5 below. We also give a partial converse of this result in the case
of a Galois cover (see Theorem 3.6). At least for such covers, we thus have an extension
of the formula in [14, Theorem 9.5.42] relating multiplier ideals under finite maps.

The next result is concerned with certain Hodge ideals associated to families of hyper-
surfaces with constant Milnor number. Let 'WX ! T be a smooth morphism of smooth
complex algebraic varieties (in particular, T is connected), and let sW T ! X be a sec-
tion of '. Let f 2 OX.X/ be such that f ı s D 0 and for every t 2 T , the restriction
ft to Xt D '

�1.t/ is nonzero. We assume that for every t 2 T , the hypersurface defined
by ft in Xt is reduced, has at most one singular point at s.t/, and furthermore the Milnor
number of this hypersurface at s.t/ is independent of t 2 T (note that the condition to
be reduced is a consequence of isolated singularities as long as the relative dimension is
at least 2). In this case, a result of Varchenko [35] says that the spectrum of ft at s.t/
is independent of t 2 T ; in particular, the minimal exponent z̨s.t/.ft / is independent of
t 2 T .

Theorem 1.4. With the above notation, if ˛ D z̨s.t/.ft / for t 2 T , then for every nonneg-
ative integer p and every  2Q\ .0; 1� with pC  � ˛C 1, the subscheme of X defined
by Ip.f  / is finite and flat over T .possibly empty/. Moreover, for every t 2 T , we have

Ip.f

t / D Ip.f

 / �OXt
:

We deduce this result from the above-mentioned result of Varchenko on the constancy
of the spectrum and a result due to Jung, Kim, Saito, and Yoon [9] that allows us to relate
the Hodge ideals satisfying the condition in the theorem to the Hodge filtration in Steen-
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brink’s mixed Hodge structure on the cohomology of the Milnor fiber. Finally, for the
proof of Theorem 1.1 we also need the Restriction Theorem for Hodge ideals from [21],
as well as a version of the Thom–Sebastiani property for certain Hodge ideals. Regard-
ing the latter property, in our setting it is enough to use a Thom–Sebastiani type result
for some related ideals, Saito’s microlocal multiplier ideals; this property was proved by
Maxim, Saito, and Schürmann [20].

Our main result gives a lower bound for the difference between the minimal exponent
of f and the minimal exponent of a restriction of f to a smooth hypersurface, in terms
of Teissier’s invariant �P .f /. Our last result is an upper bound for the same difference
in terms of multiplicity, when we restrict to a general hypersurface. We note that in this
result we do not require isolated singularities.

Theorem 1.5. LetX be a smooth complex algebraic variety with dim.X/�2, f 2OX .X/

nonzero, and P 2 X such that f .P / D 0. If H is a general hypersurface in X contain-
ing P , then

z̨P .f jH / � z̨P .f / �
1

multP .f /
:

The case when f has an isolated singularity at P is a consequence of a stronger
bound proved by Loeser [15]. We deduce the general case from this one by making use
of a result from [22]. As a consequence of Theorem 1.5 we get conditions, in terms of
the minimal exponent z̨P .f /, that guarantee that successive general hyperplane sections
through P have rational singularities (see Corollary 6.1). Another application concerns a
characterization of singular points with maximal minimal exponent (see Corollary 6.3).

The paper is structured as follows. In the next section we review briefly the Hodge
ideals and the microlocal multiplier ideals, the connection between them, and the corre-
sponding characterization of minimal exponents. In Section 3 we discuss the behavior of
Hodge ideals under finite maps and prove Theorem 1.3, as well as its partial converse in
the case of Galois finite covers. In Section 4 we recall the relevant result from [9] and use
it to relate certain jumping numbers for Hodge ideals to the spectrum. In particular, we
prove Theorem 1.4. We combine these results to give the proof of Theorem 1.1 in Sec-
tion 5. The last section of the paper is devoted to the proof of the bound in the opposite
direction in Theorem 1.5 above and of the above-mentioned applications.

2. Hodge ideals and minimal exponents

In this section we review some basic facts about Hodge ideals and their connection with
minimal exponents and microlocal multiplier ideals, following [21,22]. LetX be a smooth
n-dimensional complex algebraic variety and f 2 OX .X/ a nonzero regular function. We
denote by DX the sheaf of differential operators on X .

For every positive rational number ˛, we have a left DX -module

M.f �˛/ WD OX Œ1=f �f
�˛:
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This is a free module of rank 1 over the sheaf OX Œ1=f �, generated by the element f �˛ ,
with differential operators acting in the expected way: if D is a derivation on OX , then

D � .hf �˛/ D D.h/f �˛ � ˛
hD.f /

f
f �˛:

Since M.f �˛/ is a filtered direct summand of a mixed Hodge module in the sense of [26],
it carries a canonical filtration F�M.f �˛/, compatible with the filtration on DX given by
order of differential operators. The Hodge ideals .Ip.f ˛//p�0 describe this filtration.

In what follows we will only be interested in the case when f defines a reduced
divisor D. In this case, the Hodge ideals are given by

FpM.f �˛/ D Ip.f
˛/ �OX .pD/ � f

�˛

(we note that Ip.f ˛/ was denoted by Ip.˛D/ in [21]).
It is sometimes convenient to also consider the right DX -module corresponding

to M.f �˛/. Recall that there is an equivalence of categories between left and right
DX -modules such that if M is a left DX -module, the OX -module underlying the right
DX -module corresponding to M is !X ˝OX

M (see [8, Section 1.2]). We denote by
Mr .f

�˛/ the right DX -module corresponding to M.f �˛/. The filtration on M.f �˛/

induces a filtration on Mr .f
�˛/, with the convention

Fp�nMr .f
�˛/ D !X ˝OX

FpM.f �˛/:

We next recall the V -filtration associated to f . Let �WX ! X � A1 be the graph
embedding given by �.x/ D .x; f .x//. We denote the standard coordinate on A1 by t .
The D-module-theoretic push-forward Bf WD �COX of OX can be described as

Bf D OX ˝C CŒ@t �

(see [8, Example 1.3.5]). We thus have an OX -basis of Bf given by @jt ı, for j � 0, where
we put ı D 1˝ 1 2 Bf . The action of t on the elements of this basis is given by

t � @
j
t ı D f @

j
t ı � j @

j�1
t ı:

The V -filtration on Bf is a rational filtration .V Bf /2Q which is exhaustive,
decreasing, left-continuous and discrete.1 The filtration, constructed by Malgrange [18],
is uniquely characterized by the following properties:

(i) Every V Bf is a coherent module over DX Œt; @t t �.

(ii) t � V Bf � V C1Bf for all  2 Q, with equality if  > 0.

(iii) @t � V Bf � V �1Bf for all  2 Q.

(iv) For every  2Q, the operator @t t �  on GrV WD V
Bf =V

>Bf is nilpotent, where
V >Bf D

S
 0> V

 0Bf .

1More precisely, the last two properties mean that there is a positive integer ` such that V Bf
is constant for  2 .i=`; .i C 1/=`�, with i 2 Z.
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Remark 2.1. It follows from property (iv) above that if ˛ ¤ 1, then t@t is invertible
on Gr˛V ; in particular, @t WGr˛V ! Gr˛�1V is injective. This implies that if u 2 Bf is such
that @tu 2 V >0Bf , then u 2 V >1Bf .

In particular, the V -filtration on Bf induces a V -filtration .V OX /2Q on OX via the
inclusion OX ,! Bf that maps h to hı. Saito [28] introduced a microlocal version of the
V -filtration. This in turn induces the microlocal V -filtration . zV OX /2Q on OX , which
we can describe via the usual V -filtration as follows. For  � 0, we have zV OX D OX .
If  > 0, write  D p C ˛ for an integer p and ˛ 2 .0; 1� (hence p D d˛e � 1). With this
notation, zV OX consists of those regular functions h 2 OX with the property that there
are regular functions h0; : : : ; hp�1 2 OX such that

h@
p
t ı C hp�1@

p�1
t ı C � � � C h0ı 2 V

˛Bf :

Whenever the function f is not clear from the context, we write zV OX .f / for zV OX .

Remark 2.2. A basic fact is that ı 2 V >0Bf . For example, this follows from Sabbah’s
description of the V -filtration in terms of b-functions (see [24]) and the fact, due to Kashi-
wara [11], that all the roots of the b-function of f are negative rational numbers.

Remark 2.3. The microlocal V -filtration on OX is a rational, decreasing, exhaustive,
left-continuous and discrete filtration by coherent ideals. With the above definition, the
only assertion that is not clear is that zV 1OX � zV

2OX if 1 > 2. In order to check this,
we can easily reduce to the case when 2 D p is a positive integer and 1 D p C ˛ for
a rational number ˛ 2 .0; 1�. In order to prove the inclusion, suppose that h 2 zV pC˛OX ,
hence there are h0; : : : ; hp�1 2 OX such that

h@
p
t ı C hp�1@

p�1
t ı C � � � C h0ı 2 V

˛Bf :

Since h0ı 2 V >0Bf by Remark 2.2, it follows that if

u D h@
p�1
t ı C hp�1@

p�2
t ı C � � � C h1ı;

then @tu 2 V
>0Bf , hence u 2 V >1Bf � V 1Bf by Remark 2.1. This implies that

h 2 zV pOX .

Remark 2.4. The microlocal multiplier ideals of f are defined by

zJ.f  / WD zV C�OX for 0 < � � 1

(see [20, 29]). The shift in the definition is convenient since it implies that for  < 1, the
microlocal multiplier ideal zJ.f  / coincides with the usual multiplier ideal J.f  / (this
is a consequence of a theorem of Budur and Saito [4] relating multiplier ideals to the V -
filtration on OX ). In what follows we will not shift by � since, as we will see shortly, this
indexing matches the one for Hodge ideals, but we will still refer to the elements of the
filtration . zV OX /2Q as microlocal multiplier ideals.

The following is the main result relating Hodge ideals and microlocal multiplier
ideals. It was proved in [29, Theorem 1] for  2 Z>0 and in [22, Theorem A0] in general.
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Theorem 2.5. If f defines a reduced divisor, then for every  D p C ˛ with p 2 Z�0
and ˛ 2 Q \ .0; 1�, we have

Ip.f
˛/C .f / D zV OX C .f /:

In particular, it follows from the theorem that given P 2 X with f .P / D 0, we have
Ip.f

˛/DOX around P if and only if zV OX DOX around P . It was shown by Saito [29]
that if z̨P .f / is the minimal exponent of f at P , then

zV OX D OX around P if and only if  � z̨P .f / (2)

(see also [22, Remark 6.13]). As a consequence, if f defines a reduced divisor, then

Ip.f
˛/ D OX around P if and only if z̨P .f / � p C ˛ (3)

(see [22, Corollary 6.1]).

Remark 2.6. We note that the definition of the minimal exponent that is used in the
above results is in terms of the Bernstein–Sato polynomial of f . We will only need the
above characterization and thus do not recall the precise definition. For more details and
basic properties of the minimal exponent that follow from the above characterization in
terms of Hodge ideals, we refer to [22]. The fact that for isolated singularities the minimal
exponent coincides with the Arnold exponent follows from [17]. We will discuss in more
detail the case of isolated singularities in Section 4.

For us it will be important that Hodge ideals are equal to microlocal multiplier ideals
also in an interval of length 1 starting with the minimal exponent. More precisely, we
have the following result. Recall that the Jacobian ideal Jf of f is defined as follows: if
x1; : : : ; xn are algebraic coordinates in an open subset U of X , then Jf jU is generated
by @f

@x1
; : : : ; @f

@xn
(this definition is independent of the choice of coordinates and thus by

gluing the local definitions we get a coherent ideal sheaf of OX ).

Proposition 2.7. Let f be a nonzero regular function on the smooth complex algebraic
varietyX , defining a reduced divisor, and let P 2X be such that f .P /D 0. Suppose that
 is a positive rational number and we write

 D p C ˛ with p D de � 1:

If  � z̨P .f /C 1, then
Ip.f

˛/ D zV OX

in a neighborhood ofP ; moreover, in such a neighborhood these ideals contain .f /C Jf .

Proof. Suppose first that  � 1. In this case p D 0 and both ideals I0.f  / and zV OX are
equal to the multiplier ideal J.f ��/ for 0 < �� 1 (for the Hodge ideal this follows from
[21, Proposition 9.1], while for the microlocal multiplier ideal it follows from the result of
Budur and Saito [4] relating multiplier ideals and the V -filtration). These ideals contain f
since .f / D J.f / � J.f ��/ for every  � 1. The fact that Jf is contained in J.f 1��/

for � > 0 (which, in turn, is contained in J.f ��/) is proved in [5, Theorem 4.2].
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Suppose now that  > 1, hence p � 1, and that  � z̨P .f /C 1. In this case we have

Ip�1.f
˛/ D OX D zV

�1OX

in a neighborhood of P by (2) and (3). After possibly replacing X by this neighbor-
hood of P , we may and will assume that these equalities hold on X . If we show that
f 2 Ip.f

˛/ \ zV OX , then the equality of the ideals in the proposition follows from
Theorem 2.5. Then the last assertion follows as well if we show that Jf � Ip.f ˛/.

The fact that f 2 Ip.f ˛/ has already been noticed in [22, Corollary 5.5]. The point
is that since Ip�1.f ˛/ D OX , we have

Fp�1M.f �˛/ D

�
OX

1

f p�1

�
� f �˛:

The fact that Fp�1M.f �˛/ � FpM.f �˛/ and the definition of Ip.f ˛/ then give
f 2 Ip.f

˛/. Moreover, since we have F1DX � Fp�1M.f �˛/ � FpM.f �˛/, we see that
if x1; : : : ; xn are local algebraic coordinates on X , then

�.p C ˛ � 1/
1

f p
�
@f

@xi
f �˛ D @xi

�

�
1

f p�1
f �˛

�
2 FpM.f �˛/;

hence Jf � Ip.f ˛/.
In order to complete the proof, it is enough to show that f 2 zV OX . Since zV �1OX

D OX , it follows that we have in V ˛Bf an element of the form

u D @
p�1
t ı C lower order terms:

In this case we have in V ˛Bf also the element

@t tu D f @
p
t ı C lower order terms;

hence f 2 zV OX .

3. Hodge ideals under finite maps

In this section we consider the behavior of Hodge ideals under finite surjective morphisms.
Let us fix such a morphism � WY ! X between smooth complex n-dimensional algebraic
varieties. Since we deal with push-forward of D-modules, in this section we typically
consider right D-modules.

Recall that ��.DX / has a canonical structure of .DY ; �
�1.DX //-bimodule; as such,

it is denoted by DY!X . As for every proper morphism, we have an induced push-
forward morphism between the corresponding derived categories of (quasi-coherent)
right D-modules given by R��.� ˝LDY

DY!X / [8, Chapters 1.3 and 2.5]. The case of
finite maps is easier: first, �� is exact on quasi-coherent OY -modules. Second, DY!X

is a flat left DY -module (see [2, Theorem 2.11.10] or [10, Proposition 2.10]). This
implies that the functor between derived categories is induced by the exact functor
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�C D ��.� ˝DY
DY!X / between the corresponding Abelian categories of right D-

modules. Note that if � is étale, then DY D �
�.DX / and the functor �C is equal to ��

on right DY -modules.

Remark 3.1. We have a morphism of left DY -modules DY ! DY!X that maps 1
to ��.1/. This induces a canonical morphism of OX -modules ��.M/! �C.M/, which
is an isomorphism if � is étale.

We also write iC for the push-forward functor between the Abelian categories of D-
modules when i WU ,! X is the open immersion corresponding to the complement of
an effective divisor in X . We thus have iCM D i�M for every right DU -module M.
It is straightforward to see (and well-known) that if j W V ,! Y is the open immersion
with V D ��1.U / and 'W V ! U is the induced morphism, then we have a canonical
isomorphism of functors �C ı jC ' iC ı 'C.

Lemma 3.2. If � WY ! X is a finite surjective morphism between smooth complex alge-
braic varieties and if M is a right DY -module having no torsion as an OY -module, then
�C.M/ has no torsion as an OX -module.

Proof. The assertion is local on X , hence we may assume that X (and thus also Y ) is
affine. By generic smoothness, we can find a nonzero h 2 OX .X/ such that � is étale
over the open subset U D .h ¤ 0/. Let V D ��1.U / and j W V ,! Y and i WU ,! X

be the corresponding open immersions. Note that we have a canonical morphism M !

jC.MjV /, which is injective since M has no torsion as an OY -module. By taking the
direct image, we get an injective morphism

�CM! �CjC.MjV / ' iC'C.MjV /;

where 'WV ! U is the induced morphism; therefore it is enough to show that the right-
hand side has no torsion. Note that as an OX -module, iC'C.MjV / is simply i�'�.MjV /,
since ' is étale. Since MjV is an OV -module without torsion, it follows that i�'�.MjV /
is an OX -module without torsion. This completes the proof.

In what follows, we will make use of Saito’s theory of pure and mixed Hodge mod-
ules, for which we refer to [25, 26]. Recall that a mixed Hodge module has an underlying
filtered (right) D-module. For example, on a smooth n-dimensional variety X , we have
the pure Hodge module QH

X Œn�, whose underlying DX -module is !X (the right DX -
module corresponding to OX ), with the filtration given by Fp�n!X D !X for p � 0,
and Fp�n!X D 0 otherwise.

Suppose now that 'WW ! X is a morphism between smooth varieties which is either
finite and surjective, or an open immersion given by the complement of an effective divi-
sor. If .M; F�/ is a filtered DW -module on W that underlies a mixed Hodge module M ,
then we have by [26] a mixed Hodge module that we will denote by 'CM and whose
underlying filtered DX -module we will denote by 'C.M; F�/. The corresponding DX -
module is just 'C.M/, but the description of the filtration is rather subtle. When W is
the complement of the hypersurface defined by f 2 OX .X/ andM D QH

W Œn�, we get the
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filtration on OX Œ1=f � described by the Hodge ideals of f . One easy case is when ' is
finite and étale, in which case Fp.'CM/ D '�.FpM/ for all p.

Given a finite surjective morphism � W Y ! X of smooth n-dimensional algebraic
varieties, we have a canonical morphism of mixed Hodge modules

QH
X Œn�! �CQY Œn� (4)

that commutes with restriction to open subsets of X . At the level of DX -modules, this is
given by the composition

!X ,! ��!Y ! �C!Y ;

where the first morphism maps a form � 2 !X to its pull-back ��.�/ 2 !Y and the second
morphism is the one in Remark 3.1.

The next lemma provides the ingredient to relate Hodge ideals under finite maps.
Suppose that � W Y ! X is a finite surjective morphism between n-dimensional smooth
varieties, f 2 OX .X/ is nonzero, and g D f ı � 2 OY .Y /. Recall that associated to
f and g we have the filtered right D-modules Mr .f

�˛/ and Mr .g
�˛/ on X and Y ,

respectively. Note that for every ˛ 2 Q>0, we have a canonical morphism of OX -modules

Mr .f
�˛/! ��Mr .g

�˛/ (5)

that maps u D f �˛ �
fm with � 2 !Y to ��.u/ WD g�˛ �

�.�/
gm .

Lemma 3.3. With the above notation, for every ˛ 2 Q>0, the map � given by the compo-
sition

Mr .f
�˛/! ��Mr .g

�˛/! �CMr .g
�˛/;

where the first map is the one in (5) and the second map is the one in Remark 3.1, is an
injective strict morphism of filtered DX -modules.

Proof. For the proof, we will need to make use of the definition of the filtrations on
Mr .f

�˛/ and Mr .g
�˛/ in [21, Section 2]. Let X 0 D X X V.f / and Y 0 D Y X V.g/.

Choose an integer m � 2 such that m˛ 2 Z and let

Y 00 D �pec.OY 0 Œy�=.ym � g�m˛// and X 00 D �pec.OX 0 Œy�=.ym � f �m˛//;

so that we have a diagram with Cartesian squares

Y 00
q //

 

��

Y 0

'

��

j // Y

�

��
X 00

p // X 0
i // X

with i and j open immersions and p and q finite étale morphisms. We have by (4) a
canonical morphism of mixed Hodge modules

QH
X 00 Œn�!  CQH

Y 00 Œn�;
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that induces, after applying iCpC and taking the underlying filtered DX -modules, a mor-
phism of filtered DX -modules

m�1M
kD0

Mr .f
�k˛/! �C

m�1M
kD0

Mr .g
�k˛/:

By taking the suitable eigenspace with respect to the Z=mZ action on both sides, we
obtain, for k D 1, a morphism of filtered DX -modules

Mr .f
�˛/! �CMr .g

�˛/:

Checking that it is given by the composition in the statement is an easy exercise. Strictness
follows from the fact that for every morphism of mixed Hodge modules, the underlying
morphism of filtered D-modules is strict. The fact that � is injective is clear if � is étale;
the general case follows by restricting to an open subset U of X such that � is étale
over U and using the fact that as an OX -module, Mr .f

�˛/ has no torsion.

In order to describe the filtration on �CMr .g
�˛/, we take the usual approach, by

factoring � as q ı �, where �W Y ! Y � X is the graph embedding given by �.y/ D
.y;�.y// and qWY �X ! X is the projection onto the second component. Let us assume
that we have algebraic coordinates x1; : : : ; xn defined on X (we can always reduce to
this case by taking a suitable cover of X ). Let �i D ��.xi / 2 OY .Y /. If M is a right
DY -module, then the D-module push-forward via � is easy to compute: we have an
isomorphism

�CM 'M ˝C CŒ@x1
; : : : ; @xn

�; (6)

where on the right-hand side a function h 2 OX acts via

.u˝ 1/h D u��.h/˝ 1 for all u 2M

and a derivation D 2 DerC.OY / acts by

.u˝ @ˇx /D D uD ˝ @
ˇ
x �

nX
iD1

uD.�i /˝ @
ˇCei
x for u 2M; ˇ 2 Zn�0; (7)

where we use the multi-index notation and e1; : : : ; en is the standard basis of Zn. More-
over, if .M; F�/ is a filtered DY -module, then via the isomorphism (6) we have

Fk�CM D
X
ˇ2Zn
�0

Fk�jˇ jM ˝ @
ˇ
x for all k 2 Z; (8)

where for ˇ D .ˇ1; : : : ; ˇn/, we put jˇj D
P
i ˇi .

On the other hand, the D-module push-forward via q is computed by the relative
Spencer complex. Given a right DY�X -module N , the relative Spencer complex of N is
the complex

C �.N / W 0! N ˝OY�X

Vn
p�.TY /! � � � ! N ˝OY�X

p�.TY /
d1
! N ! 0;
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where TY is the tangent sheaf of Y and pW Y � X ! Y is the projection onto the first
component. The map d1, which is the only one we will need, is given by right multiplica-
tion.

If M is a DY -module, then we have a canonical isomorphism

�CM ' H0.C �.�CM// D coker.�CM ˝ p�.TY /! �CM/:

Moreover, if .M; F�/ is the filtered DY -module underlying a mixed Hodge module, then
via this isomorphism, the filtration on �CM is the quotient filtration induced by the fil-
tration on �CM described in (8).

Remark 3.4. If we are in the setting of Lemma 3.3, then via the isomorphism

�CMr .g
�˛/ ' coker

�
�CMr .g

�˛/˝ p�.TY /! �CMr .g
�˛/

�
; (9)

the morphism � maps u 2Mr .f
�˛/ to the class of ��.u/˝ 1 2 �CMr .g

�˛/. Indeed,
since as an OX -module �CMr .g

�˛/ has no torsion by Lemma 3.2, in order to check the
assertion we may restrict to an open subset U of X such that � is étale over U ; in this
case the assertion follows via an easy computation.

Theorem 3.5. Let � W Y ! X be a finite surjective morphism between smooth n-dimen-
sional complex algebraic varieties. If f 2 OX .X/ is nonzero and g D ��.f / 2 OY .Y /,
then for every ˛ 2 Q>0 and k 2 Z, we have the following inclusion:

¹u 2Mr .f
�˛/ j ��.u/ 2 FkMr .g

�˛/º � FkMr .f
�˛/:

Note that if we assume that f and g define reduced divisors, then by passing from
right to left D-modules and using the definition of Hodge ideals, we obtain the assertion
in Theorem 1.3.

Proof of Theorem 3.5. After taking a suitable open cover of X , we may assume that
we have algebraic coordinates defined on X . If u 2 Mr .f

�˛/ is such that ��.u/ 2
FkMr .g

�˛/, then it follows from the above description of the filtration on �CMr .g
�˛/

that the class of ��.u/ ˝ 1 in coker.�CMr .g
�˛/ ˝ p�.TY / ! �CMr .g

�˛// lies in
Fk.�CMr .g

�˛//. Since this is equal to �.u/ and � is strict by Lemma 3.3, we conclude
that u 2 FkMr .f

�˛/.

Our next goal is to understand how far the inclusion in Theorem 3.5 is from being an
equality. We will do this under the extra assumption that � is Galois. This result will not
be used in the following sections.

Let � W Y ! X be a finite surjective morphism between smooth complex algebraic
varieties. Recall that � is Galois if the corresponding field extension C.X/ ,! C.Y / is
normal (hence Galois, since we are in characteristic 0). Suppose that this is the case and
let G be the Galois group of this field extension. Since Y is the integral closure of X
in C.Y /, we have an induced action of G on Y and � is the quotient morphism with
respect to this action.
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Theorem 3.6. Let � W Y ! X be a Galois finite surjective morphism between smooth
n-dimensional complex algebraic varieties. Suppose that f 2 OX .X/ is nonzero and let
g D ��.f / 2 OY .Y /. For every ˛ 2 Q>0 and k 2 Z, put

F 0kMr .f
�˛/ WD ¹u 2Mr .f

�˛/ j ��.u/ 2 FkMr .g
�˛/º:

Then, for every k 2 Z,

FkMr .f
�˛/ D

X
i�0

F 0k�iMr .f
�˛/ � FiDX : (10)

In particular,

FkMr .f
�˛/ D Fk�1Mr .f

�˛/ � F1DX C F
0
kMr .f

�˛/:

Proof. After taking a suitable open cover of X , we may and will assume that X (hence
also Y ) is affine and we have algebraic coordinates x1; : : : ; xn defined onX . We may thus
use the description of the filtration on �CMr .g

�˛/ that we have discussed.
Note that the action of G on Y induces a G-action on OY .Y /. Moreover, it also

induces a G-action on �.Y; !Y / that makes !Y a G-equivariant sheaf.2 Moreover, its
subspace of invariant sections is precisely the image of the map

�.X; !X /! �.Y; !Y /

given by the pull-back of differential forms (see [3, Theorem 1]). Since g is a G-invariant
section of OY , it follows that the sheaf Mr .g

�˛/ has an induced structure ofG-equivariant
sheaf; moreover, its subspace of G-invariant sections is the image of the pull-back map

�.X;Mr .f
�˛//! �.Y;Mr .g

�˛/
�
:

We also have an induced G-action on �.X; �CMr .g
�˛/

�
. To see this, note that we

have a naturalG-action on �.Y �X;�CMr .g
�˛//D�.Y;Mr .g

�˛//˝C CŒ@x1
; : : : ;@xn

�,
where G acts trivially on CŒ@x1

; : : : ; @xn
�. The G-action on Y induces an action of G on

�.Y; TY / such that the multiplication map �CMr .g
�˛/˝ TY ! �CMr .g

�˛/ is compat-
ible with the G-actions. We thus get an induced G-action on the cokernel of this map and
thus on �.X; �CMr .g

�˛/
�

via the isomorphism (9). It also follows from the description
of the canonical morphism

� W�.X;Mr .f
�˛//! �.X; �CMr .g

�˛//

in Remark 3.4 that the image of � lands in the subspace of G-invariant sections. A key
point is that due to the fact that g is G-invariant, the filtration on �.Y;Mr .g

�˛// is
preserved by the G-action and therefore so is the filtration on �.X; �CMr .g

�˛//.

2Since G is a finite group and Y is affine, this simply means that the scalar multiplication
OY .Y / � �.Y; !Y /! �.Y; !Y / is compatible with the G-actions.
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Given a complex vector space V with a G-action, we consider the linear map A D
AV WV ! V given by A.v/ D 1

jGj

P
g2G gv. Note that A.v/ lies in the subspace V G of

invariant elements for every v 2 V and A.v/ D v if v 2 V G .
The inclusion “�” in (10) is clear: it follows from Theorem 3.5 that for every j we

have F 0jMr .f
�˛/ � FjMr .f

�˛/ and thus

F 0k�iMr .f
�˛/ � FiDX � FkMr .f

�˛/:

We now prove the reverse inclusion. Given a global section u of FkMr .f
�˛/, it follows

from Lemma 3.3 that �.u/ is a global section of Fk.�CMr .g
�˛//. This means that we

can find global sections wˇ of Fk�jˇ jMr .g
�˛/ for ˇ 2 Zn�0, with wˇ D 0 for all but

finitely many ˇ, such that

��.u/˝ 1 �
X
ˇ

wˇ ˝ @
ˇ
x 2 Im

�
�CMr .g

�˛/˝ TY ! �CMr .g
�˛/

�
:

If we put w0
ˇ
D A.wˇ / 2 �.Y; Fk�jˇ jMr .g

�˛/
�G , we see that

��.u/˝ 1 �
X
ˇ

w0ˇ ˝ @
ˇ
x 2 Im

�
�CMr .g

�˛/˝ TY ! �CMr .g
�˛/

�
:

Since each w0
ˇ

is G-invariant, it follows that we can write w0
ˇ
D ��.uˇ / for some

global section uˇ of F 0
k�jˇ j

Mr .f
�˛/. We now claim that for every ˇ, ��.uˇ / ˝ @

ˇ
x

and ��.uˇ@
ˇ
x / ˝ 1 have the same image in �.X; �CMr .g

�˛//. If this is the case, it
follows that �.u/ D �.

P
ˇ uˇ@

ˇ
x /. Since � is injective by Lemma 3.3, we conclude that

u 2
P
i�0 F

0
k�i

Mr .f
�˛/ � FiDX .

In order to prove the above claim, since �CMr .g
�˛/ is an OX -module with no tor-

sion by Lemma 3.2, it is enough to prove it on some nonempty open subset of X . We
thus may and will assume that � is étale. In this case, if �i D xi ı � , then �1; : : : ; �n
give an algebraic system of coordinates on Y and we have a corresponding system of
derivations @�1

; : : : ; @�n
. Of course, arguing by induction on jˇj, it is enough to show that

for every global section � of Mr .f
�˛/, the elements ��.�@xi

/˝ 1 and ��.�/˝ @xi
in

�CMr .g
�˛/ have the same image in �CMr .g

�˛/. This follows from the fact that by (7),
the map �CMr .g

�˛/˝ TY ! �CMr .g
�˛/ maps ��.�/˝ @�i

to

��.�/@�i
˝ 1 � ��.�/˝ @xi

D ��.�@xi
/˝ 1 � ��.�/˝ @xi

:

This completes the proof of (10) and the last assertion in the theorem is an immediate
consequence.

We now give a consequence of the results in Theorems 1.3 and 3.6 for minimal expo-
nents.

Corollary 3.7. Let � W Y ! X be a finite surjective morphism between smooth complex
algebraic varieties and letKY=X be the effective divisor on Y locally defined by the deter-
minant of a Jacobian matrix of � . If 0¤ f 2 OX .X/ and g D f ı � both define reduced
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divisors, then the following hold for every P in X with f .P / D 0, every nonnegative
integer p, and every ˛ 2 Q \ .0; 1�:
(i) If OY .�KY=X / � Ip.g

˛/ in a neighborhood of the fiber ��1.P /, then z̨P .f / �
p C ˛.

(ii) If � is Galois and the hypersurface defined by f is not smooth atP , then the converse
of (i) holds: if z̨P .f / � p C ˛, then OY .�KY=X / � Ip.g

˛/ in a neighborhood of
the fiber ��1.P /.

Remark 3.8. Note that a similar assertion holds for log canonical thresholds of arbitrary
regular functions in the setting of a finite surjective morphism between smooth varieties,
as above: we have lctP .f / > � if and only if OY .�KY=X / is contained in the multi-
plier ideal J.g�/ in a neighborhood of the fiber ��1.P /. This follows from the fact that
lctP .f / > � if and only if J.f �/D OX in a neighborhood of P and the theorem relating
the multiplier ideals of f and g (see [14, Theorem 9.5.42]).

Proof of Corollary 3.7. The first assertion follows directly from Theorem 1.3 and the
characterization of z̨P .f / via the Hodge ideals of f in (3). Suppose now that we are in the
setting of (ii). Using again the characterization of z̨P .f / via the Hodge ideals of f , we
conclude using the hypothesis that Ip.f ˛/ D OX in a neighborhood of P . Equivalently,
we have

OX �
1

f p
f �˛ D FpM.f �˛/: (11)

For every k 2 Z, let us put

F 0kM.f �˛/D

²
uD

h

f p
f �˛ 2 FkM.f �˛/

ˇ̌̌̌
��.h/

gp
OY .�KY=X / � g

�˛
� FkM.g�˛/

³
:

It follows from equation (10) in Theorem 3.6 (after passing from right to left D-modules)
that

FpM.f �˛/ D F 0pM.f �˛/C F1DX � Fp�1M.f �˛/:

We next show that since f has a singular point at P , we have

F1DX � Fp�1M.f �˛/ � mP �
1

f p
f �˛; (12)

where mP is the ideal of functions vanishing at P . In order to see this, let us choose local
coordinates x1; : : : ; xn centered at P . First, recall that

Fp�1M.f �˛/ � OX �
1

f p�1
f �˛ � mP �

1

f p
f �˛;

where the second inclusion follows from the fact that f 2mP . Moreover, for every i and
every h 2 OX , we have

@xi
�

h

f p�1
f �˛ D

@h

@xi
�
f

f p
f �˛ � .˛ C p � 1/

@f

@xi
�
h

f p
f �˛ 2 mP �

1

f p
f �˛;

where we use the fact that f; @f
@xi
2 mP . This proves (12).
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We thus have the OX -submodule F 0pM.f �˛/ of OX �
1
f p f

�˛ and (11) and (12) give

OX �
1

f p
f �˛ � F 0pM.f �˛/CmP �

1

f p
f �˛:

We deduce using Nakayama’s lemma that 1
f p f

�˛ 2 F 0pM.f �˛/ around P , that is,
OY .�KY=X / � Ip.g

˛/.

4. Hodge ideals for families with constant Milnor number

Let X be a smooth n-dimensional complex algebraic variety and f 2 OX .X/ a nonzero
regular function. Let P 2 X be a point with f .P / D 0; we assume that P is a singular
point of f and that f has an isolated singularity at P . Recall that Jf denotes the Jacobian
ideal of f , generated by @f

@x1
; : : : ; @f

@xn
, where x1; : : : ; xn are local coordinates on X . Our

assumption on f implies that the dimension �D �P .f / WD dimC.OX;P =Jf;P / is a finite
positive number; this is the Milnor number of f at P . We note that a more natural context
for the discussion in this section is that of holomorphic functions on complex manifolds;
however, this is not really that different from the algebraic case since we deal with isolated
singularities, so that we prefer to stick to the algebraic case, as in the rest of the article.

For basic facts on the spectrum of f and its connection to the V -filtration and the
mixed Hodge structure on the cohomology of the Milnor fiber of f at P , we refer to
[9, Section 1] and the references therein. We only recall that if Ff;P denotes the Milnor
fiber of f at P , then on its cohomologyHn�1.Ff;P ;Q/ there is a mixed Hodge structure
and a compatible action of the monodromy T (the inverse of the Milnor monodromy).
Note that dimQ H

n�1.Ff;P ;Q/ D �. If Ts is the semisimple part of the monodromy and
if � is an eigenvalue of Ts on the above cohomology, then Hn�1.Ff;P ;C/� denotes the
corresponding eigenspace.

The spectrum of f at P is a collection of � positive rational numbers, not necessarily
distinct and indexed nondecreasingly ˛1; : : : ; ˛� such that for every ˇ 2 Q>0, we have

#¹i j ˛i D ˇº D dimC GrqFH
n�1.Ff;P ;C/�; (13)

where � D exp.�2�iˇ/ and q D n � dˇe. Note that ˛1 appears with multiplicity 1 and
it is equal to z̨P .f /.

Let us review now the connection between the Hodge filtration on Hn�1.Ff;P ;Q/
and the V -filtration on the Brieskorn lattice. Recall that the Brieskorn lattice of f at P is

H 00f;P WD �
n
X;P =df ^ d�

n�2
X;P ;

where the stalks of the sheaves of differential forms are the analytic ones (associated to
the complex manifold X an). This has a structure of free module of rank � over C¹¹tºº and
over C¹¹@�1t ºº, where the action of t is given by t � Œ!� D Œf!� and the action of @�1t is
given by @�1t � Œ!� D Œdf ^ ��, where d� D !. The Gauss–Manin system of f at P is

Gf;P WD H
00
f;P Œ@t �:
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Note that we have an injective map H 00
f;P

,! Gf;P and a surjective map

H 00f;P ! �nf;P WD �
n
X;P =df ^�

n�1
X;P :

A choice of local coordinates x1; : : : ; xn at P gives an isomorphism

�nf;P ' OX;P =Jf;P :

On the Gauss–Manin system there is a V -filtration, similar to the one discussed in
Section 2, such that @t t � ˇ is nilpotent on GrˇVGf;P for all ˇ 2 Q. This V -filtration
induces a V -filtration on the submodule H 00

f;P
and then a quotient filtration on �n

f;P
. An

important fact is that for every ˇ 2 Q, we have an isomorphism

GrˇV�
n
f;P ' GrqFH

n�1.Ff;P ;C/�; (14)

where � D exp.�2�iˇ/ and q D n � dˇe (see [9, (1.2.2)]).
The key result for us is that via the isomorphism �n

f;P
' OX;P =Jf;P , the quotient

V -filtration on �n
f;P

coincides with the quotient filtration on OX;P =Jf;P induced by the
microlocal V -filtration: for every ˇ 2 Q, the isomorphism identifies

V ˇ�nf;P with . zV ˇOX;P C Jf;P /=Jf;P (15)

(see [9, Proposition 1.4]).
Recall now that if ˇ0 � z̨P .f /C 1, then Jf � zV ˇ

0

OX around P (see Proposition 2.7).
We thus deduce from (14) and (15) that if ˇ < z̨P .f /C 1, then we have an isomorphism

zV ˇOX;P = zV
>ˇOX;P ' GrqFH

n�1.Ff;P ;C/�;

where � D exp.�2�iˇ/ and q D n � dˇe. We thus obtain the following:

Proposition 4.1. If f has an isolated singularity at P and ˇ < z̨P .f / C 1, then ˇ is
a jumping number for the microlocal multiplier ideals of f at P .that is, zV ˇOX;P ¤
zV >ˇOX;P / if and only if ˇ is in the spectrum of f at P . More precisely, the multiplicity
of ˇ in this spectrum is equal to dimC. zV

ˇOX;P = zV
>ˇOX;P /.

We also obtain the result stated in the Introduction.

Proof of Theorem 1.4. If �s.t/.ft / D 0 (that is, if the hypersurface defined by ft is
smooth at s.t/), then the assertions in the theorem are trivial, since all Hodge ideals
coincide with the corresponding structure sheaves. Hence from now on we assume that
�s.t/.ft / > 0. By Varchenko’s theorem [35], the constancy of the Milnor number implies
that the spectrum of ft is independent of t . Since by assumption pC  � ˛C 1, it follows
from Proposition 2.7 that

Ip.f

t / D zV

pCOXt
.ft / � Jft

(note that it is enough to check these at s.t/, since the hypersurface defined by f is smooth
away from this point). By the definition of the spectrum (see (13)) and using (14) and (15),
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we conclude that

dimC.OXt
=Ip.f


t // is independent of t 2 T: (16)

Since each hypersurface defined by every ft is reduced, it follows that the hypersur-
face defined by f is reduced as well. Let Z be the closed subscheme of X defined by
Ip.f

 / and � WZ! T the morphism induced by '. Note that � is finite, being proper,
with finite fibers: in fact, the support of Z is a closed subset of s.T /.

Using the Restriction Theorem for Hodge ideals (see [21, Theorem A (vi)]), we see
that

Ip.f

t / � Ip.f

 / �OXt
for all t 2 T; (17)

with equality for general t 2 T . For the finite morphism � , we know that the map

T 3 t 7! dimC.OXt
=Ip.f

 / �OXt
/

is upper-semicontinuous, and it is constant if and only if � is flat. We thus deduce from
(16) and (17) that the inclusion in (17) is an equality for all t 2 T and that � is flat. This
completes the proof of the theorem.

5. Proof of Teissier’s conjecture

Before giving the proof of Theorem 1.1, we make some preliminary remarks. We begin
by reviewing some facts about semicontinuity of minimal exponents, which we will also
use in the next section.

Suppose first that we have a smooth morphism 'WX ! T of complex algebraic vari-
eties and sW T ! X is a section of '. Suppose that f 2 OX.X/ is such that for every
t 2 T , the restriction ft of f to Xt D '�1.t/ is nonzero. We assume that f ı s D 0,
hence we may consider z̨s.t/.ft / for all t 2 T . In this case, the function

T 3 t 7! z̨s.t/.ft /

is lower semicontinuous by [22, Theorem E (2)] (when each ft has an isolated singularity
at s.t/, this result was also proved in [30, Theorem 2.11]). In fact, the proof in [22] shows
something stronger: for every ˛ > 0, the set ¹t 2 T j z̨s.t/.ft / � ˛º is open in T . Since
a countable intersection of nonempty open subsets is nonempty, it follows that the set
¹z̨s.t/.ft / j t 2 T º has a maximum, which is achieved on an open subset of T .

We next make two remarks concerning the hypothesis in Theorem 1.1.

Remark 5.1. In the statement of Theorem 1.1, we may also assume that the hypersurface
defined by f jH in H has an isolated singularity at P . For this, it is enough to show that
there is a smooth hypersurface H 0 containing P , with the hypersurface defined by f jH 0
having an isolated singularity at P , and such that z̨P .f jH 0/ � z̨P .f jH /. It is clear that
in the statement of the theorem we may assume that X is affine and that we have a system
of algebraic coordinates x1; : : : ; xn on X , centered at P , such that H is generated by x1.
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If H 0 is defined by a1x1 C � � � C anxn, where a1; : : : ; an 2 C are general, then it follows
from the semicontinuity of minimal exponents that z̨P .f jH 0/ � z̨P .f jH /. On the other
hand, since the hypersurface Y defined by f has an isolated singularity at P , it is easy
to see that also the hypersurface in H 0 defined by f jH 0 has an isolated singularity at P .
This proves our assertion.

Remark 5.2. In order to prove Theorem 1.1, it is enough to consider the case when
X D An, P D 0, and H is the hyperplane defined by xn D 0. Indeed, we may assume
that X is affine and we have a system of algebraic coordinates x1; : : : ; xn centered at P
such that H is defined by xn. In this case, the map � D .x1; : : : ; xn/WX ! An is étale,
�.P / D 0, and H is the inverse image of the hyperplane H 0, defined by the vanishing
of the last coordinate. By Remark 5.1, we may also assume that f jH has isolated singu-
larities. For every d � 1, there is fd 2 OAn.An/ such that f � ��.fd / 2 .x1; : : : ; xn/d .
Since f has an isolated singularity at P , it follows that f and ��.fd / differ by an ana-
lytic change of coordinates for d � 0 (see [7, Corollary 2.24]); since both the minimal
exponent and Teissier’s invariant �P .f / can be computed by passing to the local ring of
the corresponding complex manifold, we have

z̨P .f / D z̨P .�
�.fd // and �P .f / D �P .�

�.fd //:

The same argument implies that z̨P .f jH / D z̨P .��.fd /jH / for d � 0. On the other
hand, since � induces a biholomorphic map in a neighborhood of P , we also have

z̨P .�
�.fd // D z̨0.fd /; z̨P .�

�.fd /jH / D z̨0.fd jH 0/; and �P .�
�.fd // D �0.fd /:

This completes the proof of our assertion.

We can now give the proof of our main result.

Proof of Theorem 1.1. It follows from Remarks 5.1 and 5.2 that we may and will assume
that X D An, with coordinates x1; : : : ; xn,H is the hyperplane defined by xn D 0, and P
is the origin; moreover, g D f .x1; : : : ; xn�1; 0/ has an isolated singularity at 0 in An�1.
We choose a positive integer d such thatm WD d.�P .f /C 1/ is an integer. The case when
the hypersurface defined by f is smooth at P is trivial, since in this case z̨P .f / D 1.
Therefore from now on we assume that this hypersurface is singular at P . We thus have
Jf � .x1; : : : ; xn/, hence �P .f /� 1. Let �D z̨P .g/C 1

�P .f /C1
, so that we need to show

that z̨P .f / � �.
If n D 2, then z̨P .f / D lctP .f / since by [28, Theorem (0.4)], we have z̨P .f / �

n=2 D 1. Therefore the assertion in the theorem follows from the main result in [6].
Hence from now on we assume n � 3. In this case, since g has an isolated singularity
at 0, it follows that it is reduced in a neighborhood of 0.

As we have explained in the Introduction, we follow the approach in [6], replacing
log canonical thresholds and multiplier ideals by minimal exponents and Hodge ideals,
respectively. For technical reasons, in our setting it is important to consider the following
two-parameter family of hypersurfaces: let

h.x1; : : : ; xn; y; z/ D f .x1; : : : ; xn�1; yx
d
n /C zx

m
n 2 CŒx1; : : : ; xn; y; z�
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and for every s; t 2 C we consider hs;t D hjyDs;zDt 2 CŒx1; : : : ; xn�. Note that for every s
and t we have hs;t jH D f jH . First, since f jH is reduced in a neighborhood of P , it fol-
lows that every hs;t is reduced in a neighborhood of P and h is reduced in a neighborhood
of ¹P º � A2. We can thus use the results in Section 2 for the Hodge ideals of hs;t and h
around the respective subsets. Second, we have

z̨P .hs;t / � z̨P .g/ and z̨.P;s;t/.h/ � z̨P .g/ for all s; t 2 C (18)

since the minimal exponent does not go up under restriction to a smooth hypersurface,
see [22, Theorem E (1)]. Since � � z̨P .g/ � 1=2, we deduce from Proposition 2.7 that if
we write

� D p C  with p D d�e � 1;

then

Ip.h

s;t / D zV

�OAn.hs;t / around P for all s; t 2 C;

Ip.h
 / D zV �OAnC2.h/ around ¹P º � A2:

We put
I WD Ip.h

 / � S D CŒx1; : : : ; xn; y; z�:

We consider on S the grading such that wt.xn/ D 1, wt.y/ D �d , wt.z/ D �m, and
wt.xi / D 0 for 1 � i � n � 1, so that h is homogeneous of weight 0. This implies that
I is a graded ideal of S (since the hypersurface defined by h is preserved by the C�-
action corresponding to the grading of S , the same holds for the Hodge ideals of this
hypersurface).

Step 1. We first show that xd�1n 2 Ip.hj

yD0/ around ¹P º � ¹0º �A1. Note that hjyD0 D

g.x1; : : : ; xn�1/C zx
m
n . We thus deduce from the Thom–Sebastiani theorem for microlo-

cal multiplier ideals (see [20, Theorem 2.2]) that around ¹P º � ¹0º � A1 we have

zV �OAnC1.hjyD0/

D

X
ˇ1Cˇ2D�

�
zV ˇ1OAn�1.g/ � CŒx1; : : : ; xn; z�

�
�
�
zV ˇ2OA2.zxmn / � CŒx1; : : : ; xn; z�

�
:

(19)

By the characterization of the minimal exponent in terms of microlocal multiplier ideals
(see (2)), we have zV ˇ1OAn�1.g/ D CŒx1; : : : ; xn�1� around the origin for ˇ1 D z̨0.g/.
On the other hand, if ˇ2 D 1

�P .f /C1
, then ˇ2 < 1 and thus the corresponding microlocal

multiplier ideal is a usual multiplier ideal for a simple normal crossing divisor, which is
easy to compute:

zV ˇ2OA2.zxmn / D J.A2; .zxmn /
ˇ2��/ for 0 < � � 1

D J.A2; zˇ2��xm.ˇ2��/
n / D .xn/

bm.ˇ2��/c D .xd�1n /

(recall thatm=.�P .f /C1/D d ). We thus conclude from (19) that around ¹P º�¹0º�A1,
xd�1n lies in zV �OAnC1.hjyD0/ D Ip.hj


yD0/.
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Step 2. We next show that there is an open subset U of A2 such that for every .s; t/ 2 U ,
we have xd�1n 2 Ip.h


s;t / around P . Note first that we have

Ip.hj

yD0/ � I �OAnC2 jyD0 around ¹P º � ¹0º � A1:

This is a consequence of the Restriction Theorem for Hodge ideals in [21, Theorem A (vi)].
We deduce from Step 1 that xd�1n 2 I �OAnC2 jyD0 around ¹P º � ¹0º � A1. This implies
that there is a polynomial q 2 CŒx1; : : : ; xn; z� such that q � xd�1n 2 I � OAnC2 jyD0 and
1 � q 2 .x1; : : : ; xn/CŒx1; : : : ; xn; z�. Indeed, for every a 2 C we have a polynomial
qa 2 CŒx1; : : : ; xn; z� such that qa � xd�1n 2 I �OAnC2 jyD0 and qa.0; a/ ¤ 0. If we write
qa D q

0
a C q

00
a with

q0a 2 .x1; : : : ; xn/CŒx1; : : : ; xn; z� and q00a 2 CŒz�;

we see that the gcd of the q00a is 1, hence they generate the unit ideal. This immediately
implies the existence of q as asserted.

We can thus find polynomials Q1;Q2 2 S with Q1 2 I such that

q � xd�1n D Q1 C yQ2: (20)

If we use the grading that we defined on S and for any polynomial Q 2 S , we denote
by Qj the homogeneous component of Q of weight j , then we can write

q0 D 1C
X
i�0

zixmin ui .x1; : : : ; xn�1/ with u0 2 .x1; : : : ; xn�1/CŒx1; : : : ; xn�1�;

.yQ2/d�1 D y �
X
j;k�0

zjykxmjCd.kC2/�1n vj;k.x1; : : : ; xn�1/:

Since I is graded, it follows from (20) that q0 � xd�1n � .yQ2/d�1 2 I . We thus see that
if

R D 1C
X
i�0

zixmin ui .x1; : : : ; xn�1/ � y �
X
j;k�0

zjykxd.kC1/Cmjn vj;k.x1; : : : ; xn�1/;

then R.0; y; z/ D 1 and R � xd�1n 2 I .
The second half of the Restriction Theorem for Hodge ideals (see [21, Theorem A (vi)])

says that there is an open subset U of A2 such that for every .s; t/ 2 U , we have

Ip.h

s;t / D I �OAnC2 jyDs; zDt :

Since R.P; s; t/ ¤ 0, we conclude that for all such .s; t/, we have xd�1n 2 Ip.h

s;t /

around P .

Step 3. We now prove that xd�1n 2 Ip.h

1;0/ around P . Note first that the condition that

m � d.�P .f /C 1/ implies that there is an open neighborhood V of .1; 0/ 2 A2 and an
integer � such that for every .s; t/ 2 V , the hypersurface hs;t has an isolated singularity
at P , with Milnor number �. Indeed, for every .s; t/ 2 A2, with s ¤ 0, an easy change of
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variable implies that hsd ;t has the same Milnor number at P as

f .x1; : : : ; xn�1; x
d
n /C

t

sm
xmn : (21)

It follows from the proof of [6, Lemma 2.10] that the inequality m � d.�P .f / C 1/
implies the existence of an open neighborhood V0 of 0 in A1 such that the Milnor number
at P of the hypersurface in (21) is finite and independent of t=sm 2 V0. If V is the image
of the open set ¹.s; t/ j s ¤ 0; t=sm 2 V0º via the map A2! A2 that maps .s; t/ to .sd ; t /,
then V satisfies the required property (note that this map is open, being flat).

It is then easy to see that there is an open neighborhood W of ¹P º � V in An � V
such that for every .s; t/ 2 V , the only singular point of hs;t in W \ .An � ¹.s; t/º/ is
.P; s; t/ (see for example [6, Proposition 2.9 (ii)]). Let Z be the closed subscheme of W
defined by I �OW and � WZ! V the morphism induced by the projection An �A2!A2.
It follows from our choice ofW that we can apply Theorem 1.4 to the morphism � and to
the function hjW to conclude that � is a finite flat morphism and we have

Ip.h

s;t / D I �OW jyDs; zDt for all .s; t/ 2 V: (22)

Since V is an irreducible variety and � is finite and flat, the fact that xd�1n 2 Ip.h

s;t /

for all .s; t/ 2 U \ V gives xd�1n 2 I � OW on W . Indeed, recall first that by Step 2,
for every .s; t/ 2 U \ V we have xd�1n 2 I � OW jyDs;zDt (a priori, we only know this
around P , but P is the only singular point of hs;t in W \ .An � ¹.s; t/º/). Since � is
finite and flat, this implies3 that xd�1n j��1.U\V / D 0. Using the fact that V is a reduced
scheme and � is flat, we now deduce that xd�1n jZ D 0. In particular, the equality in (22)
for .s; t/ D .1; 0/ gives xd�1n 2 Ip.h


1;0/ around P .

We can now conclude. Note that h1;0.x1; : : : ; xn/ D f .x1; : : : ; xn�1; xdn /. Consider
the finite morphism 'WAn ! An given by '.x1; : : : ; xn/ D .x1; : : : ; xn�1; x

d
n /. Since

'�.f / D h1;0 and P is the only point in the fiber of ' over P , it follows from Step 3
that we may apply Theorem 1.3 for the restriction of ' over a suitable neighborhood
of P to conclude that 1 2 Ip.f  / around P . We thus have z̨P .f / � p C  D � by
the characterization of the minimal exponent in terms of Hodge ideals (see (3)). This
completes the proof of the theorem.

Proof of Corollary 1.2. Since H1; : : : ; Hn�1 are general smooth hypersurfaces in X

containing P , it follows that each Zi WD H1 \ � � � \ Hi is smooth and f jZi
has an

isolated singularity at P , for 1 � i � n � 1. We can thus apply Theorem 1.1 to each
of f; f jZ1

; : : : ; f jZn�2
to conclude that

z̨P .f / �
1

�P .f /C 1
C

1

�P .f jZ1
/C 1

C � � � C
1

�P .f jZn�2
/C 1

C z̨P .f jZn�1
/:

Note now thatZn�1 is a smooth curve. IfmDmultP .f jZn�1
/, then z̨.f jZn�1

/D 1=mD
1

�P .f jZn�1
/C1

. We thus obtain the inequality in the statement of the corollary.

3Note that if A is a reduced algebra of finite type over C and B is a finite flat A-algebra,
then the injective homomorphism A ,!

Q
m2Max.A/ A=m induces an injective homomorphism

B ,!
Q

m2Max.A/ B=mB .
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6. A lower bound for the minimal exponent of general hyperplane sections

Our goal in this section is to prove Theorem 1.5. We begin with a few comments regarding
what we mean by restriction to a general hypersurface. LetP be a point on a smooth com-
plex algebraic variety X . We consider a system of regular functions y1; : : : ; yN defined
on an open neighborhood of P and whose images in the local ring OX;P generate the
maximal ideal. If H is a hypersurface in X defined around P by a linear combinationPN
iD1 aiyi , with a1; : : : ; aN 2 C general, we refer to H as a general hypersurface in X

containing P . It is clear that such a hypersurface is smooth at P .
If f 2 OX .X/ is such that f .P / D 0, then it follows from the semicontinuity state-

ment for minimal exponents discussed at the beginning of the previous section that for
such a generalH , the minimal exponent z̨P .f jH / is independent ofH . Moreover, this is
the largest of all minimal exponents z̨P .f jH 0/, whereH 0 is any hypersurface in X that is
smooth at P and with f jH 0 ¤ 0 (this follows by enlarging the given system of generators
of the maximal ideal of OX;P with the germ of an equation defining H 0 around P ).

We can now prove the lower bound for the minimal exponent for the restriction to a
general hypersurface containing P .

Proof of Theorem 1.5. Let d D multP .f /. The assertion in the theorem is clear if the
hypersurface defined by f is smooth at P : indeed, in this case also the hypersurface
defined by f jH inH is smooth, hence z̨P .f jH /D1D z̨P .f /. Therefore from now on
we may assume d � 2.

Suppose first that we know the assertion when f has an isolated singularity at P .
In order to deduce the general case, we may and will assume that X is affine and we
have an algebraic system of coordinates x1; : : : ; xn on X , centered at P . It follows from
the discussion at the beginning of this section that it is enough to exhibit one smooth
hypersurface H containing P such that z̨P .f jH / � z̨P .f / � 1=d . For every m > d ,
consider

fm D f C

nX
iD1

ai;mx
m
i ;

where a1;m; : : : ; an;m 2 C are general. Note that by the Kleiman–Bertini theorem the
hypersurface defined by fm has at most one singular point, namely P . Note also that
multP .fm/D d . By the isolated singularity case, it follows that ifH is general (depending
on fm), then

z̨P .fmjH / � z̨P .fm/ � 1=d :

Since the intersection of a countable family of nonempty Zariski open subsets of an
irreducible complex algebraic variety is nonempty, it follows that we can choose such
a smooth hypersurface H that satisfies these conditions for all m. Since we have

lim
m!1

z̨P .fm/ D z̨P .f / and lim
m!1

z̨P .fmjH / D z̨P .f jH /

by [22, Proposition 6.6 (3)], we deduce that

z̨P .f jH / � z̨P .f / � 1=d :

Therefore f satisfies the assertion in the theorem.
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We thus see that it is enough to treat the case when f has an isolated singularity
at P . This follows from a sharper inequality proved by Loeser [15]. For the benefit of
the reader, we include a slightly modified version of his proof, explaining in detail how
various arguments from [32] come in the picture.

Arguing as in Remark 5.2, we see that it is enough to consider the case when X D An

and P D 0. After a suitable choice of coordinates x1; : : : ; xn, we may assume that H is
the hyperplane defined by xn D 0. Consider the following family of polynomials:

ht .x1; : : : ; xn/ D f .x1; : : : ; xn�1; txn/C .1 � t /x
d
n for t 2 C:

Note that h0 D g C xdn , where g D f .x1; : : : ; xn�1; 0/, hence the Thom–Sebastiani for-
mula for the minimal exponent gives

z̨0.h0/ D z̨0.g/C 1=d

(see [16, Example (6.8)] or [22, Example 6.7]). On the other hand, we have h1D f , hence
by the semicontinuity of the minimal exponent (see the discussion at the beginning of the
previous section) there is a Zariski open neighborhood U of 1 such that z̨0.ht / � z̨0.f /
for all t 2 U . The key point is to show that there is an open neighborhood V of 0 such that
for t 2 V , ht has an isolated singularity at 0 and the Milnor number is constant. Indeed,
in this case Varchenko’s theorem [35] implies that for t 2 V , we have

z̨0.ht / D z̨0.h0/ D z̨0.g/C 1=d :

By taking t 2 U \ V , we thus obtain

z̨0.f jH / D z̨0.g/ � z̨0.f / � 1=d :

Note that the Milnor number of h0 at 0 is �0.g C xd�1n / D .d � 1/ � �0.g/. Suppose
now that t ¤ 0 and we want to compute the Milnor number �t of ht at 0 for general
such t . Note that since h0 has an isolated singularity at 0, the same holds for ht with t
general.

An easy change of variable gives

�t DdimC.OAn;0=Jt /; where Jt D .@f=@x1; : : : ; @f=@xn�1;dsxd�1n C@f=@xn/ �OAn;0

with s D 1�t

td
. We will make use of various facts about Hilbert–Samuel multiplicities,

for which we refer to [19, Chapter 14]) and, more generally, of mixed multiplicities, for
which we refer to [31,32]. Note that since ht has an isolated singularity at 0, the elements
@f
@x1
; : : : ; @f

@xn�1
; dsxd�1n C

@f
@xn

form a system of parameters, hence a regular sequence,

in the Cohen–Macaulay ring OAn;0. It follows that if � is defined by @f
@x1
; : : : ; @f

@xn�1
, then

its local ring O�;0 is Cohen–Macaulay and

�t D e.Jt IOAn;0/ D e..dsx
d�1
n C @f=@xn/ �O�;0IO�;0/ (23)

(see [19, Theorem 14.11]). On the other hand, since t is general, s is general too, hence

e..sdxd�1n C @f=@xn/ �O�;0IO�;0/ D e..x
d�1
n ; @f=@xn/ �O�;0IO�;0/ (24)
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(see [19, Theorems 14.13 and 14.14]). Using again the fact that @f
@x1
; : : : ; @f

@xn�1
form a

regular sequence and the definition of the Milnor number, we see that

�0.g/ D dimC
�
OAn;0=.xn; @f=@x1; : : : ; @f=@xn�1/

�
D e..xn/ �O�;0IO�;0/: (25)

The fact thatH is general is used in two ways. First, the Jacobian J.f jH / of f jH and
the restriction of Jf to OH;0 have the same integral closure (see [32, Proposition 2.7]).
This implies that

�0.f jH / D e.Jf jH IOH;0/ D e.Jf �OH;0IOH;0
�
: (26)

On the other hand, since H is general, a basic property of mixed multiplicities (see [32,
Corollary 2.2] or [31, Theorem 2.5]) gives

e.Jf �OH;0IOH;0/ D e.J
Œn�1�

f
;mŒ1�

IOAn;0/ D e.m �O�;0IO�;0/; (27)

where m is the maximal ideal in OAn;0 (for the last equality, note that since H is general,
@f=@x1; : : : ; @f=@xn�1 are general linear combinations of a system of generators of Jf ).
By combining (26) and (27), we conclude that �0.g/ D e.m � O�;0IO�;0/, and using
also (25), it follows that

e..xn/ �O�;0IO�;0/ D e.m �O�;0IO�;0/:

The completion of O�;0 has all its minimal primes of the same dimension (in fact, it is
Cohen–Macaulay), hence we can apply a theorem of Rees [23] to conclude that the ideals
.xn/ � O�;0 � m � O�;0 have the same integral closure. Since d D mult0.f /, it follows
that @f=@xn 2 md�1 and we see that the ideals .xd�1n ; @f=@xn/ � O�;0 and md�1 � O�;0
have the same integral closure. Therefore

e..xd�1n ; @f=@xn/ �O�;0IO�;0/ D e.m
d�1
�O�;0IO�;0/ D .d � 1/ � e.m �O�;0IO�;0/:

Using now (23)–(25), we conclude that for t general, we have �t D .d � 1/ � �0.g/

D �0.h0/. This completes the proof of the theorem.

Corollary 6.1. Let X be a smooth complex algebraic variety of dimension n and P a
point in X . Let f 2 OX .X/ be nonzero such that f .P / D 0 and let d D multP .f /. If
z̨P .f / > 1C r=d for some r � n � 1 and H1; : : : ; Hr are general hypersurfaces in X
containing P , then the hypersurface of Y D H1 \ � � � \Hr defined by f jY has rational
singularities at P .

Proof. A repeated application of Theorem 1.5 gives z̨P .f jY / > 1. This implies that the
hypersurface in Y defined by f jY has rational singularities at P by [27, Theorem 0.4].

Example 6.2. Let n � 2 and let f D det.xi;j /1�i;j�n be the determinant of an n � n
matrix of indeterminates. In this case the reduced Bernstein–Sato polynomial of f (at 0)
is given by

zbf .s/ D

nY
iD2

.s C i/
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(see for example [12, Appendix]). We thus have z̨0.f / D 2. Since mult0.f / D n, it fol-
lows from Corollary 6.1 that if L � An2

is a general linear subspace containing 0, of
codimension < n, then the restriction f jL defines a hypersurface with rational singulari-
ties (note that f jL is a homogeneous polynomial, hence having rational singularities at 0
implies rational singularities everywhere).

Corollary 6.3. Let X be a smooth complex algebraic variety of dimension n and P a
point in X . If f 2 OX .X/ is nonzero and P is a singular point of the hypersurface Y
defined by f , then the following are equivalent:

(i) z̨P .f / D n=2.

(ii) The tangent cone CP .f / of Y at P is a quadric cone of rank n.

(iii) There are analytic local coordinates x1; : : : ; xn on X centered at P such that f DPn
iD1 x

2
i .

Proof. The equivalence between (ii) and (iii) is well-known: for example, it is a conse-
quence of the Morse lemma. Note also that if CP .f / is a quadric cone of rank n, then it
is well-known that z̨P .f / D n=2 (see, for example, [22, Theorem E (3)]). Therefore it is
enough to prove the converse.

Recall that since P is a singular point of Y , we always have z̨P .f / � n=2 by [28,
Theorem (0.4)]. We prove by induction on n � 1 that if z̨P .f / D n=2, then f satisfies
the condition in (ii). The case n D 1 is trivial. For the induction step, suppose that n � 2
and that we know the assertion for n� 1. If z̨P .f / D n=2 and d D multP .f /, then for a
general hypersurface H in X containing P , it follows from Theorem 1.5 that

z̨P .f jH / � z̨P .f / �
1

d
D
n

2
�
1

d
�
n � 1

2
:

Since z̨P .f jH / � n�1
2

, we conclude that d D 2 and z̨P .f jH / D n�1
2

. By the induction
hypothesis, it follows that CP .f jH / is a quadric cone of rank n � 1. In particular, we
deduce that CP .f / is a quadric cone of rank � n � 1. By the Morse lemma, there are
local analytic coordinates x1; : : : ; xn on X centered at P such that f D xm1 C

Pn
iD2 x

2
i

for some m � 2. In this case the Thom–Sebastiani formula gives z̨P .f / D 1
m
C

n�1
2

.
Since z̨P .f / D n

2
, we deduce thatm D 2, completing the proof of the induction step.
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