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Abstract. DefineG.xIq/ to be the variance of primes p � x in the arithmetic progressions modulo
q, weighted by logp. In analogy with his q-analogue of Selberg’s upper bound on the variance of
primes in intervals, Hooley conjectured that as soon as q tends to infinity and x � q, we have the
upper bound G.xI q/� x log q. This conjecture was proven true over function fields by Keating
and Rudnick, using equidistribution results of Katz. In this paper we show that the upper bound
does not hold in general, and that G.xI q/ can be much larger than x log q for values of q which are
� log log x. This implies that a conjecture of the first author on the range of validity of Hooley’s
conjecture is essentially best possible.

Keywords. Variance of primes in progressions, Hooley’s conjecture, primes in arithmetic
progressions, zeros of Dirichlet L-functions

1. Introduction and statement of results

For x > q � 3, we define the variance
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as well as the closely related (and perhaps slightly more natural)
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Since the pioneering work of Barban, Davenport and Halberstam [2, 7], the study of this
variance has seen a long line of developments, and continues to be an active research
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topic. To cite a few of the numerous papers written over the years, we mention [11,12,16,
17,20,29,31,35,45], as well as Hooley’s series of 19 research papers and 2 survey papers
(see for instance [18,19,21–23]). We also have the recent works [1,3,5,27,30,43], which
explore sparse averages over q, as well as analogues for number fields and function fields.

The quantitites G.xI q/ and Vƒ.xI q/ are q-analogues of the variance

Vƒ.x; ı/ WD
1

log x

Z x

1

. .t C ıt/ �  .t/ � ıt/2

t

dt

t
; (2)

which was first bounded under RH by Selberg [41] in connection with the distribution of
primes in almost all intervals. (Note that Vƒ.x; ı/ is normalized by the factor logx, which
is the total logarithmic measure of the interval Œ1; x�; we feel that it would be more natural
for G.xI q/ to also be normalized by �.q/, which is the counting measure of the set of
invertible residues modulo q. However, we retain the current definition to be consistent
with the literature.) Goldston and Montgomery [15, Theorem 1] extended this result by
showing under RH that uniformly for all 0 < ı � 1,

Vƒ.x; ı/� ı log.2ı�1/:

In this direction, we mention the works of Gallagher [14] and Montgomery–Sounda-
rarajan [32] on the conjectural Poisson distribution of  .t C ıt/� .t/� ıt . Hooley [21,
Theorem 1] was interested in a q-analogue of Selberg’s result, and he proved under GRH
that uniformly for q � x,

1

logT

Z T

2

G.t I q/
dt

t
� log q: (3)

In light of the heuristic correspondence between ı�1 and �.q/, this result of Hooley is an
averaged analogue of the Selberg/Goldston–Montgomery bounds. In this analogy, the role
of the average over t in (2) is played by the sum over a mod q in (1). In other words, the
left-hand side of (3) contains a double average, and one might think that averaging only
once as in (2) could be sufficient for the upper bound (3) to hold. This is the content of
Hooley’s conjecture [23, p. 217], [21, (2)], which states that as soon as q tends to infinity
and x � q, we have the upper bound

G.xI q/� x log q: (4)

More generally, one expects primes to approximately follow a Poisson distribution, which
becomes Gaussian as soon as each arithmetic progression modulo q contains infinitely
many primes on average, that is, as soon as �.q/D o.x= logx/ (this is again analogous to
the aforementioned conjectures of Gallagher [14] and Montgomery–Soundararajan [32];
see [8, Conjecture 1.9] for a precise conjecture). This heuristic is consistent with the
asymptotic Vƒ.xI q/ � x log q.

In a seminal paper, Littlewood [28] established the (unconditional) oscillation result
 .x;

�
�1
�

�
/D�˙.x

1=2 log log logx/. This result was extended by Davidoff (unpublished)
to all real Dirichlet characters. It turns out that Davidoff’s result is already sufficient to
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disprove Hooley’s conjecture. Indeed, for each modulus q, one can select a real charac-
ter �q and an arbitrarily large real number xq such that  .xq; �q/�q x

1=2
q log log logxq .

No matter what the implied constant is, and for arbitrarily large (absolute) M � 1, the
value xq can be chosen large enough so that  .xq; �q/ � x

1=2
q M�.q/1=2.log q/1=2; con-

sequently, Parseval’s identity

Vƒ.xI q/ D
1

�.q/

X
�modq
�¤�0

j .x; �/j2

results in the bound Vƒ.xqI q/ �M 2xq log q. A similar calculation would give the same
result forG.xqIq/, contradicting the conjecture (4). Note that this argument does not give
an effective rate of growth of xq in terms of q.

In a recent paper [9], the first author conjectured that Hooley’s upper bound (4) (as
well as the corresponding lower bound) holds in the range .log log x/1C" � q � x, and
suggested that the constant 1 in the exponent of log log x is best possible. This belief is
based on estimates on the large deviations of the limiting distribution of e�yVƒ.ey I q/,
under GRH and a linear independence hypothesis on the zeros of L.s; �/; the resulting
heuristic suggests that �.q/ D log log x is a transition point for V.xI q/.

The main result of the current paper is an unconditional proof that this range is best
possible—in other words, that Hooley’s conjectured upper bound (3) is false in the range
q D o.log log x/.

Theorem 1.1. Fix any sufficiently large positive real number M . There exists an infinite
sequence of pairs .qj ; xj /, with qj � 1

M
log log xj .with an absolute implied constant/

both tending to infinity, for which

G.xj I qj / �Mxj log qj : (5)

The same statement holds for Vƒ.xj I qj / in place of G.xj I qj /.

For fixed moduli q, our argument allows us to extend Davidoff’s result from real
characters to complex characters.

Theorem 1.2. For any fixed nonprincipal character � mod q,

<.�.x; �// D ��.x
1=2 log log log x/: (6)

Moreover, for any fixed modulus q � 3,

G.xI q/ D �.x.log log log x/2/: (7)

The same oscillation results hold with  .x; �/ and Vƒ.xI q/ in place of �.x; �/ and
G.xI q/, respectively. The sequences of x-values implied by these oscillation results
depend upon � or q, respectively; the implied �-constants, however, are absolute.

The size of the large values of G.xIq/ and Vƒ.xIq/ exhibited in this paper are highly
dependent on the relative sizes of q and x. We now state our main technical result which
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makes this dependence explicit. It will be useful to consider functions hWR�0 ! R�0
such that

h.x/ is increasing to infinity, and h.ey
A

/�A;h h.e
y/ for every A > 1; (8)

the prototypical example of which is h.x/ D max ¹log log x; 1º.

Theorem 1.3. Let h.x/ be a function satisfying (8), and let " > 0. If

" log log x
log log log x

� h.x/ � log log x for x � e3, (9)

then for a positive proportion of moduli q, there exist associated values xq such that
q � h.xq/ and

G.xqI q/�" xq log q �
log log xq

q
: (10)

In particular, when ı > 0 is sufficiently small, the bound (4) cannot hold in any range of
q that satisfies q < ı log log x.

If on the other hand

h.x/ � "
log log x

log log log x
for x � e3,

then for a positive proportion of moduli q, there exist associated values xq such that
q � h.xq/ and

G.xqI q/ �

�
1

4
� "

�
xq � .log q C log log log xq/2: (11)

The same statements hold for Vƒ.xqI q/ in place of G.xq; q/.

Note that the right hand side of (11) is always � xq.log q/2, contradicting (4) for
large enough q. Moreover, taking for instance h.x/ D log log log x results in the even
starker quantitative contradiction to Hooley’s conjecture G.xq; q/� xqq

2.

Remark 1.4. Under GRH, the generalized Riemann hypothesis for DirichletL-functions,
oscillation results similar to Theorem 1.3 hold for all moduli q. Indeed, we will show in
Theorem 3.9 that for any function h satisfying (8) and h.x/ � ı log logx with ı > 0 small
enough, there exists a sequence ¹xqºq�1 satisfying �.q/� h.xq/ and having the property
that G.xqI q/=.xq log q/ tends to infinity as q !1.

Our method also produces an oscillation result in a wider range, namely for

log log x
log log log x

� q � .log x/ı

with ı small enough. Indeed, G.xI q/ can be as large as .x log logx/.log q/=�.q/ (as can
be seen by combining Theorem 3.9 with Proposition 2.3). However, sharper oscillation
results are obtained for this range in [8] for a weighted variant of Vƒ.xI q/ and for all
higher even moments.
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We recall that Hooley conjectured that the estimate (4) holds, as soon as q tends to
infinity with q � x, based on his average result (3). A natural question to ask here would
be whether one can replace the t -average (3) with a more classical q-average, that is,
whether as soon as Q!1 and Q � x, we might have

1

Q

X
q�Q

G.xI q/� x logQ: (12)

As it turns out, this assertion is also false.

Theorem 1.5. Let " > 0 be small enough, and let QWR�0! N be a monotonic function
with the property (8) and satisfying Q.x/ � ".log log x/1=2=.log log log x/

1
2 . Then we

have the oscillation result

1

Q.x/

X
Q.x/<q�2Q.x/

G.xI q/ D �.x.log log log x/2/;

and the same statement holds for Vƒ.xI q/ in place of G.xI q/.

Let us briefly describe the tools used in the proofs of Theorems 1.2, 1.3, and 1.5.

� The first step, which is carried out in Section 2, is to show that the upper bound (4)
(in certain ranges) implies GRH. In other words, since our goal is to disprove (4), we
will be able to assume GRH for the rest of the paper. More precisely, if L.s; �/ has a
non-trivial zero �� D ‚� C i� off the critical line, then j�.x; �/ � 1�D�0xj can be as
large as x‚��" by Landau’s theorem, and then one can apply Parseval’s identity (13).
(Here 1�D�0 equals 1 if � D �0 and 0 otherwise.) This works well for fixed moduli q
(as in Theorem 1.2 and Davidoff’s result); however, one needs to modify this approach
to have a result which is uniform in the range q � xo.1/ (for Theorems 1.1 and 1.3). To
achieve this, we combine the identity (13) with positivity and the fact that large values of
j�.x; �/ � 1�D�0xj translate to large values of j�.x; �0/ � 1�0D�0xj for all �0 induced by
� (of conductor at most x).

Let us use GRH.�/ to denote the generalized Riemann hypothesis for a specific
Dirichlet L-function L.s; �/. If qe is the least modulus for which a character �e exists
such that GRH.�e/ is false, then �e will induce a character modulo every multiple of qe
whose associated DirichletL-function also violates GRH. As a result, we will deduce (see
Proposition 2.3) that G.xI q/ can be as large as x2‚�e�"=�.q/; since ‚�e is independent
of q and x, this deduction will violate the conjecture (4) in the range q � xo.1/ for a pos-
itive proportion of moduli q. In other words, the conjecture (4) in any range of the form
q� xo.1/ is stronger than GRH; indeed, the validity of (4) for q� xı implies the zero-free
strip <.s/ > 1=2C ı=2 for all Dirichlet L-functions modulo q (see Proposition 2.2).

A difficulty arises in this approach when one is looking for a result which holds for
many values of q. Indeed, if one uses the oscillations of �.x;�e/� 1�D�0x to create large
values of G.xI q/, say on a sequence xj , then the condition q � h.xq/ will force q to be
in a set which is possibly thin, since Landau’s theorem alone does not give the rate of
growth of xj . To circumvent this possible issue, we apply a refined oscillation result of
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Kaczorowski and Pintz [26], which gives a rate of growth for xj ; however, their main
theorem requires the assumption that L.�; �e/ ¤ 0 for 1=2 � � < 1. Fortunately, for our
purposes it is sufficient to apply a weaker result, Lemma 2.1, which as we will show can
be proven unconditionally.

� In the second step, which is more intricate, we assume that GRH holds. Our general
strategy in Section 3 is to apply the explicit formula and to synchronize the summands
using homogeneous Diophantine approximation, an approach that hearkens back to Lit-
tlewood’s work, modified as in [33, Theorem 15.11] and [37, Lemma 2.4]. However,
working uniformly in q poses significant new challenges. Indeed, several approximations
used in previous arguments of this kind translate to error terms which are too large in the
current context.

In order to circumvent these issues, we need to significantly refine this approach,
resulting in more complicated formulas. In particular, quite early in the argument we
need to apply results of Murty [34] (see also Hughes and Rudnick [24]) and Selberg [42]
on multiplicities of zeros of L.s; �/ (see Lemma 3.1). We then compute the average of
 .ey ; �/ in suitable short intervals, which are determined by an application of homoge-
neous Diophantine approximation, to synchronize the frequencies y�=2� mod 1 simul-
taneously for all zeros �� D 1=2 C i�, with height at most T , of all L.s; �/ with
�mod q. Interestingly, in certain ranges, rather than synchronizing an unbounded number
of frequencies for a single character, we synchronize a large enough but bounded num-
ber of frequencies for each character modulo q. This step forces the value of log x to
be as large as exp.c�.q/T log.qT // for some constant c > 0, which explains the range
q � log log x=log log log x in the second part of Theorem 1.3.

We also localize the large values fairly precisely in Theorem 1.3, that is, we obtain
two-sided bounds on x in terms of q and T . The key observation here is that we can
exploit the almost-periodicity of  .ey ; �/ as in [37, Section 2.2] by finding many val-
ues of n in the Diophantine approximation step, which will force one of these values to
be � exp. c

3
�.q/T log.qT //. Once this is done, the last step is to estimate the resulting

sums using the Riemann–von Mangoldt formula and an evaluation of the average log-
conductor [10, Proposition 3.3], which yields the second part of Theorem 1.3.

In order to obtain the full range in Theorem 1.3 (that is, q � " log logx), this approach
needs to be further modified. Indeed, the fact that we are synchronizing the frequencies
y�=2� mod 1 for all characters � mod q forces x to be as large as exp.qO.q//. To
reduce this bound, we instead synchronize a subset of characters modulo q, resulting in
the weaker oscillation result (10), which is still strong enough to contradict the upper
bound (4). This approach introduces additional difficulties in the estimation of the aver-
age of the log-conductor, which are overcome by applying recent statistical results [8,
Lemma 3.1] and [9, Lemma 3.2] (see Lemmas 3.2 and 3.6 below).

To summarize, in Section 2 we establish propositions that imply our main theorems
when GRH is false, while in Section 3 we prove more delicate results that imply our main
theorems when GRH is true. In particular, our main technical result is Theorem 3.9, after
which we deduce Theorems 1.1, 1.2, 1.3, and 1.5.
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2. Hooley’s conjecture and GRH

The goal of this section is to show that Hooley’s conjecture (4) in any range of the form
q � xo.1/ is stronger than GRH; as a result, we will be able to assume GRH in subsequent
sections. We will use the classical notation

 .xI q; a/ WD
X
n�x

n�amodq

ƒ.n/; �.xI q; a/ WD
X
p�x

p�amodq

logp;

and for a Dirichlet character � mod q,

 .x; �/ WD
X
n�x

�.n/ƒ.n/; �.x; �/ WD
X
p�x

�.p/ logp:

We record the Parseval identities

Vƒ.xIq/D
1

�.q/

X
�modq
�¤�0

j .x;�/j2; G.xIq/D
1

�.q/

X
�modq

j�.x;�/� 1�D�0xj
2: (13)

Our first step is to see that if � mod q is a character for which L.s; �/ does not satisfy
the Riemann Hypothesis, then j .x; �/j and j�.x; �/ � 1�D�0xj have large values. This
will follow from a result of Kaczorowski and Pintz [26] which we will adapt in order
to obtain an unconditional statement. One should keep in mind that this will give no
information about uniformity in q. We also mention that for � D �0, we have the more
precise results of Pintz [36] and Schlage-Puchta [38].

Lemma 2.1. Fix " > 0, let q � 1, and let � be a character modulo q. Define ‚� � 1=2
to be the supremum of the real parts of the zeros of L.s; �/. Then, for every large enough
X .in terms of � and "/, there exists x 2 ŒX1�"; X� such that

<. .x; �// � 1�D�0x < �x
‚��":

Proof. Suppose first that L.‚�; �/ ¤ 0. Then the claim follows from setting f .x/ D
<. .x; �/ � 1�D�01x�1x/ and applying [26, Theorem 1]. Indeed,Z 1

0

f .x/x�s�1dx D �
1

2s

�
L0.s; �/

L.s; �/
C
L0.s; �/

L.s; �/

�
�

1�D�0
s � 1

;

which is regular in the half-plane <.s/ > ‚� but not in any half-plane of the form
<.s/ >‚� � ". Here we use the fact that the residues ofL0.s;�/=L.s;�/ are nonnegative,
since L.s; �/� 1�D�0=.s � 1/ is entire (in other words, the poles of L0.s; �/=L.s; �/ and
L0.s; �/=L.s; �/ cannot cancel each other).

Suppose otherwise that L.‚�; �/ D 0, and thus � ¤ �0. The explicit formula [33,
Theorems 12.5 and 12.10] implies that for T � 1,

 .x; �/ D �
X
��

j=.��/j�T

x��

��
CO

�
log.qx/C

x.log.qxT //2

T

�
:
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We deduce that for any 0 < T1 < T2,

1

T2�T1

Z T2

T1

e�‚�t .et ; �/ dt D�
X

��¤‚�

eT2.���‚�/�eT1.���‚�/

��.���‚�/.T2�T1/
�

ordsD‚� L.s; �/
‚�

CO.e�‚�T1 log.qT2//:

Taking T1 D .1 � "/ logX and T2 D logX , and noting that the infinite sum over zeros
in the last equation converges absolutely, we deduce that for large enough X there exists
x 2 ŒX1�"; X� for which

x�‚�<. .x; �// < �
ordsD‚� L.s; �/

2‚�
:

The claim follows.

With this oscillation result in hand, we will deduce that in certain ranges, the upper
bound (4) is stronger than GRH. This is made precise in the following proposition. The
goal here is to overcome the uniformity problems caused by the fact that‚� depends on �
in Lemma 2.1. This will be done by noticing that for many moduli q, characters of small
conductor occur in the sums in equation (13).

Proposition 2.2. Fix 0 < ı < 1, and assume that equation (4) holds in the range
xı � q � 2xı . Then every Dirichlet L-function is nonvanishing in the half-plane <.s/ >
1=2 C ı=2. If one replaces G.xI q/ with Vƒ.xI q/ in (4), then the same half-plane is
zero-free for all Dirichlet L-functions corresponding to nonprincipal characters.

Proof. We prove the contrapositive. Suppose that there exists a primitive Dirichlet L-
function L.s; �e/ of conductor qe � 1 that has a zero with real part ˇe > 1=2C ı=2. By
Lemma 2.1, for every 0 < " < ˇe there exists an increasing sequence ¹xj ºj�1 tending to
infinity such that

j�.xj ; �e/ � 1�D�0xj j � x
ˇe�"
j :

We may assume that xj > q
1=ı
e for each j � 1, so that any interval of length xıj contains

a multiple of qe . For each j � 1, choose an integer xıj � qj � 2x
ı
j that is a multiple of qe ,

and let �j be the character modulo qj induced by �e . Note that

j�.xj ; �e/ � �.xj ; �j /j � log qj �ı log xj ; (14)

and hence for j large enough in terms of �e and ",

j�.xj ; �j / � 1�D�0xj j � x
ˇe�"
j =2 (15)

as well. Consequently, when j is large enough we have

G.xj I qj / D
1

�.qj /

X
�modqj

j�.xj ; �/ � 1�D�0xj j
2

�
j�.xj ; �j / � 1�D�0xj j2

qj
�
x
2.ˇe�"/
j

8xıj
D
x
2ˇe�ı�2"
j

8
; (16)
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so that
G.xj I qj /

xj log qj
�

x
2ˇe�1�ı�2"
j

log qj
�

x
2ˇe�1�ı�2"
j

ı log xj
: (17)

By assumption, 2ˇe � 1� ı > 0, and so the exponent 2ˇe � 1� ı � 2" is positive as long
as " is chosen small enough. Therefore

lim
j!1

G.xj I qj /

xj log qj
D1;

contradicting (4). The proof is identical for Vƒ.xI q/.

We now adapt the arguments in the proof of Proposition 2.2 to prove a proposition
that is more suitable for the proof of Theorem 1.1.

Proposition 2.3. Assume that GRH is false. Then there exists an absolute constant ı > 0
with the following property. Let h.x/ be an increasing function tending to infinity such that
h.x/ D o.xı/ as x !1. For a positive proportion of moduli q, there exist associated
values xq such that h.x1�ıq / � q � h.xq/ and

G.xqI q/ � x
1Cı
q :

If GRH.�/ is false for some nonprincipal character �, then the same lower bound holds
with Vƒ.xqI q/ in place of G.xqI q/.

Proof. Fix a modulus qe � 1 for which there exists an associated primitive character �e
such thatL.s;�e/ has a zero with real part ˇe > 1=2. Fix a positive number " < ˇe � 1=2,
and choose a positive number

ı < ˇe � 1=2 � " � 1=2:

Now let q be any large enough multiple of qe; the set of such moduli q has positive
(though ineffective) density in N. By Lemma 2.1, there exists xq 2 Œh�1.q/; h�1.q/

1
1�ı �

such that
j�.xq; �e/j > x

ˇe�"
q :

Note that this implies that q 2 Œh.x1�ıq /; h.xq/�. Denote by �q the character modulo q
induced by �e . Then the calculations in equations (14) through (16) apply exactly to this
situation; we conclude that

G.xqI q/� x2ˇe�ı�2"q ;

and the right-hand side is eventually larger than x1Cıj by our choice of ı, establishing the
asserted lower bound. The proof for Vƒ.xIq/ is identical as long as �e is nonprincipal.

To end this section, we further adapt Proposition 2.2 with the aim of proving Theo-
rem 1.2. This situation is much easier since there are no uniformity issues (that is, q is
fixed).
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Proposition 2.4. Fix q � 1, and assume that there exists a character �e modulo q such
that GRH.�e/ is false. Then there exists a sequence ¹xiºi�1, depending on q, such that
for each " > 0,

G.xi I q/ �
1

�.q/
j�.xi ; �e/ � 1�eD�0xi j

2
�";q x

2‚�e�"

i :

Here, ‚�e is the supremum of real parts of zeros of L.s; �e/. Similarly for Vƒ.xI q/
and  .x; �/.

Proof. This follows at once from equation (13) and Lemma 2.1.

3. Explicit formulas and homogeneous Diophantine approximation

The goal of this section is to show that GRH implies Theorem 1.3. Our goal will be
to synchronize the arguments of the summands in the explicit formula, but only for a
subset Fq of the set Xq of characters modulo q.

Throughout, � denotes the imaginary part of a nontrivial zero of L.s; �/, and q�
denotes the conductor of �. We let ktk denote the distance from t to the nearest integer,
and we use the shorthand log2 t D log log t and log3 t D log log log t .

Lemma 3.1. Let q � 3 be an integer. If �mod q is a nonprincipal character, then assum-
ing GRH.�/ we have the bound

ordsD1=2L.s; �/�
log q
log2 q

:

Moreover, if GRH.�/ is true for all nonprincipal � mod q, thenX
�modq

ordsD1=2L.s; �/ �
�
1

2
C oq!1.1/

�
�.q/:

Proof. The first bound is due to Selberg (see [42] or [25, Proposition 5.21]; see also [4]).
As for the second, it was first proven by Murty [34, p. 436] (see also [24]).

We will also need to control the conductors of the characters in Fq . We define
ˆq D #Fq . We will require Fq to have the property that

� 2 Fq if and only if � 2 Fq : (18)

Lemma 3.2. Let w.q/ > 0 be any function tending to zero as q !1. For each q � 3,
there exists a subset Fq � Xq of the set of characters modulo q of cardinality

ˆq D #Fq � �.q/.1 �O.w.q/
2//; (19)

having the property (18), such that logq� D logqCO.w.q/�1 log2 q/ for each character
� 2 Fq .
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Proof. By [8, Lemma 3.1], we have the estimate

1

�.q/

X
�modq

.log q� � log q/2 � .log2 q/
2: (20)

Combined with [10, Proposition 3.3] and Chebyshev’s inequality, this yields

1

�.q/
#¹� mod qW jlog q� � log qj > w.q/�1 log2 qº � w.q/2:

Since q� D q�, the characters not included in the above set have the property (18), and
the desired estimate (19) follows.

We are now ready to estimate the logarithmic averages of  .x; �/ and �.x; �/ over
a short interval. By carefully choosing this interval to synchronize the frequencies in the
explicit formula, we will ultimately create large values of G.xI q/ and Vƒ.xI q/. The
Riemann–von Mangoldt formula

N.T; �/ WD #¹��W j=.��/j � T º D
T

�
log
�
q�T

2�e

�
CO.log.qT // (21)

for T � 2 will be central in our analysis. The next lemma records some estimates that
follow easily from this asymptotic formula and partial summation.

Lemma 3.3. For any real parameters y, 0 < ı < 1 and T � ı�1,X
j�j>T

eiy�

�2�

�
i sin.ı�/

ı
C

cos.ı�/
2

�
�

1

ı

X
j�j>T

1

2�
�

log qT
ıT

;

max
² X
0���T

sin2.ı�/
ıj��j4

;
X

0���T

�j sin.ı�/ cos.ı�/j
j��j4

³
� ı

X
0���T

1

2�
� ı log q:

The next lemma is a careful evaluation of the averages of  .et ; �/ � 1�D�0et and
�.et ; �/ � 1�D�0et over a short interval. The specific interval will be chosen later using
homogeneous Diophantine approximation, and will contain a large value of those func-
tions.

Lemma 3.4. Let q � 1 be an integer, and let Fq be a set of characters modulo q with the
property (18) such that GRH.�/ is true for all � 2 Fq . Moreover, let 0 < ı < 1, T � ı�1,
and M � 1 be real parameters, and define

Rı.y/ WD
1

2ı

Z yCı

y�ı

X
�2Fq

. .et ; �/ � 1�D�0e
t / dt;

Sı.y/ WD
1

2ı

Z yCı

y�ı

X
�2Fq

.�.et ; �/ � 1�D�0e
t / dt:

(a) For all y � 0,
Sı.y/ D Rı.y/CO.e

y=2ˆq/: (22)
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(b) If n 2 N satisfies kn�ı=2�k < M�1 for each 0 � � � T with � 2 Fq , then y D
.nC 1/ı has the property that

Rı.y/ D

�ey=2
X
�2Fq

X
0���T

�
2� sin.ı�/.� sin.ı�/Ccos.ı�//

ıj��j4
C

�
1

4
�2�

�
cos2.ı�/
j��j4

�
CO

�
ey=2ˆq

�
log.qT /
ıT

Cmin
�
�.q/

ˆq
;

log q
log2 q

�
C
y log q
ey=2

:

C
log.qT / logT

M
C ı log q

��
: (23)

Proof. We begin by noting that part (a) is a direct consequence of the bound

j .x; �/ � �.x; �/j �
X
pk�x
k�2

logp � x1=2:

As for part (b), we can transfer the question to primitive characters by noting that if
�� denotes the primitive character inducing �, thenX

�2Fq

 .et ; �/ �
X
�2Fq

 .et ; ��/� ˆqt log q:

Moreover,L.s;�/ andL.s;��/ have the same zeros on the critical line. Hence, the explicit
formula [33, Theorems 12.5 and 12.10] gives that for y � 1 and S � 1,

Rı.y/ D �
1

2ı

Z yCı

y�ı

X
�2Fq

X
��

j=.��/j�S

et��

��
dt CO

�
ˆqy log q C

ˆqe
y.log.qeyS//2

S

�

D �
1

2ı

X
�2Fq

X
��

j=.��/j�S

ey��

�2�
.eı�� � e�ı��/CO

�
ˆqy log q C

ˆqe
y.log.qeyS//2

S

�

D �
1

2ı

X
�2Fq

X
��

ey��

�2�
.eı�� � e�ı��/CO.ˆqy log q/

after taking S !1. Using e˙ı�� D e˙iı�.1˙ ı=2CO.ı2// and truncating the infinite
sum over zeros using Lemma 3.3, we deduce the estimate

Rı.y/

D �ey=2
X
�2Fq

X
��

eiy�

�2�

�
i sin.ı�/

ı
C

cos.ı�/
2

�
CO.ˆqy log qCˆqıey=2 log q/

D �ey=2
X
�2Fq

X
0���T

�
i sin.ı�/

ı

�
eiy�

�2�
�
e�iy�

�2�

�
C

cos.ı�/
2

�
eiy�

�2�
C
e�iy�

�2�

��
CO

�
ey=2

ˆq log.qT /
ıT

Cey=2 min
�
�.q/;ˆq

log q
log2 q

�
Cˆqy log qCˆqıey=2 log q

�
;

(24)



Disproving Hooley’s conjecture 13

where we have grouped conjugate zeros together, using Lemma 3.1 to bound the contri-
bution from possible zeros at s D 1=2 for which this grouping is erroneous.

We now apply the hypothesis that y D .nC 1/ı with kn�ı=2�k < M�1 for each
0 � � � T and � 2 Fq . It follows that e˙iy� D e˙iı�.1C O.M�1//, and thus the
main term of (24) equals

�ey=2
X
�2Fq

X
0���T

�
i sin.ı�/

ı

�
eiı�

�2�
�
e�iı�

�2�

�
C

cos.ı�/
2

�
eiı�

�2�
C
e�iı�

�2�

��
CO

�
ey=2

M

X
�2Fq

X
0���T

1

j��j

�
D �ey=2

X
�2Fq

X
0���T

²
�2 sin.ı�/
ıj��j4

��
1

4
� 2�

�
sin.ı�/ � � cos.ı�/

�
C

cos.ı�/
j��j4

��
1

4
� 2�

�
cos.ı�/C � sin.ı�/

�³
CO

�
ˆq
ey=2

M
log.qT / logT

�
D �ey=2

X
�2Fq

X
0���T

�
2� sin.ı�/.� sin.ı�/Ccos.ı�//

ıj��j4
C

�
1

4
�2�

�
cos2.ı�/
j��j4

�
CO

�
ˆq
ey=2

M
log.qT / logT Cˆqıey=2 log q

�
by Lemma 3.3.

Now that we have expressed averages of �.x; �/ and  .x; �/ in suitable short inter-
vals in terms of sums over zeros, our strategy is to estimate the sums in (23) using the
Riemann–von Mangoldt formula (21).

Lemma 3.5. Let q � 1 be an integer, and let Fq be a set of characters modulo q with the
property (18) such that GRH.�/ is true for all � 2Fq . For any 0 < ı � e�1 and T � eı�1,

ı
X
�2Fq

X
0���T

24�

j��j4
sin2.ı�/
.ı�/2

D
ˆq

2
log.qı�1/

CO

�
ıˆq log.qT / logT C ı1=2ˆq log.qı�1/C .Eq Cˆq/ log.T ı/C

ˆq log.qT /
ıT

�
;

(25)

where
Eq WD

X
�2Fq

.log q � log q�/: (26)

Proof. We will see that the main contribution in the sum on the left-hand side of (25)
comes from zeros � of intermediate size. We can therefore discard low-lying zeros as
follows:
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ı
X
�2Fq

X
0���T

24�

j��j4
sin2.ı�/
.ı�/2

D ı
X
�2Fq

X
ı�1=2<��T

24�

j��j4
sin2.ı�/
.ı�/2

CO
�
ı
X
�2Fq

N.ı�1=2; �/

�
D ı

X
�2Fq

X
ı�1=2<��T

�
2CO

�
1

2�

��
sin2.ı�/
.ı�/2

CO.ˆqı
1=2 log.qı�1=2//

D 2ı
X
�2Fq

X
ı�1=2<��T

sin2.ı�/
.ı�/2

CO.ˆqı
3=2 log.qı�1=2/Cˆqı

1
2 log.qı�1//;

and the first error term is smaller than the second. Define

N.t;Fq/ WD
X
�2Fq

N.t; �/ D
X
�2Fq

�
t

�
log
�
q�t

2�e

�
CO.log.qt//

�
D

X
�2Fq

t

�
log.qt/ �

X
�2Fq

t

�
.log q � log q�/CO

�X
�2Fq

.t C log.qt//
�

D ˆq
t

�
log.qt/CO.Eqt Cˆq.t C log.qt///

by the asymptotic formula (21). Notice that counting only zeros above the real axis would
yield 1

2
N.t;Fq/ in place of N.t;Fq/ thanks to the property (18) and the functional equa-

tion for Dirichlet L-functions. We may now compute

2ı
X
�2Fq

X
ı�1=2<��T

sin2.ı�/
.ı�/2

D 2ı

Z T

ı�1=2

sin2.ıt/
.ıt/2

d
�
1
2
N.t;Fq/

�
D ıN.t;Fq/

sin2.ıt/
.ıt/2

ˇ̌̌̌T
ı�1=2

� ı

Z T

ı�1=2

�
2 sin.ıt/ cos.ıt/

ıt2
�
2 sin2.ıt/
ı2t3

�
N.t;Fq/ dt

D �ı

Z T

ı�1=2
2

�
sin.2ıt/
2ıt2

�
sin2.ıt/
ı2t3

�
N.t;Fq/ dt

CO

�
ı1=2ˆq log.qı�1=2/C

ˆq log.qT /
ıT

�
D �

ˆqı

�

Z T

ı�1=2
2

�
sin.2ıt/
2ıt2

�
sin2.ıt/
ı2t3

�
t log.qt/ dt

CO

�
ˆq.ı log.qT / logT C log.T ı//CEq log.T ı/

C ı1=2ˆq log.qı�1/C
ˆq log.qT /

ıT

�
; (27)

using sinu
u
� min ¹1; 1=jujº. Finally, integrating by parts in the other direction, the main

term in this expression equals

�
ˆqı

�
t log.qt/

sin2.ıt/
.ıt/2

ˇ̌̌̌T
ı�1=2

C
ˆqı

�

Z T

ı�1=2

sin2.ıt/
.ıt/2

.log.qt/C 1/ dt

D
ˆq

�

Z 1
0

sin2 u
u2

.log.qı�1u/C 1/ duCO
�
ı1=2ˆq log.qı�1=2/C

ˆq log.qT /
ıT

�
D
ˆq

2
log.qı�1/CO

�
ı1=2ˆq log.qı�1/C

ˆq log.qT /
ıT

Cˆq

�



Disproving Hooley’s conjecture 15

by the evaluation
R1
0

sin2 u
u2

du D �
2

, which is a particular case of the identity

4sin2.2�x/
.2�x/2

.�/ D

´
1
2
�
j�j
4

if j�j � 2;

0 otherwise.

Now that we have evaluated some of the main terms in (23), we can deduce a precise
estimate of the values attained by Rı.y/ and Sı.y/ in Lemma 3.4.

Lemma 3.6. Let q � 1 be an integer, and let Fq be a set of characters modulo q with
the property (18) such that GRH.�/ is true for all � 2 Fq . Let ı > 0 be small enough .in
absolute terms/, T � eı�1 and M � 1. If n 2 N satisfies kn�ı=.2�/k < M�1 for each
0 � � � T with � 2 Fq , then y D .nC 1/ı has the property that

Rı.y/ D �
ey=2ˆq log.q2ı�1/

2
CO

�
ey=2ˆq

�
log.qT /
ıT

C

�
Eq

ˆq
C 1

�
log.T ı/

C
y log q
ey=2

C
log.qT / logT

M
C ı1=2 log.qT /C

log q
log2 q

��
;

where Eq was defined in (26).

Proof. We first truncate part of the sum in Lemma 3.4, in order to expand sin.ı�/ and
cos.ı�/ into Taylor series. Doing so, we see that the main term in the estimate (23)
equals

� ey=2
X
�2Fq

X
0���ı�1=2

�
2� sin.ı�/ cos.ı�/

ıj��j4
C

�
1

4
� 2�

�
cos2.ı�/
j��j4

�
� ey=2ı

X
�2Fq

X
0���T

24�

j��j4
sin2.ı�/
.ı�/2

CO
�
ey=2ı1=2ˆq log.qı�1/

�
D �ey=2ı

X
�2Fq

X
0���T

24�

j��j4
sin2.ı�/
.ı�/2

� ey=2
X
�2Fq

X
0���ı�1=2

1=4C 2�

j��j4

CO
�
ey=2ı1=2ˆq log.qı�1/

�
D �ey=2ı

X
�2Fq

X
��0

24�

j��j4
sin2.ı�/
.ı�/2

� ey=2
X
�2Fq

X
��0

1

j��j2

CO

�
ey=2ı1=2ˆq log.qı�1/C ey=2ˆq

log.qT /
ıT

�
: (28)

The second double sum can be treated by using the functional equation (with
Lemma 3.1 accounting for possible zeros at s D 1=2), and applying [10, Lemma 3.5]
and the Littlewood bound L0.1; �/=L.1; �/� log2 q; we obtainX
�2Fq

X
��0

1

j��j2
D
1

2

X
�2Fq

X
�

1

j��j2
CO

�
ˆq log q
log2 q

�
D
1

2

X
�2Fq

log q� CO
�
ˆq log q
log2 q

�
D
ˆq log q

2
CO

�
ˆq log q
log2 q

CEq

�
:
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Combining this evaluation with Lemma 3.5, we find that the sum of the first two terms
in (28) equals

� ey=2
ˆq log.q2ı�1/

2
CO

�
ey=2ˆq

�
ı log.qT / logT C ı1=2 log.qı�1/

C
log.qT /
ıT

C

�
Eq

ˆq
C 1

�
log.T ı/C

log q
log2 q

��
:

Now that we know exactly how largeRı.y/ and Sı.y/ can be, it is time to understand
more precisely the set of y which are admissible. In particular, it is important for us
to localize these values in terms of the modulus q. This will be done using a counting
argument, inspired by the proof of [37, Lemma 2.4].

Lemma 3.7. LetƒD ¹�1; : : : ; �kº be a set of real numbers. For any positive integersM
and N ,

#¹n � N W kn�k �M�1 for all � 2 ƒº �
N

M k
� 1:

Proof. Consider the integer multiples nv, with 1� n�N , of the vector vD .�1; : : : ; �k/
2 Rk=Zk : If we divide Rk=Zk into M k cubes of side length M�1, then one of these
cubes will contain s � N=M k multiples of v. If the integers producing these multiples
are m1 < � � � < ms , then we have

¹n � N W kn�k �M�1 for all � 2 ƒº � ¹m2 �m1; m3 �m1; : : : ; ms �m1º;

and the cardinality of the right-hand side is at least N=M k � 1.

Proposition 3.8. Fix " > 0 sufficiently small, and let f;gWN!R>0 be two functions such
that f is minorized by a large enough constant and ."�1 log q/=�.q/ � g.q/ � log q. If
GRH is true, then for each sufficiently large q there exists xq satisfying

log2 xq �" �.q/f .q/g.q/
�
1C

log.f .q//
log q

�
with the property that

G.xqI q/

xq
�

�
1

4
� 2"

�
g.q/.log.q2f .q///2

log q
:

Under the slightly weaker assumption that GRH.�/ is true for every nonprincipal char-
acter �, the same statement holds with G.xqI q/ replaced by Vƒ.xqI q/.

Proof. We apply Lemma 3.2 withw.q/D .log2 q/
�1. We deduce the existence of a set Gq

of characters modulo q for which jGqj � �.q/.1 � K.log2 q/
�2/, where K > 0 is an

absolute constant, such that log q� D log q C O..log2 q/
2/ for each � 2 Gq . We can

assume that all elements of Gq are complex characters, since there are� 2!.q/�
p
q real

characters modulo q. Since q� D q�, we can also assume that Gq has the property (18).
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We extract a subset Fq � Gq of cardinality

ˆq D 2

�
�.q/g.q/

2 log q
.1 �K.log2 q/

�2/

�
for which (18) holds, where the right-hand side is at least 2 when q is sufficiently large.
By Lemma 3.2, the error term (26) then satisfies the bound

Eq � ˆq.log2 q/
2:

We now apply Lemma 3.7 to the set ƒ D ¹0 � � � T W � 2 Fqº. For T large
enough, it follows from equation (21) that the set S of values of n � N for which
knı�=.2�/k < .2�M/�1 has at least NM .�1Co.1//ˆqT log.qT /=2� � 1 elements. Tak-
ingN DMˆqT log.qT /=� , we find that S \ ŒN 1=3;N �¤ ;. Then, Lemma 3.6 implies that
for y D ı.nC 1/ with n 2 S ,

Sı.y/ D �
ey=2ˆq log.q2ı�1/

2
CO

�
ey=2ˆq

�
log.qT /
ıT

C .log2 q/
2 log.ıT /

C
y log q
ey=2

C
log.qT / logT

M
C ı1=2 log.qT /C

log q
log2 q

��
:

If C D C."/ > 0 is large enough, then picking T D C=ı,M D C logT and 0 < ı < C�2

will result, for q and y large enough, in the bound

Sı.y/ � �e
y=2ˆq log.q2ı�1/

�
1 � 3"

4

�1=2
: (29)

Now Sı.y/ is the average of the function
P
�2Fq

.�.et ; �/ � 1�D�0et / over the short
interval et 2 Œey�ı ; eyCı �, and hence this function itself has such a large negative value
in that interval. In other words, there exists a value x D ey.1CO.ı// such thatX

�2Fq

.�.x; �/ � 1�D�0x/ � �x
1=2ˆq log.q2ı�1/

�
1 � 2"

4

�1=2
; (30)

since C is large enough in terms of ". Using positivity in (13) and applying the Cauchy-
Schwarz inequality, we obtain

G.xI q/ �
1

�.q/

X
�2Fq

j�.x; �/ � 1�D�0xj
2
�

1

�.q/ˆq

ˇ̌̌ X
�2Fq

.�.x; �/ � 1�D�0x/
ˇ̌̌2

� x
ˆq

�.q/
.log.q2ı�1//2

�
1 � 2"

4

�
: (31)

Since y D ı.nC 1/ with n 2 ŒN 1=3; N �, it follows that the associated x satisfies

log2 x �" ı
�1 log2.ı

�1/ˆq log.qı�1/: (32)

The result follows from taking ı D f .q/�1 log2 f .q/.
The proof is identical for Vƒ.xI q/.
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We are now ready to prove our main technical theorem, at which point we will be able
to deduce Theorems 1.1, 1.3, 1.2, and 1.5.

Theorem 3.9. Assume GRH, and fix " > 0 small enough.

(a) If h.x/ is an increasing function satisfying

"
log2 x
log3 x

� h.x/ � .log x/"
2=3 for all x � e3, (33)

then for all moduli q there exist associated values xq satisfying

h.exp..log xq/c1"
�1

// � �.q/ � h.exp..log xq/c2"
�1

//

such that
G.xqI q/�" xq log q �

log2 xq
�.q/

:

(b) If h.x/ is a function with the property (8) and satisfying

h.x/ � "
log2 x
log3 x

for all x � e3, (34)

then for all sufficiently large moduli q there exist associated values xq satisfying
�.q/ �" h.xq/ such that

G.xqI q/ �

�
1

4
� "

�
xq.log q C log3 xq/

2:

These results hold with Vƒ.xqIq/ in place of G.xqIq/, under the weaker assumption that
GRH.�/ is true for every nonprincipal character �.

Proof. Under the condition (33), we apply Proposition 3.8 with f .q/ equal to a suffi-
ciently large absolute constant, and with g.q/ D " log2.h

�1.�.q///=.2�.q//. Note that
the inequality h.exp.q2"

�1�.q/// � �.q/ holds for q large enough, and thus g.q/ � logq:
Moreover, h.exp.q2"

�2
// � q2=3 � �.q/, and hence g.q/ � ."�1 logq/=�.q/. Therefore,

the hypotheses of Proposition 3.8 are satisfied. We deduce the existence of a sequence
¹xqºq�q0 such that log2 xq � �.q/g.q/ and

G.xqI q/

xq
� g.q/ log q �

log2 xq � log q
�.q/

;

establishing part (a).
On the other hand, under the conditions (8) and (34), we make the choices g.q/ D

log q and

f .q/ WD

8̂̂̂<̂
ˆ̂:

log2.h
�1.�.q///

�.q/ log q
if log2.h

�1.�.q/// � q2;

log2.h
�1.�.q///

�.q/ log3.h�1.�.q///
otherwise:
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The condition (34) ensures that f .q/ is minorized by a large enough positive constant
when q is sufficiently large. Moreover, one can check that

�.q/f .q/ log q �
�
1C

log.f .q//
log q

�
� log2.h

�1.�.q///:

Hence, Proposition 3.8 (applied with "=4 in place of 2") yields a real number xq satisfying
log2 xq � log2.h

�1.�.q/// with the property that if log2.h
�1.�.q/// > q2, then

G.xqI q/

xq
�

�
1

4
�
"

2

�
.log.q2f .q///2

�

�
1

4
�
"

2

��
log
�
q log2.h

�1.�.q///

log3.h�1.�.q///

��2
�

�
1

4
� "

��
log.q log2.h

�1.�.q////
�2

when q is sufficiently large, and similarly when log2.h
�1.�.q/// � q2. Moreover,

the estimate log2 xq � log2.h
�1.�.q/// combined with the property (8) implies that

�.q/ � h.xq/, establishing part (b).

Proof of Theorems 1.1 and 1.3. We prove Theorem 1.3 which implies Theorem 1.1. If
we assume that GRH is false, then the desired result for G.xI q/ follows from Proposi-
tion 2.3. On the other hand, if we assume that GRH holds, then the desired result follows
from applying Theorem 3.9, which holds for all moduli q, and then restricting to the
positive proportion of moduli q that satisfy �.q/ � 1

2
q, say. (The constant 1

2
is unim-

portant here; any constant less than 1 suffices, since we know [40, Theorem 1, §8] (see
also [39, Section 5]) that the limiting distribution function �.q/=q is strictly increasing
on .0; 1/.)

The proof is similar for Vƒ.xI q/, and the Riemann hypothesis for principal charac-
ters �0 is never needed (see (13)).

Proof of Theorem 1.2. If GRH.�/ is false, then the desired result for �.x;�/ follows from
Proposition 2.4. If GRH.�/ is true, then we argue analogously to the proof of Proposi-
tion 3.8.

Take Fq D ¹�; �º in Lemma 3.6, as well as T D C=ı, M D C log T and ı < C�2

with C large enough. Take moreover N D M T log.qT /=� in Lemma 3.7. Hence, there
exists n 2 ŒN 1=3; N � such that y D .nC 1/ı has the property that

Sı.y/ � �
1

2
ey=2 log.ı�1/:

Since
log2 x D logy �q ı�1 log.ı�1/ log2.ı

�1/;

we have ey=2 log.ı�1/ �q x1=2 log3 x and the lower bound (6) follows. The proof of the
lower bound (7) is similar, this time taking Fq to be the set of all characters modulo q and
applying (31).
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Proof of Theorem 1.5. If Q.x/ is bounded, and thus is eventually constant, Q.x/ D Q0,
the result follows from the boundX

Q0<q�2Q0

G.xI q/ � G.xI 2Q0/

and Theorem 1.2.
We now assume that Q.x/ tends to infinity. If GRH is false, we let �e mod qe be

a primitive character for which L.s; �e/ has a nontrivial zero off the critical line. Then
for x large enough the interval .Q.x/; 2Q.x/� will contain a multiple qj of qe . Hence, if
�j mod qj is the character induced by �e , we haveX

Q.x/<q�2Q.x/

G.xI q/ �
j�.x; �j / � 1�jD�0 j

2

�.q/
;

and the rest of the proof proceeds as in the proof of Proposition 2.2.
If GRH is true, then we argue as in the proof of Proposition 3.8. We apply Lemma 3.7

to the setƒD ¹0 � � � T W�mod q; Q < q � 2Qº. Taking N DM 2Q2T log.QT /=� , we
see that the set S of values of n � N for which knıQ�=.2�/k < .2�M/�1 has at least
one element exceedingN 1=9. Then we set T D C=ıQ,M D C logT and ıQ � C�2 with
C large enough in Lemma 3.6, and find that for y D ıQ.nC 1/ with n 2 S ,

SıQ.y/ � �

�
1

2
� "

�
ey=2�.q/ log.q2ı�1Q /:

Hence, as in (31), for each large enough Q there exists xQ such that

1

Q

X
Q<q�2Q

G.xQI q/�
xQ

Q

X
Q<q�2Q

.log.q2ı�1Q //2 � xQ.log.Q2ı�1Q //2;

and for which
log2 xQ � Q

2ı�1Q log.Qı�1Q /:

The rest of the proof proceeds as in the proof of Theorem 3.9.
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