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Abstract. This paper investigates the relationship between strata of abelian differentials and vari-
ous mapping class groups afforded by means of the topological monodromy representation. Build-
ing off of prior work of the authors, we show that the fundamental group of a stratum surjects onto
the subgroup of the mapping class group which preserves a fixed framing of the underlying Rie-
mann surface, thereby giving a complete characterization of the monodromy group. In the course
of our proof we also show that these “framed mapping class groups” are finitely generated (even
though they are of infinite index) and give explicit generating sets.
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1. Introduction

The moduli space QMg of holomorphic 1-forms (abelian differentials) of genus g is a
complex g-dimensional vector bundle over the moduli space Mg. The complement of
its zero section is naturally partitioned into strata, suborbifolds with fixed number and
degree of zeros. Fixing a partition « := (k1, ..., k,) of 2g — 2, we let QMg (k) denote
the stratum consisting of those pairs (X, w) where w is an abelian differential on X € M,
with zeros of orders k.

As strata are quasi-projective varieties their (orbifold) fundamental groups are finitely
presented. Kontsevich and Zorich famously conjectured that strata should be K(G, 1)’s
for “some mapping class group” [20], but little progress has been made in this direction.
This paper continues the work begun in [4,5], where the authors investigate these orbifold
fundamental groups by means of a “topological monodromy representation.”

Any (homotopy class of) loop in M, (k) based at (X, w) gives rise to (the isotopy
class of) a self-homeomorphism X — X which preserves Z = Zeros(w). This gives rise
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to the ropological monodromy representation
. _orb
p " (#) — Mody

where # is the component of .M («) containing (X, w) and Modg is the mapping class
group of X relative to the set Z of n marked points.

The fundamental invariant: framings. The horizontal vector field 1/w of any
(X, w) € QMg (k) defines a trivialization ¢ of the tangent bundle of X \ Z, or an “abso-
lute framing” (see §§2.1 and 6.2; the terminology reflects the finer notion of a “relative
framing” to be discussed below). The mapping class group Modg generall}_/ does not pre-
serve (the isotopy class of) this absolute framing, and its stabilizer Mody [#] is of infinite
index. On the other hand, the canonical nature of 1/w means that the image of p does
leave some such absolute framing fixed. Our first main theorem identifies the image of
the monodromy representation as the stabilizer of an absolute framing.

Theorem A. Suppose that g > 5 and k is a partition of 2g — 2. Let # be a nonhyperel-
liptic component of QMg (k). Then

p(r™(H)) = Mody[]

where ¢ is the absolute framing induced by the horizontal vector field of any surface
in QMg (k).

For an explanation as to why we restrict to the nonhyperelliptic components of strata,
see the discussion after Theorem 7.2. The bound g > 5 is an artifact of the method of
proof and can probably be relaxed to g > 3. We invoke g > 5 in Proposition 3.10, Propo-
sition 4.1, and Lemma 5.5; it is not needed elsewhere.

Equivalently, the universal property of Mg , implies there is a map

L:H = Mg, (X, o) (X, Zeros(w)).

where M , denotes the moduli space of Riemann surfaces with n marked points labeled
by (x1,...,kpn), in which one may only permute marked points if they have the same
label.! In this language, Theorem A characterizes the image of £ at the level of (orbifold)
fundamental groups.

Remark 1.1. Via the mapping class group’s action on relative homology, Theorem A
also implicitly characterizes the image of the homological monodromy representation

pr TP (H) — Aut(Hy(X, Z: ).

In a companion paper [6], we give an explicit description of the image of pg as the kernel
of a certain crossed homomorphism on Aut(H; (X, Z;Z)).

1Of course, Mg« is a finite cover of Mg p, corresponding to the group Sym(k) of label-
preserving permutations.
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Application: realizing curves and arcs geometrically. Using the identification of The-
orem A, we can apply a framed version of the “change of coordinates” principle (see
Proposition 2.15) to deduce the following characterization of which curves can be real-
ized as the core curves of embedded cylinders. To formulate this, we observe that the data
of an absolute framing ¢ gives rise to a “winding number function” (also denoted ¢) that
sends an oriented simple closed curve to the Z-valued holonomy of its forward-pointing
tangent vector relative to the framing (§2.1).

Corollary 1.2 (cf. [5, Corollary 1.1]). Fix g > 5 and a partition k of 2g — 2. Pick some
(X, ®) in a nonhyperelliptic component # of QMg (k) and let ¢ denote the induced
(absolute) framing. Pick a nonseparating simple closed curve ¢ C X \ Z. Then there is a
loop y : [0,1] = H# with y(0) = (X, w) and such that the parallel transport of ¢ along y is
a cylinder on y(1) = (X, ) if and only if the winding number of ¢ with respect to ¢ is 0.

Proof. The condition that ¢(c) = 0 is necessary, as the core curve of a cylinder has con-
stant slope.

To see that it is sufficient, we note that there is some cylinder on X with core curve d
and the winding number of d with respect to ¢ is 0. Therefore, by the framed change-
of-coordinates principle (Proposition 2.15), there is some element g € Modg [¢] taking d
to c. By Theorem A, g lies in the monodromy group, so there is some y € 7™ () whose
monodromy is g. This y is the desired path. ]

We can also deduce a complementary result for arcs using the same principle. Recall
that a saddle connection on an abelian differential is a nonsingular geodesic segment
connecting two zeros.

Corollary 1.3. Fix g > 5 and a partition k of 2g — 2. Pick some (X, w) in a nonhyperel-
liptic component H of QMg (k) and fix a nonseparating arc a connecting distinct zeros
of Z. Then there is a path y : [0, 1] — JH with y(0) = (X, w) and such that the parallel
transport of a along 'y is realized as a saddle connection on y(1).

The proof of this corollary uses machinery developed throughout the paper and is
therefore deferred to §8.3. In §8 we collect other corollaries that we can obtain by the
methods of the paper; we also give a classification of components of strata with marking
data (§8.1) and we show in §8.2 that for # a sufficiently general stratum-component,
the monodromy image p(7{"™(¥#)) < PModZ [¢] is not generated by shears about cylin-
ders (here and throughout, PModZ denotes the subgroup of the mapping class group of a
genus g surface with n marked points each of which is fixed).

Other monodromy groups. Theorem A is a consequence of our characterization of the
images of certain other monodromy representations: in Theorem 7.13, we compute the
monodromy of a “prong-marked” stratum into the mapping class group Modg , of a
surface with boundary. Theorem 7.14 computes the monodromy of a stratum into the
“pronged mapping class group,” denoted Modz,n, a refinement which captures the com-
binatorics of the zeros of the differential. In both Theorems 7.13 and 7.14 we find that the
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monodromy group is the stabilizer Mody., [#], respectively Mody ,[¢], of an appropriate
“relative framing” ¢.

A relative framing is an isotopy class of framing of X4 , where the isotopies are
required to be trivial on 0¥, , (see §2). To promote an absolute framing ¢ to a relative
framing ¢ we “blow up” the zeros of a differential (see §7.2); under this transformation,
a zero of order k becomes a boundary component with winding number —1 — k, so an
element of Q.M («) induces a relative framing ¢ on its blow-up with “signature” —1 —
= (—=1—x1q,...,—1 —Ky) (see §2.1). Thus each boundary component has negative wind-
ing number; a framing with this property is said to be of holomorphic type.

Generating the framed mapping class group. The monodromy computations in The-
orems A, 7.13, and 7.14 rest on a development in the theory of stabilizers of relative
framings as subgroups of Mody ,: we determine simple explicit finite generating sets.

We introduce some terminology used in the statement. Let € = {c;,...,cx} be a
collection of curves on a surface X ,, pairwise in minimal position, with the property
that the geometric intersection number i (c;, ¢;) is at most 1 for all pairs ¢;, ¢c; € €. Asso-
ciated to such a configuration is its intersection graph Ae, whose vertices correspond
to the elements of €, with ¢; and ¢; joined by an edge whenever i(c;, cj) = 1. Such a
configuration € spans X, , if there is a deformation retraction of X , onto the union
of the curves in €. We say that € is arboreal if the intersection graph Ag is a tree, and
E-arboreal if A moreover contains the Eg¢ Dynkin diagram as a subgraph. Note that an
E-arboreal spanning configuration of X , necessarily contains k = 2g 4+ n — 1 curves.
See Figure 15 for the examples of spanning configurations we exploit in the pursuit of
Theorem A.

When working with framings of meromorphic type we will need to consider sets of
curves more general than spanning configurations (see the discussion in §5.6). To that end
we define an hi-assemblage of type E on g ,, as a set of curves € = {c1,....Contm—1.
Cohtm - -+ > Cog+n—1} such that (1) € = {c1, ..., Cop+m—1} is an E-arboreal spanning
configuration on a subsurface S C X , of genus g(S) = 4 with m boundary components,
(2) for j > k, let S; denote a regular neighborhood of the curves {ci, ..., c;}; then for
J =2h 4+ m, we require that ¢c; N S;_; be a single arc (possibly, but not necessarily, enter-
ing and exiting along the same boundary component of S;), and (3) S2g4n—1 = g sn. In
other words, an assemblage of type E is built from an E-arboreal spanning configuration
on a subsurface by sequentially attaching (neighborhoods of) further curves, decreasing
the Euler characteristic by exactly 1 at each stage but otherwise allowing the new curves to
intersect individual old curves arbitrarily. Note then that an s-assemblage on ¥ , again
consists of exactly 2g + n — 1 curves.

Theorem B. Let X, be a surface of genus g > 5 withn > 1 boundary components.

() Suppose ¢ is a framing of X4 ,, of holomorphic type. Let € = {c1, ..., C2g4n—1} be
an E-arboreal spanning configuration of curves on X4, such that ¢(c) = 0 for all
c € €. Then
Modg.q[¢] = (T | ¢ € E).
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(D) If ¢ is an arbitrary framing (of holomorphic or meromorphic type) and € =
{c1,....cog4n—1} is an h-assemblage of type E for h > 5 of curves such that
¢(c) =0 forall c € €, then

Modg »[¢] = (Tc | c € E).

Theorem B also implies a finite generation result for stabilizers of absolute framings.

Corollary 1.4. Let g,k and ¢ be as above. Let ¢ be the absolute framing on X% obtained
by shrinking the boundary components of ¥4 , to punctures. Then PModg [@] is generated
by finitely many Dehn twists.

An explicit finite generating set for PModZ [#] is given in Corollary 6.12. In general,
the set of Dehn twists described in Theorem B only generates a finite-index subgroup of
PMody [#] (Proposition 6.14).

Our methods of proof also yield a generalization of the main mapping class group-
theoretic result of [5], allowing us to greatly expand our list of generating sets for “r-spin
mapping class groups,” the analogue of framed mapping class groups for closed surfaces
(§2.1). See Corollary 3.11.

Remark 1.5. Both Mody, ,[¢] and Mod} [#] are of infinite index in their respective ambi-
ent mapping class groups, and so a priori could be infinitely generated. To the best of the
authors’ knowledge, Theorem B and Corollary 1.4 are the first recorded proofs that these
groups are finitely generated. This is another instance of a surprising and poorly under-
stood theme in the study of mapping class groups: stabilizers of geometric structures
often have unexpectedly strong finiteness properties. The most famous instance of this
principle is Johnson’s proof that the Torelli group is finitely generated for all g > 3 [16];
this was recently and remarkably improved by Ershov—He and Church—Ershov—Putman
to establish finite generation for each term in the Johnson filtration [8, 9].

Remark 1.6. As explained to the authors by Dick Hain [12], finite generation of framed
mapping class groups can also be deduced from the perspective of the Torelli group. In
particular, one can define a “generalized Johnson homomorphism™ on the Torelli group
together with a further contraction to H;(Xg; Z), the composition of which generalizes
the Chillingworth map [7]. The intersection of the Torelli group with the framed mapping
class group is then exactly the kernel of this generalized Chillingworth map (see [5, §5.4])
and so applying the results of Ershov—He and Church—Ershov—Putman [8, 9] one can
deduce that the intersection of the Torelli group with Mod, , [¢] is finitely generated. The
framed mapping class group is therefore an extension of its action on homology (which
is either Sp,,(Z) or a finite-index subgroup) by another, and therefore is itself finitely
generated.

We note that while this argument nicely parallels structural results for r-spin mapping
class groups (see, e.g., [5, §5.4]), it alone cannot provide explicit generating sets due to
the nonconstructive nature of the proofs of [8,9].

Remark 1.7. In contemporary work [24], the second author and P. Portilla Cuadrado
apply Theorem B to give a description in the spirit of Theorem A of the geometric mon-
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odromy group of an arbitrary isolated plane curve singularity as a framed mapping class
group. The counterpart to Corollary 1.2 then yields an identification of the set of vanishing
cycles for Morsifications of arbitrary plane curve singularities.

Context. As mentioned above, this paper serves as a sequel to [5]. The main result of that
work considers a weaker version of the monodromy representation attached to a stratum of
abelian differentials. In [5], we study the monodromy representation valued in the closed
mapping class group Mod, ; here we enrich our monodromy representation so as to track
the location of the zeros. There, we find that an object called an “r-spin structure” (see
§2.1) governs the behavior of the monodromy representation. Here, the added structure of
the locations of the zeros allows us to refine these r-spin structures to the more familiar
notion of a globally invariant framing of the fibers. Where the technical core of [5] is
an analysis of the group theory of the stabilizer in Mod, of an r-spin structure, here the
corresponding work is to understand these “framed mapping class groups” and to work
out their basic theory, including the surprising fact that these infinite-index subgroups
admit the remarkably simple finite generating sets described in Theorem B.

In recent preprints, Hamenstidt has also analyzed the monodromy representation into
Modg. In [13] she gives generators for the image in terms of “completely periodic admis-
sible configurations,” which are analogous to the spanning configurations appearing in
Theorem B. In [14], she identifies the image of the monodromy into the closed mapping
class group Mod, as the stabilizer of an “r-spin structure,” recovering and extending
work of the authors (see §2.1 as well as [5]). The paper [14] also contains a description of
generators for the fundamental groups of certain strata.

Earlier work of Walker also bears mentioning, as it was a major source of inspiration
for this result (though not for the proofs). In [29], she investigates the relationship between
the monodromy image p(7{™(J#)) of a component J of a stratum of guadratic differen-
tials and the surface braid group SBg , (i.e., the kernel of the map Mod:, — Modg). By
building explicit deformations of differentials, she can in some cases identify the intersec-
tion p(7{"™(J)) N SBg,, as the kernel of a certain “Abel-Jacobi map” (which is in turn
related to the generalized Johnson homomorphism of Remark 1.6). Combining this with
her previous partial results [28] on the monodromy of strata of quadratic differentials into
Mod, then yields an algebraic characterization of the monodromy image of the principal
stratum of quadratic differentials (but no others).

Remark 1.8. It would be interesting to extend the methods of the current paper to the set-
ting of quadratic differentials to recover and extend the results of Walker. Every quadratic
differential defines an R P !-valued Gauss map, and so the general principles of this paper
should be applicable to investigate the monodromy of strata of quadratic differentials. One
basic obstruction to carrying this program out is our lack of knowledge of the Mody ,
action on the associated winding number functions. A deeper and more serious obstruc-
tion is our lack of understanding of the structure of the Mod, -stabilizer of a given root of
the square of the canonical bundle (as compared with our quite detailed understanding of
the stabilizers of r-spin structures; see §2.1 and [5]).
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1.1. Structure of the paper

This paper is roughly divided into two parts: the first deals exclusively with relative fram-
ings on surfaces with boundary and their associated framed mapping class groups, while
the second deals with variations on framed mapping class groups and their relationship
with strata of abelian differentials. Readers interested only in Theorem B can read §§2-5
independently, while readers interested only in Theorem A need only read the introduc-
tory §2 together with §§6—8 (provided they are willing to accept Theorem B as a black
box).

In Appendix A, we collect all of the various generating set statements obtained
throughout the paper in one place. We hope that this will serve as an easy-to-use reference
for future investigations of framed and r-spin mapping class groups.

Outline of the proof of Theorem B. The proof of Theorem B has two steps, which
roughly parallel those of [5, Theorem B]. For the first step, we show in Proposition 3.1
that the Dehn twists on a spanning configuration of admissible curves as specified in the
theorem generate the “admissible subgroup” 73 < Modg ,[¢] (see §2.3). The proof of
this step relies on the theory of “subsurface push subgroups” from [27] and extends these
results, establishing a general inductive procedure to build subsurface push subgroups
from admissible twists and sub-subsurface push subgroups (Lemma 3.3).

The second step is to show that the admissible subgroup is the entire stabilizer of the
relative framing; the proof of this step spans both §4 and §5. In [5, 27], the analogous
step is accomplished using the “Johnson filtration” of the mapping class group, a strategy
which does not work for surfaces with multiple boundary components. Instead, we prove
that 75 = Mod, ,[¢] by induction on the number of boundary components of X ,,.

The base case of the induction (when there is a single boundary component of winding
number 1 — 2g) takes place in §4. Its proof relies heavily on the analysis of [5] and the
relationship between framings and “r-spin structures,” their analogues on closed surfaces
(see the end of §2.1). Using a version of the Birman exact sequence adapted to framed
mapping class groups (Lemma 4.6), we show that the equality 73 = Modyg ,[¢] is equiva-
lent to the statement that T contains “enough separating twists.” We directly exhibit these
twists in Proposition 4.1, refining [5, Lemma 6.4] and its counterpart in [27]; the reader is
encouraged to think of Proposition 4.1 as the “canonical version” of this statement.

The inductive step of the proof that 7y = Mod,g ,[¢] is contained in §5. The over-
all strategy is to introduce a connected graph 4° on which Mod, ,[¢] acts vertex- and
edge-transitively (see §§5.1-5.4). The heart of the argument is thus to establish these
transitivity properties (Lemma 5.3) and the connectedness of A® (Lemma 5.4); these both
require a certain amount of care, and the arguments are lengthy. Standard techniques
then imply that Mod, ,[¢] is generated by the stabilizer of a vertex (which we can iden-
tify with Mod, ,—1[¢'] for some ¢’) together with an element that moves along an edge
(Lemma 5.10). Applying the inductive hypothesis and explicitly understanding the action
of certain Dehn twists on A® together yield 73 = Modg ,[¢], completing the proof of
Theorem B.
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Variations on framed mapping class groups. §6 is an interlude into the theory of other
framed mapping class groups. In §6.1 we introduce the theory of pronged surfaces, sur-
faces with extra tangential data which mimic the zero structure of an abelian differential.
After discussing the relationship between the mapping class groups Mod;’n of pronged
surfaces and surfaces with boundaries or marked points, we introduce a theory of rela-
tive framings of pronged surfaces and hence a notion of framed, pronged mapping class
group Mod;,n [#]. The main result of this subsection is Proposition 6.7, which exhibits
Mod;n [¢] as a certain finite extension of Modg ,[¢].

We then proceed in §6.2 to a discussion of absolute framings of pointed surfaces, as
at the beginning of this introduction. When a surface has marked points instead of bound-
ary components, framings can only be considered up to absolute isotopy. Therefore, the
applicable notion is not a relative but an absolute framing ¢. In this section we prove The-
orem 6.10, which states that the (pronged) relative framing stabilizer Mod;,n [¢] surjects
onto the (pointed) absolute framing stabilizer PModg [¢]. Combining this theorem with
work of the previous subsection also gives explicit generating sets for PModg [#] (see
Corollary 6.12).

Outline of the proof of Theorem A. The proof of Theorem A is accomplished in §7.
After recalling background material on abelian differentials (§7.1) and exploring the dif-
ferent sorts of framings a differential induces (§7.2), we record the definitions of certain
marked strata, first introduced in [1] (§7.3). These spaces fit together in a tower of cover-
ings (16) which evinces the structure of the pronged mapping class group, as discussed in
§6.1. By a standard continuity argument, the monodromy of each covering must stabilize
a framing (see Lemma 7.10 and Corollaries 7.11 and 7.12).

Using these marked strata, we can upgrade the Modg-valued monodromy of # into
a Mod;,n -valued homomorphism, and passing to a certain finite cover of the stratum
therefore results in a space #P" whose monodromy lies in Modg ,. By realizing the
generating set of Theorem B as cylinders on a prototype surface in JP", we can explic-
itly construct deformations whose monodromy is a Dehn twist, hence proving that the
Mody ,,-valued monodromy group of J' is the entire stabilizer of the appropriate fram-
ing (Theorem 7.13).

To deduce Theorem A from the monodromy result for P requires an understand-
ing of the interactions between all three types of framed mapping class groups. Using
the diagram of coverings (16) together with the structural results of §6, we conclude that
the Mod;,n -valued monodromy of J is exactly the framing stabilizer Modz,n [#] (Theo-
rem 7.14). An application of Theorem 6.10 together with a discussion of the permutation
action of Modg [¢] on Z finishes the proof of Theorem A.

The concluding §8 contains applications of our analysis to the classification of com-
ponents of certain covers of strata (Corollaries 8.1 and 8.2) as well as to the relationship
between cylinders and the fundamental groups of strata (§8.2). This section also contains
the proof of Corollary 1.3.
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2. Framings and framed mapping class groups

2.1. Framings

We begin by recalling the basics of framed surfaces. Our conventions ultimately follow
those of Randal-Williams [26, §§1.1, 2.3], but we have made some convenient cosmetic
alterations and use language compatible with our previous papers [5,27]. See Remark 2.1
below for an explanation of how to reconcile these two presentations.

Framings, (relative) isotopy. Let X, , denote a compact oriented surface of genus g
with n > 1 boundary components Ay, ..., A,. Through §5 we will work exclusively with
boundary components, but in §6, we will also consider surfaces equipped with marked
points. We formulate our discussion here for surfaces with boundary components; we
will briefly comment on the changes necessary to work with marked points in §6.

Throughout this section we fix an orientation 6 and a Riemannian metric u of X, ,,
affording a reduction of the structure group of the tangent bundle 7%, , to SO(2).
A framing of ¥4 5, is an isomorphism of SO(2)-bundles

¢:TZgn — Zgn x R2.

With 6,  fixed, framings are in one-to-one correspondence with nowhere-vanishing vec-
tor fields &; in what follows we will largely take this point of view. In this language, we say
that two framings ¢, Y are isotopic if the associated vector fields §4 and £, are homotopic
through nowhere-vanishing vector fields.

Suppose that ¢ and  restrict to the same framing § of 02, . In this case, we say
that ¢ and  are relatively isotopic if they are isotopic through framings restricting to §
on X, ,. With a choice of ¢ fixed, we say that ¢ is a relative framing if ¢ is a framing
restricting to 6 on X .

(Relative) winding number functions. Let (X, ,,, ¢) be a (relatively) framed surface.
We explain here how the data of the (relative) isotopy class of ¢ can be encoded in a
topological structure known as a (relative) winding number function. Let ¢ : S' — T, ,
be a C! immersion. Given two vectors v, w € Ty X 2.1, We denote the angle (relative to
the metric u) between v, w by Z(v, w). We define the winding number ¢(c) of c¢ as the
degree of the “Gauss map” restricted to c:

#0) = [ 420 55

The winding number ¢ (c) is clearly an invariant of the isotopy class of ¢, and is further-
more an invariant of the isotopy class of ¢ as an immersed curve in X ,.>

21t s not, however, an invariant of the homotopy class of the map ¢, since the winding number
will change under the addition or removal of small self-intersecting loops. In this paper we will be
exclusively concerned with winding numbers of embedded curves and arcs, so we will not comment
further on this. See [15] for further discussion.
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Possibly after altering ¢ by an isotopy, we can assume that each component A; of
0%, contains a point p; such that £4(p;) is orthogonally inward-pointing. We call such
a point p; a legal basepoint for A;. We emphasize that even though A; may contain
several legal basepoints, we choose exactly one legal basepoint on each A;, so that all
arcs based at A; are based at the same point.

Let a : [0,1] - 2z, be a C! immersion with a(0), a(1) equal to distinct legal
basepoints p;, p;j; assume further that a’(0) is orthogonally inward-pointing and a’(1)
is orthogonally outward-pointing. We call such an arc legal. Then the winding number

1
b(a) == [0 42 (1), Es(a(1)))

is necessarily half-integral, and is invariant under the relative isotopy class of ¢ and under
isotopies of a through legal arcs.

Thus a framing ¢ gives rise to an absolute winding number function which we denote
by the same symbol. Let § denote the set of isotopy classes of oriented simple closed
curves on Xg ,. Then the framing ¢ determines the winding number function

¢:8S >7Z, xm ¢(x).

Likewise, let S be the set obtained from § by adding the set of isotopy classes of legal
arcs. Then ¢ also determines a relative winding number function

p:8t > 17, x> ¢x).

Signature; holomorphic/meromorphic type. The signature of a framing § of 4%, , (or
of a framing ¢ of X, , restricting to § on X, ,) is the vector

sig(8) := (8(A1),...8(An)) € Z7,

where each A; is oriented with X ,, lying to the left. A relative framing ¢ is said to be of
holomorphic type if §(A;) < —1 for all i and is of meromorphic type otherwise. In §7.2
we will see that if w is an abelian differential on a Riemann surface X, then the relative
framing induced by w is indeed of holomorphic type. Given a partition k = (k1, ..., k) of
2g — 2, we say that a relative framing ¢ has signature —1 — « if the boundary components
have signatures (—1 — xq,...,—1 — k).

Remark 2.1. For the convenience of the reader interested in comparing the statements of
this section with their counterparts in [26], we briefly comment on the places where the
two expositions diverge. We have used the term “framing” where Randal-Williams uses
“@” -structure” with r = 0, and we use the term “(relative) winding number function”
where Randal-Williams uses an equivalent structure denoted “g¢.” Randal-Williams also
adopts some different normalization conventions. If x is a curve, then g¢(x) = ¢(x) — 1,
and if x is an arc, gg(x) = ¢(x) — 1/2 (in particular, g¢ is integer-valued on arcs).

The lemma below allows us to pass between framings and winding number functions.
Its proof is a straightforward exercise in differential topology (see [26, Proposition 2.4]).
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Lemma 2.2. Let X, ;, be a surface with n > 1 boundary components and let ¢ and
be framings. Then ¢ and  are isotopic as framings if and only if the associated absolute
winding number functions are equal. If ¢lss, , = V¥lsz, . then ¢ and { are relatively
isotopic if and only if the associated relative winding number functions are equal.

Moreover, if Xg, is endowed with the structure of a CW complex for which each
0-cell is a legal basepoint and each 1-cell is either isotopic to a simple closed curve or
a legal arc, then ¢ and  are (relatively) isotopic if and only if the (relative) winding
numbers of each 1-cell are equal.

Remark 2.3. Following Lemma 2.2, we will be somewhat lax in our terminology. Often
we will use the term “(relative) framing” to refer to the entire (relative) isotopy class, or
else conflate the (relative) framing with the associated (relative) winding number function.

Properties of (relative) winding number functions. The terminology of “winding num-
ber function” originates with the work of Humphries and Johnson [15] (although we are
discussing what they call generalized winding number functions). We recall here some
properties of winding number functions which they identified.’

Lemma 2.4. Let ¢ be a relative winding number function on X ,, associated to a relative
framing of the same name. Then ¢ satisfies the following properties.

(1) (Twist-linearity) Let a C Xg4 , be a simple closed curve, oriented arbitrarily. Then
forany x € §T,
¢(Ta(x)) = ¢(x) + (x,a)¢(a),
where
() - Hy (Eg,nv 82g,n; 7)) x Hl(Eg,n§ 7)) — 7

denotes the relative algebraic intersection pairing.

(2) (Homological coherence) Let S C Xg , be a subsurface with boundary components
C1,...,Ck, oriented so that S lies to the left of each c;. Then

k
> d(ei) = x(9).

i=1

where x(S) denotes the Euler characteristic.

Functoriality. In the body of the argument we will have occasion to consider maps
between surfaces equipped with framings and related structures. We record here some
relatively simple observations about this. Firstly, as we have already implicitly used, if
S C Xy 5 is a subsurface, any (isotopy class of) framing ¢ of X, , restricts to an (isotopy
class of) framing of S. There is a converse as well; the proof is an elementary exercise in
differential topology.

3In the nonrelative setting.
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Lemma 2.5. Let S C Xg , be a subsurface, and let ¢ be a framing of S. Enumerate the
components of Xg, \ S as S1, ..., Sk. Call such a component S; relatively closed if
dS; C 3S. Then ¢ extends to a framing (; of Xg n if and only if for each relatively closed
component Sj, there is an equality

Y o) = xS,

¢ a component of S

with each c oriented with S; to the lefft.

In particular, suppose that S = X4 ,, \ D, where D is an embedded disk, and let ¢ be
aframing of S. Then ¢ extends over D to give a framing of X4 , if and only if (D) =1
when 0D is oriented with D to the left.

Closed surfaces; r-spin structures. For g > 2, the closed surface ¥, does not admit any
nonvanishing vector fields, but there is a “mod r analogue” of a framing called an r-spin
structure. As r-spin structures will play only a passing role in the arguments of this paper
(see §4.2), we present here only the bare bones of the theory. See [27, §3] for a much
more complete discussion.

Definition 2.6. Let X, be a closed surface, and as above, let § denote the set of oriented
simple closed curves on Xg. An r-spin structure is a function

¢:8S—>7/rL
that satisfies the twist-linearity and homological coherence properties of Lemma 2.4.

Above we saw how a nonvanishing vector field £, on X, gives rise to a winding
number function ¢ on X, ,. Suppose now that £ is an arbitrary vector field on X, with
isolated zeros py,..., px. Fori =1,...,k,let y; be a small embedded curve encircling p;
(oriented with p; to the left) and define

r=ged{WNe(yi) — 11 =i <k},

where WN¢(y;) means to take the Z-valued winding number of y; viewed as a curve
on Xg \ {p1,.... pn} endowed with the framing given by &. Then it can be shown (see
[15, §1]) that the map

q3 28 = Z/rZ, ¢(x) = WNg(x) (mod r),

determines an r-spin structure.

2.2. The action of the mapping class group

Recall that the mapping class group Mod, , of X , is the set of isotopy classes of self-
homeomorphisms of ¥ , which restrict to the identity on 0% ,,. Therefore Mod, ,, acts
on the set of relative (isotopy classes of) framings, and hence the set of relative winding
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number functions, by pull-back. As we require Mody , to act from the left, there is the
formula

(f-$)(x) = ¢(fT1(x).

We recall here the basic theory of this action, as developed by Randal-Williams [26,
§2.4]. Throughout this section, we fix a framing § of 02 , and may therefore choose a
legal basepoint on each boundary component once and for all.

The (generalized) Arf invariant. The Mod, ,, orbits of relative framings are classified
by a generalization of the classical Arf invariant. To define this, we introduce the notion
of a distinguished geometric basis for Xg ,. Fori = 1,...,n, let p; be a legal basepoint
on the ith boundary component of X, ,,. A distinguished geometric basis is a collection

B ={x1,y1,....xg.¥gyU{az,....an}

of 2g oriented simple closed curves x1,...,yg and n — 1 legal arcs a,, . . ., a, that satisfy
the following intersection properties:

(1) (x;,yi) =i(x;,yi) =1 (here i(-,-) denotes the geometric intersection number) and
all other pairs of elements of {xi,..., yg} are disjoint.

(2) Each arc qg; is a legal arc running from p; to p; and is disjoint from all curves
X1yenny yg.

(3) The arcs a;, a; are disjoint except at the common endpoint pj.

Remark 2.7. A distinguished geometric basis can easily be used to determine a CW-
structure on Xg , satisfying the hypotheses of Lemma 2.2. In particular, a (relative)
winding number function (and hence the associated (relative) isotopy class of framing)
is determined by its values on a distinguished geometric basis. Moreover, for any vector
(Wi, ..., Wagqn—1) € 728 x (Z + %)”_1, there exists a framing ¢ of X, , realizing the
values (w1, ..., Wag4+n—1) ON a chosen distinguished geometric basis (this is a straight-
forward construction).

Let B be a distinguished geometric basis for the framed surface (Xg . ¢). The Arf
invariant of ¢ relative to B is the element of Z /27 given by

g n
Arf($. B) =D ($(xi) + D@ + 1)+ Y _((a) + 3)(@(A;) + 1) (mod2) (1)

i=1 j=2
(compare to [26, (2.4)]).

Lemma 2.8 (see [26, Proposition 2.8]). Let (Xg ., ¢) be a framed surface. Then the Arf
invariant Arf(¢, B) is independent of the choice of distinguished geometric basis 8.

Remark 2.9. We caution the reader that while the Arf invariant does not depend on
the choice of basis, it does depend on the choice of legal basepoints on each boundary
component. Since Mody , fixes the boundary pointwise, it preserves our choice of legal
basepoint on each boundary component.
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Following Lemma 2.8, we write Arf(¢) to indicate the Arf invariant Arf(¢, 8) com-
puted on an arbitrary choice of distinguished geometric basis. The next result shows that
for g > 2, the Arf invariant classifies Mod, , orbits of relative isotopy classes of framings.

Proposition 2.10 (cf. [26, Theorem 2.9]). Let g > 2 and n > 1 be given, and let ¢, be
two relative framings of ¥ 4 , which agree on 0% ;. Then there is an element f € Modg
such that f - = ¢ if and only if Arf(¢) = Arf(y).

For surfaces of genus 1, the action is more complicated. In this work we will only
need to study the case of one boundary component; this was treated by Kawazumi [19].
Let (21,1, ¢) be a framed surface. Consider the set

a(¢) = {¢(x) | x C ¥1,1 an oriented s.c.c.}.

The twist-linearity formula (Lemma 2.4 (1)) implies that a(¢) is in fact an ideal of Z. We
define the genus-1 Arf invariant of ¢ to be the unique nonnegative integer Arf; (¢p) € Z>¢
such that

a(p) = Arfy(9)Z. 2

Remark 2.11. The normalization conventions for Arf as in (1) and Arf; as in (2) are dif-
ferent. In §4.1 we will reconcile them, but here we chose to present the “natural” definition
of Arfy.

Lemma 2.12 (cf. Theorem 0.3 of [19]). Let ¢ and v be relative framings of 1,1. Then
there is f € Mod 1 such that f - = ¢ if and only if Arf1(¢) = Arfy (¥).

2.3. Framed mapping class groups

Having studied the orbits of the Modg , action on the set of framings in the previous
section, we turn now to the stabilizer of a framing.

Definition 2.13 (Framed mapping class group). Let (X,,.¢) be a (relatively) framed
surface. The framed mapping class group Mod, , (@] is the stabilizer of the relative iso-
topy class of ¢:

MOdg,n[d’] ={f¢€ Modg » | f-¢ = ¢}

Remark 2.14. We pause here to note one somewhat counterintuitive property of rela-
tively framed mapping class groups. Suppose that ¢, ¢’ are distinct as relative isotopy
classes of framings, but are equal as absolute framings (in terms of relative winding num-
ber functions, this means that ¢ and ¢’ agree when restricted to the set of simple closed
curves but assign different values to arcs). Then the associated relatively framed mapping
classes are equal: Modg ,[¢] = Mody ,[¢']. This is not hard to see: allowing the framing
on the boundary to move under isotopy changes the winding numbers of all arcs in the
same way, so that the ¢’-winding number of an arc can be computed from the ¢-winding
number by adjusting by a universal constant. Necessarily then ¢ ( f(«)) = ¢(«) for a
mapping class f and an arc « if and only if ¢'( f(x)) = ¢ ().
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Admissible curves, admissible twists, and the admissible subgroup. In our study
of Modg ,[¢], a particularly prominent role will be played by the Dehn twists that
preserve ¢. An admissible curve on a framed surface (X, ,,¢) is a nonseparating
simple closed curve a such that ¢ (a) = 0. It follows from the twist-linearity formula
(Lemma 2.4 (1)) that the associated Dehn twist T, preserves ¢p. We call the mapping class
T, an admissible twist. Finally, we define the admissible subgroup to be the group gener-
ated by all admissible twists:

T4 := (T, | a admissible for ¢).

Change of coordinates for framed surfaces. The classical “change-of-coordinates prin-
ciple” for surfaces is a body of techniques for constructing special configurations of curves
and subsurfaces on a fixed surface (see [11, §1.3]). The underlying mechanism is the clas-
sification of surfaces, which provides a homeomorphism between a given surface and a
“reference surface;” if a desired configuration exists on the reference surface, then the
configuration can be pulled back along the classifying homeomorphism.

A similar principle exists for framed surfaces, governing when configurations of
curves with prescribed winding numbers exist on framed surfaces. The classification
results of Proposition 2.10 and Lemma 2.12 assert that the Arf invariant provides the only
obstruction to constructing desired configurations of curves in the presence of a fram-
ing. We will make extensive and often tacit use of the “framed change-of-coordinates
principle” throughout the body of the argument. Here we will illustrate some of the
more frequent instances of which we avail ourselves. Recall that a k-chain is a sequence
ct,...,ck of curves such that i(c;,c;j+1) = 1fori =1,...,k —1,and i(c;,c;) = 0 for
li—Jjl=2.

Proposition 2.15 (Framed change of coordinates). Let (X ,, @) be a relatively framed
surface with g > 2 and n > 1. A configuration x1, ..., Xy of curves and/or arcs with
prescribed intersection pattern and winding numbers ¢ (x;) = s; exists if and only if

(a) a configuration {x}, ..., x;} of the prescribed topological type exists in the
“unframed” setting where the values ¢ (x]) are allowed to be arbitrary,

(b) there exists some framing  such that ¥ (x;) = s; forall i,

(c) if Arf(yr) is determined by the constraints of (b), then Arf(¢p) = Arf(y).

In particular:

(1) Fors € Z arbitrary, there exists a nonseparating curve ¢ C Xg , with ¢(c) = s.

(2) Forn =1, there exists a 2g-chain of admissible curves on X4 1 if and only if the pair
(g (mod 4), Arf(¢)) € (Z/4Z,7./27) is one of the four listed below:

(0,0),(1,1),(2,1),(3,0). 3)

Such a chain is called a maximal chain of admissible curves.
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Proof. We will prove (1) and (2), from which it will be clear how the general argument
works. We begin with (1). Let 8 = {x; ..., ¢, a2, ..., a,} be a distinguished geomet-
ric basis. Following Remark 2.7, a relative framing ¢ of X4 , can be constructed by
(freely) specifying the values v () for each element b € B. Set ¥ (x1) = s and let ¥ (y1)
be arbitrary. Since g > 2, it is possible to choose the values of ¥ (x2), ¥ (y2) such that
Arf(y) = Arf(¢). By Proposition 2.10, there exists a diffeomorphism f : X4, — Xg ,
such that f - = ¢. We see that f(x;) is the required curve:

P(f(x) = (fT"-P)en) = ¥(x) =5

as required.
For (2), consider a maximal chain ay, ..., azg on X, ;. Define b; := a; and choose
curves by, b3, ..., bg, each disjoint from all a; with j odd, such that

B = {bl,az,bz,a4,...,bg,a2g}

is a distinguished geometric basis. We now construct a framing v such that each a;
is admissible. By construction, the curves by, dsx+1, bg+1 form pairs of pants for each
1 <k < g — 1. By the homological coherence property (Lemma 2.4 (2)), if each a; is to
be admissible, we must have ¥ (by) = 1 —k for 1 < k < g when by, is oriented so that
the pair of pants cobounded by b;_; and a,;_; lies to the left. Arf(y/) is determined by
these conditions, and is computed to be

0, g=0,3(mod4),

A(y) = {1, g = 1,2 (mod 4).

If the pair (g, Arf(¢)) is one of those listed in (3), then by Proposition 2.10, there exists
J i Xg1 — Xg,1suchthat f -y = ¢. As above, we find that f(a), ..., f(azg) is the
required maximal chain of admissible curves. Conversely, if (g, Arf(¢)) does not appear
in (3), then the Arf invariant of ¢ obstructs the existence of a maximal chain of admissible
curves. L]

3. Finite generation of the admissible subgroup

Theorem B asserts that the framed mapping class group Mod, ,[¢] is generated by any
spanning configuration € of admissible Dehn twists so long as the intersection graph Ae
is a tree containing E¢ as a subgraph (recall the definition of “spanning configuration”
prior to the statement of Theorem B). In this section, we take the first step to establish-
ing this result. Proposition 3.1 establishes that such a configuration of twists generates
the admissible subgroup. In the subsequent sections we will show that 73 = Modg ,[¢],
establishing Theorem B.

Recall (see the discussion preceding Theorem B) that a collection € of curves is said
to be an E-arboreal spanning configuration if each pair of curves intersects at most once,
and the intersection graph is a tree containing E¢ as a subgraph.
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Proposition 3.1 (Generating the admissible subgroup). Let X4 , be a surface of genus
g > 5withn > 1 boundary components, and let ¢ be a framing of holomorphic type. Let
€ be an E-arboreal spanning configuration of admissible curves on X ,, and define

Te:=(T.|cet).
Then Te = Ty.

The proof of Proposition 3.1 closely follows the approach developed in [27]. The
heart of the argument (Lemma 3.6) is to show that our finite collection of twists generates
a version of a point-pushing subgroup for a subsurface. This will allow us to express all
admissible twists supported on this subsurface with our finite set of generators. Having
shown this, we can import our method from [27] (appearing below as Proposition 3.10)
which allows us to propagate this argument across the set of subsurfaces, proving the
result.

3.1. Framed subsurface push subgroups

Let S C X, , be a subsurface and suppose A C 98 is a boundary component. Let S denote
the surface obtained from S by capping A with a disk, and let UT'S denote the associated
unit tangent bundle. Recall the disk—pushing homomorphism P : 71 (UTS) — Mod(S)
[L1, Section 4.2.5]. The inclusion § < X, , induces a homomorphism i : Mod(S) —
Mod(X,,,) which restricts to give a subsurface push homomorphism P :=i o P:

P 1 (UTS) — Mod(Zg ).

The framed subsurface push subgroup ﬁ(S) is the intersection of this image with

Modg »[¢]: B
I1(S) := Im(P) N Mod, ,[¢].

Note that ﬁ(S ) is defined relative to the boundary component A, suppressed in the nota-
tion. In practice, the choice of A will be clear from context.

There is an important special case of the above construction. Let b C X, , be an
oriented nonseparating curve satisfying ¢(b) = —1. The subsurface Xz, \ {b} has a
distinguished boundary component A corresponding to the left-hand side of b. For this
choice of (S, A), we streamline notation, defining

() := T1(Zg.n \ b)

(constructed relative to A). As ¢(A) = —1 (oriented so that S lies to the left), it follows
from Lemma 2.5 that the framing of S can be extended over the capping disk to S. Such
a framing of S gives rise to a section s : S — UTS, and hence a splitting s4 : 71(S) —
71 (UTS).

Lemma 3.2. If¢(A) = —1, then

[(S) = P (s4(m1(5))).
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Proof. Letxy,...,x, € m1(S) be a system of generators such that each x; is represented
by a simple based loop on S. Under & o s, each such x; is sent to a multitwist:

179G
P(s+(x;)) = TxiL TX’_R1 TA ,

iL, xiR C § are characterized by the following two conditions:

(1) xL U xR U A form a pair of pants (necessarily lying to the left of A),

where the curves x

2) xiL (resp. xiR) lies to the left (resp. right) of x; as a based oriented curve.

Note that the assumption that ¢ (A) = —1 plus homological coherence (Lemma 2.4 (2))
implies that gb(xiL) = ¢>(xiR). By the twist-linearity formula (Lemma 2.4 (1)), we then
have, for any curve or arc y on Xg ,,

(P (5 (x:) (1) = ¢ (¥) + (¥, xF)p () — (1, xRV () + p(xF) (v, A)p(A)
=¢() + Py xF) = (v. xF) — (v, b))
=¢(y) +o(xf)-0=9¢(»)

where the last line follows because [b] + [xiR] — [le] = 0 in the homology of ¥, . Thus

P (s+(x;)) preserves ¢. As the set of x; generates 71 (S), it follows that P (s« (71(S)))
< T1(S).

To establish the opposite containment, we recall that s, gives a splitting of the
sequence

1 - Z — 7, (UTS) P T1(S) > 1

and so it suffices to show that ﬁ(S) N P (ker(p«)) = {e}. Under &, the generator of
ker p. is sent to Ta. As ¢(A) = —1 and A was constructed by cutting along the nonsep-
arating curve b C Xg ,, the twist-linearity formula shows that (Ta) N Modg »[¢] = {e}
and the result follows. ]

3.2. Generating framed push subgroups

We want to show that our finitely-generated subgroup Je contains a framed subsurface
push subgroup I1(S) for a subsurface S that is “as large as possible.” In Lemma 3.3 below,
we show that this can be accomplished inductively by successively showing containments
ﬁ(Si) < Je for an increasing union of subsurfaces --- C S; C Sj41 C ---.

Lemma 3.3. Let S C X, , be a subsurface and let A be a boundary component of S such
that ¢(A) = —1, giving rise to the associated framed subsurface push subgroup ﬁ(S ).
Let a C Zg , be an admissible curve disjoint from A such that a N S is a single essen-
tial arc (it does not matter if a enters and exits S by the same or by different boundary
components). Let a’ C S be an admissible curve satisfying i(a,a’) = 1. Let S be the
subsurface given by a regular neighborhood of S U a. Then I:I(S"’) <(Ty, Ty, ﬁ(S)).

Proof. Leta” C ST be a curve such that

e a Uda” U A forms a pair of pants,
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e a” N S is a single arc based at the same boundary component of S asa N S,
e &’ meets a’ exactly once.

Such a curve can be constructed by taking the connected sum of @ and A along an arc dis-
joint from a’, for example (see Figure 12 and the accompanying discussion). By homolog-
ical coherence (Lemma 2.4 (2)), a” is admissible. Observe that P, := T, Ta_,,1 e II(S™).

Fig. 1. The configuration discussed in Lemma 3.3, shown in the case where a enters and exits along
the same boundary component c.

Moreover, we observe that since a’ meets the pair of pants bounded by a U a” U A in
exactly one arc, either P,(a’) or P, !(a’) is contained in S; compare Figure 1. Without
loss of generality, suppose it is P,(a’). Now by the braid relation, we have T, T,/ (a) =
a’ C S and likewise

T,Ty(a") = (TaT_//l)Ta”Ta/(a//) = P,(a’) CS.

a

Thus, we see that applying T, T, takes both a and a” to admissible curves on S. In the
case that P~ 1(a") C S, asimilar calculation can be performed to show that Ta_1 Ta71 takes
both a and a” to admissible curves on S. Therefore,

(TaTar) Pa(T,Tr) ™" € TI(S)

and consequently P, € (T,, Ty, ﬁ(S)). Let xq,...,x; € ﬁ(S) be a generating set.
The inclusion S <> ST induces an inclusion TI(S) < [1(S*), and TI(ST) is gener-
ated by x1,...,x; and P, (or P;!). These elements are all contained in the group
(Tllv Ta’vﬁ(S))° u

Generation via networks. The inductive criterion of Lemma 3.3 leads to the notion of a
network, which is a configuration of curves designed so that Lemma 3.3 can be repeatedly
applied. Here we discuss the basic theory.

Definition 3.4 (Networks). Let S be a surface of finite type. For the purposes of the
definition, punctures and boundary components are interchangeable; we convert both into
boundary components. A network on S is any collection N = {aq, ..., a,} of simple
closed curves (not merely isotopy classes) on S such that #(a; N a;) < 1 for all pairs of
curves a;,a; € N, and such that there are no triple intersections.

A network N has an associated intersection graph A y, whose vertices correspond to
curves x € N, with vertices x, y adjacent if and only if #(x N y) = 1. A network is said
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to be connected if A y is connected, and arboreal if A y is a tree. A network is filling if

S\Ua

aeN

is a disjoint union of disks and boundary-parallel annuli.

A network N determines a subgroup 7 < Mod(Z, ,) by taking the group generated
by the Dehn twists about curves in N :

Ty =Ty |aeN).
The following appears in slightly modified form as [27, Lemma 9.4].

Lemma 3.5. Let S C X, be a subsurface with a boundary component A satisfying
¢ (A) = —1. Let N be a network of admissible curves on S that is connected, arboreal,
and filling, and suppose that there exist a,a’ € N such that a U a’ U A forms a pair of
pants. Then ﬁ(S) < Ty.

3.3. The key lemma

Proposition 3.10, to be stated below, gives a criterion for a group H to contain the admissi-
ble subgroup 7. It asserts that containing a framed subsurface push subgroup of the form
ﬁ(b) is “nearly sufficient.” In preparation for this, we show here that T¢ contains such
a subgroup. Ideally, we would like to use the network generation criterion (Lemma 3.5),
but the configuration € does not satisfy the hypotheses and so more effort is required.

Lemma 3.6. Let € be an E-arboreal spanning configuration of admissible curves, and
let b be the curve indicated in Figure 2. Then T1(b) < Te.

We note first that by homological coherence, ¢(b) = —1 when oriented as in Figure 2.
Our overall strategy is to iteratively apply Lemma 3.3, but the fact that b intersects some
of the curves of € presents some difficulties.

The lemma will be proved in four steps. In each stage, we will consider a subcon-
figuration €; C € and the associated subsurface S; spanned by these curves. We define
S} C Sk by removing a regular neighborhood of b, and we show that ﬁ(S ©) =< Te.

Fig. 2. The curve b of Lemma 3.6, shown in relation to the E¢ subgraph; b is constructed so as to
be disjoint from all curves intersecting the central vertex ¢ of the Eg subgraph, but it may intersect
other elements of € not pictured in the figure.
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In the first step, recorded as Lemma 3.7 below, we take €, to be the D5 subconfigu-
ration of the E¢ configuration. In the second step (Lemma 3.8), we take €; = E¢ and in
the third (Lemma 3.9) we take €, to be the union of E¢ with all curves ¢ € € intersecting
b; these are the most crucial steps of our argument because the ad-hoc methods employed
here allow us to deal with those curves of € meeting b. Step 4 then deals with the rest of
the surface (€3 = €) by iteratively applying Lemma 3.3.

Step 1: Ds.

Fig. 3. Left: the surface So = S;. Right: the surface S7.

Lemma 3.7. Let S C X, be the subsurface shown in Figure 3. Then ﬁ(S(’)) < Te.

Proof. Let €, be the network shown in Figure 3 consisting of the five red (dark) curves.
This satisfies the hypotheses of Lemma 3.5, so that H(S()) < Te,. Each element of €y is
an element of €, so that the claim follows. [

Step 2: Eg.

Fig. 4. Left: the curves a and a’; the latter is an element of the Eg configuration inside €. Right:
the boundary components d1, d for the configuration of D5 type, and the curve a”, also part of
E¢ C €.

Lemma 3.8. Let S| C X, , be the subsurface shown in Figure 3. Then ﬁ(S{) < Te.

Proof. We appeal to Lemma 3.3. It suffices to find a curve a C Xg , such that (1) a N S(’)
is a single arc, (2) S; deformation-retracts onto S U a, (3) there is a curve a’ C S such
thati(a,a’) = 1 and T, € Te, and (4) T, € Te. A curve a satisfying (1)—(3) is shown in
Figure 4.

We claim that T, € Te. To see this, we consider the right-hand portion of Figure 4.
We see that five of the curves in the configuration of E¢ type determine a configuration of
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type Ds; the boundary components of the subsurface spanned by these curves are denoted
dy and d,. Applying the Ds relation (see [5, Lemma 5.9]) to this configuration shows that
Ty, T;’z € Te. We then set

a =Ty Tz (a").

and as a” € €, it follows that T, € Te as claimed. n

Step 3: Curves intersecting b.

Fig. 5. Left: a curve ¢; € €5. Right: a twist a satisfying the hypotheses of Lemma 3.3. The top and
bottom of the figure depicts the two possible intersection patterns for ¢; with .S i

Lemma 3.9. Let €, be the configuration of curves given as the union of E¢ C € with all
curves ¢; € € such that i(c;,b) # 0. Let Sy be the surface spanned by these curves, and
let S), be obtained from S, by removing a neighborhood of b. Then T1(S,) < Te.

Proof. Recall that b is constructed so as to bound a pair of pants with a¢ and a,. Since
the intersection graph of € is a tree, a curve ¢; € €, \ Eg¢ must be in one of the two
configurations shown in Figure 5: it must intersect exactly one of the curves ag or as.
Moreover, distinct ¢;, ¢c; € €, \ Es must be pairwise disjoint. Thus we can attach the
curves ¢; in an arbitrary order to assemble S} from S7, appealing to Lemma 3.3 at each
step.

The right-hand portion of Figure 5 shows a curve a that satisfies the hypotheses of
Lemma 3.3 for this pair of subsurfaces. The curve a is obtained from ¢; via a sequence of
twists about curves in €:

a =Ty TayTayTay(ci)

in the top scenario, and
—1p—1
a=T,"T, (ci)
in the bottom. Thus, for each such curve ¢; € €, \ Eg, the associated curve a satisfies
T, € Te. The claim now follows from repeated applications of Lemma 3.3. ]
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Step 4: Attaching the remaining curves. The proof of Lemma 3.6 now follows with no
further special arguments.

Proof of Lemma 3.6. Step 3 (Lemma 3.9) shows that I:I(Sé) < Te, where S, is the span
of E¢ and all curves intersecting ao and a,, and S} is obtained from S, by removing a
neighborhood of 5. Let ¢; € € \ €, be adjacent to some element c; € €,. Then Lemma 3.3
applies directly to the pair a = ¢; and a’ = ¢;. We repeat this process next with curves
¢; of graph distance 2 to €,, then graph distance 3, etc., until the vertices of € \ €,
are exhausted. At the final stage, we have shown that I:[(Zg,,, \ {b}) = T1(h) < Te as
claimed. |

3.4. Finite generation of the admissible subgroup

Proposition 3.10 below is taken from [27, Proposition 8.2]. There, it is formulated for r-
spin structures on closed surfaces of genus g > 5, but the result and its proof hold mutatis
mutandis for framings of ¥4 , with g > 5.

Proposition 3.10 (cf. [27, Proposition 8.2]). Let ¢ be a framing of X4 ,, for g > 5. Let
(ag, ay, b) be an ordered 3-chain of curves with ¢(ag) = ¢(a1) = 0 and ¢p(b) = —1.
Let H < Mod(X¢ ) be a subgroup containing T, , Ta,, and the framed subsurface push
subgroup ﬁ(b). Then H contains T.

Proof of Proposition 3.1. Since Te < Ty by construction, it suffices to apply Proposition
3.10 with the subgroup H = Te. Lemma 3.6 asserts that [1(b) < Te, so with reference
to the labels in Figure 5, the chain (a3, a;, b) satisfies the hypotheses of Proposition 3.10.
The result follows. u

We observe that this argument can also be combined with results of our earlier
paper [5] to give a vast generalization of the types of configurations which generate r-spin
mapping class groups (see §2.1). In particular, the following result gives many new gen-
erating sets for the closed mapping class group Mod, .

Corollary 3.11. Let € denote a filling network of curves on a closed surface g with
g > 5. Suppose that the intersection graph Ae is a tree which contains the E¢ Dynkin
diagram as a subgraph and that € cuts the surface into n polygons with 4(k; + 1), ...,
4(ky + 1) sides. Set r = ged(ky, ..., ky). Then there exists an r-spin structure $ on Xg
such that

Modg[¢] = (T, | ¢ € €).

Proof. The r-spin structure $ is uniquely determined by stipulating that each curve c € €
is admissible. To see that the twists in € generate the stabilizer of this spin structure,
we first observe that by [5, Proposition 6.1], the ¢-admissible subgroup ’J‘;; is equal to

Mod, [$] Therefore, it suffices to prove that (T, | ¢c € €) = ’J;;

Let S denote a neighborhood of the curve system €; by insisting that each curve
of € is admissible in S, we see that S is naturally a surface of genus g equipped with a
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framing ¢ of signature (—1 — kq,...,—1 — k). Now by Proposition 3.1,
Tp=(T.|cee)

and as X is obtained from § by capping off each boundary component with a disk, we
need only show that T3 surjects onto 'T(; under the capping homomorphism.

To show the desired surjection, consider any $-admissible curve ¢ on Xg. Pick any ¢
on S which maps to ¢ under capping; then since q’g is just the reduction of ¢ mod r,
necessarily
¢() =rN forsome N € Z.

For each boundary component A; of S, pick some loop y; based on A; which intersects ¢
exactly once. Now since r = gcd(kq, ..., k,) there is some linear combination

miky + - +mpk, =r
and so by the twist-linearity formula (Lemma 2.4 (1)), the curve

&= (@)™ PN @)

must be ¢-admissible, where & (y;) denotes the push of the boundary component A;
about y;.

But now T is in T3 and P (y1)™! ... P(y»)™" is in the kernel of the boundary-
capping map, and so the image of Tz in Mod, is the same as that of 7z, which by
construction is 7¢. Hence Ty surjects onto ‘Ta, finishing the proof. ]

4. Separating twists and the single boundary case

4.1. Separating twists

We come now to the first of two sections dedicated to showing the equality T3 =
Mod, ,[¢]. This will be accomplished by induction on n. In this section, we establish
the base case n = 1, while in the next section we carry out the inductive step.

The base case n = 1 is in turn built around a close connection with the theory of r-
spin structures on closed surfaces (see Definition 2.6) as studied in the prior papers [5,27].
We combine this work with a version of the Birman exact sequence (see (6)) to reduce
the problem of showing 73 = Mody 1[¢] to the problem of showing that Ty contains a
sufficient supply of Dehn twists about separating curves.

Below and throughout, the group K ; is defined to be the group generated by sepa-
rating Dehn twists:

Kg1:=(Tc | c C g1 separating).

Kg,1 is known as the Johnson kernel. It is a deep theorem of Johnson that K ; can be
identified with the kernel of a certain “Johnson homomorphism™ [17], but we will not
need to pursue this any further here.
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Proposition 4.1. Fix g > 5, and let ¢ be a framing of X4 1. Then Kg 1 < T.

A separating curve ¢ C (Xg,1, ¢) has two basic invariants. To define these, let Int(c)
be the component of X, ; \ ¢ that does not contain the boundary component of ¥4 ;. The
first invariant of ¢ is the genus g(c), defined as the genus of Int(c). The second invariant
of ¢ is the Arf invariant Arf(c). When g(c) > 2, define Arf(c) to be the Arf invariant of
®lint(c)- As discussed in §2.2, the Arf invariant in genus 1 is special. For uniformity of
notation later, if g(c) = 1 and Arf;(Int(c)) # 0, define

Arf(c) := Arfi(@|mee)) + 1 (mod 2).

In the special case where Arf}(¢|mc)) = 0, we declare Arf(c) to be the symbol 17 (for
the purposes of arithmetic, we treat this as 1 € Z/27Z). Altogether, we define the type of
a separating curve c to be the pair (g(c), Arf(c)).

Lemma 4.2. Let ¢ be a framing of a surface X, 1. Let ¢ be a separating curve of type
(g, €). For the pairs of (g, ¢) listed below, the separating twist T, is contained in Tp:

(1) (14 4k, 1) fork > 1,
2) (2 + 4k, 1) fork >0,
(3) 3+ 4k,0) fork > 0,
4) (4k,0) fork > 1,

(5) (1,1%),

6) 3. 1).

Proof. In cases (1)—(4), the Arf invariant of the surface Int(c) agrees with the Arf invariant
of a surface of the same genus which supports a maximal chain of admissible curves. By
the change-of-coordinates principle for framed surfaces (Proposition 2.15 (2)), every such
surface supports a maximal chain of admissible curves. In case (5), by definition we have
Arf1 (¢|mec)) = 0 and therefore every curve on Int(c) is admissible. Any 2-chain on Int(c)
is therefore admissible.

For any of cases (1)-(5), applying the chain relation [11, Proposition 4.12] to the
maximal admissible chain shows that the separating twist about the boundary component
is an element of 7.

Consider now case (6), where Int(c) has genus 3 and Arf invariant 1. In this case,
the framed change-of-coordinates principle implies that Int(c) supports a configuration
ay, . ..,as of admissible curves with intersection pattern given by the E¢ Dynkin diagram.
By the “E¢ relation” [23, Theorem 1.4], T, can be expressed as a product of the admissible
twists Ty, . .., Tys. [

In the proof of Proposition 4.1, it will be important to understand the additivity prop-
erties of the Arf invariant when a surface is decomposed into subsurfaces. The following
lemma is stated for only two subsurfaces in [26], but repeated application yields the state-
ment recorded below.
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Lemma 4.3 (cf. [26, Lemma 2.11]). Suppose that (X,¢) is a framed surface and ¢ = | J ¢;
is a multicurve. Let (S;, V) denote the components of X\ ¢, equipped with their induced
framings. Then

Arf(¢) = D Arf(y;) + D (¢(ci) + 1) (mod 2).
J ci€c
In particular, if each c; is separating and bounds a closed subsurface on one side, then

each ¢(c;) is odd and hence the Arf invariant is additive.

The proof of Proposition 4.1 is built around the well-known lantern relation.

Fig. 6. The lantern relation. The arcs labeled x, y, z determine curves by taking a regular neighbor-
hood of the arc and the incident boundary components.

Lemma 4.4 (Lantern relation). For the curves a,b,c,d, x, y, z of Figure 6, there is a
relation
T, TpT. Ty = Tx T, T;.

We will use the lantern relation to “manufacture” new separating twists using an ini-
tially limited set of twists.

Proof of Proposition 4.1. According to [18, Theorem 1], it suffices to show that T, € T
for ¢ a separating curve of genus 1 or 2. If ¢ has type (2, 1), then T, € T3 by Lemma
4.2. For the remaining types (1, 1), (1, 0), (2, 0), we will appeal to a sequence of lantern
relations (Configurations (A), (B), (C)) as shown in Figure 7. Each of the configurations
below occupy a surface of genus < 4, and by hypothesis, g > 5. Thus, in each config-
uration, the specified winding numbers do not constrain the Arf invariant. Therefore by
the framed change-of-coordinates principle (Proposition 2.15), there is no obstruction to
constructing such configurations. We also remark that we will use the additivity of the Arf
invariant (Lemma 4.3) without comment throughout.

We say that separating curves x, y C X, 1 are nested if either Int(x) C Int(y) or
Int(y) C Int(x). Configuration (A) shows that T Ty_1 € T for any x of type (1,0) and y
of type (2, 0) such that x and y are not nested.

Turning to Configuration (B), we apply the lantern relation to the curves on the sub-
surface bounded by a, b, z, w to find that

T T € Ty: @)

here ¢ is any curve of type (2,0) and a, b have type (1, 0) and are nested inside c. Let
d be of type (2,0) and disjoint from c; hence d is not nested with a or h. Applying
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Fig. 7. The lantern relations used in the proof of Proposition 4.1. Curves and arcs colored red
correspond to twists known to be in 7 from Lemma 4.2, while those in blue correspond to twists
not yet known to be in 7. Numbers inside subsurfaces indicate Arf invariants.

Configuration (A) with x = a, y = d and again with x = b, y = d implies that
T.T;' € Ty and T, T; ' € Ty. 5

Combining (4) and (5) thus implies that 7' T7 € T4 for an arbitrary pair ¢, d of curves
of type (2, 0).

Consider now Configuration (C). The associated lantern relation shows that
T, T;' € Ty for ¢, d again both of type (2,0). As also T, ' T; € T4 by the above para-
graph, it follows that T, € Ty for ¢ an arbitrary curve of type (2, 0).

Returning to Configuration (A), it now follows that Ty € 7 for x an arbitrary curve
of type (1, 0). It remains only to show 7, € T3 for a a curve of type (1, 1). To obtain
this, we return to Configuration (B), but replace the curve of type (1, 1) with a general
curve of type (1, 1). The remaining twists in the lantern relation are now all known to be
elements of Ty, and hence curves of type (1, 1) are elements of T as well. |

4.2. The minimal stratum
We are now prepared to prove the main result of the section.

Proposition 4.5. Let g > 5 be given, and let ¢ be a framing of X4 1. Then
Tp = Modg 1[¢].

As discussed above, this will be proved by relating the framing ¢ on Xz ; to a
(2g — 2)-spin structure on X, by way of a version of the Birman exact sequence. In
the standard Birman exact sequence for the capping map p : ¥, 1 — X, the kernel is
given by the subgroup 771 (UT X, ). In Lemma 4.6 below, the subgroup Hy < 71 (UTX,)
is defined to be the preimage in 71 (UTXg) of [m1(2g), 71 (Zg)] < m1 ().

Lemma 4.6. Let ¢ be a framing of X¢ 1. Then there is a (2g — 2)-spin structure $ on X,
such that the boundary-capping map p : Modg 1 — Modg induces the following exact
sequence:

A,

1 - Hy — Modg 1[¢p] — Modg [¢]. (6)
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Proof. The framing ¢ determines a nonvanishing vector field on X, ;. Capping the
boundary, this can be extended to a vector field on X with a single zero. This vector
field gives rise to the (2g — 2)-spin structure $ (see §2.1), and if ' € Mod,,; preserves ¢,
then necessarily p( f) preserves [ﬁ .

It remains to show that ker(p) N Mod, 1[¢] = H,. Since Hg consists of disk pushes
about homologically trivial, hence separating, curves, we have H, < K, ;1 < Modg 1[¢].

For the converse, we first express the action of a simple based loop y € 71 (UTX,)
on the winding number of an arbitrary simple closed curve a. Let yr (resp. yg) denote
the curves on X4 1 lying to the left (resp. right) of y. Then y acts via the mapping class
Py)=1Ty, T),_RI. The twist-linearity formula (Lemma 2.4 (1)) as applied to £ (y) shows
that

(P (y)(@) = ¢(a) + (a.yL)p(vL) — (a.YR)$(VR)
=¢(a)+ (a.y)(@(yL) — ¢(yr))
=¢(a)+ (a.y)(2—-2g). (7

Here, the second equality holds since yr, yg, and y all determine the same homology
class, and the third equality holds by homological coherence (Lemma 2.4 (2)), since
yL U YR U 0%, 1 cobounds a pair of pants and necessarily ¢(A;) =1 —2g.

We now use this formula to deduce that if () € Mod, 1 [¢], then y € H, . To see this,
let y be an arbitrary curve, not necessarily simple, and factor y = y; ...y, with each y;
simple. Since £ (y;) acts trivially on homology, there is an equality [P (y; ...Yi)(a)] = [a]
of elements of H1(Xg,1;Z) foreachi = 1,...,n, and hence

(Py1...vi)@), Vit1) = (a,Vi+1).

Thus applying (7) successively with (y;) actingon P(y;...yi—1)(a) fori =1,...,n
shows that

(P (y)(@) = ¢(a) + (a.y)(2 —2g). ®)
If y is not contained in H, then there exists some simple curve a such that {a, y) # 0.
Therefore, (7) shows that ¢ (P (y)(a)) # ¢(a) and hence P (y) & Modyg 1 [¢]. |

Proof of Proposition 4.5. Consider the forgetful map p : Modg ;1 — Mod,, with kernel
ker(p) = m(UTX,). By Lemma 4.6, it suffices to see that

p(T4) = Modg[¢] and Ty N7 (UTS,) = H,.

To see that p(73) = Mod, [qAS], we appeal to [5, Theorem B]. By the framed change-of-
coordinates principle (Proposition 2.15), there exists a configuration of admissible curves
on X ; (in the notation of [5, Definition 3.11]) of type C(2g — 2, Arf(¢)). Any such
configuration satisfies the hypotheses of [5, Theorem B], showing that p(73) = Mod, [$].

The containment H, < 7y will follow from the work of §4.1. By Proposition 4.1, we
have K, 1 < 73. According to [25, Theorem 4.1],

J{gjl N ﬂ](UTEg) = Hg,

showing the claim. m
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We observe that this proof also shows that (6) can be upgraded to the exact sequence

1 - Hy — Modg 1[¢] — Modg[$] — 1.

5. The restricted arc graph and general framings

The goal of this section is to prove that for g > 5, given an arbitrary surface X , equipped
with a relative framing ¢, we have Mod, ,[¢] = T3. We will argue by induction on 7.
The base case n = 1 was established in Proposition 4.5. To induct, we study the action of
Mod, ,[¢] on a certain subgraph of the arc graph, and identify the stabilizer of a vertex
with a certain Modg ,—1[¢']. In §5.1, we introduce the s-restricted arc graph A*(¢; p, q)
and show that Mod, ,[¢] acts transitively on vertices and edges. In §5.3, we prove that
AS(¢; p, q) is connected, modulo a surgery argument. In §5.4, we prove this “admissible
surgery lemma.” Finally, in §5.5 we use these results to prove that Modg ,[¢] = T3 for
g > 5and n > 0 arbitrary.

5.1. The restricted arc complex

We must first clarify some conventions and terminology about configurations of arcs. If
a C Xgpisanarcand c C X, , is a curve, then the geometric intersection number i (a, c)
is defined as for pairs of curves: i(a, ¢) denotes the minimum number of intersections of
transverse representatives of the isotopy classes of a and c. If a, b are both arcs (possibly
based at one or more common point), we define i (a, b) to be the minimum number of
intersections of transverse representatives of the isotopy classes of a, b on the interiors
of a, b. In other words, intersections at common endpoints are not counted. We say that
arcs a, b are disjoint if i (a, b) = 0, so that “disjoint” properly means “disjoint except at
common endpoints.” As usual, we say that an arc a is nonseparating if the complement
Y, \ a is connected, and we say that a pair of arcs a, b is mutually nonseparating if the
complement X, ,, \ {a, b} is connected (possibly after passing to well-chosen representa-
tives of the isotopy classes in order to eliminate inessential components).

Our objective is to identify a suitable subgraph of the arc graph on which Mod, , [¢]
acts transitively. Before presenting the full definition (see Definition 5.2 below), we first
provide a motivating discussion. By definition, an element of Mod, ,[¢] must preserve
the winding number of every arc, and so to ensure transitivity we must restrict the vertices
of this subcomplex to be arcs of a fixed winding number s € Z + % However, this alone
is insufficient, as Lemma 5.1 below makes precise.

If @ and B are two disjoint (legal) arcs which connect the same points p and ¢ on
boundary components A, and A, then the action of Mod, , [¢] must preserve the wind-
ing number of each boundary component of a neighborhood of A, Ua U 8 U A,. The
winding numbers of these curves depends on the ¢ values of «, 8, Ap, and A4, but also
on the configuration of « and f.
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o@o o /o

Fig. 8. Sidedness. Left: a one-sided pair. Right: a two-sided pair.

To that end, we say that a pair of arcs {«, 8} as above is one-sided (respectively, two-
sided) if o leaves p and enters ¢ on the same side (respectively, opposite sides) of 8 for
every disjoint realization of @ and § on X. See Figure 8.

A quick computation yields an equivalent formulation in terms of winding numbers,
which for clarity of exposition we state only in the case when ¢ (@) = ¢(8).

Lemma 5.1. Let {«, B} be a pair of arcs as above with ¢ (a) = ¢(B). Let ¢t denote the
two curves forming the boundary of a small regular neighborhood of A, Ua U B U A,
oriented so that the subsurface containing A, and Ay lies on their right. Then {a, B} is

e one-sided if and only if {¢(cT), d(c7)} = {1, (Ap) + d(A,) + 1},
o two-sided if and only if {¢(cT), p(c7)} = {Pp(Ap) + 1,d(Ag) + 1}.
In particular, if ¢ is an admissible curve with i (a,c) = 1, then {a, T, (o)} is two-sided.

% can be decom-

Proof. This essentially follows by inspection of Figure 8. A given curve ¢
posed into a sequence of subintervals — we amalgamate the contributions each makes to
the winding number integral. First, ¢* follows (without loss of generality) o forwards
from a(g) to a(1 — &) for suitably small &, adding ¢ () to the integral computing ¢ (c¥).
The curve then either turns the “short way” around to follow B back, which adds 1/2 to
the winding number, or else takes the “long way,” turning 90° positively (adding 1/4),
then following A, around (adding ¢(A,)), and then turning an additional 90°, adding
an additional 1/4; the “long way” thus adds a total of 1/2 + ¢(A,). The curve now fol-
lows 8 backwards from B(1 — €) to B(e), subtracting ¢ (8) = ¢ () from ¢ (c¥), and then
either takes the short way or the long way around A . In the one-sided case, the curves c*t
take the same way (long or short) at both ends, and in the two-sided case, they each take
the long way once and the short way once. ]

Having identified sidedness as a further obstruction to transitivity, we come to the
definition of the complex under discussion. For any s € Z + %, we say that an arc « is an
s-arc if () = s.

Definition 5.2. Let (Xg ,, ¢) be a framed surface with n > 2. Suppose that p and g are
legal basepoints on distinct boundary components A, and A, and fix some s € Z + %
Then the restricted s-arc graph A% (¢ p, q) is defined as follows:

o A vertex of A% (¢; p, g) is an isotopy class « of s-arcs connecting p and g.

e Two vertices @ and § are connected by an edge if they are disjoint and mutually non-
separating.
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The two-sided restricted s-arc graph A°(¢; p, q) is the subgraph of A% (¢; p,q) such
that:

e The vertex set of A°(¢; p, q) is the same as that of A% (¢; p,q).

e Two arcs @ and B are connected in A°(¢; p, g) if and only if they are connected in
A% (¢; p, q) and the pair {a, B} is two-sided.

5.2. Transitivity

In this subsection we prove that the action of Modg ,[¢] on A®(¢; p, q) is indeed tran-
sitive on both edges and vertices. The definition of A*(¢; p, g) above was rigged so that
the proof of Lemma 5.3 follows as an extended consequence of the framed change-of-
coordinates principle (Proposition 2.15). The length of the proof is thus a consequence
more of careful bookkeeping than genuine depth.

Lemma 5.3. The action of Modg ,[¢] on A°(¢; p, q) is transitive on vertices and on
edges.

We caution the reader that the action of Mod, , [¢] is not transitive on oriented edges
of A*(¢: p. q).

Proof of Lemma 5.3. We begin by showing that edge transitivity implies vertex transitiv-
ity. Suppose that « and B are two vertices of A°(¢; p, q); we will exhibit an element of
Modg ,[¢] taking o to B.

By the framed change-of-coordinates principle (Proposition 2.15), there is some
admissible curve ¢ which meets « exactly once, and so by Lemma 5.1 the arc T, ()
is adjacent to & in A° (¢; p, ¢). Now choose some y € A%(¢; p, q) adjacent to . By edge
transitivity, there exists a g € Modg ,[¢] which takes the {«, T.(«)} edge to the {8, y}
edge. If g(«) = B, then we are done. Otherwise, g(T,(«)) = B, and since ¢ is admissible,
gT. € Modg [@].

It remains to establish edge transitivity. Up to relabeling, we may assume that p € Ay
and ¢ € A,. Suppose that @ = {a1, a2} and 8 = {B1, B>} are two edges of A*(P; p, q).
We also assume that oy leaves p from the right-hand side of «» and enters g to the left,
and the same for 8; and B,.

For each e € {a, 8}, let c& denote the two boundary components of a neighborhood
of e U A; U A,. Let X, (respectively Y,) denote the component of ¥ \ ¢F containing
(respectively, not containing) e, equipped with the induced framing &, (respectively, 7).
Finally, orient each curve of ¢ so that Y, lies on its left-hand side. See Figure 9.

Since both « and § are two-sided, Lemma 5.1 implies that

{p(ch). d(c)) = {p(A1) + 1.¢p(A2) + 1} )

for ® € {&, B} and we fix the convention that ¢ (c]) = ¢ (A1) + 1.
The proof now follows by building homeomorphisms X, — Xg and Y, — Y and
gluing them together. To that end, we must first describe these subsurfaces in more detail.



A. Calderon, N. Salter 4750

Fig. 9. The curves and subsurfaces determined by a two-sided pair of disjoint s-arcs.

Distinguished arcs in X,. Recall that ¢F are defined as the boundary components of
a neighborhood of ¢ U A; U A,. If this neighborhood is taken to be very small (with
respect to some auxiliary metric on ¥), then away from p and ¢ the framing restricted
to ¢ looks like the framing on segments of @ U A U A,. In particular, for each point
p’ # p of Ay with an orthogonally inward- or outward-pointing framing vector there is
a corresponding point of ¢;” with an orthogonally inward- or outward-pointing framing
vector. The analogous statement of course also holds for ¢ # ¢’ € A, and ¢ .

Pick points p’ and p” # p on A; such that the framing vector at p’ points orthog-
onally outwards and the framing vector at p” points orthogonally inwards. For the sake
of concreteness, we will assume that ¢)(A1) is negative and take p’ (respectively p’) so
that the arc y’ (respectively ") of Ay which runs clockwise connecting p to p’ (p”) has
winding number —1/2 (respectively —1). When ¢ (A1) is positive, the proof is identical
except the arcs y’ and y” will have winding numbers 1/2 and 1, respectively.

Now let x} and y} denote the corresponding points of ¢;"; by construction, the fram-
ing vectors at these points point orthogonally into X, and Y,, respectively. Using ¢’ and
q" # q on A,, one may similarly construct x, and y, . See Figure 10.

Fig. 10. Distinguished points and arcs in a neighborhood of @ U Aj.

By our choice of p’ and p”, one may observe that there exist arcs 73 from p to xF
with
p(r5)y=-1/2 and ¢(@r;) =s.

Similarly, there exist s from p to y* with

dGsT)=—1 and ¢(s7) =s5—1/2.
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Now {eq, 7}, 7,7} forms a distinguished geometric basis for X,, and hence one can com-
pute that

Arf(§e) = (s + 1/2)(@(A2) + 1) + (0)(@(A1) +2) + (s + 1/2)(¢(A2) +2),  (10)
which in particular does not depend on e € {«, }.

Building homeomorphisms on subsurfaces. By construction both Y, and Y are home-
omorphic to X4_1 . By (9) their boundary signatures agree:

sig(a) = (@(A1) + 1.¢(A2) + 1.¢(A3), ... ¢(An)) = sig(ng).

Moreover, by the additivity of the Arf invariant (Lemma 4.3) together with (9) and (10),
we have that

Arf(ng) = Arf(¢) + Arf(£,) + ¢(A1) + ¢ (A»)
= Arf(¢) + Arf(§g) + ¢ (A1) + ¢(A2) = Arf(ng) (mod 2)

and so by the classification of Modg , orbits of framed surfaces (Proposition 2.10) there
is a homeomorphism fy : Yy — Y such that fy(ng) = 1. Moreover, fy (c) = c/:gt
and in fact fy(yai) = yﬂi.

Now in order to extend fy to a self-homeomorphism of ¥ which takes « to 8, we need
only specify a homeomorphism fx of X, with Xg. This can be done easily by observing
that o U r&t cuts X, into disks with the same combinatorics as 8 U rﬂjE cuts Xg, and hence

there is a unique homeomorphism fx : X, — Xg which takes « to 8 and r(;t to rlgt.

Pasting fx and fy together without twisting around cgf, we therefore get a homeo-
morphism f : X — X which takes « to S.

Preserving the framing. It remains to show that f preserves the framing ¢. Choose a
distinguished geometric basis

Bg ={x1,y1,....Xg-1,Yg—1} Ulaz, ..., an}

for Yg such that all the arcs a; of 8 emanate from y; S c;. By convention, suppose that

a, runs from y; to yg, and by twisting around c;' if necessary, suppose that a, emerges
to the left of all other a;. Then $Bg extends to a distinguished geometric basis of X in the
following way:

cﬁﬂ = {xl,yl,...,ngl,ygfl,cg,az-(s;)-s;}u {ﬂz,s; ~a3,...,s‘;}|r ~an}

where a - b represents the concatenation of the arcs a and b and @ represents the arc a
traveled backwards. See Figure 11. By concatenating with s; arcs, the basis fy H(B)
on Y, also extends to a basis of X in a similar fashion:

Ba = U &0, Sy 1) f7 N Gogmt)s £7 N gm1)s s fy Ha) - (55) - s )
Ulaz,sd - fy t(@s),....sd - fy an)} (11)
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Fig. 11. Extending a distinguished geometric basis from Yg to X by using the arcs s;}t of Xg.

Now by construction we have fx (s;t) = s;;t and ¢(sf) =s—1/2= qb(s;}t), so for

each element x € By,

f(x)eBp and ¢(f(x) = ¢(x).

Therefore f preserves the winding numbers of a distinguished geometric basis, and so by
Remark 2.7, f € Mod, ,[¢]. |

5.3. Connectedness

Lemma 5.4. Let (X4 5, ¢) be a framed surface with g > 5 andn > 2. Let p, q be distinct
boundary components, and let s € 7 be arbitrary. Then A®(p; p, q) is connected.

This will require the preliminary Lemmas 5.5, 5.6, and 5.7. The first of these was
proved in [27]. There it was formulated only for closed surfaces, but the same proof
applies for surfaces with an arbitrary number of punctures and boundary components.

Lemma 5.5 (cf. [27, Lemma 7.3]). Let g > 5andn > 0 be given. Let S and S’ be subsur-
faces of X g, each homeomorphic to X5 1. Then there is a sequence S = Sy, ..., S, =S’
of subsurfaces of X4, such that S;—1 and S; are disjoint and S; = X, for all i =
1,...,n.

Lemma 5.6 (Admissible surgery). Fix g >3,n>2, andlet (Xg¢ ,,$) be a framed surface
with distinguished legal basepoints p and q on boundary components A, and A,. Let
S C Xy, be a subsurface homeomorphic to ¥, 1 (necessarily not containing p or q). Let
n be an s-arc connecting p, q that is disjoint from S. Let x C X4 ,, be either a separating
curve or an arc connecting p to ¢, in either case disjoint from S. Then there is a path
n=1o,..., Nk in A% (p: p,q) such that i (ng, x) = 0.
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Lemma 5.7. With hypotheses as above, if A’ (¢; p,q) is connected, then also A°(¢; p.q)
is connected.

The proofs of Lemmas 5.6 and 5.7 are deferred to follow the proof of Lemma 5.4. To
prove Lemma 5.4, we first introduce the notion of a “connected sum” of curves.

Connected sums. We recall the notion of a “connected sum” as discussed in [27, Sec-
tion 3.2] and [5, Definition 6.18] (in the former this is called a “curve-arc sum”). Let a be
an oriented curve or arc, b be an oriented curve, and ¢ be an embedded arc connecting the
left sides of a and b and otherwise disjoint from a U b (if a is an arc we require € N a to
be a point on the interior of a). If a is a curve (resp. arc), the connected sum a +. b is the
curve (resp. arc) obtained by dragging a across b along the path &; see Figure 12.

Fig. 12. The connected sum operation.

Lemma 5.8 (cf. [27, Lemma 3.13]). Leta,b, e be as above and let ¢ be a relative winding
number function. Then

d(a+.b)=¢a)+ ¢(b) + 1.

Proof of Lemma 5.4. Following Lemma 5.7, it suffices to show that A% (¢; p, q) is con-
nected. Let o and w be s-arcs. Let Sy = 35 ; be disjoint from «, and likewise choose
Sw = X, disjoint from w. By Lemma 5.5, there is a sequence Sq = So, ..., S, = S, of
subsurfaces such that S; = X5 ; and such that S;_; and S; are disjoint foralli =1,...,n.
We apply the Admissible Surgery Lemma (Lemma 5.6) taking (S, n, x) = (Sq, @, S7).
This gives a path a = ay, ...,y in A% (¢; p, q) such that ay, is disjoint from S;. We
now repeat this process for each S; (i > 1), finding intermediate paths of s-arcs, beginning
with one disjoint from S; and ending with one disjoint from S; 4.

At the end of this process we have produced a path of s-arcs «, . .., Y with the final
arc ¢ disjoint from S,. To complete the argument we apply the Admissible Surgery
Lemma one final time with (S, 17, x) = (S, ¥, ®). This produces a path ¥ = v, ..., ¥
in A% (¢; p.q) withi (Y, w) = 0.If Y U w is nonseparating, then ¥ and w are adjacent
in A% (¢; p,q), completing the path from « to w. If ¥/ U w is separating, then at least one
side of the complement has genus 4 > 2, and thus there exists a nonseparating oriented
curve d disjoint from ¥ U w that satisfies ¢(d) = —1. Define Yy 11 = Y¥x +. d for a
suitable arc &. Then v, Y41, @ is a path in A% (¢; p, ¢), completing the argument in
this case. ]

5.4. Proof of the Admissible Surgery Lemma

The proof will require the preliminary result of Lemma 5.9 below.
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A change-of-coordinates lemma. We study the existence of suitable curves on genus 2
subsurfaces. The proof of Lemma 5.9 is a standard appeal to the framed change-of-
coordinates principle (Proposition 2.15).

Lemma 5.9. Let (23,1, ¢) be a framed surface, and let o be a nonseparating, properly
embedded arc on ;1. For t € Z arbitrary, there is an oriented nonseparating curve
¢y C Xp,1 such that ¢(c;) =t and such that (o, c;) = 1.

Proof of Lemma 5.6. The idea is to perform a sequence of surgeries on 7 in order to suc-
cessively reduce i (7, x). Such surgeries will alter the winding number, but this will be
repaired by using the “unoccupied” subsurface S to fix the winding number while preserv-
ing the intersection pattern with x. The care we take below in selecting a suitable location
for surgery ensures that the intersection pattern with S remains unaltered. Throughout the
proof we will refer to Figure 13.

(A

Vi
! 1
(o M SN / Vk+1
V3| ya
" Y6 V5 AW
< 2

©

)

Ym

Fig. 13. (A): The case i(n, x) = 1, illustrated for x an arc. (B): The construction of 77. (C): The
surgery procedure on adjacent initial points (11 and 7 are shown, but ’7/2 is not). (D): The surgery
procedure when the crossings alternate between initial and terminal. In (C, D), we have used blue
to indicate initial points and green to indicate terminal points.

Low intersection number. If i (1, x) = 0 there is nothing more to be done. If i (n, x) = 1,
then there exists an arc 7’ connecting p to ¢ that is disjoint from n U x U S, and such that
Yen \{nUx U7’} is connected. See Figure 13 (A). Let d C S be an oriented nonsep-
arating curve satisfying ¢(d) = s — ¢(n') — 1. Let ¢ be an arc disjoint from 1 U x and
such that i (e, dS) = 1 that connects 1’ to the left side of d, and let n; = n’ +, d. By
Lemma 5.8, ¢(n1) = ¢(7') + ¢(d) + 1 = 5. Since there exists a curve d’ C S such that
i(d’,n) =1andi(d’,n) =0, it follows that n U n; is nonseparating, completing the
argument in the case i (1, x) = 1.
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The general case: outline. We now consider the case i(n, x) = N > 2. We will first
pass to an adjacent s-arc 7; that enters and exits S exactly once. We will use this in
combination with a surgery argument to produce an s-arc 7, that is adjacent to 1, satisfies
i(n2,x) <i(n,x),and also enters and exits S once. As the above arguments (treating the
cases N < 1) can easily be adapted to the situation where 1 passes once through S, this
will complete the proof.

First steps; initial and terminal points. Let ¢ C S be an oriented nonseparating curve
satisfying ¢»(c) = —1. Let ¢ be an arc disjoint from x and such that i (e, dS) = 1 connecting
n to the left side of ¢, and let n; = 1 +, c¢. See Figure 13 (B). By Lemma 5.8, n; is an
s-arc, and by construction, n U 1, is isotopic to ¢ and is therefore nonseparating.
Enumerate the intersection points of 1 N x as yi, ..., ynN, numbered consecutively
as 71 runs from p to g; further set yo = p and yxy4+1 = ¢g. For some 0 < k < N, the arc
n1 leaves yg, enters S, and crosses back through yx . The points yy, ..., yi are called
initial, and the points yg41,..., yn+1 are called terminal. We say that y; and y; are
x-adjacent if y; and y; appear consecutively when running along x (in either direction).

Case 1: adjacent initial/terminal points. Suppose first that there is a pair of x-adjacent
points y;, y; that are either both initial or both terminal (if x is a curve we consider
1 <i < j < N,butif x is an arc, the surgeries we describe below will work for all
0 <i < j <N + 1). In this case, let 7, be obtained from 7, by following 7, from p to
vi, then along x to y;, then finally along n; from y; to g. See Figure 13 (C). Note first
that i (11, n5) = 0 and that i (15, x) < (51, x). It remains to alter 7/, to an arc 7, that is
also disjoint from 7n; but with ¢(172) = s and n; U 1, nonseparating, i.e., such that 11, 7,
is an edge in A% (¢: p.q).

The method will be to find a curve on S to twist along to correct the winding number
of 1, but care must be taken to ensure that the twisted arc remains disjoint from 7;.
Push 7/, off of 17 so that it runs parallel to 7, except at the location of the surgery. As
1, and 77 run along the segment between yx and yx4; through S, the push-off of ), lies
to the left or to the right of 7, in the direction of travel. We call the former case positive
position and the latter negative position. If ¢ is a curve with i(c, 7,) = 1, observe that
T* (1) is disjoint from 7; so long as the sign of the twist coincides with the sign of the
position.

Define ¢ := ¢(17,). By Lemma 5.9, there are nonseparating curves d+ C S such that
¢(d+) = £(s —t) and such that (n},,d+) = 1. Setn = Tj‘i (173), where the sign depends
on the sign of the position 7,. Then 7, is an s-curve adjacent to 77 in 4°(¢; p. q) and
i(n2,x) <i(n,x).

Case 2: alternating initial/terminal points. It remains to consider the case where every
pair of x-adjacent points y;, y; has one initial and one terminal element. Here there are
two possibilities to consider: either there is exactly one terminal point (and hence N = 2),
or else at least two. If there is exactly one terminal point and x is an arc, then necessarily
this terminal point is ¢. Then the unique initial point is p, and hence 7, is disjoint from
x except at endpoints and there is nothing left to be done. If x is a separating curve, then
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necessarily there are at least two terminal points, since if 7; crosses into the subsurface
bounded by x at a terminal point, it must necessarily exit through another terminal point.

We therefore assume that every pair of x-adjacent points y;, y; have one initial and
one terminal element and that there are at least two terminal points. The first terminal
point yg 4 is x-adjacent to two distinct initial points y;, y; (i < j < k), and likewise the
last initial point yy is adjacent to two distinct terminal points yg, y;, (kK + 1 < £ < m).

A suitable surgery is illustrated in Figure 13 (D). The surgered arc 7}, begins by fol-
lowing 1, forwards from p to y;, then along x from y; to yg1, continuing backwards
along 7n; from yy 1 to yg. At this point there is a choice: do we follow x to y; or y,, (in
both cases continuing from here forwards along 1, to ¢)? The orientation of 7; endows
each y; with a left and right side. If y; is adjacent to the left side of yx, we continue 7,
to whichever of y,, y,, lies to the right of yx, and if y; lies to the right of yx4,, we
continue 17/, to the point yg, y,, to the left. Observe that i (15, x) < (11, x), even in the
exceptional case where the chosen terminal point y, happens to be yx 4.

The construction of 7/, above facilitates the next step of the argument, which is to
adjust 1, to an s-arc 1 adjacent to 7y in A% (¢: p,q). As in the prior case, let ¢ (17,) = ¢,
and select (by Lemma 5.9) nonseparating curves d+ C S such that ¢(d4) = (s —¢)
and (n,dy) = 1. If y; is adjacent to the left side of yx 41, define

n2 =T, (n5),
and otherwise define
n2 = Ta, (n3).
In both cases, 75 is an s-arc adjacent to 11 in A% (¢; p,q) and i (12, x) < i(n1, x). L]
Having established the admissible surgery lemma (Lemma 5.6), it remains only to

give the proof of Lemma 5.7, showing that connectedness of the restricted s-arc graph
A% (¢; p,q) implies the connectedness of the two-sided restricted s-arc graph 4° (¢; p,¢q).

Fig. 14. Connecting a one-sided pair {«, 8} via two-sided pairs {c, y} and {y, B}.

Proof of Lemma 5.7. We will refer to Figure 14 throughout. It suffices to show that if
{a, B} is a one-sided edge in A% (¢; p, q), there is a path in A*(¢; p, g) connecting &
to B. Without loss of generality, suppose that « exits p and enters ¢ on the left-hand side

of B.
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As ¥\ (¢ U B) is a framed surface with genus g — 1 > 2 and n boundary components,
we can apply the framed change-of-coordinates principle (Proposition 2.15) to deduce that
there exists a nonseparating curve ¢ on X, disjoint from o U 8, such that

p(c) =s—¢(@) —¢(Ap) — 1.

As o U B and c¢ are both nonseparating, there exists an arc ¢ from the left-hand side
of « to the left-hand side of c¢. Therefore, by Lemmas 5.8 and 2.4 (1), we see that for
V= TA_pl(a +e ),

() = dla+ec) +¢(Ap) = ¢(c) + P(@) + 1+ d(Ap) =s.

Now since « 4+, ¢ leaves p and enters g on the left-hand side of « (by construction), we
see that y leaves p to the right of both & and B, but enters g on the left of both « and 8.
Therefore {«, y} and {y, B} are edges in A°(¢; p,q). |

5.5. The inductive step

Having completed the proof of the Admissible Surgery Lemma, we can proceed with the
proof of Theorem B. Our objective in this subsection is Proposition 5.11, which shows that
Modg ,[¢] coincides with the admissible subgroup 7. We follow a standard technique of
geometric group theory.

Lemma 5.10. Let G be a group acting on a connected graph X. Suppose that G acts
transitively on vertices and edges of X. For a vertex v, let G, denote the stabilizer of
v. Let e be an edge connecting vertices v, w, and let h € G satisfy h(w) = v. Then
G = (Gy, h).

Proof. Thisis very similar to [11, Lemma 4.10]. The argument there can easily be adapted
to prove this slightly stronger statement. ]

Proposition 5.11. Let g > 5 and n > 1 be given, and consider a surface X4, equipped
with a framing ¢ of holomorphic or meromorphic type. Then

Ty = Modyg u[].

Proof. We argue by induction on the number n of boundary components. The base case
n = 1 was established above as Proposition 4.5. To proceed, we appeal to Lemma 5.10,
taking G = Modg ,[¢] and X = A*(¢; p,q) fors € Z + % arbitrary.

Lemmas 5.3 and 5.4 combine to show that the hypotheses of Lemma 5.10 are satisfied
for G = Modg »[¢] and X = A°(¢; p, q). Let a be any s-arc connecting p to g. By
the framed change-of-coordinates principle (Proposition 2.15), there exists an admissible
curve a such that i (o, a) = 1. The arc T, («) is disjoint from «, the adjacency is two-sided,
and the union T, (&) U « is nonseparating. As a is admissible, it follows that ¢ (T, (x)) =
¢ () = s, so that T, («) is adjacent to « in A*(P; p, q).
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By Lemma 5.10, it now follows that Mod, . [¢] is generated by 7, and the stabilizer
(Modg »[¢])«- By hypothesis, T, € T4. To complete the inductive step, it remains to see
that (Modg »[¢])e < T3. Let A be the boundary of a neighborhood of oo U A, U A,
and consider the subsurface X; ,_; < X , obtained by ignoring this neighborhood; it
inherits a canonical framing ¢’ from the framing ¢ of X, ,. The inclusion of framed
surfaces (Xg -1, ¢’) = (g0, ¢) induces inclusions

MOdg,n—l[¢/] — (Modg n[¢Da, Ty = Tp.

By the inductive hypothesis, Modg ,—1[¢’] = T4 . On the other hand, it is easy to see
that
(Modg ) N Modg [¢] = MOdg,n—l[‘lS/]v

and hence the inclusion Modg ,—1[¢'] = (Modg »[$])e is an isomorphism. The result
follows. u

5.6. Completing the proof of Theorem B

Theorem B has two assertions. Part (I) asserts that if ¢ is a framing of holomorphic type,
then Mody ,,[¢] is generated by the Dehn twists about an E-arboreal spanning configura-
tion of admissible curves. This claim follows immediately from the work we have done:
by Proposition 3.1, the admissible subgroup 7y is generated by this collection of twists,
and the claim now follows from Proposition 5.11.

It therefore remains to establish claim (II) of Theorem B. We recall the statement.
Recall (from the paragraph preceding the statement of Theorem B) the notion of an /-

assemblage of type E: begin with a collection €1 = {cy, ..., cx} forming an E-arboreal
spanning configuration on a subsurface S C X, , of genus £, and then successively add
in curves cg41,...,C¢ to S, at each stage attaching a new 1-handle to the subsurface.

Theorem B (II) asserts that if € is an h-assemblage of type E for & > 5, and if each
¢ € € is admissible for some framing ¢ (of holomorphic or meromorphic type), then
Mod(X,,,)[¢] is generated by the finite collection {T; | ¢ € €} of Dehn twists.

Before proceeding to the (short) proof below, we offer a comment on why we work
in such generality. There are two reasons: one of necessity, the other of convenience. On
the one hand, the homological coherence criterion (Lemma 2.4 (2)) implies that if € is an
arboreal spanning configuration of admissble curves on the framed surface (X, ¢), then
necessarily ¢ is of holomorphic type (see Lemma 5.12 below). Thus for meromorphic
type we must consider generating sets built on something more general than arboreal span-
ning configurations. Secondly, while the results of this paper (specifically Theorem A) do
not require assemblages, for other applications (especially [24]), this more general frame-
work is essential.

Above we asserted that if the framed surface (X, ¢) admits an E-arboreal spanning
configuration, then ¢ is necessarily of holomorphic type. In the course of proving Theo-
rem B (II), we will make use of this fact.
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Lemma 5.12. Let (X, ¢) be a framed surface. Suppose that € = {c1,...,cx} is an arbo-
real spanning configuration of admissible curves. Then ¢ is of holomorphic type.

Proof. The simplest proof uses the perspective of translation surfaces as discussed below
in §7. We employ the Thurston—Veech construction (see, e.g. [5, Section 3.3]). Given
a configuration of admissible curves whose intersection graph is a tree, this produces a
translation surface on which each ¢; € € is represented as the core of a cylinder. The fram-
ing ¢ is incarnated as the framing associated to the horizontal vector field. The framing
on a translation surface is necessarily of holomorphic type; the result follows. ]

We have rigged the definition of an /-assemblage of type E so as to make Theo-
rem B (I) an immediate corollary of the following “stabilization lemma.” Below, we use ¢
to denote both a framing of X, ;, and the induced framing on subsurfaces (the latter was
denoted ¢’ above).

Lemma 5.13. Let (2, ,, @) be a framed surface of holomorphic or meromorphic type.
Let S C X4, be a subsurface of genus at least 5 and let a C 4 ,, be an admissible curve
such that a N S is a single arc; let ST denote a regular neighborhood of S U a. Then

Mod(S™)[¢] = (Mod(S)[¢]. Ta)-

Proof. Let T4(S™) denote the admissible subgroup of Mod(S *)[¢]. Following Proposi-
tion 5.11, it suffices to show that

To(S™) = (Mod(S)[g]. Ta).

To do so, we appeal to the methods of §3, specifically Proposition 3.10 and Lemma 3.3.
Let b C S be an arbitrary oriented nonseparating curve satisfying ¢ (b) = —1, and consider
the subsurface push subgroup

() = TI(S*\ b).

By the framed change-of-coordinates principle (Proposition 2.15), b can be extended to a
3-chain (ag, a1, b) with ag, a; admissible curves contained in S. Proposition 3.10 asserts
that

T3 (ST) < (Tag. Tay . TI(D)).

As ag,a; are admissible curves on S, by hypothesis, Ty, T, € Mod(S), and so it remains
to show that T1(b) < (Mod(S)[¢], T.).

To see this, we observe that ﬁ(S \ b) < Mod(S)[¢]. Again by the framed
change-of-coordinates principle, there is an admissible curve ¢’ C S \ b such that
i(a’,a) = 1. Appealing to Lemma 3.3, it follows that ﬁ(b) is contained in the group
(T1(S \ b), T, Tr), and this latter group is contained in (Mod(S)[¢], 7). L]

Proof of Theorem B (II). Let€ ={cy,...,Ck,Ck+1,---,Ce} be an h-assemblage of type E
with & > 5. Assume further that each ¢; is admissible for the framing ¢. Recall that
for 1 < j < £, the regular neighborhood of the curves cy, ..., ¢; is denoted by S;. By
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hypothesis, {c1,...,cx} forms an E-arboreal spanning configuration on S, and the genus
of Sk is & > 5. In particular, the restriction of ¢ to Sy is of holomorphic type (Lemma
5.12). By Theorem B (1), it follows that Mod(S%)[¢] is contained in the group 7 (€) =
(Te; | ¢ €€).

We now argue by induction. Supposing Mod(S;)[¢] < T(€) for some j > k, it
follows from Lemma 5.13 that since S;4; is the stabilization of §; along c;41, also
Mod(S;+1)[¢] < T(€). As S = Xg , by assumption, the result follows. |

6. Other framed mapping class groups

In this section we leverage our work on the framed mapping class group Mody ,[¢] in
order to study two variants we will encounter in our investigation of the monodromy
groups of strata of abelian differentials. The most straightforward variant we consider is
the stabilizer of the framing up to absolute isotopy, i.e., where the isotopy is not neces-
sarily trivial on the boundary. In this case, we will see that there is a sensible theory even
when boundary components are replaced by marked points. We carry this out in §6.2,
culminating in Proposition 6.10.

Our analysis of this case is built on a study of an intermediate refinement we call
the “pronged mapping class group.” This group was introduced in a slightly different
form in [1], where it was called the “mapping class group rel boundary” of the surface.
In §6.1, we lay out the basic theory of prong structures, pronged mapping class groups,
and framings on pronged surfaces, leading to the structural result of Proposition 6.7. The
material in §6.2 then follows as an easy corollary.

§6.3 contains an analysis of the relationship between the (relative) framed mapping
class group Modg,,[#] and its absolute counterpart PMody [#]. The main result here is
Proposition 6.14, which identifies an obstruction for Mod,,» [#] to surject onto PMody [#].

Remark 6.1. For clarity of exposition, we restrict our attention throughout this section
to framings ¢ of holomorphic type. Similar statements hold for arbitrary framings but the
corresponding statements become somewhat messier; see Remarks 6.9 and 6.13.

6.1. Pronged surfaces and pronged mapping class groups

In our study of the monodromy of strata of abelian differentials, we will encounter a
variant of a puncture/boundary component known as a prong structure. Here we outline
the basic theory of surfaces with prong structure and their mapping class groups.

Definition 6.2 (Prong structure, pronged mapping class group). Let ¥ be a surface of
genus g equipped with a Riemannian metric and p; € ¥ a marked point. A prong point of
order k; at p; is a choice of k; distinct unit vectors (prongs) vi, ..., vk; € Tp, X spaced
at equal angles. With this data specified, we will write p; to refer to the set of prongs
based at p;, and P to indicate a set of prong points {p1, ..., pn} with underlying points

P :{pl,---»pn}~
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Let P be a collection of prong points. Define Difft (X; f_;) to be the group of orienta-
tion-preserving diffeomorphisms of ¥ that preserve each prong point (elements must fix
the points p1, ..., p, pointwise, but can induce a (necessarily cyclic) permutation of the
overlying tangent vectors). The pronged mapping class group is then defined as

Mod(E, P) := mo(Diff ™ (Z; P)).

In the interest of compressing notation, this will often be written simply Mod;,n, with the
underlying prong structure understood from context.

Prongs vs. boundary components. Here we outline the relationship between prongs and
boundary components. First note that a prong point of order 1 is simply a choice of fixed
tangent vector. Also recall that in the case where all prong points have order 1, there is a
natural isomorphism

Mod(E, P) =~ Mod(Z*),

where £* >~ X, , is the surface with n boundary components obtained by performing a
real oriented blow-up at each p; (see Construction 7.4 below). More generally, let (X, f’)
be an arbitrary pronged surface with p; a prong point of order k;. Let u; < C* denote
the group of kth roots of unity, and define the “prong rotation group”

n
PR = H,u,kl..

i=1

Foreach 1 <i <n,thereisamap D; : Modé*,’
of the derivative at 7, ¥ = C. We define

— Uk, given by taking the rotational part

n

n
D= ]_[ D; : Mod}, , — PR
i=1

to be the product. Then D induces the following short exact sequence (cf. [1, (6)]):

1 — Modg , — Modg , — PR — 1. (12)

n

Fractional twists. There is an explicit set-theoretic splitting of (12). We define a frac-
tional twist T, at the prong point pi of order k; to be the mapping class specified in a
local complex coordinate z < 1 near p; by

Tﬁ'(z) = 7o@ri(l=lzD)/ ki
Intuitively, 7, acts by applying a “screwing motion” of angle 27r/k; at p;, viewing a

small neighborhood of p; as being constructed from an elastic material connected to a
rigid immobile boundary component. It is then clear that PR embeds into Mod;’n as the

set of fractional twists {Tiill ...Tg” | 0 < j; <k;}.Define
FT = (Tp, | 1 <i <n) <Mody ,

to be the group generated by the fractional twists.
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On the blow-up X*, the fractional twist T, acts as a fractional rotation of the corre-
sponding boundary component. It will be convenient to introduce the following notation:
if A; is the boundary component corresponding to p;, write T, / " in place of T5,. Note
that Tic ' can be identified with the full Dehn twist about A;, so that the equation

1/kink; _
(TA/ ¥ = Ta,
holds as it should. We will therefore allow T, to assume fractional exponents with
denominator k; .

Relative framings of pronged surfaces. Let (X, 13) be a pronged surface. For simplicity,
we will formulate the discussion in this paragraph in terms of the blow-up X*. Consider
now a nonvanishing vector field £ on ¥*. As in §2, when a Riemannian metric is fixed,
& gives rise to a framing ¢ of X*. In the presence of a prong structure, we will impose a
further “compatibility” requirement on ¢ at the boundary.

Definition 6.3 (Compatible framing). Let p; be a prong point of order k; on X and let A;
be the associated boundary component of X*. There is a canonical identification A; =~
UT,, ¥ between A; and the space of unit tangent directions at p;. We say that a framing ¢
is compatible with p; if the following conditions hold:

(1) For v € UTp,; X, the framing vector ¢ (v) is orthogonally inward-pointing on X* if
and only if v is a prong.

(2) The restriction of ¢ to UTp; X is invariant under the action of jtx; on UTp, Z.

IfPisa prong structure, we say that ¢ is compatible with P if ¢ is compatible with each
P € P in the above sense.

Remark 6.4. Observe that if ¢ is compatible with a prong point p; of order k;, then the
winding number of the associated boundary component A; of X* is only determined up
to sign: ¢(A;) = *Lk;, depending on which way ¢ turns between prong points (recall
the standing convention that boundary components are oriented with the interior of the
surface lying to the left). Throughout, we will assume that ¢ is of holomorphic type so
that ¢(A;) < O foralli.

Observe that the notion of relative isotopy of framings still makes sense on a pronged
surface. If ¢ is compatible with 13, then there is a well-defined action of Mod;n on the
set of relative isotopy classes of framings. Exactly as in §2, we define the framed mapping
class group of the framed pronged surface (X*, ¢) to be the stabilizer of ¢:

Modg ,[¢] = {f € Modg , | [ -¢ = ¢}.

Winding number functions. Exactly as in the setting of §2, relative isotopy classes of
framings on pronged surfaces are in bijection with suitably defined winding number func-
tions. The definition of winding number of a closed curve needs no modification. To set
up a theory of winding numbers for arcs on pronged surfaces, we adopt the natural coun-
terparts of the definitions of legal basepoint and legal arc from §2.
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Suppose (%, P ) is a pronged surface equipped with a compatible framing ¢. Let p;
be a prong point of order k;. The prongs vy, ..., v, € Ty, X correspond to k; distinct
points on the corresponding boundary component A; of X*, and by the compatibility
assumption, each v; is a legal basepoint in the sense of §2. We say that an arc o on the
pronged surface (X, 13) (or equivalently on the blow-up X*) is legal if « is properly
embedded, each endpoint is some legal basepoint on X*, and if «’(0) is orthogonally
inward-pointing and «’(1) is orthogonally outward-pointing. In short, the theory of legal
arcs on pronged surfaces differs from the theory on surfaces with boundary only in that
we allow arcs to be based at any legal basepoint, not at one fixed point per boundary
component. Fractional twists about the boundary may change the basepoint, and so we
must consider all legal basepoints at once, instead of a single one.

Under this definition, legal arcs have half-integral winding number as before, and
moreover Modé*,,n acts on the set of isotopy classes of relative arcs. The twist-linearity
formula (Lemma 2.4 (1)) generalizes to fractional twists as follows (the proof is straight-
forward and is omitted).

Lemma 6.5. Let a be alegal arc on a pronged surface (X, P ) equipped with a compatible
framing ¢. If a has an endpoint at a legal basepoint on A;, then

1/k;
$(Ta/" (@) = ¢p(a) £ 1.
with the sign positive if and only if a is oriented so as to be incoming at A;.
We also have the following straightforward extension of Lemma 2.2.

Lemma 6.6. Let ¢ and v be two framings of the pronged surface (X, ﬁ), both com-
patible with the prong structure. Then ¢ and  are relatively isotopic if and only if the
associated relative winding number functions are equal. Moreover, ¢ = ¥ as relative
winding number functions if and only if ¢ (b) = W (b) for all elements b of a distinguished
geometric basis 8.

We come now to the main result of the section. This describes the relationship between
the stabilizer Mod;’i,n [¢] in the pronged mapping class group, and its subgroup Modyg , [¢]
where each prong is required to be individually fixed. In order to do so, we define a
certain subgroup of PR. For convenience, we will switch to additive notation and identify

Uk = 7] kZ, writing
PR = {Z cie;

We furthermore write Y to indicate a sum over all indices i such that k; is even. Then
define

¢ e Z/k,-z}.

PR = {Z cie; € PR ‘ 3¢ = 0 (mod 2)}. (13)
Observe that if all k; are odd then PR’ = PR.

Proposition 6.7. Let (%, P ) be a pronged surface and let ¢ be a compatible framing.
Then the map D : Mod;n — PR induces the short exact sequence

1 — Modg »[¢] — Mod;n [¢] — PR — 1. 14)
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Before we begin the proof, we introduce the notion of an auxiliary curve.

Definition 6.8 (Auxiliary curves). Let (X, ,,¢) be a framed surface with boundary com-
ponents Ay, ..., A,. An auxiliary curve for Ay is a separating curve dj such that dj
separates Ay from the remaining boundary components, and such that ¢ (d) = £1 or 2
according to whether ¢ (Ay) is odd or even. An auxiliary curve for A; and A; is any sep-
arating curve ¢; ; that separates the boundary components A;, A; from the remaining
components.

Proof of Proposition 6.7. By definition,
Modg,»[¢] := Modg,» N Mod;,n (8],

and Mody , is the kernel of D. This establishes exactness at Mod, , [¢] and at Mod;,n [#].

It remains to be seen that D(Mody ,[¢]) = PR'. We first show that PR’ <
D(Mod;n [¢]) by explicit construction. Observe that PR’ is generated by elements of
three kinds:

(G1) e; for i such that k; is odd,
(G2) 2e; fori such that k; is even,
(G3) m(e; + e;) form odd and i, j such that k; and k; are even.

Let A; C 0X* be given. Choose a curve d; in the following way: if k; is odd, pick d; C X*
such that d; separates A; from all remaining boundary components and the subsurface
bounded by A; and d; has genus (k; + 1)/2. If k; is even, d; may be defined identically
except that A; U d; must cobound a surface of genus (k; + 2)/2. By Remark 6.4, if ¢ is
compatible with P, then ¢ is of holomorphic type, and hence k; < 2g — 1 for all i. Thus
the genus of the surface cobounded by A; U d; is at most g, and hence such d; exist for
all boundary components A;. In both cases, orient d; so that A; is on its left.

By Remark 6.4 and the homological coherence property (Lemma 2.4 (2)), if k; is odd,
then ¢(d;) = —1, and if k; is even, then ¢(d;) = —2. Therefore, d; is an auxiliary curve
for A;.

If k; is odd, we define an auxiliary twist of type 1 to be the mapping class

1/k

Ai =Ty, "Td_l_l

(where d; is as above), and if k; is even, we define it to be
A= TRIN T

Observe that D(A;) = e; if k; is odd, and D(A;) = 2e; if k; is even. By the twist-linearity
formula (Lemma 2.4 (1)) and its extension to fractional twists (Lemma 6.5), one verifies
that 4; € Mody ,[¢].

Thus we have exhibited generators of the form (G1), (G2) for PR’. It remains to con-
struct elements mapping to generators of type (G3). Let k;, k; be even and choose an
auxiliary curve ¢; ; for A; and A;. By homological coherence (Lemma 2.4 (2)), ¢(ci,;)
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is odd. Define the auxiliary twist of type 2 to be the mapping class

B i = T¢(C1 /)/k[ T¢(C, /)/k, T_

Ci.j"

Then D(B;,;) = ¢(c;,j)(e; + ej) represents a generator of type (G3), and as before, the
twist-linearity formula shows that B; ; € Mod;n [#].

We now establish the converse assertion D(Mod;n [¢]) < PR’. For this, we recall that
there is a set-theoretic splitting s : PR — Mod* , given by fractional twists, and define
the set-theoretic retraction r : Mody , — Modg n by r(f)=sD(fH)f.

Let f € Mody ,[¢] be given. Then r(f) € Modg , by construction. The Arf invariant
classifies orbits of relative framings under the action of Mody ,, and hence we must have

Arf(r(f) - ¢) = Arf(¢).

Let 8 = {x1,...,yg} U{az,...,a,) be adistinguished geometric basis. By hypothesis,
¢(f -b) = ¢(b) forall b € B. Also note that

ki
$(T3/% (@) = ¢pai) + 1
while fixing the ¢ values of all other elements of B. Likewise,
k
$(Ta* (ai)) = plar) — 1

fori =2,...,n,while TAI{k‘ fixes the ¢ value of each of the curves x1, ..., yg. Since ¢
is a framing, we have Y (g;k; — 1) = 2g — 2 for some ¢; € {£1} (compare Remark 6.4).
In particular, we have that ) (k; + 1) = 0 (mod 2). Considering the Arf invariant for-
mula (1), it follows that

AIf(f - ¢) — Arf(r(f) - ¢) = Arf(¢) — Arf(sD(f ") - $)
= > (p(ai) — ¢(sD(f)an) (ki + 1)

i=2

= Z(Dl(f) = Di(f)ki +1)

i=2

=Y Di(f)ki + 1) = Y Di(f) (mod2)

i=1

where the penultimate equality follows because Y i, (k; + 1) D1 = (k1 + 1) Dy (mod 2).
But now f preserves ¢ by construction, hence Arf( f - ¢) = Arf(¢) = Arf(r(f) - ¢).
Therefore we see that }' D; (f) = 0, i.e., D(f) € PR.. [

Remark 6.9. As noted above, this theory generalizes to arbitrary framings compatible
with a prong structure. When boundary components have positive winding number the
signs of the formula in Lemma 6.5 reverse. More substantially, the proof of Proposition
6.7 must be altered, for there do not exist auxiliary curves for a boundary component A of
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arbitrary winding number. Instead, one must take a combination of twists on curves sep-
arating A from the other boundary components (together with a fractional twist about A)
to produce the generators (G1) and (G2).

If one wishes to include boundary components of winding number O in this theory,
the easiest method is to introduce them separately and consider framings on surfaces with
both boundary (of winding number 0) and prongs. In this case, the corresponding factor
in the prong rotation group is trivial (see below), and boundary twists about winding
number O curves are all in the stabilizer of the framing.

6.2. Pointed surfaces and absolute framed mapping class groups

The second variant of a framed mapping class group we consider is the most coarse.
As in the pronged setting, we consider a closed genus g surface ¥ with a collection
P ={p1,..., pn} of marked points, but we do not equip each p; with the structure of a
prong point. Thus the mapping class group acting up to isotopy on (X, P) is the familiar
punctured mapping class group Modg.

Forgetting the prong structure induces the following short exact sequence of mapping
class groups (see [1, Lemma 2.4]):

1— FT — Mod;’ — PMody — 1, (15)

n

where we recall that FT is the group generated by the fractional twists at each p;.

Suppose that £ is a vector field on X vanishing only at P. Then £ determines a framing
of the punctured surface ¥ \ P. Since we do not fix any boundary data, the notion of rela-
tive isotopy is ill-defined. To emphasize this, we use the term absolute in this setting, and
so we speak of absolute isotopy classes of framings, absolute winding number functions
(which measure winding numbers only of oriented simple closed curves, not arcs), and the
absolute framed mapping class group. In this language, the pointed mapping class group
Modg acts on the set of isotopy classes of absolute framings, or equivalently on the set of
absolute winding number functions. If ¢ is an absolute framing/winding number function,
we write Mody [#] to denote the stabilizer, and PModyp (@] for the finite-index subgroup
where each marked point is individually fixed. The main result concerning Modg [¢] that
we will need is the following.

Theorem 6.10. Let (X, P ) be a pronged surface equipped with a compatible framing ¢.
The forgetful map p : (X, P) — (X, P) induces a surjection

P« : Modg ,[¢] — PMody [#].

Proof. Let f € PMod, [#] be given, and choose a lift f € Modz,’n. The set of lifts is a tor-
sor on the kernel FT of the forgetful map px : Mod;n — PModg. The group of fractional
twists FT preserves all absolute winding numbers. If B = {x1,...,yg} U{az,....as}
is a distinguished geometric basis, then by Lemma 6.5, FT acts transitively on the set of
values (¢ (az),...,d(an)). Thus there is g € FT such that ¢ (g f (b)) = ¢ (b) forall b € B.
By Lemma 6.6, g f is an element of Mod;n [#], and by construction p.(gf) = 7. |
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Combining this result with Proposition 6.7 yields an explicit generating set for
PMod [$].

Definition 6.11. Let X ,, have boundary components Ay, ..., A,. An auxiliary curve
system is a collection of the following auxiliary curves:

o auxiliary curves ¢; ; for all pairs i, j such that both ¢ (A;), ¢(A;) are even,
e auxiliary curves dj for all indices k.

No requirements are imposed on the intersection pattern of curves in an auxiliary curve
system.

Corollary 6.12. Let k be a partition of 2g — 2 by positive integers. Let ¢ be a relative
framing with signature —1 — k and let ¢ denote the absolute framing induced on X% by
capping off the boundary components of Xg , with punctured disks. Then PMOdZ [@] is
generated by p«(Modg ,[§]) together with the twists about an auxiliary curve system A.

In particular, if g > 5, then PModg [¢] is generated by the Dehn twists in the curves
of € U A, where € is as in Figure 15.

Proof. As in the proof of Proposition 6.7, the group of auxiliary twists (Ag, B; ;) surjects
onto PR’ and hence by Proposition 6.7,

(Modg»[#], Ak, Bi,j) = Mody ,[¢].

Now it remains to observe that by Theorem 6.10 this group surjects onto PMod’; [¢] and
that by construction p(Ay) = Tail and p«(B;,;) = Cl_j1 [

Remark 6.13. As observed in Remark 6.9, auxiliary curve systems do not always exist
for arbitrary framings. The substitutions outlined there can similarly be used to give a
generating set for arbitrary PMody [¢] in terms of p.(Modg ,[¢]) and combinations of
separating twists.

6.3. The image of the relatively framed mapping class group

The final result we consider here determines the image of Modg ,[¢] in PMod, [#]
induced by the boundary-capping map X, , — X%. Again, we restrict to the case when ¢
is of holomorphic type; the corresponding statements and proofs for framings of arbitrary
type are left to the interested reader (one needs only change the signs of some generators).

Proposition 6.14. The image of Mod, ,[¢] in PModg [¢] is a normal subgroup with quo-
tient isomorphic to PR'/{(1,...,1)).

Proof. By Proposition 6.7, Modg ,[¢] < Mod;,n [¢] is a normal subgroup with quotient
PR’ induced by the “prong rotation map”

D : Modg , — PR.
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By Theorem 6.10, the boundary-capping map ps : Mod;,n — PMod’; restricts to a sur-

jection ps : Mody ,[¢] — PModg [#]. Thus the image of Mod, , [#] is a normal subgroup
of PModj [].

The quotient PMody [#]/ p«(Mody ,[$]) can be identified by the isomorphism theo-
rems. Suppose that G is a group and Ny, N, are normal subgroups. Then N; N, is normal
in G, and by the third isomorphism theorem,

(G/N1)/(N1N2/N1) = G/(N1N2) = (G/N2)/ (N1 N2/ N>).
We apply this here with
G = Mody ,[¢], N1 =kerpx, N»=Modgn[g].
Then
G/N1 = PMody[¢]. G/N, = PR,
NiNz/Ny = p«(N2) = p«(Modg x[¢]), Ni1N2/Np = D(Ny) = D(ker py).

Altogether, )
PModg [¢]/ p«(Modg »[¢]) = PR’/ D(ker p.).

To complete the argument, it therefore suffices to show that D (ker p.) = ((1,...,1)).
According to (15), the kernel of p. on Mod;n is the group FT of fractional twists. Thus
we must identify FT N Mody ,[¢]. We claim that

FT N Mody ,[¢] = Z

generated by the fractional twist [ [}_, TAIZ/, ki Note that

D(]i[TAlf"f) = (1,...,1),

i=1

so that showing this isomorphism will complete the argument.
To show this claim, consider an arbitrary element

f= li[ TA“;/kf
i=1
of FT N Mod;nw)]. Let «;,j be a legal arc connecting A; to A;. By Lemma 6.5,
¢(f(@i;)) — ¢laij) = aj —ai,
so that if f € Modg ,[¢], necessarily a; = a; for all pairs 7, j as claimed. (]

We now unravel the condition that PR'/{(1, ..., 1)) is trivial using some elementary
group theory.
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Corollary 6.15. Let k be a partition of 2g — 2 and write k = (N1, ..., Mp, V1, ..., Ug)
where n; are even, v; are odd, and p + q = n. Then Modg (9] surjects onto PMody (4]
if and only if ¢ <2 and

v +1 Uq—l—l}

{n1+1,...,np+1, T,

are pairwise coprime.

Proof. By Proposition 6.14, it suffices to determine when PR’ is cyclic (with generator

(1,....1)).

Using the additive notation introduced above, write

q »
PR, := {Z cjej ‘ cj €Z/(vj + I)Z}, PR, := {Z ciei | ¢i € Z/(ni + 1)Z}.
i=1

J=1

Even though PR, is a product over the odd v;’s, our notation reflects the fact that each of
its factors has even order.

Now by definition PR = PR, x PR,, and likewise we can write PR’ = PR, X PR,
where

PR, := {Z ciej € PRe | Y ¢ =0 (mod 2)}
J
as in (13). We observe that PR’ is cyclic if and only if PR, and PR, are cyclic of coprime
order, and that PR, is cyclic if and only if the set of n; + 1 are all pairwise coprime.
Suppose that PR, is cyclic. If PR, (and hence also PR),) is trivial, then the claim holds.
Otherwise, there is a short exact sequence

1 — PR, > PR, —> 7./2 — 1.

It follows that PR, is either cyclic of order 2|PR),| or else is isomorphic to Z/2 x PR,,.
Now as each factor of PR, is a cyclic group of even order, this implies that PR, has
at most two factors, i.e., ¢ < 2. Since PR, is a product over the odd v;’s and we have
> ni + Y v =2g — 2, this implies that ¢ is even and is therefore either 0 or 2. So if
PR, is nontrivial it must be isomorphic to (PR}) x Z /2. Necessarily then (v; + 1)/2 and
(v2 4 1)/2 are coprime and

/o~ U1+1 U2+1
PRe:Z/( . )ZXZ/( — )z

The remaining hypothesis that PR, and PR/, be cyclic of coprime order readily implies
the claim that the elements of

v +1 Uq-l—l}

{m+1,...,np+l, T,

are pairwise coprime as required. |
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7. Monodromy of strata

In this section, we fuse our discussion of framings and mapping class groups with the
theory of abelian differentials to deduce Theorem A from Theorem B.

We begin in §7.1 by collecting basic results about abelian differentials and their strata.
We also record Kontsevich and Zorich’s seminal classification (Theorem 7.2) of the con-
nected components of strata, together with a slight variation in which one labels the zeros
of the differential (Lemma 7.3).

With these foundations laid, we proceed to discuss the relationship between abelian
differentials and framings on punctured, bordered, and pronged surfaces in §7.2. This
section also contains a detailed description of the real oriented blow-up of an abelian
differential along its zero locus (Construction 7.4). The main result of this subsection is
Boissy’s classification of the components of strata of prong-marked differentials (Theo-
rem 7.5) and its implications for monodromy (Corollary 7.6).

Mapping class groups enter the picture in §7.3, in which we define a family of cov-
erings of strata (first introduced in [1]) whose deck groups are mapping class groups
of punctured, bordered, and pronged surfaces (see Diagram (16)). Using the relations
between these spaces, we then prove that the monodromy of each covering must preserve
the appropriate framing datum (Lemma 7.10 and Corollaries 7.11 and 7.12).

We establish the reverse inclusions (that the monodromy is the entire stabilizer of the
framing) in §7.4 as Theorems 7.13, 7.14, and A.

7.1. Abelian differentials

An abelian differential @ is aholomorphic 1-form on a Riemann surface X . The collection
of all abelian differentials forms a vector bundle (in the orbifold sense) 2.M, over the
moduli space of curves. The complement of the zero section of this bundle is naturally
partitioned into disjoint subvarieties called strata which have a fixed number and order
of zeros. For k = (k1, ..., ks), we will let QM (k) denote the space of all pairs (X, @)
where w is an abelian differential on X which has zeros of order «1, ..., k. Throughout
this section, we will use Z to denote the set of zeros of w.

Away from its zeros, an abelian differential has canonical local coordinates in which
it can be written as dz; the transition maps between these coordinate charts are transla-
tions, so the data of an abelian differential @ on a Riemann surface X is also sometimes
called a translation structure. Pulling back the Euclidean metric of C along the canonical
coordinates defines a flat metric on X with a cone point of angle 27 (k + 1) at each zero
of order k.

Every abelian differential w also defines a horizontal vector field H, := 1/w on X
with singularities of order —«1, . .., —ky, and hence gives rise to a prong structure 7 with
a prong point of order «; + 1 at the ith zero of w. Forgetting the prong structure and the
marked points, the differential induces a ged(k)-spin structure ¢p on X (see Definition 2.6
and the discussion which follows it). In particular, if gcd(k) is even, then there is a well-
defined mod-2 reduction of the spin structure.
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Remark 7.1. For a more thorough treatment of the relationship between (higher) spin
structures and abelian differentials, the reader is directed to [4] and [5].

While it does not make sense to compare spin structures on different (unmarked) sur-
faces, when ged(k) is even the Arf invariant of ¢ is well-defined even without choice of
marking. Moreover, Arf(¢) is invariant under deformation and classifies the nonhyperel-
liptic components of QMg (k).

Theorem 7.2 ([21, Theorem 1]). Let g > 4 and k = (k1,...,kn) be a partition of 2g — 2.
Then QMg () has at most three components:

o Ifk = (2g —2)or (g —1,g — 1) then there is a unique component of QMg (k) that
consists entirely of hyperelliptic differentials.*

o [f gcd(k) is even then there are two components containing nonhyperelliptic differen-
tials, classified by the Arf invariant of their induced 2-spin structure.

o [fgcd(k) is odd then there is a unique component containing nonhyperelliptic differen-
tials.

We will focus our attention on the nonhyperelliptic components of QMg (k); the
hyperelliptic components are K(G, 1)’s for (finite extensions of) spherical braid groups
[22, §1.4] and therefore their monodromy can be understood entirely through Birman—
Hilden theory. See [4, §2] for a more thorough discussion.

We will often find it convenient to label the zeros of an abelian differential so as
to distinguish them. The corresponding stratum QM?b (k) of abelian differentials with
labeled singularities is clearly a finite cover of QMg (k) with deck group

Sym(c) = [ | Sym(r))
j=1

where Kk = (k7', ..., k") and Sym(n) is the symmetric group on n letters. Moreover,
it is not hard to show that each preimage of a connected component of QMg (k) is itself
connected (see, e.g., [2, Proposition 4.1]), and hence the monodromy of this covering map
is the entirety of the deck group.

Lemma 7.3. Let # be a component of QM (k). Then the monodromy homomorphism
Ay (H) — Sym (i)

associated to the covering QM () — QMg (i) is surjective.

7.2. From differentials to framings

To relate our results on framed mapping class groups to strata, we must first understand
the different types of framings which an abelian differential induces.

“4Recall that an abelian differential is hyperelliptic if it arises as the global square root of a
quadratic differential on C with at worst simple poles.



A. Calderon, N. Salter 4772

As observed above, the horizontal vector field of an abelian differential (X, w) €
QM (k) induces a ged(k)-spin structure on the underlying closed surface X. Moreover,
since w has canonical coordinates (in which it looks like dz) away from its zeros, we see
that @ induces a trivialization of T(X \ Z) and hence an absolute framing of X \ Z (in
the sense of §6.2).

To obtain a relative framing from w, we must first identify the surface X * which is to
be framed. Informally, this “real oriented blow-up” X * is obtained by replacing each zero
of w by the circle of directions at that point; the horizontal vector field then extends by
continuity along rays to a vector field (and eventually, a framing) on X * whose boundary
data can be read off from the order of the singularities. For more on the real oriented
blow-up construction in the context of translation surfaces, see [1, §2.5].

Construction 7.4 (Real oriented blow-ups). We begin by first describing the real ori-
ented blow-up of 0 € C; this toy example will provide a local model for the blow-up of a
translation surface. Equipping C with polar coordinates z = re’? gives a parametrization
of C \ {0} by the infinite open half-cylinder R~ ¢ x [0, 2] /(0 = 27). The real oriented
blow-up of 0 € C is the closed half-cylinder R>¢o x [0,27]/(0 = 27), which has a nat-
ural surjective map onto C extending polar coordinates. The fiber of this map above 0 is
therefore identified with the circle of directions at 0.

To blow up a cone point, let k > 1 and consider the branched cover of C given by
z + z¥. The Euclidean metric of C pulls back to a cone metric with cone angle 2k
at 0, and similarly the polar parametrization of C \ {0} pulls back to a parametrization
by R-¢ x [0, 2k7]/(0 = 2km). Therefore, the blow-up of a cone point of angle 2k
is the corresponding closed cylinder R>q X [0, 2k7]/(0 = 2k ), and the fiber above 0
corresponds to the 2k 7r’s worth of directions at 0.

Now suppose that (X, w) € QM};b (k) with zeros at points py, ..., p,. The real ori-
ented blow-up X* of X is the space obtained after blowing up each cone point p; via the
above construction.

Observe that X * is naturally a surface of the same genus as X with boundary compo-
nents Ay, ..., A,, the ith of which comes with an identification with the (k; + 1)-fold
cover of the circle (which is of course just a circle itself, equipped with a cyclic symmetry
of order k; + 1).

Moreover, the unit horizontal vector field H of @ induces a (nonvanishing) unit vector
field H* on X* by extending H continuously along rays into each cone point. For each
boundary component A;, the vector field H* |, is invariant under the cyclic symmetry
described above, and its winding number is —1 — ;.

Hence H* induces a framing ¢ of X* with boundary signature

sig(p) = (=1 —ky,...,—1 —kyp)

which is compatible (in the sense of Definition 6.3) with the prong structure (X, Z )
induced by w.
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Prong markings. While the blow-up X * of (X, w) is topologically a surface with bound-
ary, it is more accurate to view X * as (the blow-up of) a surface with prong structure. In
particular, there exist loops’ in QgM?b (k) which rotate the prongs of (X, V4 ) and hence
act by fractional twists on dX *. This phenomenon can be interpreted as the monodromy
of QMlab(K) taking values in Mod* rather than Mod, , (see §7.3 below).

By passing to a finite cover of QMI"“’ (k) which remembers more information, we
may therefore constrain the monodromy to lie in Modyg ,. To that end, define a prong
marking of an abelian differential w to be a labeling of its zeros together with a choice of
positive horizontal separatrix at each zero (these are also sometimes called framings of o,
as in [3]). In terms of the prong structure Z on X induced by w, a prong marking chooses
a prong at each zero.

The (components of the) space Q.M (k) of prong-marked abelian differentials are
finite covers of (the components of) a stratum Q:M(';b(g). Moreover, the deck transforma-
tions of this covering rotate the choice of specified prong at each zero and hence the deck
group is exactly PR.

Any loop in QM5 (k) preserves the prong marking and so acts as the identity on X *
by the correspondence outlined in §6.1. Therefore, the real oriented blow-up of a prong-
marked abelian differential can be consistently interpreted as a surface with boundary
(and hence the monodromy of QM (k) is in Mod, », as we will see in §7.3).

We now record Boissy’s classification of the components of QMP (k). Our statement
of the following theorem looks rather different than that which appears in [3]; we reconcile
these differences in Remark 7.7 at the end of this section.

Theorem 7.5 (cf. [3, Theorem 1.3]). Suppose that H is a nonhyperelliptic connected
component of QM};"(E). Then the preimage of ¥ in QM (k) has

e one connected component if gcd(k) is even, and

e two connected components if gcd(k) is odd, distinguished by the generalized Arf invari-
ant (1) of the relative framing on the real oriented blow-up.

Combining this classification with Theorem 7.2 immediately implies that for g > 4
there are exactly two nonhyperelliptic components of Q.M (k), classified by generalized
Arf invariant (compare with Proposition 2.10).

Translating Theorem 7.5 into the action of the deck group PR therefore identifies the
monodromy of the covering QMg (k) — QML (k):

Corollary 7.6. Suppose that g > 3 and let H be a nonhyperelliptic connected component
of QMlab (). Then the image of the monodromy homomorphism nlrb (H#) — PR is exactly
the subgroup PR’ of (13).

In particular, when gecd(k) is even the monodromy is all of PR.

S5For example, the SO(2) action on Q,Mgf‘b(g) [1, §2.10].
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Proof. This is an easy consequence of Lemma 6.5 together with the formula for the gener-
alized Arf invariant (1); simply observe that a prong rotation changes the winding number
of every arc incident to the prong point by £1.

More explicitly, pick @ € # and a preimage ] € QM% (k). Choose a distinguished
geometric basis 87 on X * with its basepoints specified by »}". Then given another preim-
age wb' of the same w € J there is a corresponding basis B, which differs from B; by a
fractional multitwist t (this choice is not unique, but is determined up to full twists about
the boundary of the blow-up X * of w).

Computing the Arf invariants of w" and 5" with respect to these bases, we see that the
two Arf invariants agree (and hence @} and w5’ live in the same component of QM (k))
if and only if

n n
g =Y ¢a) =Y ¢@@) =Y ¢ (mod2).
i=2 i=2
In particular, this equality holds if and only if D(z) € PR'.

We observe that the choice of T does not matter as any two choices T and 7’ differ
by full twists about the boundary of X*: twists about boundary components with even
winding number do not change the parity of ¢(z(a;)), while twists about odd boundaries
change parity of arcs which do not end up contributing to 3. ]

Remark 7.7. In addition to the differences in terminology, the statement and proof of
Theorem 7.5 in [3] distinguishes the two nonhyperelliptic components of Q.M% (k) by a
different invariant. There, Boissy differentiates the two by first choosing a set of arcs on
w € QM () which pair up the odd order zeros, are transverse to the horizontal foliation,
and are tangent to the specified prongs. Applying the “parallelogram construction” of [10]
to w along these arcs results in a new differential @’ of higher genus with all even zeros;
the Arf invariant of the 2-spin structure induced by w’ then distinguishes the components
of QME (k).

The reader may verify that Boissy’s invariant coincides with the generalized Arf
invariant by computing the contribution to Arf(w’) of each new handle and comparing
it to the corresponding term in the expression for Arf(¢) (where ¢ is interpreted as a
framing of X*).

7.3. Markings and monodromy

In order to compare the framings induced by differentials on different Riemann surfaces,
we pull them back to framings of a reference topological surface. To that end, we need
to understand markings of X, X*, and (X, Z ), together with the corresponding spaces of
marked differentials.

The coarsest type of marking data we consider in this section are homeomorphisms
from a closed surface X, to X which take a specified set of (labeled) marked points P
to the (labeled) zeros Z of w. With this data, we can define the corresponding space
Q7% («) of marked differentials with marked points as the space of triples (X, w, f),
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where (X, w) € SZCM};b(g) and f : (X, P) — (X, Z) is an isotopy class of homeomor-
phisms of pairs. The space of marked differentials with marked points is naturally a
(disconnected, orbifold) covering space of Q:M}gab (k) whose deck transformations cor-
respond to changing the marking, so its deck group is PMody.

On the other end of the spectrum, we may also mark a differential w € Q:M}gab (k)

by a pronged surface. Fix a topological pronged surface (%, 13) with prong points of
order k1 + 1,...,k, 4+ 1, and recall that any differential w naturally equips its underlying
surface X with a prong structure Z of the same prong type. Then a marking of (X, w)
by (X, 13) is a diffeomorphism of pairs f from (X2, P) to (X, Z) such that Df takes
the prong structure of P to that of Z. Equivalently, f is a diffeomorphism from the real
oriented blow-up X* of ¥ to X* which takes the distinguished points® of 3X* to those
of 0X*.

‘We may now record the definition of the corresponding space of marked differentials:

Definition 7.8 (cf. [1, §2.9]). Q'J}p "(k) is the space of marked differentials with a prong-
marking, that is, the space of triples (X, w, f) where (X, w) is an abelian differential in
QeM};b(g) and f : (2, P) — (X, Z) is an isotopy class of marking of pronged surfaces.

Forgetting the prong structure induces a covering map from Q7" («) to Q7% (), the
deck group of which is exactly F7T. Similarly, forgetting the marking of the surface but
remembering the marking of its boundary (i.e., remembering df : 0¥ ¢ , — 0X ™) induces
a map from QT (k) to QM (k). Since this map remembers the boundary marking,
hence the specified prong, the deck group of this covering is thus a change-of-marking

group which preserves the boundary pointwise.

Lemma 7.9 ([1, Corollary 2.7]). The space Q‘Jg"(g is a (disconnected, orbifold) cover-
ing of both Q,Mgr(g) and Q’J"glab (k). Moreover, the deck group of the former covering is
Mody ,, and of the latter FT.

Putting this lemma together with either (12) or (15), we see that the deck group of the
covering QT (k) — QM?b (k) is exactly the pronged mapping class group Mod;,n.

We summarize the relationship between all of these spaces (and their deck groups)
in the following diagram, in which arrow labels correspond to the deck group of the

covering:
QT (k) —— QT (k)

Mod} Mod”
Modg.n g PMod!! € (16)

QMY (k) — 28— QM (0) 25 ()

Observe that the leftmost triangle demonstrates the exact sequence (12), while the center
triangle corresponds to (15).

Recall that 35* can be identified with the circle of directions above each blown-up point,
hence a prong point of order k corresponds to a boundary component with k distinguished points.
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Constraining monodromy. While the deck groups of the coverings in (16) are easy to
describe, their elements generally permute the components of the corresponding covers.
We now shift our focus to the stabilizer of a component of one of these covers; for con-
creteness, throughout the rest of this section we will focus on the covering Q’J}pr(g) —
Q:Mglb(g) and use this discussion to deduce the corresponding results for each of the
intermediate coverings.

We observe that by the path-lifting property, understanding the stabilizer of a com-
ponent of 27, (k) is equivalent to understanding the monodromy of the component of
QM?b(g) which it covers (cf. [5, Proposition 3.7]).

Monodromy groups are always only defined up to conjugacy, so we fix some refer-
ence marking f : (X, 13) — (X, Z ) (equivalently, a lift of a basepoint in Q,Mg‘b (k) to
QTP (k)). Pulling back the framing of (X, 7 ) induced by w along f induces a framing
¢ of ¥ compatible with P. Path-lifting then allows us to place the following constraint
on the monodromy, which is just a version of [4, Corollary 4.8] adapted to the setting of
framings rather than r-spin structures.

Lemma 7.10. Let K be a component of QMléf‘b (k) and fix some basepoint (X, w) € K.
Then the monodromy of the covering of H by (a component of) QTg" (k) preserves the
induced framing ¢ on the pronged surface X. In other words, the image of

p: (K, (X, 0)) — Mody ,,
is contained inside of Mody , [¢].

Proof. Let f be a marking of (X, 2) by (2, 13) and let y be a loop in # based at (X, w).

By Lemma 7.9, the loop y lifts to a path ¥ in QT3 (k), and hence a path of marked
prong-marked abelian differentials (X;, w;, f;) with horizontal vector fields H;. Pulling
back H; by f; yields a continuous family of vector fields on (X, 13), all compatible with
the prong structure. Let ¢; denote the associated framing of (X, 13).

Then since the vector fields vary continuously (and do not vanish on X \ P), the
winding number ¢;(a) of every simple closed curve or legal arc a is continuous in ¢.
However, ¢ (a) takes values only in Z or Z + % and must therefore be constant over the
entire path y. Thus p(y) preserves the winding number of every simple closed curve and
legal arc, hence the entire framing. [ ]

In view of the sequences (14) and (15), together with (16), this implies the following
two results, where ¢ and ¢ denote the relative and absolute framings induced on X * and
X \ Z, respectively.

Corollary 7.11. The monodromy of the covering QTg (k) — QMY (k) lies inside of
Modg n[¢]-

Corollary 7.12. The monodromy of the covering QT* (k) — QM (k) lies inside of
PModj [¢].
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We note that these corollaries can also be proven directly using the same argument as
Lemma 7.10.

For brevity, in what follows we use §*, §7", and §'% to denote the monodromy groups
of the coverings appearing in Lemma 7.10 and Corollaries 7.11 and 7.12, respectively.

7.4. Generating framed mapping class groups

Now that we have shown that the monodromy of each of the coverings under consideration
stabilizes the relevant framing, we can use Theorem B to show that the group is the entire
stabilizer of the framing:

Theorem 7.13. Suppose that g > 5 and let H be a nonhyperelliptic component of
QM (k). Then
GP(H) = Modg » (@]

where ¢ is the relative framing of the real oriented blow-up X* induced by the horizontal
vector field on any (X, ) € QMg (k).

Assuming this theorem, we can leverage our understanding of the relationship
between framing stabilizers to characterize both §* and §'®.

Theorem 7.14. Suppose that g > 5 and let H be a nonhyperelliptic component of
QM (k). Then
§*(J) = Mod;, ,[9]

where ¢ is the relative framing of a pronged surface induced by the horizontal vector field
of any (X, w) € Q:M‘l;b(g).

Proof. By Lemma 7.10, §* < Mod;’n [¢]. By Theorem 7.5, §* surjects onto PR’, and so
by Theorem 7.13 and Proposition 6.7, it follows that Mod;’n 9] < &*. |

Forgetting the prongs, we can push this result down to the mapping class group with
marked points to complete the proof of Theorem A.

Proof of Theorem A. Observe that §'® is the image of §* under the surjection of (15).
Therefore, Theorems 7.14 and 6.10 together imply that

6" = PModj[¢].
Combining this result with Lemma 7.3 and the short exact sequence
1 — PMod} [¢] - Mod} [¢] — Sym(x) — 1
completes the proof of the theorem. ]
Cylinder shears and prototypes. It therefore remains to show that Mod, ,[¢] < §™. In

order to demonstrate this, we will need to build a collection of loops of abelian differen-
tials with prescribed monodromy.
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Recall that a cylinder on an abelian differential is an embedded Euclidean cylinder
with no singularities in its interior. Shearing the cylinder while leaving the rest of the
surface fixed results in a loop in a stratum whose monodromy is the Dehn twist of the
core curve of the cylinder.

Lemma 7.15 (cf. [4, Lemma 6.2]). Let # be a component of Q:Mgr(g) and suppose that
w € H has a cylinder with core curve c. Then T, € G"".

Now that we can use cylinder shears to exhibit Dehn twists, it remains to show that
there exist differentials in a stratum with a configuration of cylinders to which we can
apply Theorem B.

Lemma 7.16 ([5, Lemma 3.14]). Suppose that g > 5 and k = (k1,...,ky) is a partition
of 2g — 2. Let # be a nonhyperelliptic component of QMg (k). Set € to be the curve

system specified in Figure 15, of type 1 if gcd(k 1, . .., k) is even and
1, =0,3 d 4),

Arf(J) = & (mod 4)

0, g=1,2(mod4),

and of type 2 otherwise. Then there exists some w € K whose horizontal and vertical
cylinders are exactly the curves of €.

Fig. 15. Configurations of types 1 and 2 determining generating sets for Modg ,[¢]. We label the
boundary components A; for i = 0,...,2g — 3, with A; positioned between b; and b; 1 (for
clarity most of the labels have been omitted). Given a partition k = (k1,...,kp) of 2g — 2, only the
n boundary components A;, for iy of the form Zf=1 k;j (interpreted mod 2¢g — 2) are included, and
A;, is assigned the signature —1 — k. Under this scheme, each complementary region determined
by € contains exactly one boundary component, and the signatures are arranged so that each curve
in € is admissible.



Framed mapping class groups and abelian differentials 4779

By labeling a separatrix at each zero, these prototype surfaces also give rise to prong-
marked abelian differentials with specified Arf invariant.

Lemma 7.17. Let g, k, #, and € be as above. Let . be a (nonhyperelliptic) component
of the stratum of prong-marked abelian differentials which covers . Then there exists
some w € Hy whose horizontal and vertical cylinders are exactly the curves of €.

Proof. Let w € H be the differential constructed in Lemma 7.16. If ged(k) is even, then
by Theorem 7.5 the entire preimage of J¢ in Q:Mif‘b (k) is Hpr and so any prong marking
of w lives in H,. If gcd(k) is odd, then choose an arbitrary prong marking wy, of @ and
let p; be some zero of odd order (corresponding to a prong point of even order).

Now by Corollary 7.6, since T, ¢ PR’ the differentials w, and T, (w,,) must lie in
different components of QM5 (k). Since there are only two components (by Theorem
7.5), one of {T3, (wpr), wpr} must be in Hy. |

It is now completely straightforward to deduce that the monodromy group of a com-
ponent J, of QME (k) is exactly the stabilizer of the relative framing induced on the
real oriented blow-up.

Proof of Theorem 71.13. Let (X, w) € H, be the prototype surface built in Lemma 7.17
above. Observe that each configuration of curves specified in Figure 15 spans the indicated
surface, has intersection graph a tree, and contains E¢ as a subgraph. Then by Theorem B,
Lemma 7.15, and Corollary 7.11, we have

Modg [p] = (Tc | ¢ € €) = §™ < Modg »[4].

completing the proof of Theorem 7.13. ]

8. Further corollaries

In this final section we collect some further corollaries of the work we have done.

8.1. Classification of components

The monodromy computations in Theorems A, 7.13, and 7.14 lead to the following clas-
sification of the nonhyperelliptic components of strata of marked differentials (cf. [5,
Theorem A]):

Corollary 8.1. There is a bijection between the nonhyperelliptic components of Q2 Tglab (¥)
and the isotopy classes of absolute framings of X% with signature —1 — k.

If gcd(k) is odd then the permutation action of MOdZ’ is transitive, while if gcd(k) is
even there are two orbits, classified by the Arf invariant.

Corollary 8.2. There is a bijection between the nonhyperelliptic components of QT3 (k)
and the (relative) isotopy classes of relative framings of X ¢ , with signature —1 — k.
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The action of Modz’n is transitive if ged(k) is odd and has two orbits if ged(k) is
even, classified by the Arf invariant of the absolute framing. The action of Modg , has

two orbits no matter the parity of gcd(x), classified by the generalized Arf invariant.

The proofs of both corollaries are simply a consequence of the orbit-stabilizer theo-
rem applied to the PMody, action on the set of components of Q'J‘glab (k), respectively the
Mod, ,, action on the components of QT (k), together with the classification of orbits

(Theorems 7.2 and 7.5, respectively).

8.2. Cylinder shears and fundamental groups of strata

For a component # of a general stratum Q.M. (k), no explicit set of generators for
79" (H) is known. Cylinder shears play a role analogous to Dehn twists in the theory
of the mapping class group, and it is natural to wonder about the extent to which shears
generate nfrb(% ). If the partition k contains any repeated elements, the corresponding
zeros can be exchanged, but this certainly cannot be accomplished using shears. Thus
one must first pass to a “labeled stratum,” i.e., a component J},, of the cover QML?"(&).
Even here, the work of Boissy (in the guise of Corollary 7.6) implies that 7™ (Hyap)
is never generated by shears alone, since shears map trivially onto the prong rotation
group PR. However, prong rotation is not detected by the monodromy representation
o T (Hap) — PModg [#], only by the refinement whose target is the pronged map-
ping class group.

As a corollary of our monodromy computations and Corollary 6.15, we find that the
arithmetic of the partition k provides an obstruction for the subgroup of 7™ (Hy.,) gen-
erated by cylinder shears to generate the monodromy group in PModZ. Thus, the prong
rotation group “leaves a trace” in the group PModg [¢], even though there is no way of
measuring prong rotation in PMody [¢] directly.

Corollary 8.3. Let k be a partition of 2g — 2 for g > 5 and let Hy,, be a nonhyperelliptic
component of the stratum Qngé‘b(g). Write k. = (N1, ..., Np, V1, ..., Yq) Where n; are
even, vj are odd, and p + q = n. If ¢ > 2, or if the elements of

v + 1 Uq-l—l}

{T]1+1,...,7]p+1, ) ey b

are not pairwise coprime, then the subgroup of nfrb(Jflab) generated by cylinder shears
does not surject onto €'

Proof. Choose an arbitrary component J#,, of the preimage of Hy,p, in QMY (k) and let ¢
denote the induced relative framing. Let € denote the subgroup of 7™ (Hy.,) generated
by cylinder shears (or rather, by elements which are conjugate to cylinder shears by some
path connecting a basepoint (X, w) to the surface (Y, w) realizing the relevant cylinder).
As cylinder shears preserve prong-markings, we see that € < 9™ (H,,).

Recall that pp; : nfrb (Hpr) = Modyg ,, denotes the monodromy representation of Fp,
with image §”", and that §'®® denotes the image of the monodromy representation of #},,
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into PMody . Now Theorem A finds that glib = PMod} [#], and Theorem 7.13 finds that
ppr(€) < E" = Modg »[¢).” By Corollary 6.15, under our current hypotheses, the map
Mod, »[¢] — PMody, [#] is never surjective. Therefore, the image of € in §'* is a strict
subgroup. ]

8.3. Change of coordinates for saddle connections

In this section, we use the machinery of prong-markings and the framed change-of-
coordinates principle to prove Corollary 1.3 (realization of arcs as saddles). As in Corol-
lary 1.2, the idea is to use the framed change-of-coordinates principle to take a given arc
to some target arc which is realized as a saddle connection. However, unlike cylinders,
saddle connections do not share a common winding number. The main difficulty in the
proof of Corollary 1.3 is therefore to construct a sufficiently large set of saddle connec-
tions to play the role of target arcs (Lemma 8.5).

We begin by clarifying some conventions with regards to arcs on surfaces with bound-
ary versus surfaces with marked points. Recall that if (X, ,, ¢) is a relatively framed
surface, then we have fixed once and for all a legal basepoint on each boundary compo-
nent and we only consider arcs ending on this prescribed basepoint. When (X ,, ¢) arises
from the blow-up of a prong-marked abelian differential, this is equivalent to stipulating
that arcs must leave and enter the zeros with prescribed tangent directions.

Upon capping each boundary component of X, , with a punctured disk (equivalently,
forgetting the prong structure coming from the differential), each (relative) isotopy class
of arc a on X ,, projects to an (absolute) isotopy class of arc on X7, which we will denote
by 7 (a). Observe that the map 7 is not injective; elements of its fibers are related by Dehn
twists about the endpoint(s) of the arc.

Saddle connections on one-cylinder differentials. In order to exhibit the desired col-
lection of saddles, it will be convenient to use different model surfaces than the ones
introduced in §7.4.

To that end, recall that an abelian differential is called Jenkins—Strebel if it is com-
pletely horizontally periodic, i.e., if it can be written as the union of closed horizontal
cylinders. We will in particular be interested in those which can be obtained by identify-
ing boundary edges of a single cylinder, called one-cylinder Jenkins—Strebel differentials.

The existence result we will use is the following; see [31, Section 2] for an explicit
construction.

Proposition 8.4. There exists a one-cylinder Jenkins—Strebel differential (Y, n) in every
(nonempty) component of every stratum QMg (k).

As in the proof of Lemma 7.17, we can also upgrade these 1 to yield one-cylinder
Jenkins—Strebel differentials in each component of QM (k) and QM («) by labeling
zeros and prongs, respectively.

7In fact, the proof of Theorem 7.13 shows that the image of € under the monodromy map is all
of Modg »[¢].
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Using these new model differentials, we may now exhibit saddle connections which
have (a preimage under 7 which has) arbitrary winding number.

Lemma 8.5. Let H,,; be a component of QM?(Q and let p, q be two distinct zeros. Then
for every s € 7 + % there is a differential (Y, n) € Hy: and nonseparating arc a on Y'*
from Ay to A, (based at the legal basepoints prescribed by the prong-marking) such that

(1) ¢(a) = s for the relative framing ¢ induced by 1/,

(2) the geodesic representative of w(a) on (Y, Zeros(n)) is a saddle connection.

Proof. As twisting around A, changes ¢(a) by £¢(A,), it suffices to prove that there
exist such arcs for each residue class modulo ¢ (A,).

Let (Y, n) be a one-cylinder Jenkins—Strebel differential in J,, (which exists by
Proposition 8.4). Now by definition, we can write Y = C/~, where C = S! x [0, 1] is a
closed cylinder and ~ identifies segments of the “top boundary” S! x {1} with segments
of the “bottom boundary” S! x {0}. Let Q : C — Y denote the quotient map.

We observe that our choice of prong at p determines a unique half-separatrix on (Y, 1)
and hence a pair of half-segments in dC. In particular, the prong-marking determines a

unique point 5 € Q7 1(p) N (S! x {0}).

A B C D E F A B C D E F
— = < 7
> ¢ . P o AN

D C B F E A D C B F E A

Fig. 16. A one-cylinder Jenkins—Strebel differential in 2.M3(3, 1) and saddle connections on it. On
the left the arcs have been realized geodesically; on the right they have been realized with prescribed
tangential data.

Now consider the set - of all arcs in C which start at p and end at a point of Q™ (¢) N
S1 x {1}; up to Dehn twisting along the core curve of C, there are exactly ¢ (Ag) such arcs
(see Figure 16). Moreover, since the arcs of # are each realized as straight line segments
on C, the arcs of w(Q(+)) are all realized as saddle connections on (Y, 1). Isotoping
these arcs to leave p and enter g with the prescribed tangential data, we may measure the
winding numbers of a € Q(+). Careful inspection of Figure 16 shows that
13 2¢(Ag) — 1
{¢(a)m0d¢(Aq):a€ Q(A)}: _5_»'-"—q )
22 2
finishing the proof of the lemma. ]

Now that we have a sufficiently large collection of target saddle connections, we may
apply the framed change-of-coordinates principle to deduce Corollary 1.3.

Proof of Corollary 1.3. Let a be an arc on (X, w) with endpoints p and g. Choose an
arbitrary prong-marking of (X, w) and an arc a on X* such that 7(a) = a. Let (Y, n) be
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the one-cylinder Jenkins—Strebel differential from Lemma 8.5 in the same component of
QM% (k) as (X, w) and let ¢ denote the induced relative framing on Y *.

Choose a path o connecting (X, w) to (Y, n) and let o« (a) denote the parallel transport
of a along & (equivalently, lift « to a path in Q77" (k) and use the marking maps). Then
by Lemma 8.5 there is an arc » on Y * with ¢(b) = ¢(«(a)) and so that 7 (b) is a saddle
connection on (Y, n).

Now by the framed change-of-coordinates principle (Proposition 2.15), there is an ele-
ment of Modg ,[¢] taking a«(a) to b. By Theorem 7.13, this element can be represented
by aloop B in H},. The concatenated path « - 8 therefore takes @ on X™* to b on Y'*, and
so its projection to QMg (k) is the desired path. |

Appendix A. Summary of generating set results

In §§A.1-A.4 of this appendix we collect the results concerning generating sets for the
various framed mapping class groups studied throughout the paper. In §A.5, we illustrate
these results with an example. Finally, in §A.6, we examine the extent to which these
generating sets are minimal. For the sake of readability and relative self-containment, we
have repeated and reproduced what is necessary to understand the statements, although
the reader may need to consult §§1, 2 and/or 6 of the paper for further background.

A.l. The framed mapping class group Modg ,[¢]

Here we consider a surface X ,, of genus g > 5 with n > 1 boundary components, and
a relative isotopy class of framing ¢ of X, ,, of either holomorphic or meromorphic type.
Recall that a framing ¢ is of holomorphic type if each boundary component has negative
winding number (when oriented with the surface to the left), and is of meromorphic type
otherwise.

Theorem B asserts that Mody ,[¢] admits generating sets consisting of 2g + n — 1
Dehn twists; in fact, many combinatorially distinct such sets. We recall here the notions
of E-arboreal spanning configurations and h-assemblage that underpin the theory of gen-
erating sets. Let € = {cy,..., ¢t} be a collection of curves on a surface X, ,, pairwise
in minimal position, with the property that the geometric intersection number i (c;, ¢;) is
at most 1 for all pairs ¢;, ¢; € €. Associated to such a configuration is its intersection
graph Ae, whose vertices correspond to the elements of €, with ¢; and c; joined by an
edge whenever i (c;, ¢;) = 1. Such a configuration € spans X , if there is a deformation
retraction of Xz , onto the union of the curves in €. We say that € is arboreal if the
intersection graph A is a tree, and E-arboreal if Ae moreover contains the E¢ Dynkin
diagram as a subgraph.

An h-assemblage of type E on g , is a set of curves

€ ={C1,...,Cohtm—1>Cohtms-->Cog4n—1}

such that (1) € = {c1,...,Con+m—1} i an E-arboreal spanning configuration on a sub-
surface S C Xg , of genus g(S) = h with m boundary components, (2) for j > k, let
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S; denote a regular neighborhood of the curves {ci,...,c;}; then for j > 2h 4+ m, we
require that ¢; N §;_; be a single arc (possibly, but not necessarily, entering and exiting
along the same boundary component of S;), and (3) Sz¢4+n—1 = X ,. In other words, an
assemblage of type E is built from an E-arboreal spanning configuration on a subsurface
by sequentially attaching (neighborhoods of) further curves, decreasing the Euler char-
acteristic by exactly 1 at each stage but otherwise allowing the new curves to intersect
individual old curves arbitrarily.

Theorem B shows that E-arboreal spanning configurations and /-assemblages con-
sisting of admissible curves generate the relatively framed mapping class group.

Theorem B. Let X, ,, be a surface of genus g > 5 with n > 1 boundary components.

() Suppose ¢ is a framing of X4, of holomorphic type. Let € = {c1, ..., C2g4+n—1} be
an E-arboreal spanning configuration of curves on X4, such that ¢(c) = 0 for all
c € €. Then
Modg »[¢] = (T, | ¢ € €).

(D) If ¢ is an arbitrary framing (of holomorphic or meromorphic type) and € =
{c1,....cog4n—1} is an h-assemblage of type E for h > 5 of curves such that
¢(c) =0 forall c € €, then

Modg »[¢] = (T | ¢ € E).

A.2. Framed mapping class groups of pronged surfaces Mod;n [#]

Here we consider a surface (X, 13) equipped with a finite set of n prong points (Defini-
tion 6.2). Suppose ¢ is a framing of holomorphic type compatible with P (Definition 6.3).
We obtain the framed pronged mapping class group Mod;n [¢]. To state a generating set
for Mod;n [¢], we recall the definition of an auxiliary curve from Definition 6.8 as well
as the definition of the auxiliary twists of types 1 and 2 from the proof of Proposition 6.7
and an auxiliary curve system from Definition 6.11.

Definition (Auxiliary curve, auxiliary twist, auxiliary curve system). Let (X4, ¢) be a
framed surface with boundary components Ay, ..., A, arising as the blow-up of a set of
prong points P = {p1...., pn}, with J; a prong point of order k;.

An auxiliary curve for A; is a separating curve d; such that d; separates A; from
the remaining boundary components, and with ¢(d;) = %1 or £2 according to whether
ki = ¢(A;) is odd or even. If k; is odd, we define an auxiliary twist of type 1 to be the
mapping class

A; = Ty*

i r—1
1 le
(where d; is as above), and if k; is even, we define it to be

A =TT
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An auxiliary curve for A; and A; is any separating curve ¢; ; that separates the boundary
components A;, A; from the remaining components. Define the auxiliary twist of type 2
to be the mapping class

B i = T¢(Cz j)/kl T¢(ct j)/kj T—

Cj, /
An auxiliary curve system is a collection of the following auxiliary curves:
o auxiliary curves ¢; ; for all pairs i, j such that both ¢ (A;), ¢p(A;) are even,
e auxiliary curves dj for all indices k.

No requirements are imposed on the intersection pattern of curves in an auxiliary curve
system.

The following generating set for Mod;,n [¢] was obtained in the course of proving
Corollary 6.12.

Proposition A.1. Let P = {P1,....Pn} be asetof n > 1 prong points on L4 for g > 5,
and let ¢ be a framing of (X, P) of holomorphic type compatible with P. Let 4 =
{ci,j . dx} be an auxiliary curve system, and let € = {cy, ..., C2g4n—1} be any set of curves
forming a generating system for the relative framed mapping class group Modg ,[¢] as in
Theorem B. Then Mod;n [¢] is generated by the Dehn twists about the curves in € along
with the auxiliary twists in the set .

Remark A.2. On the pronged surface, the auxiliary twists A; and B; ; are actually “frac-
tional multitwists,” not genuine single Dehn twists.

A.3. The absolute framed mapping class group PMody [#]

Here we consider a closed surface X7 of genus g > 5 equipped with a set of n > 1 marked
points. We equip X% with a framing ¢ of holomorphic type. In an obvious way, we can
consider ¢ as a framing ¢ on an associated surface X, , with boundary. The following is
a slight reformulation of Corollary 6.12.

Corollary 6.12. Let € be any set of curves forming a generating system for the relative
framed mapping class group Modg ,[§], and let A be an auxiliary curve system for ¢.
Then PModg [¢] is generated by the Dehn twists along the curves of € U .

A.4. r-spin mapping class groups on closed surfaces

Here we consider a closed surface ¢ of genus g > 5 equipped with an r-spin structure $
for some r dividing 2g — 2. The following is a slight reformulation of Corollary 3.11.

Corollary 3.11. Let € denote a filling network of curves on a closed surface Xg
with g > 5. Suppose that the intersection graph Ae is a tree which contains the Eg
Dynkin diagram as a subgraph and that € cuts the surface into n polygons with
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4(ky +1),...,4(ky, + 1) sides. Set r = ged(ky, ..., k,) and let<$ be the r-spin structure
determined by the condition that each curve ¢ € € be admissible. Then

Modg[¢] = (T, | ¢ € €).

In particular, if r = 1 then {T.} generate the entire mapping class group Mody.

A.5. An example

A1 b As Aj
O 2 Cc4 o ass O b3
. c3 C13
DO D
c1 €6
. O
7 b1 byg Ay
Fig. 17
Consider the surface X5 4 shown in Figure 17. We see that the red curves (cy, . .., ¢¢)
form an E¢ configuration, and the configuration € = {cq, ..., c13} of red and orange

curves is E-arboreal and spanning. By Theorem B, Mod(Xs 4)[¢] is generated by the
Dehn twists about curves in €, where ¢ is the framing determined by the condition that
each curve in € is admissible.

We compute that

(A1) = =3, ¢(A2) = ¢(A3) = =2, ¢(A4) = 5.

We next suppose that each A; is replaced with a prong p; of order k; = —¢(A;). Then the
green curve d,3 forms an auxiliary curve for the prongs p,, p3, both of even order, and the
blue curves by, ..., by form a set of auxiliary curves of type 1 for the associated prongs.
By Proposition A.1, the pronged framed mapping class group Mod;‘,4[¢] is generated
by the Dehn twists about the curves in € along with the auxiliary twists associated to
Cl23,b1, . ,b4.

We suppose next that the prongs pi,. .., ps are replaced with the corresponding set
D1, ..., p4 of ordinary marked points. Corollary 6.12 shows that the absolute framed
mapping class group PMod(X#¢)[@] is generated by the Dehn twists about the curves
Cly... ,613,a23,b1,... ,b4.

If one forgets the marked points pq, ..., ps entirely, the corresponding decomposition
of the closed surface X5 consists of four polygons with 12, 8, 8,20 sides, respectively. The
ged r as computed in Corollary 3.11 is then 1; it is not hard to see that the twists about
the curves ¢y, ..., c13 generate the mapping class group Mod(X5).
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A.6. Minimality

Here we examine the extent to which the above generating sets are minimal. In general,
the minimal number of generators depends strongly on the conjugacy class(es) involved
— e.g., the full mapping class group Mod(X,) requires 2g + 1 Dehn twists to generate
[11, Proposition 6.5] but can be generated by as few as two finite-order elements [30].
Here we consider only generation by Dehn twists. The cases of pronged surfaces and
punctured surfaces with absolute framings are somewhat more intricate, owing to the
necessity of including additional auxiliary twists, and we do not consider them here. On
the other hand, the results we can obtain for relatively framed mapping class groups and
for r-spin mapping class groups are nearly optimal. The arguments below are generally
modeled on [11, Proposition 6.5], although Proposition A.4 makes the connection with
spin structures more explicit.

Proposition A.3. The framed mapping class group Mod(Xg ,)[¢] is not generated by
fewer than 2g + n — 1 Dehn twists. Thus the generating sets of Theorem B are minimal.

Proof. We consider the action of the group Mod(X, ,)[¢] on the relative homology
Hi(Xgn,0%g »; Q). The action of the Dehn twist T, on H{(Zg ,, 0X¢ ,; Q) is given
by the formula

Te(x) = x + (x. [c])[c]. (17

where [c] (resp. [¢]) denotes the class of the curve ¢ in Hi(2gn: Q) (resp. its image in
Hi(Xgn,0%4,:Q)), and

<'a ) : Hl(zg,nv azg,n;(@) ® Hl(zg,n;Q) - Q

is induced by the intersection pairing between absolute and relative classes.

For a given [c] € Hi(X,,,; Q), the function (-, [c]) is a linear functional on
Hi(2g,, 024 ,;Q) and thus acts trivially on a subspace of codimension at most 1. The
space Hi(Zg n,0Xg n:Z) has dimension 2g + n — 1, and so any collection of fewer than
2g + n — 1 Dehn twists necessarily acts trivially on some nontrivial subspace.

On the other hand, the action of Mod(X¢ ,)[¢] fixes no such subspace. Any element
x € Hi(Z;,,0%,,; Q) can be represented by a single simple closed curve or arc «,
in either case nonseparating, equipped with a rational weight. By the framed change-
of-coordinates principle, one can construct an admissible curve 8 crossing transversely
through o« exactly once. Then (17) shows that the Dehn twist about 8 does not fix x. =

We next consider minimality in the r-spin case. An Euler characteristic argument
shows that one needs at least 2g curves in order to cut X into a union of one or more
polygons. In the case r = 2g — 2, for either value of the Arf invariant, there are config-
urations of 2g curves whose complement is a single polygon (see, e.g., [5, Theorem C]),
but at least 2g 4+ 1 curves are necessary to divide X into at least two polygons and
hence make r a proper divisor of 2g — 2 in Corollary 3.11, at least if they are arranged
in a network whose intersection graph is a tree. Considering the partition {r,2g —2 —r}
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of 2g — 2, one can again use the construction detailed in [5, Theorem C] to create con-
figurations of exactly 2g + 1 curves that generate Mod(Eg)[$]. Thus, for any r-spin
structure <$ we find generating sets for Mod(X g)[éﬁ\] consisting of 2g generators (in the
case r = 2g — 2) or else of 2g + 1 generators (for r < 2g — 2). Proposition A.4 below
shows that these generating sets are minimal in the cases r odd or r = 2g — 2, and are
nearly minimal otherwise.

Proposition A.4. Let $ be an r-spin structure. For r even, Mod (X g)[;ﬁ] is generated by
no fewer than 2g Dehn twists, and for r odd, Mod(Z¢)[¢] is generated by no fewer than
2g + 1 Dehn twists.

Proof. We follow the same outline as in Proposition A.3; for the sake of subsequent argu-
ments we switch coefficients from Q to [F,. By considering the action of a Dehn twist
on Hy(Xg;IF), one concludes as above that at least 2g Dehn twists are necessary, and
that moreover the corresponding set of homology classes must span H;(Xg;F2). Now
suppose that r is odd. Let cy, ..., c2g be any set of admissible curves. We assume that
{le1]. ..., [c2g]} forms a basis for Hi(Zg; F»); otherwise the above paragraph shows
that {T,, ..., Tc,,} does not generate Mod(Eg)[é';]. Since {[c1], ..., [c2g]} is linearly
independent, one can construct a 2-spin structure ¢ for which each [c;] is admissible, so
that the action of {T¢,, ..., T¢, g} on H,(Xg;IF,) preserves g. On the other hand, for r
odd, Mod(Eg)[¢A>] surjects onto Sp(2g; Z) and hence onto Sp(2g; F;) [27, Lemma 5.4].
It follows that no set of 2g Dehn twists can generate in the case of r odd. ]
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