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Abstract. Benjamini and Kesten introduced in 1995 the problem of embedding infinite binary
sequences into a Bernoulli percolation configuration, known as percolation of words. We give a
positive answer to their Open Problem 2: almost surely, all words are seen for site percolation
on Z3 with parameter p D 1=2. We also extend this result in various directions, proving the same
result on Zd , d � 3, for any value p 2 .psite

c .Zd /; 1 � psite
c .Zd //, and for restrictions to slabs.

Finally, we provide an explicit estimate on the probability to find all words starting from a finite
box.
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1. Introduction

Percolation of words

We consider Bernoulli site percolation on the hypercubic lattice Zd , d � 3, with param-
eter p 2 .0; 1/. It is obtained by “coloring” at random the vertices of the lattice (with
colors 0 or 1): each vertex has state 1 with probability p, and 0 with probability 1 � p,
independently of the other vertices. We denote by Pp the corresponding probability mea-
sure (we refer the reader to Section 2.1 for detailed notation regarding Bernoulli percola-
tion, as well as the questions discussed below). This process displays a phase transition
for the existence of an infinite connected component of 1’s, at a certain critical value
psite
c .Zd / 2 .0; 1/ of the parameter p. It is known from [2] that the percolation thresh-

old satisfies psite
c .Zd / < 1=2, so that at p D 1=2, infinite connected components of both

colors coexist almost surely.
In the present paper, we study the problem known as percolation of words, introduced

by Benjamini and Kesten [1] in 1995. It pertains to embedding infinite binary words,
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Fig. 1. An embedding of the word � D .0; 1; 1; 0; 1; 1; 1; 0; : : :/ into Bernoulli site percolation on
the square lattice Z2, starting from a given vertex v; we say that the word � is seen from v.

i.e. sequences of the form � D .�0; �1; : : :/ where each �i 2 ¹0; 1º, into the percolation
configuration (see Figure 1 for an illustration).

In particular, embedding the constant words .0; 0; : : :/ and .1; 1; : : :/ is equivalent
to finding infinite connected components of 0’s and 1’s, respectively. Another special
case, called AB percolation, was introduced earlier by Mai and Halley [14], motivated by
phenomena of polymerization and gelation. In this model, the lattice is randomly popu-
lated by “particles” of two types, and neighboring particles of opposite types are bonded
together (see [17] for a survey). Studying the existence of infinite AB clusters amounts
to asking whether the alternating word .1; 0; 1; 0; : : :/ can be embedded. Somewhat sur-
prisingly, it is possible on the triangular lattice at p D 1=2, as shown by Wierman and
Appel [18], even though the constant words cannot be embedded (actually, they prove it
for all p in the interval .1 � psite

c .Z2/; psite
c .Z2//).

What makes percolation of words particularly challenging to study is its lack of mono-
tonicity. In contrast to usual Bernoulli percolation (i.e. the case of constant words), where
one considers events such as “there exists an infinite connected component of 1’s”, the
events studied in percolation of words are neither increasing nor decreasing in general.
For example one can think of the event, from AB percolation, of finding the alternating
word .1; 0; 1; 0; : : :/. In particular, the probability that a given non-constant word can be
embedded has no clear monotonicity in p, and it could even be the case (although not
expected) that the set of p for which this probability is positive is not an interval.

Main result: no exceptional words

Before stating our main result, we need to give a few definitions specific to the study
of percolation of words (the more standard definitions of percolation are presented in
Section 2). We denote by

„ WD ¹0; 1ºN

(where N D ¹0; 1; : : :º) the set of all infinite words. For a vertex v 2 Zd and a site perco-
lation configuration ! on Zd , we say that a word � 2 „ is seen from v in ! if there exists
an infinite self-avoiding path v D v0 � v1 � � � � such that

!vi
D �i for all i � 0: (1.1)
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We also introduce the corresponding random set of words S.v/ WD ¹� 2 „ W � is seen
from vº, as well as, for V � Zd ,

SV WD
[
v2V

S.v/ D ¹� 2 „ W � is seen from at least one vertex v 2 V º:

Following the notation of [1], we write S1 WD SZd ; it is the set of words that can be seen
somewhere on the lattice.

Benjamini and Kesten [1] proved that1 for every � 2 „, P1=2.� 2 S1/ D 1. This
follows from Wierman’s coupling, as explained in Section 2.3. Combined with Fubini’s
theorem, it implies the following property which says, roughly speaking, that the “uniform
random word” can be seen at p D 1=2. For the product measure �1=2 WD .12 .ı0C ı1//

˝N

on „, we have
P1=2.�1=2.S1/ D 1/ D 1: (1.2)

In other words, P1=2-a.s., all “typical” � 2 „ can be seen.
This naturally leads to ask whether there could be some exceptional2 words that cannot

be seen, i.e. whether S1 ¤ „ or S1 D „ (P1=2-a.s.). This question was stated as Open
Problem 2 in [1], and it remained widely open since then. Our main result gives a complete
answer to it.

Theorem 1. For d D 3,
P1=2.S1 D „/ D 1: (1.3)

We prove in fact a stronger statement; see Theorem 5. In particular, it is possible to see
all words in a (sufficiently thick) slab. Moreover, our result holds not only for pD 1=2, but
also for all d � 3 and p 2 .psite

c .Zd /; 1 � psite
c .Zd //, i.e. in the regime where we know

that two infinite connected components, of 0’s and 1’s, coexist. Finally, we establish a
quantitative result, namely a precise estimate on the probability that all words can be seen
starting from a large ball.

Loosely speaking, we establish Theorem 5 by constructing all the words simultane-
ously, thanks to a renormalization argument. We want to emphasize that our proof uses
properties of Zd which are not really specific to this lattice, so we expect it to be quite
robust.

1The questions discussed here give rise to some non-trivial measurability issues, addressed in
[1, Section 2]. For the reader’s convenience, we provide in Section 2.2 a quick summary of the
properties relevant for the present paper.

2The terminology “exceptional word” is inspired from the work [16] on exceptional times for
critical dynamical percolation. Dynamical percolation is a process indexed by a continuous time
parameter t 2 R. At criticality on the triangular lattice, it is known that at every fixed time there is
no percolation, and the authors study the existence of possible exceptional times when percolation
occurs. Here, the situation is analogous, every fixed word can be seen a.s. and we investigate the
eventuality of exceptional words that could not be seen. Finally, we mention that in Section 7 of [1],
a tree is constructed on which exceptional words do exist: for all � 2 „, P1=2.� 2 S1/ D 1, but
P1=2.S1 D „/ D 0 (see [1, (7.5) and (7.14)]).
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Previous results

We conclude this introduction by mentioning previous works on percolation of words,
and related questions.

First, it was shown in [1, Theorem 1] that (1.3) holds for all d � 10. A few years later,
Kesten, Sidoravicius and Zhang [11] proved that (1.3) also holds for the close-packed
graph Z2cp of the square lattice, obtained from Z2 by adding diagonal edges to each face
(for this graph, psite

c .Z2cp/ < 1=2).
In addition, it was proved in [1, Theorem 1] that for all d � 40, all words can be seen

from the neighbors of one single vertex, i.e.

P1=2
�
9v 2 Zd W

[
v0�v

S.v0/ D „
�
D 1;

and the same was proved in [11] for Z2cp. Of course, one cannot hope to see all words
� 2 „ from one single vertex v, since the value of �0 then has to coincide with !v . Note
that because of this issue, a slightly different convention is adopted in [1]: the condition
in (1.1) is required to hold only starting from i D 1.

For percolation of words on Zd , d � 3, the following result (weaker than (1.3)) was
established in [9, Theorem 2], using a renormalization argument. Let„M stand for the set
of words such that all runs of consecutive 0’s or 1’s have length at least M (we allow in
particular such words to be ultimately constant), then for all p 2 .psite

c .Zd /;1�psite
c .Zd //,

9M DM.d; p/ such that Pp.„M � S1/ D 1:

Finally, the case of site percolation on the triangular lattice T at p D psite
c .T / D 1=2

was studied in [10]. In this case, the monochromatic words .0; 0; : : :/ and .1; 1; : : :/ cannot
be seen, since percolation does not occur, so we have in particular P1=2.S1 D „/ D 0.
However, one can show that (1.2) still holds in this case, i.e. almost all words can be seen:

P1=2.�1=2.S1/ D 1/ D 1:

This result answered Open Problem 1 in [1]. In this case where p D 1=2 is critical, one
cannot use Wierman’s coupling directly, since the lower bound that it provides is simply 0.
Much more work is required for this result than in the case of Zd (d � 3), where p D 1=2
is supercritical.

Organization of the paper

In Section 2, we first set notation, and then we discuss preliminary properties. In particu-
lar, we present Wierman’s coupling, which is instrumental in the proof of Theorem 1, in
combination with a renormalization argument. In Section 3, we state and prove a stronger
and quantitative version of Theorem 1; see Theorem 5. This proof uses several auxiliary
results, which are established in subsequent sections. We then proceed in detail with the
renormalization procedure in Section 4. Finally, the last two sections are devoted to prov-
ing two inputs used for Theorem 5, namely a strengthened version of Wierman’s coupling
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(Section 5), and a “propagation” lemma for oriented percolation (Section 6). Finally, we
present in Section 7 some open problems that arise naturally from this work.

2. Preliminaries

2.1. Notation

Let d � 3. We work with the hypercubic lattice Zd , whose vertices are the points with
integer coordinates, and two vertices are connected by an edge if and only if they are at
Euclidean distance 1 from each other. Write u � v if u and v are two neighbors.

Bernoulli site percolation on Zd , with parameter p 2 .0; 1/, can be represented as
follows. A percolation configuration is of the form .!v/v2Zd , where each !v (the state
of vertex v) is either 0 or 1. We denote by � WD ¹0; 1ºZ

d
the set of configurations, and

we equip it with the cylindrical � -algebra F . We consider on � the product measure
Pp WD .pı1 C .1� p/ı0/˝Zd

, under which vertices have independently state 0 or 1, with
respective probabilities 1 � p and p. This random coloring defines a partition of the lat-
tice: the vertices can be grouped into connected components, or clusters, of 0-vertices and
of 1-vertices.

As the parameter p varies, Bernoulli site percolation displays a phase transition, i.e. a
major change of macroscopic behavior, at a certain critical value pc D psite

c .Zd / 2 .0; 1/.
For all p < pc , there is Pp-almost surely no infinite cluster of 1-vertices, while for all
p > pc , there is Pp-almost surely such an infinite cluster, which moreover turns out to
be unique. As mentioned in the introduction, we know from [2] that psite

c .Zd / < 1=2.
We thus consider a value p 2 .psite

c .Zd /; 1 � psite
c .Zd //, for which infinite clusters of

both colors coexist almost surely, and we can assume without loss of generality that p 2
.psite
c .Zd /; 1=2�.

Recall that we denote by „ WD ¹0; 1ºN the set of infinite words, and (for v 2 Zd and
V � Zd ) recall the notations S.v/, SV , S1 (� „) from the introduction. For ` � 1, we
also introduce the set „` WD ¹0; 1º` of finite words � D .�0; : : : ; �`�1/ of length `. For
� 2 „, the finite subword between indices i and j (0 � i � j ) is denoted by �Œi;j � WD
.�i ; : : : ; �j / (2 „j�iC1).

For two vertices v;v0 2Zd and an infinite word � 2„, we denote by v
�

Ý v0 the event
that there exists n� 1 and a self-avoiding path vD v0 � v1 � � � � � vn�1D v0 from v to v0

along which the beginning of � is seen, i.e. such that !vi
D �i for all i 2 ¹0; : : : ; n � 1º.

Note that when � is the infinite monochromatic word 1 WD .1; 1; : : :/, v
1

Ý v0 refers to the
usual 1-connectedness between vertices. For � 2„ and v 2 Zd , we often use the notation

v
�

Ý1 for the event that � is seen from v (i.e. � 2 S.v/). The percolation probability is

denoted, as usual, by �.p/ WD Pp.0
1

Ý1/.
We also need the following notion of “exact” word-connectedness. For a finite word

� 2 „` (for some ` � 1), we denote by v
�
! v0 the event that there exists a self-avoiding

path v D v0 � v1 � � � � � v`�1 D v0 of length ` along which � is seen.
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2.2. Measurability properties

In this section, we recall some useful measurability properties that were established in [1].
The most important one is ¹S1 D „º 2 F , from [1, Proposition 2]. A zero-one law thus
holds for this event, by ergodicity.

Proving this result requires some work, and it is obtained in [1] from an application
of the Baire category theorem. This proof actually yields the following stronger property.
If S1 D „, i.e. all words are seen somewhere, then there exists a finite subset of vertices
F � Zd such that all words are seen from F :

¹S1 D „º D
[

F�Zd

jF j<1

¹SF D „º (2.1)

(see [1, Remark 1]).
For values p 2 .psite

c .Zd /; 1�psite
c .Zd //, the constructions used for Theorem 1 do not

provide a “constructive” proof of measurability for ¹S1 D „º. However, they do show
that there exists a measurable subset of ¹S1 D „º, which has full probability, and on
which a finite subset of vertices F as in (2.1) exists (as well as a quantitative statement,
see Theorem 5 below).

Remark 2. Note that the following (easier to establish) property holds as well. For every
� 2 „, ¹� 2 S.v/º 2 F for all v 2 Zd , so ¹� 2 S1º 2 F . Hence, a zero-one law follows
readily, again by ergodicity:

for all � 2 „; Pp.� 2 S1/ 2 ¹0; 1º (2.2)

(see [1, Proposition 3]).

2.3. Wierman’s coupling

We are going to use a construction due to Wierman [17] (see also [13]) to translate high
1-connectedness in the supercritical regime into high “�-connectedness”. It produces the
basic building blocks of our renormalization strategy, taking care of reading words at the
microscopic level. A simple way of stating it is the following: for every � 2 „,

Pp.0
�

Ý1/ � Pp.0
1

Ý1/ D �.p/ > 0

(recall that we assume p 2 .psite
c .Zd /; 1=2�). Hence, we can use (2.2) to get

for all � 2 „; Pp.� 2 S1/ D 1: (2.3)

In a similar way as in the introduction, this implies, using Fubini’s theorem, that for every
q 2 .0; 1/, Pp-a.s., �q-almost every word � 2 „ can be seen, where �q is the product
measure ..1 � q/ı0 C qı1/˝N on „.

Remark 3. The property (2.3) does not imply, in general, that Pp.S1 D „/ D 1.
A counter-example is provided by [1, Theorem 5], on a well-chosen tree (see in particular
[1, (7.5) and (7.14)]).
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The construction of Wierman’s coupling uses an iterative exploration of the 1-cluster
of a given vertex. For any fixed � 2 „, it constructs two coupled configurations .!; Q!/
such that !; Q! � Pp , and having the property that for every y 2 Zd ,

! 2 ¹0
1

Ý yº implies Q! 2 ¹0
�

Ý yº: (2.4)

We will actually use a generalization of this construction, where we replace the single
vertex 0 by a set S equipped with a set of words .�.x//x2S 2 „S .

Lemma 4. Let ƒ � Zd , S � ƒ, and .�.x//x2S 2 „S . There exist two coupled random
configurations .!; Q!/ such that !; Q! � Pp , and having the following property:

for all y 2 ƒ; ! 2 ¹9x 2 S W x
1

Ý y in ƒº implies Q! 2 ¹9x 2 S W x
�.x/

Ý y in ƒº:

We postpone the proof of Lemma 4 to Section 5.

3. Main result

In this section we state our main contribution, Theorem 5, and we prove it assuming an
auxiliary result, Proposition 7, that will be established in Section 4.

3.1. Statement

Theorem 5. Let d � 3, and p 2 .psite
c .Zd /; 1 � psite

c .Zd //.

(1) We have
Pp.S1 D „/ D 1: (3.1)

Moreover, there exists l .D l.d; p// such that Pp-a.s., all words can be seen in the
slab Z2 � Œ0; l�d�2.

(2) The following quantitative statement holds, where Bm.0/ WD Œ�m; m�d is the ball
with radius m . for the norm k � k1/ around 0 in Zd . There exists a constant c0 D

c0.d; p/ > 0 such that

for all m � 1; Pp.SBm.0/ D „/ � 1 � e
�c0m

d�1

: (3.2)

Note that (3.1) follows immediately from (3.2) by lettingm!1. Also, an analogous
upper bound clearly holds in (3.2), since it is known to be the order of magnitude (up to a
different choice of c0) for Pp.Bm.0/

1

Ý1/.

Remark 6. There is nothing special about our using two colors. For example, let I � 3
and consider the process (still in dimension d � 3) where the vertices are colored inde-
pendently 0; : : : ; I � 1, with respective probabilities p0; : : : ; pI�1 2 Œ0; 1� (satisfying
p0 C � � � C pI�1 D 1). If all these parameters are chosen to be strictly larger than
psite
c .Zd / (which is possible if d is large enough), then Wierman’s coupling can easily
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be adapted, and a result analogous to Theorem 5 holds. These parameters .pi /0�i�I�1
do not even need to be space-homogeneous: if they are uniformly bounded from below
by psite

c .Zd /C " for some " > 0, then the same arguments work. Finally, let us mention
that the methods in our proof of Theorem 5 could also be used to construct point-to-point
�-connections.

3.2. Proof of Theorem 5

For some given ı > 0 and k � 1, which we explain how to choose in Proposition 7 below,
we write

C D C.k/ WD jŒ�k; k�d j D .2k C 1/d : (3.3)

In the slab
Sh WD Z2 � .0; hk� � .�k; k�d�3 � Zd .h � 2/;

we consider the finite box

ƒn WD Œ�kn; kn�
2
� .0; hk� � .�k; k�d�3 .n � 1/;

as well as its inner vertex boundary @Sƒn with respect to the slab, i.e.

@Sƒn WD ¹x 2 ƒn W x � y for some y 2 Sh nƒnº (3.4)

(see Figure 2).

x

y

z

2kn

2kn

hk

ƒn

Fig. 2. Illustration of the box ƒn for d D 3, with @Sƒn marked in transparent gray.

For any given n > m � 1 and � 2 „, we introduce the event

Enm.�/ WD

´
9T � @Sƒn; with jT j � 8ı � j@Sƒnj; such that for all y 2 T;

there exists x 2 @SƒmC1 with x
�Œ0;tx �

����! y for some tx � Cn

µ
: (3.5)

When n D m, we define Enm.�/ to be the whole probability space.
The constants ı and k are chosen to ensure the existence of microscopic connections

as described in Proposition 7 below, and we think of them as fixed. The role of h (thickness
of the slab) is explained by the computation in the proof of Theorem 5 below. We denote
by Php the Bernoulli site percolation measure on the slab Sh.
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Proposition 7. For every p 2 .psite
c .Zd /;1�psite

c .Zd //, there exist ı;c>0 .small enough/
and k � 1 .large enough/ such that for all n � m � 1, h � 20 and � 2 „,

Php .E
n
m.�/ nE

2n
m .�// � e

�chn: (3.6)

Proposition 7 is really the main technical result of this paper, and its proof is postponed
to the next section. Assuming its validity, our main result follows easily, as we explain
now.

Proof of Theorem 5. Pick k and ı as in Proposition 7 and fix some integerm. For nD m,
the event Enm.�/ was defined to be the whole space, therefore

Php .E
n
m.�// D 1:

We now observe that for every word � 2 „, the event
T
j�1E

2jm
m .�/ implies in par-

ticular that @SƒmC1
�

Ý @Sƒ2jm for all j � 1, from which it follows (as one can easily

convince oneself, using a diagonal argument) that @SƒmC1
�

Ý1. We can thus write

Php .9� 2 „ such that @SƒmC1
�

XÝ 1/ � Php

�[
n�m

[
�2„2C n

.Enm.�/ nE
2n
m .�//

�
�

X
n�m

X
�2„2C n

Php .E
n
m.�/ nE

2n
m .�//;

where we have used the fact that the event Enm.�/ nE
2n
m .�/ only depends on the first 2Cn

coordinates of the word � (this is a key observation in order to apply the union bound).
Now, it follows from Proposition 7 that

Php .9� 2 „ such that @SƒmC1
�

XÝ 1/ �
X
n�m

22Cn � e�chn; (3.7)

and we can thus choose h0 large enough so that the latter probability is at most e�m. By
taking the m!1 limit, we obtain part (1) of the statement, with l D h0k.

Let us now turn to part (2), the quantitative statement. For that, it is enough to observe
that by “slicing up” the box Bm.0/, we can find, for some constant c0 > 0, at least
c0md�2 disjoint slabs, of height h0k, whose intersection with this box is a graph isomor-
phic to ƒm. Hence, we have these many independent attempts to see all words starting
from Bm.0/ in a slab. Since each of these attempts fails with probability at most e�m,
from the proof of part (1), we obtain the desired lower bound (3.2).

4. Proof of Proposition 7

In this section, we prove Proposition 7, which was used in the proof of Theorem 5. For
that, we use two auxiliary results that are established later: Lemma 4 and Proposition 10,
proved in Sections 5 and 6 respectively.
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4.1. Renormalization setting

We will use a dynamic renormalization procedure similar to the standard one presented
in [6, Section 7.2]. Before describing this process, we introduce the necessary geometric
framework. For a given word � 2„, the idea is to construct a “�-cluster” in the slab Sh by
propagating “seeds”, i.e. sets which have a reasonably good probability to be �-connected
to infinity, from boxes to boxes (in an oriented way) using local connections. Let k be a
fixed even integer.

For h � 1, we define the (oriented) renormalization graph
��!
Slabh D .V;

�!
E /, where

V WD
°

v D .v1; v2; v3/ 2 Z3 W 0 < v3 < h; v1 2 2Z;
v1
2
C v2 2 2Z and

v1
2
C v3 2 2Z

±
(4.1)

(� Z2 � .0; h/), equipped with the oriented edges

�!uv 2
�!
E if and only if v 2 uC

®
.2; "; "0/ W "; "0 2 ¹˙1º

¯
(4.2)

(see Figure 3). We explore an oriented site percolation on this graph, that will later be
coupled with our microscopic process.

x

y

uC .2; 1; 1/

uC .2;�1; 1/

uC .2;�1;�1/

z

u

Fig. 3. We consider the renormalization graph
��!
Slabh, where each vertex u is connected to the (at

most four) vertices uC ¹.2;˙1;˙1/º.

For U � V, we define

UC WD
[
u2U

®
v 2 V W uv 2

�!
E
¯

and @CU WD UC n U: (4.3)

Intuitively speaking, we see the graph
��!
Slabh as a renormalized version of the slab Sh

(D Z2 � .0; hk�� .�k;k�d�3) introduced in Section 3.2, scaled by a factor 1
2k

. This intu-
itive correspondence will be made clear through (4.4) and the exploration process defined
underneath it; see also Figure 4. We call

��!
Slabh and Sh the macroscopic and microscopic



No exceptional words 4851

slabs, respectively. Note that the macroscopic graph is oriented, while the microscopic
graph is not. In order to distinguish between the two graphs, we use the following typo-
graphic convention. For vertices in Sh, we write x; y; z; : : : ; and subsets of vertices are
denoted by A;B;C; : : : I for vertices in

��!
Slabh, we write u; v;w; : : : ; and subsets of vertices

are denoted by A;B;C; : : : :
In order to carry out the renormalization procedure described at the beginning of the

section, we now define boxes, seeds, and good local connections.

Boxes: With every vertex u 2 V in the macroscopic slab, we associate two subsets of the
microscopic slab, a box Bu and a face F u, defined as follows. Set

B WD .�k; k�d ; F WD ¹�kº � .�k; k�d�1;

and for every u 2 V,

Bu
WD kuC B and F u

WD kuC F (4.4)

(we see ku as an element of Zd by identifying Z3 and Z3 � ¹0Zd�3º). By definition,
F u is disjoint from Bu. Note also that the boxes Bu are disjoint from each other for
different values of u, as illustrated in Figure 4.

Seeds: For ı 2 .0; 1/, a ı-seed for u D .u1; u2; u3/ is a pair .S; t/ where

� S � F u with jS j � ıjF uj,

� t D .tx/x2S is a collection of nonnegative integers such that tx � Cu1 for every
x 2 S . Informally speaking, one can think of tx as encoding the time at which we
arrived at x, when reading the word �.

We write S u
ı

for the set of all ı-seeds for u.
Intuitively, we will use seeds as follows. Starting from a given subset L � Zd , we

want to explore the vertices that can be reached while reading the word �, which we
do by examining the boxes Bu one after the other.

Assume that at some given step, the exploration reaches the box Bu. At that
moment, we can read the word � from L to every point in a set S on the face F u

without using Bu, and we now want to extend the exploration inside this box. A seed
is simply a set S that is sufficiently large to ensure that the exploration has a good
probability to continue within that box.

Notice that knowing the set S alone is not sufficient if one wants to continue the
exploration in Bu. When we read the word � from L to a vertex x in S , one needs
to keep track of where we stand along �, i.e. at which index tx , when the exploration
reaches x. We bring the reader’s attention to the condition tx � Cu1 in the definition
of a seed, which will play an important role: we want to keep track of the length of
the path connecting L to x, so that we can control the “entropy” created by the words.

Good local connections: As explained above, we want to continue the exploration inside
a given box Bu. We say that this step succeeds when the event below occurs. Let
ı 2 .0; 1

64000
/. Given a word � 2 „ and a ı-seed .Su; tu/ for u, we define the “good

event”
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Gu
� .S

u; tu/

WD

\
v2¹uºC

®
9.S v; t v/ 2S v

64000ı W 8y 2 S
v; 9x 2 Su with x

�Œtu
x ;tv

y �

����! y inside F u
[ Bu

¯
(4.5)

(see Figure 4 for an illustration of the boxes involved).

x

y

z

Bu

Bv

Fig. 4. Example of a box Bu together with its neighbors ¹Bvº, v 2 ¹uºC. The corresponding faces
F u and .F v/v2¹uºC are colored in darker gray.

The following proposition ensures that such local connections occur with sufficiently
high probability, provided the scaling constant k is chosen large enough.

Proposition 8. Let p 2 .psite
c .Zd /; 1� psite

c .Zd // and � < 1. There exists 0 < ı.d; p/ <
1

64000
small enough, and k D k.d; p; �/ � 1 large enough, such that for all � 2 „, u 2 V

and .S; t/ 2 S u
ı

,
Pp.G

u
� .S; t// � �: (4.6)

We emphasize that the choice of ı in the proposition above does not depend on �. This
is important later on, to ensure that there is no circularity in our choice of parameters.

Proof of Proposition 8. We first observe from Wierman’s coupling (Lemma 4) that we
can restrict ourselves to � D 1, i.e. it is sufficient to show the following: for some ı > 0
and k � 1, respectively small and large enough,

Pp

�
S is 1-connected within Bu to at least 64000ıjF vj vertices

in each of the faces F v, v 2 ¹uºC

�
� �: (4.7)

Indeed, this allows one to produce .S v; t v/ 2 S v
64000ı

, since (once k is chosen) the con-
dition on t v is automatically satisfied, using jBuj � C (recall that C D C.k/ was defined
in (3.3)).



No exceptional words 4853

This result follows immediately from classical properties of percolation theory, but
we give a brief sketch of proof for the sake of completeness. By symmetry, it suffices to
prove (4.7) for every seed S and for a single face F v, instead of for all faces at once. Fix
a face F v with v 2 ¹uºC, let QF be the intersection of F v withBu (which has side length k),
and let OF be the middle third of QF , that is, the vertices of QF that are within a distance at
least k=3 from its four edges.

Note that for every vertex x in OF , the ball B.x; k=3/ \ Bu is isomorphic to the inter-
section of B.0; k=3/ with the half-space ZC � Zd�1. It is a well-known fact that the
critical parameters for site percolation on this half-space and on the full space Zd coin-
cide (see [6, Theorem (7.2) (b)]).

Let � > 0 be the Pp-probability that 0 is connected to infinity in the half-space
ZC � Zd�1. By mixing and a second moment estimate, we have

Pp

�
at least � j OF j=2 points in OF are

1-connected to distance k=3 within Bu

�
����!
k!1

1: (4.8)

We now fix ı > 0 such that

64000ıjF j �
�

2
j OF j: (4.9)

Observe that this choice is independent of � (but it depends on d and p). For this choice,
(4.8) immediately implies

Pp

�
at least 64000ıjF j points in OF are

1-connected to distance k=3 within Bu

�
����!
k!1

1: (4.10)

Similarly, we can prove that

inf
S�F u

jS j�ıjF uj

Pp

�
some point in S is 1-connected
to distance

p
k within Bu [ F u

�
����!
k!1

1: (4.11)

We finally make use of [15, Theorem 3.1] to conclude that in a given box with side
length k, the existence of two distinct 1-connected components of size at least

p
k, as

above, has a vanishing probability as k ! 1. This completes the proof of Proposi-
tion 8.

4.2. Exploration of an oriented percolation in the macroscopic slab

Let n � 3 (for simplicity, n is always assumed to be of the form n D 4n0 C 3 for some
n0 2 N, and h is always assumed to be even). Define

Bn WD V \
�
.n; 2n/ � .�2n; 2n/ � .0; h/

�
;

Ln WD V \
�
¹nC 1º � Œ�n; n� � .0; h/

�
;

Rn WD V \
�
¹2n � 1º � Œ�n; n� � .0; h/

�
;

(4.12)

as depicted in Figure 5.
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x

y

z

n

n

4n

h

Ln
Rn

Bn

Fig. 5. Illustration of the sets Bn, Ln and Rn.

We also choose an arbitrary ordering of Bn; to fix ideas, we can decide to order the
vertices in the lexicographic way, which ensures that u D .u1; u2; u3/ is smaller than
vD .v1;v2;v3/when u1 < v1. It will be simpler to think in terms of this particular ordering
since it gives rise to reasoning “layer by layer”, even though the particular choice of an
ordering is immaterial for the correctness of the proof.

Fix a set S � Ln, and let

S D U0 � U1 � � � � and ; D V0 � V1 � � � �

be two growing sequences of subsets of Bn. Such sequences will appear when we explore
all the (oriented) clusters touching S: the sequence .Ui / corresponds to the exploration of
the open vertices in these clusters, while the sequence .Vi / explores their boundaries. The
sequences arising in this context are defined as follows, where at each step we add at most
one vertex to Ui (collecting the open vertices connected to S) or Vi (the closed boundary).
We say that the sequence .Xi /i�0 D .Ui ;Vi /i�0 is an exploration sequence from S (in Bn)
if for every i � 0,

XiC1 D

´
.Ui ;Vi / if @CUi \ Bn � Vi ;

.Ui [ ¹ziº;Vi / or .Ui ;Vi [ ¹ziº/ otherwise;
(4.13)

where zi is the minimum vertex that belongs to @CUi \ Bn, but not to Vi .
Note that the exploration terminates in finite time (since we explore a finite graph), so

the growing sequence .Ui /i�0 is ultimately constant; we denote by U1 its end value.

Lemma 9. For every ı > 0, there exist � D �.ı/ < 1 and c D c.ı/ > 0 such that the
following holds. Let h � 20. Assume that

S � Ln with jSj � ıjLnj;

and that .Xi /i�0 D .Ui ;Vi /i�0 is a random exploration sequence from S in Bn satisfying:
for each i � 0,

P .ViC1 D Vi j X0; : : : ;Xi / � � a.s. (4.14)

Then
P
�
jU1 \ Rnj �

1
1000
jRnj

�
� 1 � e�chn: (4.15)
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Before proving this lemma, let us state an auxiliary result which is proved in Section 6.
Write P for the site percolation measure3 in the slab

��!
Slabh with parameter  : indepen-

dently, each vertex is open with probability  , closed with probability 1 �  . For A � V

and v 2 V, we write A �! v if there exists an open oriented path of
��!
Slabh from a vertex of

A to v. The notation above corresponds to the existence of paths in standard oriented site

percolation, and it should not be confused with the notation x
�
�! y introduced at the end

of Section 2.1 and corresponding to percolation of words.

Proposition 10. For every ı 2 .0; 1/, there exist  2 .0; 1/ and c > 0 such that the fol-
lowing holds. For all h � 20 and n large enough, if S � Ln satisfies jSj � ıjLnj, then for
oriented site percolation, we have

P
�
j¹v 2 Rn W S �! vºj � 1

1000
jRnj

�
� e�chn:

We postpone the proof of the above proposition to Section 6.
We now write out in detail the proof of Lemma 9, assuming Proposition 10. We pro-

vide it for the sake of completeness, and also to indicate how the parameters involved in
the exploration are chosen precisely.4 However, a reader with experience in this type of
argument can safely skip the proof.

Proof of Lemma 9. We follow closely [8, proof of Lemma 1]. Let .Yv/v2Bn
be i.i.d. ran-

dom variables with uniform distribution on Œ0; 1�. We construct an exploration sequence
X0 D .U0; V0/ with the same law as the one in the statement of the lemma, in such a way
that all vertices v ultimately in V0 D V01 satisfy Yv > � (these vertices are called “red”).
Define

X00 D .U
0
0;V
0
0/ WD .S;;/;

and declare all the vertices of S to be “green”. Let z be the minimum vertex that belongs
to @CU0 (notice that z is always well-defined at this first step if n � 1). Then define
�z D P .X1 D .S [ ¹zº;;/ j X0 D .S;;// and set

X01 D

´
.S [ ¹zº;;/ if Yz � �z;

.S; ¹zº/ if Yz > �z:
(4.16)

Declare the vertex z to be “green” in the first case, and “red” in the second case. The
conditional probability �z above is defined in such a way that .X00; X01/ has exactly the
same law as the first two steps of the random exploration sequence of the lemma.

3The parameter  mentioned in this informal description corresponds later to the value � appear-
ing in Proposition 8. More precisely, we let � be the value .ı/ from Proposition 10, where
ı D ı.d; p/ is produced by Proposition 8, and we then apply Proposition 8 with this value of �
to obtain the value of the scaling constant k.

4In the following proof, we derive Lemma 9 by applying our general result for oriented perco-
lation, Proposition 10, with the same parameter ı. This produces a value  D .ı/, which is then
exactly � in the conclusion of Lemma 9.
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We proceed iteratively. Assume that X00 D .U00; V00/; : : : ; X0i D .U0i ; V0i / have been
constructed. Let z be the minimum vertex that belongs to @CU0i n V0i (if @CU0i n V0i is
empty then we set X0iC1 D .U

0
iC1; V

0
iC1/ D .U

0
i ; V
0
i /). In case z is well-defined, consider

�z D P .XiC1 D .Ui [ ¹zº;Vi / j X0 D X00; : : : ;Xi D X0i / and set

X0iC1 D

´
.U0i [ ¹zº;V

0
i / if Yz � �z;

.U0i ;V
0
i [ ¹zº/ if Yz > �z:

(4.17)

As in the first step, declare the vertex z to be “green” in the first case and “red” in the
second case.

Once the algorithm above terminates (when X0iC1 D X0i ), declare all the vertices that
have not been explored to be “green”.

Since at each step, the uniform random variable Yz is independent of the previous
steps, the process X0 has the same law as X. Furthermore, since for every explored vertex z
we have �z � � (by hypothesis), we see that the set of green vertices dominates a Bernoulli
site percolation with parameter �. By Proposition 10, if � is close enough to 1, there exist
more than 1

1000
jRnj vertices of jRnj that can be reached from S by a green oriented path

with probability larger than 1� e�chn. By definition of the exploration sequence, all these
vertices have been reached by the exploration sequence. This implies that

jU01 \ Rnj �
1

1000
jRnj (4.18)

with probability larger than 1 � e�chn.

4.3. Proof of Proposition 7

Fix p 2 .psite
c .Zd /; 1 � psite

c .Zd //. Let ı D ı.d; p/ be as in Proposition 8, and � 2 .0; 1/
associated with it by Lemma 9. Finally, let k be as in Proposition 8 (applied with p and
our choice of �).

Consider some n � 3. It is convenient to assume that n D 4n0 C 3 for some n0 2 N.
There are two ways to see why one can make this assumption. Either one observes that
after having proved Proposition 7 along this subsequence we can obtain the full proposi-
tion by slightly changing ı and giving the points in T a second chance to advance towards
the next layer. Another way to see why this assumption is sufficient is to observe that the
proof of Theorem 1 uses Proposition 7 along a very sparse subsequence that could have
been chosen to coincide with the integers of the form above.

Having this assumption, we define the following subsets of the microscopic graph Sh:

Bn WD Zd \
�
Œkn; 2kn� � .�2kn; 2kn� � .0; hk� � .�k; k�d�3

�
;

Ln WD Zd \
�
¹knº � .�kn; kn� � .0; hk� � .�k; k�d�3

�
;

Rn WD Zd \
�
¹2knº � .�kn � 3k; knC 3k� � .0; hk� � .�k; k�d�3

�
:

(4.19)
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A picture of the above sets would look very similar to that of the macroscopic Bn, Ln
and Rn in Figure 5. Notice that[

u2Bn

Bu
� Bn; Ln �

[
u2Ln

F u and
[

u2@CRn

F u
� Rn (4.20)

(recall the notations Bu and F u from (4.4)). Let � 2 „. We first claim that for every fixed
set T � Ln with jT j � 2ıjLnj, for all t W T ! Œ0; Cn�, we have

Pp

�9T 0 � Rn with jT 0j � 8ı � j@Sƒ2nj; 9t
0 W T 0 ! Œ0; 2Cn� s.t.

for all y 2 T 0; 9x 2 T with x
�

Œtx ;t0y �

����! y in Bn

�
� 1 � e�chn:

(4.21)

Before proving (4.21), let us explain how it yields Proposition 7. Assume that Enm.�/
occurs and consider a set T as in (3.5). Partition T into four disjoint subsets along the
left, right, top and bottom parts of @Sƒn (the boundary of ƒn with respect to the slab Sh,
defined in (3.4)). By symmetry, we may assume for example that the right part, denoted
by Tr , has size larger than jT j=4 � 2ıjLnj. Finally, using independence, we can deduce
from (4.21) that with probability larger than 1 � e�chn, the set Tr gives rise to a set T 0 in
@Sƒ2n of size larger than 8ıj@Sƒ2nj. This yields

Pp.E
2n
m .�/ jE

n
m.�// � 1 � e

�chn; (4.22)

which completes the proof of Proposition 7. The remainder of this section is devoted to
proving (4.21).

We first set some notation. Let T � Ln with jT j � 2ıjLnj, and t W T ! Œ0; Cn�.
Introduce

T WD ¹u 2 Ln W jT \ F
u
j � ıjF jº: (4.23)

Using that T has density at least 2ı in Ln, the second inclusion in (4.20) implies that T
has density at least ı in Ln, i.e.

jTj � ıjLnj: (4.24)

Let ! be a configuration of site percolation with parameter p in Bn. We want to
define a random exploration process in the macroscopic box Bn that will correspond to
a �-exploration in the microscopic box Bn. For U � Bn, set BU WD

S
u2U B

u. For v D
.v1; v2; v3/ 2 UC, define

S v.U/ WD
[
t�C v1

[
x2T

¹y 2 F v
W x

�Œtx ;t�

����! y in BU
º; (4.25)

and for every y 2 S v.U/,

t v
y.U/ WD min ¹t � C.nC v1/ W 9x 2 T with x

�Œtx ;t�

����! y in BU
º: (4.26)
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We now construct a random exploration sequence X0 D .U0; V0/, X1 D .U1; V1/ : : :
in Bn that is measurable with respect to the microscopic percolation configuration !, and
such that for each i � 0,

for all v 2 UCi ; .S v.Ui /; t
v.Ui // is a ı-seed for v. (4.27)

First, define

U0 WD ¹u 2 T W Gu
� .T \ F

u; t jT\F u/ occursº and V0 WD ; (4.28)

(here we use that .T \ F u; t jT\F u/ is a ı-seed for u, from the definition of T in (4.23)). It
follows from the definition (4.5) that (4.27) is satisfied for i D 0.

Now, fix i � 0 and assume that X0D .U0;V0/; : : : ;Xi D .Ui ;Vi / have been constructed
in such a way that (4.27) is satisfied for some i . We define XiC1 as follows. If @CUi \
Bn � Vi , then set XiC1 D Xi . Otherwise let v be the minimum vertex that belongs to
@CUi \ Bn but not to Vi . By (4.27), the pair .S v; t v/ D .S v.Ui /; t v.Ui // is a seed for v,
and we define

.UiC1;ViC1/ D

´
.Ui [ ¹vº;Vi / if Gv

�
.S v; t v/ occurs;

.Ui ;Vi [ ¹vº/ otherwise.
(4.29)

First, by Hoeffding’s inequality, we have

Pp
�
jU0j �

ı
2
jLnj

�
� 1 � e�chn (4.30)

for some constant c > 0. Using independence and Proposition 8, we also obtain

Pp.ViC1 D Vi j X0; : : : ;Xi / � � a.s. (4.31)

The two inequalities above, combined with Lemma 9, imply that

Pp
�
jU1 \ Rnj �

1
1000
jRnj

�
� 1 � 2e�chn: (4.32)

When the exploration terminates, the property (4.27) is still satisfied. Therefore, on the
event jU1 \ Rnj �

1
1000
jRnj, the set

T 0 D
[

v2UC1\@CRn

S v.U1/ (4.33)

satisfies

� jT 0j � 64000ıjF j � jUC1 \ @
CRnj � 64ıjF j � jRnj D 64ıjRnj � 8ıj@Sƒ2nj,

� for each y in T 0, there exist t 0y � 2Cn and x 2 T such that

x
�

Œtx ;t0y �

����! y in Bn:

We can thus deduce (4.21) from (4.32), which completes the proof.
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5. Proof of Wierman’s coupling

Proof of Lemma 4. In the configuration !, we are going to explore the set of vertices
which are 1-connected to S in ƒ, as well as the immediate neighborhood of this set.
During this exploration, we grow (in a Markovian way) a spanning forest of this explored
set, such that at all times, it contains exactly one tree for each vertex x 2 S , as illustrated
in Figure 6. For this purpose, we introduce an auxiliary sequence of i.i.d. random variables
.Ut /t�0, each uniformly distributed on Œ0; 1�.

x

x̃

x
ξ
(x)
0 ξ

(x)
1

ξ
(x)
2 ξ

(x)
3 ξ

(x)
4

ξ
(x)
5

ξ
(x)
2

x̃
ξ
(x̃)
0

ξ
(x̃)
2

ξ
(x̃)
1 ξ

(x̃)
2

ξ
(x̃)
3 ξ

(x̃)
4

ξ
(x̃)
3

ξ
(x̃)
4

ξ
(x̃)
5ξ

(x̃)
6

ξ
(x̃)
5 ξ

(x̃)
6

ξ
(x̃)
7

Fig. 6. This figure shows the coupling between two configurations ! (left) and Q! (right) used in
the proof of Lemma 4. Each of these configurations is distributed as Bernoulli site percolation with
parameter p � 1=2. Starting an exploration procedure from the vertices in S D ¹x; Qxº, we produce a
spanning forest of the 1-cluster of S , together with its outer boundary; its branches are used to read
1 on !, and .�.x/; �. Qx// on Q!. The 0-sites in ! discovered during the exploration procedure may be
0 or 1 in Q!, and they are not used to read �.x/ or �. Qx/. The grey vertices remain undiscovered.

We start by fixing an arbitrary order on the vertices ofƒ. We then let the first forest F0
in our construction consist simply of the vertices in S , without any edges. Having defined
Ft for some time t , we inductively add one extra vertex and one extra edge to Ft in order
to obtain FtC1. For this, we pick the minimum unexplored vertex y0 that neighbors a
1-vertex of Ft , and we let y be the minimum 1-vertex in Ft neighboring y0.

We now add the vertex y0 and the edge .y;y0/ to FtC1 as follows: let d be the distance
between y and S within the forest, and set

.!y0 ; Q!y0/ D

8̂<̂
:
.1; �

.x/

dC1
/ w.p. p;

.0; 0/ w.p. 1 � 2p if �.x/
dC1
D 0; and w.p. 1 � p if �.x/

dC1
D 1;

.0; 1/ w.p. p if �.x/
dC1
D 0

(5.1)
(the third option does not arise when �.x/

dC1
D 1). More specifically, we let .!y0 ; Q!y0/ D

.1;�
.x/

dC1
/ ifUt �p, .!y0 ; Q!y0/D .0;1/ ifUt >1�p and �.x/

dC1
D 0, and .!y0 ; Q!y0/D .0;0/

in all other cases (so that the choice of .!y0 ; Q!y0/ is made independently of everything
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observed so far). When the exploration procedure stops, we simply draw independently
the remaining undiscovered vertices, e.g. by following the order on the vertices ofƒ: if y
is the vertex examined in step t , we let !y D Q!y D 1 if Ut � p, and 0 otherwise.

By construction, all the sites y which are 1-connected to S are �.x/-connected to some
x 2 S in Q!, by following the same branch of the spanning forest, which ensures that the
property in the statement holds true. Note that the sites which are discovered and have
state 0 in ! are not used here to observe .�.x//x2S 2 „.

6. Oriented percolation lemma

In this section, we establish Proposition 10, which is a result about oriented percolation
on the slab

��!
Slabh. Before proving it, we establish an auxiliary lemma for planar oriented

percolation, i.e. in dimension d D 1C 1 (for more details on the topic, see e.g. [4]). We
consider the oriented graph G (illustrated in Figure 7) with vertex set

V D ¹.x; y/ 2 Z2 W x 2 2Z; x=2C y 2 2Zº; (6.1)

and (oriented) edge set

E D ¹.u; uC .2; e// W u 2 V; e D ˙1º: (6.2)

Fig. 7. A portion of the graph G D .V;E/.

This graph, which is isomorphic to the usual oriented square lattice, can also be seen
as the projection of

��!
Slabh onto its first two coordinates. This will be convenient later

because we will see G as a subgraph of the oriented slab
��!
Slabh.

Consider the Bernoulli site percolation measure onG with parameter 0�  � 1. Each
vertex in V is open with probability  and closed with probability 1�  , independently of
the other vertices. Let n be an even integer. For a set of vertices A � ¹0º �Z andm � 5n,
define

�A
m WD ¹y 2 Œ�n; n� W A! .m; y/º; (6.3)

where A ! v means that there exists an open oriented path from a vertex u 2 A to v.
Notice that the quantity above satisfies the following monotonicity property:

If A � B, then �A
m � �

B
m: (6.4)
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Lemma 11 (d D 1C 1). For any 0 < ı < 1
10

, there exists  D .ı/ 2 .0; 1/ large enough
such that for every n � 2 even, for every set of vertices S � ¹0º � Œ�n; n� with jSj � ın,
and for all m � 5n divisible by four, �S

m stochastically dominates the product measure on
¹�n;�nC 2; : : : ; nº with parameter 1=2.

Proof. Let " > 0. By [12, Theorem 1.1], we can choose  close enough to 1 such that

�Z
m stochastically dominates the product measure with parameter 1 � "; (6.5)

where we use the notation �Z
m D �

¹0º�Z
m . The main idea here is to use the stochastic dom-

ination above, and replace Z by S. To achieve this, we construct an increasing event G
such that

(i) G occurs with probability exponentially close to 1,

(ii) on the event G, we have �S
m D �

Z
m.

These properties together with (6.5) easily conclude the proof (the argument is presented
at the end of the proof). Let us now construct the event G. Set

S0 WD S \
�
¹0º �

�
�nC ı

4
n; n � ı

4
n
��

and note that since jSj � ın, we have jS0j � ı
2
n. LetG be the event (illustrated in Figure 8)

that

� S0 ! v for some v 2 ¹mº � Z,

� there is an open oriented path from ¹0º � Œ�n;�nC ı
4
n� to ¹mº � Œn;1/,

� there is an open oriented path from ¹0º � Œn � ı
4
n; n� to ¹mº � .�1;�n�.

The first item occurs with probability larger than 1� "ın=2. To see this, consider the setX
of vertices u 2 ¹0º � Z that are connected to some v 2 ¹mº � Z. Then use the stochas-
tic domination (6.5) and symmetry to show that X stochastically dominates a product
measure with parameter 1 � ". The second and third items can be proved to occur with
probability larger than 1 � 1

3
4�n by choosing  close enough to 1. This follows from

choosing the density of open vertices close enough to 1 in the proof of [5, Theorem 4].

δ
4n

δ
4n

S′

−n

n

Fig. 8. Schematic representation of the event G.



P. Nolin, V. Tassion, A. Teixeira 4862

Alternatively, this can also be proved directly using a Peierls-type argument. Therefore, if
" > 0 is chosen small enough, we obtain

P .G/ � 1 � 4�n; (6.6)

which establishes item (i) above.
Now, assume that the eventG occurs, and consider a vertex v on ¹mº � Œ�n;n� that can

be reached by an open path starting on ¹0º � Z. Then, from the three oriented paths that
appear in the definition ofG, one can produce an open oriented path from S0 to v. In other
words, when G occurs, we have �Z

m � �
S0
m . Since S0 � S, the monotonicity property (6.4)

directly implies that
�Z
m � �

S
m: (6.7)

By monotonicity again, the reverse inclusion also holds, which establishes item (ii). Once
we know the stochastic domination (6.5) and the existence of an increasing event G
satisfying (i) and (ii) above, the proof of the lemma follows from a general stochastic
domination argument that we detail now.

We consider an auxiliary product random variable �D .��n; ��nC2; : : : ; �n/ indepen-
dent of the percolation configuration, where the �i ’s are i.i.d. Bernoulli random variables
with parameter 3=4. In order to prove the lemma, it is enough to show that �S

m stochasti-
cally dominates � � �Z

m (where �1 � �2 denotes the coordinatewise product of �1 and �2).
Let f W ¹0; 1º¹�n;�nC2;:::;nº ! RC be a non-decreasing function such that f .0/ D 0. We
have

EŒf .�S
m/�

f�0
� EŒf .�S

m/1G �
.ii/
D EŒf .�Z

m/1G �
FKG
� EŒf .�Z

m/�P .G/

(6.6)
� EŒf .�Z

m/�P .� ¤ 0/
indep.
D EŒf .�Z

m/1�¤0�

f .0/D0
� EŒf .� � �Z

m/�:

This proves the desired stochastic domination and concludes the proof.

Before moving to the proof of Proposition 10, we use the planar result above to
deduce a useful statement for oriented percolation on the slab. Fix h � 20, and consider
Bernoulli site percolation with parameter 0 �  < 1 on the slab

��!
Slabh D .V;

�!
E / (where

V � Z2 � Œ0; h�), as defined in (4.1) and (4.2). For any given n � m � h, we also define
the sets

Bn;m WD V \
�
.n; 2n/ � .�2m; 2m/ � .0; h/

�
;

Ln;m WD V \
�
¹nC 1º � Œ�m;m� � .0; h/

�
;

Rn;m WD V \
�
¹2n � 1º � Œ�m;m� � .0; h/

�
:

(6.8)
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We extend the definition to non-integers m by setting Bn;m WD Bn;dme (and similarly for
Ln;m and Rn;m). Note that these sets are similar to those defined in (4.12), except that they
are shorter in the y-direction. For A � B � V and v 2 B, we say that A �! v in B if there
exists an open oriented path of

��!
Slabh that stays in B from a vertex of A to v.

Lemma 12. For every ı > 0, there exists  D .ı/ 2 .0; 1/ .large enough/ such that for
every n � h � 20 and S � Ln;n=h with jSj � ın, we have

P
�
N > 1

20
n
�
� 1 � e�cn (6.9)

for some c > 0, where N is the number of vertices u 2 Rn;n=h such that S �! u in Bn;n=h.

Proof of Lemma 12. It is enough to provide a proper graph embedding, or more precisely
to find an injective mapping f W V \ .Œ0; n � 2� � Œ�n=2; n=2�/! Bn;n=h satisfying

(a) there are at least ı
10
n vertices u 2 ¹0º � Œ�n=6; n=6� such that f .u/ 2 S,

(b) for every vertex u 2 ¹n � 2º � Œ�n=6; n=6�, we have f .u/ 2 Rn;n=h,

(c) if .u; v/ is an edge on the oriented graph .V; E/, then .f .u/; f .v// is an edge in
.V;
�!
E /.

Once we have such an embedding at our disposal, we can simply use Lemma 11 (com-
bined with Hoeffding’s inequality).

The construction of the embedding f follows from an “accordion-like” folding of
the rectangle, and then finding a translate of this accordion along the y-direction such
that property (a) above occurs. Although the reader can be convinced of the existence of
such a function f by looking at Figure 9, we provide now an explicit construction. For
simplicity, we assume that h and nC 1 are both even (a similar construction can be given
in the other cases). We let

f .a; b/ WD
�
nC 1C a; f2.a; b/; f3.a; b/

�
; (6.10)

x

n � 2
n

h

2n=h

y

z

f

Bn;n=h

Fig. 9. This figure depicts, roughly, the embedding f used in the proof of Lemma 12.
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h

0

h− 1

1

z

y

Fig. 10. This figure shows a “microscopic” view of the embedding f into Bn;n=h. Black and white
vertices lie on layers where x D 0mod 4 and x D 2mod 4, respectively. The white vertices marked
with a cross do not belong to the image of f (but this is immaterial for the argument).

where f2 and f3 are defined as follows. If a mod 4 D 0, b ranges in Œ�n=2; n=2�\ .2Z/.
Write b D i � 2.h � 2/C j with i 2 Z and j 2 Œ0; 2.h � 2// \ .2Z/. We let

f2.a; b/ D 2 �

�
b

h � 2

�
and f3.a; b/ D Qf3.j /;

where Qf3.j /D 2C j for j D 0; : : : ; h� 4, and Qf3.j /D 2.h� 2/� j for j D h� 2; : : : ;
2h� 6. If a mod 4 D 2, b ranges in Œ�n=2; n=2�\ .1C 2Z/. Write b D i � 2.h� 2/C j
with i 2 Z and j 2 Œ0; 2.h � 2// \ .1C 2Z/. We let

f2.a; b/ D 1C 2 �

�
b

h � 2

�
and f3.a; b/ D

QQf3.j /;

where QQf3.j /D 2C j for j D 1; : : : ; h� 3, and QQf3.j /D 2.h� 2/� j for j D h� 1; : : : ;
2h � 5. This specific choice of f is depicted in Figure 10. Note that the image of f
“catches” all vertices in Ln;n=h, and all translates of this image by at most˙2

3
n
h

along the
y-direction are contained in Bn;n=h.

We are now in a position to prove the main proposition of this section.

Proof of Proposition 10. We start the proof by making some assumptions that do not
reduce the generality of the result. First suppose that the side length of the rectangle is a
multiple of 40h (this way, all the fractions of n appearing in the proof will be integers).

Observe that the starting set Ln can be written as the union

Ln D I�5 [ � � � [ I4; (6.11)

where Ii WD V \ .¹nº � Œin=5; in=5 C n=5� � Œ0; h�/. Since S has at least ınh points,
we deduce that the intersection of S with at least one of the Ii ’s contains at least
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ınh=10 points. Without loss of generality, we assume that

jS \ I1j � ınh=10: (6.12)

We are going to construct the connections described in Proposition 10 in two steps. Intu-
itively speaking, we show that the infection spreads from left to right in two steps: first
until the middle of the box (x D 3n=2), where the infection becomes evenly distributed
across the y-direction; then from the middle to the end (x D 2n), where we show that it
spreads across the z-direction. Let us state precisely these two steps of the proof. We first
choose a collection J1; : : : ; Jh=30 of rectangles of the form

Ji D V \ .¹3n=2º � Œji � n=h; ji C n=h� � Œ0; h�/

such that the mutual distance between different Ji ’s is strictly larger than 2n=h. We say
that some set Ji is bad if

j¹u 2 Ji W S! uºj � ı
100
jJi j: (6.13)

In order to establish Proposition 10, we claim that for some constant c > 0 (depending
on ı)

P
�
at least h

60
sets Ji are bad

�
� e�chn (6.14)

(this claim will be established at the end of the proof). In the final step of the proof, we
assume that at least h

60
sets Ji are good. For each good Ji , we consider the set Si (with

density at least ı
100

in Ji ) of vertices in Ji which can be reached from S by an open
oriented path, and we work in the boxKi D Œ3n=2; n� � Œji � 2n=h; ji C 2n=h� � Œ0; h�.
Using Lemma 12, we can show that with probability larger than 1 � e�cn, we can reach
at least 1

20
n points in Rn with oriented paths starting in Si and staying in Ki . Since

the boxes Ki are disjoint, this construction is successful for at least h
100

indices i , with
probability larger than 1 � e�c

0hn (by Hoeffding’s inequality). Therefore,

P

�
j¹v 2 Rn W S �! vºj �

h

100
�
1

20
n

�
� 1 � e�chn � e�c

0hn; (6.15)

which implies Proposition 10.
Let us now prove (6.14). Assume for simplicity that h is odd. We split the set I1 into

its rows, I1 D
S
iD0;2;:::;h�1 Ci , where Ci is defined as the set of points in I1 with z D i .

We can bound the size of S intersected with I1 as follows:

jS \ I1j � n �

ˇ̌̌̌²
i W jS \ Ci j �

ın

20

³ˇ̌̌̌
C
ınh

20
: (6.16)

Since the left-hand side is larger than ınh=10 (see (6.12)), we deduceˇ̌̌̌²
i W jS \ Ci j �

ın

20

³ˇ̌̌̌
�
ıh

20
: (6.17)

We denote the above set of good columns by G � ¹0; 2; : : : ; h � 1º. For each good col-
umn Ci , i 2 G, we restrict our oriented percolation to the sheet that is isomorphic to the
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oriented square lattice, and is contained in Z � Z � ¹i; i C 1º. This restriction can only
reduce the set of open paths and it has two advantages: distinct sheets become indepen-
dent, and it allows us to use the planar result of Lemma 11.

Consider the set S0 D V\ .¹3n=2º � Œ0; n=10��G/. Applying Lemma 11 produces 
for which

¹u 2 S0 W S
Bn
�! uº stochastically dominates the product measure on S0 w.p. 1=2:

This implies that for each i , since jJi \ S0j � ı
20
jJi \ Vj, we have

P.Ji is bad/ � P
�
Bin

�
ı
20
jJi \ Vj; 1

2

�
�

ı
100
jJi \ Vj

�
� e�c0n

for some constant c0 > 0 (using again Hoeffding’s inequality). Hence,

P
�
at least h

60
sets Ji are bad

�
� 2h=30 sup

D�¹0;:::;h=30º

jDj� h
60

P.Ji is bad for all i 2 D/

� 2h=30.e�c0n/h=60;

which establishes (6.14).

7. Open problems

We state two open problems that follow naturally from the results presented in this work.
The first problem is related to local uniqueness for percolation of words.

Problem 13. For percolation of words on Zd , d � 3, at p 2 .psite
c .Zd /; 1 � psite

c .Zd //,
consider the following event. For n � 1, Un WD ¹there exist x; y 2 Bn.0/ and � 2 „ for

which x
�

Ý 1 and y
�

Ý 1, but there does not exist any way to see � starting from x

and y that “coalesces” before exiting B2n.0/º. More precisely, we require x, y and � to
satisfy: if  and  0 are two infinite self-avoiding paths from x and y, respectively, along
which � is seen, then  and  0 do not “meet” (i.e. intersect each other at the same time)
before exiting B2n.0/. What is the rate of decay of Pp.Un/ as n!1?

Percolation of words can be generalized to higher-dimensional objects, namely Lip-
schitz embeddings of d -dimensional structures into ZD , as previously studied in [3, 7].
Let 2 � d � D, and write �d D ¹0; 1ºZ

d
for the set of d -dimensional site percolation

configurations. For M � 1, we say that a configuration � 2 �d can be M -embedded into
! 2 �D if there exists an injection f W Zd ! ZD such that

8x 2 Zd !f .x/ D �x ; (7.1)

8x; y 2 Zd kf .x/ � f .y/k1 �Mkx � yk1: (7.2)

In [7, Section 1.3], the authors consider the following question. For any given p 2 .0; 1/
and � 2 �d , is it possible to M -embed the configuration � into a random !, obtained
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from Bernoulli site percolation with parameter p on ZD? In the spirit of our work, we
suggest the following problem. For M � 1, define pc.d;D;M/ 2 Œ0; 1� as the infimum
of all p such that the constant configuration 1d 2 �d can be M -embedded into ! with
positive probability. A consequence of [7, Proposition 4 (b)] is that for all d < D, there
exists M � 1 such that pc.d;D;M/ < 1=2.

Problem 14. Let 2� d <D,M � 1, and assume that pc.d;D;M/ < 1=2. For any fixed
p 2 .pc.d;D;M/; 1 � pc.d;D;M//, is it the case that every configuration � 2 �d can
be embedded into a p-percolation ! on ZD?

Let us also mention that the construction in [1, Section 4] shows the following. For
any fixed p 2 .0;1/, there exists d D d.p/ large enough such that in Zd , Pp-a.s., all words
can be seen from the neighbors of a single vertex. Our proofs show that for all d � 3 and
p 2 .psite

c .Zd /; 1 � psite
c .Zd //, there exists n D n.d; p/ large enough such that Pp-a.s.,

there exists a ball Bn.v/ (v 2Zd ) of radius n from which all words can be seen. However,
the value of n produced by the proof, using a renormalization procedure, is typically very
large, and we cannot say anything about what the optimal n should be. For example, it
leaves completely open the question of whether d.1=2/ D 3, i.e. whether all words can
already be seen from the neighbors of a single vertex on Z3, at p D 1=2.

For more open questions and comments regarding percolation of words, the reader
can consult the classification conjecture of de Lima and Sidoravicius, stated in [9, Section
1.2]. In the present paper, we completely verified part II (c) of this conjecture in the case
of Zd , d � 3. Also, since Wierman’s coupling is fully general, our proof suggests that
II (c) should be valid for a rather wide family of graphs, on which the renormalization
procedure can be carried out.
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